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Abstract

A self-consistent and eneryy-censerving set of nonlinear
gurckinetic equations, consisting of the averaged Vlasov and Maxwell's
equations for finite-B plasmas, is derived. The method utilized in the
oresent investigation is based on the Hamiltonian formalism and Lie
transformation. The resuiting formulation is vaiid for arbitrary veives of

k p; and, therefore, is most suitable for studying linear and nonlinear

evolution of microinstabilities in tokamak plasmas as well as ather areas
of plasma physics where the finite Larmer radius effects are important.
Because the underlying Hamiltonian structure is preserved in tﬁe present
formalism. these equations are directly applicable to numerical studies

based on the existing'ggrokinetic particle simulation techniques.

DISTRIBUTION OF TH:S BRSUEZAT 1S UNLIMITED



1. Intreduction

Low-{requency microturbulence is generally believed to be closely
linked to the observed ancmalous transport in tokamaks.'"3 Theoretical
research in this area has been very active for more than two decades.
One of the most important advances was the use of gyrokinetic
ordering,"-5 which considerably simplified the analytical aspect of the
problem while keeping intact all the relevant physics. Although the
ordering was originally designed to facilitate the linear analysis, Frieman
and¢ Chen® have successfully implemented the idea to derive nonlinear
gyrokinetic equations in general geometry which can be used for studying
the drift-Alfvén system. Their work was followed by the development of
the new nonlinear gyrokinetic equations which are formulated in terms of
the total distribution functicn and, therefore, can be easily studied by the
particle simulation method.”  Oubin et al.8 have derived an energy-
conserving set of gyrokinetic equations which preserves Hamiltcnian
symmetry by using the Hamiltcnian-Lie perturbation methed,® !9 and has
set Lee's equations on a firmer theoretical ground. One salient feature of
their set of equations is the appearance of the ion polarization density
response in the gyrokinetic Poisson's equation, which has & great impact
on the numerical schemes utilized in solving these equations. The fact
that the polarization drift appears not in the gyrophase-averaged Vlasov
equation but rather in the gyrckinetic Poisson equation, is the natural
consequence of the gyrokinetic procedure and is also desirable from a

numerical viewpoint.

The feasibility and efficiency of "gyrokinetic particle simulation” in

studying low-frequency phenomena in tokamaks have been discussed in 2
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recent publication.!? Since the fast particle gyrations are eliminated
from the simulation plasma, while the all-important finite Larmor radius
effects are kept intact, orders of magnitude improvement in time step,
grid spacing. and noise level over the conventional particle simutation
have been achieved. The simulation scheme described in Ref.11, which is
based on the equations derived for the electrostatic problems in a slab
geometry,”-® has recently been used in the investigations of drift-type
instabilities in  two-dimensional!2-'4 and three-dimensional'3
geometries. Aside from demonstrating the versatility and superiority of
fhe gyrekinetic approach in numerical simulation, considerable insight has
also been cbtained through these studies concerning the saturation and
the induced transport mechanisms. Thus, it is natural at this stage to
extend the present capability by including additiomal physics in the
gyrokinetic forrmulation so as to better describe the phenomena of

interest in a more realistic situation,

As a first step in that direction, we have developed in the present
investigation & reduced set of gyrophase-averaged equations in slab
geometry, which consists of the Viasov equation as well as the
asscciated Poisson's equation and Ampere's  law, for studying
low-Tfrequency electromagnetic fluctyations in finite-f plasmas. Thus,
the present paper, in which magnetic perturbations and induction electric
tields are acceunted for, can be considered as a natural generalization of
the work by Dubin et al.® It differs from the existing nonlinear
gyrokinetic theories for finite-§ plasmas,® since the resulting
formalism in our case preserves the Hamiltonian symmetry of the original
Viasov-Maxwell system and, consequently, it is suitable to both
analytical and particle simulation studies. More specifically, without
breaking up the distribution function into the unperturbed and perturbed
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parts as in the other formal approaches, the resuiting formalism is
explicitly ‘phase space preserving’ and, as such, conservation laws (e.g..
number density and energy) can easily be construcied {rom these

equations. which are essential for numerical purposes.

Recently, it has been shcwn that the numerical properties of the

gyrcKinetic plasma can te further improved even with a very moderate
value of plasma 8, e.g., B 5 me/m;.'® Therefore, it is desirable from the

numerical point of view to study both the predominantly electrostatic
microinstabilities and those asscciated with the magnetic perturbations
with the present set of equations. This is also the reason why it is
necessary to first develop the finite-3 gyrokinetic equations in slab
geometry before embarking on the task of including the toroidal effects
in the formulation. The latter in the electrostatic 1imit has been
investigated earlier by the authors of Refs.17 and 18. Althcugh they have
successfully derived the gyrophase-averaged Vlasov equation which
contains the lowest order nonlinearities, the energy-~conserving set of
Vlasov-Poisson equations which contains all the crucial polarization
physics is Uet to be derived. It is necessary t{o keep formally higher order
nonlinearities to achieve that goal.'® Another interesting aspect of our
equations is that they can easily be reduced in the long wavelength limit
to the “reduced MHD equations.?® Thus, it suggests the possibillty of
simulating global MHD instabilities with the finite-§ gyrokinetic particle
code.'® This exciting prospect, which can provide us with the
opportunity to study kinetic effects on MHD modes, is also an impetus for

the present investigation.

In this paper, the usual gyrokinetic ardering of w/Q;~ ky/K;~ e9/Tg
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pi/Ly ~ O(e) and k  p; ~ (1) as well as 8B/B ~ O(e) has been used. Here,
w and Q; are the characteristic fluctuation frequency and the ion

cyclotron trequency, respectively; k, and k; are the components of the
wave \(ector in the parallel and perpendicular direction with respect to
the ambient magnetic field; p; is the ion gyroradius: L, is the density
scale length: 9 and 3B are the fluctuating electrostatic potential and

magnetic field; ai'd € is the smaliness parameter (not to be confused with
the inverse aspect ratio). For simplicity, we neglect the compressional

component of the magnetic perturbation, i.e., A;, in the formulation.
This component does not directly cause any radial transpert and the

approximation is good for the cases with a moderate B le.g., 8 < (asR)?
for tokamaks, where a {s the minor radius and R is the major radius].

As we have menticned earlier, the methodology used in our derivation
is based on the Hamiltonian formalism and Lie transformation, which has
been used extensively by Littlejonn®!C in his investigation of guiding

center drifts in a specified (non-self-consistent) electromagnetic tield in
the drift-kinetic limit (k p;<<1)and, subsequently, by Dudin et al% in
their derivation of a self-consistent set of gyrokinetic equaticns (k p;

1), This approach is systematic and requires much less algebra compared
to the conventional derivation which involves direct averaging of the
Viasov equation.®7 One important issue for our case is the choice of the
coordinates in the phase space. We have decided that there are several

advantages in using cancnical momentum p, as an independent variabie

rather than the velocity v, as in the previous analyses. ( Here, the

subscript z designates the direction of the equilibrium magnetic field.)

S



For example, by doing so, we can introduce fluctuating magretic field $8
explicitly in the Hamiltonian. This fact has been utilized in both the
study of test particle transport 21 in tokamaks and the derivation of the
linear relativistic gyrokinetic equation.?? One important consequence is
that the resulting formalism becomes covariant in that the fluctuating
electromagnetic fields appear as 2 particular combination of potentials,

i.e.. the generalized potential ¥ = ¢-v,A,. Furthermore, the induction

electric field, which involves the partial time derivative, does not appear
explicitly in the gyrokinetic equation, Therefore, the equation is in a
form most suitable for renormalization. Since the numerical schemes for
calculating the induction field are quite involved for finite-8 particle
simulations 1in which the transverse displacement current is
neglected.'$23 this choice of variables s also advantageous

computationally. The formulation in terms of v, has actually been

performed in the present investigation. However, the resulting equations

are much more complicated than those of the formulation in terms of p,.

We will simply present the results in terms of v, in the Appendix for the

interested readers. The details of the derivatien invelving the
action-variational Lie perturbation theory24<% will be given in a future
publication where general geometry is considered.!?

The organization of the paper is as follows. In Sec. Il we use the
Hamiltonian formalism and Lie transformations to derive a
gyrophase-averaged single-particle Hamiltenian in the presence of an
electromagnetic field. In Sec. Il we consider the Vlasov-Maxwell
equations and use the gyrophase-averaging procedure developed in Sec. Il
to derive a self-consistent, energy-conserving set of gyrokinetic
equations for the V\asov-M-:axweH systemn. In Sec. IV various limiting
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cases are explored. Our conclusions are drawn in Sec. V. Finally, in the

Appendix, an alternative formulation in terms of v, is presented.

I1. Derivation of Gyrckinetic Hamiltonian

In this section, we derive the gyrophase-averaged Vlasov equation
using the Hamiltonian formalism and the Lie perturbation method. The
mathematical foundation of the theory can be found elsewhere.9:19

We set m=c=1 for simplicity. The equations of motion (or Hamiltton's
equations) in an arbitrary phase coordinate system 2 take the form

dz/dt = {z.H], (1)
where H is the single-particle Hamiltonian and { . } is the Poisson
bracket. The Poisson bracket of two functions f(2) and g(2) is defined bg

{f.g} = 3f/3z.J.9¢g/dz, (2)
where J {s the Poisson tensor which is antisymmetric and covariant.

In particular, in the extended canonical coordinates, z.= (q.p.w.t) this

tenscr takes the form

r -1 1
Kaw |1 o] @)

where 0 and 1 are the 4x4 null and unit matrices, g and p are the usual
canonical coordinates, and time t is now a coordinate conjugate to
energy w in an extended eight-dimensional phase space. [t has been shown
previcusly that the averaging procedure is facilitated by the introduction
of the extended phase space.® In this investigation, we are interested in



Z = (x,v,.p;8.t.w) where x is the position, v, is the perpendicular

compenent of particle velocity, and p, is the canonical momentum along

the z direction {i.e., along b ). Since J transforms contravariantly, we
can find its form in any set of coordinates 2 connected via a
diffeomorphism to canonical coordinates z by

J(Z) = 32/92-J(2)-92/3z2. {4)

The single-particle (zeroth-order) Hamiltonian Hg for a charged particle
in a8 uniform magnetic field is given by

Ho(X.v}.p2.8,t.W) = ( py2 + vJ_'—’)/z - w, (3)
where Bg = Bgb. In our coordinates (x.vl.pz,a.t.w), the nonvanishing

elements of J derived from Eq.(4) are;

{x,v;}=c, (6a)
{x.pz} = B, (6b)
{x.e} = -asv,, (6¢)
{ov = arv,, (6d)
{w,th=1, (Be)

where 8 = tan"(v~e1/v-e2). eiand ey are arbitrary orthogonal unit
vecters in the plane perpendicular to b, and a = @1cosé - epsing, ¢ =

-eq sine - e,c0os8, Q = eEO/mc.

As shown in £9s.(S) and {(6), the @ dependence is in the Poisson
bracket, while the Hamiltonian Hg is e-independent. Now we want to
remove the 8 dependence from the zeroth-order equations of motion by

finding an appropriate set of coordinate transformations. This preparation

can be achieved by transforming z to a new set of “gyrocenter”
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coordinates. In the, absence of perturbed electromagnetic fields SE and

§B, the gyrocenter variables are well known, i.e.,

Z = (X,p1.8,p5.t.W)
with X = x-p, p=bxv/Q, and p:vf/m. Here we would like to point out

that there is an alternative -vay, that is. to define the gyroccenter
cecordinates in terms of the {otal electromagnetic field (i.e., in the
presénce of SE and §B). This can be done by using “Darboux Theorem<24
which ensures the existence of the local canonical variables. The
advantage of the Darboux transformation is that it gives considerable
insight into single-particle dynarmics Yeyond the capability of mere
conventionall approaches. This is cne of the reasons why the Darboux
thecrem has been widely used in the calculation of higher-order guiding
center drifts in the drift-kinetic regime.®'° One may want to adopt that
procedure directly for a gyrokinetic problem. However, in general (except
{or the case of the electrostatic problem in siab gecmetry considered in
Ret.8), the transformatior from the particle to the Darboux coordinates
becomes quite compiizated even after truncation to some order.
Consequently, Poisson’s equation and Ampere's law expressed in these
ccordinates are notf practical at all for numerical simulation purposes.
Since the main aim of this work is to derive a useful self-consistent set
of gyrckinetic equations for the investigaticn of plasma microturbulence
and transport which arise from collective fluctuations, we believe the
optimal way is to define gyrocenter variables in terms of the unperturbed
magnetic field By only (E, = 0 is assumed throughout this paper) and
introduce SE, 8B later on as perturbations using the Lie transformation
techniques. By doing so, the transformation from particle to gyrocenter

coordinates becomes simpler and the resulting equations are more

suitable for gyrokiretic particle simulation. Furthermore, the physics-
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contents in these equations are more transparent. which make the
comparisons to the existing theories® easier. The usefulness and
simplicity of the derivation given here are even more appareni whén we

consider the problem in general geometry.'®

Now, in terms of our gyrccenter variables, the zeroth order

Hamiltonian is
Hp = NBp * P;2/2 - W. ¥4
We note that A,;=0 is consistent with the assumption of the uniform

equilibrium magnetic field By = ByZ. The Poisson brackets for

gyrocenter variables are

{e.u} =1, (8a)
{82} =0,for 2 = 4, (8b)
{2} =0 tor 2 =8, ) (8c)
XX} =b x 170, (8d)
{X.pzt = b, - (ge)
{With =1, {at)

where | is the unit dyadic. Now, the full Hamiltcnian written in terms of

the gyrocenter variables becomes

F(2) = pB + (Pz-eAz(X+p.t))2/2 - W+ ed(X+p,1)

