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DIRECT TIME-DOMAIN TECHNIQUES FOR
TRANSIENT RADIATION AND SCATTERING

Abstract

This report is a tutorial Introduction to transient electromagnetics,
focusing on direct time-domain techniques, We examine physical, mathematical,
numerical, and experimental aspects of time-domain methods, with emphasis on
wire objects excited as antemnas or scatterers. Numerous computed examples
illustrate the characteristics of direct time-domain procedures, especially
where they may offer advantages over procedures in the more familiar frequency
domain. These advantages include greater solution efficiency for many types
of problems, the ability to handle nonlinearitles, improved physical insight
and interpretability, availability of wide-band information from a single
calculation, and the possibillity of 1solating interactions among varicus parts

of an object using time-range gating.
Introduction

Transient electromagnetics has interested scientists since Maxwell's
equations were formulated, but our ability to obtain analytical or experimental
results in this field is relatively recent. The two most important reasons
for this new ability are the digital computer, which has made possible
advanced computational and analytical work, and technological developments in
short-pulse hardware. These two factors have significantly increased the
availability of transient results for an expanding variety of electromagnetics
(EM) problems.

While appreciating the academic value of understanding transient
electromagnetics, one might question the practical need for, and utility of,
transient ezlutlons. But developing technology in short-pulse hardware has
motivated much analytical and computational work, which in turn has demonstrated
the unique contributions that transient techniques can make to a more fundamental
understanding of electromagnetics in general. Thus, transient techniques are
emerging as a separate branch of electromagnetics.

Current applications for transient EM include space-object identification
via ghort-pulse radar, nuclear electromagnetic pulse (EMP) effects, and non-

linear phenomena. These and other applications represent a significant
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departure from the monochromatic problems with which we may be more familiar.
While some techniques used for transient or wide~band problems may not differ
from those used for monochromatic problems, others may differ greatly.

This introductory, and necessarily sketchy, discussion of transient EM
emphasizes engineering aspects of transients. We hope that the material will
not only inform the reader about the current status of this developing
technology, but also motivate him to exploit it for his own applications.

The report is organized as follows. First, we define our terms and
provide an overview of the transient EM areas to be covered in this report.
Next, we discuss the techniques avallable for realizing transient behavior in
EM. Then we consider the physical, mathematical, numerical, and experimental
aspects of transient analysis:, Finally, we present examples and applications
of transient EM. We demonstrate the variety of ways to characterize transient
behavior for a given problem, as well as the variety of problem types that can
be handled, and emphasize the physical interpretability of phenomena through

transi nt analysis.
Definition of Terms and Overview

Transient electromagnetics may be broadly and qualitatively d<lined as
all norn-monochromatic EM phenomena. This report is limited to scatterers and
radiators in linear, time-invariant media. Transient infcremation can be
obtained from transformed frequency-domain data or from a direc. time-domain
solution, This discussion focuses on the latter area, but refers to frequency-
domain work to clarify the contrast between the two approaches.

More specifically, we concentrate on direct time~domain solutions for
wire objects obtained from an integral-equation trertment. The narrow scope
of the report allows us to treat a few toples in depth, rather than many
subjects superficially, Although this tutorial report is fairly long, it
covers only a small part of the developing area of transient electromagnetics.
For more detail, the interested reader may consult various references (in
particular, 1-5) that provide an overview of the topic.

The terms frequency domain and time domain characterize the analytical
or experimental procedure used to obtain the EM response desirzd. A frequency-
domain procedure factors out the time dependence via an eimt»multiplier. A

time-domain procedure, on the other hand, treats time as an explicit independent
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variable. The distinction can become blurred in pulsed continuous-wavre cr
swept-frequency systems, but in general the frequency domain uses monochromatic
or contlnuous-wave excitation, and the time domain uses impulsive excitation.
Wher, seeking transient information for a linear system, then, one must
decide whether to employ a frequency-domain or time-domain approach. Most
earlier work in transient analysis was based on a frequency-domain
formulation,ﬁ’7 because closed~form, time-donain solutlons are almost impossible
to obtain. Even frequency-domain problems were difficult to solve because of
the extersive computational effort required at many frequencies to evaluate a
problem and transform it to the time domain. Most results from early transient
analysis involved acoustic scattering from infinite cylindrical structures,
because two-dimensional problems are more easily computed than three-dimensional
problems.8 More recently, Rheinstein9 has solved three-dimensional transient
EM problems (the conducting and dielectric spheres) in the frequency domain,
and numeruous examples resulting from EMP studies have lately been developed.lo’11
The first time-domain apgroach to EM transient problems was based on
physical optics to obtain the approximate backscatter-impulse response of a

12,13 This work was later extended to other

flat plate and spheroid.
geometries, such as the cone sphere, Subsequent direct time-domain work has
concentrated on integral-~equation techniques, the primary subject of this

14~20
report.

Some advantages of these direct time-domain solutions over frequency-
domain treatmencs of transient problems are:
1) Greater solution efficiency for many types of problems.
2) More convenient handling of non-linearities.
3) Improved physical insight and interpretability.
4) Availability of wide~band information from a single calculation.
5) Opportunity to isolate interactions, using time-range gating (e.g., pulse

reflection from wire ends, bends, etc.).

6) Possibility for more directly and efficiuntly:ﬁbtaining S5EM poles.

These benefits require some trade~offs,:hoﬁever. Foremost is the greater
complexity of a time-domain code than of an e@uivalent frequency-domain
version, with a resulting increase of difficuity in its development and use.

The computing capability required can also be fignificantly larger.
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-Transient Characterisiics and Sampling

A relatively recent development in EM, called the Singularity-Expansion
2
Method (SEM), 1,22

of a conducting object as a series of complex exponentials, i.e.,

N sat
£(t) = Z R.e R w
o=1

discussed below, characterizes the transient EM res, onse

where Ra is the amplitude of each mode of complex frequency Sa' Note that,
since f(t) is a real function. there are only N/2 independent terms in the
summation, with the other N/2 being their complex conjugates (except for poles
on the negative-real axis). Thus, 4(N/2) = 2N real numbers are required to
specify ‘f(t) through the real and imaginary components of Ra and Sy
Consequently, if we know f£(t), functionally or otherwise, we need 2N
independent samples of it, at most, to represent it completely.

From the Shannon-Kotelnikov sampling theorem we also know that, if
is the highest frequency component of Z(t), then the

= +
sy2 = Ony2 t 302
sampling interval in time, §, must satisfy

Gzzf;,
N/2
where fN/2 = wN/2/2ﬂ. Ii uniform time sampli.g of f(t) 1s used, then the

total observation time, T, must satisfy

T
3-5 2N

or
TN, -

In order to relate this result to object size, let us consider a straight wire
of length L excited as a scatterer. Resonances in its response occur

approximately as



with ¢ the velocity of light. Since fN/Z ~ (N/2) (e¢/2L), we obtain

T2 NE =4l ,

/
a result that has been confirmed by numerical calculations.23 Thus, an
observation time equal to at least four transit times of the wire is required
to obtain essentially all information concerning its transient response, using
equally spaced time samples at intervals half the period of thc maximum
frequency respcase. Note that, if the wire is excited so that not all possible
resonances. are produced, then T can be made shorter, but can be no less than
2L/c, the time necessary for a wave to propagete frow one end to the other and
back again, Also observe that, in principle, sampling a noise-free waveform
over longer observation times or using shorter intervals adds no new
information to the 2N independent observations needed to specify it.

If we write the frequency-domain version of £(t) as obtained from a
LaPlace transform, we can follow analagous sampling requirements. Because 2N
real or N complex (pbase and amplitude) samples avre required to specify the

transfer function, the sampling interval in frequency, Gf, is given by

8 s Eyyal¥

c/4L

=7l

Techniques for Obtainiig Time-Domain Results
ANALYTICAL TECHNIQUES

Unfortunately, few EM trancient solutions can be expressed in closed
form in terms of standard functions. In spite of that limitation, some success
has been achieved for a variety of problems. WuZA has worked out a time-domain
solution for a step-exn.ited infinite cylindrical antenna. Chan et al.25 have
developed a closed-form solution for the diffraction of a pulsed field from
an arbitrarily oriented dipole by a wedge. The latter problém belongs to a
class of scattering problems for which pulse solutions take on a simpler form
than do time-harmonic or frequency-domain solutions.26 Franceschettl and
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Papas3 developed a heuristic description of the general properties of transient
radiation. Even those time-domain solutions that can be given in . "Jsed form
may require extensive ccmputation to obtain numerical results. Consequently,

most time-domain solutions inevitably involve substantial computer processing.
NUMERICAL TECHNIQUES

EM time~domain numerical analysis naturally proceeds from time-dependent
Maxwell's equations, VWhen we express those equations in differential form,
we can solve them in terms of a finite—difference* approximation, sampling the
unknown fields in both space and time., Imposed spatial boundary conditions
and temporal initial values, which are also sampled in a weighted sense, lead
to a system of equations which we can thus solve for the sampled values over
the space considered at a sequence of time steps.

Alternatively, we can integrate Maxwell's equations, using an appropriate
(usually infinite-medium) Green's function. Imposed spatial boundary conditions
and temporal initial values now lead to an integral equation in which the
unknowns are the sources induced on the surfaces over which the boundary
conditions are applied. A sampling of these unknowns in space and time and a
weighted sampling of the boundary values again lead to a system of equations
for the space-time sampled values of the unknown, which is solvable as an
initial-value problem.

There are some important differences between these two approaches. First,
in the differentlal-equation formulation, the unknowns are sampled at all points
within and on the boundary(ies) of the solution space. In the integral-
equation formulation, on the other hand, the sampling is dome only over the
boundary on which the boundary conditions are applied. Thvs, the integral-

equation method can result in substantially fewer unknowns.

_— .

We include any method which approximates differentlals by discrete samples
in the finite-difference category, e.g., the finite-element technique, uni-
moment method, etc. ’
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Second, the integral-equation treatment requires a time- and space-
dependent Green's function. This function allows surface sampling to replace
the volume sampling of the differential-~equation formulation. For lossless,
non-dispersive, homogeneous, linear, is.tropic media, such a Green's function
is readily obtained, but otherwise substantial complicatioms occur that can
require a volume, rather than a surface, integration. Consequently, for these
more general media, an Integral~equation approach may not be suitable.
Nevertheless, mos> EM time-domain analysis to date uses the integral-equation
approach.

Frequency-domain analysis is also based Maxwell's equations in
differential or integral form, but for an assumed eiwt time variation.
Imposed conditions on the fielu behavior over spatial boundaries complete the
analytical formulation of the problem. A subsequent spatial sampling of the
unknown, and weighted sampling of knoﬁn boundary values, lead to a system of
equations for the unknown sampled values.

In both the frequency domain and time domain, then, a system of equations
is developed for sampled values of the unknown., The numerical solutions of
these equations are substantially different, however, due to fundamental
differences in their respective formulations, In the integral~equation
treatment, for example, the inferactions between the unknown sampled values
are global in the frequency domain; i.e., the total field at a given
observation point is due to the unknown sources distributed over the entire
boundary, The spatial separation between the source and its field is
manifested by a geometric attenuation and phase shift which are distance
dependent. Consequently, all the unknown samples are mutually dependent, and
must be solved simultaneously, The solutions are usually accomplished via
matrix factorization or inversion.

In a time-domain integral-equation treatment, on the other hand, the
interactions between unknown samples are displaced in time by an amount equal
to that required for a field to propagate between them at the speed of light.
This displacement (time retardation) meaas that a particular unknown sample
value at a given point in space and time is essentially determined by the
excitiag field at that same space-time point and by the scattered fields there
from earlier, more distant locations. Consequently, the unknown samples can
be solved at any time step, provided all sample values at earlier times are

already known. The time~domain problem is thus solved via time-stepping and
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without matrix inversion, given the initial values of the unknown sample
values.

The equations from the differentiai-equation formulations are treated
much like those from the integral-equation approach. The frequency-domain
version results in a spatial set of unknown samples, all of which can
mutually interact, and which therefore require a simultaneous solution,
although a given sample depends explicity on its nearest neighbors only. The
time~domain approach, on the other haand, results in unknown samples whose
separation produces a time retardation in their interaction, and so permits a

time-stepping solution.
SINGULARITY-EXPANSION METHOD (SEM)

We normally associate transformed frequency-domain data with real
frequencies; i.z., the w in eimt is a real number, However, we can express
the frequency-domain trausfer func“:ion of & gilven problem in terms of a
complex frequency.,

The SEM exploits a special feature of scattering and radiation from
three~dimensional objects: the simple (i.e., first-order) poles their
transfer functions may possess in the complex-frequency plane. If we know
the locations and amplitudes (or residues) of these poles, we can easily
construct a transient response, which is simply a series of exponentially
damped sinusoidal terms, one for each pole. Much early work in SEM used

27,28 More recent

frequency~domain analytical techniques to find the poles.
29,30

work shows that the polee are extractable from time~domain data.
Because SEM provides a simple relationship between the frequency domain and

time domain, we regard it as a hybrid technique.

