LBL-11221 UC-66b

91. 1883

CONTROLLED-SOURCE ELECTROMAGNETIC SURVEY AT SODA LAKES GEOTHERMAL AREA, NEVADA

Mitchel Stark, Michael Wilt, J. Ramsey Haught, and Norman Goldstein

July 1980

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48

661 9-80 10-29-80

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

LEGAL NOTICE

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Price Code: ACT AOS CONTROLLED-SOURCE ELECTROMAGNETIC SURVEY

AT SODA LAKES GEOTHERMAL AREA, NEVADA

Mitchel Stark, Michael Wilt,

J. Ramsey Haught, and Norman Goldstein

Earth Sciences Division Lawrence Berkeley Laboratory University of California Berkeley, California 94720

DISCLAIMER This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any segncy thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or prepresents that its use would not infringe privately owned rights. Reterence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER -

July 1980

.

TABLE OF CONTENTS

ABSTRACTv
INTRODUCTION1
HYDROLOGY AND GEOLOGY1
PREVIOUS GEOPHYSICAL WORK2
EM-60 SURVEY
EM-60 SURVEY EVALUATION12
ACKNOWLEDGMENT
REFERENCES
APPENDIX A: Description of EM-60 System15
APPENDIX B: Final Working Data Set
APPENDIX C: Results of Inversions41

\$

iii

Abstract

The EM-60 system, a large-moment frequency-domain electromagnetic loop prospecting system, was operated in the Soda Lakes geothermal area, Nevada. Thirteen stations were occupied at distances ranging from 0.5-3.0 km from two transmitter sites. These yielded four sounding curves--the normalized amplitudes and phases of the vertical and radial magnetic fields as a function of frequency--at each station. In addition, two polarization ellipse parameters, ellipticity and tilt angle, were calculated at each frequency. The data were interpreted by means of a least-squares inversion procedure which fits a layered resistivity model to the data. A three-layer structure is indicated, with a near-surface 10 ohm-m layer of 100-400 m thickness, a middle 2 ohm-m layer of approximately 1 km thickness, and a "basement" of greater than 10 ohm-m. The models indicate a northwesterly structural strike; the top and middle layers seem to thicken from northeast to southwest. The results agree quite well with previous results of dipole-dipole and magnetotelluric (MT) surveys. The EM-60 survey provided greater depth penetration (1 - 1.5 km) than dipole-dipole, but MT far surpassed both in its depth of exploration. One advantage of EM in this area is its ease and speed of operation. Another advantage, its relative insensitivity to lateral inhomogeneities, is not as pronounced here as it would be in areas of more complex geology.

v

Introduction

As part of the Department of Energy's industry-coupled program in northern Nevada, Lawrence Berkeley Laboratory has made electromagnetic surveys using its newly-developed controlled-source EM system (EM-60) at several geothermal prospects. The EM-60 is a large-moment frequency-domain electromagnetic system, described in Appendix A.

The Soda Lakes area is located in west-central Nevada about 80 km east of Reno and 10 km northwest of Fallon. A variety of geophysical surveys, including magnetotelluric and dipole-dipole resistivity have been carried out in the area, and three intermediate to deep holes have been drilled. The wells have not pierced a producible reservoir, but the prospect is still under exploration.

We brought the EM-60 system to Soda Lakes to compare the results with the dipole-dipole and the magnetelluric data and to better define, if possible, the resistivity structure of the prospect.

Hydrology and Geology

Garside and Schilling (1979) have described the hydrology, geology, and geothermal activity of the Soda Lakes area. It lies near the southwestern margin of the Carson Sink, a major hydrologic basin. Groundwater, therefore, tends to flow northeast.

The Soda Lakes thermal anomaly was discovered accidentally in 1903 when drillers found boiling water 60 ft below the surface. The results of a shallow temperature survey are reported in Olmsted et al. (1975) (Figure 1). The plume-like temperature distribution suggests hot water ascending to the hottest points, and diffusing out in the direction of the regional groundwater flow (northeast).

Soda Lake is thought to fill an explosion crater and is rimmed by basaltic debris; this activity probably ceased within the last 7000 years. Basaltic ridges outcrop 10-20 km to the north. Elsewhere, exposures of unconsolidated lake sediments dominate. Hydrothermal alteration products, such as kaolinite and iron minerals, have been found in the surface sediments. A few northeast-trending faults have been mapped, but these are poorly exposed.

The topography is flat to hummocky. The soil is very sandy, but vegetation is relatively lush due to extensive surface irrigation. Small ponds and dry lake beds dot the area, remnants of ancient Lake Lahontan.

Previous Geophysical Work

The results of the shallow-hole temperature study are mentioned above. Other geophysical work has included shallow and deep seismic reflection, dipole-dipole resistivity, and magnetotellurics.

The shallow weight-drop reflection survey covered 40 line km in the area mapped in Figure 1. The survey revealed numerous short (1-2 km) northwesttrending normal faults, with displacements on the order of tens of meters. The deep reflection survey detected a deeper (>1 km) northeast-trending normal fault displacing beds a few hundred meters.

The dipole-dipole survey covered the area mapped in Figure 1. The maximum spacing used was 4 dipole lengths (n = 4), a distance of 2.4 km. In most cases, however, reliable data were obtained only up to n = 2 or 3, giving an effective penetration of 250-400 m. The apparent resistivities, presented in pseudosections, indicate a generally conductive section. In a few areas the contractor interpreted the data with a simple two-layer curve-matching

XBL 804-7049

procedure. These all indicated true resistivities decreasing from about 10 ohm-m near the surface to 2 ohm-m at depths of a few hundred meters; nothing different was interpreted within the thermal anomaly.

MT surveys were conducted in 1973 and in 1977 to explore the deeper resistivity structure. Measurements were made at frequencies ranging from .001 to 100 Hz, allowing interpretation from a few hundred meters down to tens of kilometers depth. The interpretation was carried out by fitting layered models to the data, or by direct inversion to a continuous resistivity-depth function. Most of the interpretations indicated a fourlayer resistivity structure: a surface layer of 10 ohm-m extending to a depth of a few hundred meters, a conductive (~2 ohm-m) zone down to 1 km, a relatively resistive zone (>10 ohm-m) extending to 5-10 km, and a conductor of about 1 ohm-m at depth. Correlations were sought between similar units at different stations, and resistivity profiles were constructed. Figure 4b shows the near-surface portion of one such interpreted resistivity profile, along Line A-A' (Figure 2).

Well Logs

Lithologic and driller's logs were available to us for three holes, all of which were collared within .5 km of Line A-A'. A generalized summary of the lithologic information is given in Figure 4c. Unconsolidated sands and clays dominate the uppermost kilometer of the sedimentary section. These yield to volcanic sandstones and siltstones characterized by secondary mineralization at depth.

EM-60 Survey

Figure 2 shows the locations of the two transmitter sites and the 13 plotting points for the data. These plotting points are mapped at points midway between the transmitter and the actual receiver locations, using a convention which is explained below. Interpretable data were obtained at all 13 stations; in most cases we covered at least three frequency decades. At the higher frequencies we could not obtain absolute amplitude and phase data (see Appendix A); only polarization parameters such as ellipticity and tilt angle could be reliably measured in this range. Receiver stations 1-5 and 2-1 were located at the same site, detecting signals from transmitters 1 and 2 respectively. The 13 soundings were obtained by a crew of four during one week of field work.

Data reduction and interpretation

The data were brought back to the office and entered into a small computer. Segments obviously contaminated by noise were edited out, gains corrections were made, and consecutive segments corresponding to identical frequencies and stations were averaged together to obtain standard error estimates. These procedures yielded a working data set, which is tabulated in Appendix B.

