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SUMMARY

A series of critical experiments was completed with mixed plutonium-
uranium solutions having a Pu/(Pu + U) ratio of approximately 0.22 in a
boiler tube-type lattice assembly. These experiments were conducted as part
of the Criticality Data Development Program between the United States De-
partment of Energy (USDOE) and the Power Reactor and Nuclear Fuel Development
Corporation (PNC) of Japan. A complete description of the experiments and
data are included in this report. The experiments were performed with an
array of mixed oxide fuel pins in aqueous plutonium-uranium solutions. The
fuel pins were contained in a boiler tube-type tank and arranged in a 1.4 cm
square pitch array which resembled cylindrical geometry. One experiment was
performed with the fuel pins removed from the vessel. The experiments were
performed with a water reflector, The concentration of the solutions in the
boiler tube-type tank was varied from 4 to 468 g (Pu + U)/liter. The ratio

of plutonium to total heavy metal (plutonium plus uranium) was approximately
0.22 for all experiments.
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CRITICALITY EXPERIMENTS WITH MIXED OXIDE FUEL
PIN ARRAYS IN PLUTONIUM-URANIUM NITRATE SOLUTION

1.0 INTRODUCTION

The design and operation of facilities for recycling Fast Breeder
Reactor (FBR) fuels involve criticality conditions which are much different
from those encountered in the 1ight water reactor fuel cycle. Conditions are
encountered in plant operations with fissionable materials that involve
complex equipment shapes, high plutonium content in solution with uranium,
and neutron absorbing materials that affect criticality. Experimental
criticality data are required for validation of the calculations and nuclear
data used in facility design, operational procedures and related licensing
activities to ensure freedom from criticality accidents.

In August 1983 the U. S. Department of Energy (DOE) and the Power
Reactor and Nuclear Fuel Development Corporation (PNC) of Japan entered into
an agreement to study such nuclear criticality aspects as they related to the
development of FBR fuel recycling technology. This arrangement was developed
through the DOE and PNC Agreement in the Field of Liquid Metal-Cooled Fast
Breeder Reactors. Prior to this Joint Memorandum of Agreement (MOA) for
Nuclear Criticality Data Development Program, DOE had initiated an
experimental program at the DOE Hanford Critical Mass Laboratory to provide
basic criticality data on plutonium-uranium systems in support of the
U. S. Liquid Metal Fast Breeder Reactor Program. Under this MOA, PNC has
promoted and enlarged the DOE Program to cover areas of mutual interest.

Some computer codes for criticality calculations have been developed and
applied to FBR fuel cycle facility designs. Application of these codes,
however, and the associated cross-section libraries, result in uncertainties
on the particular conditions for FBR fuel and need further verification based
on actual critical experimental data. Therefore, experimental data are
needed which will allow verification of codes and cross-section data to
minimize the uncertainties so that facility safety, efficiency, and
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reliability can be enhanced. The verification of criticality evaluation
methods is the subject of regulatory licensing activity. These data have
application whenever mixtures of plutonium and uranium exist, such as in the
head-end dissolution process of a fuel reprocessing plant and wherever
heterogeneous systems exist.

This report contains a description of the criticality experiments and
the data from the experiments. The experiments were conducted with mixed
plutonium-uranium solutions at a Pu/(Pu + U) ratio of approximately 0.22.

The experiments were performed in the boiler tube-type lattice assembly which
contained an array of mixed oxide fuel pins. The measurements were made with
a water reflector. The concentration of the solution in the boiler tube-
type tank was varied from 4 to 468 g (Pu + U)/1iter. Experiments were also
performed with gadolinium added to the solution to determine its
effectiveness as a neutron poison in a mixed oxide fuel pin array.
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2.0 DESCRIPTION OF EXPERIMENTAL ASSEMBLIES

This section includes the general description of the experimental
assemblies used in obtaining the criticality data for this report.

2.1 GENERAL DESCRIPTION OF THE SOLUTION SYSTEM

An existing experimental system, previously used for solution
experiments at the Critical Mass Laboratory, was used for conducting the
measurements and providing the data for this report. The solution system is
located in the critical assembly room. The addition of solution to the
experimental vessel is remotely made from the control room. The layout of
equipment in the critical assembly room is shown in Figure 2.1.

The critical assembly room is 10.67 meters square and has a ceiling
height of 6.4 meters. The side walls are composed of 1.52 meters thick
concrete., The concrete ceiling and floor are each 0.61 meters thick.

The containment hood (Hood 1) was located 1.83 meters from the north
wall of the room. The west side of the hood, which faces the wall
containing the DS and DM tanks was located 1.52 meters from that wall. The
cylindrical vessel assembly positioned south of Hood 1 will be discussed in
Section 2.2.