"

BB + D272 - W - E(epyAg-e9) « e2(eA,)2/2, ()
where the gyro-angle dependence appezrs only in the first and second
order Hamiltonians which are tagged by ¢'s, i.e.,
Hy = -€ (epyAz- e9), (102}
Ay = e2en)?s2, {100)
Now, we can systematically remcve the @ dependence from the perturbed

Hamiltonian by transforming it to a set of new variables using the Lie
10



perturbation theory.9:1° Denoting the transformation by T, we have
Z=12, A=1T4, (n

where T = exp[-[%d\ L(1.e)], Z and H are the gyrophase-averaged

ccordinates and Hamiltonian, L is the Lie cperator with L{(xe) = T

AP Ge), Lyle) = {6 | m Lo + €Ly, and G's are the generating

functions of the transformation. Based on the gyrokinetic crdering, the
. Lie operator can be ordered as

Lng = 96/9€-3/3U - 8G,/31:0/38 + 1/QVG,-bxV, (12a)
where V=d/dX and aGn/GW = 0, since we do not transform in time.

Expanding Eq.(11) in E, we have

-H_o = ‘0, (13a)
Hy = Hy + Lyg Ho. (13b)

At each order, we demand that H_n be e-~independent and the generating

functions contain no 8-independent part to avoid secularity in 6. The

averaged Hamiltcnian up to second order in & then becomes
A= 1B » 05272 - W+ €el<9> - Pa<A0) + €262¢A, 252
-(e2e2/20)3/90K(P - PB,02
+(11QKT(F - poaly) bxVIT-p A D), (14)
where <9 = 1/271 §d8 9(X+p,t), F= ¢ - <>, & = [BF do, &, = [O&,de.
P = (2172)1/23(8), and the superscript bar denotes the transformed

variables. The generating function Gq is

36,738 = -(e/QNJ - p,A,). (15)
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whereas the formula for 65 is not of interest at this order. The explicit

relationship between the transformed variables and the criginal variables
is nat usually needed for practical purposes. This is because the
functional form of the Poisson’s tensor remains the same under the Lie

transformation. From Eq.(14), the equations of maotion are

dX7at = {X.A} = {X.X}-VH « (X.p;}9R73p, = bxl/Q-VH » bdH/dp,

= e/QbxVY + by, (162)
dpy/dt = [pyHl = {p2.X}-VH = -b.VH = -eb- Vv, (180)

and
durdt = 0, {16c)

where the rengrmalized ef{ective potential is
Va(Pd-py{AL0+e<A,2) 12-(e/2aM8/ 91T P R,)2>+1/0<T($-
PpSg DX V(P-pA0] (164)
and the effective parallel velocity is
Uy =M/ 3Py=py-a<A,)-(e2/2Q)0/ 0 [3/3FK(F-poA,)2>
{17QKT(F-33,) X T (F-FLE,)01. _ (16e)
As a result af the Lie perturbaticn thecry, the effective potential
becomes rather complicated in the new coordinates at the expense of the
removal of the gyrophase dependence while preserving the Hamiltenian

symmetry.

itf. The Gyrokinetic Viasov-Poissen-Ampere System

In this section we derive a reduced Vlasav equation for the ion

distribution function F; in the gyrophase-averaged coordinates, using the

12



Hamiltonian derived in the previous section. The reduced electron Vlasov
equation can be obtained by taking the drift kinetic limit of Eq.(16].
Although there exist some cases where a gyrokinetic description is also

necessary for the electrons?® (k,p,~1), we can gain more physical

insights by considering the case where two species are governed by two
different equations. To recover the gyrokinetic description for the

electrons is rather siraightforward. Self-consistency relations

{Poisson's equaticn and Ampere’s law) are then presented in terms of Fi

and fqo. Although their derivation is straightforward, the enforcement of

self-consistency is quite important and sometimes leads to a conclusion
which is drastically different from that of a non-self-consistent theory.
From: this section on, we restore the proper dimensions by writing m and
¢ explicitly. The Viasav-Poisson-Ampere system consists of

{1;.A(2)} = 0, - ' an-
V29(x.t) = -4reel[1;(2)6(X-x+p1d52 - f1oa3vi, (18)
{7 2A5(%,t) =-47te{f(py-(e/m;c)A )1 (2)5(X-x+p)d82Z
-[(py+(e/maC)A) a5V |
=(Wpe/C)2A,- 4718l [p,11(2)5(X~x+p)dB2- [, 1ea5ul, (19)
where a8z uaz/aznd3Xdpdpzde. Py is the momentum per unit mass ,

2nd mg/Mi<<i has been used.