For interpretation, we relied on an automatic Marquardt least-squares inversion (e.g., Inman et al., 1973). This inversion uses a "forward" modeling program as its kernel to calculate the fields due to a finite a.c. loop source above an arbitrarily layered earth. The inversion seeks a bestfitting earth model by changing the resistivities and thicknesses of the

layers in an iterative least-squares procedure. Each data point can be weighted according to the operator's confidence in it. In general, the standard errors listed in Appendix B were not relied on in this regard because they reflect only random sampling error, not systematic noise. Instead, a rather subjective weighting scheme was used, based on our confidence in the data, and its importance in resolving certain features of the models. With such highly nonlinear curves, it may be appropriate to include a weighting factor proportional to the slope of the sounding curve at each point. In any case, the error estimates and model parameter confidence bounds are questionable.

The results are shown in Appendix C. For each station, the observed amplitude, phase, ellipticity, and tilt angle data are plotted against curves calculated for the best-fitting earth models. The layer thicknesses and resistivities are also listed, with an estimate of the resolution of these properties.

Most of the soundings yielded two- or three-layer models, with a nearsurface layer of about 10 ohm-m, a deeper conductive (~2 ohm-m) unit, and (in some cases) a relatively resistive "basement" whose resistivity could not be well resolved. Drawing correlations between units of similar resistivity from different stations enabled us to construct the resistivity structure contour maps in Figures 2 and 3 and the cross section in Figure 4a.

Figure 2 shows the top surface of the conductive second layer as interpreted from the soundings. Depth points are plotted midway between the receiver and transmitter; this convention is used in lieu of a rigorous 2-D or 3-D interpretation.

The contours show a northwesterly trend, with a steep gradient near Transmitter 2 (T2). This is roughly consistent with the shallow seismic results, which indicated a set of northwest-trending faults. However, Figure 2 suggests vertical displacement of 100-200 m along a fault near T2, whereas a more gradual en echelon faulting pattern is inferred from the seismic data. Figure 2 also agrees roughly with the few quantitative interpretations made from the dipole-dipole data southwest of T2. However, we see a definite difference inside the thermal anomaly. Our soundings there indicate a much shallower depth to the conductor.

Figure 3 shows the interpreted depth to the base of this conductor. It should be noted that fewer than half of the soundings responded to the resistive unit beneath the conductor; none were able to resolve its resistivity. The depths are not well resolved either, so Figure 3 should be regarded as a very rough estimate of the depth to the resistor. The pattern is similar to Figure 2 insofar as the base of the conductor is shallower north and east of T2.

We also constructed a profile along Line A-A' (Figure 4a). The profile is lined up with a similar MT profile (Figure 4b) and the generalized lithologic logs (Figure 4c). The agreement between the EM and MT profiles is good, but there were no MT stations northeast of T2, so we cannot corroborate the change in thickness of the top two layers there. The EM profile shows that the top of the conductor drops 200-300 m southwest of T2 while its base drops more than 500 m. This may indicate that faulting was contemporaneous with deposition of the conductive layer.

Fig. 3. Contours on interpreted depth to base of conductive second layer.

Fig. 4a. Interpreted EM resistivity cross section, Line A-A'.
4b. Interpreted MT resistivity cross section, Line A-A'.
4c. Generalized lithologic logs for three wells along Line A-A'.

The lithologic log from Well 44-5 helps explain the EM sounding interpretation. The transition from the surface layer to the conductor appears to correspond to the lithologic transition from predominantly unconsolidated sands to a clay-dominated sequence at about 250 m. Clays are well known for their low resistivities. The deeper transition to high resistivities probably represents the reemergence of sand as the dominant material at about 1300 m. This compares with the EM estimate of 1500 m and the MT estimates of 1300 and 1400 m. The lithification and secondary mineralization noted below 1000 m in the log are apparently not expressed in either the MT or the EM data.

The two well logs near T2 (1-29 and 36-78) are not as obviously correlated with the resistivity profiles (nor are they especially well correlated with each other), but they can be reconciled. The surface layer is not expressed in either log, because no rock descriptions were reported above about 100 m. Both logs contain sand and clay sediments down to about 600 m; volcanic rock fragments (VRF's) prevail at greater depth. The volcanics may be detrital; the logs are unclear in this regard. In any case, the sand and clay unit appears to correspond to the conductive second layer in the EM profile, while the volcanic material below 600 m corresponds to the resistive "basement."

Thus it appears that the conductive zone is caused at least in part by clay. The deeper resistive zone may be caused by the absence of clay, increasing lithification, secondary mineralization, and/or massive volcanics. The shallowing of the conductive unit appears to correlate directly with the thermal anomaly.

The shallow geothermal system may occur because hot water is rising along a northwest-trending fault passing near T2, and diffusing out to the northeast with the regional groundwater flow. However, this scenario does not tell us where the hot water is coming from, nor does it explain the role (if any) of the major northeast-trending fault noted in the deep seismic profile.

EM-60 Survey Evaluation

The goals of the survey were to obtain data in an efficient manner, to compare the results with those from other geophysical surveys, and, if possible, to add new information to guide exploration planners in the area.

We obtained 13 soundings in one week with a crew of four, covering an area of 30 km² with depth penetration of about 1.5 km. Data quality was good-to-excellent throughout. Somewhat disappointing was the rather shallow depth of exploration achieved. The EM method is not well suited to resolution of resistive bodies beneath conductive overburden. Nonetheless, we achieved two-to-three times deeper penetration than the dipole-dipole survey and were able to develop a more quantitative idea of the resistivity structure.

As expected, the MT survey provided much greater depth of exploration than EM or dipole-dipole resistivity. The EM-60 system will be tested soon in a deeper application; in any case, MT is unique in its resolution of the resistivity structure down to several tens or hundreds of kilometers. Lateral inhomogeneities, which can often hamper MT interpretation, were not a serious difficulty at Soda Lake. Therefore, the major intrinsic advantages of EM over MT here were the improvement in near-surface resolution and the lower cost of

data acquisition. In addition, we obtained more information northeast of T2, because there were no MT stations there.

We believe that the EM results have clearly demonstrated that the shallow thermal anomaly is associated with a shallowing of the low-resistivity second layer. They also suggest the importance of the northwest-trending fault set in controlling the shallow geothermal regime. Finally, the survey has corroborated many of the findings from the MT and dipole-dipole studies; no serious discrepancies were found between data sets.

Acknowledgment

This work was supported by the Division of Geothermal Energy of the U.S. Department of Energy under Contract No. W-7405-ENG-48.

References

- Garside, L. J., and J. H. Schilling, 1979. Thermal waters of Nevada. Nevada Bureau Mines and Geology, bulletin 91.
- Inman, J. R., J. Ryu and S. H. Ward, 1973. Resistivity inversion: Geophysics 38, 6, pp. 1088-1108.
- Olmsted, F. H., P. A. Glancy, J. R. Harrill, F. E. Rush, and A. S. VanDenburgh. 1975. Preliminary hydrogeologic appraisal of selected hydrothermal systems in northern and central Nevada: U.S. Geological Survey, open-file report 75-56.

APPENDIX A

Description of EM-60 System

APPENDIX A

EM-60 ELECTROMAGNETIC SYSTEM

In 1976, Lawrence Berkeley Laboratory, in conjunction with the University of California Berkeley, made preliminary measurements with a prototype large-moment, horizontal-loop EM prospecting system (Jain, 1978) in a geothermal area in Nevada. Encouraging results from this work led to the development of the EM-60 horizontal-loop system (Morrison et al., 1978), which has now been operated for more than 500 hr at various geothermal sites in Nevada and Oregon.

The EM method offers the following advantages over dc resistivity and magnetotellurics in geothermal exploration: (1) The maximum depth of exploration with EM is approximately equal to the distance between the transmitter and receiver; this compares to about one-fifth the source-receiver separation for dc resistivity. (2) The EM method is faster and less expensive than dc resistivity or MT. (3) Distant lateral inhomogeneities, which often affect MT data, have relatively minor significance for EM, because the strength of the fields strongly decreases with increasing distance from the transmitter.

System Description

The system, as shown schematically in Figure A-1 consists of two sections: (a) a <u>transmitter section</u> consisting of the power source, control electronics, timing, and a transistorized switch capable of handling large current; and (b) a <u>receiver section</u> consisting of magnetic or a combination of magnetic and electric field detectors, signal conditioning amplifiers and anti-alias filters, and a multichannel programmable receiver (spectrum analyzer).