A schematic showing the piping connections between the three
experimental vessels is shown in Figure 2.2. This piping arrangement allows
critical experiments to be conducted with the same solution in each of three
vessels without changing vessels, when desired. The boiler tube-type vessel
was used in this series of experiments.

The fill, dump and manometer lines enter the bottom of the vessel
through the dump valve system. The dump valve and lines are designed to
drain the fissile solution even if the addition were continued. The vessel
is connected to the dump valve pedestal by a Marmon flange connection which
provides a leak tight connection.

2.1
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2.2 CYLINDRICAL VESSEL ASSEMBLY

A photograph of the cylindrical vessel system is shown in Figure 2.3.
This system contains two cylindrical vessels. The vessel used for the
experiments discussed in this report was a boiler tube-type tank and it was
located on the left side of the system. The control and safety blade
mechanisms were mounted above the vessel and can be seen in the figure. The
reflector tank serves to contain water for the water-reflected experiments.
Windows of polycarbonate (Lexan) were installed on the front for access to
the experimental vess2ls and for visual inspection. The reflector tank was
fabricated of carbon steel. A schematic of the experimental vessel
arrangement giving dimensions is shown in Figure 2.4.

A boiler tube-type tank was fabricated to provide a fixed array of guide
tubes. During critical experiments, 996 Type 3.2 Fast Flux Test Facility
(FFTF) fuel pins were placed inside the tubes, and the tubes were surrounded
by various solutions. A schematic of the vessel is shown in Figure 2.5. The
vessel has an outside diameter of 53.188 cm. The wall thickness of the
vessel is 0.091 cm. This particular design of the vessel was necessary in.
order to isolate the fuel pins from plutonium-bearing solutions. The design
of the vessel incorporated a means of attaching the guide tubes to the top
plate in a manner that did not warp the plate. The tubes were sealed by
0.635 cm long plugs laser welded into the ends of the tubes. The other end
of the tube was flared and mechanically sealed with a screw-type compression
fitting. Only the mechanically sealed end of the tubes were attached to the
top plate to prevent bowing of the tubes as a result of differential thermal
expansion. The thickness of the top plate is 1.930 cm. An elevation view of
the boiler tube-tybe tank is shown in Figure 2.6.

The vessel also included a middle lattice plate and a polyethylene
spacer to maintain a uniform spacing between tubes throughout the vessel.
The diameter and thickness of the middle lattice plate is 52.426 and 0.478 cm,
respectively. The diameter of the holes drilled in the plate for the guide
tubes is 0.675 = 0,004 cm.
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FIGURE 2.3 Photograph of the Cylindrical Vessel System
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The polyethylene spacer that was placed at the bottom of the vessel, in
the region below the mixed oxide (MOX) fuel, serves to effectively exclude
fissile solution from this region. Therefore, neutron multiplication occurs
only in the region of interest (i.e., where the MOX is surrounded by fissile
solution). The diameter of the 996 holes in the polyethylene spacer is 0.701
# 0.0076 cm. The diameter and height of the spacer is 51.511 and 21.184 cm,
respectively. Figure 2.7 is a photograph of the polyethylene spacer which
shows that the spacer was fabricated from three separate pieces of
polyethylene that were held together by tie bolts. The four pairs of tie
bolts were secured to the four spacer holders. The middle lattice plate and
the polyethylene spacer were suspended inside the vessel by four rectangular
bars (cross sectional dimensions are 0.635 by 1.905 cm). In Figure 2.8, the
photograph shows the inner assembly and guide tubes used in as-built
dimension measurements. The portion of the assembly where the MOX was
located, between the middle lattice plate and the spacer, is indicated.

The vessel was designed so that the bottom of MOX fuel would be at the
same elevation as the upper surface of the polyethylene spacer. Based on
measurements made after fabrication of the inner assembly, the top surface of
the spacer was estimated to be 0.028 cm above the bottom of the MOX fuel.
However, since the uncertainty in these measurements is 0.127 cm, the levels
should be considered to have the same elevation. Also, the bottom of the
guide tube plugs was found to extend beyond the spacer by 0.04 « 0.15 cm.

The uncertainties associated with the above two measured values are large
because these measurements were not made directly. Instead, these values
were determined by taking the difference between a series of measurements
taken inside and outside selected guide tubes. The spacer is 0.922 cm above
the inside surface of the bottom plate of the vessel to allow for filling and
draining. Four set screws were inserted into the spacer to assure that the
vessel could be drained.

