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DIRECT TIME-DOMAIN TECHNIQUES FOR 
TRANSIENT RADIATION AND SCATTERING 

Abstract 

This report is a tutorial introduction to transient electromagnetics, 
focusing on direct time-domain techniques. We examine physical, mathematical, 
numerical, and experimental aspects of time-domain methods, with emphasis on 
wire objects excited as antennas or scatterers. Numerous computed examples 
illustrate the characteristics of direct time-domain procedures, especially 
uhere they may offer advantages over procedures in the more familiar frequency 
domain. These advantages include greater solution efficiency for many types 
of problems, the ability to handle nonlinearities, improved physical insight 
and interpretability, availability of wide-band information from a single 
calculation, and the possibility of isolating interactions among various parts 
of an object using time-range gating. 

Introduction 

Transient electromagnetics has interested scientists since Maxwell's 
equations were formulated, but our ability to obtain analytical or experimental 
results in this field is relatively recent. The two most important reasons 
for this new ability are the digital computer, which has made possible 
advanced computational and analytical work, and technological developments in 
short-pulse hardware. These two factors have significantly increased the 
availability of transient results for an expanding variety of electromagnetics 
(EM) problems. 

While appreciating the academic value of understanding transient 
electromagnetics, one might question the practical need for, and utility of, 
transient eolutions. But developing technology in short-pulse hardware has 
motivated much analytical and computational work, which in turn has demonstrated 
the unique contributions that transient techniques can make to a more fundamental 
understanding of electromagnetics in general. Thus, transient techniques are 
emerging as a separate branch of electromagnetics. 

Current applications for transient EM include space-object identification 
via short-pulse radar, nuclear electromagnetic pulse (EMP) effects, and non­
linear phenomena. These and other applications represent a significant 
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departure from the monochromatic problems with which we may be more familiar. 
While some techniques used for transient or wide-band problems may not differ 
from those used for monochromatic problems, others may differ greatly. 

This introductory, and necessarily sketchy, discussion of transient EM 
emphasizes engineering aspects of transients. We hope that the material will 
not only inform the reader about the current status of this developing 
technology, but also motivate him to exploit it for his own applications. 

The report is organized as follows. First, we define our terms and 
provide an overview of the transient EM areas to be covered in this report. 
Next, we discuss the techniques available for realizing transient behavior in 
EM. Then we consider the physical, mathematical, numerical, and experimental 
aspects of transient analysis. Finally, we present examples and applications 
of transient EM. We demonstrate the variety of ways to characterize transient 
behavior for a giveTi problem, as well as the variety of problem types that can 
be handled, and emphasize the physical interpretability of phenomena through 
transi nt analysis. 

Definition of Terms and Overview 

Transient electromagnetics may be broadly and qualitatively dcllned as 
all noi'-monochromatic EM phenomena. This report is limited to scatterers and 
radiators in linear, time-invariant media. Transient information can be 
obtained from transformed frequency-domain data or from a direc. time-domain 
solution. This discussion focuses on the latter area, but refers to frequency-
domain work to clarify the contrast between the two approaches. 

More specifically, we concentrate on direct time-domain solutions for 
wire objects obtained from an integral-equation trertment. The narrow scope 
of the report allows us to treat a few topics in depth, rather than many 
subjects superficially, Although this tutorial report is fairly long, it 
covers only a small part of the developing area of transient electromagnetics. 
For more detail, the interested reader may consult various references (in 
particular, 1-5) that provide an overview of the topic. 

The terms frequency domain and time domain characterize the analytical 
or experimental procedure used to obtain the EM response desired. A frequency-
domain procedure factors out the time dependence via an e multiplier. A 
time-domain procedure, on the other hand, treats time as an explicit independent 
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variable. The distinction can become blurred in pulsed continuous-wave or 
swept-frequency systems, but in general the frequency domain uses monochromatic 
or continuous-wave excitation, and the time domain uses impulsive excitation. 

When seeking transient information for a linear system, then, one must 
decide whether to employ a frequency-domain or time-domain approach. Most 
earlier work in transient analysis was based on a frequency-domain 
formulation, * because closed-form, time-domain solutions are almost impossible 
to obtain. Even frequency-domain problems were difficult to solve because of 
the extensive computational effort required at many frequencies to evaluate a 
problem and transform it to the time domain. Most results from early transient 
analysis involved acoustic scattering from infinite cylindrical structures, 
because two-dimensional problems are more easily computed than three-dimensional 

8 9 
problems. More recently, Rheinstein has solved three-dimensional transient 
EM problems (the conducting and dielectric spheres) in the frequency domain, 
and numeruous examples resulting from EMP studies have lately been developed. ' 

The first time-domain approach to EM transient problems was based on 
physical optics to obtain the approximate backscatter-lmpulse response of a 12 13 flat plate and spheroid. ' This work was later extended to other 
geometries, such as the cone sphere. Subsequent direct time-domain work has 
concentrated on integral-equation techniques, the primary subject of this 

14-20 report. 
Some advantages of these direct time-domain solutions over frequency-

domain treatments of transient problems are: 
1) Greater solution efficiency for many types of problems. 
2) More convenient handling of non-linearities. 
3) Improved physical insight and interpretability. 
4) Availability of wide-band information from a single calculation. 
5) Opportunity to isolate interactions, using time-range gating (e.g., pulse 

reflection from wire ends, bends, etc.). 
6) Possibility for more directly and efficiently obtaining SEM poles. 

These benefits require some trade-offs,' however. Foremost is the greater 
complexity of a time-domain code than of an equivalent frequency-domain 
version, with a resulting increase of difficulty in its development and use. 
The computing capability required can also be [significantly larger. 

-3-



Transient Characteristics and Sampling 

A relatively recent development in EM, called the Singularity-Expansion 
21 22 Method (SEM), ' discussed below, characterizes the transient EM res, onse 

of a conducting object as a series of complex exponentials, i.e., 
N V sa e 

fCt) = 2, R a e ' CD 
a=l 

where R is the amplitude of each mode of complex frequency s . Note that, 
since f(t) is a real function, there are only N/2 independent terms in the 
summation, with the other N/2 being their complex conjugates (except for poles 
on the negative-real axis). Thus, 4(N/2) = 2N real numbers are required to 
specify'f(t) through the real and imaginary components of R and s . 
Consequently, if we know f(t), functionally or otherwise, we need 2N 
independent aamples of it, at most, to represent it completely. 

From the Shannon-Kotelnikov sampling theorem we also know that, if 
s ,„ = °"„<, + i%/o i s t h e n i S n e s t frequency component of f.(t), then the 
sampling interval in time, 6, must satisfy 

S ? 
2 fN/2 

where f . = w . /2ir. Ir uniform time sampling of f (t) is used, then the 
total observation time, T, must satisfy 

f ?2N 
or 

T i N / f N / 2 . 

In order to relate this result to object size, let us consider a straight wire 
of length L excited as a scatterer. Resonances in its response occur 
approximately as 

f a ~ a l : ; a = 1 > 2 
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with c the velocity of light. Since f , ~ (N/2) (c/2L), we obtain 

I > N / f N / 2 = 4L/c , 

23 a result that has been confirmed by numerical calculations. Thus, an 
observation time equal to at least four transit times of the wire is required 
to obtain essentially all information concerning its transient response, using 
equally spaced time samples at intervals half the period of the maximum 
frequency response. Note that, if the wire is excited so that not all possible 
resonances, are produced, then T can be made shorter, but can be no less than 
2L/c, the time necessary for a wavo to propagate froa one end to the other and 
back again. Also observe that, in principle, sampling a noise-free waveform 
over longer observation times or using shorter intervals adds no new 
information to the 2N independent observations needed to specify it. 

If we write the frequency-domain version of f(t) as obtained from a 
LaPlace transform, we can follow analagous sampling requirements. Because 2H 
real or N complex (phase and amplitude) samples are required to specify the 
transfer function, the sampling interval in frequency, 6 , is given by 

6f S f N / 2 / N 

= c/4L 

Techniques for Obtaining Time-Domain Results 

ANALYTICAL TECHNIQUES 

Unfortunately, few EM transient solutions can be expressed in closed 
form in terms of standard functions. In spite of that limitation, some success 

24 has been achieved for a variety of problems. Wu has worked out a time-domain 
25 solution for a step-ej.^ited infinite cylindrical antenna. Chan et al. ' have 

developed a closed-form solution for the diffraction of a pulsed field from 
an arbitrarily oriented dipole by a wedge. The latter problem belongs to a 
class of scattering problems for which pulse solutions take on a simpler form 

26 than do time-harmonic or frequency-domain solutions. Franceschetti and 
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Papas developed a heuristic description of the general properties of transient 
radiation. Even those time-domain solutions that can be given in >. jsed form 
may require extensive computation to obtain numerical results. Consequently, 
most time-domain solutions inevitably involve substantial computer processing. 

NUMERICAL TECHNIQUES 

EM time-domain numerical analysis naturally proceeds from time-dependent 
Maxwell's equations. When we express those equations in differential form, * 
we can solve them in terms of a finite-difference approximation, sampling the 
unknown fields in both space and time. Imposed spatial boundary conditions 
and temporal initial values, which are also sampled in a weighted sense, lead 
to a system of equations which we can thus solve for the sampled values over 
the space considered at a sequence of time steps. 

Alternatively, we can integrate Maxwell's equations, using an appropriate 
(usually infinite-medium) Green's function. Imposed spatial boundary conditions 
and temporal initial values now lead to an integral equation in which the 
unknowns are the sources induced on the surfaces over which the boundary 
conditions are applied. A sampling of these unknowns in space and time and a 
weighted sampling of the boundary values again lead to a system of equations 
for the space-time sampled values of the unknown, which is solvable as an 
initial-value problem. 

There are some important differences between these two approaches. First, 
in the differential-equation formulation, the unknowns are sampled at all points 
within and on the boundary(ies) of the solution space. In the integral-
equation formulation, on the other hand, the sampling is done only over the 
boundary on which the boundary conditions are applied. Thus, the integral-
equation method can result in substantially fewer unknowns. 

We include any method which approximates differentials by discrete samples 
in the finite-difference category, e.g., the finite-element technique, uni-
moment method, etc. 
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Second, the integral-equation treatment requires a time- and space-
dependent Green's function. This function allows surface sampling to replace 
the volume sampling of the differential-equation formulation. For lossless, 
non-dispersive, homogeneous, linear, isotropic media, such a Green's function 
is readily obtained, but otherwise substantial complications occur that can 
require a volume, rather than a surface, integration. Consequently, for these 
more general media, an integral-equation approach may not be suitable. 
Nevertheless, mosr: EM time-domain analysis to date uses the integral-equation 
approach. 

Frequency-domain analysis is also based Maxwell's equations in 
differential or integral form, but for an assumed e time variation. 
Imposed conditions on the fielu behavior over spatial boundaries complete the 
analytical formulation of the problem. A subsequent spatial sampling of the 
unknown, and weighted sampling of known boundary values, lead to a system of 
equations for the unknown sampled values. 

In both the frequency domain and time domain, then, a system of equations 
is developed for sampled values of the unknown. The numerical solutions of 
these equations are substantially different, however, due to fundamental 
differences in their respective formulations. In the integral-equation 
treatment, for example, the interactions between the unknown sampled values 
are global in the frequency domain; i.e., the total field at a given 
observation point is due to the unknown sources distributed over the entire 
boundary. The spatial separation between the source and its field is 
manifested by a geometric attenuation and phase shift which are distance 
dependent. Consequently, all the unknown samples are mutually dependent, and 
must be solved simultaneously. The solutions are usually accomplished via 
matrix factorization or inversion. 

In a time-domain integral-equation treatment, on the other hand, the 
interactions between unknown samples are displaced in time by an amount equal 
to that required for a field to propagate between them at the speed of light. 
This displacement (time retardation) "iea:is that a particular unknown sample 
value at a given point in space and time is essentially determined by the 
exciting field at that same space-time point and by the scattered fields there 
from earlier, more distant locations. Consequently, the unknown samples can 
be solved at any time step, provided all sample values at earlier times are 
already known. The time-domain problem is thus solved via time-stepping and 
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without matrix inversion, given the initial values of the unknown sample 
values. 

The equations from the differential-equation formulations are treated 
much like those from the integral-equation approach. The frequency-domain 
version results in a spatial set of unknown samples, all of which can 
mutually interact, and which therefore require a simultaneous solution, 
although a given sample depends explicity on its nearest neighbors only. The 
time-domain approach, on the other hand, results in unknown samples whose 
separation produces a time retardation in their interaction, and so permits a 
time-stepping solution. 

SINGULARITY-EXPANSION METHOD (SEM) 

We normally associate transformed frequency-domain data with real 
frequencies; i.e., the to in e is a real number. However, we can express 
the frequency-domain transfer function of a given problem in terms of a 
complex frequency. 

The SEM exploits a special feature of scattering and radiation from 
three-dimensional objects: the simple (i.e., first-order) poles their 
transfer functions may possess in the complex-frequency plane. If we know 
the locations and amplitudes (or residues) of these poles, we can easily 
construct a transient response, which is simply a series of exponentially 
damped sinusoidal terms, one for each pole. Much early work in SEM used 

27 28 frequency-domain analytical techniques to find the poles. ' More recent 
29 30 work shows that the poles are extractable from time-domain data. ' 

Because SEM provides a simple relationship between the frequency domain and 
time domain, we regard it as a hybrid technique. 
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ASYMPTOTIC TECHNIQUES 

Asymptotic techniques maj involve either low- or high-frequency 
characteristics of the frequency-domain approach, or the corresponding late 

13 and early responses of the time-domain approach. In either case, asymptotic 
techniques attempt to exploit what is analytically deducible about time or 
frequency behavior for the limits indicated. For example, we can show that 
the radiated far fields produced . - a pulse-excited finite-sized object as a 
radiator or scatterer must vanish as approaches 0. Therefore, we know that 
the time integral of the far-field waveform must also vanish. 

