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Abstract 

A self-consistent and energy-conserving set of nonlinear 

gyrokinetic equations, consisting of the averaged Vlasov and Maxwell's 

equations for finite-^ plasmas, is derived. The method utilized in the 

present investigation is based on the Hamiltonian formalism and Lie 

transformation. The resulting formulation is valid for arbitrary Vcuues of 

k x Pj and, therefore, is most suitable for studying linear and nonlinear 

evolution of microinstabilities in tokamak plasmas as well as ether areas 

of plasma physics where the finite Larmor radius effects are important. 

Because the underlying Hamiltonian structure is preserved in the present 

formalism, these equations are directly applicable to numerical studies 

based on the existing gyrokinetic particle simulation techniques. 
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1. introduction 

Low-frequency microturbulence is generally believed to be closely 

linked to the observed anomalous transport in tokamaks.1"3 Theoretical 

research in this area has been very active for more than two decades. 

One of the most important advances was the use of gyrokinetic 

ordering,4-5 which considerably simplified the analytical aspect of the 

problem while keeping intact all the relevant physics. Although the 

ordering was originally designed to facilitate the linear analysis. Frieman 

and Chen6 have successfully implemented the idea to derive nonlinear 

gyrokinetic equations in general geometry which can be used for studying 

the drift-Alfven system. Their work was followed by the development of 

the new nonlinear gyrokinetic equations which are formulated in terms of 

the total distribution function and, therefore, can be easily studied by the 

particle simulation method.7 Oubin et al.Q have derived an energy-

conserving set of gyrokinetic equations which preserves Hamiltcnian 

symmetry by using the Hamiltcnian-Lie perturbation method, 9 ' 1 0 and has 

set Lee's equations on a firmer theoretical ground. One salient feature of 

their set of equations is the appearance of the ion polarization density 

response in the gyrokinetic Poisson's equation, which has a great impact 

on the numerical schemes utilized in solving these equations. The fact 

that the polarization drift appears not in the gyrophase-averaged Vlasov 

equation but rather in the gyrokinetic Poisson equation, is the natural 

consequence of the gyrokinetic procedure and is also desirable from a 

numerical viewpoint. 

The feasibility and efficiency of 'gyrokinetic particle simulation" in 

studying low-frequency phenomena in tokamaks have been discussed in a 
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recent publication.11 Since the rast particle gyrations are eliminated 

from the simulation plasma, while the all-important finite Larmor radius 

effects are kept intact, orders of magnitude improvement in time step, 

grid spacing, and noise level over the conventional particle simulation 

have been achieved. The simulation scheme described in Ref.11, which is 

based on the equations derived for the electrostatic problems in a slab 

geometry,7,8 has recently been used in the investigations of drift-type 

instabilities in two-dimensional 1 2" 1 4 and three-dimensional15 

geometries. Aside from demonstrating the versatility and superiority of 

the gyrokinetic approach in numerical simulation, considerable insight has 

also been obtained through these studies concerning the saturation and 

the induced transport mechanisms. Thus, it is natural at this stage to 

extend the present capability by including additional physics in the 

gyrokinetic formulation so as to better describe the phenomena of 

interest in a more realistic situation. 

As a first step in that direction, we have developed in the present 

investigation a reduced set of gyrophase-averaged equations in slab 

geometry, which consists of the Vlasov equation as well as the 

associated Poisson's equation and Ampere's law, for studying 

low-frequency electromagnetic fluctuations in finite-^ plasmas. Thus. 

the present paper, in which magnetic perturbations and induction electric 

fields are accounted for, can be considered as a natural generalization of 

the work by Dubin et al . 8 It differs from the existing nonlinear 

gyrokinetic theories for finite-J3 plasmas,6 since the resulting 

formalism in our case preserves the Hamiltonian symmetry of the original 

Vlasov-Maxwell system and, consequently, it is suitable to both 

analytical and particle simulation studies. More specifically, without 

breaking up the distribution function into the unperturbed and perturbed 
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parts as in the other formal approaches, the resulting formalism is 

explicitly 'phase space preserving' and. as such, conservation laws (e.g., 

number density and energy) can easily be constructed from these 

equations, which are essential for numerical purposes. 

Recently, it has been shewn that the numerical properties of the 

gyroktnetic plasma can be further improved even with a very moderate 

value of plasma j$, e.g., £ j m e /m j . 1 6 Therefore, it is desirable from the 

numerical point of view to study both the predominantly electrostatic 

microinstabilities and those associated with the magnetic perturbations 

with the present set of equations. This is also the reason why it is 

necessary to first develop the finite-^ gyrokinetic equations in slab 

geometry before embarking on the task of including the toroidal effects 

in the formulation. The latter in the electrostatic limit has been 

investigated earlier by the authors of Refs.17 and 18. Although they have 

successfully derived the gyrophase-averaged Vlasov equation which 

contains the lowest order nonlinearities, the energy-conserving set of 

Vlasov-Poisson equations which contains a!! the crucial polarization 

physics is yet to be derived. It is necessary to keep formally higher order 

nonlinearities to achieve that goal. 1 9 Another interesting aspect of our 

equations is that they can easily be reduced in the long wavelength limit 

to the "reduced MHD equations,"2Q Thus, it suggests the possibility of 

simulating global MHD instabilities with the finite-^ gyrokinetic particle 

code.1 5 This exciting prospect, which can provide us with the 

opportunity to study kinetic effects on KHD modes, is also an impetus for 

the present investigation. 