An analysis of the top plate, middle lattice plate and polyethylene
spacer true position measurement data found that the holes had a square pitch
of 1.400 + 0.003 cm. In Figure 2.9, the photograph is a view under the
polyethylene spacer showing the plug-end of the 996 guide tubes and the
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FIGURE 2.7 Photograph of Polyethylene Spacer
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FIGURE 2.8 Photograph of Boiler Tube-Type Tank Inner Assembly



FIGURE 2.9 Photograph of Polyethylene Spacer Showing Lattice Configuration
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geometrical arrangement of the tubes. Also shown are the four leveling
screws and the eight tie bolts. The completed inner assembly is shown in
Figure 2.10, and the completed boiler tube-type tank is shown in Figure 2.11.
The schematic of the vessel illustrated in Figure 2.12 summarizes all of the
vital as-built dimensions.

A1l materials used in the fabrication of the boiler tube-tyre tank were
certified Type 304L stainless steel, except for the compression fittings
(Type 17-4PH stainless steel) and the polyethylene spacer. The spacer was
fabricated from blocks of Number 213 “pure polyethylene" supplied by Reactor
Experiments, Inc. The listed density for this material is 0.9 g/cm3. Due to
the importance of the material composition of the guide tubes, the data from
the mill specifications are provided in Table 2.1. The outside diameter of
the tubes is 0.6462 + 0.0028 cm and the inside diameter is 0.6083 2 0.0013 cm.

The control and safety blades were external to the vessel and were
withdrawn during the neutron flux measurements taken in the course of the
critical approach. The experiments with the boiler tube-type tank were
conducted with the reflector tank containing water. The reflector tank was
filled to a level 56 cm below the top of the boiler tube-type tank. The
distance between the boiler tube-type tank bottom (outside surface) and the
bottom of the reflector tank (inside surface) is 16.0 + 0.2 cm.

Engineering drawings were provided in PNL-5768 (Lloyd 1986) for the
cylindrical vessel system; these contain detailed dimensions used in

fabrication. A listing of the engineering drawings is provided in Appendix A
for cylindrical vessel system.

Engineering drawings for the boiler tube-type tank assembly are provided
in Appendix B.
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FIGURE 2.10 Photograph of Completed Boiler Tube-Type Inner Assembly

2.14



FIGURE 2.11 Photograph of Completed Boiler Tube-Type Tank
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TABLE 2.1 Mill Specification Data for Type
304L Stainless Steel Guide Tubes

Element Wt
Fe 69.208(2)
Cr 18.33
Ni 9.33
Mn 1.54
Si 0.47
Mo 0.31
Cu 0.29
( 0.24
Co 0.19
N 0.060
P 0.027
S 0.005

(a) Balance of data to equal 100 wt%.

2.3 FFTF _FUEL PINS

The critical experiments were conducted with Type 3.2 FFTF mixed oxide
fuel pins. These fuel pins were used in other critical experiments that have
been performed at the PNL-CML (Bierman 1986, Bierman 1979, and Durst 1980).
The fuel pins were referred to as Fast Test Reactor (FTR) pins in these
reports. The Type 3.2 FFTF fuel pins contain 19.78 wt% plutonium. The
isotopic and density data for these particular fuel pins are given in Figure
2.13. These data are based on measured data from pellet lots used in
fabricating the fuel and are more accurate than the information previously
reported (Bierman 1979, Durst 1980, and Primm 1980). The dimensions of the
fuel pins are also given in Figure 2.13. The actual MOX fuel region is
restricted to a 91.4 cm length near the bottom of the pins. The remainder of
the pin consists of Inconel reflectors, end caps and other hardware. As
discussed in the previous section, the elevation of the MOX fuel should be
considered equal to the top of the polyethylene spacer of the boiler tube-
type tank.



2377.4404£1.016 mm

5.8420 +
0.0127 mm

S N T N N A T N T

({0

L S N N NN

104.6 mm

144.780 +
0.127 mm

) 20.320 ¢
) 1.016 mm

T

914.400 +
3.810 mm
L

. 20.320 +

;| _1.016 mm
3
144.780 +
0.127 mm

-

40.6 ¢
0.127 mm

ORNL-DWG 88-5700

Type 316 Stainless Steel End Cap

Type 316 Stainless Steel 5.0800 + 0.0127 mm ID Cladding

Type 316 Stainless Steel Plenum
4.9022 + 0.0254 mm OD Tube
0.1397 + 0.0127 mm Wall Thickness

0.8052 mm Dia. Type 302 Stainless Steel
Spring of 2.7264 cm3 Maximum Volume

Inconel 600 Reflector
48133 + 0.0127 mm Dia.

