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Corrections and Additions 

p .  5, R.21 - H' = (h'-hb)/ab 

be "fall distance" 
houi74 

p .  9,  R.7 - "full distance" 
R.10 - IFIu4 should be IF1 

p .  11, bottom - "300" should be one mark to the right on "F" scale 

p .  16, R.9 - "35 m/sec" should be "3.5 m/sec" 

p .  25, eq. (12) - 'I = I' in the denominator should be + 
eq. (14) - "F" should be "f" 
11.11 - "f" should be "F" 

p .  29, R.l - ''4/3'' should be "3/2" 
R . 8 , 9  - "3" should be "2" 

p .  36, R.5 - "hb = 1.5Rb1' should be "h b + 1.5Rb1' 

n 

n 
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1.0 INTRODUCTION 

L_ . c 

This i s  a s impl i f i ed  approach t o  t h e  ca l cu la t ion  of ground l e v e l  

concentrations of effluents from small i n d u s t r i a l  and fuel burning installa- 

t i o n s .  It i s  intended t o  serve as a f i r s t  approximation t o  a very compLex 

process.  Because each s tack ,  building, and t e r r a i n  conf igura t ion  i s  

d i f f e r e n t ,  actual. ground concentrattons may f r equen t ly  d i f f e r  from the 

values ca l cu la t ed  here by a f a c t o r  of two. Nonetheless, t h i s  procedure should 

be useful for determining whether ambient air q u a l i t y  standards a r e  l i k e l y  

t o  be met, exceeded, or only marginally obtained. T t  also pred ic t s  the 

loca t ions  where t h e  h ighes t  and most frequent ground concentrations are 
I 

l i k e l y .  Sampling a t  several such loca t ions  i s  very advisable ,  unless 

the predic ted  concentrat.ions are qu i t e  low. Tn add i t ion ,  consul ta t ion  

with a s p e c i a l i s t  i n  air  po l lu t ion  meteorology m y  be desirable i n  t h e  

long run, e s p e c i a l l y  i n  marginal o r  unique s i t u a t i o n s .  

The procedures given here were designed e s p e c i a l l y  f o r  source heights 

of less than 100 m;  some of t he  simpli .f ications made are no t  valid f o r  l a r g e  

emissions. I n  t h e  f e w  cases where more than  a r i thme t i c  formulas are 

necessary, simple nomograms are provided. I t  is important t o  note that 

a l l  lengths  are i n  meters ( m )  and vel.ocit ies are i n  meters per second 

(m/sec) i n  these  formulas; t h i s  avoid[; needless r e i t e r a t i o n  of the f o r m l a c  

for  d i f f e r e n t  u n i t s .  Appendix B provide:; a l l  necessary conversion f a c t o r s .  

Chapter 2 g ives  a method for  ca l cu la t ing  t h e  e f f e c t i v e  height of a 

plume of e f f l u e n t ,  i f  it escapes the  "downwash" e f f e c t  OS the s t ack  and 

W i l d i n g s ,  and for pred ic t ing  t h e  occurance of downwash. The latter is  

a common occurance with small emissions, and g r e a t l y  increases  ground 

concentrations i n  the'imediate v i c i n i t y  downwind of t'ne source. If' 



damwash is avoided., it is important to make a reasonable estimate of the 

plume's e f f e c t i v e  he lght ,  as t h i s  greatly affects the m a x i m  groimd 

concentration. Chapter 3 simplifies somewhat the "classical" methods :or 

predicting ground concentrations, for both elevated sources and gsomd 

sources, and gives correction factors f o r  various averaging w r i o d s  up 

t o  211 hours. 

cedure:; t o  predlct t h e  average ground concentration and t o t a l  depos itton 

of l)art , icu~ater,  over c.xtencicd per--1(1(i;, 30 dayr. t u  a year .  

and 7 note impot8tant f ea tu res  of d i f  t'ub i ori at si Le:; t,hat are not  ?'tat, 

kind rur"J 1 t ha t  cli f i'cr f'rom thc classical. dlff 'usion rncclel , arid 

:;upty:;ts means of accounting J'or them. 

Chapters 4 and 5 o u t l i n e  ways to extend the above pro- 

Chapters 6, 

. 

Il'lirther guitlanw can he found i n  t h e  ASMU "l~eccmncmded Guide f o r  

the Prcdi c t ion c) 1' tht: D1 spcr:,ion 01' A i  r*horrie El'l'luents " (2-968, y e s e n t 3  y 

bej ne rcv ised)  . 

n 
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The answer t o  t h i s  question can meail e i t h e r  a zero concentration or 

a very high conccntr*ation of el 'fjuent a t  the ground i n  the  r1ci~;hborhood of 

an emis:;ion, Does t h e  ))-Lune kccj) i t s  d i ~ t a n c e  fl*OKi t h e  grrwdand i.f' s o ,  

what. is  i.t:; e f f e c t i v e  height - o r ,  i s  t h e  pl.un1c brought t o  t h e  ground 

very near the source? "he la t te r  can happen if t h e  efflux ve loc i ty  is too 

low,, t h e  s t a c k  i s  too s h o r t ,  o r  the  emission i s  denser than a i r .  Downwash 

of t h e  plume due t o  t e r r a i n  i s  a l so  poss ib l e ,  p a r t i c u l a r l y  If t h e r e  is an  

escarpment upwind of the  source, but t h i s  case I G  r e l a t i v e l y  r a r e .  

The answer t o  t h e  above question can, depend on t h e  wind speed, as w i l l  

be seen below. It also can depend on the  loca t ion  of t h e  s t a c k  r e l a t i v e  t o  

bu i ld ings  and t h c  wtnd d j r e c t i o n .  

geometries given ample reason for not  expecting great accuracy from t h e  

following "rules-of-thumb. I 

The great vuricty of poss ib l e  bui ld ing  

- 3 -  
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2.1 Stack Aerodynamic Ef fec t :  -.- /,- -u 

C - D +  
An e f f l u e n t  emitted v e r t i c a l l y  from a s t ack  can rise due t o  i t s  momentum 

or  can be brought downward by t h e  low pressure i n  the  wake of t h e  s tack .  

Which occurs depends on the r a t i o  of t h e  efflux ve loc i ty ,  vs, t o  the 

crosswind ve loc i ty ,  U. 

i n s i d e  s t a c k  diameter and h i s  the  source height  above t h e  ground: 

Make the following computation, where D i s  the  

S 

It i s  suggested that this be done f o r  t he  fol lowing-values  of u:  

7, and 10 m/sec. 

1, 2.5, 4.5, 

The efflux ve loc i ty  can be determined from d i r e c t  

measurement, from the  amaunt of forced draft, from t h e  r a t e  of  t h e  process 

and r e l a t i v e  proport ions of i t s  gaseous product ( thermal expansion should 

be taken i n t o  account) ,  o r  from visual or  cinematographic estimates ( i f  

t h e r e  a r e  v i s i b l e  t r a c e r s  i n  t h e  e f f l u e n t . )  

can be made d i r e c t l y ,  taken from drawings, or  scaled from photographs. 

Alldimnsionra 

be i n  meters per  second, as these  units a r e  used throughout t h i s  guide. 

Conversion f a c t o r s  are given i n  Appendix B 

Building and s t ack  measurements 

should be converted t o  meters, and vs and u should 

If the  e f f l u e n t  i s  emitted from a non-vert ical  s t a c k  or vent, s e t  

h '  = hs. 

2.2 Building Ef fec t :  

. 

If t h e  e f f l u e n t  i s  emitted from a s t ack  o r  vent on o r  near a bui lding,  

it may be brought downward by t h e  flow of a i r  over and mound the building. 

- 4 -  
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Let1 

width perpendicular t o  t h e  wind d i r ec t ion ,  wb. 

($ + 1 . 5 e b )  and t h e  point  of emission i s  on t h e  roof ,  anywhere within 

equal  t h e  lesser of the bui ld ing  he ight ,  \, o r  t h e  bui ld ing  

If h'  1s less than 

b/4 of the bui ld ing ,  o r  within 3 1 b  d i r e c t l y  downwind of the bui lding,  

t h e  plume C M  be considered t o  be within the reg iona l  of bui lding 

influence.  

Section 2.3. 

t h e r e  are seve ra l  p o s s i b i l i t i e s :  

If t h i s  i s  not t h e  case,  set h" - h1 and go on t o  

If t h e  plume i s  within the  region of bui ld ing  inf luence,  

(1) If h' is  less than (\ + O . 5 i b ) ,  p a r t  o r  a l l  of t h e  e f f l u e n t  

i s  l i k e l y  t o  c i r c u l a t e  within t h e  aerodynamic "cavity" t h a t  forms i n  t h e  

lee of t h e  bui ld ing  (see t h e  sketch below.) 

at t h e  upwind edge of a f la t  roof o r  a t  t h e  c r e s t  of a pi tched roof 

(unless  t h e  c r e s t  i s  p a r a l l e l  t o  t h e  wind). 

about ($ + 0.5 i' ) and a width a l i t t l e  g rea t e r  than wb,, and extends 

This cavi ty  usua l ly  begins 

It grows t o  a height of 

b 

over all l e e  sides of t h e  bui ld ing  and downwind 2 t o  3.5 -! b. %us, 

e f f l u e n t s  i n  t h e  cavi ty  region may a f f e c t  persons on t h e  ground wid 

i n  t h e  building. 

vents  providing v e n t i l a t i o n  w i t h i n  t h e  building. Following are some 

rough guidel ines  f o r  es t imat ing t h e  concentration ( x )  experienced i n  

the cavi ty  region. Let x 6 KQ/(u A- b2) where Q i s  defined i n  Section 

One must e spec ia l ly  consider t h e  placement of in take  

3.1. If He > 0.35, K is genera l ly  1 o r  less throughout t h e  cavi ty .  

If E' < 0.35, K is  t y p i c a l l y  1.5 and at most is 3.0, except on the 

side of t h e  bui ld ing  where t h e  e f f l u e n t  i s  emitted ( f o r  ins tance ,  t h e  

roof). Here, K can range up t o  100. The concentration along t h e  exis 

- 5 -  



2 
of t h e  plume can be roughly approximated by x = hQ/(us ), where s is 

t h e  d is tance  from t h e  source measured along t h e  axis. The a i r f low near 

bu i ld ings  i s  complicated and it i s  d i f f i c u l t  t o  p red ic t  t h e  t r a J e c t o r y  

of t h e  plume a x i s ,  

t h e  flow i s  usua l ly  upwind. 

For example, i n  t h e  cavi ty  within 2 / 4  of t h e  roo f ,  
b 

(2) If h '  > %, compute h" = 2 h '  - (hb + 1 .5  .e b )  

If h '  < hb, compute h" = h '  - 1 .5  sb  

( 3 )  If h" i s  g rea t e r  than / 2 ,  t h e  plume remains an elevated b 

source. Go on t o  Section 2.3. 