In this paper, the usual gyrokinetic ordering of <o/Qj~ k,|/kj_~ etf/Tg 
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Pj/L n ~ 0(e) and kj)^ - (1) as well as 5B/8 - 0(e) has been used. Here, 

o and Q4 are the characteristic fluctuation frequency and the ion 

cyclotron frequency, respectively: k„ and kj_ are the components of the 

wave vector in the parallel and perpendicular direction with respect to 

the ambient magnetic field-, p, is the ion gyroradius, L n is the density 

scale length; <f and SB are the fluctuating electrostatic potential and 

magnetic field; ar.d e is the smallness parameter (not to be confused with 

the inverse aspect ratio). For simplicity, we neglect the compressional 

component of the magnetic perturbation, i.e.. A x , in the formulation. 

This component does not directly cause any radial transport and the 

approximation is good for the cases with a moderate 0 [e.g., £ < (a/R)2 

for tokamaks. where a is the minor radius and R is the major radius]. 

As we have mentioned earlier, the methodology used in our derivation 

is based on the Hamiltonian formalism and Lie transformation, which has 

been used extensively by Lit t lejohn 9 , 1 0 in his investigation of guiding 

center drifts in a specified (non-self-consistent) electromagnetic field in 

the drift-kinetic limit (kj_P{<<1) and. subsequently, by Dubin et a l . 8 in 

their derivation of a self-consistent set of gyrokinetic equations (k x p; 

1). This approach is systematic and requires much less algebra compared 

to the conventional derivation which involves direct averaging of the 

Vlasov equation. 6 , 7 One important issue for our case is the choice of the 

coordinates in the phase space. We have decided that there are several 

advantages in using canonical momentum p z as an independent variable 

rather than the velocity v z as in the previous analyses.6 ( Here, the 

subscript z designates the direction of the equilibrium magnetic field.) 

5 



For example, by doing so, we can introduce fluctuating magnetic field SB 

explicitly in the Hamiltonian. This fact has been utilized in both the 

study of test particle transport 2 I in tokamaks and the derivation of the 

linear relativistic gyrokinetic equation.22 One important consequence is 

that the resulting formalism becomes covariant in that the fluctuating 

electromagnetic fields appear as a particular combination ot potentials, 

i.e.. the generalized potential V = (p-v2A z. Furthermore, the induction 

electric field, which involves the partial time derivative, does not appear 

explicitly in the gyrokinetic equation. Therefore, the equation is in a 

form most suitable for renormalization. Since the numerical schemes for 

calculating the induction field are quite involved for f inite-^ particle 

simulations in which the transverse displacement current is 

neglected. 1 6 , 2 3 this choice of variables is also advantageous 

computationally. The formulation in terms of v z has actually been 

performed in the present investigation. However, the resulting equations 

are much more complicated than those of the formulation in terms of p z . 

We wi l l simply present the results in terms of v 2 in the Appendix for the 

interested readers. The details of the derivation involving the 

action-variational Lie perturbation theory 2 4 ' 2 5 wi l l be given in a future 

publication where genera! geometry is considered.19 

The organization of the paper is as follows. In Sec. II we use the 

Hamiltonian formalism and Lie transformations to derive a 

gyrophase-averaged single-particle Hamiltonian in the presence of an 

electromagnetic field. En Sec. I l l we consider the Vlasov-Maxwell 

equations and use the gyrophase-averaging procedure developed in Sec. II 

to derive a self-consistent, energy-conserving set of gyrokinetic 

equations for the Vlasov-MaxweU system. In Sec. IV various limiting 
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cases are explored. Our conclusions are drawn in Sec. V. Finally, in the 

Appendix, an alternative formulation in terms of v z is presented. 

I I . Derivation of Gyrokinetic Hamiltonian 

In this section, we derive the gyrophase-averaged Vlasov equation 

using the Hamiltonian formalism and the Lie perturbation method. The 

mathematical foundation of the theory can be found elsewhere. 9 , 1 0 

We set m=c=l for simplicity. The equations of motion (or Hamilton's 

equations) in an .arbitrary phase coordinate system z take the form 

dz/dt = {z.Hh (1) 

where H is the single-particle Hamiltonian and { , } is the Poisson 

bracket. The Poisson bracket of two functions f(z) and g(z) is defined by 
if.g} * af/az-j-eg/dz, (2) 

where J is the Poisson tensor which is antisymmetric and covariant. 

In particular, in the extended canonical coordinates, z c= (q.p.w.t), this 

tensor takes the form 

J(Z C) • [ [ 0 J • <3> 

where 0 and 1 are the 4x4 null and unit matrices, q and p are the usual 

canonical coordinates, and time t is now a coordinate conjugate to 

energy w in an extended etght-dtmensionai phase space. It has been shown 

previously that the averaging procedure is facilitated by the introduction 

of the extended phase space.8 In this investigation, we are interested in 
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z = (x.VjL.Pj.e.t.w) where x is the position, v± is the perpendicular 

component of particle velocity, and p z is the canonical momentum along 

the z direction {i.e.. along b ). since J transforms contravariantly. we 

can find its form in any set of coordinates z~ connected via a 

diffeomorphism to canonical coordinates z by 

j(z) > dz/dz-j(z)-aF/az. .(4) 
The single-particle (zeroth-order) Hamiltonian HQ for a charged particle 

in a uniform magnetic field is given by 

H0(x,v_L,pz,8,t,w) = t P 2

2 • v x

2 ) / 2 - w. (5) 

where 8 0 = Bnb. In our coordinates {x.v_Llp2,e,t,w). the nonvanishing 

elements of J derived from Eq.(4) are: 

{x,v xf = c, (6a) 

U.pz} = t), (6b) 

{x.e} = -a/Vj_. (6c) 

{9,v ±} = Q/vx. (6d) 

(w.tf = 1. (6e) 

where e = tan" 1(V'ei/v-e 2). e-jand e^ are arbitrary orthogonal unit 

vectors in the plane perpendicular to b, and a = e^cose - e2Sina, c = 

-e^ sine - e2Cose, Q = eBg/mc. 

As shown in Eqs.(5) and (6), the 8 dependence is in the Poisson 

bracket, while the Hamiltonian HQ is e-independent. Now we want to 

remove the B dependence from the zeroth-order equations of motion by 

finding an appropriate set of coordinate transformations. This preparation 

can be achieved by transforming z to a new set of 'gyrocenter" 
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coordinates. In the. absence of perturbed electromagnetic fields SE and 

SB, the gyrocenter variables are well known, i.e., 

Z = (X.u.e,p2.t.w) 

with X = x-p, p=b*v/G. and u=v x

2 /2Q. Here we would like to point out 

that there is an alternative vay, that is. to define the gyrccenter 

coordinates in terms of the total electromagnetic field (i.e., in the 

presence of SE and SB). This can be done by using "Darboux Theorem"24 

which ensures the existence of the local canonical variables. The 

advantage of the Darboux transformation is that i t gives considerable 

insight into single-particle dynamics beyond the capability of more 

conventional approaches. This is one of the reasons why the Darboux 

theorem has been widely used in the calculation of higher-order guiding 

center drifts in the drift-kinetic regime. 9 , 1 0 One may want to adopt that 

procedure directly for a gyrokinetic problem. However, in general (except 

for the case of the electrostatic probiem in slab geometry considered In 

Ref.8), the transformation from the particle to the Darboux coordinates 

becomes quite complicated even after truncation to some order. 

Consequently, Poisson's equation and Ampere's law expressed in these 

coordinates are not practical at all for numerical simulation purposes. 

Since the main aim of this work is to derive a useful self-consistent set 

of cyrckinetic equations for the investigation of plasma microturbulence 

and transport which arise from collective fluctuations, we believe the 

optimal way is to define gyrocenter variables in terms of the unperturbed 

magnetic field B 0 only (E0 = 0 is assumed throughout this paper) and 

introduce SE, S3 later on as perturbations using the Lie transformation 

techniques. By doing so, the transformation from particle to gyrocenter 

coordinates becomes simpler and the resulting equations are more 

suitable for gyrokinetic particle simulation. Furthermore, the physics 
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contents in these equations are more transparent, which make the 

comparisons to the existing theories6 easier. The usefulness and 

simplicity of the derivation given here are even more apparent when we 

consider the problem in general geometry.19 

Now, in terms of our gyrocenter variables, the zeroth order 

Hamiltonian is 

H 0 = 3«B0 * p z

2 / 2 - W. (7) 

We note that A o z =0 is consistent with the assumption of the uniform 

equilibrium magnetic field BQ = B 0£. The Poisson brackets for 

gyrocenter variables are 

i e . j i } a i . (8a) 

{e.2> = 0, for Z x ii. (8b) 

{}X,Z} = 0, for Z * 9. (8c) 

jX.X} = b * I/O, (8d) 

{X.pz{ = b, (8e) 

IW.tJ = 1. (80 

where I is the unit dyadic. Now, the full Hamiltcnian written in terms of 

tr,e gyrocenter variabtes becomes 

tf(Z) = ^ • (P z-eA z(X*p.t)) 2/2 - W • «p(X*p.t) 

= jiB • p z

2 / 2 - W - e(epzA2-e(p) * e 2 (eA 2 ) 2 /2 . (9) 

where the gyro-angle dependence appears only in the first and second 

order Hamiltonians which are tagged by e's, i.e., 

Ĥ  =-e (ep zA2-etP), (10a) 

ff2 = £ 2 (eA 2 ) 2 /2. 00b) 

Now. we can systematically remove the 8 dependence from the perturbed 

Hamiltonian by transforming it to a set of new variables using the Lie 
10 



perturbation theory. 9- 1 0 Denoting the transformation by T, we have 

T- TZ , H"= T 1 t f , (11) 

where T = exp[-JedX L(X.e)], T and H~ are the gyrophase-averaged 

coordinates and Hamiltonian, L is the Lie operator with L(x.e) * £ 

L n ( j • eLn^ and Gn's are the generating 

functions of the transformation. Based on the gyrokinetic ordering, the 

Lie operator can be ordered as 

L n 0 = dGn/de-a/ep - dGn/aji-d/ae • i/Qven-b»v. (12a) 

L n 1 = b-vena/ap z - aen/dp2b.v - een/et-a/dw, ci2b) 

where Vmd/dX and aGn/aw = 0. since we do not transform in time. 