-



ASYMPTOTIC TECHNIQUES

Asymptotic techniques may involve elther low- or high~frequency
characteristics of the frequency-domain approach, or the corresponding late
and early responses of the time-domain approach.l3 In eilther case, asymptotic
techniques attempt to exploit what is analytically deducible about time or
frequency behavior for the limits indicated. For example, we can show that
the radiated far fields produced . - a2 pulse-excited finite-sized object as a
radiator or scatterer must vanish as approaches 0. Therefore, we know that
the time integral of the far-field waveform must also vanish.

Low-frequency asymptotic results may also be based on the Rayleigh law
of scattering, whereby che fields go to zero with decreasing fresquency as wz.
In the high-frequency limit, we might employ physical optics, geometrical
optics, or the geumetrical theory of diffraction to obtain the asymptotic

behavior.

MEASUREMENT

Transient~response data are measured primarily through direct time-domain
procedures. Developments in short-pulse technology enable us to generate and
measure high-amplitude (>103 v), fast-rise-time (<300 picoseconds)
pulses.31’32 By using these pulses to excite a test object such as a scatterer
or antenna, and using a sampling oscilloscope to measure induced currents and
scattered fields, instantaneous-measurement bandwidths of 10:1 and more are
possible. Such data can validate time-domain calculations directly; transformed

to the frequency domain, they can meet a variety of needs.
Physical Aspects of Transient Analysis

Perhaps the single most useful aspect of transient amalysis is the
opportunity it provides for more clearly depicting and interpreting the
physical behavior of electromagnetic fields. For example, a short pulse
propagating on an open-ended wire clearly demonstrates the effects of
radiation damping, dispersion, and reflection from an impedance discontinuity.
Because such effects are harder to interpret as a function of frequency, they

must usually be indirectly inferred in the frequency domain. Of course, by
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transforming frequency-domain results, we can derive the transient behavior
which 1llustrates such phenomena, but direct development in the time domain
is generally more tractable, and the concepts are easier to visualize.

In this section we discuss fundamental physical aspects of transient
radiation and scattering from a heuristic viewpoint. We first present typical
results of time~domain computations, then examine in some detail the phenomena
thus 1llustrated. Next we consider radiation fields as a manifestation of
charge acceleration. The section concludes with a brief summary of the

characteristics of radiation and scattering processes.
SOME NUMERICAL RESULTS

The calculations presented here precede a detailed account of their
mathematical and numerical aspects in the next two sections. They are
included now to provide a mental image of some physical aspects involved.

Figures 1 and 3 show current and charge distributions on a straight
wire excited by a voltage source at its center as an antenna, and excited by
a tangential electric field of a normally incident plane wave as a scatierer.
In both cases, the time variation of the exciting source is Gaussian, 1i.e.,
exp[—gztz], and space distributions of current and charge are shown for
several instants of time., Figures 2 and 4 show the resulting far fields in
the broadside direction.

In Fig. 1 the current for the antenna divides into two pulses,
approximately Gaussian in form and with a small oscillatory undershoot, which
propagate outward from the source, accompanied by oppositely signed charge
pulses. The pulses (current and charge) decrease in amplitude and spread out
as they propagate from the source. Nearing the end of the wire, the charge
pulses increase in amplitude, while the current pulses decrease, falling to
zero amplitude at the end. After the reflection, tne amplitude of both pulses
diminishes, and the current reverses sign because the charge flow reverses
direction. Initially the radiated fileld closely resembles the Gaussian shape
of the exciting pulse with which it coincides in retarded time (allowing for
propagation time), but then exhibits a slight negative undershoot. A large
negative pulse in the radiation field coincides with the end reflection of the

current-charge pulse.
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Current
— =~ Charge

{a)

(d) {e) {f}

{g} {h) (i)

Fig. 1, Current and charge distributicns at several instants of time for
a straight-wire antenna excited by a Gaussilan pulse. The antenna ang3
numerical parameters are: lemgth (L) = 1 mj radius (a) = 6.738 x 10 _
m (which gives @ = 2 #nL/a = 10); Gaussilan—-pulse paramr =r g = 5.556 X 10
where the pulse time variation is egp[—gzczj; space-segment length
(A) = L/60; and time iInterval (8) = A/c. After its initial excitationm,
the charge-current pulse splits into two oppositely propagating pulses
of oppositely signed charge, resulting in current pulses having the same
sense. A slight decrease in the amplitude of the pulse can be observed
as they progress down the wire, and a more noticeable decrease in amplitude

10

occurs upon end reflection.
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Fig., 2, Broadside-radiated electric
E field as a function of time for a
straight-wire antenna excited by a
3 b Gaussian pulse. Six hundred time

B - steps are shown., The peaks in the
3 T radiated field appear to coincide
with the initial excitation and end
- b reflection (in retarded time).

i

III'llllllllul

o

[
I
|

4

-
1
I

(=]
)

Radiated fields times distance — V
)
)
i

PPV IEPEEN R SR

0 10 20 30
Time —ns

The current for the scatterer distinctly differs from that for the
antenna. It is uniform over the entire wire except near the ends, where it
falls to zero, and where the charge is first concentrated. We could deduce
the current behavior in the scatterer from the current in the antenna by
appropriately superimposing in time and space the result of simultaneously
excliting the scatterer at a.sequence of points along its length., The current
amplitude in the central région of the wire slowly decreases with time, while
near the ends it reverses sign as the boundaries of the pulse collapse inward
due to the charge reflection. In the radiation (or scattered) fields, an
initial return is similar in shape to the Gaussian exciting pulse and coincides
in retarded time with the current buildup. This part of the scattered field
1s sometimes referred to as a specular flash. A sign reversal of the scattered
field closely follows, with a peak value less than half that of the first
maximum, beyond which the field decays with time. This part of the scattered
field has a time variation similar to that of the decaying current.

INTERPRETATION OF NUMERICAL RESULTS

The relationship observed between the antenna current and radiation
field clearly shows that the onset of current flow 1s responsible for the first
portion of the radiated waveform. The subsequent negative pulse in the field
is as clearly due to the reflection of the curreant and charge from the wire

-]l2-



Current
——— Charge
1

M
id
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\

N

{c)

(a) (b}

) : fe) 0

i}

Fig. 3. Analog of Fig. 1 for the scattering case., The excitation is now
a Gaussian~pulse plane wave incident from broadside. A uniform current
is initially excited along the wire and collapses inward due to end
reflection. No explanation has been desveloped for the small-amplitude
oscillation in the current and charge cf botn Figs. 1 and 3.

ends. These results suggest that a radiated field is produced both when
charge is accelerated (during tvvn-on of the current) and when charge is
decelerated (during reflection from the wire ends). Note that the sense of
the radiated field evidently depends upon the direction of the charge acceler-
ation; the deceleration here corresponds.to;negative acceleration with respect
to the original charge motion, and pfoduceséa field of opposite sign. The
intermediate negative part of the radiated field is not so easily accounted
~13-



0.08 T T T Fig. 4. Scattered field as a function
of time for a straight-wire antenna
excited by a Gaussian-pulse plane
0.04 7 wave incident from broudside. The
scattered field exhibilts a specular-
o - f\\~/,-\\_’,__ flash return as the current is first
excited, then a longer lasting but
slowly decaying portion of opposite

Scattered fields times distance — V

-0.04 - — sign.
-0.08 j~ =
-0.12 j- -
L l i
-0.16
0 10 20 30
Time — ns

for, It appears to correlate with the spreading out of the current pulse and
with a corresponding decrease in its amplitude as it propagates down the wire.
Thus, it could be ascribed tc a shedding of energy during propagation.

The initial pulse in the scattered field is also clearly due to the
initial charge acceleration associated with setting up the current. The nearly
immediate sign change of the scattered field is evidently due to charge
deceleration at the wire ends as the current begins to be reflected there.

In this case the resulting negative radiation persists, although its value
decreases with time, because current excited along the entire wire must
eventually propagate to either end (recall that the antenna current divided
into two oppositely propagating current pulses), where it is reflected. The
decreasing amplitude of the scattered field in this portion of 1ts waveform
must be primarily due to the slow decay of the current reaching the ends, as
demonstrated by the current behavior in the central area of the wire. This
decrease in current amplitude provides further, although indirect, evidence
that the current radiates as it propagates along the wire, and must therefore
also contribute to the negative portiom of the field at that time.

In both the antenna and scattering cases, then, we find evidence that
accelerated charge causes radiation. This radiation occurs whether the charge
1s driven by an accelerating, exciting field which provides an external force,
or by a decelerating, induced field which provides an internal or self force.
The exciting force sets the charge in motion and produces the associated

radiation fields. The induced force does no work on the charge but instead
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\ receives energy from it zs the charge slows to zero velocity. As the charge
ac lf?ates in the opposite direction, not all the energy returns to it. The
differerice is lost in the form of radiation. An additional loss seems related
to « spreading charge pulse propagating on a wire, a result directly observable
in the antenna case, The loss mechanism in this case might be the charge
deceleration which the pulse dispersion implies. We might conclude tha* this
behavior arises because the trailing edge of the pulse propagates more slowly
than the leading edge, whose speed 1s near that of a light wave in the medium.
Propagation of the charge pulse in this situation resembles the behavior of

electron bunches in a klystron.
SOME MATHEMATICAL RELATIONSHIPS

It is indeed a fact that charge acceleration causes electromagnetic
radiation. This fundamental principle provides a basis for a heuristic
understanding of all radiation processes, both transient and steady state.

We can study accelerated charge fields in two ways: the microscopic
approach, which concerns fields of individual charges, and the macroscopic
approach, which concerns average fields over the charge distributions.33 We
primarily consider the latter approach here. We can distinguish between the
two on the basis of whether the observation times and distances are smaller
(microscopic) or larger (macroscopic) than the characteristic times and
distances associated with the sources (e.g., the relaxation time in a metal
or its skin depth). The microscopic approach involves equations of motion of
individual electrons, and can include mass, relativistic, and quantum-mechanical
effects, In the macroscopic approach, we are more interested in solving
Maxwell's equations in a field description than in the physical details of
their sources.

Using Maxwell's equations, the far-radiated fields due to an electric

current distribution K over a surface S can be written

BE) = -5 fg—T @0 x L ds’ (2a)
r
S —
EG,0) = ngfl@e) x = (2v)

r

where r and r' are observation and Source-point coordinate vectors,
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respectively, t is the observation time, T (the retarded timz) is
t - | - T'|/c, and ¢ 1s the spead of light,

Since K is by definition the flow of charge, any change in K with time,
assuming charge is conserved, can be due only to a change in velocity of the
charge which carries the current. Equation (2a) therefore states that
radiation i3 due to accelerated (or decelerated) charge in agreement with the
preceding discussion.

The flelds of a point ?f charge g moving with (non-relativistic)

velocity v and acceleration v are

—— g [ x T Tx [Ex (®x¥e
At = 0 v(D xR , RX IR x (R X% viT))] (2¢)
4 3 4
R cR
= 0y o R R v(1) .
E(r,t) Z%EE {: T + , (2d)
R
where E=T - £'(T) and R = ]—ﬁ|,

When v is zero, H and E have 1/R2 static components, an elementary result,
and E;ad changes sign when V¥ reverses direction. The rate of energy radiation

is also given by34

2y~ 2
LAl (2e)

dc 3 -

the total amount of energy radiation during a given velocity change is
proportional to the time integral of Ié]z, so the higher the acceleration,
the greater the radiated energy.

Equations (2¢ - 2e) represent a microscopic view of the radiation
process. In our timg-domain solution, we can develop expressions which
provide a macroscopic description of the radiation process in terms of the
current and charge distributions on the object. For the particular case of a
wire object having contour C, the total energy collected by the object from
the incident field up to time t is piven by

t
Wo = W(e) = f Eim w',t") ¢ T(w',t")dw'de’ . (2£)
Collected
=0"C
Similarly the total energy dissipated due to resistive loss can be expressed
Ve

e
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up to time t as
t

Wy = u(e) = fflz(w‘,t')R(w')dw'dt' ) (28
Dissipated c

Finally, the total energy stored in the fields near the wire due to its

current and charge density 1s, at time t, proportional to

(2h)

w“ = W(t) " a%’- f [uolz(w',t) + Qz(w',t)/eo]dw' = wI + wQ N
ire

(4
where WI and WQ are the current and charge contributions, respectively (see
Appendix).
The energy in the flelds outside the wire can then be represented as

WF = Wc - WD o Ww » (21)
which represents the energy in both the radiation and the near fields. The
quantity WW ugefully indicates the time-changing stored energy and, by
implication, when and where radiation occurs.