If h" i s  less than 2 b/2,  treat  t h e  plume as a ground source 

with an i n i t i a l  cross-sect ional  a r ea  A = .ob . 2 
Go on t o  Chapter 3. 

The above r u l e s  reduce t o  a simpler form i n  t he  case of  a squat 

bu i ld ing ,  i . e .  when % < wb: 

region of bu i ld ing  inf luence and h" = h ' ;  i f  h '  - < 1 .5  hb, t h e  plume down- 

washes i n t o  t h e  bui ld ing  cavi ty  ( see  (1) above) and a l s o  becomes a ground 

source with A = % 
remains elevated and h" = 2 h '  - 2.5 % ( s e e  ( 2 )  above). 

i f  h '  > 2.5 h , t he  plume escapes the  
b - 

2 ( s e e  ( 3 )  above); f o r  inbetween values of h ' ,  the plume 

- 6 -  
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.2.3 Buoyancy Effec t :  

,If the  procedure j u s t  Given i n  Section 2.2 i nd ica t e s  that t h e  plume 
1. 
\ 

-_ 
Y 

i s  s t i l l  elG'mteci, t h e  plume height can be s i g n i f i c a n t l y  a l t e r e d  by hoyancy  i f '  

t h e  dens i ty  of t h e  ei'flueni; difi 'ers from t h e  dens i ty  of the  ambient air by more 
'\ 

-K 2 

< 
\ 

than  1%. This i s  n e a r l p @ l w q  t rue ,  unless t he  e f f l u e n t  i s  more than 98s a i r  
'> 

- 
and i t s  temperature i s  within 5°F of the ambient temperature; i n  t h i s  la t te l  

case, it i s  permissible t o  s e t  h = h", where h i s ' k h e  e f f e c t i v e  source height,  
-. . 

To determine whether an e f f luen t  i s  heavier or l i g h t e r  than a i r ,  calcuL'ate 

A = L+, + Am + Aw, where L+, i s  the  temperature cont r ibu t ion  t o  the  relative 

dens i ty  d i f fe rence ,  A i s  the  molecular weight contribution, and A i s  t h e  

l i q u i d  water c o n t r i l u t i o n  ( a f t e r  evaporation occurs).  /c ) (h"/T) ,  

where c 

c i s  t h e  s p e c i f i c  heat capac i ty  of a i r  ( c  

LW i s  t h e .  d i f fe rence  between t h e  ei'l 'luent and ambient temperatures, , 

m W 

L+ = - ( c  PO P 
i s  t h e  s p e c i f i c  heat capac i ty  a t  constant presure of t h e  e f f l u e n t ,  

PO 
= 0.24 cal/E;m -OK). 

P P 

and T i s  t h e  ambient absolu te  temperature ( O K  = OC + 273") .  

For the  products of combustion of the hydrocarbon f u e l s ,  ( c  /c ) 1. 

Except i n  a r c t i c  winters,  2 8 8 " ~  = 5l8'H i s  an  adeqwte  approximation f o r  T. 
PO P 

If AT i s  not  convenient t o  measure, an  a l t e r n a t i v e  e x p r e s s i o n i s A T =  -+{/(M~ c ~ . T ) ,  

where % i s  t h e  amount of dry heat emission car r ied  by t h e  e f f l u e n t  

(not l a t e n t  h e a t )  and Mo i s  t h e  mass flux of t h e  e f f l u e n t  ( i f  

cal/sec,  cn should be i n  tal/@ - OK, T i n  "I<, and M 

i s  i n  

i n  p;m/sec), 
0 

- 7 -  



= (1 - 28.9/mo), where m i s  t h e  mean molecular weight of t h e  e f f luen t  *m 0 

(l/mo i s  t h e  sum of t h e  f r ac t ion ,  by weight, of each component gas times the  

inverse of i t s  molecular weight). For Products of combustion of  t h e  

hydrocarbons, A 

10% of t h e  hea t  of combustion i s  ca r r i ed  by the  e f f luen t  as dry heat.  

i s  negl ig ib le  compared t o  AT as long as a t  least m 

F ina l ly ,  Aw = 8 $tr /Mo,  where % i s  the  estimated mass flux of l i q u i d  

water i n  t h e  e f f l u e n t ;  \/Mo i s  j u s t  t h e  f r ac t ion  by weight of l i q u i d  

water i n  t h e  e f f luen t .  Except f o r  scrubbed o r  washed plumes, A i s  usua l ly  

negl ig ib le .  

a l s o  poss ib le  t o  ge t  a temporary increase i n  buoyancy due t o  l a t e n t  hea t  

release if condensation occurs; i n  p rac t i ce ,  t h e  condensation s tage  i s  

usua l ly  short- l ived f o r  small emissions and a l l  water soon evaporates , )  

W 

(When the re  i s  water vapor present  i n  t h e  e f f luen t ,  it i s  

If A i s  pos i t i ve ,  t h e  plume i s  denser than a i r  (negat ively buoyant) 

and m a y  f a l l  t o  t h e  ground very near t h e  source; t h e  next sec t ion  appl ies  

i n  t h i s  case. 

and m a y  r ise  s i g n i f i c a n t l y ;  go on t o  Section 2.3.2 i n  t h i s  case,  

If A i s  negat ive,  t h e  plume i s  l i g h t e r  than air (buoyant) 

2.3.1 Dense Plumes: 

If A > 0 t h e  plume i s  heavier  than a i r ,  and may f a l l  t o  t h e  ground 

r a t h e r  c lose  t o  t h e  source i f  u < 0.22 C r/ g A D ,  where C i s  given by 

Urban S i t e  Rural S i t e  

3 5 
5 

7 
10 

1 0  

15  
35 

c 



If u i s  g r e a t e r  than t h e  above value,  s e t  the  e f f e c t i v e  source height 

equal t o  h" ( i . e .  h = h") and go on t o  Chapter 3. 

t h e  above, t h e  plume f a l l s  t o  t h e  ground at a d i s t ance  roughly equal t o  

4.5 h 

ground source ( h  = 0 )  with an i n i t i a l  cross-sectional area A = 0.2 hS . 

I 

If u i s  less than 

u/ Jm downwind of t h e  source,  and should be t r e a t e d  as a 
S 

2 

5 

The exception t o  t h i s  r u l e  i s  the rural  source at n ight  when u .< 3.5 m/sec; 

i n  t h i s  case ,  t h e  f u l l  d i s t ance  i s  l i m i t e d  t o  approximately 100 \ F 1 1/4 
9 

where F i s  defined i n  t h e  next s ec t ion .  Therefore, i n  t h i s  p a r t i c u l a r  case 

t r e a t  t h e  plume as above only i f  ( h  

(hs  - 100 i Fi u 4 ) >  0.2 h but i s  less  than  0.5p b,  i n  assoc ia t ion  w i t h  a 

bu i ld ing ,  t r e a t  it as a ground source w i t h  A =a 
conditions hold,  t r e a t  it as an e leva ted  source with 

- 100 I F [  c0.2 h ; i f  
S S 

S 

If n e i t h e r  of t hese  b e  

Complete absence of wind does not imply t h a t  t h e  e f f l u e n t  reaches 

t h e  ground w i t h  an i n f i n i t e  concentration, s ince  t h e  plume does mix 

with a i r  as it f a l l s .  To allow f o r  t h i s ,  i n  t h i s  ca l cu la t ion  procedure 

consider t h a t  there  i s  an "e f f ec t ive  minimum wind speed" equal t o  

If t h i s  speed i s  greater than  0.22 C J;fi;-F; , the  dens i ty  

e f f e c t  may be neglected a l toge the r ;  set h = h" and go on t o  Chapter 3. 

Since very lowwind 3peeds may be of g r e a t  concern i n  the case of 

dense plumes, t h e  following very rough guide l ine  i s  of fe red  f o r  es t imat ing  

t h e  frequency of low winds: 

- 9 -  



Terrain Type Frequency of u 1 m/sec 

Flat 
Rolling 

Hilly 
Mountain region 
Mountain sheltered 

2 to 5% 
5 to 10% 
10 to 20$ 

20 to 30% 
30 to 40% 

These low winds occur predominantly at night. 
For the Frequency of winds less than 1 m/aec, multiply the above frequencies 
by u2, where u is the upper limit in m/sec. 
site has a strong influence here. 

Obviously, the nature of the 

2.3.2 Buoyant Plumes: 

If A < 0, the effluent m a y  rise appreciably owing to its buoyancy, 

resulting in substantially reduced concentrations at the ground. 

determine this rise, first calculate 

To 

F - -2.6 A Mo, ( 3 )  

where M is the mass f lux of effluent in kgm/sec. An alternative 

expression for effluents in which molecular weight and liquid water 

do not contribute significantly to A is 

0 

F = 3.7 10-5 % ( 4 )  

where the dry heat emission, %, is in cal/sec (Appendix A gives conversion 

factors for other units). 

effluents resulting from the combustion of hydrocarbon fuels. 

This expression is quite adequate for unwashed 

c 
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During t h e  day, or a t  n i c h t  vhen t h e  wind speed u i s  gre3.1,er than 

G -  

7-  

8- 

3- 

3.5 m/ser:, the e f f e c t i v e  source h e j g h t  of a buoyant plurne is anproximated 

h = h“ + 21. F2l3/u . ( 5 )  

A noir.ogrnm is provided below f o r  c a l c u l a t i n g  2 1  F2/3/u. 

u i s  less zhari 3.5 rn/scc, calcuLa1.e thc: e f f e c t i v e  source  h e i g h t  with 

During t h e  night. vherl 

U 

300 -; 
I 

i 
‘ I  

1 -’ 
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3.0 ESTIMATING GROUND CONCENTRATIONS 

3 .1  Simp1.e Di.ffusion Models : 

The main cj.mplif'j.cations made i n  t he  d i f fus ion  models given here j ,  

that t h e  plume cross-sect ion a t  any poin t  i s  talien t o  be rectangular  and 

t o  contain a uniform concentration of  e f f l u e n t .  A s  i n  most dif ' fusinn mddeis, 

t h e  va r i a t ion  c:f wind speed with height  i s  neglected ; t he  horj  zonta! tram - 

questi on. 