The collisionless skin depth appears explicitly in Ampere's law

because we use p, as an independent variable. Now, we apply the

averaging transformation T~ in Eq. (17) to get®
[FFi =0, : (20)

13



where Fi = T'1fi, and we have used the fact that the form of the Poisson

tensor remains the same under T-1. Equation (20) indicates that F; is a

function of the integrals of motion of H and hence 8-independent. In
terms of the gyrophase-averaged variables, Pgisson equation and
Ampere’s law become
V29(x.t) = -4mel[TF{Z)5(X-x+p)dBZ - ng} (21)
and
(V1 2-(pe/C)2IAL(x,t) = -4meel[p,TF(ZI6(X-x+p)d0Z - [p,teddul,
(@2

respectively.

Equations (20-22) constitute the gyrokinetic Vlasov-Poisson-Ampere
system. From Eq.(18), the explicit form of the gyrokinetic Viasov
equation, accurate to O(e3). becomes

OF;/3t + Ub-VF{ - (e/Q;mJT¥xb-VF; - eb-V¥aF;73p, = 0, (23
where du/dt = O and 9F/88 = O have been used. Up to O(e2), the

corresponding Peisscn’s equation and Ampere’s law are, respectively,

— ——

V29(x,t)z-47tel[(F{ (T +{ e/ QUP-PA,/C)OF /1+(1/QF7($ Dy, /C)-b
xVFDE(X-%+PIa5Z - ngl, (24)
and
(V1 2-(wpe/S12)A (%, t)z -4Tee{[by ( F(Z) +(ce/W(F-pA5/c)3F /31
+(1/Q)V (8- G, /C)-bxVF(}) 8(X-x+P)d5Z - fp,1ad3vl. (25)
The reason we are keeping O(e2) terms only in £gs.(24-25) is related to

energy conservation. We will discuss this later. For completeness, we

also write the electron drift kinetic equation,

14



AMo/at + Ub-Tg - /BT YuD-Tlg + b-TV 3Mo/Bp, = 0,  (26)
where Yo = <02 ~ p,{AD + e(Azz). and g = dH/dp, = p, + e<AL).

Equations (23-25) constitute a closed set of equations describing low
frequency electromagnetic (locosely termed as drift-Alfvén) plasma

fluctuations. Here, we remark that the acceleration term containing the
induction electric field 8A,/dt-31/dv, is hidden in the first term of
Eq.(28B), i.e.,

373t o1 = 873t [t + (e/c)dA,at-31/dv,.

Similarly, the electrostatic field along the perturbed magnetic field line

is contained in the third term of Eq. (26).

. The energy conservation {s important not only as one of the basic
properties of a Hamiltonian system, but also as a stringent test of the
computational scheme. The total enerég of the Vlasov-Poisson-Ampere

system expressed in terms of the original particle coordinates is

E =(172)mv21;¢82+(1/2)fmov21,4824 (178101 | €| 2+ | B | 243%. (27)
Using the averaging transformation T, the ion kinetic energy can be
written in terms of F; as

E; = (172)fmv21;d82 = [mi(p8 + (p,- (e/mic) A,)2/2)TF;d82. (282)
Upon integrating by parts, we can write it as

Ei= ,I'Fi(Z)T'1mi(j.lB + (Pz" (e/mic) Az)2/2)d52. (28pb)

- Fer the electron kinetic energy, we need to consider only the contribution

frcm the parallel motion, since electron dynamics are governed by the

drift-kinetic equation. For the magnetic field energy., we neglect the

eq_uilibrium part which is constant. Thus, the total energy becomes

iS



+ (172) § 1gmglp,e (e/mge) A)2d82
+ {1/8mf | €[ 2+ | 5B | 2d5x = const, (29)

or performing T~! explicitly,
E=fFimy(p,2/2-(e/mic)py <A ) +le/mic)2<A,2> 12, uB)dC2
(1/2)f1gme(p +le/mgc) AL)2d82z + (1/7870)f ] 8E |2+ | 8B |2d%x
» (e2/20))[13/3u<P2- p,2A,2/c2)
» (L/QETEDAVF- p,2V S 0% A, /c25FF¢B2= const, (20)
where subscripts for species have been igngred for simplicity. This

conservation property can be verified by taking the partial time
derivative of EqQ. (30) and by using Eqs. (23-26).