Figure A-1. Schematic diagram of the EM-60 system.

Transmitter System

The EM-60 transmitter is powered by a Hercules gasoline engine linked to an aircraft 60-kW, 400-Hz, 3¢ alternator. These two components are mounted in the bed of a one-ton, four-wheel-drive truck. The output is full-wave rectified and capable of providing ± 150 V at up to 400 A to the horizontal coil. The square-wave current pulses are created by means of a transistorized switch, which consists of two parallel arrays of from 6 to 60 transistors in interchangeable modules within the "crate" (the lower outward pivoting box in Figure A-2). The upper unit contains array-driving electronics and timing circuitry. The transmitter is operated by one man who controls the frequency of the primary magnetic field over the range of 10^{-3} to 10^3 Hz by means of switches on a remote control box which contains a crystal-controlled oscillator and dividers (Morrison et al., 1978).

The dipole moment, which is a measure of the strength of the signal, is determined by the resistance and inductance of the loop. At frequencies below 50 Hz, inductive reactance is negligible and the dipole moment is governed by the load resistance. Four turns of no. 6 wire in a square or circular loop, 50 m in radius, will yield a dipole moment of about 3×10^6 mks. This provides adequate signal for soundings where transmitter-receiver separations are less than about 5 km, which corresponds to a maximum depth of exploration of about 5 km. At frequencies above about 100 Hz, the inductance causes the moment to decrease and the current waveform to become quasisinusoidal. High-frequency information is thus more difficult to obtain at large transmitter-receiver separations.

,

1

CBB 789-12736

Figure A-2. The EM-60 transmitter section.

Receiver Section

The fields are detected at a point 1-4 km distant from the transmitter by means of a three-component SQUID magnetometer oriented to measure the vertical, radial, and tangential components with respect to the loop. Signals are amplified, anti-alias filtered and inputted to a six-channel, programmable, multifrequency phase-sensitive receiver (Figure A-1). Through the receiver key-pad, the operator sets parameters controlling signal processing: (a) fundamental period of the waveform to be processed; (b) maximum number of harmonics to be analyzed, up to 15; (c) number of cycles in increments of 2^{N} to be stacked prior to Fourier decomposition; and (d) number of input channels of data to be processed. Processing results in a raw amplitude estimate for each component and a phase estimate relative to the phase of the current in the loop. Phase referencing is maintained with a hard-wire link between a shunt on the loop and the receiver; this reference voltage is applied directly to channel 1 of the receiver for phase comparison. Raw amplitude estimates must be later corrected for dipole moment and distance between loop and magnetometer.

In practice, the hard-wire link was found to be a source of noise, particularly above 50 Hz. This has required the elimination of the absolute phase reference at high frequencies in favor of relative phase measurements between vertical and radial components. With relative phase measurements, interpretation is based on the ellipticity and tilt angle of magnetic field rather than amplitude-phase of the vertical and radial fields. At low frequencies ($\leq .1$ Hz) natural geomagnetic signal amplitude increases roughly as

1/f while the signal sought decreases as 1/f. The net result is an effective signal-to-noise ratio that decreases as $1/f^2$, making noise cancellation imperative for recovery of low-frequency information. To cancel geomagnetic noise, a reference magnetometer is placed far enough from the transmitter loop, (10-12 km) so that the observed fields will consist only of the geomagnetic fluctuations. Once installed, the reference magnetometer can often remain fixed over the course of a survey. The remote signals are transmitted to the mobile receiver station from the transmitter via FM radio telemetry. Before the loop is energized, the remote signals are inverted, adjusted in amplitude, and then added to the base station geomagnetic signal to produce essentially a null signal. A good example of this simple noise cancellation scheme is shown in Figure A-3. The resulting signal-to-noise improvement of roughly 20 dB has allowed us to obtain reliable data to 0.05 Hz, a gain of three or four important data points on the sounding curve. These points are invaluable for resolving deeper horizons.

Data Interpretation

Basic interpretation is accomplished by direct inversion of observed data to fit one-dimensional models. The program used fits amplitude-phase and/or ellipse polarization parameters jointly or separately to fit arbitrarily layered models. This program allows the use of ellipse polarization parameters to separately fit high frequency points, where absolute phase data is much noisier, while simultaneously using absolute phase data at the lower frequencies, where the phase reference may allow for better parameter resolution. Two-dimensional modeling, although possible, is currently

NATURAL MAGNETIC FIELD CANCELLATION

XBL 7911-13079

Figure A-3. Field records of telluric noise cancellation.

22

)

cumbersome and prohibitively expensive (Lee, 1979).

Samples of EM-60 amplitude-phase spectra soundings are given in Figures A-4 and A-5; the error bars signify one standard deviation. The fit to a three-layer model is fairly good, but note that data were interpreted only to 50 Hz because high noise, due to the use of the reference wire, prohibited obtaining higher frequency amplitude-phase data. Ellipticity data, however, could usually be interpreted to 500 Hz.

Sounding TT' km 4 Normalized amplitude H_N 1.0 Δ H_R \triangle Observed – Model $8.1 \pm 0.5 \Omega$ m 340±30 m $3.9 \pm 1.0 \Omega m$ 620 ± 200 m 150.0 (fixed) 100 0.01 10 0.1 1.0 Frequency (Hz)

XBL 802 - 6816

Figure A-4. Example of EM amplitude spectra.

τ.

Ø

Figure A-5. Example of EM phase spectra.

References

- Jain, B., 1978. A low frequency electromagnetic prospecting system, Ph.D. dissertation, University of California, Berkeley, Department of Engineering Geosciences, Lawrence Berkeley Laboratory, LBL-7042.
- Lee, K. H., 1978, Electromagnetic scattering by a two-dimensional inhomogeneity due to an oscillating magnetic dipole, Ph.D. dissertation, University of California, Berkeley, Department of Engineering Geosciences, Lawrence Berkeley Laboratory, LBL-8275.
- Morrison, H. F., Goldstein, N. E. Hoversten, N., Oppliger, G., and Riveros, C., 1978. Description, field test and data analysis of a controlled-source EM system EM-60, Lawrence Berkeley Laboratory, LBL-7088.

APPENDIX B

Final Working Data Set
station: soda number of tur hr mag const=	lake a-a′0. ns≈4 loop 7.936 hz ma	5km north t radius=50 m g const=7.0	1 separat leters 192	ion=960 meters:
frequency 1.000 3.000 5.000 7.000 10.000 30.000 50.000 100.000 150.000 200.000 500.000	hz amp 1.008 1.114 1.117 1.119 1.112 0.878 0.648 0.692 0.250 0.146 0.014 0.004	amp err 9.992 9.996 9.994 9.995 9.901 9.909 9.901 9.909 9.901 9.909 9.909 9.909 9.909 9.909	hz phase 185.047 178.554 174.294 168.093 164.439 136.973 89.219 120.567 350.330 299.279 286.829 177.597	phase err 0.257 0.585 1.003 1.444 0.037 0.120 0.087 0.197 0.095 0.145 0.171 0.192
frequency 1.000 3.000 5.000 7.000 10.000 30.000 50.000 100.000 150.000 200.000 500.000	hr amp 0.160 0.322 0.435 0.499 0.631 0.779 0.752 0.782 0.439 0.397 0.058 0.010	0.013 0.013 0.010 0.012 0.007 0.005 0.004 0.003 0.006 0.001 0.001 0.001 0.001 0.001	hr phase 280.607 237.196 225.107 217.218 207.222 177.491 129.344 164.590 35.397 354.911 299.003 352.383	phase err 5.587 2.451 2.495 1.246 0.345 0.197 0.126 0.457 0.121 0.247 40.283 1.064
frequency 1.000 3.000 5.000 7.000 10.000 50.000 50.000 100.000 150.000 200.000 50.000	<pre>ellipticity -0.154 -0.239 -0.281 -0.305 -0.322 -0.366 -0.360 -0.400 -0.340 -0.290 -0.237 -0.035</pre>	ellip err 0.015 0.008 0.006 0.011 0.001 0.001 0.003 0.000 0.001 0.004 0.008	tilt angl 90.613 80.917 74.957 72.136 64.564 49.463 39.480 40.155 25.047 12.842 4.670 -24.561	tilt err 0.637 0.793 0.858 1.024 0.319 0.202 0.127 0.371 0.092 0.069 0.162 2.016

