Benefits of vertical and horizontal seismic isolation for LMR (liquid metal reactor) nuclear reactor units

PDF Version Also Available for Download.

Description

Seismic isolation has been shown to be able to reduce transmitted seismic force and lower response accelerations of a structure. When applied to nuclear reactors, it will minimize seismic influence on the reactor design and provide a design which is less site dependent. In liquid metal reactors where components are virtually at atmospheric pressure but under severe thermal conditions, thin-walled structures are generally used for primary systems. Thin-walled structures, however, have little inherent seismic resistance. The concept of seismic isolation therefore offers a viable and effective approach that permits the reactor structures to better withstand thermal and seismic loadings simultaneously. … continued below

Physical Description

18 p.

Creation Information

Wu, Ting-shu; Chang, Y. W. & Seidensticker, R. W. January 1, 1988.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 117 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Seismic isolation has been shown to be able to reduce transmitted seismic force and lower response accelerations of a structure. When applied to nuclear reactors, it will minimize seismic influence on the reactor design and provide a design which is less site dependent. In liquid metal reactors where components are virtually at atmospheric pressure but under severe thermal conditions, thin-walled structures are generally used for primary systems. Thin-walled structures, however, have little inherent seismic resistance. The concept of seismic isolation therefore offers a viable and effective approach that permits the reactor structures to better withstand thermal and seismic loadings simultaneously. The majority of published work on seismic isolation deals with use of horizontal isolation system only. In this investigation, however, local vertical isolation is also provided for the primary system. Such local vertical isolation is found to result in significant benefits for major massive components, such as the reactor cover, designed to withstand vertical motions and loadings. Preliminary estimations on commodity savings of the primary system show that, with additional local vertical isolation, the savings could be twice that estimated for horizontal isolation only. The degree of effectiveness of vertical isolation depends on the diameter of the reactor vessel. As the reactor vessel diameter increases, the vertical seismic effects become more pronounced and vertical isolation can make a significant contribution.

Physical Description

18 p.

Notes

NTIS, PC A03/MF A01; 1.

Source

  • ASME pressure vessel and piping conference, Pittsburgh, PA, USA, 19 Jun 1988

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE88009975
  • Report No.: CONF-880661-6
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 5075844
  • Archival Resource Key: ark:/67531/metadc1057075

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1988

Added to The UNT Digital Library

  • Jan. 22, 2018, 7:23 a.m.

Description Last Updated

  • April 7, 2021, 1:06 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 117

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wu, Ting-shu; Chang, Y. W. & Seidensticker, R. W. Benefits of vertical and horizontal seismic isolation for LMR (liquid metal reactor) nuclear reactor units, article, January 1, 1988; Illinois. (https://digital.library.unt.edu/ark:/67531/metadc1057075/: accessed April 24, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen