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High Resolution Ditlerence Schemes 
for Compressible Gas Dynamics 

Paul Woodward and P h i l l i p C o l e l l a * 

E. 0 . Lawrence Livermore National Laboratory 
Livermore, California 94550 

The new schemes to be presented here have grown out of an extensive com
parison of a v a r i e t y of difference methods. The new schemes represent an 
attempt to combine the advantages and avoid the disadvantages of the schemes 
which were compared — namely, the von-Neumann-Richtmyer scheme [ l ] , Godunov's 
scheme [ 2 ] , MUSCL [ 3 , 4 ] , and Glimm's scheme [ 5 , 6 , 7 ] , 

We l i s t the advantages of the various schemes f i r s t . The principal advan
tage of the von-Neumann-Rich tmyer scheme i s i t s use of a staggered gr id . 
D e n s i t i e s , in terna l energies , and hence pressures a l so are prescribed at zone 
centers , while v e l o c i t i e s are prescribed at zone i n t e r f a c e s . This grid s truc
ture i s well su i ted to the Lagrangian equations of hydrodynamics, because i t 
allows narrow-based dif ferences to be used to construct the necessary gradi 
e n t s . The r e s u l t i s that unusually high reso lut ion of flow structure i s 
obtained in Lagrangian problems. 

The advantage of Godunov's scheme i s the clear phys ica l picture upon which 
i t i s based. Rather than replacing an i n f i n i t e Taylor s e r i e s by a truncated 
one, th i s scheme replaces a physical system of complex structure by a simpler 
one c o n s i s t i n g of s tructure less zones . This simpler system is evolved exact ly 
for a time s t e p , and then a s imi lar replacement i s made. Naturally, the 
method res t s on the assumption that a Taylor s e r i e s can be truncated, but the 
physical picture i s always c l e a r . To a p h y s i c i s t , t h i s formulation has im
mense appeal. By carrying the accuracy of the phys ica l representation one 
order higher than Godunov's scheme, MUSCL combines the advantage of the c lear 
physical p ic ture with very high reso lut ion of the flow structure. 

Glimm's scheme d i f fers from Godunov's scheme in one e s s e n t i a l way. For 
the variable va lues in i t s s t ruc ture l e s s zones i t chooses those at some repre
sentat ive point within each zone. This point has the same location within 
each zone at a given time step, and i t follows some w e l l - d i s t r i b u t e d , pseudo
random sequence from one time s tep to another. The most important e f f e c t of 
t h i s procedure i s to give up exact conservation of mass , momentum, and energy 
i n an e f for t to force a l l flow d i s c o n t i n u i t i e s to zone boundaries, where they 
can be treated e x a c t l y by the method. Because errors ar i s ing in the improper 
treatment of d i s c o n t i n u i t i e s in the flow can severe ly contaminate a computa
t ion with a standard difference method, the treatment of d i s cont inu i t i e s in 
Glimm's method givep that scheme tmequaled reso lu t ion of flow structure in 
one-dimensional problems. 
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When the above schemes are compared on a d i f f i c u l t two-dimensional flow 
problem, the ir disadvantages are readi ly apparent. The staggered grid of the 
von-Neumann-Richtmyer scheme, which i s so convenient in Lagrangian ca l cu la 
t i o n s , is very badly suited to Eulerian c a l c u l a t i o n s . Part icularly d i f f i c u l t 
to formulate i s the conservation of t o t a l energy. An addit ional disadvantage 
is the neces s i ty to treat d i s c o n t i n u i t i e s as smooth flow regions with steep 
gradients . This i s done by adding in an a r t i f i c i a l v i s c o u s pressure which 
smears out the d i s c o n t i n u i t i e s over at l e a s t two zones . The main disadvantage 
of Godunov's scheme i s i t s r e l a t i v e l y poor reso lut ion of flow structure. 
MUSCL has the h ighes t resolut ion of these four schemes, but that reso lut ion i s 
l imited by an extrapolation procedure which is made at the beginning of each 
time s tep . MUSCL uses as data a zone-centered average value and f i r s t der iva
t i v e of each v a r i a b l e . From these , values of a l l v a r i a b l e s at the zone i n t e r 
faces must be constructed in order to compute fluxes of conserved quant i t i e s 
during the time s t e p . The extrapolat ion from the center of the zone to the 
zone in ter face i s responsible for most of the error i n MUSCL. Final ly , the 
disadvantage of Glimm's scheme i s that i t s very s p e c i a l properties in one-
dimensional problems are l o s t i n two dimensions, and the scheme must be aban
doned in favor of a much lower reso lu t ion method i n the neighborhood of 
d i s c o n t i n u i t i e s ( see [7 ] ) . Because the principal advantage of Glimm's scheme 
in 1-D flows was i t s treatment of d i s c o n t i n u i t i e s , the hybridization of the 
scheme for 2-D problems resu l t s i n a poorer scheme than e i ther MUSCL or the 
von-Neumann-Richtmyer scheme. 

We have devised two new di f ference schemes which avoid a l l these disadvan
tages and combine the advantages l i s t e d above. The key ingredients are: (1) 
the approach of Godunov's method i n replacing a complicated physical system 
with a simpler one of a standard form, (2) the t rans la t ion of th i s assumed 
spat ia l structure ins ide zones into temporal structure at the interfaces by 
solving Riemarm's problem as i n Godunov's scheme and us ing the charac ter i s t i c 
equations as i n MUSCL, and a new ingred ia i t (3) the use of both zone-averaged 
values and i n t e r f a c e values of var iab le s in order to define a d i s tr ibut ion of 
each var iable at every point which i s continuous except at true flow discon
t i n u i t i e s and which conserves mass, momentum, and energy exact ly . We have 
devised a second-order method which uses a piecewise l inear distr ibution for 
each variable with kinks at zone centers and zone i n t e r f a c e s . In addition we 
constructed a second-order method which uses a piecewise parabolic d i s t r i b u 
tion for each var iable with kinks only at the zone i n t e r f a c e s . In 1-D t e s t 
problems, both new schemes show at l e a s t twice the re so lu t ion of MUSCL, the 
best of the four schemes discussed above. Only the piecewise parabolic scheme 
has been run on 2-D problems. I t preserves the high reso lu t ion of i t s 1-D 
t e s t s and is thus able to obtain a more accurate a flow description than MUSCL 
while using only half as many zones i n each dimension. The gains over the 
other schemes discussed are s t i l l l a r g e r . The new algorithm i s not yet o p t i 
mized, but i t present ly requires only 30% more computer time per zone per time 
step than does MUSCL. The gain i n time consumed to achieve a given accuracy 
i s thus a factor of 3 in 1-D. In 2-D, a more complicated operator s p l i t t i n g 
algorithm doubles the time consumed, so that the gain i s s t i l l only a factor 
of 3 . However, we expect that the new method can be speeded up considerably, 
and we hope to do so in the near future . 

In Fig . 1 a l l the schemes discussed above are compared using the example 
of the flow of a i r (ganma i s 1.4) through a duct containing a step. I n i t i a l l y 
the flow i s everywhere to the r igh t at Mach 3 , with p = 1 .4 , p = 1, c - 1. 
The duct width i s 1, i t s length i s 3 , and the step of he ight .2 i s located a 
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distance of .6 from the entrance. All the resu l t s in F ig . 1 were obtained 
with a uniform Cartesian grid with Ax = Ay = .05 . At the ex i t a "flowout" 
boundary condi t ion i s applied, but t h i s is unimportant because the flow to the 
right is always s l i g h t l y supersonic there. The system i s shown at time 4 , 
when a complicated system of shock r e f l e c t i o n s , rare fac t ion waves, and contact 
d i s c o n t i n u i t i e s i s present. This problem was used by Emery in 1969 [ 8 ] to 
compare the methods of Lax, Rusanov, and Lax and Wendroff (Emery used a very 
s l i g h t l y d i f f e r e n t duct with a grid of nodal points with Ax = Ay = 1 /27) . 
One of us a l so used th i s problem to demonstrate the MUSCL scheme described by 
van Leer in [ 3 ] . In that a r t i c l e the r e l a t i v e l y s t r u c t u r e l e s s steady flow in 
the duct i s d i sp layed . This steady flow is attained at about time 12. 

Because of the lack of space, we show only the contours of density at time 
4. These are the most d i f f i c u l t to compute correc t ly , because of the weak 
contact d i s c o n t i n u i t i e s which emanate from the two shock t r i p l e points a s s o c i 
ated with the two Mach re f l ec t ions of the bow shock at time 4. In Emery's 
a r t i c l e 8 , only pressure contours are shown, and i t i s l i k e l y that the weak 
contact d i s c o n t i n u i t i e s in the flow were not resolved by any of the three 
methods he compared. In Fig. la the r e s u l t s of Godunov's scheme are shown. 
There is some indicat ion of the Mach re f lec t ion at the upper wall . In F ig . 
l b , the Glimm-Godunov hybrid scheme shows only some improvement over Fig . la 
at the cost of introducing noise from the random choice feature of Glimm's 
scheme. If the Mach re f l ec t ion could be ful ly resolved ( i t i s indeed resolved 
with 4 times as many zones), the weak contact d i scont inu i ty would be quite 
sharp. After an i n i t i a l smearing by Godunov's method, Glimm's method 
preserves the r e l a t i v e l y narrow contact region. 