station: soda number of tur hr mag const=	lake a-a' 1. ns=4 loop 7.936 hz ma	5kn north t1 radius=50 me g const=7.09	separat iters 2	ion=1956 meters
frequency 0,100 0.300 0,500 1,000 3,000 5,000 7,000 10,000 30,000 50,000	hz dMp 1.090 1.270 1.369 1.445 1.027 0.773 0.638 0.521 0.247 0.191	amp err h 0.005 1 0.001 1 0.002 1 0.003 1 0.003 1 0.003 1 0.003 1 0.003 1 0.003 1 0.003 1 0.003 1 0.003 1	z phase 88.927 85.251 77.789 66.823 39.310 29.246 23.910 18.127 98.513 87.232	phase err 0.292 0.051 0.102 0.027 0.171 0.328 0.274 0.077 0.645 1.735
frequency 0.100 0.300 1.000 3.000 5.000 7.000 10.000 30.000 50.000	hr amp 0.217 0.552 0.780 1.074 1.195 1.088 1.029 0.899 0.455 0.175	amp err h 0.003 2 0.003 2 0.003 2 0.002 2 0.005 1 0.005 1 0.010 1 0.010 1 0.012 1 0.011 1 0.011 1 0.009 1	r pha≤e 69.079 43.843 29.534 09.806 77.246 65.456 59.123 54.095 39.227 55.133	phase err 0.907 0.291 0.364 0.333 0.282 0.194 0.622 0.245 0.719 3.447
frequency 0.100 0.300 1.000 3.000 5.000 7.000 10.000 30.000 50.000 100.000 100.000 50.000 100.000 50.000	ellipticity -0.196 -0.350 -0.389 -0.371 -0.339 -0.305 -0.278 -0.274 -0.298 -0.648 -0.147 -0.114 -0.089 -0.064 0.048	ellip err 0.002 0.002 0.003 0.002 0.002 0.004 0.003 0.002 0.004 0.003 0.002 0.004 0.003 0.002 0.004 0.017 0.021 0.021	tilt angl 87.970 75.398 66.891 56.202 39.524 33.344 29.342 27.391 24.849 53.866 15.430 12.586 11.438 11.695	e tilt err 0.140 0.148 0.098 0.062 0.253 0.115 0.229 0.351 0.732 4.000 0.155 0.291 0.704 1.284 5.991

- - -

number of tur	ns=4 loop	radius=50 m	neters	
hr mag const	=7.936 hz m	1g const=7.6	192	
frequency	hz amp	amp err	hz phase	phase err
0.100	1.063	8.003	187.613	0.267
0.300	1.148	6.042	188.237	4.394
0.500	1.232	0.002	170.925	0.221
0.700	1.173	0.002	163.822	0.245
1.000	1.077	0.002	157.687	0.293
3.000	5.092	0.014	143.153	0.179
5.000	0.594	0.004	136.709	0.343
7.000	0.515	0.005	132.053	0.321
10.000	0.431	0.001	138.072	0.209
frequency 0.100 0.300 0.500 0.700 1.000 3.000 5.000 7.000 10.000	hr amp 0.318 0.655 0.984 0.957 7.184 0.827 0.770 0.865	Cmp Crr 0.006 0.026 0.012 0.038 0.027 0.202 0.019 0.022 0.015	hr phase 253.658 235.687 213.863 206.322 193.221 195.034 160.034 154.280 163.414	phase err 0.901 3.964 0.427 0.775 0.402 25.570 0.581 1.002 0.859
frequency 0.100 0.300 0.500 0.700 1.000 3.000 5.000 7.000 10.000 30.000 50.000 100.000 200.000	ellipticity -0.269 -0.357 -0.368 -0.380 -0.317 -0.159 -0.194 -0.180 -0.176 -0.092 -0.006 -0.150 -0.150 -0.199	ellip err 8.006 9.006 9.009 9.003 9.061 9.005 9.008 9.008 9.008 9.004 9.004 9.003 9.010 9.022	tilt angl 82.542 65.586 56.964 51.762 49.201 25.199 34.982 33.036 25.112 3.152 79.158 13.383 10.714	tilt err 0.358 0.915 0.408 1.389 1.053 9.624 0.785 0.889 0.368 0.372 0.138 0.979 1.301

station: soda lake A-A' 2.3 km sw t1 separation=2268 meters

٠

.

۰

.

station: soda number of tur hr mag const=	lake C-C' .6 ns=4 loop 7,936 hz ma	km nw t2 radius=50 me g const=7.09	separation= eters 92	552 meters
frequency 0.100 0.300 0.500 0.700 1.000 3.000 5.000 7.000 10.000 30.000	hz amp 0.993 1.024 1.084 1.105 1.168 1.241 1.113 0.946 0.541 0.188	amp err 0.004 0.007 0.010 0.005 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.003 1	nz pha se p 181.467 183.000 179.600 182.440 180.000 158.770 141.600 129.011 122.000 123.440	hase err 0.333 0.000 3.400 0.223 0.000 0.000 0.000 0.308 0.000 6.240
frequency 0.100 0.300 0.500 1.000 3.000 5.000 7.000 10.000 30.000	hr amp 0.145 0.249 0.311 0.423 0.856 1.003 1.013 0.700 0.375	amp err 0.016 0.003 0.004 0.006 0.003 0.004 0.005 1 0.002 0.005 1 0.005 1 0.005 1	nr phase p 271.800 251.200 249.200 249.200 241.500 210.020 189.600 189.600 175.300 167.250 155.440	hase err 5.196 0.645 3.308 0.872 0.500 0.250 0.200 0.250 6.240
frequency 0.100 0.300 0.500 0.700 1.000 3.000 5.000 10.000 39.000 50.000 200.000 500.000	ellipticity -0.077 -0.139 -0.217 -0.255 -0.308 -0.433 -0.442 -0.426 -0.398 -0.223 -0.168 -0.171 -0.162 -0.112	ellip err 0.015 0.003 0.003 0.002 0.004 0.002 0.004 0.002 0.004 0.002 0.000 0.003 0.001 0.002 0.007	tilt angle 90.195 88.633 85.639 83.210 79.166 60.603 49.427 42.181 34.795 24.290 20.085 17.043 12.219 9.688	tilt err 0.475 0.111 0.078 0.365 0.077 0.220 0.101 0.042 0.047 0.074 0.074 0.037 0.258 0.877

tation: soda umber of tur r mag const=	l lake C-C' 1 ns=4 loop 7.936 hz m	.8km nw t2 radius=50 p ag const=7.6	separatio meters 392	n=1764 meters
frequency 0.050 0.100 0.150 0.300 0.500 0.700 1.000 5.000 7.000	hz amp 1.049 1.042 1.141 1.103 1.275 1.402 1.459 1.433 1.061 0.670 0.448	CMP Crr 0.016 0.015 0.006 0.009 0.005 0.004 0.004 0.001 0.001 0.001 0.001	hz phase 185.933 185.029 184.300 185.567 184.200 180.160 174.460 166.964 125.770 105.600 101.300	phase err 2.836 1.043 0.224 0.167 0.200 0.068 0.183 0.036 0.000 0.000 0.200
frequency 9.050 0.100 0.150 0.300 0.500 0.700 1.000 3.000 5.000 7.000	hr amp 0.147 0.113 0.235 0.446 0.660 0.821 0.944 1.160 0.990 0.807	0.012 0.017 0.002 0.001 0.002 0.004 0.009 0.005 0.012 0.013 0.009	hr phase 280.433 262.271 261.800 257.400 246.020 234.400 225.400 215.000 170.970 149.600 140.300	phase err 20.027 15.830 0.683 1.438 0.020 0.400 0.400 0.400 0.200 0.200 0.200 0.200 0.374
frequency 9.050 0.150 0.150 0.300 0.500 0.700 1.000 3.000 5.000 10.000 30.000 50.000 100.000 200.000	ellipticity -0.087 -0.087 -0.143 -0.201 -0.300 -0.351 -0.380 -0.395 -0.414 -0.365 -0.289 -0.209 -0.153 -0.121 -0.115 -0.146	ellip err 0.014 0.018 0.002 0.003 0.001 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.002 0.002 0.002 0.002 0.005 0.014	tilt ang 90.351 09.133 88.142 86.061 79.675 72.371 66.967 61.385 41.425 30.475 25.623 22.518 18.909 16.140 14.782 12.345	le tilt err 2.762 1.505 0.120 0.311 0.056 0.167 0.389 0.198 0.405 0.495 0.235 0.357 0.677 0.390 0.981 2.003