THE ROLE OF CURRENT AND CHARGE

In the antenna case, the excitation is a tangential electric field
applied at the center of a small region (the gap) of length A on the antemmna's
surface. For simplicity, assume the field is a unit-amplitude pulse of time
duration §, where A = ¢8, applied at time t = O, Our model is thus discretized
in space and time and is conceptually identical to the numerical solutiom
developed below.,

Because the assumed perfect conductivity requires the total tangential
electric field to be zero, initial application of the excitation instantaneously
induces a charge separation, which results in both charge acceleration and
current initiation. The tangential electric field of this separated cﬁarge
cancels the applied field, and the linear charge density changes sign across
the gap region. Due to the finite propagation velocity of the induced fields

resulting from this charge motion and separation, the fields have no effect
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outside a region of radius A centered in the gap during the time 8 the excited
field is applied.

Upon removal of the e«citing field after a time §, the charge separation
in the gap must vanish to make the total field there zero. Simultaneousiy,

a current and charge disturbance #1 the gap during 0 < t < § affects a region
A wide on either side of the gap during the time 8 < t < 28. This effect
takes the form of a scattered tangential electric field having the same
directional sense as that of the original charge separation in the gap.
Consequently, a compensating net charge density in each of these regions must
cancel this scattered field. Because of the continuity equation, this density
is supplied by the movement of the charge out c¢f the gap to the adjacent
regions. Charge neutrality is thus restored in the gap and current flow there
is zero. A current flow of half the original gap current is set up in these
two adjacent regions. This current has half the originzi value because it
involves the movement of only half the original charge (only the plus or minus
charge, not both as in the gap). The current has the same sense on either side
of the gap because it involves the oppositely directed flow of oppositely
signed charges. R

After a series of repeated steps like that above, these pulses of
current reach the ends of the wire. The charges stop because the conduction
current must vanish there. In stopping, the charges are subject to an
oppositely directed acceleration and so produce a scattered field in a sense
opposite to that of the original scattered field, A reflected charge and
current pulse are thus produced, and the process rdescribed above continues,
but with some loss due to rediation. From Eq. (2e), the amount of radiated
energy is proportional to ,7[2; the shorter the time Interval over which a
given amount of charge reflects, the more the radiation loss. Thus, the
narrower the incident pulse, the more efficient the radiatiom production upon
end reflection.

We can analyze the scattering problem in the same way. Two factors
which influence field and current behavior and which help us to understand the
overall problem include: 1) causality, which limits the space-~time region
over which interactions can occur, and 2) the current-continuity equation,
which constrains current and charge behavior. Energy is supplied to the
object only while the exciting field 1is present. All this energy may be
regarded as being radiated, but only a portion actually produces a space wave.
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The rest remains tied to the structure along which it propagates. At each
point where energy flow is redirected by the object, reradiation occurs. As
in “he source region, part of the energy leaves in a space wave and part
remains tied to the structure. Where energy-flow redirection does not occur,
as along a straight wire, there exists no radiation without dispersion, but

only a continued propagation of fields previously produced.
THE FIELD BEHAVIOR

A prefectly conducting object can have an electric field as its surface
in only the normal direction. The tutal tangential field is zero by definition,
Without a normal field, there is thus no field at all. Consequently, for
radiation to occur, there must be: 1) a non-zero charge density to produce a
normal electric field, or 2) an incident field that is cancelled by an
oppositely diracted induced field. The latter cause of radiation is charge
acceleration, as discussed above. The former 1s similarly associated with
charge deceleration, The radiatéd electric fields may be closed (i.e., form
continuous loops) or be open as a result of terminating on the object. They
can close only as a result of charge cancellation, caused, for example, by
meeting oppositely signed charges moving in opposite directions on a wire.

All finite-sized, perfectly conducting objects produce radiation fields with
closed lines at distances greater than the maximum object dimension,

Near fields, i.e., those field components that do not carry energy away
from the object, Include electric fields that terminate on the object due to
its net charge density and associated magnetic fields that result from charge
moti 1. These near fields c.ntain the energy bound to the object's surface,
which chus acts as a guided-wave structure for near~field energy propagation.
Charge deceleration converts near-field energy to radiating energy. It is
useful to think of energy due to charge separation as potential energy, and
that due to charge motion as kinetic energy (see Eq. 2h). Both the fields and
charge share the stored energy. Further, the charge terminates the fields on
the conducting surface through the boundary conditions that Etan and Hnorm are

zZero.
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SUMMARY

The following processes are primarily responsible for electromagnetic

radiation:

1. Charge acceleration due to the incident field.

2. Charge deceleration due to reflection from Impedance discontinuities
such as open edges and steps on surfaces and open ends and bends cn
wires. e

3. Charge deceleration due to surface curvature,

4, Charge deceleration along straight-line surfaces due to dispersion.

The observations made above are only qualftative, but can be used as a
basis for predicting various aspects of radiation and scattering.

We may summarize the above discussion by invoking the following model
for transient radiation from a perfect conductor. It is based simply on the
fact that, due to the vaniching of the total tangential electric field on the
conductor's surface, the net energy flow (Poynting's vector) across it must
be always identically zero., During the time the exciting field (source) is
present, the outward flow of energy due to the induced current and charge are
thus exactly balanced by the source-supplied energy. After the exciting field
becomes zero, therefore, there can be nothing other than zero energy flow
normal (WN) to the conductor's surface. But since the conductor must continue
to radiate until all the energy is gone, we suggest that WN has two
counter-flowing components. One is an inward-flowing component which contains
energy -ollapsing back onto the conductor from the fields near it., The other
is an outward-flowing component which contains energy that propagates away
from the conductor and is then lost.

Both components must remain the same as they decay nonotonically with
time until eventual charge neutrality is restored. Although the total near-
field energy is not easily derivable from the current and charge, these induced
sources provide a convenient and useful indication of the stored energy, and

thus also of the radiation process, as we have seen above.
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Mathematical Aspects of Transient Analysis

In this section we consider mathematical aspects of direct and transform

techniques for obtaining transient results. We continue with a discussion of

hybrid techniques that possess characteristics of both frequency- and time-
domain analysis, and conclude by briefly discussing the limitations of these

various approaches.

DIRECT TECHNIQUES FOR OBTAINING TRANSIENT RESULTS

From Maxwell's equations for a perfectly conducting closed surface we
can derive two time-dependent integral equations based upon the electric and

magnetic field, respectively, as the fr.cir, funct:ions:2

ﬁ(r)xE (rt)— S f_ -_R—Z(TG"T)'_R_Z%{ Ll
o R cR
S
+1 9 XE ds' L=
3 37 K@) P rES »
c
e - = = - a r_];_.._
R(r,t) = 2(r) x H;  (r,t) + 5= % f 131((1-',-5)
8
+ %%:EE(? T) :—127‘ ds' ; TES , %)

where + denotes the integral 1lim AS -+ 0 f s E and H, the electric and
5 S=-AS

ﬁia“g'ﬁéticl fields, respectively; superscript inc, the incident field; 50, the
permittivity of free space; ¢, ihe free-spzace speed of light; X and g, the
surface current and charge densities; S, the surface of the object; fi, the

otiward-pointing surface normal; and

R-[F) = [F-7

T =t - Rfe (retarded time),

where T and r' are ovservation and source coordinates.
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Equationg (3) and (4) are the time-domain versions of what are often
called the electric-field integral equation (EFIE) and the magnetic-fieléd
integral equation (MFIE), respectively, after the incident-field terms which
appear in them. They are mathematically classified as Fredholm integral
equations of the first and second kind, respectively, because the unknown
appears only under the integral in the former, but outside it as well in the
latter. Besldes this important difference, which significantly affects thedir
numerical treatment, they also differ in the order of the spatial singularities
which occur when R + 0. In the EFIE, the highest-order singularity is
the 1/R> of the o(r',T) term, coming from the /3
derivative of K(r,T) which results from replacing o(r,T) via the continuity
equation, The highest-order term in the MFIE, by contrast, is l/Rz. Finally,
the MFIE is not as well suited to wires long compared with their diameter,

factor, and the spatial

because fi, being nearly parallel to X x E; can produce numerical ill-
conditioning. The far fields corresponding to Eqa. (3) and (4) have been given
in Eq. (1).

Most frequency-domain antenna analysis is based upon the thin-wire
approximation, which involves replacing a two-dimensional surface integration
with a one-dimensional line integration, and approximating the surface current
as an axially directed filament. This same approximation is also useful in

the time domain. When applied to Eq. (3), it leads to

u P
vE Gty = Q[ 88 9 L. & s.7 '
[+) Einc(r’t) = [ e I(w',T) + RZ We*R ) I(w',T)

4m R
C
2 - -
- Eg @ . Rq(w',r)] dw' 3 reC + a, (5a)
where T
Q(w'ﬂ:) = "f 3_27 I(w',t")ae' ,

=00

@ and §' are tangent vectors to the wire at T and r', respectively, C is the
wire contour, a is the wire radius, and T € C + a denotes that the field is
to be evaluated on the wire surface. Other time-domain integral equations
speclalized to wire geometries can also be developed. Equation (5a) provides
the basis for most of the subsequent discussion in this paper. The far-field
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expression which corresponds to Eq. (5a) can be written

u _

== 0 Ay O R 3

oo [ [0 e d ool o
C

TRANSFORM TECHNIQUES FOR OBTAINING TRANSIENT RESULTS

The frequency~domain counterparts of the time-domain integral equation

s 2
are given by

8@ xE, (0 = ﬁﬁ% A x]C 7' REDHV'O - wzuoeoi(?')cb ds'  (6)
S
K(x) = ;—n fi x f R(x') x V'¢ds' + 20 X i{'inc(?) , 7
where 5
¢ = exp[~1kR]/R and k = w V WoEy *

HYBRID. TECHNIQUES FOR OBTAINING TRANSIENT RESULTS

Hybrid techniques, with characteristics of both frequency-domain and
time-domain analysis, include the frequency-augmentation technique and the
singularity-expansion method discussed below. Other possibilities might also

be identified, such as various asymptotic techniques mentioned above.

Frequency-Augmentation Technique

Bennett et a1.35 developed a technique to combine low- and high-frequency
scattering information for an object to obtain its impulse response. The basic
idea of this frequency-augmentation technique is to represent the impulse

response of the object in the frequency domain, H(w), as
= + .
H(w) FA(w) H, )
The first term, the augmentation function, approaches H(w) as w approaches «,

and thus represents the high-frequency information referred to above. The

augmentation function might come from either time- or frequency-domain
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analysis, and could be based upon geometrical optics, physical optics, or
other considerations. The second term, the augménted-frequency response, thus
vanishes as w approaches ®, and is derived from low-frequency information as
follows.

Congider, for example, that, using either the time- or frequency-domain
approach, the actual low-frequency response function of the object is known up
to some maximum frequency wy and is denoted by ﬁ(m). Then define

H, (@) = H(w) - F,(w)
and note that
HA(m) = HA(w) for v < W

But since HA(m) is known to approach zero with increasing frequency, we
can introduce some reasonable asymptotic function to represent this behavior
and match it to ﬁA(m) in the region below w to obtain an approximation for
HA(w) for all w. If the function so chosen is accurate enough, then we obtain
a combined numerical-analytical representation for HA(w). Finally, a Fourier
transform to the time domain yields the desired impulse response, h(t). The
augmentation function contains the singular, high-frequency part of the
response, and can be analytically transformed to the time domain, thus
avoiding the problem of trying to numerically transform a singular functiom.

Only H(w) needs to be transformed using a numerical FFT.

Singularity-Expansion Method

We have already mentioned the basis of the singularity-expansion method
(SEM). Here we very briefly discuss some of its more obvious aspects. SEM
stems from the observation that the late-time EM response (i.e., when the
exciting field mo longer is present) of an object has the form

N s .t
f(t) = Rae .
1

This time function hkas a similarly simple complex-frequency representation,

N
F(s) = z Ra/(s - sa) .

a=1
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Note that f(t) and F(s) may represent any measure of the object's response,
including induced current, near field, and far field.
In time~domain solutions, then, the original preoblem is replaced by the

new requirement to find the Ra and s This requirement can lead in turn to

o
two distinctly different approaches, depending on whether time-domain or

frequency-domain data are available for this purpose. A procedure based upon
Prony's technique has been successfully used to obtain poles from time-domain

data.29

The Sy depend only on the object geometry. Thus, once determined, they
characterize the object for any excitation. The Ra’ on the other hand, depend

on both the object geometry and its excitation.