5 Sinc*c the  v ~ o i i u i i t : t r i c  f l o u  r a t e  i s  i n  It1 / sec  with the u n i t s  rccomcended 

here ,  ii' Q i s  e;cpr<::,sed i n  kgm/sec the  r e s u l t i n g  unjts of X, tile concentra- 

t i o n ,  are hgm/m . To convert t h i s  t o  gm/m , mult iply by 

t o  pg/m5, mul t ip ly  by 10'. 

mult ip ly  by 10 tiruc:b (24/m ), where m i s  it:; molecular wei&k. An a l t e r n a t i v e  

method t o  ge t  X i n  I)pm i s  t o  express 

flow rate of the component gas i n  ni / s ; cc .  

j 3 'Po convert  

To convert  t h c  concentration Qf a gas t c 7  ppn, 

6 
0 0 

6 
as 10 times (T/To) 1,he:; t h e  voluine 

3 

3.2 Diffusion Coeff ic ients  and S t a b i l i t y  C l a p .  a;es : 

A bas i c  f ea tu re  of d i f fus ion  In  the  atmosphere i s  t h a t  t h e  ere:;';- 

sec*tional area 01' plumes always grows w i t h  d i s tance  downwind. This .i'eature 



w i l l  be descr ibed i n  t h e  model6 here by means of t he  plume half-width,  R 
Y 

and the  plume half-depth,  R , which a r e  given as funct ions of dintancc Sn 

Appendix D .  
z 

The rcutlcr w i l l  note t ha t  two  et; of values are given i n  this 

appendix; one f o r  rura l  s i tes  and one f o r  ur'uun s i t e s .  T ' h i s  i s  done because 

di  f t 'usion i s  considerably enhanced In urban a reas ,  where atmospheric 

* 

e turbulence is increased by a i r  flow over bul ld ings  and  by greater Lherma! 

convection thm over thc countrysjde. Thr? urban valucs t'or R and H 

should bc used if t he  area within 1.0 s t ack  heights  or  10 buil-dj.r.g heights 

Y z 

0.f t he  source i s  mostly b u i l t  u p .  

H and R are also f'unctjnns of t t i c  ,tat-,i l i t y  of t h e  atmosshere. Thi;  Y 2 

is ar.(,ounted T o r  i n  a rough ~niy  by mtnn:, ('1' : ; tabi l i  ty c lusses  , rangCi 11; 

frorn vcry unstab'le (CLnsn A) t o  very .,tai:i.(. ( ( ' lass  F). 

s t ab i l l  t:! clas;:; clepcrvl:, somewhat on c I crud i n c s  ;, b u t  most s t rongly  denendr 

on t h c  wind s-peed anti whether it i:, day or njt:ht. The fol towin:; t a b l c  

pi ves  tht: best n v c r q c  :,t:ibl l i  1,y ( - 1  a,,:, 1'1 ir d l  i'l 'erent wind spced:, . 

The n~os t  appropr5ate 

Table 1 - S t n b i  L j tg  Classes 

1 i' 7 4 . 5  1 
Wind speed, m/cec 1 2.5 

Day A I3 C D I) 

Night E' TC D n ri 

The values f o r  li and R given j n  Appendix D apply best t o  30 minute Y z 

averages.  For o ther  averaging times, cor rec t ion  f a c t o r s  for ground c@ncen- 

t r a t i o n  are suggested i n  Section 3.5. 

- 13 - 



I n  c i t i e s  and near 

r equ i r e  modif icat ion of 

prominent terrain there  are s p e c i a l  s i t u a t i o n s  which 

the  genera l  diff 'usion models given below i n  Sect ions 3.3 

and 3 . b .  For these cases ,  consul t  Chapters 6 and 7. 

Since wjnd spced s t rong ly  inf luences the  s t ack  aerodynmiic e f f e c t ,  the  

buoyancy e f f e c t ,  and the  r a t e  of d i f f u s i o n ,  it i s  suggested that the 

procedures i n  t h i n  chapter be ca r r i ed  out for a t  least f i v e  d i f r e r e n t  

wind speccis: 

of occurrcncc are needed, conoult Chapter 

f're quencies . 

I, 2.5, 4.5, 7, and 10 m/scc. If cstirriatcr; of the  frecpency 

for  infornnt ion  on wind spcccl 

It should be cautioned that the  proccdures developed i n  this chapter 

are based on average r a t e s  of d i f f u s i o n  Jn various conditions.  However, 

t h e  d i f f u s i n g  power of the  atmosphere va r i e s  considerably even a t  a given 

wind speed and t im of day; t h c r c f o r ~ ,  occnsiona.1 30-minutc average 

conccmtration:: .twice those comyutcd hcrl-. should bc an t i c ipa t ed .  

w 

-14 - 

. 



3.3 Ground Concentrations from Ground Sources 

If t h e  procedure de t a i l ed  i n  Chapter 2 p red ic t s  t h a t ,  f o r  t h e  

circumstances and wind speed given, t he  plume becomes a ground source,  

t h e  following equation approximates t h e  ground concentration downwind 

of t h e  cavi ty  region: 

where A i s  t h e  i n i t i a l  cross  sec t iona l  plume area as spec i f ied  i n  

Chapter 2. The question of u n i t s  far x and Q were discussed i n  

Sect ion 3.1. 

such as at the property l i n e ,  consu2t Appendix D f o r  values of 

R and R appropriate  t o  t he  s i t e  ( r u r a l  o r  urban) ,  d i s tance ,  and 

s t a b i l i t y  c lass .  To allow f o r  atmospheric d i f fus ion  between the  source 

height  and the  ground, assume a m i n i m u m  d i s tance  downwind equal t o  h . 
For ground source,  t h e  h ighes t  ground cancentrat ions general ly  

occur at low wind speeds, e spec ia l ly  at nighttime, when t h e  growth 

of R 

1 m/sec, consul t  Sect ion 2.3.1). 

at very low wind speeds, as reckoned by Chapter 2 ,  t h e  highest  ground 

concentrat ion genera l ly  occurs at t h e  lowest wind speed which does render 

t h e  plume a ground source ( i f  t h i s  i s  g r e a t e r  than 10 m/sec, it may be 

regarded as extremely infrequent ) . 

To make a ca lcu la t ion  f o r  a s p e c i f i c  point  downwind, 

Y Z 

S 

and RZ i s  more l imi t ed .  (For t h e  frequency of winds l e s s  than 
Y 

I f  t h e  plume i s  not a ground source 

- 15 - 



n 
3 .IC Ground Concentrations from Elevated Sources : 

If the  procedure d e t a i l e d  i n  Chapter 2 p r e d i c t s  t h a t ,  for t h e  c i r -  

cumstances and wind speed given, t h e  plume remains elevated, t he  fo1l.owing 

equation apFroximatet; t h e  ground concentration downwind of t h e  source : 

when R h ,  A ' =  0 
z 

Q 
Y z 

2 u I? ( h  + I{ ) X =  when RZ h ,  ? 

where ki i s  the e f f e c t i v e  source height of the erYluent as caLculated i n  

ChanLcr 2. Sf t h e  e f f l u e n t  9:; biioyant (A '-. 0 ) ,  use R q .  ( 6 )  for h f ' c r  

nighttirflr:,  11 c35rn/sec cases ( s t a b i l i t y  clas::es IC and k ' )  and use Eq. (5) 

for h for all o t h e r  cases ( s t a b i l i t y  classes A, 13, C ,  and D ) .  Units f o r  

X and Q were discussed in Section 3.1,  and vz~lttc:; for R arid R apprcpriate z Y 
t o  the s i t c  ( r u r a l  o r  i l rban ) ,  d i s t ance  downwind, and s t a b i l i t y  c l a s s  are 

gi vcn I n Appendix D. 

Note t lmt  no ground concentratjon occiirs until.  t h e  bottom of t he  

plume reaches t h e  ground (li 

a t  t h e  d i s t ance  that 11 = h, and i s  given by 

= h ) .  The riiaxirmin ground concentration occurs 
z 

z 

larger val.ue. of h and a t  rural s i t e s ,  bu t  the most important 



2 var i ab le  i n  Eq. ( 9 )  by far i s  h . 
e f f e c t i v e  source he ight  can reduce ground concentrations considerably. 

One can see t h a t  an  increase  in 

If t h e  plume .is a n  elevated source a t  a l l  wind speed:;, i n  gerier*a.L 

t h e  hi ghcst ground conccntrati ons occur i n  "A" and "13" s tab i  I i t y  c?asses 

The values of' R and JI g iven  i n  Appendix D are based 0x1 observed 

d i f f u s i o n  p a t t e r n s  after averaging Lhc c:cm~entu.atj on a t  each [:rid po in t  over 

approximately 30 miriutes. b'(Jr Lonip- averagj ng periods, thr p'urne boundarj es 

w i l l  be more "smeared," and t h e  average ground concentration t s  correspondingly 

Jess.  Tlciis is  due mostly t o  shift,:; in wind di  reotion, althov::h Gradual changes 

Y z 

i n  t h e  mean wind speed will aEi'cc1. t h e  diff 'uslon p a t t e r n  also. ThL; rrfect 

i s  lesr; pronounced a t  urban s i t e s ,  clnce small s h i f t s  I n  wind d i r e c t i o n  

less a f f e c t s  the concentration imttern from a wide plunie than from a narrow 

plume. 

Conversely, f o r  avcragine: periods shorter than 30 minutes t h e r e  will. 

be "peak" periods of higher ground concentration, s i n c e  the 3'3-minuSe average 

i tself  i s  t h e  r e s u l t  of.' some "smearing. The "peak" s h o r t  period concentration 



i s  l i k e l y  t o  be p a r t i c u l a r l y  high when A and B s t a b i l i t y  conditions p r e v a i l ,  

s ince  plume "looping" is commonly observed i n  uns tab le  conditions.  

ground sources and f o r  e leva ted  sources i n  s t a b l e  (E and F )  conditions,  t h e  

peak concentrations are not  s o  much g r e a t e r ,  s ince  a t  least the  vertical 

f l u c t u a t i o n s  of  plumes are damped ou t  i n  these  c a s e s , e i t h e r  by the presenTc 

of the ground or by t h e  titable s t r a t i f i c a t l o n .  

"peak" ground concentration pat tern s h i f t s  c lose r  t o  the  source than t h e  

30-minute average ground concentratlon pa t t e rn ,  by roughly a f a c t o r  of 

2 in t h e  cane of a 1 minute peak. 

For 

For an  cievated y.I-ur~,  t h e  

Figure 3 Ghows t h e  approximate r a t i o s  01 peak or  longer term gmuncl 

concentrations t o  the 30-minute average ground concent ra t j  on. To es t imate  

t h e  worst concentrat  ion t o  be expected over averaging times o the r  than 

30 minutes, mul t ip ly  t h e  values of X computed i n  Sections 3 . 3  or  3.4 by 

t h e  appropr i a t e  r a t i o  from Figure 3 .  

Section 5.2, on inf requent  occasions values of X might reach twice those 

A s  was cautioned a t  t h e  end of  

computed here.  