s ni hi

tation: soda umber of tur r mag const=	lake d−d′0. ns=4 loop 7.936 hz ma	5km w t2 radius=50 m g const=7.6	separation neters 392	=720 meters
frequency 8.100 8.300 0.500 1.000 3.000 5.000 10.000 30.000 50.000 50.000 100.000 100.000 200.000	hz amp 1.007 1.010 1.034 1.048 1.105 1.208 1.245 1.259 1.270 1.116 0.857 0.956 266.634 0.163 109.301 0.022	mp err 9.000	hz phase 183.825 183.460 183.383 183.163 184.190 179.640 174.542 170.554 165.817 132.733 82.630 106.122 192.541 196.231 266.964 130.591	phase err 0.009 0.013 0.025 0.026 0.000 0.011 0.023 0.023 0.023 0.029 0.105 0.077 0.170 48.976 0.038 45.439 0.241
frequency 0.100 0.300 0.500 1.000 3.000 5.000 10.000 50.000 50.000 50.000 100.000 200.000	hr amp 0.027 0.063 0.102 0.131 0.176 0.362 0.477 0.561 0.671 0.947 0.951 1.046 287.902 0.273 162.997 0.086	Mp err 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.002 0.001 0.003 0.000 0.004 0.000 0.005 0.000 0.006 0.000 0.007 0.000 0.008 0.000 0.008 0.000 0.008 0.000 0.008 0.000 0.009 0.000 0.009 0.000 0.009 0.000 0.009 0.000 0.009 0.000 0.009 0.000 0.009 0.000 0.009 0.000 0.009 0.000 0.009 0.000 0.009 0.000 0.009 0.000 0.009 0.000 0.009 0.000 0.009 0.000 0.009 0.000 0.000 </td <td>hr phase 252.357 253.930 248.372 247.472 242.544 228.052 219.686 213.896 208.427 176.224 127.536 153.174 237.578 248.999 245.912 216.017</td> <td>phase err 2.525 2.098 1.537 1.003 0.227 0.294 0.141 0.156 0.026 0.100 0.080 0.161 48.965 0.037 43.322 0.264</td>	hr phase 252.357 253.930 248.372 247.472 242.544 228.052 219.686 213.896 208.427 176.224 127.536 153.174 237.578 248.999 245.912 216.017	phase err 2.525 2.098 1.537 1.003 0.227 0.294 0.141 0.156 0.026 0.100 0.080 0.161 48.965 0.037 43.322 0.264
frequency 0.100 0.300 0.500 0.700 1.000 3.000 7.000 10.000 50.000 50.000 50.000 100.000 100.000 200.000 200.000 500.000	<pre>ellipticity -0.025 -0.058 -0.089 -0.113 -0.135 -0.215 -0.252 -0.275 -0.306 -0.392 -0.410 -0.433 -0.413 -0.443 -0.443 -0.4256 -0.339 -0.173</pre>	<pre>ellip err 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000</pre>	tilt ang 89.438 88.786 87.600 86.852 85.130 78.214 73.830 70.503 66.413 51.439 40.816 41.206 41.898 24.187 28.461 1.255 15.581 9.580	le tilt er 0.079 0.149 0.165 0.118 0.049 0.067 0.022 0.062 0.002 0.002 0.002 0.005 0.015 0.014 0.009 0.017 0.013 0.011 0.283

st nu hr

station: soda lake D-D' 2.0km ne tl separation=2028 meters number of turns=4 loop radius=50 meters hr mag const=7.936 hz mag const=7.092

frequency 0.050 0.100 0.150 0.300 0.500 0.700 1.000 3.000 5.000 10.000 30.000 59.000	hz amp 1.024 1.116 1.136 1.286 1.322 1.267 1.170 0.707 0.553 0.464 0.386 0.074 0.170	amp err 0,009 0.001 0.004 0.002 0.002 0.003 0.001 0.002 0.002 0.002 0.002 0.004 0.000 0.002 0.002 0.002	hz phase 186.231 187.168 186.510 180.235 170.674 162.502 154.695 140.418 135.080 132.553 306.444 264.687 117.710	phase err 1.866 0.202 0.489 0.129 0.098 0.116 0.046 0.134 0.165 0.463 0.463 0.052 1.315 1.361
frequency 0.050 0.100 0.150 0.300 0.700 1.000 3.000 5.000 7.000 10.000 30.000	hr amp 0.159 0.328 0.446 0.748 0.969 1.072 1.158 1.040 0.966 0.919 0.904 0.806	amp err 0.026 0.005 0.012 0.007 0.006 0.010 0.003 0.004 0.008 0.018 0.001 0.001	hr phase 248.888 252.555 243.850 230.188 213.717 204.112 193.105 170.413 164.020 160.013 335.490 313.121	phase err 9.776 0.729 4.938 0.346 0.641 0.354 0.048 0.336 0.339 1.195 0.080 0.518
frequency 0.050 0.100 0.150 0.500 0.500 1.000 3.000 5.000 10.000 30.000 50.000 50.000 100.000	ellipticity -0.133 -0.263 -0.314 -0.381 -0.370 -0.373 -0.348 -0.247 -0.219 -0.193 -0.181 -0.068 0.002 -0.167 -0.125	<pre>ellip er 0.030 0.005 0.027 0.004 0.005 0.004 0.003 0.004 0.003 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.001 0.003</pre>	r tilt ang 86.638 82.498 77.138 65.727 56.699 51.322 45.362 32.732 28.075 25.147 21.229 3.495 -11.085 13.251 8.450	le tilt err 0.762 0.251 0.873 0.270 0.291 0.269 0.069 0.172 0.213 0.460 0.031 0.104 0.171 0.068 0.178

34

•

.

.,

station: soda lake D-D' 2.8 km se t1 separation=2796 meters number of turns=4 loop radius=50 meters hr mag const=7.936 hz mag const=7.092

frequency 0.050 0.100 0.300 0.300 0.500 0.700 1.000 5.000 7.000 10.000 10.000 30.000	hz amp 1.048 1.261 1.246 1.383 2.884 1.302 1.148 0.958 0.530 0.349 0.280 2517.613 P.085	amp err 0.097 0.035 0.013 0.018 1.519 0.060 0.058 0.004 0.013 0.013 0.013 0.013 0.013 0.011	hz phase 188.843 185.229 182.000 168.600 169.400 161.000 151.550 141.286 134.570 134.800 130.500 126.667 344.000 93.400	phase err 2.650 1.325 0.510 1.288 4.400 4.211 4.655 0.286 1.820 1.800 2.983 0.955 3.000 4.140
frequency 0.050 0.100 0.150 0.300 0.500 0.500 0.700 1.000 3.000 10.000 10.000 30.000	hr amp 8.281 8.463 0.620 0.957 1.069 1.281 1.575 1.103 8.839 0.820 0.730 0.641 5632.999 0.481	amp err 0.063 0.082 0.017 0.088 0.331 0.082 0.182 0.135 0.035 0.027 0.042 0.042 0.042 0.042 118.872 0.030	hr phase 260.027 244.371 242.400 206.000 205.500 193.038 178.143 160.970 155.800 162.500 151.667 373.000 140.600	phase err 6.104 31.379 3.256 4.273 28.000 4.410 4.205 2.790 1.114 4.903 7.043 0.803 2.000 2.839
frequency 8.859 9.109 9.159 9.309 0.309 0.500 0.700 1.000 3.000 7.000 10.000 10.000 30.000 30.000 100.000	ellipticity -0.317 -0.224 -0.400 -0.427 -0.251 -0.396 -0.344 -0.297 -0.210 -0.143 -0.213 -0.159 -0.187 -0.133 -0.215 -0.988	ellip err 0.084 0.114 0.016 0.025 0.230 0.025 0.025 0.025 0.015 0.035 0.042 0.005 0.009 0.033 0.022 0.013	tilt ang 82.505 88.519 73.486 61.822 74.019 45.811 35.793 42.119 31.107 24.695 23.069 22.215 22.171 6.819 14.101 7.614	tilt err 3.299 3.338 1.692 4.668 1.616 3.939 4.055 5.696 1.041 0.710 2.054 0.330 0.255 0.944 0.121 1.613