LIMITATIONS

Our ability to obtain transient results is limited by the same factors
that apply to the frequency domain, Analytical solutions are available for
relatively few problems, and those that have been developed generally require
extensive computations. Numerical techniques are limited primarily by what is
computationally feasible. ¥From a mathematical viewpoint, then, our ability
to formulate transient problems greatly exceeds our ability to subsequently
cast them in a numerically tractable format. However, alternate formulations
may exist which could greatly reduce the numerical effort required for solving
a glven problem,

Generally, the numerical approach is most effective for frequencies up
to and including the resonance region, for the relatively simpler geometries.
Any increase in complexity of object geometry or enviromment can greatly
reduce or even eliminate the possibility of using a numerical approach., This

is one area where further formulational efforts might be directed.

Numerical Aspects of Transient Analysis

Both time-domain and frequency-domain integral equations may be reduced
to forms suitable for numerical computation. We first consider a time~domain

solution.
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DIRECT TECHNIQUES FOR OBTAINING TRANSIENT RESULTS

For clarity, we illustrate the direct, time~domain solution procedure
for a simpler, or prototype, time-domain integral equation in place of the
actual Eq. (5a). We thus consider

h
g(x,t) =f £(x',e"R(x,x")dx’ ; sh<x<h, (8)
~h
where
' (x,x"t) = t - [x - x'|/e ,

the equation to be solved, where g is specified and f 1s to be found. Proceed-
ing on an intuitive basis, we might decide to approximate Eq. (8) with a
discrete sequence of samples for f as a function of both x and t. If we
fqrther choose some reasonable variation between these discretely sampled
‘; points (i.e., select an interpolation function) and also specify how the right
and left sides of this sampled equation are related, then we can reduce
Eq. (8) to a linear system in which the samples for f are the unknowns.

For practical purposes this procedure constitutes the moment method.
The interpolation function mentioned, in the moment-method context, is called
a basis function, and the relationship between the two sides of the reduced
equation depends on a weighting or testing function. Let us now use a space-~

time pulse approximation for f, i.e.,

N j
f(x”t') = 2 2 U_",'j'Ai'j' Fl
i'=1 j'=1

X, - A2 <x'< x4 + Al2
where Ui'j' =1 if

tyr - 8/2<¢' < Ty + 8/2
and 1s zero otherwise, and Xy
integral equation at the space-time sample locations > tj. Then we

=AY, tj' = §8j'. Let us also point-matcn the
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formally obtain

h N 3
gij = g(xi,tj) = f z z u, ity i J,K(xi,x )dx!
= i'=1 j'=1
N A(1'+1/2)A j
z_[ 'A:L 'iR(iA, x')dx’'
17=17(i'-1/2)a _‘|
i=1,...,N
R TR VO T (9)

But since t' = t - |x - x'|/c, and upon using A = ¢§, Eq. (9) simplifies to

(1'+1/2)A

2 Ay - |i- 1) KA, x")dx' (10
it=1 (1'-1/2)a

which associates with each Ai"' a spatial integral (or interaction coefficient)

over segment i' at retarded time j - |1 - 1i'].
It is helpful to rewrite Eq. (10). Let us first denote the interaction

coefficients by

(1'+1/2)a
Zii' = K(ip,x")dx" ,
(i'-1/2)a

so that
2 Zygrhpo 50 = Zaghy ¥ 2y a8,

Zy jeoPmn g2 F e T 2008 yn

2y g1ti41,5-1 1 %, 142P442,5-2

e T2y Ay gy (11)
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We observe that the first term involves a sample at the time step j, while
all other samples are for j-1, j-2, ... and thus are from earlier times. TUpon
solving Eq. (11) for Aij’ we then find
N
g.: = z i Z A
1] M O R A Y E 2 Al 1=1,...,N

[ .
Ayy = = ’ » a2
11 i= 1,...,NT

vwhere the summation excludes the term 1i' = i,

Equation (12) should forcefully demonstrate that at time step j the
integral Eq. (8) can be solved as an initial-value problem by time-stepping,
for if all values of Aik are known for k < j - 1, then Aij is completely
specified by them and the present value of the forcing function, gij' This
equation shows the explicit effect of causality and the finite velocity at
which EM fields propagate, as an increasing time delay between a source at i'
and its influence being observed at i (through the time index j - |i ~ i'[).

In principle this factor permits solving Eq. (8) without matrix inversion, as
further emphasized by the 2y coefficient matrix in Eq. (12).

We have of course simplified this discussion of the numerical solution
by choosing an apparently simple integral equation and using pulse-basis and
delta-weight functions. The TwTD39 code used to generate the results presented

“here uses a nine-term polynomial basis, up to and including quadratic space-~
time variation, and delta-function weights. But the integral equation used
here represents that which would apply to a straight wire, and so is realistic.
It makes retarded time depend very simply on source-observation distance, i.e.,

t'=t-Jx-x"|/c .

Therefore, as we integrate the source space (x'), the space-time path described
by x' and t' is a straight line, as illustrated in Fig. 5. This integration
path furthermore passes diagonally through the center of each space-time

sample "patch" (or Aij)’ because the observation points are also located at

the patch centers and A = c§ was used everywhere. Thic path means that a
single Aij is associated with each zii" In general, the integration path can
pass through two Aij's for integration over one space segment, so that a given

zii' decomposes into two parts, one multiplying each respective Aij value,
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For example, if the space observation points are mot co-linear (i.e.,
on the same line defined by the current sample), then t' and x' are not

linearly related and in general

e =t-VNax-x02+ @ -y2+ @-29% /e
=t-upz+(s-S')2/c s

where s and p are cylindrical coordinates of the observation point relative
to the line along which the source current flows. Figure 5 also shows other
representative space-time integration paths.

The g term in Eq. (8) (or the gij terms in Eq. (12)) represents the
actual excitation (or its sampled values) which excites the response f (or
the sample values Aij). Since we are dealing with an integral equation based
on the electric field and specialized to a wire, g represents the tangential
electric field distribution along the contour C of the wire. For a scattering

calculation, and assuming a point~matching solution is employed (which is the

Fig. 5. Space-time integration
paths in the source-coordinate
(s',t') space for an observation

i+1 T I ] T T point located at time t and cylin-
Observati . drical coordinates p and s relative

] ation ’:?'f')t to the center axis of the current
ik e o . o W) — filament (segment) being integrated.

The retarded or source_time t'

. is given by t' = t -¥p* + (s - 8")%/c.
Tl d * * ¢ T Note: s' = 1'A; s = 1A; ¢' = 3'S;

t = j6. The uniformly spaced dots
represent the centers of the space

X .
ﬁ 2. ¢ ¢ > T and time sample intervals for a
< Sour;‘:e_ s4pa'c-cz- time straight wire, and the curves show
E i3l . pftc "." . the integration paths for a given
(= 1 source segment on that wire as p
Ale is changed, Note that unless
A o — p = 0 and s coincides with a space
Integration paths in space sample point (i.e., the observation
and I’Etardet;)time point is collocated with the sample
i-5 — point on the wire), the integration
Source over a single space segment can
segment involve more than one time sample
L L L of the current on that segment.
i~4 -3 -2 i-1 i it This shows one reason for using
basis functions that smoothly vary
Space index over the entire space-time domain.
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case for all the results subsequently presented), gij then is simply the
specified value of the incident electric field tangent to C at a sequence of
space points ?i and time steps tj. For an antenna calculation, the exciting
field is 1imited to one or a few gsegments of length Ai centered at observation
point r, and is equivalent to an applied voltage vij = —Aigij. The computation
difference betyeen a scattering and radiation calculation is minor.

The effect of lumped or distributed loads is mathematically
indistinguishable from the treatment of the exciting source. The load causes
a voltage drop in opposition to (passive) or in the direction of (active) the
exciting field. The actual load voltage depends on its V-I characteristics.
For linear, passive loais we have (resistance R, inductance L, capacitance C)

t
V2 oap(Est) = L(X, 0)R(D) + L(r) g? I(r,t) + c(?)[ q(r,v)dt

=00

the effects of which can be readily included in the numerical treatment
previously outlined. For example, this would result, in the case of our

prototype integral equation, in
g(x,t:) hd g(xrt) - VLOAD(x’t) ’

and considering a resistive load only at xL, Eq. (12) becomes

Y1
815 - 2 Z1,a810,5 < |1-1']
- i'=1 N '
ALj ZLL + R'L a2

while all other Aij's remain as given by (12).

When the load 1s non-linear, if for example the value of RL depends or
IL’ then formally Eq. (12)' still applies. But since RL then depends on ALj’
which in turn depends on RL’ we generally must solve the equation by iteratiom
at each time step. For the special case of an ideal diode, however, which is
specified by only a forward and reverse resistance, we can readily solve
Eq. (12)' by finding ALj for R = 0, then using the direction of current thus
determined to establish RL’ since the load cannot in this case reverse the
current flow. We might also consider time-varying loads and other more

general non—linearities.36
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TRANSFORM TECHNIQUES FOR OBTAINING TRANSIENT RESULTS

Extensive literature on the numerical treatment of frequency-domain

2,37,38

integral equations already exists. We therefore will not consider that

topic any further here.
DIRECT AND TRANSFORM TECHNIQUES COMPARED

Table 1 summarizes the main features of the direct time~domain and
transform frequency-domain integral equations used to obtain transient results.
The main differences between the two approaches are that: 1) the frequency
domain provides source-independent results at a single frequency, so many
frequency samples must be computed and transformed to find a transient result;
2) the time domain provides source-dependent results over the equivalent of a
band of frequencies to give a transient result directly, but it must be repeated
for each source, e.g., in computing the monostatic radar cross section. The

corresponding computer times associated with their application are

approximatelyl’5
T, = (ANNp + BNNNON (13a)
2 3
Ty ~ (AN® + BN” + CNNJ + DNNN N, (13b)

where At""’D are computer- and algorithm-dependent timing coefficilents, and

the subscriptsft and f denote time- and frequency-domain quantitiles,
respectively. The two terms in Tt are due to current computation and
far-field evaluation, where NT is the number of time steps, NI is the number
of incident fields, and N, is the number of far-field evaluations. In Tf we

similarly have terms in o:der of theilr appearance due to impedance matrix
calculation, matrix factorization or inversion, curreant computation, and
far-field evaluation, where NF is the number of frequency steps.

Upon introducing numerical values for the timing coefficients (for a
CDC-6600), and relating the various numbers of current and field evaluations
to the object size in wavelengths at the highest frequency of a tramsient
calculation,1 we find the following computer-time approximations for wire
(subscript w) 2ad surface (subscript s) objects excited by a single source

(N = 1):
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Table 1.

Frequency domain Time domain
%E = 1w Maxwell's Time d dent
equations € dependen
Lw)f(w) = g(w) Plus BC, L(1) £(1) = g{1)
etc. T=1t - Rlc
N N
sz=g'om2 ZEE=~
1371 %0 . 1559k T 81k
=1 Apply MoM j=1
- to get _
1=1,...,N Nth order system i _ L...,§
k=1,...,N
T
N N
= 3 . 3 = Sy o~
fi 2 Yijgj,aN fik_ 2 Yijgjk’ aNZNT
j=1 Matrix j=1
manipulation
yields
Solution obtained for Solution obtained for
many sources but Observe single source but for
single frequency. many frequencies.
Do for £ = 1,...,N
frequencies to get
f1e
foand £
are related by
F.T.
fig ik
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-1 3
T ~ 10 (L/Amin) 8

-3
?

5
7(C/Xmin) ]

-3
?

3
1+ 0.015(L/kmin)](L/kmin) s

5

[2 + o.ss(c/xmin‘)z](c/xmin) s .

Here L is the total length of the wire object, C is the circumference of the
smallest sphere which can contain the surface object, and Amin is the minimum
wavelength for which the calculation is valid, Only the dominant terms from

Eq. (13) have been retained.

Computer time on CDC-6600 — s
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to obtain transient results for

a single excitation for both wires
and surfaces as a function of
length and circumference in wave-
lengths at the highest frequency
of the computation, and using both
a direct time-domain solution and
a transformed frequency-domain
solution. A significant advantage
for the wire time-~domain approach
over the frequency domain technique
1s shown. For surfaces, however,
the difference is not as great,
perhaps because the time-domain
code used for this comparisonl4
re—computes the interaction
elements at every time step.