Iv. Limiting Cases and Applications

In the preceding section, a set of gyrokinetic equations [Eqs. (23-26)]
has been derived, in which fast gyrophase dependence has been completely
removed, Let us now examine a number of limiting cases of the equations
to gain more physical insights into these equations. From the gyrokinetic
particle simulation point of view, further simplificaticn of the equaticns

is also desirable.

First, we note that Egs. (23-26) recover the results of Dubin et al. in
the electrostatic 1imit where A, - 0. Next, as mentioned before, our

equations contain higher-order nontinear terms which were not kept in
the previous publication.® Therefore, it is enlightening to discuss

relationships between our equations and those of Ref.5. and to examine

16



whethgr their results can be systematically recovered from our
equations. By dropping the nonlinear terms in ¥ and u, and by linearizing

Paisson’s equation and Ampere's law, assuming a Maxwellian background
distribution function in M and a linear background density profile, we
have

OF /3t + uyb-VF - c/BqV¥xb-VF - eb-TW¥aF/3p, = O, (31)

k29 = -4mte(N;- ng} « 1/ngrg;%Ing(1- Ig) ¥ -Jigl1- Tg) A,

« (T1-Toip; %k IV, ng)9 - (7 J;0)A, M, (32)

“(k  2e{@pg/c) A =-41eel T~ b= 1/Mghp 21410l 1-Tg)9-Tg(1- T o)A,
+ (T -Tg)ipi 2k LUV L 3i0)9~(V  TTg)ALHL (33)
where the Poisson-Ampere equations are Fourier-transformed to the k
space (the subscript k for the perturbed quantities is omitted for
simplicity), ¥ = 0> - plAD. Uy = pp - eAR/c, Tljg =
[P72F{(Z)8(X=x+P)dZ. Tp(b)=ln(ble™®, 1, is the modified Bessel function
of order n, b=k, 2p;2. and Ap;~2= 4mnge?/T;. Here, we emphasize that in

the reduced Vlasov equation [Eq. (31_)]. the E x B convective nonlinearity
and the magnetic nonlinearity (streaming along tilted magnetic field) as
well as the velocity space nonlinearity are retained. lﬁ this sense, £q.(31)
is essentially the equation of Ref.6 in slab geometry written in
different variables (p, instead of v,). Since we are dealing with the total
distribution function, the following difference still exists between our

results and those of Ref.6. Since in Ref. 6 the distribution function is
broken up into unperturbed and perturbed parts, the velocity space

nonlinearity b-V¥asF/dv, has been dropped in their formulation, based on
17



their orderings. However, in our equations, the velocity nonlinearity is
kept naturally without introducing any complications. Furthermore, our
equations conserve energy while some higher order terms should be added
to the Frieman-Chen equation to achieve energy conservation, The energy

invariance for our system can be written as

E = [Fi(p2r2-(e/mic)p,CAL> erme)2{A,2) 12+ 1iB)dZ

s (1/72)[1g{pz+{e/mac)A,)2d824 (17810 | 5E | 24 | 8B | 2a3x
+(e2/2T 270 3Mng a3k (1 - Tg) |9y |2-(1/0)2M g a3k(1- T Ay |20
- (34)

Here, we keep the terms proportional to K -{V ng)Py - (¥ Jig)Az} and

KAV digdPg - (P TiglAsl in Eq.{32) and Eq.(33), respectively, in
order to conserve energy exactly. These terms are smaller than the other
terms by order of &, ‘and have been neglected by most authors except for

those of Ref.8.

Returning to the issue of simplification for particle simulation
applications, one problematic property of Eq.(31) comes from the last
term of the renormalized potential ¥. It involves both a derivative in
vetocity {4) space and 2 convoluticn in k-space, which require scme
cumbersome and expensive computations. This nonlinear part of the
renormalized potential can be greatly simplified in the long wavelength

(small k, p;) limit. Therefore, we get the following limiting case of the

gyrokinetic eguations by simplifying only the nonlinear part of the
renormalized potential. Using the small-argument expansion of the Bessel
functions, it is straightforward to show that from Eq.(184)

¥ 2 <P - pCAL>/e ¢ e<A,2)/2- (ep;2/2T)| V7 (9 - poAZ) |2, (39)

18



Also, in this limit, we have
Uy = py - eA>/mc + (ezpilei)VlAz-VL(&P - PLAZ).
= P,(1 - (8B/B)2) - eA > /mic + (€2/0;2)(V A xb)xVP-b, (36)
where the correction factor in the first term of the last line is related
to the difference between <A,2> and {A,>2. The last term represents the
SExEB drift in the parallel direction. We can also simplify Poisson's
equation and Ampere's law by assuming that F; is Maxwellian in L, and

making leng wavelength approximaticns only to the nonlinear convolution
terms. Then, they become