Expanding Eq.(11) in E, we have 

H"0 = |T0, (13a) 

W] = ff1 • L I 0 % H3b) 

TT2 = ff2 • L 1 0 ff, • ( L 2 0 • L 1 0

2 • 2 L n ) ff0/2. (13c) 

At each order, we demand that H^ be e-independent and the generating 

functions contain no 9-tndependent part to avoid secularity in e. The 

averaged Hamiltonian up to second order in e then becomes 

H"= JTB • Tz

2/2 - W • ee«<p> - p^<A 2» + e 2 e 2 <A 2

2 >/2 

-(e2e2/2Q)ta/e>T<C<P - PzA2)2> 

•C1 /Q)<V{* - p'2Zz)-bxV$-p'zAz)>l (14) 

where <<p> • 1/2TC #di"<p(xVp>), p * <p - <ip>. ? > / 8 ? ds, ^ * r 8A 2de. 

p"= (2jT/Q) 1 / 2a(e5, and the superscript bar denotes the transformed 

variables. The generating function Ĝ  is 

ee,/es = -(e/QX? - P 2 A Z ) . CI 5) 

n 



whereas the formula for G 2 is not of interest at this order. The explicit 

relationship between the transformed variables and the original variables 

is not usually needed for practicat .purposes. This is because the 

functional form of the Poisson's tensor remains the same under the Lie 

transformation. From Eq.04). the equations of motion are 

dX>dt = \X.W) = {X",X}-W + {>T.p^}dH/dp^ = b x l / Q - W * DdH/dp^ 

= e/Q bxVV •• b ~z, (16a) 

dp^/dt = [JZM\ = {p^.X)-W= - b - W = -eb-V¥ t (16b) 

and 

djT/dt r 0, (16c) 

where the renormalized effective potential is 

¥»<ip>-p^<A2>+e<A2

2>/2-(e/2Q)[d/e]r<(<p - p ^ A ^ 2 ) * ! /Q<V(?-

p ^ S ^ - b x V l ^ A ^ ] (16d) 

and the effective parallel velocity is 

u2sdH/ap2=p2-e<Az>-(e2/2fl)e/ep^[a/ejr<(^-p^A2)2> 

•(1 /aKVtf-p^J-bxVCf-p^A;;))]. (1 Be) 

As a result of the Lie perturbation theory, the effective potential 

becomes rather complicated in the new coordinates at the expense of the 

removal of the gyrophase dependence while preserving the Hamiltonian 

symmetry. 

III. The Gyrokinetic Vlasov-Poisson-Ampere System 

In this section we derive a reduced Vlasov equation for the ion 

distribution function F± in the gyropnase-averaged coordinates, using the 
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HamiUonian derived in the previous section. The reduced electron Vlasov 

equation can be obtained by taking the drift kinetic limit of Eq.Cl 5!. 

Although there exist some cases where a gyrokinetic description is also 

necessary (or the electrons25 ( k x p e - D , we can gain more physical 

insights by considering the case where two species are governed Dy two 

different equations. To recover the gyrokinetic description for the 

electrons is rather straightforward. Self-consisterry relations 

(Poisson's equation and Ampere's law) are then presented in terms of Fj 

and f e. Although their derivation is straightforward, the enforcement of 

self-consistency is quite important and sometimes leads to a conclusion 

which is drastically different from that of a non-self-consistent theory. 

From this section on. we restore the proper dimensions py writing m and 

c explicitly. The Vlasov-Poisson-Ampere system consists of 

{fj.tf(Z)J = 0. (17) ' 

V2<p(x.t) = -47te{/f i(Z)S(X-x+p)d6Z - / f e d 3 v } , (18) 

i V ±

2 A z ( x , t ) =-4Tte{;(pz-(e/m ic)A2)f i(2)S(X-x*p)d6Z 

-J"(p z*(e/m ec)A z)f ed 3v } 

=(6)p e/c)2A z-4TTel/p zf j(Z)5(X-x*p)d 6Z-Jp zf ed 3vh (19) 

where d 6Z m ndz/dZfld3Xdjidpzd9. p z is the momentum per unit mass . 

and m e / M i « l has been used. 