This data should be regarded as
approximate and only a guideline.
Possible reductions due to symmetry
were not included. Note that the
surface-object time estimates are
larger than given in Ref. 1 because
more conservative sample-density
estimates were used here.



the computational advantage of the time-domain approach to obtain transient
results for a wire. For surface objects, on the other hand, the time-domain
approach becomes more efficient only for C/)\min values > 3. These results
indicate general trends only, since they are based on non-optimized codes and
do not include the effects of symmetry cr other influencing factors. They are
useful, however, in drawing attentlon to an important aspect of transient
calculations, Note that, for surface objects, computer time has a higher-
order dependence on size because 1t involves an area, rather than a line,
sampling of unknowns.

A further computer-related characteristic that differentiates a time-
domain from a frequency-domain approach for transient computation is the
computer storage required. Because a given surface current and charge sample
are needed during the computation only for the time witen their flelds interact
with the rest of the object, the storage required can be considerably less

than the NNT otherwise required.1
MODELING GUIDELINES

Because time-domain techniques involve more user decisions than their
frequency~domain counterparts, in terms of temporal sampling and the time
variation of the exciting field, thLey can be somewhat more demanding to use.
If, however, the goal of the frequency-domain approach is to develop transient
behavior via a transform, then similar decisions regarding frequency sampling
and the spectrum of the exciting field are required. In each approach, these
factors are important to both the efficiency and accuracy of the final result,
but it remains unclear how to choose them @ priori to most nearly attain the
conflicting goals of computational speed and numerical accuracy. Also common
to each is the need to spatlally sample the object beilng modeled in a manner
consistent with the temporal sampling and the accuracy-efficiency aspects of
the calculation.

In our discussion of sampling questions above, the sampling density used
the Shannon-Kotelnikov (also sometimes called Nyquist) rate of two samples per
period of the highest frequency component in the waveform (or spectrum)., But
this value 1is an upper bound on the temporal-~sampling interval and is
attainable only when the basis function exactly matches the components in the
waveform. In our example, the exponential time variation discussed in
connection with SEM results in a damped, time-harmonic oscillation which
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exactly represents the late~time free response of a conducting object so that
the Nyquist rate does apply. Thus, the temporal- and frequency-sampling
intervals have their maximum theoretically possible values when using the SEM
representation. SEM also provides the most efficient representation and
transform between the time and frequency domains for complex exponential
functions via the i3aPlace transform pair.

However, when the frequen-y and time domains are connected via the
Fourier transform pair, the sampling intervals in time and frequency must be
decreased because the basis functions (in this case, exponentials with purely
imaginary arguments) are not the most appropriate for a waveform (or spectrum)
of complex exponentials. One can better understand this fact by observing
that a complex exponential can only be approximated, but not exactly matched,
by sinvioids unless an infinite spectrum of such sinusoids is used. In
practice, when using the FFT or alternate numerical transforms, we find
typically that 10-12 samples per perlod of the highest frequency component are
required to obtain acceptable accuracy.

The above discussion was included to emphasize that sampling densities
are determined by several factors, and that theroretical expectations based
on optimum conditions may not be met. More complete consideration of this
question is given elsewhere.l6 Here we con~Jude our discussion by summarizing
the following modeling guidelines concerning time-domain calculations for

wires using the EFIF:

1) Space sample, A, should satisfy
2a < A% Aminle ,
where a is the wire radius and Amin the shortest
wavelength of cor.ern.
2) Time sample, §, should satisfy
<
LS Amin/ec ,
where a lower limit is not given because
the theoretical restriction that applies
to the magnetic-field case where § > A/c

does not apply here.9

These sample intervals are smaller than the Nyquist rate, because the
space~time basis function used (a nine-term 2nd-order polynomial) is only an

approximation of the actual current and charge variations being modeled.
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DEGREE OF APPLICABILITY

Problem types for which a computer model may prove suitable depend on
the user's judgment of computer costs involved, the degree to which the model
resembles the problem of interest, etc. The prospective user should be aware
of various computation factors affecting potential appIications. We
categorize them as configurational factors (relating to the object),
environmental factors (relating to the object's surroundings), and

miscellaneous factors.

Configurational Factors

As a general rule, wire objects are more amenable to computer modeling
than are surface objects, because they involve a linear rather than an area
sampling. Wire objects successfully modeled in the time domain include
straight and curved (modeled as piece—wiée linear) wires, open- and closed-
ended wires, wires having bends and multiple junctions, and wire grids.
Surface objects modeled include smooth closed surfaces, closed surfaces with
edges and vertices, and open surfaces (shells). Hybrid objects (i.e., objects

having wire and surface features) have also been modeled.

Environmental Factors

The characteristics of the medium in which an object is located can have
a very great impact on the feasibility of developing a computer model. Most
results obtained to date apply to infinite, uniform, lossless, non-dispersive,
linear, and isotropic media. A relativel& simple extension is possible to
handle up to three orthogonal, perfeétly conducting image planes. Some work

has also been done for a general, non-linear medium.32

Miscellaneous Factors

Other time-domain features available include the ability to handle

lumped and distributed resistance, inductance and capacitance, and non-linear

loads.

LIMITATIONS

The numerical Implementation of direct time~domain techniques can be

generally inferred from the 1list of applications mentioned above. But listing
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a given‘problem does not necessarily mean that it can be modeled without
difficulty., Many problems described are one of a kind and include features
for which the treatment remains uncertain (e.g., sharp bends on wires, edges
and vertices on surfaces). Furthermore, the solutions which have been worked
out may be for special cases and not yet generalized (e.g., expansion for an
axi-symmetric surface object for axial, but not oblique, incidence).

Perhaps the most serious limitation concerning direct time-domain
computations, however, 1s the computing capability required. Even the CDC 7600*
computer can be challenged by apparently simple wire calculations. For
example, with a core of ~5 X 105 words available for variable storage, the
time response of a straight wire having more than 150 space samples cannot be
carried out in core for the minimum of four transit times requ<red to obtain
its poles (assuming A = ¢d). Looked at another way, 2NNT 4 10N2 <5 x% 105,+
so that with N_ . 4L/c§ = 4L/A and N = L/A, we have A ¥ 6 X 10™°

T
are saved for only the time span L/c¢ for which they are needed, then A can be

L. If samples

reduced by only a small factor of less then 2, allowing a slight increase in
the equivalent frequency range. If only the peak response or the energy
collected is sought, then the computation might be completed much earlier than
L/c. Generally, however, wide-band calculations can require substantial

storage (and timez) resources.
Experimental Aspects of Direct Teckniques

A presentation of transient electromagnetics would be incomplete without
mentioning the role of experimental measurements. Of course, as is true for
analysis anq computations, we can derive transient results from either direct
or transformed measured data. Our concern here is with the former since
frequency-domain experimentation is well known. In the discussion that follows,
we outline a general approach to time-domain measurements, describe one
particular facility, present some representative results, and summarize various
applications for which such techniques might be considered. This approach was

pionuered at Sperry Research Center.31

*

Reference to a company or product name does not imply approval or recommenda-
tr-n of the product by the University of California or the 1.S. Energy Research
& Development Administration to the exclusion of others tha: may be suitable.

+The 2NN, arises from storing current and charge information, and the 10N2

is due to other storage requirements.
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TIME-DOMAIN MEASUREMENTS

The most significant difference between time~domain and frequency-domain
measurements is that the former uses time-range gating to eliminate the need
for the reflection-~free environment the latter requires. A time-domain
measurement is conceptually quite simple, requiring as a minimum an impulsive
electrical source, a sensor, wide-band sampling oscilloscope.to measure the
sensor output, and assoclated cabling. Source characteristics primarily
determine the overall bandwidth and signal-to-noise ratio of the transient
experiment, Commercially available pnlsers having rise times approximately
250-300 ps and peak voltages approximately 1-2 kV give useful maximum
frequencies extending to 3~4 GHz. Pulsers with even faster rise times,
approximately 100 ps, are available, but they have lower outputs and conse-
quently lower signal-to-noise ratios.

The ser.sor used for time-domain measurements can be simple or elaborate,
depending on the application. For determining the transfer or self-admittance
of a wire antenna, for example, the antenna 1tself serves as the sensor., For
determining surface current or charge density, we can use various probes based
on loops or monopoles. If these probes are small relative to the object tested,
their outputs will approximate the time derivative of the local magnetic or
electric field. Therefore, they are often called B~dot and E-dot sensors,
respectively. The AFWL recently developed a line of precision-designed and
constructed sensors in lead arrangements for various applicationms.

Available sampling oscilloscopes can measure to 12-14 GHz and thus cover
the bandwidths provided by current and anticipated pulsers.

Although only the items described above are essential for time-domain
measurement, other components can crucially improve the accuracy and/or
efficiency of a system, Perhaps most important is a mini-computer for data
acquisition and processing., It can monitor and control the experiment and
perform initial data processing such as smoothing, averaging, or FFT-
transforming to the frequency domain, Coupled with peripheral equipment such
as a magnetic tape unit or paper tape reader/puncher, it permits data storage
for post processing. The data acquisition system can be supplemented by an

X¥-Y plotter for real-time data presentation in hard copy.
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THE LLL TRANSIENT FACILITY
Figure 7 is a block diagram of the LLL transient syst:em,32 including all

the electronics and a schematic depiction of the ground-plane range,

transmitting antenna, and test target in a typical measurement configuration.

Conical transmit antenna

€

“

7y LF

Test target
Impulse pulser
& S —
N
A/D
converter Sampling
scope 3
Trigger
ol
X-Y plotter Computer converter
Data acquisition
Signal averaging
FFT
High=-speed Control & process Interrupt
reader/punch control
S
Mag»f&pe
data storage

Fig. 7. Block diagram of a transient, ground-plane range shows its con-
ceptual ‘s:melic::Lty.:‘12 Major elements are the ground plane, pulser,
signal-sampling oscillcscope, and computer data-acquisition, processing,
and control components,
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An advantage of the ground-plane arrangement is that the instrumentation cables
can be introduced from under the ground plane, and are thus kept from
interfering with the measurement. A disadvantage is that only objects having
a sysmetry plane can be measnured, and polarization and incidence angles are
limited. Time-domain measurements can be made in a free-space configuration
as well, but, because isolating the cables is difficult, fiber optics or other
nonmetallic data links may be necessary. Otherwise, only the early-time
portion of the measured waveform may be uncontaminated by cable~induced

artifacts.
The range clear time, which determines the low-frequency cutoff of the

measurement, is established by the first arrival at the measurement point of

a reflection from the walls or ceiling. In the LLL range, the clear time is
20-25 ns. Several other factors affect the overall quality of a given
measurement, including the degree of wave-front planarity achievable over the
target, the target-size-~to-wavelength ratio at the highest effective frequency,
the signal-to-noise ratio established by the pulser output and instrumentation,
pulser time and amplituc=2 stability, sensor sensitivity, and target-response

characteristics. These factors are discussed more completely elsewhere.
SOME REPRESENTATIVE RESULTS

Results obtalned from two kinds of measurements performed on the LLL
range are compared in Figs. 8 and 9 with calculations based on a thin-wire
time-domain computer code. Figure 8 shows the input resistance and reactance
of a base-fed monopole as functions of frequency obtained via an FFT from
time-domain data. The experiment was performed by measuring the pulse
reflected from a cable terminated at the ground plane with and without the
monopole plugged into it, and computing the frequency-domain reflection
coefficient  from which the impedance is obtained.

The data in Fig, 9 are the transient response of a V-loaded monopole,
presented as the voltage across a 50-ohm load. The computation includes the
transmitting antenna (in this case a long (~4 m) straight wire), and the
numerical exciting voltage is obtained from measuring the input voltage to the
range antenpa. Apart from a sl'ght difference in the time base between the

computed and measured result, they are in excellent agreement.
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Fig. 9.

Current induced on a V-
loaded dipole as computed (¥*#%)
using a time-domain approach and
as measured (——) on the transient
range.3 The calculation model
included the transmit antenna (a
long monopole) and the measured
voltage used to excite it. No
normalization of the two results
was performed; their absolute
values are shown.

APPLICATIONS

Two kinds of direct time-domain measurements are illustrated above.

The range of potential or actual measurement types 1s quite broad, and can be

divided into two main categories, closed and open systems.
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Closed Systems
Following the lines of time~domain reflectometry, we can measure
constitutive parameters, system response functions, etc.31 In closed
geometries, such as coax{gl lines and waveguides, geometric attenuation of the
exciting field is not the problem it can be in open systems. Therefore, we
can attain wider measurement bandwidths In the closed system with a given

pulser.

Open Systems
The range of applications available in an open system Includes transfer

function, scattering, and input-impedance measurements. Input-impedance
measurements are probably least demanding of these, because the input and
output signals are not geometrically attenuated. The transfer-function
measurement can be used for obtaining the transmitting and receilving patterns
of antennas, while scattering measurements can be monostatic or bistatic,
Measurements where the exciting field is incident on the sensor may reduce
the dynamic range of the scattered field, because the sampling oscilloscope
must be set on a range determined by the maximum input signal. Thus, for
example, in measuring aperture-transfer functions, Babinet's principle may be
impractical for replacing holes in plames by conducting plates.