Natural UO, Insulator at 10.42 ¢ 0.22 g/cm3
4.8260 t 0.0635 mm Dia. (RDT E13-7T)@

Fuel Pellet Stack (RDT E13-5T and 6T)(@)
4.9403 + 0.0381 mm Dia. x 5.2070 + 0.5080 mm Long Pellets

Type 3.2

W% 3%y 0.0111

Witk 2%y 17.1261
Wit% 24%py 2.3150
Witk 24'pu 0.2876
W% 24'am 0.0597
Wit% :;:Pu 0.0381
Wi 20U 0.4853
wi 238y 67.8638

11.8143

3 0
q/cma Pellet 9.994
g/cm” Stack 9.830+0.320

10 um Maximum Particle Size

Natural UO2 Insulator at 10.42£0.22 g(/gms
4.8260+0.0635 mm Dia. (RDT E13-7T) "

Inconel 600 Reflector
4.8133£0.0127 mm Dia.

Type 316 Stainless Steel End Cap

‘®'Referenced Division of Reactor Development and Technology standard.
Isotopics based on measured data from pellet lots. Americium-241 contents as of January 1, 1976
based on Plutonium-241 half life of 14.35 yrs,

FIGURE 2.13 Simplified Description of Type 3.2 FFTF Fuel Pin

2.18



Figure 2.14 shows the loading of a fuel pin into the boiler tube-type
tank prior to mounting on the experimental assembly. Figure 2.15 shows the
boiler tube-type assembly loaded with 996 fuel pins.
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FIGURE 2.15 Photograph of the Boiler Tube-Type Tank

Loaded with Mixed Oxide Fuel Pins
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3.0 EXPERIMENTAL RESULTS

This section provides the results of the experiments including a
description of the measurement techniques involved in obtaining the data.

3.1 CRITICALITY MEASUREMENT TECHNIQUE

The critical heights for the experiments reported herein were determined
using the critical approach method (Clayton 1985). In this critical approach
method, neutron flux measurements are made as the height of solution is
incrementally increased. Inverse count rate is plotted versus solution
height. At delayed critical condition the neutron count rate approaches
infinity so that the inverse count rate approaches zero. By extrapolation of
the inverse multiplication curves to zero value, the critical height is
determined for the system. The neutron flux is routinely taken on three
boron-lined proportional detectors located near the experimental vessel. -The
data from the three counters extrapolate to essentially identical values for
solution height at near critical values. The computer calculated least
square fits of the inverse multiplication curves, used in determining the
critical value for the solution height in each experimental assembly, are
included in Appendix C.

3.2 CRITICALITY DATA

The criticality data for this report were obtained between November 1987
and April 1988, when thirteen experiments were completed using the boiler
tube-type tank system. The data are summarized in Table 3.1. Figure 3.1
shows a plot of the critical heights determined at various concentrations of
the plutonium-uranium nitrate over a range of ~4 to 468 g (Pu + U)/liter in
the boiler tube-type assembly loaded with the mixed oxide fuel pins. Figure 3.2
shows a plot of the critical heights determined for a concentration of ~464 g
(Pu + U)/1iter for various additions of gadolinium from ~0 to 2.2 g Gd/liter.
The sample analysis methods and descriptive titles are given in Table 3.2. The
critical heights were calculated by a least squares fit to the inverse neutron
multiplication data from three neutron detectors (computer printout provided in
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TABLE 3.1 Criticality Measurements with P]utonium-Uranit(m

Nitrate Solution in the Boiler Tube-Type Tank a)
Project Cll. (b Free Crit:.ica
Run Case Experinent Sample Pu V] Gd Density Acid Height
Date Number Number Nusber  (g/liter) (g/liter)  (g/liter) mcla) M) (cm)
11/04/87 51C 108 1238 #.88 2.7 0.9 1.08178 8.41 18.41
11/05/87 51CR 188R 1238 6.88 2.7 6.0 1.0178 g.41 18.66
11/09/87 41 107 1231 73.96 264.89 6.0 1.4833 8.57 21.34
11/19/87 51 189 1233 47.58 183.66 0.0 1.3168 8.52 26.01
11/24/87 62 118 1234 22.83 77.84 8.0 1.1677 8.47 18.94
11/26/87 62R 116R 1234 22.683 77.84 6.0 1.1877 6.47 19.83
12/02/87 48 111 1235 183.7¢ 383.98 (N 1.8784 6.88 23.87
12/89/87 86 112 1238 103.18 360.82 8.40 1.6768 8.85 39.28
12/11/87 66 113 1237 102.23 3569.69 g.98 1.8748 9.85 38.78
12/17/87 79 114 1238 162.65 86° 59 1.47 1.8745 g.68 61.06
12/23/87 768C1 115 1239 102.68 369.55 1.97 1.68748 8.85 73.08
12/31/87 78C2 118 1248 103.61 382.45 2.18 1.6796 8.85 906.27
04/04/88 - 117 1263 83.3¢ 208.57 8.0 1.5687 g.90 27.42

() Boiler tube-type tank contained 998 FFTF Type 3.2 pins except for experiment 117 where the fuel pins were

renoved. The vessel was water reflacted.