The collisionless skin depth appears explicitly in Ampere's law 

because we use p z as an independent variable. Now, we apply the 

averaging transformation T" 1 in Eq. (17) to get8 

{ Fj. H"t} = 0, (20) 
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where F̂  = T"' f j , and we have used the fact that the form of the Poisson 

tensor remains the same under T 1 . Equation (20) indicates that Fj is a 

function of the integrals of motion of H and hence e-independent. In 

terms of the gyrophase-averaged variables. Poisson equation and 

Ampere's law become 

V2<p(x.t) = -47tef/TFi{r)S(X"-x*p)d6?- neJ (21) 

and 

(VL

2-(Qp9/c)2)Az(x,t) = ^TXeUp^TFiCZJS^-x+pJd6?- /p z f e d 3 vl, 

(22) 

respectively. 

Equations (20-22) constitute the gyrokinetic Vlasov-Poisson-Ampere 

system. From Eq.(lS). the explicit form of the gyrokinetic Vlasov 

equation, accurate to O(E^), becomes 

eFf/dt • Ueb-VFi - (e/Q im i)V'^xb-VF i - eh-V^eF^/ap^ = 0, (23} 

where dJT/dt = 0 and dF/de" = 0 have been used. Up to 0(e 2). the 

corresponding Poisson's equation and Ampere's law are, respectively. 

V2(P(x.t)=-4TCe[;(F i(z5*(ee/Q){($-p^A2/c)eF/a]r*(l/aTv'(*-p^S2/c)-b 

»VF i})S(x'-x*pjd 5r - ne], (24) 

and 

(V x

2 -(03 p e /c) 2 )A z (x, t )= -47Tef/pz ( Fj(Z) •<ee/Q iH(£-p^A2/c)aF i/djr 

• O/QJVC'J'-p^/cJ-bxVFj}) S(7-x*p)d 6 Z"- / p z f e d 3 v ) . (25) 

The reason we are keeping 0(e 2) terms only in Eqs.(24-25) is related to 

energy conservation. We wil l discuss this later. For completeness, we 

also write the electron drift kinetic equation, 
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af e /e t • u eb-Vf e - c /B 0 W e xb .V f e • eb -V* e d f e / dp z = 0. (26) 

where * e m <cp> ~ p2<A z> • e<A z

2>. and u e a dH/dpz = p z + e<Az>. 

Equations (23-2B) constitute a closed set of equations describing low 

frequency electromagnetic (loosely termed as drift-AIfven) plasma 

fluctuations. Here, we remark that the acceleration term containing the 

induction electric field dA z/6t-3f/6v z is hidden in the first term of 

Eq.C26). i.e.. 

a/at | p f = a/at | v f • (e/c)aAz/at-af/evz. 
Similarly, the electrostatic field along the perturbed magnetic field line 

is contained in the third term of Eq. (26). 

. The energy conservation is important not only as one of the basic 

properties of a Hamiltonian system, but also as a stringent test of the 

computational scheme. The total energy of the Vlasov-Poissan-Ampere 

system expressed in terms of the original particle coordinates is 

E =(1 /2) ;m i v 2 f i d 5 z*( l /2 )Jm e v 2 f e d s z»( l /87X) ; |E | 2 * lB | 2 d 3 x. (27) 

Using the averaging transformation T. the ion kinetic energy can be 

written in terms of Fj as 

E( * ( l / 2 ) /m { v 2 f i d 6 z = JrnjOiB * (p z - (e/m tc) A z) 2 /2)TFjd 6Z. (28a) 

Upon integrating by parts, we can write i t as 

Ej = JF i (Z)r 1 ni l ( ; iB • (p 2- (e/mtc) A z ) 2 /2)d 6 Z. (28b) 

For the electron kinetic energy, we need to consider only the contribution 

from the parallel motion, since electron dynamics are governed by the 

drift-kinetic equation. For the magnetic field energy, we neglect the 

equilibrium part which is constant. Thus, the total energy becomes 

E - / F ^Z ) T" 1m i(j iB*(p z-{e/m ic)A z) 2/2) d 8Z 
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• (1/2) / T em e(p z* (e/mec) A z ) 2 d 6 z 

+ (1/8it)/1SE | 2 * | SB 1 2d 3x = const. (29) 

or performing T" 1 explicitly. 

E=/F im i(p z

2/2-(e/m ic)p 2<A z>*(e/m ic) 2<A 2

2>/2+pB)d sz 

•(1/2)/f em e(p 2+(e/m ec) A z ) 2 d 6 z • (1/8Tt)/J5E| 2 * j SB | 2 d 3 x 

• (e 2 /2Q t ) / [a/6; i<p 2 - p z

2 A 2

2 / c 2 > 

• ( l /QiKV^-bxV?- p z

2V« z-bx7A z /c 2>]Fjd 5Z= const. (30) 

where subscripts for species nave been ignored for simplicity. This 

conservation property can be verified by taking the partial time 

derivative of Eq. (30) and by using Eqs. (23-26). 

IV. Limiting Cases and Applications 

In tiie preceding section, a set of gyrokinetic equations [Eqs. (23-26)] 

has been derived, in which fast gyrophase dependence has been completely 

removed. Let us now examine a number of limiting cases of the equations 

to gain more physical insights into these equations. From the gyrokinetic 

particle simulation point of view, further simplification of the equations 

is also desirable. 