The applications of time-domain measurements are of course similar in
many ways to their frequency-domain counterparts. They are useful to validate
analytical results and computer codes in either the time domain or frequency
domain., More important, they can be used to generate data not derivable from

analysis and thus provide information not otherwise available.
Applications

To convey the power and utility of transient analysis and to illustrate
the methods used for a wide variety of problems, we now discuss applications
of transient radiation and scattering techniques.

First, we explore a simple example in detail to acquaint the reader with
the techniques and data-presentation methods. Several examples then illustrate
salient features of transient analysis. We conclude with several examples
intended to show the broad areas of applicability and to demonstrate physical

interpretability.
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EXAMPLE

We have chosen the linear dipole to demomstrate the techniques of
transient analysis, since it is well understood and its properties are likely
to be familiar to most readers, The results shown here were generated with

the thin-wire code WT—MBA/LLLIB.39

The Linear Dipole as an Antenna

The time history of a narrow current -pulse launched at the center of a
l-m-long dipole was shown by the current distribution at several sequential
instants of time in Fig. 1. The forcing function was a tangential electric
field applied to two segments (of total length 2A) at the center of the dipole
of the form Eian = =1/24 exp[—gz(t - tO)Z]V/m. This corresponds to driving

the antenna with a zero-impedance voltage source of
2 2
V = expl-g (t - to) ] volts. (14a)

As expected, the initial current pulse 1s nearly a replica of the applied
voltage. The influence of the ends of the dipole is not seen immediately
because of the finite propagation velocity of electromagnetic waves.
Consequently, the initial current response is that of an infinite wire. This
interesting aspect of the response 1s explored in further detail later.

The response seen in Fig. 1 is similar to what one would observe on a
parallel-wire transmission line open at one end (the ends of the dipole) and
shorted at the other (the center, source region of the dipole). Closer
examination, however, reveals interesting differences between the dipole
response and the parallel-wire-transmission-line response due to radiation
associated with wave dispersion and end reflection. The effects of radiation
are more clearly demonstrated in the curves shown in Fig. 10, where we have

plotted WI(t) and WQ(t), as defined by Eqs. (2g-2h). W_ and WQ initially

increase rapidly as the voltage pulse is turned onm, butIthen decrease with
time, an effect we have previously attributed to radiation damping. When the
current-charge pulse reaches the antemna ends, WQ sharply increases, while WI
similarly decreases because the current flow vanishes there. After the

reflection process, end radiation reduces both WQ and WI.
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Fig. 10. Long-wire antenna results for the case already considered in
Fig. 1. Wy and Wy are derived from the integral over the antenna of I
and Qz, respectively, and thus represent the energies stored on the wire
in the current and charge. End reflection of the current-charge pulse
(see Fig, 1) results in a substantial reduction of these quantities.
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This one simple calculation cowbined with proper presentation of data
allows one to understand the dipole’s characteristics in a natural and
physically understandable way. This is not the only use we can make of the
data, however. Consider the driving point (i.e., source region) current for

thie same antenna shown in Fig. 11, whose general form can be deduced from the

~44~



current of Fig. 1 at the dipole center. The driving-point admittance and

impedance are

We can find elther of these by taking the Fourier transform of the exciting
voltage and the current of Fig. 11. The result for the impedance is shown in
Fig. 12,

The driving-point characteristics agree with those found by other
techniques, and specifically show that the input impedance is about 70 ohms at
the first resonance, and that the first resonance occurs at a frequency
slightly less than ¢/2L. The low frequency-input resistance found here also

compares well with the classical value of40

_ 2(L\2
Rr = 207w (A) .

The most fascinating aspect of transient electromagnetics is how these

subtle aspects of the object's characteristics are folded into the transient

0.8 -

o
o
|
]

Reactance — k§2

Resistance — k2
=)
H
|
|

(=)
[
T
E§§::
1
N
=
]
1

ll'IALllllllllI! 0 1 2 3
GO 1 2 3

Freguency — GHz

Frequency — GHz

Fig. 12. Impedance-vs-frequency ratio obtained by using a FFT of the feedpoint
current.
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response. We can explain the general behavior of the transient response quite
naturally, yet the response contains features that one may not expect.
Futhermore, the user finds the resonances naturally and does not have to seek
tediously for them. The resonances occur where they will, and a single
computation produces each one within the frequency range of valid results.
Figure 2 shows the broadside radiated far field of this dipole as a
function of time. Figure 13 presents the broadside antenna gain in the

frequency domain found from
6w = |E_ (60 = 1/2,8)|% | |5, (0,0)|%a0
rad ’ rad "’ '

The known low-frequency broadside gain of 1.5 (1.76 dB) of a dipole is checked
by our results.

Figure 14 illustrates the effects of loading the dipole at its center
by various values of resistance. Here, the time variation of the driving-point
current 1s shown for various valuas of resistive loading. A load having a
value near that of the radlation resistance at resonance (~70 ohms) changes
the current very little, while the 1000-ohm load appears to nearly critically
damp the response.* This illustrates that the current pulses are propagating
on the wire with a wave impedance near 1000 ohms. To minimize late-time

* s
The eritical damping-resistance value depends approximately logarithmically
upon the fatness parameter ,
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Fig. 14. Transient response of a longQWire antenna as affected by a resistive
load at its feedpoint, shown by its feedpoint current. Nearly critical
damping is observed for a resistance value of 500 ohms.

currents (in EMP protection, for example), ome should thus chuose loading that
matches this wave impedance and not¢ the radiation impedance of the structure
at its dominant resonance. Such is the insight provided by direct time-domain
analysis.

Figures 15 and 16 illustrate the effects of inductively loading the
dipole. At a frequency half that of the lowest resonance, f = 75 MHz and
Zin = -j450 ohms., If the dipole is loaded at its feed point with an
inductance of value L = 0.95 pH, so that wL = +]450 at 75 MHz, the dipole
is then made resonant at ~75 MHz. Figure 15 shows that the dipole rings at
this lower frequency if the indicated value of inductance is placed in series
at the feed point. 1In Fig. 16 the imput resistance is unchanged from Fig. 12,

and the input reactance is modified by the additive term 2wfL.

The Linear Dipole as a Scatterer

The short-pulse response of the dipole as a scatterer was previously
shown in Figs. 3 and 4, In that case the excitation was a plane wave normally

incident on the dipole with an electric field of the form

Eie = exp[—gz(t - tO/C)Z]V/m . (14b)
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Fig. 16.‘ Im>edance in the frequency domain that results from including an
inductive load at the feedpoint. The increase in the resistive component

beyond L/A ~ 3 is due to numerical inaccuracy and increasing dominance
of the inductive reactance.

_We discussed the antenna results with respect to the stored energy. Here, in
Fig. 17, we sresent the corresponding results for the scattering calculation.
The behavior of WI and WQ is quite different from the antenna case, and does
not show radiation effects as clearly.
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Fig. 17. Current and charge energy, WI and W_, stored on a long-wire scatterer
for the case already considered in Fig. 3.

In the scattering case, one can define a transfer admittance in the
frequency domain which relates the short circuit current at the center of the
wire to the incident field according to

Y (w) = Toe )
T E

inc(M) ’

where Isc(m) is obtained from the transient response of Fig. 18. The effective

height of the antenna is then given by
h (@) = Y ()2, @) .

Figure 19 shows the transfer admittance of the dipole, and Fig. 20 shows
the effective height. The effective height below resonance is ~{.5, increasing
to 0.64 at the first resonance, which agrees with other results.

We can also find the frequency dependence of the scattered field. We
use the time~domain back-scattered field for broadside illumination (Fig. 4)

to obtain the familiar backscatter cross section shown in Fig. 21, where

E (W) 2
U(w)/xz . Lim 4ﬂr2 scat
o —_
E, (W
inc
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One could continue indefinitely along this line, studying the effects of
loading, varying angles of incidence and observation, various pulse widths and
shapes, various radii of wire, etc. We instead conclude here our direct time-
domain analysis of the dipole and encourage the interested reader to pursue

this further on his own.
SALIENT FEATURES UNIQUE TO DIRECT TIME-DOMAIN ANALYSIS

Inherently Broadband Calculations

The frequency-domain analysis of a structure is limited to discrete-
frequency samples. The user of the code must choose a priori thoe: frequencies
where he thinks the structure will have interesting or useful behavior, If
he chooses incorrectly, he may need to continue the calculations until he
obtains the needed information, and can thus be reasonably confident that
essential aspects of the object's behavior have not been overlooked.

The time-~domain analysis of a structure, on the other hand, is inherently
broadband. As long as the excitation contains sufficient energy in the
frequency range of interest, the entire response over that range is automat-
ically obtained. For example, consider a frequency-independent antenna, the
conical spiral. However, this frequency independence occurs over some limited
bandwidth where the antenna was designed to operate. If one needs character-
istics over a wider band (for pulse applications or EMP coupling analysis),
transient analysis conveniently provides them. In Figs. 22-26 we show some
characteristics of a typical conical spiral. Figure 22 includes the feed-
point current resulting from a Gaussian excitation (Eq. l4a) with a 350-ohm
source impedance.41 Transforming this current to the frequency domain yields
the input impedance (corrected to remove the generator resistance) presented
in Fig. 23. The calculation produces many low-frequency resonances of very
high Q. The frequency-independent region of this particular conical spiral
is fairly narrow, from 1.2 GHz to about 3 GHz. To help explain the origin of
the low~frequency resonances, we plot input impedance on a Smith chart in
Fig. 24. The spiral acts very much like an open-circuit transmission line at
low frequencies, because it is basically a twisted pair of wirss, with the
wire separ:z+ion increasing slowly. Consequently, the observed resonances are

expectet and qualitatively explainable from transmission-line theory.
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Fig. 22. Feedpoint current for a
conical-spiral antenna excited
by a Gaussian pulse, The effect
of a 350-ohm series resistor is
included. The numerical model
consists of a piece-wise linear
approximation (60 segments) to the
actual antenna, whose total length
is 1 m and radius is 1 mm, and
which has two arms of 2 1/2 turns
wound on a cone of half-angle 10°
with small~end and large-end
diameters of 3.36 cm and 9.16 cm,
respectively.
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Impedance for a conical-spiral antemna excited by a Gaussian pulse,
obtained by transformation to the frequency domain.

The late~time ringing

of the spiral that would otherwise occur is damped out by the resistor and
has been subtracted from the resistance curve.
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Fig. 24. A Smith-chart plot of the
impedance emphasizes the spiral's
similarity to an open-circuit
transmission line below its
frequency-independent operating
band.

Fig. 25, The transmitting gain of
the spiral.

To assess the importance of these resonances, Fig. 25 shows the bore-
sight gain of the spiral for transmission, and Fig. 26 shows the magnitude
of the short-circuit~current transfer function for reception (for linear
polarization and the E-field parallel with the vertex wire). These
calculations show that the spiral radiateé or receives poorly at the low
frequencies where the resonances occur, This result is expected, because high

Q resonances involve little energy interchange per cycle.

Self-Diagnosis

One may encounter many pitfalls in applying any numerical technique. A
peculiarity of direct time analysis that can be used to advantage is the way
the results display ill-conditioning. For example, experience shows that the
code WI-MBA/LLL1B requires that wire segments be at least as long as their
diameter. In Figs. 27-29 we show the current on a dipole excited by a
broadside-incident, Gaussian-pulse plane wave as a function of the wire
radius, a. In each case, the dipole length is 1 m, the segment length (A) is
1.666 cm, and the Gaussian factor (g in Eq. (14a)) is 5.556 x 10710 s_l
The serles of curves in Figs, 27-29 show the result of increasing the wire
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Fig. 27. Solution instability caused
by use of too-ghort segments. The
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wire 9.5 mm iIn radius. The Ti
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when A/2a > 1 is evidently due
to numerical iInaccuracy of the Fig. 29. Transient current for a
thin-wire approximation. wire 10 mm in radius,
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radius, and consequently decreasing the ratio of segment length to diameter,
As long as the segments are longer than a certain critical value, the current
is well behaved and not a function of the number of segments. (Of course, if
too few segments are used, the results will be inaccurate.) The exponentially
growing current obtained for A £ 2a signifies that something has become ill-
conditioned. The particular source of this phenomenon in the numerical
procedure has not been found, but is apparently a result of the thin-wire
approximation., While the impedance matrix or interaction coefficients display
nothing obviously wrong, the growing currents clearly signal that something
in the numerical model is in error, however, Similar instabilities have been
observed if only a single segment is too short, or if Ehe match point of one
segment lies Inside the volume of another segment.