Low-frequency asymptotic results may also be based on the Rayleigh law 
2 of scattering, whereby che fields go to zero with decreasing frequency as u . 

In the high-frequency limit, we might employ physical optics, geometrical 
optics, or the geometrical theory of diffraction to obtain the asymptotic 
behavior. 

MEASUREMENT 

Transient-response data are measured primarily through direct time-domain 
procedures. Developments in short-pulse technology enable us to generate and 

3 
measure high-amplitude (>10 v), fast-rise-time (<300 picoseconds) 

31 32 pulses. ' By using these pulses to excite a test object such as a scatterer 
or antenna, and using a sampling oscilloscope to measure induced currents and 
scattered fields, instantaneous-measurement bandwidths of 10:1 and more are 
possible. Such data can validate time-domain calculations directly; transformed 
to the frequency domain, they can meet a variety of needs. 

Physical Aspects of Transient Analysis 

Perhaps the single most useful aspect of transient analysis is the 
opportunity it provides for more clearly depicting and interpreting the 
physical behavior of electromagnetic fields. For example, a short pulse 
propagating on an open-ended wire clearly demonstrates the effects of 
radiation damping, dispersion, and reflection from an impedance discontinuity. 
Because such effects are harder to interpret as a function of frequency, they 
must usually be indirectly inferred in the frequency domain. Of course, by 
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transforming frequency-domain results, we can derive the transient behavior 
which illustrates such phenomena, but direct development in the time domain 
is generally more tractable, and the concepts are easier to visualize. 

In this section we discuss fundamental physical aspects of transient 
radiation and scattering from a heuristic viewpoint. We first present typical 
results of time-domain computations, then examine in some detail the phenomena 
thus illustrated. Next we consider radiation fields as a manifestation of 
charge acceleration. The section concludes with a brief summary of the 
characteristics of radiation and scattering processes. 

SOME NUMERICAL RESULTS 

The calculations presented here precede a detailed account of their 
mathematical and numerical aspects in the next two sections. They are 
included now to provide a mental Image of some physical aspects involved. . 

Figures 1 and 3 show current and charge distributions on a straight 
wire excited by a voltage source at its center as an antenna, and excited by 
a tangential electric field of a normally incident plane wave as a scatterer. 
In both cases, the time variation of the exciting source is Gaussian, i.e., 

2 2 exp[-g t ], and space distributions of current and charge are shown for 
several instants of time. Figures 2 and 4 show the resulting far fields in 
the broadside direction. 

In Fig. 1 the current for the antenna divides into two pulses, 
approximately Gaussian in form and with a small oscillatory undershoot, which 
propagate outward from the source, accompanied by oppositely signed charge 
pulses. The pulses (current and charge) decrease in amplitude and spread out 
as they propagate from the source. Nearing the end of the wire, the charge 
pulses increase in amplitude, while the current pulses decrease, falling to 
zero amplitude at the end. After the reflection, the amplitude of both pulses 
diminishes, and the current reverses sign because the charge flow reverses 
direction. Initially the radiated field closely resembles the Gaussian shape 
of the exciting pulse with which it coincides in retarded time (allowing for 
propagation time), but then exhibits a slight negative undershoot. A large 
negative pulse in the radiation field coincides with the end reflection of the 
current-charge pulse. 
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Current 
Charge 

(a) (c) 

to) (h) 

Fig. 1. Current and charge distributions at several instants of time for 
a straight-wire antenna excited by a Gaussian pulse. The antenna and. 
numerical parameters are: length (L) = 1 m; radius (a) = 6.738 x 10 _._ 
m (which gives ft = 2 S,nL/a'= 10); Gaussian-pulse paramo ti g = 5.556 x 10~ 
where the pulse time variation is exp[-g2t2J; space-segment length 
(A) = L/60; and time interval (6) =' A/c. After its initial excitation, 
the charge-current pulse splits into two oppositely propagating pulses 
of oppositely signed charge, resulting in current pulses having the same 
sense. A slight decrease in the amplitude of the pulse can be observed 
as they progress down the wire, and a more noticeable decrease in amplitude 
occurs upon end reflection. 
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Fig. 2. Broadside-radiated electric 
field as a function of time for a 
straight-wire antenna excited by a 
Gaussian pulse. Six hundred time 
steps are shown. The peaks in the 
radiated field appear to coincide 
with the initial excitation and end 
reflection (in retarded time). 

10 20 30 
Time — ns 

The current for the scatterer distinctly differs from that for the 
antenna. It is uniform over the entire wire except near the ends, where it 
falls to zero, and where the charge is first concentrated. We could deduce 
the current behavior in the scatterer from the current in the antenna by 
appropriately superimposing in time and space the result of simultaneously 
exciting the scatterer at a sequence of points along its length. The current 
amplitude in the central region of the wire slowly decreases with time, while 
near the ends it reverses sign as the boundaries of the pulse collapse inward 
due to the charge reflection. In the radiation (or scattered) fields, an 
initial return is similar in shape to the Gaussian exciting pulse and coincides 
in retarded time with the current buildup. This }.art of the scattered field 
is sometimes referred to as a specular flash. A sign reversal of the scattered 
field closely follows, with a peak value less than half that of the first 
maximum, beyond which the field decays with time. This part of the scattered 
field has a time variation similar to that of the decaying current. 

INTERPRETATION OF NUMERICAL RESULTS 

The relationship observed between the antenna current and radiation 
field clearly shows that the onset of current flow is responsible for the first 
portion of the radiated waveform. The subsequent negative pulse in the field 
is as clearly due to the reflection of the current and charge from the wire 
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Current 
Charge 

(a) (b) (c) 

Fig. 3. Analog of Fig. 1 for the scattering case. The excitation is now 
a Gaussian-pulse plane wave incident from broadside. A uniform current 
is initially excited along thu wire and collapses inward due to end 
reflection. No explanation has been daveloped for the small-amplitude 
oscillation in the current and charge of Loth Figs. 1 and 3. 

ends. These results suggest that a radiated field is produced both when 
charge is accelerated (during tfn-on of the current) and when charge is 
decelerated (during reflection from the wire ends). Note that the sense of 
the radiated field evidently depends upon the direction of the charge acceler­
ation; the deceleration here corresponds to negative acceleration with respect 
to the original charge motion, and produces a field of opposite sign. The 
intermediate negative part of the radiated field is not so easily accounted 
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0.08 
> 
I 

'•u 

e -0.04 -

a <8 
-0.16 10 20 30 

Time - ns 

Fig. 4. Scattered field as a function 
of time for a straight-wire antenna 
excited by a Gaussian-pulse plane 
wave incident from broadside. The 
scattered field exhibits a specular-
flash return as the current is first 
excited, then a longer lasting but 
slowly decaying portion of opposite 
sign. 

for. It appears to correlate with the spreading out of the current pulse and 
with a corresponding decrease in its amplitude as it propagates down the wire. 
Thus, it could be ascribed tc a shedding of energy during propagation. 

The initial pulse in the scattered field is also clearly due to the 
initial charge acceleration associated with setting up the current. The nearly 
Immediate sign change of the scattered field is evidently due to charge 
deceleration at the wire ends as the current begins to be reflected there. 
In this case the resulting negative radiation persists, although its value 
decreases with time, because current excited along the entire wire must 
eventually propagate to either end (recall that the antenna current divided 
into two oppositely propagating current pulses), where it is reflected. The 
decreasing amplitude of the scattered field in this portion of its waveform 
must be primarily due to the slow decay of the current reaching the ends, as 
demonstrated by the current behavior in the central area of the wire. This 
decrease in current amplitude provides further, although indirect, evidence 
that the current radiates as it propagates along the wire, and must therefore 
also contribute to the negative portion of the field at that time. 

In both the antenna and scattering cases, then, we find evidence that 
accelerated charge causes radiation. This radiation occurs whether the charge 
is driven by an accelerating, exciting field which provides an external force, 
or by a decelerating, induced field which provides an internal or self force. 
The exciting force sets the charge in motion and produces the associated 
radiation fields. The induced force does no work on the charge but instead 
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V receives energy from it £3 the charge slows to zero velocity. As the charge 
accelerates in the opposite direction, not all the energy returns to it. The 
difference is lost in the form of radiation. An additional loss seems related 
to a spreading charge pulse propagating on a wire, a result directly observable 
in the antenna case. The loss mechanism in this case might be the charge 
deceleration which the pulse dispersion implies. We might conclude thar this 
behavior arises because the trailing edge of the pulse propagates more slowly 
than the leading edge, whose speed is near that of a light wave in the medium. 
Propagation of the charge pulse in this situation resembles the behavior of 
electron bunches in a klystron. 

SOME MATHEMATICAL RELATIONSHIPS 

It is indeed a fact that charge acceleration causes electromagnetic 
radiation. This fundamental principle provides a basis for a heuristic 
understanding of all radiation processes, both transient and steady state. 

We can study accelerated charge fields in two ways: the microscopic 
approach, which concerns fields of individual charges, and the macroscopic 

33 approach, which concerns average fields over the charge distributions. We 
primarily consider the latter approach here. We can distinguish between the 
two on the basis of whether the observation times and distances are smaller 
(microscopic) or larger (macroscopic) than the characteristic times and 
distances associated with the sources (e.g., the relaxation time in a metal 
or its skin depth). The microscopic approach involves equations of motion of 
individual electrons, and can include mass, relativistic, and quantum-mechanical 
effects. In the macroscopic approach, we are more interested in solving 
Maxwell's equations in a field description than in the physical details of 
their sources. 

Using Maxwell's equations, the far-radiated fields due to an electric 
current distribution K over a surface S can be written 

/ 
H ( r - t ) = 4ik f f F K ( r ' ' T ) x ] f r d s ' ( 2 a ) 

E(r,t) = nQH(r,t) x - — , (2b) 
lrl 

where r and r' are observation and source-point coordinate vectors, 

-15-



respectively, t is tho observation time, T (the retarded time) is 
t - \v - r'|/c, and c is the speed of light. 

Since K is by definition the flow of charge, any change in K with time, 
assuming charge is conserved, can be due only to a change in velocity of the 
charge which carries the current. Equation (2a) therefore states that 
radiation is due to accelerated (or decelerated) charge in agreement with the 
preceding discussion. 

The fields of a point of charge q moving with (non-relativistic) 
velocity v and acceleration v are 

fff.t) = J^ (i£>JLl + R«EX(RX7(T»]| ( 2 c ) 
T I. R cR J 

*&»'•&-{S + ¥V X2^}. <*> 
W E 0 ^ R J R c J 

where R = 7 - 7'(T) and R = |1|, 
i. _ _ 2 When v is zero, H and E have 1/R static components, an elementary result, 

and E , changes sign when v reverses direction. The rate of energy radiation 
34 is also given by 

« = - <] 2R 2 (2e) dt , 3 • U e ; 

6we0c 

the total amount of energy radiation during a given velocity change is 
— 2 proportional to the time integral of |v| , so the higher the acceleration, 

the greater the radiated energy. 
Equations (2c - 2e) represent a microscopic view of the radiation 

process. In our time-domain solution, we can develop expressions which 
provide a macroscopic description of the radiation process in terms of the 
current and charge distributions on the object. For the particular case of a 
wire object having contour C, the total energy collected by the object from 
the incident field up to time t is given by 

W =W(t)j = / / E. „ (w',f) • T(w',t')dw'dt' . (2f) 
C I Collected J J C

 l n c 

Similarly the total energy dissipated due to resistive loss can be expressed 
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up to time t as 

W D = W ( t ) | = / / I2(W',t')R(W')dW'dt' . (2g) 
I Dissipated J^ J„ 

Finally, the total energy stored in the fields near the wire due to its 
current and charge density is, at time t, proportional to 

W w = W(t)| _ " ^ [ [y0I2(w\t) + O/V.^/e^dw' = W x + W Q , (2h) 

where W and W are the current and charge contributions, respectively (see 
Appendix). 

The energy in the fields outside the wire can then be represented as 

WF " WC ' WD " WW » ( 2 1> 

which represents the energy in both the radiation and the near fields. The 
quantity W usefully indicates the time-chang 
implication, when and where radiation occurs. 
quantity W usefully indicates the time-changing stored energy and, by 

THE ROLE OF CURRENT AND CHARGE 

In the antenna case, the excitation is a tangential electric field 
applied at the center of a small region (the gap) of length A on the antenna's 
surface. For simplicity, assume the field is a unit-amplitude pulse of time 
duration 6, where A = cfi, applied at time t = 0. Our.model is thus discretized 
in space and time and is conceptually identical to the numerical solution 
developed below. 

Because the assumed perfect conductivity requires the total tangential 
electric field to be zero, initial application of the excitation instantaneously 
induces a charge separation, which results in both charge acceleration and 
current initiation. The tangential electric field of this separated charge 
cancels the applied field, and the linear charge density changes sign across 
the gap region. Due to the finite propagation velocity of the induced fields 
resulting from this charge motion and separation, the fields have no effect 
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outside a region of radius A centered in the gap during the time 5 the excited 
field is applied. 

Upon removal of the exciting field after a time S, the charge separation 
in the gap must vanish to make the total field there zero. Simultaneously, 
a current and charge disturbance f i the gap during 0 < t < 6 affects a region 
A wide on either side of the gap during the time 6 < t < 28. This effect 
takes the form of a scattered tangential electric field having the same 
directional sense as that of the original charge separation in the gap. 
Consequently, a compensating net charge density in each of these regions must 
cancel this scattered field. Because of the continuity equation, this density 
is supplied by the movement of the charge out cf the gap to the adjacent 
regions. Charge neutrality is thus restored in the gap and current flow there 
is zero. A current flow of half the original gap current is set up in these 
two adjacent regions. This current has half the original value because it 
involves the movement of only half the original charge (only the plus or minus 
charge, not both as in the gap). The current has the same sense on either side 
of the gap because it involves the oppositely directed flow of oppositely 
signed charges. 

After a series of repeated steps like that above, these pulses of 
current reach the ends of the wire. The charges stop because the conduction 
current must vanish there. In stopping, the charges are subject to an 
oppositely directed acceleration and so produce a scattered field in a sense 
opposite to that of the original scattered field. A reflected charge and 
current pulse are thus produced, and the process described above continues, 
but with some loss due to radiation. From Eq. (2e), the amount of radiated 
energy is proportional to |v| ; the shorter the time interval over which a 
given amount of charge reflects, the more the radiation loss. Thus, the 
narrower the incident pulse, the more efficient the radiation production upon 
end reflection. 

We can analyze the scattering problem in the same way. Two factors 
which influence field and current behavior and which help us to understand the 
overall problem include: 1) causality, which limits the space-time region 
over which interactions can occur, and 2) the current-continuity equation, 
which constrains current and charge behavior. Energy is supplied to the 
object only while the exciting field is present. All this energy may be 
regarded as being radiated, but only a portion actually produces a space wave. 
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The rest remains tied to the structure along which it propagates. At each 
point where energy flow is redirected by the object, reradiation occurs. As 
in :he source region, part of the energy leaves in a space wave and part 
remains tied to the structure. Where energy-flow redirection does not occur, 
as along a straight wire, there exists no radiation without dispersion, but 
only a continued propagation of fields previously produced. 

THE FIELD BEHAVIOR 

A prefectly conducting object can have an electric field as its surface 
in only the normal direction. The total tangential field is zero by definition. 
Without a normal field, there is thus no field at all. Consequently, for 
radiation to occur, there must be: 1) a non-zero charge density to produce a 
normal electric field, or 2) an incident field that is cancelled by an 
oppositely directed induced field. The latter cause of radiation is charge 
acceleration, as discussed above. The former is similarly associated with 
charge deceleration. The radiated electric fields may be closed (i.e., form 
continuous loops) or be open as a result of terminating on the object. They 
can close only as a result of charge cancellation, caused, for example, by 
meeting oppositely signed charges moving in opposite directions on a wire. 
All finite-sized, perfectly conducting objects produce radiation fields with 
closed lines at distances greater than the maximum object dimension. 

Near fields, i.e., those field components that do not carry energy away 
from the object, include electric fields that terminate on the object due to 
its net charge density and associated magnetic fields that result from charge 
moti. i. These near fields Ci ntain the energy bound to the object's surface, 
which whus 'iCts as a guided-wave structure for near-field energy propagation. 
Charge deceleration converts near-field energy to radiating energy. It is 
useful to think of energy due to charge separation as potential energy, and 
that due to charge motion as kinetic energy (see Eq. 2h). Both the fields and 
charge share the stored energy. Further, the charge terminates the fields on 
the conducting surface through the boundary conditions that E and H are 

tan norm 
zero. 
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SUMMARY 

The following processes are primarily responsible for electromagnetic 
radiation: 

1. Charge acceleration due to the incident field. 
2. Charge deceleration due to reflection from impedance discontinuities 

such as open edges and steps on surfaces and open ends and bends "n 
wires. 

3. Charge deceleration due to surface curvature. 
4. Charge deceleration along straight-line surfaces due to dispersion. 

The observations made above are only qualitative, but can be used as a 
basis for predicting various aspects of radiation and scattering. 

We may summarize the above discussion by invoking the following model 
for transient radiation from a perfect conductor. It is based simply on the 
fact that, due to the vanishing of the total tangential eleatvia field on the 
conductor's surface, the net energy flan (Poynting's vector) across it must 
be always identically zevo. During the time the exciting field (source) is 
present, the outward flow of energy due to the induced current and charge are 
thus exactly balanced by the source-supplied energy. After the exciting field 
becomes zero, therefore, there can be nothing other than zero energy flow 
normal (W„) to the conductor's surface. But since the conductor must continue 
to radiate until all the energy is gone, we suggest that W has two 
counter-flowing components. One is an inward-flowing component which contains 
energy collapsing back onto the conductor from the fields near it, The other 
is an outward-flowing component which contains energy that propagates away 
from the conductor and is then lost. 

Both components must remain the same as they decay wonotonically with 
time until eventual charge neutrality is restored. Although the total near-
field energy is not easily derivable from the current and charge, these induced 
sources provide a convenient and useful indication of the stored energy, and 
thus also of the radiation process, as we have seen above. 
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Mathematical Aspects of Transient Analysis 

In this section we consider mathematical aspects of direct and transform 
techniques for obtaining transient results. We continue with a discussion of 
hybrid techniques that possess characteristics of both frequency- and time-
domain analysis, and conclude by briefly discussing the limitations of these 
various approaches. 

DIRECT TECHNIQUES FOR OBTAINING TRANSIENT RESULTS 

From Maxwell's equations for a perfectly conducting closed surface we 
can derive two time-dependent integral equations based upon the electric and 

2 magnetic field, respectively, as the ff̂ cii,- functions: 

n(r) x E i n c ( r , t ) = ^ ~ j | - 5_ „ ( r , , T ) . J ^ 1 . , . . T ) 

+ ^ -g- K(r ' ,T) • *%- ; r es (3) 

it* 
2 Ti K ( r » T ) J R 

K(7,t) = 2fi(7) x H l n t(7,t) +hxj^ i k l ( P ' T ) 

+ £fp K(7,T) l ^ | ds' ; res , (4) 

where -J- denotes the integral 11m AS •+• o f ; ¥ and H, the electric and 
•'s 'S-AS 

magnetic fields, respectively; superscript inc, the incident field; e , the 
permittivity of free space; c, f.ha free-space speed of light; IC and a, the 
surface current and charge densities; S, the surface of the object; n, the 
outward-pointing surface normal; and 

R - 1*1 = I * - *' I 
T = t - R/c (retarded time), 

where r and r' are oaservation and source coordinates. 
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Equations (3) and (4) are the time-domain versions of what are often 
called the electric-field integral equation (EFIE) and the magnetic-field 
Integral equation (MFIE), respectively, after the incident-field terms which 
appear in them. They are mathematically classified as Fredholm integral 
equations of the first and second kind, respectively, because the unknown 
appears only under the integral in the former, but outside it as well in the 
latter. Besides this important difference, which significantly affects their 
numerical treatment, they also differ in the order of the spatial singularities 
which occur when R -*• 0. In the EFIE, the highest-order singularity is 
the 1/R of the a(r',T) term, coming from the R/r factor, and the spatial 
derivative of K(r,T) which results from replacing a(r,T) via the continuity 
equation. The highest-order term in the MFIE, by contrast, is 1/R . Finally, 
the MFTE is not as well suited to wires long compared with their diameter, 
because n, being nearly parallel to K x R, can produce numerical 111,-
conditioning. The far fields corresponding to Eqs. (3) and (4) have been given 
to Eq. (1). 

Most frequency-domain antenna analysis is based upon the thin-wire 
approximation, which involves replacing a two-dimensional surface integration 
with a one-dimensional line integration, and approximating the surface current 
as an axially directed filament. This same approximation is also useful in 
the time domain. When applied to Eq. (3), it leads to 

E, Inc 

where 

: W \ T ) | dw-

,t) = -f gfr KW,f)df , 

2 
~ w • Rq(w\x) | dw' ; reC + a, (5a) 

q(w', 

w and w' are tangent vectors to the wire at r and r', respectively, C is the 
wire contour, a is the wire radius, and r e C + a denotes that the field is 
to be evaluated on the wire surface. Other time-domain integral equations 
specialized to wire geometries can also be developed. Equation (5a) provides 
the basis for most of the subsequent discussion in this paper. The far-field 
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expression which corresponds to Eq. (5a) can be written 

TRANSFORM TECHNIQUES FOR OBTAINING TRANSIENT RESULTS 

The frequency-domain counterparts of the time-domain integral equation 
are given by 

fi(r) x E ^ C r ) - - L _ - n x j - j v . K(r')V* - W
2

W < r ' ) * j ds' 

K(7> = ^ n x 4- K(7') x V'cfrds' + 2n * H l n <.(r) , 

(6) 

(7) 

where 
1(1 = exp[-ikR]/R and k = to y y e . 

HYBRID. TECHNIQUES FOR OBTAINING TRANSIENT RESULTS 

Hybrid techniques, with characteristics of both frequency-domain and 
time-domain analysis, include the frequency-augmentation technique and the 
singularity-expansion method discussed below. Other possibilities might also 
be identified, such as various asymptotic techniques mentioned above. 

Frequency-Augmentation Technique 
35 Bennett et e.X. developed a technique to combine low- and high-frequency 

scattering information for an object to obtain its impulse response. The basic 
idea of this frequency-augmentation technique is to represent the impulse 
response of the object in the frequency domain, H(u), as 

H(w) = F A(u) + HA((o) . 

The first term, the augmentation function, approaches H(a)) as u) approaches °°, 
and thus represents the high-frequency information referred to above. The 
augmentation function might come from either time- or frequency-domain 
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analysis, and could be based upon geometrical optics, physical optics, or 
other considerations. The second term, the augmented-frequency response, thus 
vanishes as u approaches <*>, and is derived from low-frequency information as 
follows. 

Consider, for example, that, using either the time- or frequency-domain 
approach, the actual low-frequency response function of the object is known up 
to some maximum frequency <i) and is denoted by H(u). Then define 

HA(to) - H(OJ) - F A(w) 
and note that 

H,(u) = H.(u) for u < a . A A — m 

But since H,((o) is known to approach zero with increasing frequency, we 
can introduce some reasonable asymptotic function to represent this behavior 
and match it to H (UJ) in the region below u to obtain an approximation for 
H.(io) for all 0). If the function so chosen is accurate enough, then we obtain 
a combined numerical-analytical representation for H,(u). Finally, a Fourier 
transform to the time domain yields the desired impulse response, h(t). The 
augmentation function contains the singular, high-frequency part of the 
response, and can be analytically transformed to the time domain, thus 
avoiding the problem of trying to numerically transform a singular function. 
Only fl(oj) needs to be transformed using a numerical FFT. 

Singularity-Expansion Method 
We have already mentioned the basis of the singularity-expansion method 

(SEM). Here we very briefly discuss some of its more obvious aspects. SEM 
stems from the observation that the late-time EM response (i.e., when the 
exciting field no longer is present) of an object has the form 

f(t) - 2 Rae . 
a=l 

This time function has a s imi la r ly simple complex-frequency represen ta t ion , 
N 

F(s) = £ V ( S " Bo? 
c t = l 
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Note that f(t) and F(s) may represent any measure of the object's response, 
including induced current, near field, and far field. 

In time-domain solutions, then, the original problem is replaced by the 
new requirement to find the R and s . This requirement can lead in turn to 
two distinctly different approaches, depending on whether time-domain or 
frequency-domain data are available for this purpose. A procedure based upon 
Prony's technique has been successfully used to obtain poles from time-domain 
data. 

The s depend only on the object geometry. Thus, once determined, they 
characterize the object for any excitation. The R , on the other hand, depend 
on both the object geometry and its excitation. 

LIMITATIONS 
Our ability to obtain transient results is limited by the same factors 

that apply to the frequency domain. Analytical solutions are available for 
relatively few problems, and those that have been developed generally require 
extensive computations. Numerical techniques are limited primarily by what is 
computationally feasible. From a mathematical viewpoint, then, our ability 
to formulate transient problems greatly exceeds our ability to subsequently 
cast them in a numerically tractable format. However, alternate formulations 
may exist which could greatly reduce the numerical effort required for solving 
a given problem. 

Generally, the numerical approach is most effective for frequencies up 
to and including the resonance region, for the relatively simpler geometries. 
Any increase in complexity of object geometry or environment can greatly 
reduce or even eliminate the possibility of using a numerical approach. This 
is one area where further formulational efforts might be directed. 

Numerical Aspects of Transient Analysis 

Both time-domain and frequency-domain integral equations may be reduced 
to forms suitable for numerical computation. We first consider a time-domain 
solution. 
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DIRECT TECHNIQUES FOR OBTAINING TRANSIENT RESULTS 

For clarity, we illustrate the direct, time-domain solution procedure 
for a simpler, or prototype, time-domain integral equation in place of the 
actual Eq. (5a). We thus consider 

h 
g(x,t) - f f(x\t')K(x,x')dx' ; -h < x < h , (8) 

•Ml 
where 

t'(x.x't) = t - |x - x'|/c , 

the equation to be solved, where g is specified and f is to be found. Proceed­
ing on an intuitive basis, we might decide to approximate Eq. (8) with a 
discrete sequence of samples for f as a function of both x and t. If we 
further choose some reasonable variation between these discretely sampled 
points (i.e., select an interpolation function) and also specify how the right 
and left sides of this sampled equation are related, then we can reduce 
Eq. (8) to a linear system in which the samples for f are the unknowns. 