10, 

1 2 3 

Yours 
6 12 24 

Minutes 

Figure 3 - Maximum x ( r e l a t i v e  t o  30 min,) vs. averaging time. 
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4.0 LONG TERM AVERAGE CONCENTRATIONS 

The ground concentration averaged over a month or more na tu ra l ly  

depends s t r o w l y  on the  wind d i r e c t i o n  frequency. Normally, it i.s no t  no1.e 

thm 5% of the maximum 30-minute average concentration; however, ir! va11eyr; 

where "channeling" of the  wind occurs it may reach higher values alon;: t h e  
. 

val ley  a x i s .  

i f  downwash c7ccurs. 

It rmy also depend a l o t  on the wind speed rrcquency, csvccLall; 

Thus, the  f i r s t  stcp i n  e s t i imt ing  lone t e L * i x  uvei-'a~;c 

conccntrationo i:; t o  obtain c1irmtolo~;icul. infotmlt ion about t he  w:inti, cj-ther 

representa t ive  of  thc s i te .  Nonnal.ly, this p.Jacc ~ioul ri be thc n~a i - cc  I+ 

to the  s i t e  having appropriate  records : however., i n  rough topoy-il'jhy or 

near :Large borlier, of water, care shcwld be nu,dc to ge t  records iron1 a 

plucc situated sirrlllai-ly t o  thc s i t e .  If thi: m.isr,ion site i:; in a va.l.?k;;, 

it would be bi-::t i f  the wind records cimc i r c i i i  LL v ~ l ~ l ~ y  of simila: o r i en ta t ion  

and depth, soirieirherc i n  the  general  a r ~ a ,  rathei.  t h a n  from t h  m a r e s t  h l l l t q ) .  

The wind information should be fiom within 50 n : i l o p  of' the  s i t c  (1CP mtle:, 

i f  the region is sparsely populated.) 

The primary co l l ec t ion  poin t  for 1.Iincl records i n  the Uni%et3 States i s  

the Nat ional  Weather Records Center (F'cdcral Oi'fice B u i l d i n g ,  A: hevil.l-e, N. C .  

28801). Ten-year summaries of the  frequency of wind speeds, by directLon,  

are availab1.e for  major c i t y  a i r p o r t s  fo r  t en  cents each. In  addition, 

unpublished swmnariec can be obtained f o r  many srnaller c i t i e s  and mnny 

m i l i t a r y  bases fo r  the coat of reproduction ( cu r ren t ly  $5 50 cacti) a 

can be tabulated for almost any other  a i rpor t ,  according t o  how deta i led  a 

wind record is kept,  but  tabulation my cos t  s eve ra l  hun:lred d o l l a r s .  

Swf i r i c r ,  

- 19- 



W i n d .  speed frequencies i n  the United S ta t e s  are commonly grouped 

accordinG t o  cc:r-bin L-angeu of mph. To i n t e r p r e t  these s t a t i s t i c s  i n  

terms of t he  five wind speeds suggested f o r  ca lcu la t ions  here,  use the 

f o 1 lowing app r ox 1 n n  t e  c o r re s pond e n c e s : 

then he would tmnt t o  f ind  the frequency o C  1QNI.I wind:;. It  i s  cii::t,omary tc 

t abu la t e  wind d i r c c  t ion  s t a t i s t i c s  for s ix t een  scctors  of wind di,-ecti  on, 

each 22 1/2 
0 wide ( N ,  NNE,  NE, XNE, E, c t c . ) .  

For a f i r s t  est imate  of t h e  long tcLm ground concentration, fo1.lor.i 

t h e  procedures i n  C h i l i t e r  2 using the average wind speed;. 

average wind speed f o r  each sec to r  of wind d i r e c t i c n ,  i f  poss ib le ,  

the  pI.ume tu rns  out  t o  he a ground souccc', the  long term value of X -i,n a 

me the 

IrP 

22 1/2' wind sector i s  given by 

0 2-5,  Q- x=-- 
1.00 c(R+x R , ? )  

..I 

( 1.9 ) 

where x i s  the  d is tance  downwind of t h e  source, A i s  t h e  i n i t i a l  cross 

sectional. area as determined i n  Chapter 2, and f i s  the percentage 

frequency t h a t  the  wind blows towards t h a t  sector over the period being 

considered (year, season, or month), If the p:Lut~e t u r n s  out t o  be an 

Q 

. 



__ - __ ... . . . . . . . . . . . . . . . , . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . - 

e l e m t c d  source, the  appropr ia te  formula i s  

f 2.5 ( 1  x = -  9 

100 u x(h-t.RZ) 

Y 

annual average, day and n ight  arc euch veichtcd 50$, but h r  :;horter averages 

t h i s  wejghtinc wlll .  dcpcnd on the  :;ca:;on and Lhc l a t i t u d e  (r-nnr,u?t a ::unrj :;e- 

sunsc-l; table i n  any nl.manac) , 

I'or day and n ight  m y  be ava i l ab le ;  use ol' these w l l l  i m p - c v c  t h c  cbalcuIntion. 

For sortlc :,iLt>:; ::c.paratc rrincl i:ylxd s t a t i s t i c s  

- 2 1  - 



For buoyant, e leva ted  sources ,  remember t h a t  Eq. ( 5 )  appl ies  t o  s t a b i l i t y  Q 
ca tegor ies  A, B, C ,  and D and Eq. (6) appl ies  t o  ca tegor ies  E and F. After  

t h e  s t a t i s t i c s  have been sub-catqgorized as much as poss ib le  (by sec to r ,  

wind speed, time of day, e t c .  ) , tb cont r ibut ion  of each sub-ca+,egory i s  

ca lcu la ted  by Eq. (10)  or  (ll), l & t i n g  f be t h e  frequency of t ha t  

sub-category, and t h e  r e s u l t s  are summed f o r  each sec tor .  Be sure  t h a t  

t h e  sum of f ' s  f o r  all sub-categories totals % 100. 

I n  t h e  case of urban s i tes ,  it i s  advisable  t o  consider t h e  p o s s i b l i t y  

of nighttime t rapping  i n  computing t h e  nighttime contr ibut ion t o  x. 

The e f f e c t  is  t o  l i m i t  t h e  value of (h  + R ) (see Chapter 6 ) .  

e f f e c t s  due t o  nearby t e r r a i n  f ea tu res ,  discussed i n  Chapter 7, r a r e l y  

a f f e c t  t h e  long-term average concentrat ion s ign i f i can t ly .  

The spec ia l  
2. 

The above procedures are designed t o  es t imate  t h e  ave rwe  long-term 

ground concentrat ion pa t te rn .  

ever" long-term concentrat ion l i k e l y  t o  occur is a given wind sec to r ,  it i s  

b e s t  t o  go back t o  wind speed summaries f o r  each year  and f i n d  the  period 

with t h e  g r e a t e s t  frequency of wind i n  t h e  given sec tor .  If these  s m a r i e s  

are not ava i l ab le ,  use the  following, r a t h e r  crude, guidel ines:  

some years ,  t h e  frequency of  wind towards any one s e c t o r  can be 1.5 t imes 

average annual value; ( 2 )  i n  some months, t h e  frequency of  wind towards 

any one s e c t o r  can be two times t h e  average value f o r  t h a t  month; ( 3 )  

monthly average frequencies of wind may be as g r e a t  as 1.5 t i m e s  t h e  annual 

average i n  sectors of high frequency and two times t h e  annual average i n  

s e c t o r s  of low frequency. 

If it i s  des i red  t o  es t imate  t h e  "worst 

(1) i n  
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For a ground source t h e  deposi t ion rate can be approximated by 

. 
where f is t h e  percentage frequency of wind i n t o  t h e  p a r t i c u l a r  s ec to r  being 

considered, as before.  
S'  

where C i s  given i n  a t a b l e  at t h e  beginning of Sect ion 2.3.1, u se  

For an elevated source i f  u i s  g rea t e r  than 2 C w 

when R > h and xD = 0 when RZ < h. For an elevated source i f  u i s  less 
2 

than 2 C ws,  t h e  m a x i m u m  deposi t ion rate i s  given by 

F 2.5 2, X D = ( - - )  * 100 xs 

where x = (u/ws)h. Deposition begins a t  a d is tance  x = 0.5 xsl a t t a i n s  
S 

and dec l ines  t o  near zero at t h e  above value i n  t h e  range 0.75 x < x L,,, 

x = 2 x 

mediate d i s t ances ) .  

s -  

( l i n e a r  i n t e rpo la t ion  gives  adequate es t imates  of x f o r  i n t e r -  
S D 

2 
For a buoyant, e leva ted  plume, i f  f i s  less than 0.3 ws u h", buoyant 

plume rise should not be taken i n t o  account, as t h e  p a r t i c l e s  may f a l l  out  of  

t h e  plume before  it rises much; i n  t h i s  case,  l e t  xs = (u /w  )h" (t.e.,  use 

h" in s t ead  of h ) .  

S 

If Q i s  expressed i n  gm/sec, t h e  ca lcu la ted  deposi t ion ra te  i s  i n  

2 2 gm/m -sec, To g e t  t h e  t o t a l  deposi t ion over a 30-day per iod i n  gm/m , 
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6 mul t ip ly  xD by 30 9 24 60 60 = 2.59 10 . t o  g e t  t h e  deposi t ion 

2 7 over a 365-day per iod i n  gm/m , mult ip ly  xD by 3.14 10 . 
long term average deposi t ion ra te ,  one uses t h e  same procedures as ir: the 

To Get t h e  

preceeding sec t ion ,  except with t h e  above formulas. For ins tance ,  t he  

crudest  estimate can be made by using t h e  c l a s s  "C" s t a b i l i t y  category 

for  determining R and t h e  mean wind speed a t  t h e  s i t e  f o r  u. Natcra l ly ,  

t h i s  method y i e l d  more compact deposi t ion p a t t e r n  and a h ighe r  m s x i n ? u m  

z 

deposi t ion ra te  than a more r e a l i s t i c  ana lys i s  using severa l  w i n d  speeds, 

corresponding s t a b i l i t y  ca tegor ies ,  a n d  appropriate  frequencies of 

E 

occurrence. Variable f a c t o r s  such as s t a t i c  e l e c t r i c i t y  and ?e- 

suspension affect w 

s impl i f i ed  ca l cu la t ions  t o o  far .  

f o r  some p a r t i c u l a t e s ,  so one must not t r u s t  these 
S 

n 
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6 .  o SPECIAL CONSIDERATIONS IN CITIES 

Diffusion i s  more r ap id  i n  urban surroundings than i n  r u r a l  areas  

because of the  mechanical turbulence produced by win2 flow over bui \ding, 

and the  convective tu.rbult>nce generated by loss of bui lding heat .  TC 

t h e  area within I-0-stack heights  o r  buildfnc heights of the sourc{e i; 

mostly bui l t -up ,  considcr the  s i t e  t o  bv urban. T h i s  mean:;, f i r s t  n t  n i l ,  

t h a t  the urban valuer, of I! and  shcwl.d be umci I n  1.ht. Tormulation; 

g i w n  i n  Chapter 5 .  
Y 

spread laterally, 

urban s i t e s  than at rural s i t e s  a t  a11 d i s t a n c e s  do!mvrind of tk source. 