The user should realize, however, that merely obtaining responses that
do not diverge in time does not guarantee that the calculations are valid.

The final validation of results depends on a more thorough examination.

Direct, Efficient Resgponses

We have already pointed out that direct time-domain analysis is
efficient for calculating the transient response of metallic objects. A single
calculation yields the time history of the response for the entire object.
This feature permits calculation of quantities that may be of interest in
pulse applications, such as EMP-coupling studies, and that would otherwise be
difficult to obtain, such as ccllected energy WC and dissipated energy WD.
These quantities can be easily calculated using a direct time-domain approach
and are directly useful in an EMP context.

For example, the coupling of EMP to a 10-m-long dipole resistively
loaded at its center is presented in Figs. 30-32 as a function of the resist-
ance value. The load current 1s shown in Fig. 30, the energy collected by the
wire in Fig. 31, and the energy delivered to the load resistor in Fig. 32.
Studies similar to these have been very useful in studying the transient
behavior of other scatterers. From such eiudies, interesting results have
emerged. For example, Figs. 31 and 32 illustrate that nearly all the short-~
circuit energy collected by the dipole can be delivered to a pure resistive
load of about 1000 ohms. This rasult is unexpected from classical frequency-
domain concepts, although a complete frequency-domain analysis gives the same
result as found here, albeit with less physical insight, This finding also
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corroborates the previous antenna calculations, where a 1000~ohm load was found

to (approximately) critically damp the feed-point current.

Load current * — A; load voltage* — k¥
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Fig. 31, Cumulative energy collected
from the pulse by the wire, shown
as a function of time (see Eq. 2).
Observe that the collected energy
is oscillatory in time, signifying
the re-radiation of energy.

Fig. 30. EMP applications of time~
domain solutions. A 10-m-long
vire of radius 6.738 X 10~2 g
and modeled with 30 equal-length
segments is illuminated from

broadside by a nominal EMP pulse
given by 5.25 x 10% {exp (-4
x 106¢) - exp(-~4.76 x 108t)]v/m.
The midpoint current and voltage
that result for several midpoint
load values are shown here,
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Fig. 32. Energy dissipated in the
load as a function of time,
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No~linear Capability
Solution formulation directly in the time domain permits analysis of
nonlinear problems by a time-stepping procedure. This approach has been used
with finite~difference techniques to handle the problem of a metallic obiect

42 43 44,45

immersed in a nonlinear medium. Schuman also consider a

and others
thin, straight wire loaded at its center by a diode. This case, as well as
nonlinear loading of more general wire geometries, 1s possitle using the
approach developed by Miller, Pogglo, and Burke.17

Here, we concentrate on the Miller, Poggio, and Burke approach.
Figures 33-35 shows the response o. a linear dipole antenna loaded with a
diode. The diode was placed in series with a Gaussian voltage source.
Figure 33 shows early-time history of the current 'and charge distribution
along the structure, The dipole 1s initially biased in the forward-conducting
direction, allowing a charge separation to build up across it. When the
exciting voltage decreases to zero, the accumulated charge then reverse-biases
the diode, allowing only a small leakage current in the reverse direction.
The dipole then responds as two shorter dipoles placed end to end but insulated
from each other. Comparison of the diode current and the unloaded dipole
current (Fig, 11) illustrates that the initial current is essentially the same
for these two cases (there is a slight amplitude difference caused by different
wire radii) until the current in the linear case changes sign. From then on,
the two currents are distinctly different, The late-time far field radiated
broadside from the dipole 1s predominantly a dampened sinusoid at twice the
frequency of the unloaded dipole, as shown in Fig., 35.

Combining an electromagnetic time-domain code with a time-domain circuit
code such as SCEPTRE 1s feasible, but has not yet been implemented. Such a
combination would be useful for studying the effects of loading an antenna
with a complex nonlinear circuit. Some Initial attempts at assessing these
effects have been made with simple antenna models.46 However, the proposed

hybrid code would be able to analyze arbitrary antenna geometries,
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Fig. 33. Nonlinear loads can be easily handled in the time domain. Here
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having a diode load in series with the generator are shown at several
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to current flowing in the initial directiom, and that it effectively acts
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The two halves of the dipole thus retain a static charge distribution at

late times.
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Fig. 34. The transient feedpoiﬁt possesses a fundamental frequency
current. twice that of an unloaded dipole.

Time Gating

Time gating can be used in transient-electromagnetic measurements to
eliminate the effects of reflections from scatterers physically separated from
the target. This powerful technique, described above, provides wideband
information without expensive anechoic chambers, etc. But time gating can
also be used numerically, as demonstrated in Figs. 36 and 37.47 Here, a
dipole of finite length is illuminated by the time derivative of a Gaussian
plane wave at broadside incidence. Figure 36 shows the current at the center
of the dipole. The calculation ended before end reflections arrived. Thus,
time gating permits us to obtain an infinite-wire response from a finite-wire
response. Transformation to the frequency domain establishes the validity of
this approach for the transfer admittance. Figure 37 shows the analytic results
and the FFT of Fig. 36. We can find the frequency range over which this
technique produces valid data in the same way as in transient measurements.

The clear time determines the lowest frequency of valid data, and the sampling
requirements determine the highest frequency.

Time gating can also be used to study the propagation of a current pulse
along a wire, reflections from ends of wires, reflections from junctions of
wires, and similar phenomena., Judicious use of existing codes can accomplish

all these results; no modifications are required.
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from other phenomena. In this Fig. 37. The transfer function can
example, the computed current on be obtained by transforming the
a long (120 m) center-fed dipole current from Fig. 36 to the
modeled with 120 segments prior frequency domain. The transfer
to end reflection is extrapolated function compares well with
in time to approximate the current analytical results. Several
that would be seen on an infinite calculations were required to
antenna. span the ka range shown.

AREAS OF APPLICATION
The following list of examples show fairly comprehensively the potential
of direct time-domain techniques. Applications demonstrated by previous

results are referred to but not repeated.

Antenna Characteristics

Time-domain techniques can directly evaluate the transient characteristics
of antennas. Driving-point currents (Figs. 10, 22, 34), radiated far fields
(Figs. 2, 35), and near fields may be found. Transformation to the frequency
domain produces antenna driving~point characteristics (Figs. 11, 23) and the

antenna gain (Figs. 12, 25).
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Scatterer Characteristics

Direct time-domain analysis conveniently provides the receiving and
scattering properties of metallic objects. It also provides antenna effective

heights (Fig. 19) and monostatic or ristatic radar cross sections (Fig. 20).

Transient Resyonse

Another obvious application of transient analysis is the calculation of
coupling such as that due to EMP. These techniques can be used
straightforwardly to obtain EMP responses. For example, in Figs., 30-32 we
showed the response of a 10-m straight wire illuminated from broadside by an
EMP pulse. We can use such calculations directly as obtained or can compare
them with step responses, etc. to assess the importance of detail in the
incident waveform. The ease of obtaining these responses conveniently permits
efficient parameter studies. Figures 38 and 39 shows the results of one such
study. Here, wires of different lengths were exposed to an EMP pulse. The
wires were loaded resistively at thelr centers, and the value of resistance
was also considered a parameter. For each combination of length and resistance,
the transient calculation was performed and the peak load current and total
load energy evaluated. Figures 38 and 39 present the results of these
calculations as contour plots, where the loci describe parameter pairs that
produce the same peak current on total energy. Such plots are invaluable for
condensing and evaluating large amounts of data. These plots show, for example,
that peak current 1is approximately proportional to wire length in the wire-
length range from several meters to several hundred meters. Resistive loading
of several ohms to several hundred ohms does not drastically affect peak
currents or total energy. Calculations for reactive loads show that a single
resistance In series with a resistance has little effect on total energy

collected.

EMC and RFI Analysis

In general, EMC and RFI predictions need the electromagnetic character-

istics of objects over a wide bandwidth., Transient methods provide such
information efficiently. The potential of this application was demonstrated
previously with the transfer function for reception of the conical spiral

(Figs. 18, 26) and similar calculations.
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as a constant contour value as a
function of wire length (m) and
center load-resistance value
(ohms), The energy calculation
requires that 2R decay to a small

constant contour value as a
function of wire length (m) and
center load-resistance value (ohms).
The time-domain computation permits
the peak current, which occurs
early in time, to be found without
requiring a complete transient
waveform.

value before terminating the
calculation.

First-Look Studies

Transient methods can also be used effectively for preliminary analysis
of new antenna structures, Such studies provide information on antenna
bandwidth and input and receiving characteristics., This approach was used to
develop an antemna for an implantable transponder.48 The characteristics of
a candidate bow-tie antemna depicted iIn Fig. 40 are shown in Figs. 41 and 42
This geometry was subsequently used. Antenna characteristics sought were
broad bandwidth and large effective height. The candidate shown here was
chosen over arrays of dipoles, loops, and several other types of antennas
because of its acceptable performance, simple construction, and packaging ease.
Antenna design using numerical techniques provided insight almost impossible

to obtain experimentally with available equipment and time.
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Fig. 40, Bow-tie antenna developed
as part of an implantable transponder
for animal monitoring. The final
design was selected on the basis of
efficiency, bandwidth, and
impedance.
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Assessment of .Transient-Measurement Performance

Numerical transient techniques are invaluable in assessing the performance
of a transient measurement facility and conversely. Comparison of measured
and computed results can validate range calibration. Figure 9 shows the
calculated and measured current at the bhase of a V-dipole over a perfect
ground plane. Thesa calculations used the actual applied voltage and modeled
the transmitting wire as well as the target. It must be emphasized that no
normalization or other operation was performed on the data shown in Fig. 9;
they are presented directly as measured and calculated. This plot illustrates
that the magnitude of the measurements is well calibrated but that the time
base is slightly in error.

Transient techniques can be used in other ways to assess the performance
of the transient-measurement facility. For exa—ple, the source antenna
radiates primarily from the point where the antenna is fed at the ground plane.
Such radiation produces a spherical wavefront. Figures 43 and 44 compare the
spherical-wave response of various-length dipoles to that of dipoles

illuminated by a plane wave. As one would expect, the differences between

plane-wave and spherical-wave excitation are small as long as the target is
small with respect to the radius of curvature of the wavefront. This result

allows one to place quantitative limits on target size.
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Fig. 43. Transient-range application of time-domain computation. The
effect of radiating-source proximity to a straight wire was studied with
respect to the wire's response to plane-wave excitation, using a
Gaussian pulse., Here, distance of the point source is 1.5 m and wire
length is 0.4 m.
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Fig. 44. Here, distance of the point source is 1.5 m and wire length is 1 m,
In this case, there is a discernible difference between the plane-wave and
point-source-induced current,

Study of Modeling Errors

We may identify two essentially independent errnr types associated with
a computation., One arises from replacing the actual physical object of
interest by an idealized numerical model, This error can be characterized as
a physical modeling error, which we denote by Ep. The other arises in
obtaining a numerical solution for the idealized model. We refer to this error
as a numerical modeling error and denote it by By One way to assess both
errors is to perform measurements on the actual and idealized object to
establish €_, and to compare measured and calculated results for the idealized
model to determine €ne

In Figs. 45-47 we present results from measurement and computation
performed for this purpose. The measured curves obtained on the LLL transient
range (Fig. (46)) pertain to a scale-model 747 aircraft and a pipe and thin-
wire approximation (Fig. 45) when the models are mounted nose down and
perpendicular to a ground plane, the point at which the current was measured.
These curves are similar in shape for the first portions of the waveforums,
except for an amplitude difference which can be attributed to their different
cross-sectional size. The later parts of the waveforms do not agree as

closely, revealing the effects of model differences on the induced current.
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Fig. 45, Physical and numerical
modeling errors can be assessed 32
using data like that in Figs. 45-47.
Here, measured responses of a
scale-model and pipe and thin-wire
models of a 747 aircraft are shown.
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The computed and measured curves for the pipe model (Fig. 47), by
contrast, track very closely over the entire waveforms shown. This result
increases our confidence in using the time-domain computation for somewhat
more complex objects. Overall, we can also decide whether the physical
modeling error revealed by the measurements may be acceptable for the intended
application, although this decision may hinge on obtaining further data (e.g.,
scattered fields) or presenting it in a different format (e.g., as a transfer

function).