For practical purposes this procedure constitutes the moment method. 
The interpolation function mentioned, in the moment-method context, is called 
a basis function, and the relationship between Che two sides of the reduced 
equation depends on a weighting or testing function. Let us now use a space-
time pulse approximation for f, i.e., 

N 
f(x',f) = £ £ »i TVj' ' 

i'=l j'=l 

where U, ,., = 1 if < 
x ±, - A/2 < x' < x ± I + A/2 

t,, - 6/2 < t' < t., + 6/2 

and is zero otherwise, and x , = Ai', t., = 6j'. Let us also point-matcn the 
integral equation at the space-time sample locations x , t.. Then we 
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formally obtain 

-h N 

-h i ' = i j ' = i 

N _(i'+l/2)A j 

i'=l (i'-l/2)A i'=l 
,Ai'jK(iA, x')dx' 

i'=l*'(i,-l/2)A j 
1 = 1 N 

W h e r S j = 1 N T . (9) 

But since t' = t - |x - x'|/c, and upon using A = c6, Eq. (9) simplifies to 

N (i'+l/2)A 
gij = 2, Ai\j - |i - i'| / K(iA,x')dx' , 

i'=l •/(i'-l/2)A 
(10) 

which associates with each A ,., a spatial integral (or interaction coefficient) 
over segment i' at retarded time j - |i - i'|. 

It is helpful to rewrite Eq. (10). Let us first denote the interaction 
coefficients by 

(i'+l/2)A 
Z±i, = J K(iA,x')dx' , 

•'(i'-l/2)A 

so that 
N 

ii"ij T "i,i-l"i-l,j-l eij = 2 Zii'Ai\j' - Z » A " + Z< ' l A 

i=l 
+ Zi,i-2Ai-2,j-2 + ••• + Zi,lAl,j-i+l 

+ Zi,i+lAi+l,j-l + Zi,i+2Ai+2,j-2 

+ ... + Z, ,A, *^< • (ID ^.A.j-N+i -
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We observe that the first terra involves a sample at the time step j, while 
all other samples are for j-1, j-2, ... and thus are from earlier times. Upon 
solving Eq. (11) for A.., we then find 

N 
8ij " Z, Zi,i , Al\j-|i-i*| i = l N 

i'=l A - ' , (12) 
1 3 Zii j = l N T 

where the summation excludes the term i' = i. 
Equation (12) should forcefully demonstrate that at time step j the 

integral Eq. (8) can be solved as an initial-value problem by time-stepping, 
for if all values of A., are known for k < j - 1, then A., is completely 
specified by them and the present value of the forcing function, g... This 
equation shows the explicit effect of causality and the finite velocity at 
which EM fields propagate, as an increasing time delay between a source at i' 
and its influence being observed at i (through the time index j - |i - i'|). 
In principle this factor permits solving Eq. (8) without matrix inversion, as 
further emphasized by the Z..v coefficient matrix in Eq. (12). 

We have of course simplified this discussion of the numerical solution 
by choosing an apparently simple integral equation and using pulse-basis and 

39 delta-weight functions. The TWTD code used to generate the results presented 
here uses a nine-term polynomial basis, up to and including quadratic space-
time variation, and delta-function weights. But the integral equation used 
here represents that which would apply to a straight wire, and so is realistic. 
It makes retarded time depend very simply on source-observation distance, i.e., 

t' = t - |x - x'|/c . 

Therefore, as we integrate the source space (x'), the space-time path described 
by x' and t' is a straight line, as illustrated in Fig. 5. This integration 
path furthermore passes diagonally through the center of each space-time 
sample "patch" (or A..), because the observation points are also located at 
the patch centers and A = c5 was used everywhere. This path means that a 
single A., is associated with each Z..,. In general, the integration path can 
pass through two A..'s for integration over one space segment, so that a given 
Z..» decomposes into two parts, one multiplying each respective A.. value. 
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For example, if the space observation points are not co-linear (i.e., 
on the same line defined by the current sample), then t' and x' are not 
linearly related and in general 

t* = t - V (x - x ' ) 2 + (y - y ' ) 2 + (z - z') 2 /c 

= t - V p 2 + (s - s') 2 /c , 

where s and p are cylindrical coordinates of the observation point relative 
to the line along which the source current flows. Figure 5 also shows other 
representative space-time integration paths. 

The g term in Eq. (8) (or the g.. terms in Eq. (12)) represents the 
actual excitation (or its sampled values) which excites the response f (or 
the sample values A..). Since we are dealing with an integral equation based 
on the electric field and specialized to a wire, g represents the tangential 
electric field distribution along the contour C of the wire. For a scattering 
calculation, and assuming a point-matching solution is employed (which is the 

j+1 

i-1 

i — i 1 r 
Observation point -j 

Source space-time 
patch i-4, j-4 

I 
A/c 

^1 7~ Integration paths in space 
r ^ „ > a n d retarded time ~ / 3 A „ 

Source 
segment 

'itihh—I—-—I 1 
i-4 i-3 i-2 i-1 

Space index 

i+1. 

Fig. 5. Space-time integration 
paths in the source-coordinate 
(s',t') space for an observation 
point located at time t and cylin­
drical coordinates p and s relative 
to the center axis of the current 
filament (segment) being integrated. 
The retarded or source time t' 
is given by t* = t - V p 2 + (s - s')2/c. 
Note: s' = i'A; s = iA; t' = j*S; 
t = j6. The uniformly spaced dots 
represent the centers of the space 
and time sample intervals for a 
straight wire, and the curves show 
the integration paths for a given 
source segment on that wire as p 
is changed. Note that unless 
p = 0 and s coincides with a space 
sample point (i.e., the observation 
point is collocated with the sample 
point on the wire), the integration 
over a single space segment can 
involve more than one time sample 
of the current on that segment. 
This shows one reason for using 
basis functions that smoothly vary 
over the entire space-time domain. 
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case for all the results subsequently presented), g . then is simply the 
specified value of the incident electric field tangent to C at a sequence of 
space points r. and time steps t . For an antenna calculation, the exciting 
field Is limited to one or a few segments of length A centered at observation 
point r. and is equivalent to an applied voltage v.. = -A g . The computation 
difference between a scattering and radiation calculation is minor. 

The effect of lumped or distributed loads is mathematically 
indistinguishable from the treatment of the exciting source. The load causes 
a voltage drop in opposition to (passive) or in the direction of (active) the 
exciting field. The actual load voltage depends on its V-I characteristics. 
For linear, passive loads we have (resistance R, inductance L, capacitance C) 

VLOAD ('« t > = I(r,t)R(r) + L(7) |^ I(7,t) + C(7) / q(7,T)dT , 

the effects of which can be readily included in the numerical treatment 
previously outlined. For example, this would result, in the case of our 
prototype integral equation, in 

g(x,t) * g(x,t) - V L 0 A D(x,t) , 

and considering a resistive load only at x , Eq. (12) becomes 

^ ZLL + \ 
(12)' 

while all other A.., remain as given by (12). lj s 
When the load is non-linear, if for example the value of IL depends or 

I., then formally Eq. (12)' still applies. But since tL then depends oniL., 
which In turn depends on L , we generally must solve the equation by iteration 
at each time step. For the special case of an ideal diode, however, which is 
specified by only a forward and reverse resistance, we can readily solve 
Eq. (12)' by finding A., for R. = 0, then using the direction of current thus 
determined to establish R., since the load cannot in this case reverse the 
current flow. We might also consider time-varying loads and other more 
general non-linearities. 
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TRANSFORM TECHNIQUES FOR OBTAINING TRANSIENT RESULTS 

Extensive literature on the numerical treatment of frequency-domain 
integral equations already exists. ' ' We therefore will not consider that 
topic any further here. 

DIRECT AND TRANSFORM TECHNIQUES COMPARED 

Table 1 summarizes the main features of the direct time-domain and 
transform frequency-domain integral equations used to obtain transient results. 
The main differences between the two approaches are that: 1) the frequency 
domain provides source-independent results at a single frequency, so many 
frequency samples must be computed and transformed to find a transient result; 
2) the time domain provides source-dependent results over the equivalent of a 
band of frequencies to give a transient result directly, but it must be repeated 
for each source, e.g., in computing the monostatic radar cross section. The 
corresponding computer times associated with their application are 
approximately ' 

T t * ( A t u \ + B J . N N ^ N J . (13a) 

T f = (A fN 2 + B f N 3 + C fNN + D fNN N )N , (13b) 

where A ,...,Df are computer- and algorithm-dependent timing coefficients, and 
the subscripts t and f denote time- and frequency-domain quantities, 
respectively. The two terms in T are due to current computation and 
far-field evaluation, where N is the number of time steps, N is the number 
of incident fields, and N is the number of far-field evaluations. In T we 
similarly have terms in order of their appearance due to impedance matrix 
calculation, matrix factorization or Inversion, current computation, and 
far-field evaluation, where N„ is the number of frequency steps. 

r 

Upon introducing numerical values for the timing coefficients (for a 
CDC-6600), and relating the various numbers of current and field evaluations 
to the object size in wavelengths at the highest frequency of a transient 
calculation, we find the following computer-time approximations for wire 
(subscript w) and surface (subscript s) objects excited by a single source 
(N = 1) : 
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Table 1. 

Frequency domain Time domain 

Tt = iu 

L(u)f(u) = g(m) 

J Maxwell's 1 
J equations f 

J Plus BC, 
| etc. } 

Time dependent 

L ( T ) f(T) = g(T) 
T = t - R/c 

1 V j " 8i ! " N 2 

i = 1 N 

N 
f i • 1 V J ; a N 3 

Solution obtained for 
many sources but 
single frequency. 

Apply MoM 
to get 

I Nth order system 

Matrix 
[manipulation 

y ie lds 

•i Observe > 

. £ Z-Mfiir = ^ "i j jk B i k 

i = 1 . . . . .N 
k = 1 NT 

f i k 1 Vjk'A 
3=1 

Solution obtained for 
s ing le source but for 
many frequencies . 

Do for St, = 1 . . . . .N 
frequencies to get 

f and f 
a re r e l a t ed by 

f f ^ f 
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Tt,w - 1 C r l < L / W 3 S 

T t , s - 7 < C ' W S S 

T f > w~ [i + o.oisa/x^ia/x^)^ 
T f > s . [2 + 0.83(CA r a i n) 2](CA r a I n) 5s 

Here L is the total length of the wire object, C is the circumference of the 
smallest sphere which can contain the surface object, and A is the minimum 
wavelength for which the calculation is valid. Only the dominant terms from 
Eq. (13) have been retained. These results, plotted in Fig. 6, demonstrate . 

2 4 6 
Object size-LA m i n.cA m i n 

Fig. 6. Computer time estimates 
to obtain transient results for 
a single excitation for both wires 
and surfaces as a function of 
length and circumference in wave­
lengths at the highest frequency 
of the computation, and using both 
a direct time-domain solution and 
a transformed frequency-domain 
solution. A significant advantage 
for the wire time-domain approach 
over the frequency domain technique 
is shown. For surfaces, however, 
the difference is not as great, 
perhaps because the time-domain 
code used for this comparison-^ 
re-computes the interaction 
elements at every time step. 
This data should be regarded as 
approximate and only a guideline. 
Possible reductions due to symmetry 
were not included. Note that the 
surface-object time estimates are 
larger than given in Ref. 1 because 
more conservative sample-density 
estimates were used here. 
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the computational advantage of the time-domain approach to obtain transient 
results for a wire. For surface objects, on the other hand, the time-domain 
approach becomes more efficient only for C/X . values > 3. These results 
indicate general trends only, since they are based on non-optimized codes and 
do not include the effects of symmetry or other influencing factors. They are 
useful, however, in drawing attention to an important aspect of transient 
calculations. Note that, for surface objects, computer time has a higher-
order dependence on size because it involves an area, rather than a line, 
sampling of unknowns. 

A further computer-related characteristic that differentiates a time-
domain from a frequency-domain approach for transient computation is the 
computer storage required. Because a given surface current and charge sample 
are needed during the computation only for the time wiien their fields interact 
with the rest of the object, the storage required can be considerably less 
than the NN otherwise required. 

MODELING GUIDELINES 

Because time-domain techniques involve more user decisions than their 
frequency-domain counterparts, in terms of temporal sampling and the time 
variation of the exciting field, they can be somewhat more demanding to use. 
If, however, the goal of the frequency-domain approach is to develop transient 
behavior via a transform, then similar decisions regarding frequency sampling 
and the spectrum of the exciting field are required. In each approach, these 
factors are important to both the efficiency and accuracy of the final result, 
but it remains unclear how to choose them a priori to most nearly attain the 
conflicting goals of computational speed and numerical accuracy. Also common 
to each is the need to spatially sample the object being modeled in a manner 
consistent with the temporal sampling and the accuracy-efficiency aspects of 
the calculation. 