V2Q(x,t) = -4mte(N;- ng) ~(1/nghg;i2 } ni(1- Tg) ¢ -Ji(1- Tg) A,
iV, NV 9 - V959 A (37
and '
(7, 2-(0pe/0)2)A4(x,2) = -4T1/C(J;-]g)
- (1/ngAp N1 -TRP-TT{ 1 -TglAz+p AV -V, 9 -V, TT,-9 A,
(38)
where J; = efpoFi(Z)6(X-X+PIdZ, [o = ef1gppa%V, N = [F(ZI&(X-x+p)dZ,
ni= [F(2)8(X-x)dZ. with the energy integral defined by
E=[F;(1/2p,2-p,(Az>+€2/2¢A, %> +uB)d82Z
+(1/2)f1g(py+(e/maC)A,)2d8z +(870)7 1 | 5€ |2+ | 58] 243K »
(e2/2T;) 2(2m)3 In;fd3k(1- Tg) | 9y | 2- €176)2 T;Sa3k(1- Tg) | Age | 2.
(39)

The above set of equations, which is valid for arbitrary k, p; linearly and
far small k, p; nonlinearly, is useful for simulation studies for which a

recent numerical scheme of Ref.11 can be used.
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Finally, we show that we can recover the reduced MHD
(magnetohydrodynamic) equations from our gqurokinetic equations.
Although {t is possible to derive a variety of generalized fluid-like
equations?%-2° which retain finite Larmor radius effects, detailed
discussion will be given in a future publication where toroidal geometry

is considered and a direct comparison would then be mare meaningful.

Changing the variable from p, 10 v,, we obtain in the limit of y -0 and
neglecting A 2 nonlinear terms,
31/3t +u 0% V1-cBy" 1 VPxb-Tfse/m;(b TPrc13A,/31)81/8v, = 0,
(4Qa)
where b* = b + VAxb/Bp. By taking the density moment of Eq.(402) and

taking the density and paraliel velocity moment of the electron drift

kinetic equation, we obtain the following equations.

dNy/dt + b*.FT; = Ofe3), (40b)
dng/dt + B*-¥Tg = Ofe3), - t400)
Medle/dt + b™.VPg ~ e(b™-Vgsc1aAL/3t)ng = 0(e3), (40d)

where T = Ifcvzdsv. Also, Poisson’s equation in the quasineutral
ptasma limit { Apg << pg) becomes [from Eq. (37]]

ﬁi- Ne + epilei{ Vv, ¢ }=0, . (41)
On the other hand, for the usual cases of negligible ion contribution to

equilibrium parallel current, we can ignore the last term of Eq. (38).

Then, the Ampere's law simplifies to
7 2A,(x.1) = -4T(di-je)/e. (42)
Subtracting Eq. (40b)} from Eq. (40c) and using Eqs. (41-42), we get the

following vorticity eduation.
20



4TtmicBy 24 /dt V0V, 9 = - DYV, 24, (43)
Equation (40d} is the Ohm’s law where the first term is the electron

inertia and the second term is related to the electron diamagnetic drift.
Ignoring these kinetic corrections, we obtain the following induction
equation,

dA/dt = -b-FP (orcT13A,/3t » b7 VP = 0 ), (44)

Equations (43) and (44) form the low-p reduced MHD equations in slab
geometry.

V. Conclusions

In the present paper, we have derived a seif-consistent and
energy-conserving set of gyrophase~averaged nonlinear equations for the
Viasov-Poisson-Ampere system. The new formulation is useful for
describing low-frequency electromagnetic, fluctuations in finite-8
plasmas. The main difference between our equations and those of Ref. &
is that our equations are formulated in terms of the total distribution
function and explicitly phase space pres'erving. furthermore, we have kept
the formally higher order nenlinearities, such as those associated with
parallel acceleration and polarization effects, both of which were ignored
in Ref. 6. Another important aspeét of our equaticns is that they can be
readily solved by particle simulation techniques, which, over the years,
have proven to be the most effective numerical tools for studying plasma
instabilities when the kinetic effects, such as wave-particle interactions
and finite Larmor radius effects, are important. There exists
accumulating evidence that the transpert properties in the confinement
region {excluding the sawtooth region and the edge) of tokamaks are
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dominated by this type of high temperature (collisionless) microscopic

phenomena.