(b) Density measured at 23°C

(c) Zero refarence is the top of the polyethylene spacer.
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FIGURE 3.1 Effect of Plutonium and Uranium

Concentration on Critical Height
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FIGURE 3.2 Effect of Gadolinium Concentration

on Critical Height
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TABLE 3.2 Chemical Analysis Methods

Measurement: Method Title(®)
Plutonium Plutonium by Automated Amperometric
Titration. (30.3)
Plutonium Plutonium Purification by Ion
Exchange. (38.9)
Uranius Uranium by Automated Potentiometric
Titration. (30.8)
U1y, Aaericiun-241 by Anion Exchange and
Alpha Analysis. (48.18)
Free Acid Determination of Free Acid in Uraniua/
Plutoniua Solutions. (Using an
inproved oxalate method) (48.22)
Density Density of Solutions. (Using Mettler/
Paar Density Meter) (49.23)
Isotopic Isotopic Composition of Plutonium
and Ursnium by Mass Spectroscopy. (30.8)
- .. (b)
Qd, Impurities ICP Analysis. (SP-78)
&, 0 Hydrats ICP Analysis.(® (HTA=4-1)
Gd Hydrate Gravinetric. (PNL MA-597 Vol. 2)

Date of
Approval

03/18/85

93/11/86

02/05/88

05/14/75

92/04/88

52/05/03

09/27/78

04/01/88
#7/01/87

05/30/75

(a) The numbers in brackets are method numbers for PNL MA-697, Vol 2,
except 48.22 from Vo!. 7,

(b) This method was used to determine gadolinium in experiment solution.

(c) This method was used to determine gadolinius in the concentrated
gadolinium nitrate solution.
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Appendix C). The 241Am content for each sample analyzed, the analysis date and

the experiments covered by that sample are given in Table 3.3. The isotopic
analysis values for the plutonium-uranium nitrate solutions used in the
experiments are given in Table 3.4. Table 3.5 provides information on the
temperatures of the critical assembly room (CAR), the dump mix tank (DM) and the
water reflector. Also in Table 3.5, the reflector water level and the position
of the bottom of the control and safety blades are given (reference is the
vessel top).

Appendix D provides chemical analysis data and analysis calculations for
the gadolinium in the experimental solutions.

Appendix E provides data on the chemical analyses for the impurities found
in the plutonium-uranium nitrate solutions.

The chemical analyses of the reflector water samples are given in
Appendix F.

3.3 SOURCES OF ERROR

It is practically impossible to assess, individually, the effects of all
the uncertainties in all of the experimental measurements. Realistically, it is
only necessary to examine those variables or combination of variables which
might have a reactivity effect which is a significant fraction of the typical
uncertainty in a particular KENO computer code calculation. This evaluation was
done for the significant measurements involved in earlier experiments and
reported (Primm 1986). From that analysis it was found that the primary
uncertainty that caused significant error was from the free acid values. Since
those measurements, a study was made and a free acid analysis method developed
and reported (Ryan 1985). This has significantly reduced uncertainties in the
analysis for free acid. Further work provided free acid standards so that the
analyses could be confirmed.
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TABLE 3.3 Chemical Analysis Values for Americium-241

241Am

Sample(a) Analysis

Number (ug/m1) Date
1232 265 12/16/87
1235 573 12/16/87

1263 453 04/29/88

(a) The analysis 53?"‘t5 from samples 1232, 1235 and 1263 can be used to
estimate the Am concentrations for experiments 106, 106R, 107, 110
and 110R using the ratio based on plutonium concentration. The
plutonium concentration for sample 1232 was 47.08 g Pu/liter.

Sample 1232 covers experiment 109

Sample 1235 covers experiments 111 to 116

Sample 1263 covers experiment 117
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TABLE 3.4 Isotopic Analysis Values of Plutonium and Uranium(a)

Sample 1232 Sample 1236
pu® 12/14/87 12/14/87
238 0.048 + 0.005 0.032 + 9.004
239 91.11 +0.04 91.12 +0.04
28 8.33 +0.64 8.33 1 0.04
21 9.419 +0.02 §.419 £ 0.02
242 §.095 + §.001 9.096 + 0.001
u (© 12/14/87 12/14/87
238 99.234 £ 0.008 99.232 + 4.068
238 §.053 + 8.065 9.953 + 9.805
235 6.765 + 6.008 §.709 + 0.008
284 9.008 + 0.001 0.067 + 9.081

(2) All values given in wt¥. An average of these isotopic results should be used for all

experiments.
(b) Date of Pu analysis

(c) Date of U analysis
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TABLE 3.5
Experiment
Number CAR_
198 26.2
186R 24.2
1087 4.3
169 24.0
118 4.1
118R 23.8
111 23.8
112 23.9
113 23.8
114 22.7
115 22.8
118 2.9
117 26.2