In our discussion of sampling questions above, the sampling density used 
the Shannon-Kotelnikov (also sometimes called Nyquist) rate of two samples per 
period of the highest frequency component in the waveform (or spectrum). But 
this value is an upper bound on the temporal-sampling interval and is 
attainable only when the basis function exactly matches the components in the 
waveform. In our example, the exponential time variation discussed in 
connection with SEM results in a damped, time-harmonic oscillation which 
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exactly represents the late-time free response of a conducting object so that 
the Nyquist rate does apply. Thus, the temporal- and frequency-sampling 
intervals have their maximum theoretically possible values when using the SEM 
representation. SEM also provides the most efficient representation and 
transform between the time and frequency domains for complex exponential 
functions via the jLaPlace transform pair. 

However, when the frequency and time domains are connected via the 
Fourier transform pair, the sampling intervals in time and frequency must be 
decreased because the basis functions (in this case, exponentials with purely 
imaginary arguments) are not the most appropriate for a waveform (or spectrum) 
of complex exponentials. One can better understand this fact by observing 
that a complex exponential can only be approximated, but not exactly matched, 
by sinuioids unless an infinite spectrum of such sinusoids is used. In 
practice, when using the FFT or alternate numerical transforms, we find 
typically that 10-12 samples per period of the highest frequency component are 
required to obtain acceptable accuracy. 

The above discussion was included to emphasize that sampling densities 
are determined by several factors, and that theroretical expectations based 
on optimum conditions may not be met. More complete consideration of this 
question is given elsewhere. Here we conclude our discussion by summarizing 
the following modeling guidelines concerning time-domain calculations for 
wires using the EFIF: 

1) Space sample, A, should satisfy 
2a < A < X . /6 , ^ min 

where a is the wire radius and A . the shortest 
•in 

wavelength of cori;ern. 
2) Time sample, S, should satisfy 

6 < X . /6c , 
where a lower limit is not given because 
the theoretical restriction that applies 
to the magnetic-field case where 6 > A/c 

9 ~ 
does not apply here. 

These sample intervals are smaller than the Nyquist rate, because the 
space-time basis function used (a nine-term 2nd-order polynomial) is only an 
approximation of the actual current and charge variations being modeled. 
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DEGREE OF APPLICABILITY 

Problem types for which a computer model may prove suitable depend on 
the user's judgment of computer costs involved, the degree to which the model 
resembles the problem of interest, etc. The prospective user should be aware 
of various computation factors affecting potential applications. We 
categorize them as configurational factors (relating to the object), 
environmental factors (relating to the object's surroundings), and 
miscellaneous factors. 

Configurational Factors 
As a general rule, wire objects are more amenable to computer modeling 

than are surface objects, because they involve a linear rather than an area 
sampling. Wire objects successfully modeled in the time domain include 
straight and curved (modeled as piece-wise linear) wires, open- and closed-
ended wires, wires having bends and multiple junctions, and wire grids. 
Surface objects modeled include smooth closed surfaces, closed surfaces with 
edges and vertices, and open surfaces (shells). Hybrid objects (i.e., objects 
having wire and surface features) have also been modeled. 

Environmental Factors 
The characteristics of the medium in which an object is located can have 

a very great impact on the feasibility of developing a computer model. Most 
results obtained to date apply to infinite, uniform, lossless, non-dispersive, 
linear, and isotropic media. A relatively simple extension is possible to 
handle up to three orthogonal, perfectly conducting image planes. Some work 

32 has also been done for a general, non-linear medium. 

Miscellaneous Factors 
Other time-domain features available include the ability to handle 

lumped and distributed resistance, inductance and capacitance, and non-linear 
loads. 

LIMITATIONS 

The numerical implementation of direct time-domain techniques can be 
generally inferred from the list of applications mentioned above. But listing 
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a given problem does not necessarily mean that it can be modeled without 
difficulty. Many problems described are one of a kind and include features 
for which the treatment remains uncertain (e.g., sharp bends on wires, edges 
and vertices on surfaces). Furthermore, the solutions which have been worked 
out may be for special cases and not yet generalized (e.g., expansion for an 
axi-symmetric surface object for axial, but not oblique, incidence). 

Perhaps the most serious limitation concerning direct time-domain 
computations, however, is the computing capability required. Even the CDC 7600 
computer can be challenged by apparently simple wire calculations. For 
example, with a core of ~5 x 10 words available for variable storage, the 
time response of a straight wire having more than 150 space samples cannot be 
carried out in core for the minimum of four transit times required to obtain 

2 5 •(• its poles (assuming A = cfi). Looked at another way, 2NN -I ION < 5 x 10 , 
so that with N ~ 4L/c6 = 4L/A and N = L/A, we have A > 6 x 10 L. If samples 
are saved for only the time span L/c for which they are needed, then A can be 
reduced by only a small factor of less then 2, allowing a slight increase in 
the equivalent frequency range. If only the peak response or the energy 
collected is sought, then the computation might be completed much earlier than 
L/c. Generally, however, wide-band calculations can require substantial 
storage (and time) resources. 

Experimental Aspects of Direct Techniques 

A presentation of transient electromagnetics would be incomplete without 
mentioning the role of experimental measurements. Of course, as is true for 
analysis and computations, we can derive transient results from either direct 
or transformed measured data. Our concern here is with the former since 
frequency-domain experimentation is well known. In the discussion that follows, 
we outline a general approach to time-domain measurements, describe one 
particular facility, present some representative results, and summarize various 
applications for which such techniques might be considered. This approach was 

31 pioneered at Sperry Research Center. 

Reference to a company or product name does not imply approval or recommenda­
tion of the product by the University of California or the U.S. Energy Research 
& Development Administration to the exclusion of others tha.: may be suitable. 
+ 2 
TThe 2NN arises from storing current and charge information, and the ION 
is due to other storage requirements. 
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TIME-DOMAIN MEASUREMENTS 

The most significant difference between time-domain and frequency-domain 
measurements is that the former uses time-range gating to eliminate the need 
for the reflection-free environment the latter requires. A time-domain 
measurement is conceptually quite simple, requiring as a minimum an impulsive 
electrical source, a sensor, wide-band sampling oscilloscope to measure the 
sensor output, and associated cabling. Source characteristics primarily 
determine the overall bandwidth and signal-to-noise ratio of the transient 
experiment. Commercially available pulsers having rise times approximately 
250-300 ps and peak voltages approximately 1-2 kV give useful maximum 
frequencies extending to 3-4 GHz. Pulsers with even faster rise times, 
approximately 100 ps, are available, but they have lower outputs and conse­
quently lower signal-to-noise ratios. 

The sei-jor used for time-domain measurements can be simple or elaborate, 
depending on the application. For determining the transfer or self-admittance 
of a wire antenna, for example, the antenna itself serves as the sensor. For 
determining surface current or charge density, we can use various probes based 
on loops or monopoles. If these probes are small relative to the object tested, 
their outputs will approximate the time derivative of the local magnetic or 
electric field. Therefore, they are often called B-dot and E-dot sensors, 
respectively. The AFWL recently developed a line of precision-designed and 
constructed sensors in lead arrangements for various applications. 

Available sampling oscilloscopes can measure to 12-14 GHz and thus cover 
the bandwidths provided by current and anticipated pulsers. 

Although only the items described above are essential for time-domain 
measurement, other components can crucially improve the accuracy and/or 
efficiency of a system. Perhaps most important is a mini-computer for data 
acquisition and processing. It can monitor and control the experiment and 
perform initial data processing such as smoothing, averaging, or FFT-
transforming to the frequency domain. Coupled with peripheral equipment such 
as a magnetic tape unit or paper tape reader/puncher, it permits data storage 
for post processing. The data acquisition system can be supplemented by an 
X-Y plotter for real-time data presentation In hard copy. 
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THE LLL TRANSIENT FACILITY 

32 Figure 7 is a block diagram of the LLL transient system, including all 
the electronics and a schematic depiction of the ground-plane range, 
transmitting antenna, and test target in a typical measurement configuration. 

Conical transmit antenna 

X - Y plotter 

High-speed 
reader/punch 

Data acquisition 
Signal averaging 

FFT 
Control & process Interrupt 

control 

Mag-tape 
data storage 

Fig. 7. Block diagram of a t r a n s i e n t , ground-plane range shows i t s con­
ceptual s impl ic i ty . 2 Major elements are the ground p lane , pu l se r , 
signal-sampling osc i l loscope , and computer da ta -acqu i s i t ion , processing, 
and control components. 
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An advantage of the ground-plane arrangement is that the instrumentation cables 
can be introduced from under the ground plane, and are thus kept from 
interfering with the measurement. A disadvantage is that only objects having 
a symmetry plane can be measured, and polarization and incidence angles are 
limited. Time-domain measurements can be made in a free-space configuration 
as well, but, because isolating the cables is difficult, fiber optics or other 
nonmetallic data links may be necessary. Otherwise, only the early-time 
portion of the measured waveform may be uncontaminated by cable-induced 
artifacts. 

The range clear time, which determines the low-frequency cutoff of the 
measurement, is established by the first arrival at the measurement point of 
a reflection from the walls or ceiling. In the LIX range, the clear time is 
20-25 ns. Several other factors affect the overall quality of a given 
measurement, including the degree of wave-front planarity achievable over the 
target, the target-size-to-wavelength ratio at the highest effective frequency, 
the signa?.-to-noise ratio established by the pulser output and instrumentation, 
pulser time and amplitut'a stability, sensor sensitivity, and target-response 

32 characteristics. These factors are discussed more completely elsewhere. 

SOME REPRESENTATIVE RESULTS 

Results obtained from two kinds of measurements performed on the LLL 
range are compared in Figs. 8 and 9 with calculations based on a thin-wire 
time-domain computer code. Figure 8 shows the input resistance and reactance 
of a base-fed monopole as functions of frequency obtained via an FFT from 
time-domain data. The experiment was performed by measuring the pulse 
reflected from a cable terminated at the ground plane with and without the 
monopole plugged into It, and computing the frequency-domain reflection 
coefficient from which the impedance is obtained. 

The data in Fig. 9 are the transient response of a V-loaded monopole, 
presented as the voltage across a 50-ohm load. The computation includes the 
transmitting antenna (in this case a long (~4 m) straight wire), and the 
numerical exciting voltage is obtained from measuring the inout voltage to the 
range antenna. Apart from a sl.'.ght difference in the time base between the 
computed and measured result, they are in excellent agreement. 
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Fig. 8. Monopole impedance as a function of frequency as obtained from a 
time-domain ca lcu la t ion ( ) and from t rans ien t - range measurement (****) 
transformed to the frequency domain using a F F T . 3 2 

< 
E 
I 

Fig. 9. Current induced on a XT-
loaded dipole as computed (****) 
using a time-domain approach and 
as measured (——) on the transient 
range. 3 2 The calculation model 
included the transmit antenna (a 
long monopole) and the measured 
voltage used to excite it. No 
normalization of the two results 
was performed; their absolute 
values are shown. 

APPLICATIONS 

Two kinds of direct time-domain measurements are illustrated above. 
The range of potential or actual measurement types is quite broad, and can be 
divided into two main categories, closed and open systems. 
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Closed Systems 
Following the lines of time-domain reflectometry, we can measure 

31 constitutive parameters, system response functions, etc. In closed 
geometries, such as coaxial lines and waveguides, geometric attenuation of the 
exciting field is not the problem it can be in open systems. Therefore, we 
can attain wider measurement bandwidths in the closed system with a given 
pulser. 

Open Systems 
The range of applications available in an open system includes transfer 

function, scattering, and input-impedance measurements. Input-impedance 
measurements are probably least demanding of these, because the input and 
output signals are not geometrically attenuated. The transfer-function 
measurement can be used for obtaining the transmitting and receiving patterns 
of antennas, while scattering measurements can be monostatic or bistatic. 
Measurements where the exciting field is incident on the sensor may reduce 
the dynamic range of the scattered field, because the sampling oscilloscope 
must be set on a range determined by the maximum input signal. Thus, for 
example, in measuring aperture-transfer functions, Babinet's principle may be 
impractical for replacing holes in planes by conducting plates. 

The applications of time-domain measurements are of course similar in 
many ways to their frequency-domain counterparts. They are useful to validate 
analytical results and computer codes in either the time domain or frequency 
domain. More important, they can be used to generate data not derivable from 
analysis and thus provide information not otherwise available. 

Applications 

To convey the power and utility of transient analysis and to illustrate 
the methods used for a wide variety of problems, we now discuss applications 
of transient radiation and scattering techniques. 

First, we explore a simple example in detail to acquaint the reader with 
the techniques and data-presentation methods. Several examples then illustrate 
salient features of transient analysis. We conclude with several examples 
intended to show the broad areas of applicability and to demonstrate physical 
interpretability. 
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EXAMPLE 

We have chosen the linear dipole to demonstrate the techniques of 
transient analysis, since it is well understood and its properties are likely 
to be familiar to most readers. The results shown here were generated with 

39 the thin-wire code WT-MBA/LLL1B. 

The Linear Dipole as an Antenna 
The time history of a narrow current pulse launched at the center of a 

1-m-long dipole was shown by the current distribution at several sequential 
instants of time in Fig. 1. The forcing function was a tangential electric 
field applied to two segments (of total length 2A) at the center of the dipole 

2 2 of the form E = -1/2A exp[-g (t - t Q) ]V/m. This corresponds to driving 
the antenna with a zero-impedance voltage source of 

V = exp[-g2(t - t Q) 2] volts. (14a) 

As expected, the initial current pulse is nearly a replica of the applied 
voltage. The influence of the ends of the dipole is not seen immediately 
because of the finite propagation velocity of electromagnetic waves. 
Consequently, the initial current response is that of an infinite wire. This 
interesting aspect of the response is explored in further detail later. 