A dramatic increase in reso lu t ion re su l t s from using a second-order accu
rate scheme. The resu l t s in Fig. l c were obtained with the BBC code [ 9 ] , 
This code uses a modified von-Neumann-Richtmyer scheme devised by DeBar [10 ] 
for i t s Lagrangian s tep , and a MUSCL remap step on a staggered grid devised by 
Woodward. To obta in the thin shocks shown here, the a r t i f i c a l v i s c o s i t y was 
se t to zero i n the Lagrangian s t ep . This has resul ted i n a mild o s c i l l a t i o n 
behind each shock which is most evident when the pressure i s p lot ted . When 
the a r t i f i c i a l v i s c o s i t y is turned on, the shocks double in width and the flow 
reso lut ion i s s i g n i f i c a n t l y degraded. Especia l ly to one who considers the 
staggered gri.1 formulation both confusing and inconvenient , these resu l t s are 
remarkably good. The contact d i scont inu i ty near the upper wall is spread over 
2 to 3 zones, but i t i s c lear ly v i s i b l e . Also the upper Mach stem is in the 
correct pos i t ion d i r e c t l y above the s t e p , and i t has the correct length (as 
proven by a run on a more refined mesh of Ax = Ay = .02 which is shown in 
Fig . 2 ) . The MUSCL results shown i n F i g . Id are of comparable qual i ty . They 
are superior in that the post-shock o s c i l l a t i o n s of BBC are not present and 
the contact d i s c o n t i n u i t y is more sharply defined. However, somewhat more 
entropy i s a r t i f i c i a l l y produced as the flow rounds the corner of the s t e p . 
The resu l t i s a c l a s s i c in teract ion of a shock with a boundary layer, which 
produces the second, very weak r e f l e c t e d shock from the top of the step at x = 
1.4. These two codes run at almost prec i s e ly che same speed — 2600 points 
per sec per cyc l e on a CDC 7600 and 20000 p t s / sec / cy on a Cray I . They both 
make use of separate Lagrangian and remap steps i n each I'D pass . 

In Fig . l e we show the resu l t s of the new scheme which uses piecewise 
parabolic i n t e r p o l a t i o n . In 1-D t h i s scheme can be made third-order accurate , 
but because of i t s use of 1-D passes i t can only be second-^rder accurate in 
2-D. The scheme used here is thus made only second-order accurate in 1-D, 
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although s e v e r a l ges tu res toward h ighe r order are i n c l u d e d . The r e s u l t s of 
t h i s new scheme are comparable i n q u a l i t y to those of F i g . 2, which were 
obtained wi th BBC us ing a much f i n e r g r id of Ax = Ay = .02 . The r e s o l u t i o n 
of the weak c o n t a c t d i s c o n t i n u i t i e s from both Mach stems i s p a r t i c u l a r l y 
n o t a b l e . A "monotonic i ty t r i c k " has been used to c o n s t r a i n the i n t e r p o l a t i o n 
parabolae so t h a t t h e pos t - shock o s c i l l a t i o n s u s u a l l y a s s o c i a t e d wi th h i g h -
order schemes are completely a b s e n t . In F ig . 3 we show r e s u l t s of the new 
scheme us ing a g r i d wi th Ax = Ay = . 1 . Ev iden t ly , even on t h i s coarse 
gr id the new scheme c o r r e c t l y r e s o l v e s a l l the e s s e n t i a l f ea tu res of t h i s 
complicated flow. 

F i n a l l y , for comparison wi th the schemes d iscussed by Sod [11 ] , we have 
shown in F i g . 4 r e s u l t s of the new piecewise l i n e a r scheme on h i s shock tube 
problem. The r e s u l t s i n F ig . 4 use a grid of 50 zones r a t h e r than Sod's 100, 
and are more accu ra t e than the r e s u l t s of any of t h e 12 schemes he compared. 
MUSCL r e s u l t s on t h i s problem have been given by van Leer [ 3 ] . 

This work was performed under t h e auspices of t h e U.S . Department of 
Energy by the E. 0 . Lawrence Livennore National Labora tory under con t r ac t 
number W-7405-ENG-48. 
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MUSCL 30 density contours from 0.85 to 6.34 

Piecewise Parabolic Method 30 density contours from 0.73 
to 6.31 

. 1 Results of several difference schemes for the flow problem 
described in the text. All schemes use a series of 1-D 
sweeps and Courant numbers of 0.8 or 0.9. All use a uniform 
grid of 20 x 60 zones. The methods are: (a) Godunov's method, 
(b) Glimm-Godunov hybrid, (c) BBC, (d) MUSCL, (e) the new 
piecewise parabolic scheme. 
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Fig. 2 BBC results for the same problem as in Fig. 1 but using a 
finer, uniform grid of 50 x 150 zones. 
23 density contours from 0.75 to 6.25 are shown as well as 
contours at densities 0.5 and 0.6. 

Fig. 3 Results of the new piecewise parabolic scheme for the same 
problem as in Fig. 1 but using a coarser, uniform grid of 
10 x 30 zones. 
30 density contours from 1.03 to 6.09 are shown. 
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Fig. 4 Results of the new piecewise linear scheme for the shock tube 
problem studied by Sod. The solid l ine shows the exact 
solution, and the zone average and interface values for the 
grid of 50 zones are shown as c i r c l e s . 