Object=Pole Finding

Prony's method is a curve-fitting scheme that fits Eq. (1) to transient
measured or calculated data by computing values for Ra and Sy

The pole locations are independent of the temporal or spatial nature of
the excitation. This means that one need not employ any special excitations;
the only requirement is that the excitation band span the poles of interest.
The orientation of the scatterer is also immaterial, so that the same resonance
locations are obtained whatever the angle of incidence or polarization. 1In
some special cases, however, some resonances may be absent. Figures 48 and 49
illustrate application of the Prony technique. Figure 48a shows the
backscattered field from a dipole 60 meters long for an incident Gaussian
field 30° from broadside, and Fig. 49a shows the resulting pole locationms.
Figures 48b and 49b show the results of repeating these calculations for 60°
(from broadside) incidence. Although the temporal nature of the scattered

field has changed, the pole locations have not.
Figures 50 and 51 show results of resistively loading the dipole at its

center, and bending it at a right angle at its center, In the former case,
the 2 =1, 3, 5, ... poles are more lossy than the o = 2, 4, 6, ... poles,
while the converse is true in the latter case. This occurs because the odd-
numbered modes are even about the dipole's center, so that the resulting
current maxima at the resistive loads produce a large dissirative loss, while
the even-numbered modes are odd and have charge maxima at the center, thus
producing a large radliative loss at the bend.

Besides being useful to find the pole locations for SEM, Prony's method
serves as well to store the transient waveform in a shorthand form. One
interesting application of data handling is the ability to extrapolate both
forward and backward in time. Figure 52 shows a portion of the computed
backscattered field observed from the wire object shown. Figure 53 plots the
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Fig., 48. SEM poles can be directly extracted from transient waveforms using

Prony's method. 29,30 Results given here for the transient field
scattered from a dipole illuminated by a Gaussian pulse at 30° incidence
yield the pole set 8yt shown.
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Fig. 49. Results given here for the transient field scattered from a dipole
illuminated by a Gaussian pulse at 60° incidence yield the pole set, sq,
shown. Note that, in spite of the extremely different waveforms, the pole

locations are the same as in Fig, 48. All the waveforms difference
is due to varilatioms in the residues, Ry, presented here in magnitude as
vertical lines on a log scale.
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Fig. 50. Energy loss mechanisms can affect the pole locations in the complex
frequency plane.30 Here we present the pole sets for a 60-m wire,
showing the result when the wire .s straight and loaded with a 100-ohm
resistance at its center.
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Fig. 51. Here, the wire is unloaded but has a 90° bend at its center. The
a =1, 3, ... poles are more lossy for the loaded wire, due to dissipative
loss of those modes which have current maxima at its center, and the
o =2, 4,... modes are more lossy for the bent wire, because the charge

maxima at the bend produce a greater radiation loss.
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Fig. 52. Extrapolation of a transient
waveform can also be accomplished using
the poles extracted from it., Here, part
of a computed field scattered from the
thin-wire object is illustrated.

pole locations obtained using only that portion of the response indicated in
Fig. 52. The poles from Fig. 53 (and residues which are not shown) were then
used to f£ill in the entire transient responsé. This extrapolated response is
compared to the original computed response in Fig, 54, with excellent

agreement,

Transient-Pulse Shaping

For some applications, it may be desired to radiate a specific transient-
pulse shape. Physical constraints may prohibit the antenna from being
frequency independent throughout the band of the desired pulse, and the antenna
then functions as part of the wave-shaping network. Transient techniques can
be used effectively in these cases to integrate the antenna's response into
the design of the pulse-shaping network. For example, consider a zero~impedance
voltage source connected to a conical spiral antenna (the same antemna used
for the results in Figs. 22—26).41 Assume that we want the radiated field in
one polarization plane to be the third derivatives of the Gaussian, i.e.,
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which compares well with the Fig. 55. Antenna pulse synthesis
original waveform both before is straightforward using time-
and after the sampled portion. domain analysis, Figures 55-57

illustrate one possible procedure
by iis application to a conical-
spiral antenna (the same one
considered in Fig. 22). Here we
present the boresipght radiation-
field transfer function.

3
d 2.2
Erad(t)a—dt3 [(exp(-a”t™)] .

The desired quantity is the voltage required to be applied to the antenna to
produce that far-field behavior. To find this quantity, we first calculate
the transfer functilon between the radiated field and the applied voltage, which
is shown in Fig. 55 for the conical antenna previously considered. Next, we
obtain the spectrum of the required voltage by dividing the spectrum of the
desired radiated field by this transfer function. The spectrum of the desired
field must go to zero with decreasing frequency faster than the transfer
function, because the antenna cannot radlate a static field. We then find
the required transient voltage (Fig. 56) by transforming this spectrum to the
time domain. To verify the result, we use this waveform in the TWID code to
obtain the radiated field shown im Fig. 57 from the direct time-domain
calculation. This waveform is the desired third-time derivative of the
Gaussian as specified. A similar approach could also be used with measured
antenna characteristics.
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Fig. 56. The transient voltage Fig. 57. The actual radiated field
waveform required for the antenna produced by application of the
to radiate the third derivative voltage pulse in Fig. 56.

of a Gaussian pulse.

Physical Insight

Transient methods can be advantageously used to help understand the
characteristics of the electromagnetic response of structures. The physical
insight thus made possible may be greatly enharced by novel data-presentation
techniques. For example, there are physical differences between the radiation
properties of the linear dipole and conical spiral, as previously demonstrated.
A motion picture of the currents along the structure as well as the radiated
fields would show the differences between their radiation processes clearly.
Specifically, the dipole radiates when current pulses are reflected from the
ends of the dipole, while the conical spiral radiates continuously as the
current pulse travels along the wire.

A motion picture format is not always suitable, of course, but the
presentation céntinuity it provides in both space and time can be obtained in
other ways. One example is presented in Figs. 58 and 59. Equal-current
contours are shown on these graphs as a function of position along the wire
and as a function of time. D..tance (horizontal axis) and time (vertical axis)
are scaled so that a pulse traveling at the velocity of light in free space

describes a straight line with a slope of unity,
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of the current can convey a great
deal of information concerning
transient behavior. Results are
presented here for a 1-m linear
dipole antenna excited by a
Gaussian voltage pulse. The time
variation is shown on the vertical
axls and the space variation is
shown on the horizontal axis,
where the scales are in the ratio
of ¢, so a 45° straight line
represents motion at the speed

of light.

Fig. 59.
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of the current for a conical-
spiral antenna of 1 m overall
length, excited by a Gaussian
voltage pulse. The difference

in radiation mechanisms for the
two antennas, and other features
as well, can be deduced from these
results, as discussed in the text.



The dipole response (Fig. 58) illustrates that the current pulse under-
goes little decay as it travels along the wire, as shown by the closing of all
the contours near the wire's end, but that the current pulse reflected from
the ends is slightly less than that incident; energy has been lost to radiation.
The current along the conical spiral (Fig. 59), however, is continually
decaying as shown by closing of the contours along the entire length of the
antenna. The explanation of both these responses is that accelerated charge
provides the radiation. This also explains why the dipole produces linear
polarization and why the conical spiral produces circular polarization. Also
obgérve that the current contours on the straight wire are parallel, showing
tﬁat leading and trailing edges of the pulse propagate with little dispersion.
By contrast, the pulse on the spiral broadens due to dispersion, as shown by
the nonparallel current contours.

Exciting the object as a scatterer provides comparable insight. Again,
novel data presentation, such as film strip, contour plots, etc., quickly
permit one to semse a structure's response. For example, the analytic
frequency-domain solution of an infinite cylinder provides an approximate
low-frequency transfer functlon between incident field and excited current as
1/iw. This implies an integral relationship; i.e., the current is approximated
by a constant times t'.. integral of the electric field. Transient analysis
indeed verifies this fact,47 as mentioned earlier in the section dealing with
time gating. Transient analysis also shows that the integral relationship
holds everywhere on the wire until the effects of the ends of the wire are
observed., Such knowledge permits easy prediction of peak currents for step-
like or pulse-like excitation549 and also permits easy prediction of current
sensitivity to incident field parameters such as rise time, fall time, and

peak fleld strength.

Wire~Grid Models
Wire grids or meshes are frequently used to approximate solid or closed-
surface objects because of the computational convenience they provide. One
example of a rather simp’e wire-grid model 1s provided in Figs. 60 and 61,
where the computer model for a 747 aircraft is shown in Fig, 60, The total
axial current induced on this model by a broadside incident EMP is given in
Fig. 61 as calculated at a point just behind the wing. The induced peak

current of about 6800 amp agrees reasonably well with the value indicated by
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was used to obtain the t.tal axial
current flow on the fuselage
immediately behind the sings.
This result was obtair d for a
broadside-incident nor inal EMP and
agrees well with other results for
a simple stick model in terms of
the peak current,

Fig. 38 for a wire of length ~70 m, the difference arising ' 2cause of their
different radii. ,

A more complicated grid problem is depicted in Fig. 92 of a wire-grid
model of a light truck with a rear-mounted 108-inch whip antenna. The effect
of the ground was included as a perfect image plane. Figure 63 show the
results for the imput admittance obtained from a time-domain calculation. An
input resistance of ~70 ohms occurs at 27 MHz, the ope -ating frequency of the
transmitter, which may be recognized as the CB frequeacy. This result has
been verified by actual operation, demonstrating the v+tility of the wire-grid
model.

A variety of other wire-grid calculations have also been performed using
the time-domain approach, These include mesh modals for plates, a fan-type
antenna, and a conical shell, Because wire grids are only physical approxi-

mations to closed surfaces, care must be exercised in thelr use, however.
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Fig. 62. Wire-grid model of a light truck located over a perfect ground plane,
used to compute the impedance characteristics of a 108-inch whip antenna

mounted as showm.
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Fig. 63. The antenna admittance demonstrates an input impedance of ~70 ohms
at 27 MHz, the frequency of operztion for this emergency communication system

(CB radio).
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Conclusion

In this report, we have tried to present the rudiments of EM transient
analysis via the use of direct time-domain integral-equation solutions, and
to demonstrate their utility for a variety of applications. We have emphasized
the physical aspects of transient behavior and examined the numerical
treatment in some depth, while introducing a minimum of mathematical detail.
The single most important point we would like to leave with the reader is an
appreciation for the practical utility of direct time-domain techniques in
providing greater insight and understanding of electromagnetic phenomena.
Direct techniques also offer greater solution efficiency than transform
techniques for many types of transient problems, the ability to handle
nonlinearities, the convenience of wide-bandwidth information from a single
calculation, the opportunity to use time-range gating to isolate interactions,
and the possibility for directly obtaining the complex resonances of objects
excited by EM sources. In closing, we hope the reader will be encouraged to

employ transient computation and measurement where appropriate as an additional

tool for solving EM problems.
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Appendix

The. derivation of Eq. (2h) follows readily from the approach used to

develop thé}Poynting's vector, From Maxwell's equations

— 3 -
VUxE= T H, (AL)
Vxﬁ=eo-g—tf , - (AZ)*

and the H * product of (Al), the T . product of (A2), and their difference,

we obtain

V-EXH=-uoH-g—--ﬁ+sf-g—t-E, (A3)

VeAx3 .
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If Eq. (A3) 1is integrated over a volume V that contains the coﬁducting body,

there is found

— -— 1 3 — — — pu—

. "= == —_— . . '

[ V « E X Hdv 2_[ pre [uOH H+ sOE Eldv' . (A4)
v v

Upon using the Gauss divergence theorem and integrating with respect to time,

we obtain

t
f dtvggixi-a:'
- A

2 2"~
' M el '
f de f[“oat' +€03:’Jdv
tee]
= - % j[“oﬂz + EOEZ Jdv' ] (A5)

* —
Note that an explicit source (J) term is not included since the source
here is an incident electric field.
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Now let the volume V be congruent with the volume (Vc) of the conductor,
assumed to be a wire, and extend a distance d beyond its surface. Then in

the right side of Eq. (A5), we can approximate H and E by
H =~ T/anr = 81/27a (A6a)
E = ﬁQ/Z'nteoh . (A6b)
since 5 * H>~0and § *+ E = 0 in the space between V and VC. Thus, the

right side of Eq. (A5) takes the form
d+a 2T 2

RHS = —%-f[ f ,: 7+ € 9 z]dw‘dr’r'dda‘ s (A7)
(2wr) (2nreo)

where C is the wire contour and we have neglected the contributions to the

volume integral of its ends (if the wir~ !s open ended). When the r' and ¢'

integrals of Eq. (A7) are performed, we finally obtain

L1 dray ff ;2,2 '
~ == log ( = )f(uol + /e:o) dw' (A8)
. (o

which gives.rise to Eq. (2h).
The L@ft side of Eq. (A5} can be similarly simplified to obtain

. C e
LHS é'[ dt’ f E - Tdv' . (A9)
-0 C

Because E » I = E I = (E, + E Jtan I = 0 on a perfect conductor,
tan inc scat

Eq. (2f) for the collected energy immediately follows. When there is loss

on the conductor, then EtanI = ElossI = (IR)I, from which Eq. (2g) also

follows.
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