The response seen in Fig, 1 is similar to what one would observe on a 
parallel-wire transmission line open at one end (the ends of the dipole) and 
shorted at the other (the center, source region of the dipole). Closer 
examination, however, reveals interesting differences between the dipole 
response and the parallel-wire-transmission-line response due to radiation 
associated with wave dispersion and end reflection. The effects of radiation 
are more clearly demonstrated in the curves shown in Fig. 10, where we have 
plotted W I(t) and W ( t ) , as defined by Eqs. (2g-2h). W and W initially 
increase rapidly as the voltage pulse is turned on, but then decrease with 
time, an effect we have previously attributed to radiation damping. When the 
current-charge pulse reaches the antenna ends, W sharply increases, while W 
similarly decreases because the current flow vanishes there. After the 
reflection process, end radiation reduces both W and W . 
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Fig. 10. Long-wire antenna results for the case already considered in 
Fig. 1. Wj and WQ are derived from the integral over the antenna of I 
and Q % respectively, and thus represent the energies stored on the wire 
in the current and charge. End reflection of the current-charge pulse 
(see Fig. 1) results in a substantial reduction of these quantities. 

10 20 
Time — ns 

Fig. 11. Feedpoint current as a 
function of time. 

This one simple calculation combined with proper presentation of data 
allows one to understand the dipole's characteristics in a natural and 
physically understandable way. This is not the only use we can make of the 
data, however. Consider the driving point (i.e., source region) current for 
this same antenna shown in Fig. 11, whose general form can be deduced from the 
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current of Fig. 1 at the dipole center. The driving-point admittance and 
impedance are 

Y A(u» V(U) Z~A M 

We can find either of these by taking the Fourier transform of the exciting 
voltage and the current of Fig. 11. The result for the impedance is shown in 
Fig. 12. 

The driving-point characteristics agree with those found by other 
techniques, and specifically show that the input impedance is about 70 ohms at 
the first resonance, and that the first resonance occurs at a frequency 
slightly less than c/2L. The low frequency-input resistance found here also 
compares well with the classical value of 

*r " - 2 ( ? • 
40 

The most fascinating aspect of transient electromagnetics is how these 
subtle aspects of the object's characteristics are folded into the transient 

0.8 

1 | — J — — i — J — — | | |-

/\A/w 
J i i i i i i i. 
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Frequency — GHz 
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Frequency — GHz 

Fig. 12. Impedance-vs-frequency r a t i o obtained by using a FFT of the feedpoint 
cur ren t . 
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Fig. 13. Gain-frequency curve 
obtained by transforming the 
broadside-radiated field shown 
in Fig. 2. 

response. We can explain the general behavior of the transient response quite 
naturally, yet the response contains features that one may not expect. 
Futhermore, the user finds the resonances naturally and does not have to seek 
tediously for them. The resonances occur where they will, and a single 
computation produces each one within the frequency range of valid results. 

Figure 2 shows the broadside radiated far field of this dipole as a 
function of time. Figure 13 presents the broadside antenna gain in the 
frequency domain found from 

G(u) l Erad< 9 TT/2,*)!2/ f Erad(9,<)>)rd8 

The known low-frequency broadside gain of 1.5 (1.76 dB) of a dipole is checked 
by our results. 

Figure 14 illustrates the effects of loading the dipole at its center 
by various values of resistance. Here, the time variation of the driving-point 
current is shown for various values of resistive loading. A load having a 
value near that of the radiation resistance at resonance (~70 ohms) changes 
the current very little, while the lODO-ohm load appears to nearly critically 
damp the response. This illustrates that the current pulses are propagating 
on the wire with a wave impedance near 1000 ohms. To minimize late-time 

The critical damping-resistance value depends approximately logarithmically 
upon the fatness parameter Q. 
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Transient response of a long-wire antenna as affected by a resistive 
its feedpoint, shown by its feedpoint current. Nearly critical 
is observed for a resistance value of 500 ohms. 

currents (in EMP protection, for example), one should thus choose loading that 
matches this wave impedance and not the radiation impedance of the structure 
at its dominant resonance. Such is the insight provided by direct time-domain 
analysis. 

Figures 15 and 16 illustrate the effects of inductively loading the 
dipole. At a frequency half that of the lowest resonance, f = 75 MHz and 
Z. = -j450 ohms. If the dipole is loaded at its feed point with an 
inductance of value L = 0.95 yH, so that tuL = +J450 at 75 MHz, the dipole 
is then made resonant at ~75 MHz. Figure 15 shows that the dipole rings at 
this lower frequency if the indicated value of inductance is placed in series 
at the feed point. In Fig. 16 the input resistance is unchanged from Fig. 12, 
and the input reactance is modified by the additive term 2fffL. 

The Linear Dipole as a Scatterer 
The short-pulse response of the dipole as a scatterer was previously 

shown in Figs. 3 and 4. In that case the excitation was a plane wave normally 
incident on the dipole with an electric field of the form 

exp[-g (t tQ/c)']V/m (14b) 
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Time-

Fig. 15. the result of including 
an inductive load (L = 0.9524 uH) 
at the feedpoint is shown here by 
the transient feedpoint current, 
which, because it oscillates at 
about half the lowest resonance 
frequency of the antenna, radiates 
very slowly. 
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Fig. 16. Innedance in the frequency domain that results from including an 
inductive load at the feedpoint. The increase in the resistive component 
beyond L/X ~ 3 is due to numerical inaccuracy and increasing dominance 
of the ind'ictive reactance. 

We discussed the antenna results with respect to the stored energy. Here, In 
Fig. 17, we present the corresponding results for the scattering calculation. 
The behavior of Ŵ . and W is quite different from the antenna case, and does 
not show radiation effects as clearly. 
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Fig. 17. Current and charge energy, W and W , stored on a long-wire scatterer 
for the case already considered in Fig. 3. 

In the scattering case, one can define a transfer admittance in the 
frequency domain which relates the short circuit current at the center of the 
wire to the incident field according to 

Y,P(!0) 
I (to) sc 
inc 

where I (OJ) is obtained from the transient response of Fig. 18. The effective sc 
height of the antenna is then given by 

he(io) = YT(to)ZA(to) 

Figure 19 shows the transfer admittance of the dipole, and Fig. 20 shows 
the effective height. The effective height below resonance is ~P,5, increasing 
to 0.64 at the first resonance, which agrees with other results. 

We can also find the frequency dependence of the scattered field. We 
use the time-domain back-scattered field for broadside illumination (Fig. 4) 
to obtain the familiar backscatter cross section shown in Fig. 21, where 

a(w)/A' r-x» E. (u) mc 
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Fig. 18. Transient current at the 
center of the long-wire scatterer. 
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Fig. 19. Transfer admittance, 
obtained by transforming the 
transient current. 
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Fig. 20. By using the transfer 
admittance of Fig. 18 and the 
input impedance of Fig. 12, we 
can find the effective height, 
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Fig. 21. Transforming the scattered 
field of Fig. 4 leads to the radar 
cross-section results shown here. 
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One could continue indefinitely along this line, studying the effects of 
loading, varying angles of incidence and observation, various pulse widths and 
shapes, various radii of wire, etc. We instead conclude here our direct time-
domain analysis of the dipole and encourage the interested reader to pursue 
this further on his own. 

SALIENT FEATURES UNIQUE TO DIRECT TIME-DOMAIN ANALYSIS 

Inherently Broadband Calculations 
The frequency-domain analysis of a structure is limited to discrete-

frequency samples. The user of the code must choose a priori thosi frequencies 
where he thinks the structure will have interesting or useful behavior. If 
he chooses incorrectly, he may need to continue the calculations until he 
obtains the needed information, and can thus be reasonably confident that 
essential aspects of the object's behavior have not been overlooked. 

The time-domain analysis of a structure, on the other hand, is inherently 
broadband. As long as the excitation contains sufficient energy in the 
frequency range of interest, the entire response over that range is automat­
ically obtained. For example, consider a frequency-independent antenna, the 
conical spiral. However, this frequency independence occurs over some limited 
bandwidth where the antenna was designed to operate. If one needs character­
istics over a wider band (for pulse applications or EMP coupling analysis), 
transient analysis conveniently provides them. In Figs. 22-26 we show some 
characteristics of a typical conical spiral. Figure 22 includes the feed-
point current resulting from a Gaussian excitation (Eq. 14a) with a 350-ohm 

41 source impedance. Transforming this current to the frequency domain yields 
the input impedance (corrected to remove the generator resistance) presented 
in Fig. 23. The calculation produces many low-frequency resonances of very 
high Q. The frequency-independent region of this particular conical spiral 
is fairly narrow, from 1.2 GHz to about 3 GHz. To help explain the origin of 
the low-frequency resonances, we plot input impedance on a Smith chart in 
Fig. 24. The spiral acts very much like an open-circuit transmission line at 
low frequencies, because it is basically a twisted pair of wires, with the 
wire separation increasing slowly. Consequently, the observed resonances are 
expected and qualitatively explainable from transmission-line theory. 
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Fig. 22. Feedpoint current for a 
conical-spiral antenna excited 
by a Gaussian pulse. The effect 
of a 350-ohm series resistor is 
included. The numerical model 
consists of a piece-wise linear 
approximation (60 segments) to the 
actual antenna, whose total length 
is 1 m and radius is 1 mm, and 
which has two arms of 2 1/2 turns 
wound on a cone of half-angle 10° 
with small-end and large-end 
diameters of 3.36 cm and 9.16 cm, 
respectively. 

1 2 
Frequency — GHz 

Frequency — < 

Fig. 23. Impedance for a conical-spiral antenna excited by a Gaussian pulse, 
obtained by transformation to the frequency domain. The late-time ringing 
of the spiral that would otherwise occur is damped out by the resistor and 
has been subtracted from the resistance curve. 
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1 2 
Frequency — GHz 

Fig. 24. A Smith-chart plot of the 
impedance emphasizes the spiral's F i 8 - " • ^ transmitting gain of 
similarity to an open-circuit t h e s P l r a l -
transmission line below its 
frequency-independent operating 
band. 

To assess the importance of these resonances, Fig. 25 shows the bore-
sight gain of the spiral for transmission, and Fig. 26 shows the magnitude 
of the short-circuit-current transfer function for reception (for linear 
polarization and the E-field parallel with the vertex wire). These 
calculations show that the spiral radiates or receives poorly at the low 
frequencies where the resonances occur. This result is expected, because high 
Q resonances involve little energy interchange per cycle. 

Self-Diagnosis 
One may encounter many pitfalls in applying any numerical technique. A 

peculiarity of direct time analysis that can be used to advantage is the way 
the results display ill-conditioning. For example, experience shows that the 
code WT-MBA/LLL1B requires that wire segments be at least as long as their 
diameter. In Figs. 27-29 we show the current on a dipole excited by a 
broadside-incident, Gaussian-pulse plane wave as a function of the wire 
radius, a. In each case, the dipole length is 1 m, the segment length (A) is 
1.666 cm, and the Gaussian factor (g in Eq. (14a)) is 5.556 x 10 s~ . 
The series of curves in Figs. 27-29 show the result of increasing the wire 

-53-



i—i—i—r—i—n—r 

- I 

1 2 
Frequency — GHz 

Fig. 26. The spiral's transfer 
admittance for reception. 

Fig. 28. Transient current for a 
wire 9.5 mm in radius. The 
divergent solution that occurs 
when A/2a > 1 is evidently due 
to numerical inaccuracy of the 
thin-wire approximation. 

Fig. 27. Solution instability caused 
by use of too-short segments. The 
transient current on a l-mm straight 
wire modeled using 600 segments 
(A - 1.66 cm) is displayed here for 
a wire 9 mm in radius. 

< 
I 

= -4 -

Fig. 29. Transient current for 
wire 10 mm in radius. 
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radius, and consequently decreasing the ratio of segment length to diameter. 
As long as the segments are longer than a certain critical value, the current 
is well behaved and not a function of the number of segments. (Of course, if 
too few segments are used, the results will be inaccurate.) The exponentially 
growing current obtained for A $ 2a signifies that something has become ill-
conditioned. The particular source of this phenomenon in the numerical 
procedure has not been found, but is apparently a result of the thin-wire 
approximation. While the impedance matrix or interaction coefficients display 
nothing obviously wrong, the growing currents clearly signal that something 
in the numerical model is in error, however. Similar instabilities have been 
observed if only a single segment is too short, or if the match point of one 
segment lies inside the volume of another segment. 

The user should realize, however, that merely obtaining responses that 
do not diverge in time does not guarantee that the calculations are valid. 
The final validation of results depends on a more thorough examination. 

Direct, Efficient Responses 
We have already pointed out that direct time-domain analysis is 

efficient for calculating the transient response of metallic objects. A single 
calculation yields the time history of the response for the entire object. 
This feature permits calculation of quantities that may be of interest in 
pulse applications, such as EMP-coupling studies, and that would otherwise be 
difficult to obtain, such as collected energy W and dissipated energy W . 

tj 0 

These quantities can be easily calculated using a direct time-domain approach 
and are directly useful in an EMP context. 

