Tomography of laser fusion plasmas

PDF Version Also Available for Download.

Description

Experimental programs exist in a number of laboratories throughout the world to test the feasibility of using powerful laser systems to drive the implosion of hydrogen isotope fuel to thermonuclear burn conditions. In a typical experiment multiple laser beams are focused onto a glass microshell (typically 50 ..mu..m to 200 ..mu..m diameter) filled with an equimolar D-T gas mixture. X-ray and particle emissions from the target provide important information about the hydrodynamic implosion of the glass shell and the associated compression and heating of the D-T fuel. Standard diagnostics for imaging such emissions are the grazing incidence reflection (GIR) x-ray ... continued below

Physical Description

Pages: 21

Creation Information

Ceglio, N.M. August 2, 1977.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

  • Lawrence Livermore Laboratory
    Publisher Info: California Univ., Livermore (USA). Lawrence Livermore Lab.
    Place of Publication: Livermore, California

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Experimental programs exist in a number of laboratories throughout the world to test the feasibility of using powerful laser systems to drive the implosion of hydrogen isotope fuel to thermonuclear burn conditions. In a typical experiment multiple laser beams are focused onto a glass microshell (typically 50 ..mu..m to 200 ..mu..m diameter) filled with an equimolar D-T gas mixture. X-ray and particle emissions from the target provide important information about the hydrodynamic implosion of the glass shell and the associated compression and heating of the D-T fuel. Standard diagnostics for imaging such emissions are the grazing incidence reflection (GIR) x-ray microscope and the pinhole camera. Recently, a particular coded imaging technique, Zone Plate Coded Imaging (ZPCI), has been successfully used for x-ray and particle microscopy of laser fusion plasmas. ZPCI is highly attractive for investigating laser produced plasmas because it possesses a tomographic capability not shared by either the GIR or pinhole imaging techniques. This presentation provides a brief discussion of the tomographic potential of ZPCI. In addition, the first tomographic x-ray images (tomographic resolution approximately 74 ..mu..m) of a laser produced plasma are presented.

Physical Description

Pages: 21

Notes

Dep. NTIS, PC A02/MF A01.

Source

  • Microprobe analytical society meeting, Boston, MA, USA, 16 Aug 1977

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-79291
  • Report No.: CONF-770849-4
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 5057272
  • Archival Resource Key: ark:/67531/metadc1056429

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 2, 1977

Added to The UNT Digital Library

  • Jan. 22, 2018, 7:23 a.m.

Description Last Updated

  • Feb. 1, 2018, 12:57 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Ceglio, N.M. Tomography of laser fusion plasmas, article, August 2, 1977; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc1056429/: accessed July 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.