On the  o ther  hand, i f '  the of'f'ective s o u r w  height of :in clcvated SOUTCC 

i s  suf f ic ienLly  above TI, nighttJmc d3fl'u:;ion is more l i k e  t h a t  a!, rl irul  

s i tes ,  bc.c.ause Lhc s t a b i l i t y  und turbulcncc s t ruc tu rc  of the a!r- abo'It. ,I 

i s  not modified near1.y as m c h  as the  lower lny-er as jt, moves over the cSty .  

Thc concentrations l m r n  ground  source^ are Less a t  

G3 I - 2 1 -  



n 
Thus, it i s  important t o  take €1 i n t o  account i n  E and F conditions.  

An estimate of i t s  median value is given by 

when P i s  t h c  rnr:troi,?o11tan 

value of H being exceeded 
eloqgated c i t y ,  such as a 
longationwhen t h e  wind i s  

- 4  is approximately 100%?.l+(H/H) 
va l l ey  c i t y ,  P should be mul t ip l ied  by the  factor df e- 

I n  t h e  case of a highly 

along t h e  major axis of  t h e  c i t y ,  and should be divided 

b:r t h e  same f a c t o r  whcn t h e  wind i s  acrosG the c i t ;  , 

For ;1. grounil source, t h e  ca l cu la t ion  f o r  E and I? conditions i s  n n &  

exactly ns  in Chayteu. 3 except that RZ 

callcci a "trapping" model. 

ins tcnd  of Eq. (7) UEC 

cannot exceed TI ( R  < 13). Thfz i s  

Thus when thc H Z  givon by FigureD.3 exceeds 14, 

z -  

Q ( 16 ) X =  u(A i- 2 R 11) Y 

Cirmlli3rly, f o r  un c l e n t c d  SOUTCC, i f '  h c.' I1 assume that the plume i s  - 
"';rapped." 

never exceeds H. A:; before, X = 0 when RZ< h. 

source, Eq. ( 6 )  is used t o  determine whether h K H. 

t o  be less than  or  equal t o  H, r e c a l c u l a t e  1-1 using Eq. ( 5 ) ;  

ca lcu la t ion  of h y i e l d s  h > H, s e t  h = H, 

The same d i f i k s i o n  formula (Eq.  8 )  i s  used except t h a t  ( h  i- 11 ) 
?, 

I n  t h e  case of a buoyant 

If t h i s  h t u rns  out  - 
i f  tliis second 

I 
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If h > (1+/3)11, then you may aasume that the plume does not  reach 

the  ground u n t i l  it haa drifted c ru t  of  the  city, and t r e a t  it the  same 

I 
us a rural source. 

i n  E and F conditions. 

I n  o ther  word.s, use t h e  rural curves f o r  R and R Z  
Y - 

I n  ewes where h i s  just abclve H, the real  s i t u a t i o n  i G  rather 

ambiguous s ince  the bottom of the plume may get mixed down i n t o  the 

mixing layer,  whilo the top of the  plumc rtmaini; aloft;. One way to "hcdgtr 

the bet" i s  t o  t reat  5(h/lI - l ) Q  the c a m  as a rurul. source of height h 

and t o  t r e a t  [1 - 3(h/II - 1)JQ the sarru; as u "trapped" urban source 

w i t h  h = 11, then supertmpoce the two  conccbntratjon pattern:;. 



7.0 SPECIAL CONSIDERA~ONS m PROMINENT TERRAIN 

Prominent terrain c a s  have a g r e a t  e f f e c t  on d i f fus ion ,  but there are 

so many p o s s i b i l i t i e s  and so f e w  d e f i n i t i v e  data that only a few, r a t h e r  

oversimplif ied guide l ines  can be suggested here. Adverse e f f e c t s  on 

d i f fus ion  from an e leva ted  source can be expected whenever the t e r r a i n  

r i s e s  higher than 1/4 the  e f f e c t i v e  source height  a t  a d is tance  where 

( h  - h ) < RZ < h, where ht is  the height of the  t e r r a i n  above the  source 

s i t e  e leva t ion .  I n  general ,  t e r r a i n  has much less e f f e c t  on d i f fus ion  k.om 

a ground source, so  t h i s  w i l l  not  be discussed. 

t 

If a t e r r a i n  r i s e  i s  downwind of the  source, i n  n e u t r a l  and unstable  

condi t ions (A-B-C-D) the  plume tends t o  " r ide  up" t h e  slope,  while l o s ing  

pa r t  of i t s  effective stack height r e l a t i v e  t o  the ground. I n  this case, 

the value of h computed I n  Chapter 2 should be reduced by h o r  by h/2, 

whichever i s  the smal les t  reduct ion.  

i n  stable condi t ions (E-F), the plume tends t o  maintain a constant e leva t ion ,  

so the  value of h computed i n  Chapter 2 should be reduced by ht. 

t 
Then proceed t o  Chapter 3. However, 

If the  t e r r a i n ,  or  f o r  that matter,  a s t r u c t u r e ,  r i s e s  above the 

e f f e c t i v e  source height  (ht > h) ,  there i s  the p o s s i b i l i t y  that the plume 

will impinge it i n  E or F condi t ions,  r e s u l t i n g  i n  very U g h  concentrations.  

This occurrance i s  r e l a t i v e l y  infrequent .  

nighttime wind d i r e c t i o n  towards the  22 1/2O sec to r  i n  question, the  

frequency of inpingement during E-F conditions can be estimated by 

5. f ( R  x), where R is the plume half-width a t  the  d is tance  downwind 

of the obs t ruc t ion  and x i s  that dis tance.  

of "F" condi t ions is 1 6  of the  time, t he  nighttime frequency of wind 

If f i s  the frequency o f  the 

d Y 
For instance,  i f  the  frequency 
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towards the sector of nearest abutment of a broad rise of t e r r a i n  is  2% 

(wind favors  the "grain" of the t e r r a i n ,  r a r e l y  going across  it), and the  

abutment o c c u m a t  x = 2 km, the frequency of "F" condi t ion impingement 

- of low speed winds towards t e r r a i n  r i s e s  i s  lower than that of higher winds. 

The concentrat ion experienced during impingement i s  given by 

If the re  i s  a t e r r a i n  rise upwind of t he  source, and the  average slope 

of t h e  r i s e  above the source s i te  exceeds 2$, t he re  i s  the p o s s i b i l i t y  

of downwash induced by the  a i r  flowing down over the  t e r r a i n  drop, I n  

the  case of an  abrupt  drop, it is poss ib le  t o  g e t  a "cavi ty"  e f f e c t ,  i.e. 

a counter-rotat ing eddy, J u s t  a s  i n  the wake of a building.  Unfortunately, 

these  e f f e c t s  a r e  d i f f i c u l t  t o  p red ic t .  They a r e  commonly simulated by 

m a n s  of wind tunnel  modeling a t  present .  Large tunnels ,  such as  those 

a t  New York Universi ty  and Colorado S t a t e  University,  are required,  which 

involves considerable expense. An a l t e r n a t i v e  t o  modeling i s  the  r e l ease  

of n e u t r a l  buopncy balloons or smoke f r o m  the s i t e  a t  the e f f e c t i v e  stack 

height  during down-terrain winds. 

range of wind speeds and i n  both i n  c l e a r  and cloudy weather; nighttime runs 

are not as important, cince a i r  flow tends t o  be more hor izonta l  then. 

T h i s  should be ca r r i ed  out over a good 

Many e f f l u e n t  sources are located i n  va l leys ,  where water and r a i l  

t r anspor t a t ion  a r e  more ava i lab le .  However, d i f fus ion  i s  poorest  i n  va l leys ,  

- 3 -  



due t o  the above e f f e c t s  during cross-val ley flow and t o  nighttime t rapping 

of the e f f l u e n t  i n  the v a l l e y  i f  h < htD 

case (E-F condi t ions) ,  there i s  usua l ly  a "drainage" w i n d  of the  order of 

I n  the low wind speed, nighttime 

1m/sec flowing down the  val ley.  

with the  drainage a n d ,  d i f f i s i n g  very l i t t l e  i n  the  v e r t i c a l  and spreading 

ho r i zon ta l ly  until it Impinges on both v a l l e y  walls. 

The plume s t r a t i f i e s  a t  height h and t r a v e l s  

A t  t he  d is tance  

where 2 R equals 

concentrat ion the 
Y 

the  width of the  v a l l e y  at  height  h, Wh, the  highest  

v a l l e y  walls could experience would be X = Q/( 2 u RZ Wh) . 
I n  the  morning, "break-up fumigation" brings the  e f f l u e n t  down t o  the  v a l l e y  

f l o o r  when the  s t a b l e  l aye r  i s  eroded from below by the heating of the  ground. 

The average concentrat ion experienced throughout t he  v a l l e y  i n  t h i s  case i s  

2L 
u h W  X =  

where Q is the  nighttime e f f l u e n t  r e l ease  r a t e ,  u i s  the nighttime drainage 

wind speed, h is the nighttime e f f e c t i v e  source height,  and W is the  average 

width of the  v a l l e y  up t o  height  h. 
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APPENDIX A :  SYMBOLS AND DEFINITIONS 

Symbol 

A 

A,B,C,D,E,F 

c 
1' 

C 
P C) 
D 
I) 

I' 

I" 

c; 
h 

h '  

h " 

%J 

h 6 

h t  

I1 

Units Refer t o  
Used 

2 

z 0 c t 5- on - De f i n-i t i on 

Initial c r J s s - sec t lona l  area of i l  grnund 
p.1 wae . In  '>.?, 2 . 3  

3.2 

2.3 

2.1 

5 
I+, 5 

2.1 

2.2 

2.2 

2.1 

7 

h 

2.2 

2.2 

2.5 
2.3 

6 

- 3 3  - 



APPWIX A (continued) n 
Symbol 

QH 

RZ 

R 
Y 

s 

T 
AT 

u 

V s 

A 
LI 

x 

'a 

Units 7efe.r To 
Used :;e cti on Def in i t i on  - 

Dry heat emission carried by t h e  e f f l u e n t .  cal/sec 2.3  
3.2 

3.2 

2.2 
2.3 
2.3 

m 
in 

rri 

Plume half -width. 
Plume half-depth.  