For example, the coupling of EMP to a 10-m-long dipole resistively 
loaded at its center is presented in Figs. 30-32 as a function of the resist­
ance value. The load current is shown in Fig. 30, the energy collected by the 
wire in Fig. 31, and the energy delivered to the load resistor in Fig. 32. 
Studies similar to these have been very useful in studying the transient 
behavior of other scatterers. From such p;:udies, interesting results have 
emerged. For example, Figs. 31 and 32 illustrate that nearly all the short-
circuit energy collected by the dipole can be delivered to a pure resistive 
load of about 1000 ohms. This rasult is unexpected from classical frequency-
domain concepts, although a complete frequency-domain analysis gives the same 
result as found here, albeit with less physical insight. This finding also 
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corroborates the previous antenna calculations, where a 1000-ohm load was found 
to (approximately) critically damp the feed-point current. 
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Fig. 30. EMP applications of time-
domain solutions. A 10-m-long 
wire of radius 6.738 x 1 0 - 2 m 
and modeled with 30 equal-length 
segments is illuminated from 
broadside by a nominal EMP pulse 
given by 5.25 x 10* [exp(-4 
x 10 6t) - exp(-4.76 * 108t)]v/m. 
The midpoint current and voltage 
that result for several midpoint 
load values are shown here. 

Normalized time - L/c 

Fig. 31. Cumulative energy collected 
from the pulse by the wire, shown 
as a function of time (see Eq. 2). 
Observe that the collected enevgy 
is oscillatory in time, signifying 
the re-radiation of energy. 
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Nonlinear Capability 
Solution formulation directly in the time domain permits analysis of 

nonlinear problems by a time-stepping procedure. This approach has been used 
with finite-difference techniques to handle the problem of a metallic object 

42 43 44 45 
immersed in a nonlinear medium. Schuman and others * also consider a 
thin, straight wire loaded at its center by a diode. This case, as well as 
nonlinear loading of more general wire geometries, is possible using the 
approach developed by Miller, Poggio, and Burke. 

Here, we concentrate on the Miller, Poggio, and Burke approach. 
Figures 33-35 shows the response oZ a linear dipole antenna loaded with a 
diode. The diode was placed in series with a Gaussian voltage source. 
Figure 33 shows early-time history of the current and charge distribution 
along the structure. The dipole is initially biased in the forward-conducting 
direction, allowing a charge separation to build up across it. When the 
exciting voltage decreases to zero, the accumulated charge then reverse-biases 
the diode, allowing only a small leakage current in the reverse direction. 
The dipole then responds as two shorter dipoles placed end to end but insulated 
from each other. Comparison of the diode current and the unloaded dipole 
current (Fig. 11) illustrates that the initial current is essentially the same 
for these two cases (there is a slight amplitude difference caused by different 
wire radii) until the current in the linear case changes sign. From then on, 
the two currents are distinctly different. The late-time far field radiated 
broadside from the dipole is predominantly a dampened sinusoid at twice the 
frequency of the unloaded dipole, as shown in Fig. 35. 

Combining an electromagnetic time-domain code with a time-domain circuit 
code such as SCEPTRE is feasible, but has not yet been implemented. Such a 
combination would be useful for studying the effects of loading an antenna 
with a complex nonlinear circuit. Some initial attempts at assessing these 46 effects have been made with simple antenna models. However, the proposed 
hybrid code would be able to analyze arbitrary antenna geometries. 
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Fig. 33. Nonlinear loads can be easily handled in the time domain. Here 
the current (—) and charge ( ) distributions on a l-m center-fed dipole 
having a diode load in series with the generator are shown at'several 
instants of time. Observe that the diode presents zero impedance only 
to current flowing in the initial direction, and that it effectively acts 
as an open circuit in the opposite direction (impedance = 100 kfl). 
The two halves of the dipole thus retain a static charge distribution at 
late times. 
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Fig. 35. The radiated field 
possesses a fundamental frequency 
twice that of an unloaded dipole. 

Time Gating 
Time gating can be used in transient-electromagnetic measurements to 

eliminate the effects of reflections from scatterers physically separated from 
the target. This powerful technique, described above, provides wideband 
information without expensive anechoic chambers, etc. But time gating can 

47 also be used numerically, as demonstrated in Figs. 36 and 37. Here, a 
dipole of finite length is illuminated by the time derivative of a Gaussian 
plane wave at broadside incidence. Figure 36 shows the current at the center 
of the dipole. The calculation ended before end reflections arrived. Thus, 
time gating permits us to obtain an infinite-wire response from a finite-wire 
response. Transformation to the frequency domain establishes the validity of 
this approach for the transfer admittance. Figure 37 shows the analytic results 
and the FFT of Fig. 36. We can find the frequency range over which this 
technique produces valid data in the same way as in transient measurements. 
The cleai: time determines the lowest frequency of valid data, and the sampling 
requirements determine the highest frequency. 

Time gating can also be used to study the propagation of a current pulse 
along a wire, reflections from ends of wires, reflections from junctions of 
wires, and similar phenomena. Judicious use of existing codes can accomplish 
all these results; no modifications are required. 
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Fig. 36. Time-range gating can be 
used to separate reflection effects 
from other phenomena. In this 
example, the computed current on 
a long (120 m) center-fed dipole 
modeled with 120 segments prior 
to end reflection is extrapolated 
in time to approximate the current 
that would be seen on an infinite 
antenna. 
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Fig. 37. The transfer function can 
be obtained by transforming the 
current from Fig. 36 to the 
frequency domain. The transfer 
function compares well with 
analytical results. Several 
calculations were required to 
span the ka range shown.^ 

AREAS OF APPLICATION 

The following list of examples show fairly comprehensively the potential 
of direct time-domain techniques. Applications demonstrated by previous 
results are referred to but not repeated. 

Antenna Characteristics 
Time-domain techniques can directly evaluate the transient characteristics 

of antennas. Driving-point currents (Figs. 10, 22, 34), radiated far fields 
(Figs. 2, 35), and near fields may be found. Transformation to the frequency 
domain produces antenna driving-point characteristics (Figs. 11, 23) and the 
antenna gain (Figs. 12, 25). 
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Scatterer Characteristics 
Direct time-domain analysis conveniently provides the receiving and 

scattering properties of metallic objects. It also provides antenna effective 
heights (Fig. 19) and raonostatic or tistatic radar cross sections (Fig. 20). 

Transient Response 
Another obvious application of transient analysis is the calculation of 

coupling such as that due to EMP. These techniques can be used 
straightforwardly to obtain EMP responses. For example, in Figs. 30-32 we 
showed the response of a 10-m straight wire illuminated from broadside by an 
EMP pulse. We can use such calculations directly as obtained or can compare 
them with step responses, etc. to assess the importance of detail in the 
incident waveform. The ease of obtaining these responses conveniently permits 
efficient parameter studies. Figures 38 and 39 shows the results of one such 
study. Here, wires of different lengths were exposed to an EMP pulse. The 
wires were loaded resistively at their centers, and the value of resistance 
was also considered a parameter. For each combination of length and resistance, 
the transient calculation was performed and the peak load current and total 
load energy evaluated. Figures 38 and 39 present the results of these 
calculations as contour plots, where the loci describe parameter pairs that 
produce the same peak current on total energy. Such plots are invaluable for 
condensing and evaluating large amounts of data. These plots show, for example, 
that peak current is approximately proportional to wire length in the wire-
length range from several meters to several hundred meters. Resistive loading 
of several ohms to several hundred ohms does not drastically affect peak 
currents or total energy. Calculations for reactive loads show that a single 
resistance in series with a resistance has little effect on total energy 
collected. 

EMC and RFI Analysis 
In general, EMC and RFI predictions need the electromagnetic character­

istics of objects over a wide bandwidth. Transient methods provide such 
information efficiently. The potential of this application was demonstrated 
previously with the transfer function for reception of the conical spiral 
(Figs. 18, 26) and similar calculations. 
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Length - m 
Fig. 38. The value of a time-domain 
computation in finding an efficient 
early-time solution. Here, the 
peak current excited on a dipole 
by a broadside-incident EMP pulse 
(see Fig. 30) is plotted as a 
constant contour value as a 
function of wire length (m) and 
center load-resistance value (ohms). 
The time-domain computation permits 
the peak current, which occurs 
early in time, to be found without 
requiring a complete transient 
waveform. 

First-Look Studies 
Transient methods can also be used effectively for preliminary analysis 

of new antenna structures. Such studies provide information on antenna 
bandwidth and input and receiving characteristics. This approach was used to 

48 develop an antenna for an implantable transponder. The characteristics of 
a candidate bow-tie antenna depicted in Fig. 40 are shown in Figs. 41 and 42 
This geometry was subsequently used. Antenna characteristics sought were 
broad bandwidth and large effective height. The candidate shown here was 
chosen over arrays of dipoles, loops, and several other types of antennas 
because of its acceptable performance, simple construction, and packaging ease. 
Antenna design using numerical techniques provided insight almost impossible 
to obtain experimentally with available equipment and time. 
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Fig. 39. Total load energy plotted 
as a constant contour value as a 
function of wire length (m) and 
center load-resistance value 
(ohms). The energy calculation 
requires that l2 R decay to a small 
value before terminating the 
calculation. 



0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 
Frequency - GHz 

Fig. 40. Bow-tie antenna developed 
as part of an implantable transponder 
for animal monitoring. The final 
design was selected on the basis of 
efficiency, bandwidth, and 
impedance. 
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Fig. 41 . Frequency-domain r e s u l t s of time-domain computation 48 
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Fig. 42. Additional frequency-domain 
results of time-domain computation. 
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Assessment of Transient-Measurement Performance 
Numerical transient techniques are invaluable in assessing the performance 

of a transient measurement facility and conversely. Comparison of measured 
and computed results can validate range calibration. Figure 9 shows the 
calculated and measured current at the base of a V-dipole over a perfect 
ground plane. These calculations used the actual applied voltage and modeled 
the transmitting viire as well as the target. It must be emphasized that no 
normalization or other operation was performed on the data shown in Fig. 9; 
they are presented directly as measured and calculated. This plot illustrates 
that the magnitude of the measurements is well calibrated but that the time 
base is slightly in error. 

Transient techniques can be used in other ways to assess the performance 
of the transient-measurement facility. For example, the source antenna 
radiates primarily from the point where the antenna is fed at the ground plane. 
Such radiation produces a spherical wavefront. Figures 43 and 44 compare the 
spherical-wave response of various-length dipoles to that of dipoles 
illuminated by a plane wave. As one would expect, the differences between 
plane-wave and spherical-wave excitation are small as long as the target is 
small with respect to the radius of curvature of the wavefront. This result 
allows one to place quantitative limits on target size. 
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Fig. 43. Transient-range application of time-domain computation. The 
effect of radiating-source proximity to a straight wire was studied with 
respect to the wire's response to plane-wave excitation, using a 
Gaussian pulse. Here, distance of the point source is 1.5' m and wire 
length is 0.4 m. 
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Time — L/c 

Fig. 44. Here, distance of the point source is 1.5 m and wire length is 1 m. 
In this case, there is a discernible difference between the plane-wave and 
point-source-induced current. 

Study of Modeling Errors 
We may identify two essentially independent error types associated with 

a computation. One arises from replacing the actual physical object of 
interest by an idealized numerical model. This error can be characterized as 
a physical modeling error, which we denote by E . The other arises in 
obtaining a numerical solution for the idealized model. We refer to this error 
as a numerical modeling error and denote it by £„. One way to assess both 

N 
errors is to perform measurements on the actual and idealized object to 
establish E , and to compare measured and calculated results for the idealized 
model to determine e„. 

N 
In Figs. 45-47 we present results from measurement and computation 

performed for this purpose. The measured curves obtained on the LLL transient 
range (Fig. (46)) pertain to a scale-model 747 aircraft and a pipe and thin-
wire approximation (Fig. 45) when the models are mounted nose down and 
perpendicular to a ground plane, the point at which the current was measured. 
These curves are similar in shape for the first portions of the waveforms, 
except for an amplitude difference which can be attributed to their different 
cross-sectional size. The later parts of the waveforms do not agree as 
closely, revealing the effects of model differences on the induced current. -65-



Fig. 45. Physical and numerical 
modeling errors can be assessed 
using data like that in Figs. 45-47. 
Here, measured responses of a 
scale-model and pipe and thin-wire 
models of a 747 aircraft are shown. 
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Fig. 47. The numerical modeling 
error can be examined by comparing 
measured and computed results 
for the numerical model. In 
general, as observed here, the 
numerical error will be less than 
the physical error. 
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The computed and measured curves for the pipe model (Fig. 47), by 
contrast, track vary closely over the entire waveforms shown. This result 
increases our confidence in using the time-domain computation for somewhat 
more complex objects. Overall, we can also decide whether the physical 
modeling error revealed by the measurements may be acceptable for the intended 
application, although this decision may hinge on obtaining further data (e.g., 
scattered fields) or presenting it in a different format (e.g., as a transfer 
function). 

Object-Pole Finding 
Prony's method is a curve-fitting scheme that fits Eq. (1) to transient 

measured or calculated data by computing values for R and s . 
The pole locations are independent of the temporal or spatial nature of 

the excitation. This means that one need not employ any special excitations; 
the only requirement is that the excitation band span the poles of interest. 
The orientation of the scatterer is also immaterial, so that the same resonance 
locations are obtained whatever the angle of incidence or polarization. In 
some special cases, however, some resonances may be absent. Figures 48 and 49 
illustrate application of the Prony technique. Figure 48a shows the 
backscattered field from a dipole 60 meters long for an incident Gaussian 
field 30" from broadside, and Fig. 49a shows the resulting pole locations. 
Figures 48b and 49b show the results of repeating these calculations for 60° 
(from broadside) incidence. Although the temporal nature of the scattered 
field has changed, the pole locations have not. 