Information on Temperature, Reﬂgc;or Level,
and Control and Safety Blade Position

Ref lector Level

Control and Safety
Blade Distance

Tempsrature °C Distance Balow Below Vessel

DM Tank Ref lector Vasse! Top (ca) Top (cm)
24.1 1 24,9 56 47
24.8 23.7 58 47
23.9 23.3 58 47
22.8 21.4 58 47
22.4 21.3 58 47
22.5 22.1 58 47
24.4 2.8 56 47
2.7 19.1 b8 47
24.7 21.9 58 47
24.2 17.9 56 47
23.4 17.4 68 47
23.8 18.1 68 47
22.3 21.4 58 47
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The latest estimated values of uncertainties are listed in Table 3.6.
TABLE 3.6 Estimate of Measurement Uncertainties

Pu Concentration & 0.2%

U Concentration s 0.2%

Density « 0.0003 g/cm3
Free Acid + 0,04 M
Critical Height =+ 1.6 mm

The uncertainty values for the chemical analyses were provided by
M. C. Burt of the Chemical and Analysis Section. The critical height
uncertainty is given as 1,6 mm although the least square fitting of approach
data for three counting systems would indicate a smaller value as
reasonable. The 1.6 mm unit is the smallest on the sight tube.
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APPENDIX A

A LISTING OF ENGINEERING DRAWINGS FOR THE CYLINDRICAL VESSEL SYSTEM

CFRP Assembly H-2-33856, Sheet 1 of 5

CFRP Hy0 Tank and Cover H-2-33856, Sheet 2 of 5
CFRP Process Tanks H-2-33856, Sheet 3 of 5

CFRP Tank Covers and Shield H-2-33856, Sheet 4 of 5
CFRP Dump Valve H-2-33856, Sheet 5 of 5
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ENGINEERING DRAWINGS OF THE BOILER TUBE-TYPE TANK ASSEMBLY
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APPENDIX C

LEAST SQUARE FITS OF THE CRITICAL APPROACH DATA

The extrapolated values given are for solution height in the boiler
tube-type tank. The solution height values used in these plots are given in
inches. The solution height is the height of the solution above the

polyethylene spacer which is also the level where the mixed oxide fuel in the
fuel pins begin.
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APPENDIX D

ANALYSIS OF GADOLINIUM CONCENTRATION DATA

Initially, it was necessary to determine the amount of gadolinium to add
to the fissile solution so that the experiment solutions would have gadolinium
concentrations close to expected values. The gadolinium was added in the form
of gadolinium nitrate powder, (Gd(NO3)3 xHy0), so 1t was necessary to
evaluate the fraction of gadolinium in the molecule. Based on two independent
analyses, Loss on Ignition and Inductively Coupled Plasma Spectroscopy (ICP),
the fraction of gadolinium to gadolinium nitrate powder was determined to be
0.367 = 0.006, and the amount of water, x, was estimated to be 4.8 s 0.4.

Using measured amounts of gadolinium nitrate powder, water and nitric acid,
five concentrated gadolinium solutions were prepared. The quantities of
materials used to prepare the concentrated gadolinfum solutions are given in
Table D.1. This table also gives the amount of gadolinium and volume of
concentrated solution that was added to the bulk fissile solution stored in the
dump mix tank to obtain the diluted gadolinium concentrations used in the
critical experiments. For example, to obtain the 0.5 g Gd/11ter solution,
1.1029 1iters of concentrated solution with 107.69 g of gadolinium was added to
the existing volume (214 1iters) of fissile solution in the dump mix tank.

This process was continued with each of the concentrated gadolinium solutions
to obtain the progressively higher gadolinium concentrations used in the
critical experiments. As a check, estimates of the diluted gadolinium
concentrations for solutions used in the critical experiments were made and are
given in Table D.1. Although the precision of these results is very good, the
accuracy of the gadolinium concentration 1s approximately & 0.2% due to the

uncertainty in the amount of gadolinium associated with the gadolinium nitrate
powder.

A second method of determining the gadolinium concentrations of the

experiment solutions used analytical data from the concentrated gadolinium
solutions that were prepared. The densities and gadolinium concentrations of

D.1



these solutions were measured and are given in Table D.2. Since these
solutions did not contain plutonium and uranium the ICP analyses were
simplified. Estimates of the gadolinium concentrations of the experimental
solutions were made using the analytical data given in Table D.1 (column 7,
volume) and D.2 (gadolinium concentration). The gadolinium concentration
estimates are given in Table D.3. The uncertainty in these results is
estimated to be a 2%.