loop radius=50 meters hr mag const=7.936 hz mag const#7.092 hz phase phase err amp err 0.001 frequency hz amp 0.065 185.817 0.100 1.118 1.124 0.049 185.108 0.066 0.500 1.290 0.000 182.180 0.111 1.316 0.022 178.782 0.142 175.920 0.080 1.000 1.407 9.001 1.249 0.959 0.713 0.245 149.170 0.001 3.000 134.200 126.500 0.245 5.000 0.001 0.002 0.000 7.000 phase err 1.579 0.267 hr phase 271.967 frequency hr amp amp err 0.005 0.100 0.103 0.300 0.259 0.012 253.940 0.500 0.429 241.850 0.006 0.247 0.700 0.530 0.008 234.919 0.601 225.000 1.000 0.672 0.001 0.000 3.000 0.992 0.001 189.370 0.245 0.979 0.000 5.000 0.002 170.600 0.250 7.008 0.887 0.007 160.250 frequency ellipticity ellip err tilt angle tilt err 0.004 9.100 0.150 -0.092 89.617 -0.213 -0.278 -0.316 0.300 0.002 85.828 0.113 0.500 0.004 79.656 0.162 0.002 75.907 0.264 1.000 -0.325 0.000 70.474 0.031 3.898 -0.354 0.003 53.468 0.085 44.272 5.000 -0.329 9.992 8.114 7.000 -0.295 37.609 0.003 8.323 10.000 -0.330 33.944 0.003 0.048 23.759 -0.252 39.000 0.001 0.314 50.000 -0.249 0.001 18.855 0.112 -0.239 50.000 0.002 19.025 0.097 100.000 0.728 -0.210 0.014 13.910

station: soda lake E-E' 1.3km sw t2 separation=1260 meters number of turns=4

ation: soda	Iake E-E' 2.	8km ne t2	separation	=2760 meters
mber of tur	ns=4 loop	radius=50 me	eters	
Mag const=	7.936 hz ma	g const=7.09	92	
frequency	hz amp	amp err f	bz phase	
0.100 0.300 0.500 0.700 1.000 3.000 5.000 5.000 7.000 10.000	1.191 1.322 1.263 1.093 0.797 0.095 0.105 0.105 0.101 0.085 0.057	0.000 1 0.010 1 0.011 1 0.014 1 0.001 1 0.002 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.004 1 0.001 1	181.386 159.194 147.450 20.800 97.667 11.145 08.236 08.457 88.300 07.600	0.568 0.612 0.284 1.517 0.211 2.556 0.742 4.672 3.718 0.812
frequency	hr amp	amp err	hr phase	phase err
0.100	0.388	9.919	255.943	4.345
0.300	0.913	9.916	223.429	1.875
0.500	1.143	9.913	194.338	1.117
0.700	1.196	9.912	178.000	0.860
1.000	1.127	9.925	157.500	0.992
3.000	0.412	9.925	140.645	2.973
5.000	0.365	9.911	141.145	1.713
5.000	0.443	9.938	144.457	3.979
7.000	0.465	9.936	108.425	6.420
10.000	0.337	9.907	133.600	1.400
frequency 0.100 0.300 0.500 0.700 1.000 3.000 5.000 7.000 10.000 10.000 30.000 50.000	ellipticity -0.304 -0.546 -0.431 -0.541 -0.516 -0.110 -0.147 -0.133 -0.064 -0.072 -0.083 0.005 -0.025	ellip err 0.016 0.021 0.012 0.019 0.009 0.007 0.007 0.020 0.021 0.003 0.003 0.022 0.020	tilt angl 84.480 65.945 49.172 40.206 27.440 11.752 13.987 10.795 9.660 8.643 10.631 9.738 6.375	e tilt err 1.563 1.335 0.376 0.901 0.793 0.929 0.644 0.994 1.010 0.179 0.270 0.631 3.480

+ i st nu hr

_

37

- -

station: soda number of tur hr mag const=	lake e-e' 2. ns=4 loop 7.936 hz ma	.2km. sw radius=50 1g const=7,	separation= meters 092	2304 meters
frequency 0.050 0.100 0.150 0.300 0.500 1.000 3.000 5.000 10.000 10.000 30.000 30.000 50.000 50.000	hz amp 1.066 1.159 1.170 1.314 1.442 1.412 1.324 0.661 0.404 0.275 0.177 178.496 0.147 21.468 15.247 0.368	amp err 0.024 0.008 0.014 0.055 0.002 0.002 0.002 0.002 0.002 0.003 0.006 0.007 0.0219 0.219 0.177 0.012	hz phase 189.078 188.179 187.894 183.820 169.255 159.155 148.970 114.091 103.991 98.602 93.521 330.163 109.617 228.749 252.541 85.283	phase err 1.214 0.463 0.553 3.106 0.089 0.096 0.029 0.142 0.350 0.733 0.190 7.691 8.007 45.325 31.414 5.873
frequency 0.050 0.100 0.150 0.500 0.700 1.000 3.000 5.000 10.000 10.000 30.000 30.000 50.000	hr amp 0.195 0.285 0.398 0.666 0.954 1.160 1.230 1.029 0.792 0.660 0.572 376.873 0.536 58.941 57.135 0.746	CMP Crr 0.019 0.023 0.004 0.043 0.008 0.008 0.005 0.008 0.00	hr phase 260.155 249.840 250.462 239.376 214.475 205.303 192.114 150.537 136.811 130.576 126.444 239.606 110.410 204.780 202.856 95.534	phase err 8,708 2.521 0.468 4.268 2.549 0.330 0.159 0.214 0.950 1.558 0.964 69.684 3.340 47.775 30.742 5.072
frequency 0.050 0.100 0.150 0.500 0.500 1.000 3.000 5.000 10.000 10.000 30.000 50.000 50.000 50.000 50.000 100.000	ellipticity -0.156 -0.213 -0.294 -0.369 -0.373 -0.410 -0.394 -0.293 -0.231 -0.195 -0.158 -0.198 0.007 -0.198 -0.166 0.071 -0.361	ellip er 0.022 0.018 0.005 0.017 0.022 0.005 0.002 0.002 0.002 0.002 0.0011 0.011 0.020 0.013 0.020 0.013 0.025 0.008 0.019 0.043	tilt ang 87.390 83.249 80.215 71.826 60.733 53.103 47.896 30.218 24.581 20.241 14.927 23.412 -14.936 17.169 11.876 -26.022 11.551 67.030	tilt err 1.345 0.614 0.278 1.413 0.199 1.450 0.179 0.202 0.318 0.366 0.665 0.433 0.572 0.504 0.297 0.266 0.908 2.255