First, we note that Eqs. (23-26) recover the results of Dubin et al. in 

the electrostatic limit where A z -* 0. Next, as mentioned before, our 

equations contain higher-order nonlinear terms which were not kept in 

the previous publication.6 Therefore, it is enlightening to discuss 

relationships between our equations and those of Ref.6. and to examine 
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whether their results can be systematically recovered from our 

equations. By dropping the nonlinear terms in V and u z and by linearizing 

Poisson's equation and Ampere's law, assuming a MaxweUian background 

distribution function in JJ and a linear background density profile, we 

have 

eF/at • uzb-VF - c/B0VV*b-VF - eb.V¥aF/8p 2 = 0. (31) 

-k2«p = -47te{tfj- ne} • l / n 0 X D 1

2 [ n 0 ( 1 - r 0 ) <P -J IQCI - r 0 ) A z 

• ( r 1 - r 0 ) ip i

2 K 1 -UV i n 0 )<p - t V x J i 0 ) A 2 } ] . (32) 

- ( k 1

2 * ( a i p e / c ) 2 ) A z = - 4 r t e { J r j e } - l / n 0 X D i

2 f J i o ( 1 - r 0 ) < p - n 0 ( l - r 0 ) A z 

• (r rro)ip i

2(c r{(v iJ i 0)<p-(v in0)A2fL (33) 
where the Poisson-Ampere equations are Fourier-transformed to the k 

space (the subscript k for the perturbed quantities is omitted for 

simplicity). ¥ = <ip> - p z<A 2>, u 2 = p z - e<A z>/c, n i 0 = 

Jp^2Fj(2JS(x"-x*p5dZ r n(b)=I n(b)e" b, I n is the modified sessel function 

of order n, b=kj_ 2pj 2, and X n j " 2 s 47tn ae 2/Tj. Here, we emphasize that in 

the reduced Vlasov equation [Eq. (31)], the E * B convective nonlinearity 

and the magnetic nonlinearity (streaming along tilted magnetic field) as 

well as the velocity space nonlinearity are retained. In this sense, Eq.(31) 

is essentially the equation of Ref.6 in slab geometry written in 

different variables (p 2 instead of v 2). Since we are dealing with the total 

distribution function, the following difference st i l l exists between our 

results and those of Ref.6, Since in Ref. 6 the distribution function is 

broken up into unperturbed and perturbed parts, the velocity space 

nonlinearity b-V¥d8F/3vz has been dropped in their formulation, based on 
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their orderings. However, in our equations, the velocity nonlinearity is 

kept naturally without introducing any complications. Furthermore, our 

equations conserve energy while some higher order terms should be added 

to the Frieman-Chen equation to achieve energy conservation. The energy 

invariance for our system can be written as 

E = /F i(p z

2 /2-(e/m ic)p 2<A 2>*(e/m ic) 2<A z

2>/2*uB)d 6Z 

* (1 /2) f f e (p z *(e/rn e c)A z ) 2 d 6 z^1 /8TT)j* | SE | 2 * \ SB 1 2d 3x 

*(e 2 /2TiK2rt)- 3 [n 0 ;d 3kCl- r 0 ) | < p k | 2 - ( 1 / c ) 2 n t o / d 3 k ( 1 - r 0 ) | A z k | 2 l . 

(34) 

Here, we Keep the terms proportional to Kx'KV^nn)^ - ^x J iO^ A 2k^ a n d 

K^KV^LJ^QJIP^ - (V x n^ 0 }A z i t l in Eq.(32) and Eq.(33), respectively, in 

order to conserve energy exactly. These terms are smaller than the other 

terms by order of e, and have been neglected by most authors except for 

those of Ref.8. 

Returning to the issue of simplification for particle simulation 

applications, one problematic property of Eq.(31) comes from the last 

term of the renormalized potential V. It involves both a derivative in 

velocity (>) space and s convolution in k-space, which require seme 

cumbersome and expensive computations. This nonlinear part of the 

renormalized potential can be greatly simplified in the long wavelength 

(small k x pj) l imit. Therefore, we get the following limiting case of the 

gyrokinetic equations by simplifying only the nonlinear part of the 

renormalized potential. Using the small-argument expansion of the Bessel 

functions, i t is straightforward to show that from Eq.(16t)> 

y = <cp> - p z<A z>/c • e<A z

2 >/2- (ep i

2 /2T i ) | 7X((P - p zA z) | 2 . (35) 
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Also, in this limit, we have 

u z = p 2 - e<Az>ym ic • (e 2 p i

2 /T i )V x A 2 -V x (<p - p zA z), 

= Pz(1 - (SB/B)2) - e<Az>/m tc * (e 2/Q i

2)(V xA zxb)xV(P-b, (36) 

where the correction factor in the first term of the last line is related 

to the difference between <A 2

2> and <A Z > 2 , The last term represents the 

SExSB drift in the parallel direction. We can also simplify Poisson's 

equation and Ampere's law by assuming that F| is MaxwelUan in JJ, and 

making long wavelength approximations only to the nonlinear convolution 

terms. Then, they become 

V2<p(x.t) = -47te(N r ne) - ( 1 /n Q X D i

2 ){ n t (1- r 0 ) <P -J t Cl- r Q ) A z 

•P| 2(V JNj-7 J i«p - V j J r V j A 2 ) } (37) 

and 

(V x

2 - (Q p e / c ) 2 )A z (X , t ) = -47t /c(J r j e ) 