The advantage ot using the gyrokinetic equations for particle
simulation instead of the original Vlasov-Poisson-Ampere system is the
elimination of high-frequency space charge waves from the simulation
plasma. The highest {requency normal modes for the reduced equations
can be obtained fram the well-known dispersion relation of

Ba e {1-(wrk,vpa)2i1 e£g2(E01/ (K pc)2 = 0, (45)
for a homoggneous plasma ip a shearless slab w-ith cold icn response
(w<<k) vy and (k) ;)2 << 1, where vy = Chpa/Pg s the Alfven velocity ,
Ape is the Debye length, &g = @/\/2k, Vi, and Z is the usual plasma
function. Thus, fer B >> mg/mj (or vig >> V4). the kinetic shear-Alfvén
waves with

W = 2hyvallo{k, p )22 (48)
now represent the gascillations with the highest fregquencies in the
simulation. As one can see, they are considerably smaller than, for

example, the {requencies for plasma waves ‘”pe and lower hybrid waves
W - For the reduced MHD equations, Egs. (43) and (44), the normal

modes are the usual shear-Alfvén waves, @ = zk,va With magnitude not

much different from that of Eq. (46).

As shown by Refs.11 and 15, the net result for the elimination of
space charge waves is the tremendous increase in the time step and drid
spacing used in the simulation as well as the substantial reduction of the
noise level, which enables us to use considerably less number of

simulation particles than we would for conventional particle codes.
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Thus, with the availability of the present generation of supercomputers,
we can easily simulate not only electromagnetic-type microinstabilities
in tokamaks but also those that are basically electrostatic in nature by
taking advantage of the numerical properties of finite-B gyrokinetic
plasmas. Moreover, since the improvement of the numericai properties
comes from the shear-Alfvén waves, which exist in both the gyrokinetic
equations and the reduced fluid equations, the simulation of the global
MHD modes with a gurokinetic code utilizing the formulation in this paper
is, therefore, a distinct possibility. It will afford us with the unique

opportunity to study the kinetic et{ects on those modes.
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Appendix

In this appendix we present the results of an alternative formulation

of the electromagnetic gyrokinetic equations in terms of v, rather than

pz. Althcugh the resulting equations are quite cumbersome because of the

reasons we have mentioned earlier, they provide a useful comparison to
the results presented in the main text. Also, this formulation is prebably
more familiar to the workers in the particle simulation field where the
Darwin model is frequently used. The derivation has been carried out
using the action-variational {generalization of Lagrangian approach to the
phase space) methed.593! The Euler-Lagrange equation (equation of
motion) can be derived from the following averaged fundamental i-form

{ generalized Lagrangian ).
T = ¥;dz!- hdt = jd8 « (e/m;c)Ag(X)-dX + (U » (e/m;c)ot*)dz
- (U272 + B + (e/m;)e*)dt, (A1)
where
" p=<Az>~(e/2m; Q) )8/ 3 p((F- (U/Q)A AL + AT (@ ~(Ure)otr)-bx T AZS /Q;).
8% =<P>-(e/2m;0Q;)8/0ul(P -(U/)ANPP+{ (& - (U/c)al,)-bxTP)/Q;]
+ (172)<B,2>.
The resulting reduced Viasov equation up to oe?) is
straightforwardiy,
31/8tsv,b* . V1-cBy™ | Vo *xb.Vive/m (b= Vo "+c™ 3o "/31)31/3U
=0, (A2)

where v, = U + (e/mi) dd*/au.

Since E£q.A2) is not useful for practical purposes due to the
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complication of o, and $*, the following limiting case which is

appropriate for the gyrokinetic simulation studies involving the Darwin
model is presented. In the following paragraph, we neglect the nonlinear

corrections to the renarmalized potential which contain Kz. while keeping

the electrostatic corrections in the long wavelength limit. Even in this
limit, all the formally deminant nonlinearities such as the particle
streaming along the tilted magnetic field are kept. We also note that <¢>

and <A,> are still treated on an equal footing. Then, the rencrmalized
potentials simplify and become,
o” 23R, % =<P> - (ep; 22T |V, 02,  (a3)
In this limit. the Poisson’s eguation and Ampere’'s law for Maxwellian
Fi(}) become
- V29(x,t) =-41eiNi- gl -(1/nghpi2 Nni(1- Tg)9 +pi2V 0¥ 9 1
| (A4)
V,2A,(x.1) = -4mt{Ji-jgl /e
- (1/ngAgi2)U4(1-To)9+pi {7 1 J;- 7 , 911, (AS)
where Ji = [vzF;(2)8(X-x+p)dB2 | jg = [1ovza3v. Equations (A2-AS)

conserve energy and the corresponding energy invariant is,

E 2fF(v;2/2+8)d52 +(1/2)f1v,2d52 » (870)"1({5E | 2. 8B |2d3x

» (827270213 (nfek(1- T) | 9 |2). (A6)
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