A third method of determining the gadolinium concentrations was based on
an ICP analysis of samples of the experimental solutions. However, the
analysis of gadolinium concentration in the critical experiment solutions was
difficult because the plutonium and uranium had to be separated from the
solution prior to assay. The separation was performed by contacting the sample
solutions with an equal volume of 30% tributyl phosphate in hexane. The
organic layer was discarded after each phase separation. The solution was
adjusted to 3M acid and two contacts were made. Two more contacts were made
after an acid adjustment to 4M. The extraction process also removes some of
the gadolinium from the aqueous solution so that analytical studies were
performed to evaluate the characteristics of the recovery curve over the
concentrations of interest (i.e., 0-2 g/1iter). The results of the studies
showed that 10 - 20% of the gadolinium was lost in the separation procedure.
The large variation in the amount of gadolinfum that was recovered for each
sample resulted in a high degree of uncertainty in the results obtained with
this procedure. To determine the recovery (calibration) curve for the ICP
analysis of the critical experiment solutions, 1 ml quantities of sample number
1235 were spiked with 0, 500, 1000, 1500, and 2000 ug Gd. The results of this
analysis are shown in Table D.4. The following equation, based on a linear
regression analysis of the data, was used to determine the actual gadolinium
concentrations from the ICP results:

x =1,1709y + 0,.01614

where y 1s the concentration of gadolinium in g/liter as determined by the ICP
analysis, and x is the actual gadolinium concentration in g/liter. The
coefficient of determination, rz is 0.996. The results from the ICP analysis
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of the critical experiment solutions and the computed actual gadolinium
concentrations are given in Table D.5.

estimated to be « 4%.

A summary of the estimated gadolinium concentration results for the

The uncertainty in these results is

experimental solutions by the three methods is given in Table D.6. The data in

the last column are the recommended values based on the results using the

second method.

gadolinium, 0.002 g/liter.

The values include the estimated impurity concentration of

TABLE D.1

Mass of Materials

Analysis of Gadolinium Concentrations Based on
ICP and Loss on Ignition Estimates of Fraction
of Gadolinium in Gadolinium Nitrate Powder

Amounts Added

These recommended values are given in Table 3.1 of

this report.
Conc. Gd
Solution Water
Number (g}
C1 975
c2 781
C3 781
(of 781
c5 781

(a) Given amounts are those added to the bulk solution after subtracting

Used to Prepare to (a)
Conc. Gd Solution Bulk Solution Bulk Solution
Nitric Gd Nitrate (b) ad®  Bulk
Acid Powder Total Gd Volume Conc. Solution
(g) () (@) _(g) (1iter) (g/liter) Number
46.1 295,29 1316.4 107.69 1.1029 0.501 B-1
37.0 298.00 1116.0 108.53 0.9952 1.001 B-2
37.0 300.19 1118.2 109.32 0.9041 1.501 B-3
37.90 302.41 1120.4 110.13 0.9032 2.000 B-4
37.0 124.48 942.5 45.31 0.8422 2.200 B-5

quantities in the 7ml analytical samples.

(b) Calculated values.
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TABLE D.2 Analytical Data for Concentrated Gadolinium Solutions

Co?c. Gd. y 1

Solution Gd Conc. Dens

Number (g/1iter) gg/cmss
C1 95.91 1.1860
c2 116.14 1.2234
C3 118,52 1.2273
c4 121.37 1.2310
c5 53.30 1.1099

TABLE D.3 Analysis of Gadolinium
Concentrations Based on
Analytical Results of
Concentrated Solutions

Bulk

Bulk Solution
Solution Gd Conc.
Number (g/liter)

Bl 0.492

B2 0.976

B3 1.466

B4 1.964

B5 2.161

TABLE D.4 Recovery Data for ICP Analysis

Sample Gd Added Gd Recovered Fraction

Number (ug) (49) Recovered
1235 0 1.8 -
1235 500 414.5 0.829
1235 1000 785 0.785
1235 1500 1330 0.887
1235 2000 1670 0.835
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TABLE D.5 Analysis Results of Gadolinium
Concentrations Using ICP Method

Bulk ICP Actual
Solution Sample Gd Conc. Gd Conc.
Number Number (g/1iter) (g/1iter)
B1 1236 0.421 0.509
B2 1237 0.870 1.035
B3 1238 1.297 1.535
B4 1239 1.685 1.989
B5 1248 1.865 2.200

TABLE D.6 Summary of Gadolinium Concentration Evaluations

Bulk (a) (a) Recommended
Solution Sample Method 1 Method 2 Method 3 Gd Conc.
Number  Number (g/liter) (g/liter) (g/liter) (g/1iter)

Bl 1236 0.501 0.492 0.509 0.49

B2 1237 1.001 0.976 1.035 0.98

B3 1238 1.501 1.466 1.535 1.47

B4 1239 2.000 1.964 1.989 1.97

B5 1248 2.200 2.161 2.200 2.16

(a) Methods 1 and 2 are based on gadolinium additions and do not include
the residual 0.002 g/liter Gd. The recommended values include the
residual gadolinium.
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APPENDIX E