- (i/n0XQi2)Uj(i-r0)*-n i(i-r0)A z*Pi2{Vj>J l-v x!p -v x n r v x A z ) } , 

(38) 
where J; = ef^zF{(z)s(x~x*p)<iz, j e = e / f e p 2 d 3 v. N t = fFi(Z)s(X-x*'p)<iZ. 

nt= fF\(Tu(X'X)<iZ, with the energy integral defined by 

E=/F i( l /2p z

2-p z<A z>*e 2 /2<A z

2>*yB)d 6Z 

•(1/2)rf e(p 2*(e/m ec)A 2) 2d 6z * (8TC)- ' I / | SE J 2 * |SBJ 2 d 3 x • 

(e2/2Tt) /(2Tt)3 [ni/d3k(i- r 0 ) | (p k | 2 - (i/c) 2 n t;d 3k(i- r 0 ) |A 2 k | 2 ] . 
(39) 

The above set of equations, which is valid for arbitrary k x p j linearly and 

for small kj_p^ nonlinearly. is useful for simulation studies for which a 

recent numerical scheme of Ref.11 can be used. 
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Finally, we show that we can recover the reduced MHO 

(magnetohydrodynamic) equations from our gyrokinetic equations. 

Although it is possible to derive a variety of generalized fluid-like 

equations 2 6" 2 9 which retain finite Larmor radius effects, detailed 

discussion wi l l be given in a future publication where toroidal geometry 

is considered and a direct comparison would then be more meaningful. 

Changing the variable from p z to v 2, we obtain in the limit of j i -*0 and 

neglecting A z

2 nonlinear terms, 

df/at +v 2b».Vf-cB 0* 1Vtp*b-Vf +e/mj(b".V(p*c- 1dA z/dt)df/dv 2 = 0, 

(4Qa) 

where b* = b + VA 2 xb/B n . By taking the density moment of Eq.(40a) and 

talcing the density and parallel velocity moment of the electron drift 

kinetic equation, we obtain the following equations. 

dNj/dt * b"-vr t = 0(e 3). (40b) 

dn e/dt • b " -v r e = 0(e 3), (40c) 

m e dr e /d t • b»-VPe - e(b*.V<p*c_1 eA 2 /dt )n e = 0(e 3). (40d) 

where Ta = / f ^ v ^ v . Also, Poisson's equation in the quasineutral 

plasma limit ( X 0 e « p s) becomes [from Eq. (37)] 

tfr n e + epi 2 /T t { V r n i 7 x i p }=0. (41) 

On the other hand, for the usual cases of negligible ion contribution to 

equilibrium parallel current, we can ignore the last term of Eq, (33). 

Then, the Ampere's law simplifies to 

V j^A^x . t ) = -4TC(J rj e)/c. (42) 

Subtracting Eq. (40b) from Eq. (40c) and using Eqs. (41-42), wo get the 

following vorttcity equation, 
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4itm icB 0~ 2d /<Jt V r n . j V x $ = - b - V 7 ±

2 A 2 . (43) 

Equation <40d) is the Ohm's law where the first term is the electron 

inertia and the second term is related to the electron diamagnetic drift. 

Ignoring these kinetic corrections, we obtain the following induction 

equation, 

dA 2/dt = -b-V<p ( or c" 1 dA 2/dt • b*-V(J> = 0 ). (4-4) 

Equations (43) and (44) form the low-Jl reduced MHD equations in slab 

geometry. 

V. Conclusions 

In the present paper, we have derived a self-consistent and 

energy-conserving set of gyrophase-averaged nonlinear equations for the 

Vlasov-Poisson-Ampere system. The new formulation is useful for 

describing low-frequency electromagnetic, fluctuations in finite-3 

plasmas. The main difference between our equations and those of Ref. 6 

is that our equations are formulated in terms of the total distribution 

function and explicitly phase space preserving. Furthermore, we have kept 

the formally higher order nonlinearities, such as those associated with 

parallel acceleration and polarization effects, both or which were ignored 

in Ref. 6. Another important aspect of our equations is that they can be 

readily solved by particle simulation techniques, which, over the years, 

have proven to be the most effective numerical tools for studying plasma 

instabilities when the Kinetic effects, such as wave-particle interactions 

and finite Larmor radius effects, are important. There exists 

accumulating evidence that the transport properties in the confinement 

region (excluding the sawtooth region and the edge) of tckamaks are 
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dominated by this type of high temperature (coliisionless) microscopic 

phenomena. 