Figures 50 and 51 show results of resistively loading the dipole at its 
center, and bending it at a right angle at its center. In the former case, 
the a = 1, 3, 5, ... poles are more lossy than the a = 2, 4, 6, ... poles, 
while the converse is true in the latter case. This occurs because the odd-
numbered modes are even about the dipole's center, so that the resulting 
current maxima at the resistive loads produce a large dissifative loss, while 
the even-numbered modes are odd and have charge maxima at the center, thus 
producing a large radiative loss at the bend. 

Besides being useful to find the pole locations for SEM, Prony's method 
serves as well to store the transient waveform in a shorthand form. One 
interesting application of data handling is the ability to extrapolate both 
forward and backward in time. Figure 52 shows a portion of the computed 
backscattered field observed from the wire object shown. Figure 53 plots the 
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Fig. 48. SEM poles <:an be directly extracted from transient waveforms using 
Prony's method.29,30 R e s u i t s given here for the transient field 
scattered from a dipole illuminated by a Gaussian pulse at 30° incidence 
yield the pole set s , shown. 
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Fig. 49. Results given here for the transient field scattered from a dipole 
illuminated by a Gaussian pulse at 60° incidence yield the pole set, s a, 
shown. Note that, in spite of the extremely different waveforms, the pole 
locations are the same as in Fig. 48. All the waveforms difference 
is due to variations in the residues, RQ, presented here in magnitude as 
vertical lines on a log scale. 
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frequency plane.3° Here we present *ie pole sets for a 60-m wire, 
showing the result when the wire is straight and loaded with a 100-ohm 
resistance at its center. 
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Fig. 51. Here, the wire is unloaded but has a 90° bend at its center. The 
a = 1, 3, ... poles are more lossy for the loaded wire, due to dissipative 
loss of those modes which have current maxima at its center, and the 
a = 2, 4,... modes are more lossy for the bent wire, because the charge 
maxima at the bend produce a greater radiation loss. 
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Fig. 53. Poles extracted from a 
portion of the transient waveform 
shown in Fig. 52. 

Fig. 52. Extrapolation of a transient 
waveform can also be accomplished using 
the poles extracted from it. Here, part 
of a computed field scattered from the 
thin-wire object is illustrated. 

pole locations obtained using only that portion of the response indicated in 
Fig. 52. The poles from Fig. 53 (and residues which are not shown) were then 
used to fill in the entire transient response. This extrapolated response is 
compared to the original computed response in Fig. 54, with excellent 
agreement. 

Transient-Pulse Shaping 
For some applications, it may be desired to radiate a specific transient-

pulse shape. Physical constraints may prohibit the antenna from being 
frequency independent throughout the band of the desired pulse, and the antenna 
then functions as part of the wave-shaping network. Transient techniques can 
be used effectively in these cases to integrate the antenna's response into 
the design of the pulse-shaping network. For example, consider a zero-impedance 
voltage source connected to a conical spiral antenna (the same antenna used 
for the results in Figs. 22-26). Assume that we want the radiated field in 
one polarization plane to be the third derivative of the Gaussian, i.e., 
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Fig. 54. The waveform reconstruction, 
which compares well with the 
original waveform both before 
and after the sampled portion. 
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Fig. 55. Antenna pulse synthesis 
is straightforward using time-
domain analysis.^1 Figures 55-57 
illustrate one possible procedure 
by its application to a conical-
spiral antenna (the same one 
considered in Fig. 22). Here we 
present the boresight radiation-
field transfer function. 

rad d t 3 t(exp(-a2t2)] 

The desired quantity is the voltage required to be applied to the antenna to 
produce that far-field behavior. To find this quantity, we first calculate 
the transfer function between the radiated field and the applied voltage, which 
is shown in Fig. 55 for the conical antenna previously considered. Next, we 
obtain the spectrum of the required voltage by dividing the spectrum of the 
desired radiated field by this transfer function. The spectrum of the desired 
field must go to zero with decreasing frequency faster than the transfer 
function, because the antenna cannot radiate a static field. We then find 
the required transient voltage (Fig. 56) by transforming this spectrum to the 
time domain. To verify the result, we use this waveform in the TWTD code to 
obtain the radiated field shown in Fig. 57 from the direct time-domain 
calculation. This waveform is the desired third-time derivative of the 
Gaussian as specified. A similar approach could also be used with measured 
antenna characteristics. 
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Fig. 56. The transient voltage 
waveform required for the antenna 
to radiate the third derivative 
of a Gaussian pulse. 
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Fig. 57. The actual radiated field 
produced by application of the 
voltage pulse in Fig. 56. 

Physical Insight 
Transient methods can be advantageously used to help understand the 

characteristics of the electromagnetic response of structures. The physical 
insight thus made possible may be greatly enharced by novel data-presentation 
techniques. For example, there are physical differences between the radiation 
properties of the linear dipole and conical spiral, as previously demonstrated. 
A. motion picture of the currents along the structure as well as the radiated 
fields would show the differences between their radiation processes clearly. 
Specifically, the dipole radiates when current pulses are reflected from the 
ends oil the dipole, while the conical spiral radiates continuously as the 
current pulse travels along the wire. 

A motion picture format is not always suitable, of course, but the 
presentation continuity it provides in both space and time can be obtained in 
other ways. One example is presented in Figs. 58 and 59. Equal-current 
contours are shown on these graphs as a function of position along the wire 
and as a function of time. D^.tance (horizontal axis) and time (vertical axis) 
are scaled so that a pulse traveling at the velocity of light in free space 
describes a straight line with a slope of unity. 
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Fig. 58. Space-time contour plots 
of the current can convey a great 
deal of information concerning 
transient behavior. Results are 
presented here for a 1-m linear 
dipole antenna excited by a 
Gaussian voltage pulse. The time 
variation is shown on the vertical 
axis and the space variation is 
shown on the horizontal axis, 
where the scales are in the ratio 
of c, so a 45° straight line 
represents motion at the speed 
of light. 

Fig. 59. Space-time contour plot 
of the current for a conical-
spiral antenna of 1 m overall 
length, excited by a Gaussian 
voltage pulse. The difference 
in radiation mechanisms for the 
two antennas, and other features 
as well, can be deduced from these 
results, as discussed In the text. 
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The dipole response (Fig. 58) illustrates that the current pulse under­
goes little decay as It travels along the wire, as shown by the closing of all 
the contours near the wire's end, but that the current pulse reflected from 
the ends is slightly less than that incident; energy has been lost to radiation. 
The current along the conical spiral (Fig. 59), however, is continually 
decaying as shown by closing of the contours along the entire length of the 
antenna. The explanation of both these responses is that accelerated charge 
provides the radiation. This also explains why the dipole produces linear 
polarization and why the conical spiral produces circular polarization. Also 
observe that the current contours on the straight wire are parallel, showing 
that leading and trailing edges of the pulse propagate with little dispersion. 
,By contrast, the pulse on the spiral broadens due to dispersion, as shown by 
the nonparallel current contours. 

Exciting the object as a scatterer provides comparable insight. Again, 
novel data presentation, such as film strip, contour plots, etc., quickly 
permit one to sense a structure's response. For example, the analytic 
frequency-domain solution of an infinite cylinder provides an approximate 
low-frequency transfer function between incident field and excited current as 
1/iio. This implies an integral relationship; i.e., the current is approximated 
by a constant times tl.~ integral of the electric field. Transient analysis 
indeed verifies this fact, as mentioned earlier in the section dealing with 
time gating. Transient analysis also shows that the integral relationship 
holds everywhere on the wire until the effects of the ends of the wire are 

observed. Such knowledge permits easy prediction of peak currents for step-
49 like or pulse-like excitations and also permits easy prediction of current 

sensitivity to incident field parameters such as rise time, fall time, and 
peak field strength. 

Wire-Grid Models 
Wire grids or meshes are frequently used to approximate solid or closed-

surface objects because of the computational convenience they provide. One 
example of a rather simple wire-grid model is provided in Figs. 60 and 61, 
where the computer model for a 747 aircraft is shown in Fig. 60, The total 
axial current induced on this model by a broadside incident EMP is given in 
Fig. 61 as calculated at a point just behind the wing. The induced peak 
current of about 6800 amp agrees reasonably well with the value indicated by 
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Fig. 60. Simple wire-grid model of 
747 aircraft. 
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Fig. 61. Wire-grid modaJ. t 747 
was used to obtain the t jtal axial 
current flow on the fuselage 
immediately behind the ,-ri.ngs. 
This result was obtain d for a 
broadside-incident no: inal EMP and 
agrees well with other results for 
a simple stick model in terms of 
the peak current. 

Fig. 38 for a wire of length ~70 m, the difference arising T acause of their 
different radii. 

A more complicated grid problem is depicted in Fig. 62 of a wire-grid 
model of a light truck with a rear-mounted 108-inch whip antenna. The effect 
of the ground was included as a perfect image plane. Figure 63 show the 
results for the imput admittance obtained from a time-domain calculation. An 
input resistance of ~70 ohms occurs at 27 MHz, the ope :ating frequency of the 
transmitter, which may be recognized as the CB frequency. This result has 
been verified by actual operation, demonstrating the i-tility of the wire-grid 
model. 

A variety of other wire-grid calculations he ve also been performed using 
the time-domain approach. These include mesh models for plates, a fan-type 
antenna, and a conical shell. Because wire grids are only physical approxi­
mations to closed surfaces, care must be exercised in their use, however. 
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Fig. 62. Wire-grid model of a light truck located over a perfect ground plane, 
used to compute the impedance characteristics of a 108-inch whip antenna 
mounted as shown. 

o 

0 10 20 30 40 50 60 70 
Frequency — MHz 

0 10 20 30 40 50 60 70 
Frequency — MHz 

Fig. 63. The antenna admittance demonstrates an input impedance of ~70 ohms 
at 27 MHz, the frequency of operation for this emergency communication system 
(CB radio). 
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Conclusion 

In this report, we have tried to present the rudiments of EM transient 
analysis via the use of direct time-domain integral-equation solutions, and 
to demonstrate their utility for a variety of applications. We have emphasized 
the physical aspects of transient behavior and examined the numerical 
treatment in some depth, while introducing a minimum of mathematical detail. 
The single most important point we would like to leave with the reader is an 
appreciation for the practical utility of direct tine-domain techniques in 
providing greater insight and understanding of electromagnetic phenomena. 
Direct techniques also offer greater solution efficiency than transform 
techniques for many types of transient problems, the ability to handle 
nonlinearities, the convenience of wide-bandwidth information from a single 
calculation, the opportunity to use time-range gating to isolate interactions, 
and the possibility for directly obtaining the complex resonances of objects 
excited by EM sources. In closing, we hope the reader will be encouraged to 
employ transient computation and measurement where appropriate as an additional 
tool for solving EM problems. 
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Appendix 

The derivation of Eq. (2h) follows readily from the approach used to 
develop the ,Poynting's vector. From Maxwell's equations 

7 x I = -UQ |j H , (Al) 

V x H = e 0|j E , • (A2)* 

and the H • product of (Al), the E • product of (A2), and their difference, 
we obtain 

V • E x H = -^H • "§£ H + e QE • |^ 1" , (A3) 

where we have used , 

A ^ V X B - B « V X A = V ' A * B • 

If Eq. (A3) Is Integrated over a volume V that contains the conducting body, 
there is found 

f V • I x Hdv' "2 / "ft" [ V * " + eo^ ' ̂ ] d v ' • < M > 

->v •'v 

Upon using the Gauss divergence theorem and integrating with respect to time, 
we obtain 

I dt' (f) i x H • da"' 

= -\( -'/hltT-olSj-* •'-to -'v 

- " 2 f W2 + E0 E 2 V • ( A 5 ) 

V 

* — 
Note that an explicit source (J) term is not included since the source 

here is an incident electric field. 
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Now let the volume V be congruent with the volume (V ) of the conductor, 
assumed to be a wire, and extend a distance d beyond its surface. Then in 
the right side of Eq. (A5), we can approximate H and E by 

H * I/27rr = sl/2ira (A6a) 

E * fiq/2-jrre , (A6b) 

since S • H = 0 and s • E * 0 in the space between V and V . Thus, the 
c 

right side of Eq. (A5) takes the form 
.d+a „27T - - - * / / / ["°W'E _2 2 s2 0 ,. .2 

-C "a -0 " *'"*> ^ V 
dw'dr'r'di}.' , (A7) 

where C is the wire contour and we have neglected the contributions to the 
volume integral of its ends (if the wir" !s open ended). When the r 1 and <t>' 
integrals of Eq. (A7) are performed, we finally obtain 

i i - mffa2 • 2^0) •»-• (A8) u u / 

which gives rise to Eq. (2h). 
The 3/eft side of Eq. (A5) can be similarly simplified to obtain 

LHS =' I dt' I I • Idw' . (A9) 

Because E • I = E I = ( E . + E )tan I = 0 on a perfect conductor, tan m c scat 
Eq. (2f) for the collected energy immediately follows. When there is loss 
on the conductor, then E I = E, I = (IR)I, from which Eq. (2g) also tan loss 
follows. 
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