station: sl (number of tur hr mag const=	-f.6km south ns=4 loop 7.936 hz ma	separatic radius=50 me g const=7.09)n=612 meter: Iters)2	5
frequency 1.000 3.000 5.000 7.000 10.000 30.000 50.000	hz amp 0.952 0.855 0.879 0.888 0.600 0.366 0.222	amp err 0.001 1.002 1.002 1.003 1.003 1.030 1.027 1.010	iz phase pl 76.000 70.937 69.800 65.833 44.000 08.500 71.200	ha se e rr 0.000 0.167 0.200 0.333 0.408 2.173 5.721
frequency 1.000 3.000 5.000 7.000 10.000 30.000	hr amp 0.272 0.609 0.765 0.820 1.060 0.933	amp err 0.001 0.002 0.002 0.004 0.004 1 0.001 1 0.002 1	ir phase pl 51.733 23.770 206.100 94.167 89.000 62.200	ha se err 0.267 0.000 0.289 0.333 0.000 0.000
frequency 1.000 3.000 5.000 10.000 30.000 50.000 50.000 100.000 150.000 200.000	<pre>ellipticity -0.275 -0.454 -0.324 -0.252 -0.336 -0.299 -0.206 -0.248 -0.180 -0.153 -0.135</pre>	ellip err 0.080 0.082 0.084 0.003 0.008 0.030 0.015 0.000 0.001 0.001 0.001	tilt angle 85.640 59.937 49.918 47.570 24.866 14.278 3.081 17.306 12.809 10.827 9.574	tilt err 0.086 0.075 0.061 0.043 1.487 0.620 1.128 0.092 0.041 0.035 0.004

iumber of tur in mag const=	ns=4 loop 7.936 hz Mc	radius=50 m 19 const=7,8	sepurati leters 192	un=2136 Meter
frequency 8.050 0.100 0.150 0.300 0.500 8.700 1.000 3.000 7.000	hz amp 0.999 1.018 0.999 1.131 1.127 1.056 0.912 0.304 0.204 0.179	amp err 0.024 0.005 0.004 0.003 0.001 0.001 0.001 0.001 0.003 0.003 0.003	hz phase 186.225 184.400 181.400 172.000 158.580 146.000 133.250 111.548 111.400 114.100	phase err 0.263 0.400 0.000 0.116 0.200 0.250 5.965 0.490 0.678
frequency 0.050 0.100 0.150 0.300 0.500 0.700 1.000 3.000 5.000 7.000	hr amp 0.170 0.262 0.349 0.630 0.816 0.879 0.937 0.554 0.554 0.342	amp err 0.013 0.003 0.004 0.023 0.021 0.003 0.003 0.013 0.009	hr phase 248,475 256.600 246.040 228.000 207.960 193.000 178.545 137.860 138.000 135.100	phase err 15,591 0,735 0,933 0,316 0,838 1,463 0,130 0,411 0,510 2,112
frequency 8.059 9.109 9.150 9.300 9.500 1.000 3.000 5.000 10.000 30.000 10.000 100.000	ellipticity -0.125 -0.244 -0.308 -0.412 -0.425 -0.424 -0.417 -0.194 -0.186 -0.150 -0.296 -0.295 -0.264 -0.073	<pre>ellip err 0.035 0.002 0.003 0.005 0.014 0.004 0.042 0.008 0.017 0.005 0.018 0.008 0.018 0.008 0.003</pre>	tilt ang 87,270 85,205 80,619 68,963 58,438 52,618 43,916 26,997 25,226 26,594 41,132 27,290 54,829 6,908	tilt err 1.279 0.187 0.221 0.295 1.161 1.016 0.139 0.538 1.042 0.656 0.354 0.867 2.224 0.443

station: number o hr mag c lake F-F' 2.1 km se t2 -enaration 2176 eters

.

÷

APPENDIX C

Results of Inversions

COMPARSION OF CALCULATED AND MEASURED DATA

CALCULATED DATA	MEASURE	MEASURED DATA		RESISTIVITY	THICKNESS(N)			
HR	– HR	X	1	12.04±	.00	446.1	*	4.
нг — — —	– HZ	*	2	1.62±	.05	.1000E+	11±	0.

DATA VARIENCE ESTIMATE 510.2

XBL 806-10122

L

Г

CALCULATED DATA		MEASURE	MEASURED DATA		RESISTIVITY(OHM-M)		THICKNESS(M)			
HR		 	HAR	x	1	12.04±	.00	446.1	ŧ	4.
HZ		 	HZ	*	2	1.62*	.05	.1000E+	11±	0.

DATA VARIENCE ESTIMATE 510.2

XBL 806-10121

COMPARSION OF CALCULATED AND MEASURED DATA

L

Г

SODA LAKE A-A .96 KM NE TI

CALCULATED DATA	MEASURED DATA		LAYER	RESISTIVITY(OHM~M)		THICKNESS(M)		
ELLIPTICITY	ELLIPTICITY	х	I	12.04+	. 00	446.1	±	4.
			2	1.62*	.05	.1000E+1	ll±	0.

DATA VARIENCE ESTIMATE 510.2

L

٢

XBL 806-10119

SODA LAKE A-A .96 KM NE TI

CALCULATED DATA	MEASURED DATA		LAYER	RESISTIVITY	THICKNESS (M)			
TILT ANGLE	TILT ANGLE	x	1	12.04±	.00	446.1	ŧ	4.
			2	l.62±	.05	.1000E+1	ll±	0.

DATA VARIENCE ESTIMATE 510.2

L

Г

XBL 806-10120

SODA LAKE A-A 2.0 KM NE T!

0.10

MEASURED DATA LAYER RESISTIVITY(OHM-M) THICKNESS(M) CALCULATED DATA х 1 230.0 HR 11.00± .00 HR 0. _ ٠ ΗZ ΗZ * 2 2.50: .00 850.0 50. 3 50.00± 77.00 .1000E+11: 0. DATA VARIENCE ESTIMATE .1397E+08

1.00

FREQUENCY (HZ)

10.00

L

0.01

0.01

Г

XBL 806-10278

1000.00

100.00

SODA LAKE A-A 2.0 KM NE TI

CALCULATED DATA		MEASURED DATA		LAYER	RESISTIVITY(OHM-M)		THICKNESS(M)		
HR		HR	x	1	11.00±	. 00	230.0	±	0.
HZ		HZ	*	2	2.50±	.00	850.0	±	50.
		10075 00		3	50.00±	77.00	.1000E+	11±	0.
DATA	VARIENCE ESTIMATE	.1397E+08							

L

С

XBL 806-10257

COMPARSION OF CALCULATED AND MEASURED DATA

SODA LAKE A-A 2.0 KM NE TI

CALCULATED DATA	MEASURED DATA		LAYER	RESISTIVIT	Y(OHM-M)	M) THICKNESS		
ELLIPTICITY	ELLIPTICITY	x	1	11.00*	.00	230.0	±	0.
			2	2.50×	.00	850.0	ŧ	50.
DATA VARIENCE ESTIMATE .1397E	•08		3	50.00±	77.00	.1000E+1	ll±	0.

L

Г

XBL 806-10258

COMPARSION OF CALCULATED AND MEASURED DATA

XBL 806-10259

٦

49

Г

SODA LAKE 2.3 KM SW TI

CALC	CALCULATED DATA MEASURED D		DATA	LAYER	RESISTIVITY	(OHM-M)	THICKNESS	G(M)	
HR		HR	х	1	17.64±	.00	310.0	±	2.
HZ		HZ	*	2	l.66±	.02	.1000E+1	11±	0.

DATA VARIENCE ESTIMATE 32.61

L

XBL 806-10130

SODA LAKE 2.3 KM SW TI

CALCULATED DATA		MEASURED	MEASURED DATA		RESISTIVITY(OHM-M)		THICKNESS(M)			
HR		 	HRR	х	1	17.64±	.00	310.0	±	2.
HZ		 	HZ	*	2	1.66±	.02	.1000E+1	11+	Ø.

DATA VARIENCE ESTIMATE 32.61

L

٢

XBL 806-10129

SODA LAKE 2.3 KM SW TI

CALCULATED DATA	MEASURED DATA		LAYER	RESISTIVITY(OHM-M)		THICKNESS(N)		
ELLIPTICITY	ELLIPTICITY	x	1	17.64±	. 00	310.0	*	2.
			2	1.66±	.02	.10000E+1	1±	0.

