Pressure losses in fracture-dominated reservoirs: the wellbore constriction effect

PDF Version Also Available for Download.

Description

Improved energy production from many types of energy reservoirs such as hot dry rock geothermal as well as hydraulically fractured oil, gas, and other geothermal reservoirs requires a better understanding of the fluid mechanics in the vicinity of the fracture-wellbore intersection. Typically, the aperture (smallest dimension) of a hydraulic fracture is only of the order of 1 mm (0.04 in.) so that reasonable energy production rates from geothermal systems require fairly large flow velocities within the fractures, particularly so as the wellbore-fracture intersection is approached. The high velocities and accelerations result in non-Darcian, often turbulent, flow and increased pressure losses. ... continued below

Physical Description

Medium: P; Size: Pages: 7

Creation Information

Murphy, H. January 1, 1980.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Improved energy production from many types of energy reservoirs such as hot dry rock geothermal as well as hydraulically fractured oil, gas, and other geothermal reservoirs requires a better understanding of the fluid mechanics in the vicinity of the fracture-wellbore intersection. Typically, the aperture (smallest dimension) of a hydraulic fracture is only of the order of 1 mm (0.04 in.) so that reasonable energy production rates from geothermal systems require fairly large flow velocities within the fractures, particularly so as the wellbore-fracture intersection is approached. The high velocities and accelerations result in non-Darcian, often turbulent, flow and increased pressure losses. These flow phenomena were investigated experimentally for the simple case where the fracture plane and the wellbore drilling axis are orthogonal and the implication of these experimental results are examined by investigating the pressure losses in a hot dry rock reservoir.

Physical Description

Medium: P; Size: Pages: 7

Notes

NTIS, PC A02/MF A01.

Source

  • Geothermal Institute 1980 workshop, Aukland, New Zealand, Nov 1980

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-80-2645
  • Report No.: CONF-801123-1
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 5086089
  • Archival Resource Key: ark:/67531/metadc1056419

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1980

Added to The UNT Digital Library

  • Jan. 22, 2018, 7:23 a.m.

Description Last Updated

  • Feb. 2, 2018, 3:07 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Murphy, H. Pressure losses in fracture-dominated reservoirs: the wellbore constriction effect, article, January 1, 1980; New Mexico. (https://digital.library.unt.edu/ark:/67531/metadc1056419/: accessed March 26, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.