The advantage of using the gyrokinetic equations for particle 

simulation instead of the original Vlasov-Poisson-Ampere system is the 

elimination of high-frequency space charge waves from the simulation 

plasma. The highest frequency normal modes for the reduced equations 

can be obtained from the well-known dispersion relation of 

0 • 1 • [Mfl>/k„vA)«J[i • t e Z t t e ) ] / ( k x p s ) a = 0. (45) 

for a homogeneous plasma in a shearless slab with cold ion response 

(o«K| ,v t j ) and (k x Pj) 2 « 1. where v A * c\De/ps is the Alfven velocity , 

X n @ is the Debye length, l e * ci}/y /2k|,v t e, and Z is the usuat plasma 

function. Thus, for 0 » me/m{ (or v t 0 » v A ) . the kinetic shear-AUven 

waves with 

u = ±k „v A [ 1 * (k x p s ) 2 ] 1 / 2 (46) 

now represent the oscillations with the highest frequencies in the 

simulation. As one can see. they, are considerably smaller than, for 

example, the frequencies for plasma waves <o p e and lower hybrid waves 

0) L H . For the reduced MHD equations, Eqs. (43) and (44), the normal 

modes are the usuai shear-Alfven waves, <o = ±k ( ,v A with magnitude not 

much different from that of Eq. (46). 

As shown by Refs.11 and 16, the net result for the elimination of 

space charge waves is the tremendous increase in the time step and grid 

spacing used in the simulation as well as the substantial reduction of the 

noise level, which enables us to use considerably less number of 

simulation particles than we would for conventional particle codes. 
22 

http://Refs.11


Thus, with the availability of the present generation of supercomputers, 

we can easily simulate not only electromagnetic-type microinstabilixies 

in tokamaks but also those that are basically electrostatic in nature by 

taking advantage of the numerical properties of finite-0 gyrokinetic 

plasmas. Moreover, since the improvement of the numerical properties 

comes from the shear-Alfven waves, which exist in both the gyrokinetic 

equations and the reduced fluid equations, the simulation of the global 

MHD modes with a grrokinetic code utilizing the formulation in this paper 

is, therefore, a distinct possibility. It wi l l afford us with the unique 

opportunity to study tha kinetic effects on those modes. 
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Appendix 

In this appendix we present the results of an alternative formulation 

of the electromagnetic gyrokinetic equations in terms of v 2 rather than 

p z . Although the resulting equations are quite cumbersome because of the 

reasons we have mentioned earlier, they provide a useful comparison to 

the results presented in the main text. Also, this formulation is probably 

more familiar to the workers in the particle simulation field where the 

Darwin model is frequently used. The derivation has been carried out 

using the action-variational (generalization of Lagrangian approach to the 

phase space) method. 3 0 , 3 1 The Euler-Lagrange equation (equation of 

motion) can be derived from the following averaged fundamental 1-form 

( generalized Lagrangian ). 

r = ^ d z 1 - hdt = iidQ * (e/m{c)A0CX)-dXx • (U • (e/mjC)o<2»)dz 

- ( U 2 / 2 • JIB * Ce/mi)##)dt. (AD 

where 

o««2=<A z>-(e/2m iQ i)[a/d^<(?-(U/c)A2)A z>*<V(*-(U/c)5 z)-bxVA z>/Q i]. 

* • =<tp>-(e/2mjQi)[a/dji<{3> -(U/c)A2)<jJ>*<VC* - (U/c)S^)-b>cV9>/QlJ 

• (1/2)<A Z

2>. 

The resulting reduced Vlasov equation up to o(e2) is 

straightforwardly. 

af/et+v2b*.vf-cB0"1,7<j'*>«b-vf*e/m i(b#.v*"+c"1ao<z"/at)ef/eu 

= 0, CA2) 

where v z = U • (e/mp d**/au. 

Since Eq.(A2) is not useful for practical purposes due to the 
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complication of <tz and • " . the following limiting case which is 

appropriate for the ggrokinetic simulation studies involving the Oarwin 

model is presented. In the following paragraph, we neglect the nonlinear 

corrections to the renormalized potential which contain A 2 , while keeping 

the electrostatic corrections in the long wavelength limit. Even in this 

limit, all the formally dominant nonlineartties such as the particle 

streaming along the tilted magnetic field are kept. We also note that «p> 

and <AZ> are st i l l treated on an equal footing. Then, the renormatized 

potentials simplify and become, 

O£- Z - .<A 2 >, *«=<$> - (ep 1

2/2T i) J VxiJ> | 2 . (A3) 

In this limit, the Poisson's equation and Ampere's law for Maxwellian 

F̂ Ĉ t) become 

V2(p(x.t) =-4Tte{Nr neJ - < 1 / n 0 \ D i 2 K^Cl- r0)<P •p i

2{V ±n rV 1<J> H 

(A4) 

7j_2A z£x.t) = -4Tt{J r j e } /C 

- ( l / n 0 X D i 2 ) [ J l (1 - r 0 ) fp .p i 2 {7 - L J r Vj > #H. (A5) 

where J{ s /v zF i(2)S(X-x*p)d 52 . j e = J f e v z d 3 v . Equations (A2-A5) 

conserve energy and the corresponding energy invariant is, 

E =/F i(v z

2/2*.uB)d 6Z •(1/2)J r f ev z

2d 6z • (8Tt)-1/jSE \2+ jSB | 2 d 3 x 

* (e 2/2T i)(2Tt)- 3 ( n ^ K d - r 0 ) | * k j 2 X (A6) 
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