Rigid muffin-tin approximation for the electron-phonon interaction in transition metals

PDF Version Also Available for Download.

Description

Progress in calculating the electron-phonon parameters of transition metals has been based on either the rigid muffin-tin approximation (RMTA) or the fitted modified tight-binding approximation (FMTBA). The RMTA has been shown to be remarkably accurate for average electron-phonon properties, but there are indications that RMTA matrix elements may be too small at low momentum transfer. An attempt is made to demonstrate these assertions concerning the accuracy of RMTA and the numerous electron-phonon calculations are placed in a broader perspective by a demonstration of how they can be used to explain the trends in the strength of the electron-phonon coupling among ... continued below

Physical Description

Pages: 10

Creation Information

Butler, W.H. January 1, 1980.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 30 times , with 4 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Progress in calculating the electron-phonon parameters of transition metals has been based on either the rigid muffin-tin approximation (RMTA) or the fitted modified tight-binding approximation (FMTBA). The RMTA has been shown to be remarkably accurate for average electron-phonon properties, but there are indications that RMTA matrix elements may be too small at low momentum transfer. An attempt is made to demonstrate these assertions concerning the accuracy of RMTA and the numerous electron-phonon calculations are placed in a broader perspective by a demonstration of how they can be used to explain the trends in the strength of the electron-phonon coupling among the transition metals and the A-15 compounds. (GHT)

Physical Description

Pages: 10

Notes

NTIS, PC A02/MF A01.

Source

  • International conference on physics of transition metals, Leeds, UK, 18 Aug 1980

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: CONF-800864-1
  • Grant Number: W-7405-ENG-26
  • Office of Scientific & Technical Information Report Number: 5054100
  • Archival Resource Key: ark:/67531/metadc1055878

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1980

Added to The UNT Digital Library

  • Jan. 22, 2018, 7:23 a.m.

Description Last Updated

  • Feb. 1, 2018, 3:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 30

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Butler, W.H. Rigid muffin-tin approximation for the electron-phonon interaction in transition metals, article, January 1, 1980; Tennessee. (digital.library.unt.edu/ark:/67531/metadc1055878/: accessed October 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.