Distance from source aloni: plwne axis. 

"K h b i c n t  a~ i so lu t c  t c I l l p ( ~ J . a t U l ~ P  28e. 

IC Difi'erencc. iJotween e l f  h e n t  and atlL i c  n t  
tcmpc~raturcs . 

m/sc: c 2.1,4 

q 1  '_ . ̂.. 

7 

- 3 4 -  



N'T'ENDPX 13 : CONVkX'SION FACTORS 

1 watt = 1 jou le  / sec = 1 kgm-m 2 3  / sec  
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APPENDIX C: SUMMARY OF EQUATIONS 

Chapter 2 - Elevated o r  Ground Source? 

n 

Stack aerodynamic e f f e c t :  h '  = h S + 2D(vS/u - 1.5).  ( 1 )  

Building e f f e c t :  appl ies  only i f  s tack  i s  on o r  near bui lding 

o r  i s  within 3 f b  downwind and h ' <  % = 1.5klb, where 

c.b = lesser of h,, o r  wb; i f  n o t ,  h" = h ' .  

If h l <  % + 0.5 icb ,  high concentrations may occur i n  bui lding 

11 cavity;" see  Sect ion 2.2( 1). 

If h l >  %, compute h" = 2h' - (% + 1.5 J b )  
If h l <  \, compute h" = h '  .I 1 . 5 k b  
If h" < k' /2 ,  t reat  plume as ground source with A = y b  , s k i p  b 
"Buoyancy e f f e c t  ," 

2 

Buoyancy effect: ( t o  ca l cu la t e  A and F; see Sect ion 2.3) 
If A > 0 and u >0.22 C 6, plume i s  elevated source with 

h = h" ( t a b l e  of C values given i n  Sect ion 2.3.1). 

x = 4.5 h u //=with A = 0.2 hs2. 

wind speed" equals  t F/h, 1 

f o r  d e t a i l s ) .  

-- 
If A>O and u e 022 C rg A D ,  plume becomes a ground source a t  

"Minimum e f f e c t i v e  
' /3 8 . 

(If source i s  r u r a l  and 100 1 F \1/4<0.8 hs; see  Sect ion 2.3.1 

If A eo, plume i s  an e levated source,  

h = h" + 21 

h = h" + 19 
F2l3/u i n  A ,  B, C ,  and D ca tegor ies  
F 1/3 i n  E and F ca t eg r i e s  

t 



Chapter 3 - Estimating Ground Concentration 

Ground source: = 5+?SiyiTs 
Y Z  

Elevated source: x= 0 when R < h 
+ 

I, 

-*j when R > h 

R 

" 2 u R  h + R  . z 

R W  z 

Y 2 

Q z x= - at H = h ( m u .  x). 
Y 

Chapter 4 - Long Term Average Concentrat ions 

= w x, 1~:ier.e x i s  1.ong term average concentration. X!) s 

Elevated source with u < 2 c :r : 
1 

x = (u/w.)h,  unless  F < 0.3 w 2 u h"; then 
S s b 

S .> 
x = (u/w, )b". Max. x occurs when 0.75 x < x l x  

CY S n 
and given by 



APPENDIX D: DIFFUSION COEFFICIENTS 

A, B, C ,  D, E ,  and F are t h e  s t a b i l i t y  classes ( see  Sect ion 3.2). 

i ng  are a n a l y t i c a l  expressions f o r  t h e  plume half-depth,  RZ 

half-width, R 

D.4  show these  funct ions,  and Figure D . 5  g ives  t h e  r a t i o  of R 

Follow- 

and t h e  plume 

as kulc t ions  of t h e  downwind d i s t ance ,  X.  Figures D.l t o  
Y' 

to  R versus x. 
Z Y 

Rural Sites 

R = 0.28 x / / ~ + ' - ~ . 0 0 0 1  x 
Y RZ = 0.25 x 

r-.-  II --.-_- -̂. 

R = 0.15 x R = 0.20 x// 1 + 0.0001 x 

R f 0.10 x / / l  +0.0002 x--- R = 0.14 x / ,  1 + 0,0001 x 
- 7- - 2 Y 

z Y --____ 
R z = 0.07 X/ +-0-.0015 x R Y = 0.10 x! ,' 1 + 0.0001 I( 

, - ------ -. - 
R = 0.07 x/ /1 + 0,0001 x 
Y R = 0.04 x /  (1 + 0.0003 x )  

Z 
E 

- . __l_ 

R = 0.05 x/  I + 0,0003 x 
Y R = 0.02 x/ (1 + 0.0003 x) z F 

Urban I S i tes  

_lll--.- -. 
R = 0.40 x/~,' L + 0.000L X 

Y 
R = 0.30 x ,/l + 0,001 x 

2 
A - B  

R = 0.28 x/ ,' 2 + 0.000!+ x 
Y C RZ = 0.25 x 

D 
I - -- 

R = 0 , 1 b  x /  I 1 + 0.0004 x 
Y *R = 0.10 1 + 0.0015/( z E - F  

* 
For a ground source o r  an elevated source trapped beneath t h e  urban I 

night t ime mixing l a y e r ,  ( R z  + h )  never exceeds H ( see  Chapter 6 f o r  d e t a i l s ) ,  



APPENDIX D (continued) 

l’he following approximations f o r  R /R 

m a x i m u m  ground concentration from an e leva ted  source with an e f f e c t i v e  

he ight  h: 

are adequate (2  20%) f o r  computing the 
= Y  

Rur a1 

Urban 

Su i t ab le  only i f  
h i s  less than Stab i 1 : L  t y R /R -- a 

A 0.9 

B 0.8 

C 0.7 

D 0.6 

E 0.5 

F 0.3 

300 rn 
300 m 

300 m 

40 m 

40 rn 
30 m 

A-B 

C 
D 

**E-F 

0.9 

0.9 

0.9 

0.6 

300 m 
300 m 
300 m 
100 m 

QY 
Max. x propor t iona l  t o  IR /R only i f  h i s  less than H / 2 ,  

Z Y  
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APPENDIX E: BASES OF RECOMMENDATIONS 

1 

. r: 

Stack Aerodynamic Effec t  (Sec. 2 .1) :  

The formula h '  - h = 2(vs/u - 1 . 5 ) U  i s  based p a r t l y  on wind tunnel  
S 

observations of  Sherlock and S ta lke r  (1941)  which showed t h a t  downwash 

(negat ive  r i se )  occurs when v /u  i s  less than about 1.5 and t h a t  t h e  

plume downwashes about  one s tack diameter a t  v /u = 1. 

of vs/u,  it i s  a conservat ive form of equat ion  ( 5 . 2 )  recomrnendefi- i n  

Briggs (1969) f o r  momentum rise; 2(vc/u)D approximates t h e  plume r i se  

at t he  poin t  where i t  i s  e'gual 1 .7  t i m e s  f.hz downwind d is tance ,  so  

S 

For hi@-! values 
5 

I_) 

e s s e n t i a l l y  represents  the  very close-l.n plume r i s e .  Buoyancy i s  neglected 

i n  t h i s  stage, s ince  it does not cause a doubling of the  plume rise u n t i l  

EL d i s t ance  x: 10 u v,/(-if A )  

Building Effect; (Sec. 2.2):  - 
The method suggested here for accounting for the buiiding effect  

i s  an i n t e r p o l a t i o n  of sevcra l  rules-of-thumb respec t ing  a i r  Slow around 

bui ld ings .  It is  genera l ly  accepted t h a t  :A building has very l i t t l e  e f f e c t  

on t h e  a i r f low at  2-11'2 bu i ld in f :  heights above t h e  g round  and  above. 

On t h e  o the r  hand, t h e  aerodynamic cav i ty  downwind of a sharp-edqed 

bui ld ing  developes t o  roughly 1-1/2 bu i ld ing  he ights ,  It developes 

h i g h e r  over a very wide ( i . e .  sqmt) bui ld ing ,  but the ~ ~ l u m e  also has 

more d i s t ance  i n  .which t o  r ise out of t h e  cavi ty  i n  t h i s  case. 'This  

method does allow some close-in plume r ise  t o  be considered with respec t  

t o  escaping t h e  cavi ty ;  however, it should be conservative sirice it 

does not allow f o r  t h e  lower wind speed near t h e  bui ld ing ,  which 

- 4 5 -  
u 



promotes g r e a t e r  rise. 

bui ld ing  he ights  i n  t h e  case of pi tched o r  rounded roofs .  

The cav i ty  height  may be less than 1-1/2 
0 

For a squat bu i ld ing ,  t h i s  method assumes t h a t  i f  h '  c . 1 - 5  hb, t h e  

plume behaves as i f  it were a ground source of i n i t i a l  area A = hb2. 

T h i s  g ives  concentrat ions i n  approximate agreement w i t h  those measured 

by Meroney and Yang (19v) near  t h e  end of  t h e  cavi ty ,  The values of 

x with in  t h e  cav i ty  adjacent  t o  t h e  bui ld ing  were estimated from measurements 

around cubes and rec tangles  by Hal i tsky (1968). Equation ( 2 )  i s  a l i n e a r  

i n t e rpo la t ion  formula giving h" = h '  when h '  = 2.5 h and h" = 0.5 % 
when h '  = 1.5 ij, thus  giving a x of t h e  same order  as t h a t  given f o r  

b 

2 
a ground source ( h '  < 1 . 5  hb9 A = hb ) .  

For t a l l  bu i ld ings ,  w rep laces  h as t h e  c h a r a c t e r i s t i c  cav i ty  width b b 

and he ight  above h It i s  assumed t h a t  8 roof level plume i s  not pu l led  

a l l  t h e  way down t o  t h e  around wi th in  t h e  cav i ty  i f  h 

is no more than 1.5 w below h ' .  

b' 

2 w hence, h" 
b b;  

b 

Meroney and Yang ( 1 9 f l )  found t h a t  atmospheric s t a b i l i t y  had only a 

s l i g h t  e f f e c t  on concentrat ions immediately downwind of a bui ld ing ,  s o  

t h i s  e f fec t  i s  neglected here, 

Buoyancy Ef fec t  (Sec. 2 . 3 ) :  

The ca l cu la t ion  of t h e  re la t ive  dens i ty  d i f f e rence ,  A ,  i s  s t ra ightforward,  

It is  a simple superpostion of temperature,  molecular weight, and l a t e n t  

heat cont r ibu t ions .  I t  i s  assumed t h a t  the e f f l u e n t  w i l l  mix with many 

times i t s  volume of a i r ,  so t h a t  A w i l l  become very small (excent perhaps 

* .. 

.r 

- very c lose  t o  the source) ;  A times g times t h e  t o t a l  mass f l u x  of t h e  plume 



(which i s  mostly a i r )  represents  t h e  t o t a l  f lux of buoyant force  ca r r i ed  

by t h e  plume. This  also explains  why t h e  r a t i o  of s p e c i f i c  hea t s  appear 

i n  the  AT term. 

evaporates clone to t h e  source; for  small  emissions, observations of  

"steam" plumes ind ica t e  t h a t  this.  is almost always t h e  case. 

For Aw,, it i s  assumed t h a t  a l l  l i q u i d  water i n  t h e  plume 

Dense Plumes (Sec. 2.3.1): 

The recommendations i n  t h i s  sec t ion  are based on an analys is  of 

wind tunnel  observations by bodurtha (1961). It was assumed t h a t  t h e  

source diameter D w a s  much smaller than h 

coming from t h e  source were important i n  determining the d is tance  at 

so  that; only t h e  t o t a l  f luxes  
S C  

which t h e  plume f a l l s  t o  t h e  ground, x 

t h e  f luxes  o f  momentum and buoyancy e jec ted  from t h e  s tack.  Dimensional 

ana lys i s  then ind ica t e s  that x /h 

When values  of x /h 

c l e a r  t r end  with ws D/(u hs) w a s  seen. 

values of x /h 

number w a s  a l s o  very low i n  these cases ,  and could have been responsible 

(poorly developed turbulence would r e s u l t  i n  a more compact plume, which 

would f a l l  faster) .  was seen, and t h i s  w a s  

Then x depends only on hs, u ,  and. 
d o  d 

is a function of u / m  and w D/(u hs ) .  
d s  S 

were p lo t t ed  against  these dimensionless r a t i o s ,  no 

There were a f e w  anomalously low 

d s  

at low values of t h i s  r a t i o ,  but t h e  s tack  Reynold's 
d s  

A s t rong  t rend  with u/ 

approximated by 

= 4.5 u/ @E 
Xd'hs 

The e f f e c t  of t h e  negat ive dens i ty  is ignored i f  x is greater than 
d 

t h e  d i s t ance  at which t h e  m a x i m u m  concentrat ion would occur anyway 

(i .e. ,  a t  R = h ) .  The values of C given i n  2.3.1 approximate x/2 at 

small d is tances  
z z 



The i n i t i a l  cross-sect ional  area A = 0.2 hs2 was taken from Bodurtha's 

estimates of "di lut ion,"  t h e  square of t h e  r a t i o  of plume diameter a t  contact  

with t h e  ground t o  s tack  diameter. 

Reynold's number) runs were omitted. These d id  show considerably less 

d i l u t i o n ,  cons is ten t  with t h e  more rap id  f a l l  observed i n  these  cases .  

The low efflux ve loc i ty  ( i . e .  low 

The f a l l  d i s tance  l i m i t  f o r  s t a b l e  condi t ions,  100 i s  based 

on equation 4.25 of -- Plume Rise (Hriggs,  1969) appl ied t o  an isothermal 

temperature gradient .  

t i o n  i s  s t ronger  than t h l s  and t h e  plume f a l l  i s  less. The upw-rd i n i t i a l  

momentum of t h e  plume is not taken i n t o  account, but  i t s  e f f e c t  i s  t o  make 

t h e  f i n a l  plume height s t i l l  hi[:her.. 

Usually, when u < 3.5 m/sec a t  night t h e  s t r a t i f i c a -  

The "e f fec t ive  minimum wind speed" i s  based on t h e  idea t h e t  t h e  

i n i t i a l  plume d i l u t i o n  when i.t ccjntacts t h e  ground, u(O.2 h ' ) $  should be 

at least t h a t  of a negat ively buoyant plume f a l l i n g  a d is tance  h i n  completely 

calm surroundings. Data from a modeling experiment by Rouse, Yih ,  and Humphreys 

(1952) suggest t h a t  t h i  - i s  0.2 

wind speed equal t o  IF/h,i 

S 

S 

, hence the  e f f e c t i v e  m i n i m u m  
5 / 3  

5 
11"1''3 1, 

1 / 3  

The frequency of winds less than 1. m/sec i s  taken from Figure 4. 

est imate  of frequencies of winds less than 1 m/sec assumes no cu r re l a t ion  

between the  components o f  hor izonta l  wind speed and uniform probability 

d i s t r i b u t i o n  within each component i n  t h i s  range. 

'The 

. 

n 

. _._ ... . , . _. . . . .,,. .... -.-. ._ - 



Buoy,snt Plumes (See 2.3.2) : - 
For the d e f i n i t i o n  of t h e  buoyancy flux, F, see Briggs (1969) or (1970). 

Equation ( 5 )  i s  a compromise between equations (22 )  and (26)  of Brigpi  

(19701, which g ive  a plume r i s e  Ah = 2 1  F3"'/u when F < 55 and Ah =39 "3'5/11 

when F< 55. This simnlified formula, Ah = 21 F 2/3 / u ,  a l so  gives a very 

good f i t  t o  pJume r i 3 c  d a t a  l j s t e d  i n  'fable 5.1. of Rr iqgs  (7363). 

Equation ( 6 )  i s  based on equation (5 .7)  of Briggs (1969) (same as 

It i s  appl ied assuming t h a t  wind speed times Eq. 10) of Briggs 1970). 

t h e  p o t e n t i a l  temperature grad ien t  equals l.O(m/sec)("C/lOOm). It should be 

pointed out t h a t ,  c lo se  t o  t he  ground, l a rge  nighttime wind speeds are 

associ.ated with small p o t e n t i a l  temperature grad ien ts  and v i ce  versa ,  

s o  t h a t  t h e  r e s u l t a n t  plurne r i s e  i s  r e l a t i v e l y  unaffected by va r i a t ions  

i n  t h e  meteorology, p a r t i c u l a r l y  s i n c e  i t  depends only on t h e  1/3 power 

of t h e  above var iab les .  



Q Simple D i f f b i o n  Models (Sec. 3.1): 

I t  is standard p r a c t i c e  t o  approximate the  d i s t r i b u t i o n  of mater ia l  

w i t h  off-axis d i s t ance  i n  a plume w i t h  a Gaussian shape. The main simpli- 

f i c a t i o n  adopted here  i s  a rec tangular  plume with uniform concentration 

wi th in  i t s  boundaries (at a given d i s t ance )  and zero concentration without.  

As a best compromisd, it w a s  decided t o  set t h e  plume half-width and depth, 

R and RZ, each equal  t o  4 7  = 1.25 times the  lateral  and v e r t i c a l  standard 

devia t ions  descr ibing the Gaussian shape, u 
Y 

and uZ. Thus the  edge of t h e  
Y 

rec tangular  approximation" i s  s e t  where the  off-axis concentrat ion I1 

( la teral ly  or  v e r t i c a l l y )  i s  exp(-r /4)  = 0.44 times t h e  a x i a l  concentra- 

t i o n .  With t h i s  value,  t h e  rec tangular  and Gaussian models give the  

same axial concentrat ions f o r  a ground source o r  f o r  an elevated source 

at great d i s t ances  (R > > h ) ,  both f o r  sho r t  per iods and for long tern 

averages. For an elevated source,  the m a x i m u m  sho r t  per iod concentrat ion 

and long term concentrat ion given by t h e  rec tangular  model are 1.07 and 1.03 

times those  given by the Gaussian model, respec t ive ly .  

a t  which t h e  maxima occur are 1.13 and 0.80 times those  given by t h e  

z 

"he values of Q z 

Gaussian model, respec t ive ly .  

Diffusion Coeff ic ien ts  and S t a b i l i t y  Classes (Sec. 3.2): 

The s t a b i l i t y  c l a s s e s  used here  are adapta t ions  of t he  s i x  Pasqu i l l  

s t a b i l i t y  classes which are  i n  wide use. 

i n  t h a t  v a r i a b i l i t y  in i n s o l a t i o n  and cloudiness has been l e f t  out. 

"Modere;te" i n s o l a t i o n  i n  the  day and about 50% cloudiness  at night  

are assumed, and only t h e  wind speed and whether it i s  day o r  n ight  are 

However, these  a r e  more crude 

I - 50 .. 
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used t o  determine these  categories .  Thus, i n  a given 30 minute per iod,  

under very cloudy o r  very c l e a r  skies t h e  present  s t a b i l i t y  c l a s s i f i c a t i o n  

scheme i s  less than t h e  Pasqu i l l  scheme by about one-half a s t a b i l i t y  class. 

Even with a more exact scheme, t h e  r a t e  of d i f fus ion  observed i n  a given 

per iod i s  o f t en  what one would. expect in t h e  next c l a s s  over. A s  9 

result of t h i s  unce r t a in t ty ,  t h e  d is tance  at which t h e  maximum x frorn nn e leva te+ 

Source occurs might be over or  underx-edicted by a fictor of 2 o r  3. 

t h e  e r r o r  i n  the  predicted maximim x j s  not s o  serinii:;, zince i?. dene?.?.; on t h e  

r a t i o  R,/Ry, nnd t h i s  gcneral1,y docs not r-lianve drqsti c r t l l v  f rovoRe T t a b i l f t y  c l a s s  
t o  t h e  nex t ,  

Y 

' ' o w ~ e r ,  

The vrtli~es o f  RT, and R, P i v v  i n  AFpendlx Il n r e  nn;Elvtirnl 

!!'h~ approximations t o  ex i s t ing ,  published curvcs for ay and CJ? verslls Y .  

curves f o r  r u r a l  sites predominantly fol low the curves given by Pasquill as 

published i n  Meteorology m d  Atomic Energ:, ( 3  968). being very good apnroximations 

i n  t h e  range lOOm < x <10,000 m. 

' 

?'he c n i y  cxccpticr;s are t h e  r'A1lantl"R" curves 

f o r  R which approximate 

t h i s  po in t ,  the  funct ions 

2' 

ASME guide (1968) labeled 

the  Pasquill values only when a < 109 m. Beyond 

recommended approximate the  curves given by t h e  

11 very u n s t a b l e "  and l'o.mtable," which lie con- 

2 

s iderably  below t he  Pasquill ''A" and *'U" curves. The ASME cu,cves are 

based on d i f fus ion  observations from a 100 m high  source,  whi le  t h e  

Pasquill are based on ground source data, so it seems l i k e l y  chat  t h e  

former are more re levant  when (3 100 rn. 
z 

The curves f o r  urban s i t e s  w e  based on t h e  ana lys i s  of a diffusion 

experiment i n  S t .  Louis by McElroy and Pdoler (1968) .  These data 

i nd ica t e  much more rap id  d i f fus ion  than at r u r a l  s i tes  i n  comparable 
. 
* s t a b i l i t y  conditions.  The funct ions f o r  D, given here attempt t o  z 



approximate t h e  reported values very c lose ly  over t h e  range of measurement 

(from x = 600 m t o  17 km). 

the repor ted  values on the  average, but  more crudely approximate them 

w i t h i n  some s t a b i l i t y  c l a s ses  than  i n  o thers .  Note t h a t  f o r  t h e  B, C ,  D ,  

and E c l a s ses ,  t h e  urban values given f o r  R s tar t  out being twice the  

respec t ive  rural values ,  but  asymptotically approach t h e  rural values 

The funct ions f o r  R given here  agree with 
Y 

Y 

at g rea t  d i s tances .  