CHEMICAL ANALYSIS DATA OF THE IMPURITIES IN PLUTONIUM-URANIUM NITRATE SOLUTIONS

The concentrations of impurity elements in the plutonium-uranium nitrate
solutions were determined by analysis with the Inductively Coupled Plasma
Atomic Emission Spectroscopy (ICP) method. The uncertainty in the ICP results
is approximately =« 25%. The ICP analysis results for sample 1215 which cover
experiment 107 are given in Table E.1., The ICP results for sample 1215 can
be used to estimate the impurity concentrations in the other experiments
(1.e., 106, 106R, 109, 110, 110R and 117) by multiplying the results by the
ratio of plutonium concentrations.

The ICP analysis results for samples 1235 A and B cover experiments
111 - 116.
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TABLE E.1 Inductively Coupled Plasma

Spectroscopy Analyses (mg/liter)

Sample Sample Sample
Element No. 1215 No. 1235A No. 12358
Al 68.7 118 126
B 3.0 7.95 10.5
Ba 2.0 3.55 4.30
Ca 41.0 65.4 72.9
cd 4.3 6.20 5.65
Ce 4.2 6.50 8.00
Cr 57.1 90.5 90.5
Cu 12.0 15.2 18.4
Dy 0.8 0.8 0.8
Fe 246.7 383 379
Gd <1 (a) (a)
K 5.0 15 10
La 0.7 (.6) (.3)
Li 0.2 (a) (.5)
Mg 8.6 19.0 19.9
Mn 11.4 17.4 17.6
Mo 1.2 (a) (a)
Na 20.6 40 46
Nd 1.3 (2.1) (1.4)
Ni 41.4 64 64
Rh 14.0 (a) (a)
Ru 4.2 (a) (a)
Si 16.5 30.9 52.0
Sr 0.2 (.35) (.35)
Te (a) (a) (a)
Ti 17.4 26.7 27.3
Zn 3.6 8.05 8.40
Ir 3.9 6.20 6.10

(a) Element not detected.

Values given in parentheses are approaching detection limit.
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APPENDIX F

CHEMICAL ANALYSIS DATA OF THE REFLECTOR WATER SAMPLES

The sample for experiment 106 also covers experiment 106R. The sample
for experiment 110 also covers experiment 110R. Reflector water analysis for
experiment 117 was not performed; the data would be similar to other
experiments.,
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TABLE F.1 Water Sample Analyses of the Reflector Water

HANFORD ENVIRONMENTAL
HEALTH FOUNDATION

C0 12325

February 11, 1988

Pacific Northwest Laboratory
209-E Building, 200-E Area

Attn: R. C. Lloyd
WAT AM NALY.

The results of the analyses of the seven water samples received January 6,
1988, are attached. Analyses were done in accordance with taggard Mgthgdg

for the Analysis of Water and Wastewater, 16th ed.

If there are questions concerning this report, please contact us.

<i§>(;f~f7PG,CzA/¢1c¢z¢/L_,~

P. A. Thurman
Environmental Health Sciences

jt
Attach.

P.O. 80X 100, RICHLAND, WASHINGTON 893%2
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TABLE F.1 (Contd)

, Paraneter 1051108 1050010 B, 111 LZOT3 B 114 Eo1S Eo.s
oH ‘ 7.0 7.0 7.5 7.2 7.3 7.1 7.4
Total alkalinity (mg/L) 1] 55 56 56 54 57 sé
HCO3 alkalinity (as CaCO3) (mg/L) 50 50 56 52 50 52 51
€03 alkalinity (as CaCO3) (mg/L) <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
Total dissolved solids (mg/L) 86 85 89 79 76 101 108
Fluoride (mg/L) <0.2 <0.2 0.2 <0.2 <0.2 <0.2 <0.2
Chloride (mg/L) 0.91 0.91 0.92 0.97 0.98 0.95  0.94
Nitrate (as N) (mg/L) <0.05 <0.05 .088 <0.0S <0.05 <0.05 <0.05
Sulfate (mg/L) 10.6 10.7 1.7 10.7 1n.7 11.5 10.5
Cadmium (mg/L <0.000S <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.000S
Copper (mg/L) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
Chromium (mg/L) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005
Iron (mg/L) <0.03 <0.03 <0.33 <0.03 <0.03 <0.03 <0.03
Lead (mg/L) <0.005  <0.005  <0.005  <0.005  <0.005  <0.005 <0.005
Manganese (mg/L) <0.01 <0.01 - <0.01 <0.01 <0.01 <0.01 <0.07
Zinc (mg/L) 0.08 0.06 0.08 0.07 0.42 0.38 0.03
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