Ground Concentrations from Ground Sources (Sec 3.3): 

The geometric assumptions leading to  equation ( 7 )  have already been 

s t a t e d ,  except that ti l i n e a r  addi t ion  of t h e  i n i t i a l  plume area w,d t h e  

area due t o  atmospheric d i f fus ion  alone i s  assumed, a f t e r  Gifford (Culkowski, 

1967 ) 

Ground Concentrations from Elevated Sources (Sec, 3.4): 

The simple geometric assumptions leading t o  equations (8 )  and ( 9 )  

have alreacij been s t a t e d .  

Ef fec t  of Averaging Time (Sec. 3.5):  

Information on t h i s  e f f e c t  over shor t  per iods i s  incomplete, so 

t h e  suggested cor rec t ion  f a c t o r s  shown in Figure 3 are provis iona l ,  i . e . ,  

b e t t e r  than no cor rec t ion ,  but not as good as they could be, For con- 

xrenience, they a1J. are shown as power- l a w s  of t h e  averaging t i m e .  'The 

r a t i o  i s  held a t  uni ty  i n  t h e  30 t o  60 minute range, as the di f fus ion  

models given i n  t h i s  chapter a r e  based on t h i s  range of averaging t imes; 

t h e r e  i s  reason t o  expect less v a r i a t i o n  within t h i s  range, as it i s  near 

a min imum ia  t h e  meteorological energy spectrum. 
n 
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The peak concentrat ion f o r  averaging times shor t e r  than 30 minutes 

i s  due mostly t o  va r i a t ions  caused by turbulen t  eddies within t h e  

planetary boundary layer. Except f o r  stable condi t ions,  these cause 

v e r t i c a l  as w e l l  as hor izonta l  f l uc tua t ions ,  which i s  why l a r g e r  power 

laws are indica ted  for  e levated sources. The - 2 / 3 ,  -1/2, and -1/3 

power laws a r e  approximations t o  those recommended fo r  e levated sources 

by t h e  ASME Guide (1968) f o r  very unstable ,  unstable ,  and neu t r a l  con- 

d i t i ons .  For ground sources ,  observations of Hamsdell % +-. (1970) 

and Cramer e t  a l .  (195.3) i n  t he  daytime fit vower Laws ranging from -0.2: 

t o  -0.67 for averaging times ranging from 3 seconds up t o  5 minutes, but 

genera l ly  range between -1/3 and -l/2 for  intermediate  averaging times. 

Figure 3 a r b i t r a r i l y  ass igns t h e  larger power t o  t h e  A-B c la s ses  and t h e  

smaller  power t o  C-D, as the data contain i n s u f f i c i e n t  s t a b i l i t y  i n f o r m -  

t i on .  The Cramer e t  al.  mighttime observation a r e  f i t  adequately by FL 

-1/6 power l a w ,  so t h i s  i i ;  assigned t o  E and F conditions.  

apply about as wel l  t o  l o i d  l e v e l  e leva ted  sources,  s ince  the re  i s  l i t t l e  

v e r t i c a l  meander i n  these stability conditions. 

L- 

It should 

The concentrat ion drop-off f o r  averaging times longer than one hour 

i s  due mostly t o  s h i f t s  i n  t h e  mean wind d i r ec t ion  due t o  changes on t h e  

synopt ic  sca le .  Less drop-off i s  ind ica ted  f o r  t he  urban source because 

of t h e  g rea t e r  i n i t i a l  d i f fus ion .  

curves of Wipperman and of Meade, both reported by Slade (1968). 

-1/3 power l a w  give  a f a c t o r  of  3 reduct ion i n  concentration over 211 hours, 

The -1./6 power l a w  i s  a good f i t  t o  t h e  

The 

as recommended by the  ASME; Stmdard  APS-1 (second e d i t i o n ) .  A f a c t o r  of 
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4 t o  5 reduct ion i s  reported by Clarke e t  al. (1970)( bu t  t h i s  is f o r  

l a rge ,  e levated sources,  where t h e  change of plume rise over a 24-hour 

per iod would f u r t h e r  reduce t h e  average concentrat ion a t  any one point .  

Long Term Average Concentration (Sec. 4.0):  

' The bas i c  method given i n  t h i s  chapter i s  an e labora t ion  of standard 

ca l cu la t ion  techniques,  which assume uniform long term average concentration 

at a given d is tance  within each wind d i r e c t i o n  sec tor .  

which appears i n  equation (10)  and (11) i s  j u s t  t he  inverse of 2 ~ / 1 6 ,  which 

assumes 

The f ac to r  of 2.5 

16 equal sec tors .  For s impl i c i ty ,  i n  equation (LO) it i s  assumed 

t h a t  a receptor  at x = 0 experiences t h e  f u l l  bu i ld ing  downwash concentration 

over 2.5 s ec to r s  of  wind d i r ec t ion .  Figure 4 was derived simply by p l o t t i n g  

t h e  wind speed frequencies f o r  t h e  c i t i e s  l i s t e d  i n  t h e  various t e r r a i n  

groups. The curves appeared t o  be very well  ordered by t h e  t e r r a i n  type. 

Long-Tern Average Deposition of Pa r t i cu la t e s  (Sec. 5.0):  

The bas i c  procedures here  are similar t o  those of Chapter 4, except 

f o r  t h e  inc lus ion  of s e t t l i n g  ve loc i ty .  The formulas given f o r  w are  good 

approximation t o  Fig. 5.4 of Meteorology and Atomic E n e s  (1968), based on t h e  

S 

f a l l  of spheres ,  The formula f o r  I> < 70 p i s  J u s t  an expression of Stoke's l a w .  

Equations (12 )  and (13) simply assume t h a t  x = w x. Equation (14) assumes 

t h a t ,  i n  t h e  case of fast; f a l l i n g  p a r t i c u l a t e s ,  t h e  m a x i m u m  deposi t ion 

D S 

rate occurs a t  a d is tance  x 

deposi t ion approximate c ross  wind in t eg ra t ed  rates measured by Stewart (1968) 

and Hage (1961). 

t h e  formula which gives  t h e  greatestmaximum. 

= (u/ws)h. The shape and magnitude of t h e  
S 

The c r i t e r i o n  f o r  choosing equation (13) o r  ( 1 4 )  s e l e c t s  

n 
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i3 
The p a r t i c l e s  are assumed t o  f a l l  out  before  buoyant nl.uve r i se  'r: 

complete i f  t h e  v e r t i c a l  ve loc i ty  of t h e  risin(t, p1111.c i s  less  than 

w at t h e  poin t  t h a t  t h e  r i se  i s  (l/?) h". 

i s  used i n  t h i s  ca l cu la t ion ,  such 8 s  i s  g j v e n  b - r  T3riyf:j (19'72). 

The " 3 / ?  !I,w" o f  nlumc r i sc  
S 

Specia l  Considerations i n  Ci t ies  (Sec. 6.0) :  

t o  v a r i a t t o n s  i n  s: ,abil i ty and w i n d  spced, w h i c i l  31f'f+-:c7, I! also. 

of a v i s i b l e ,  r i s i n g  plume i s  about h a l f  w a y  hctween the L.sp t > ~ '  ?,he s t a c k  

s t a b l e  a i r  above 11. 

crrs 
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A very similar model (capping from above) app l i e s  i n  t h e  case of 

inshore fumigation, which sometimes occurs a t  c o a s t a l  i n s t a l l a t i o n s  

when t h e  wind blows from a cool body of water towards warmer land. 

This is c a l l e d  a "lake breeze" o r  "sea breeze." 

t h e  water i s  usua l ly  s t a b l e ,  so an elevated plume l e v e l s  off and s t ra t i f ies  

wi th in  it. The land hea ts  up t h e  air i n  contact  w i t h  it and a mixinp 

layer developes, eventual ly  reaching t h e  s t r a t i f i ed  plume find mixinp 

Such a i r  coming o f f  

it downward. A model f o r  t h i s  case h R s  not been included here  becltuse 

t h e  wind speeds a r e  moderately h i e h ,  so  t h e  resul.tnnt; Frr)uii(i concer.trp.tions 

are usually no worse than i n  o ther  conditions f o r  saa.11 so';"ces ( th?is i s  

not  t r u e  f o r  large sources ,  however). 

Spec ia l  Considerations Near Prominent Ter ra in  (Sec. 7 .0) :  

Recommendation t h a t  h by reduced by up t o  a ?actor  o f 2  when higher  

t e r r a i n  is encountered by t h e  plume i n  A-B-C-D condi t ions i s  based on insaec t ion  

of s t reaml ines  computed by Stiunke (1964) for  flow un vnr iouz  kinds o f  t e r r a i n  

s t eps .  A p o t e n t i a l  flow model was used; this usually simulates  t he  apyvach  

s t reaml ines  w e l l  f o r  t h e  n e u t r a l  case. I n  unstable  condi t ions ,  t h o  tendency 

t o  " r ide  up0 over t e r r a i n  s t e p s  i s  l i k e l y  t o  be slightly enhanced. 

The impingement frequency culculn.tion f o r  E-F cond i t iom s<.rnp~:j 

assumes t h a t  t h e  flow i s  ho r i zon ta l ,  and only one s t r o m l i n e  i n  7. ~ i w n  

ho r i zon ta l  plane impinges on t h e  obs tac le .  If t h e  plume expands t o  

include t h a t  s t reaml ine ,  then it impinres also. 

- 5 6 -  n 
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The p o s s i b i l i t y  of t e r r a i n  downwash i f  upwind ht/x > 0.02 is 

mentioned i n  l i g h t  of t h e  experience at t h e  Conemaugh power p lan t  i n  southwest 

Pennsylvania. 
u 

'$ On a few occasions t h e  plume was observed t o  descend t o  

,* t h e  ground almost immediately, 

( i .e .  probably n e u t r a l )  and t h e  wind was from t h e  southeast .  

unusual feature i n  t h i s  d i r ec t ion  is a ridge about 200 m higher than the  

p l an t  and about lOQ00 m away (Schiermeier, 1972). 

This occurred when it was cloudy 

The only 

The va l l ey  fumigation. model i s  e s s e n t i a l l y  described i n  the t e x t .  
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