DATA VARIENCE ESTIMATE 32.61

L

- - - - -

٢

XBL 806-10128

CALCULATED DATA	MEASURED DATA		LAYER	RESISTIVITY	(OHM-M)	THICKNESS	(M)	
TILT ANGLE	TILT ANGLE	х	1	17.64±	. 00	310.0	±	2.
			2	1.66*	.02	.1000E+1	1±	0.

DATA VARIENCE ESTIMATE 32.61

L

_ _ _ _

Г

XBL 806-10127

SODA LAKE Ø.6 KM NW T2

CALCULATED DATA		MEASURED DATA		LAYER	RESISTIVITY(OHM-M)		THICKNESS(M)		
HR		HR	x	1	9.50+	.00	20.00	*	0.
HZ		HZ	*	2	.68*	. 00	.1000E+1	l ±	θ.

DATA VARIENCE ESTIMATE 500.0

L

XBL 806-10135

٦

COMPARSION OF CALCULATED AND MEASURED DATA

SODA LAKE Ø.6 KM NW T2

CALCULATED DATA		MEASURED DATA		LAYER	RESISTIVITY (OHM-M	THICKNESS(M)	
HR		HR	х	1	9.50± .00	20.00 ±	0.
HZ		HZ	*	2	.68± .00	.1000E+11*	0.

DATA VARIENCE ESTIMATE 500.0

Г

XBL 806-10136

SODA LAKE Ø.6 KM NW T2

.

CALCULATED DATA	MEASURED DATA		LAYER	RESISTIVITY	THICKNESS(M)			
ELLIPTICITY	ELLIPTICITY X		1	9.5ر	.00	20.00	t	0.
	2			.68±	.00	.1000E+1	1 ±	ø.

DATA VARIENCE ESTIMATE 500.0

XBL 806-10138

7

L

Г

SODA LAKE Ø.6 KM NW T2

CALCULATED DATA	MEASURED DATA		LAYER	RESISTIVITY	THICKNESS			
TILT ANGLE	TILT ANGLE	х	t	9.50±	.00	20.00	t	0.
			2	.68*	.00	.1000E+1	1 ±	0.

DATA VARIENCE ESTIMATE 500.0

1_

Г

XBL 806-10137

-- ----

٦

-- -- -

COMPARSION OF CALCULATED AND MEASURED DATA

COMPARSION OF CALCULATED AND MEASURED DATA

SODA LAKE 1.8 KM NW T2

Г

L

CALCULATED DATA	MEASURED DATA		LAYER	RESISTIVITY(OHN-M)		THICKNESSIN)
HR	HR	x	1	1000.00±	0.	100.3 *	θ.
нz — — —	HZ	*	2	2.63*	.01	1875 . ±	96.
			3	50.00±	0.	.1000E+11:	θ.
DATA VARIENCE ESTIMATE 55.15							

XBL 806-10142

300.00 280.00 111 260.00 11 Π 240.00 <u>₩</u> Ш VERTICAL AND HORIZONTAL PHASE 220.00 Ш 200.00 П Ħ 180.00 160.00 ***** Ш 140.00 . 120.00 ┼┼┼ Ш Ш III Ш 100.00 80.00 1111 ------╢ 60.00 ╄╄╇ ┿╫┿ ╵ Π 40.00 1111 20.00 111 11 0.00-0.01 0.10 1.00 10.00 100.00 1000.00 FREQUENCY (HZ)

SODA LAKE 1.8 KM NW T2

CALCULATED DATA	MEASURE	MEASURED DATA LAYER		RESISTIVITY(OHN-M)		THICKNESS	Ð
HR	HR	x	Ł	1000.00±	0.	100.3	· 0.
нг — — —	HZ	*	2	2.63*	.01	1875.	96.
DATA VARIENCE ESTIMATE	55.15		3	50.00±	0.	.1000E+11	e 0.

XBL 806-10141

COMPARSION OF CALCULATED AND MEASURED DATA

Г

-- ----

1.00 0.80 į. 0.60 11 0.40 0.20-111 ELLIPTICITY 0.00 -.20-11 - . 40 1 -.60 -.80 -1.00-1.00 10.00 100.00 0.10 1000.00 0.01 FREQUENCY (HZ) SODA LAKE 1.8 KM NW T2

COMPARSION OF CALCULATED AND MEASURED DATA

- - -

,

CALCULATED DATA	MEASURED DATA	LAYER	RESISTIVITY	(OHM-M)	THICKNESSIN)	
ELLIPTICITY	ELLIPTICITY	х	1	1000.00±	0.	1 00. 3 ±	0.
			2	2.63*	.01	1875. ±	96.
			3	50.00±	0.	.1000E+11:	0.
DATA VARIENCE ESTIMATE 55.15							
							10100

L

-- ----

Г

- - - -

XBL 806-10139

100.00 80.00 60.00 TILT ANGLE 40.00 20.00 0.00-0.01 0.10 1.00 10.00 100.00 1000.00 FREQUENCY (HZ) SODA LAKE 1.8 KM NW T2 CALCULATED DATA MEASURED DATA LAYER RESISTIVITY(OHM-M) THICKNESS(M) TILT ANGLE TILT ANGLE X 1 €. 100.3 1000.00± ____ _ * θ. 2 2.63: .01 1875. 96. * з 50.00: 0. .1000E+11: 0. DATA VARIENCE ESTIMATE 55.15

COMPARSION OF CALCULATED AND MEASURED DATA

XBL 806-10140

٦

Г

۰,

COMPARSION OF CALCULATED AND MEASURED DATA

SODA LAKE .72 KM NW TI

CALC	ULATED DATA	MEASURED	DATA	LAYER	R RESISTIVITY(OHM-M)		THICKNESS(N)		
HR		HR	х	I.	12.11±	.00	305.4	*	2.
ΗZ	<u> </u>	HZ	*	2	1.77*	.02	.1000E+	11±	0.

Ø

DATA VARIENCE ESTIMATE 15.23

XBL 806-10148

L

SODA LAKE .72 KM NW T1

CALCULATED DATA			MEASURED DATA		LAYE	R RESISTIVIT	RESISTIVITY(OHM-M)				
HR				HR	x	1	12.11*	.00	305.4	*	2.
ΗZ				HZ	*	2	1.77±	.02	.1000E+	11±	0.

DATA VARIENCE ESTIMATE 15.23

L

XBL 806-10147

63

COMPARSION OF CALCULATED AND MEASURED DATA

SODA LAKE .72 KM NW TI

CALCULATED DATA	MEASURED DATA		LAYER	RESISTIVITY(OHM-M)		THICKNESS(M)		
ELLIPTICITY	ELLIPTICITY	х	I	12.11±	.00	305.4	t	2.
			2	1.77*	.02	.1000E+1	l±	0.

DATA VARIENCE ESTIMATE 15.23

L

DATA VARIENCE ESTIMATE 15.23

L

Г

COMPARSION OF CALCULATED AND MEASURED DATA

SODA LAKE 2.0 KM NW TI

CALCULATED DATA	MEASURED DATA		LAYER	RESISTIVITY(OHM-M)		THICKNESS)
HR	HR	х	1	12.90±	. 00	232.3 ±	1.
нг — — —	HZ	*	2	1.66±	.01	1236. #	35.
			3	50.00±	0.	.1000E+11±	0.
DATA VARIENCE ESTIMATE 45.89							

L

SODA LAKE 2.0 KM NW TI

CALCULATED DATA		MEASURED DATA		LAYER	RESISTIVITY(OHM-M)		THICKNESS(N)		
HIR		HR	x	1	12 .90 ±	.00	232.3		ι.
HZ		HZ	*	2	1.66±	.01	1236.	e	35.
				3	50.00±	0.	.1000E+	11±	●.
DATA	VARIENCE ESTIMATE 45.89								

XBL 806-10245

67

COMPARSION OF CALCULATED AND MEASURED DATA

Г

SODA LAKE 2.0 KM NW TI

CALCULATED DATA		MEASURED DATA LA		LAYER	AYER RESISTIVITY(OHM-M)		THICKNES			
ELLIPTICITY			ELLIPTICITY	x	i	12 .90 ±	.00	232.3	*	ι.
					2	1.66±	.01	1236.	*	35.
DATA VARIENCE	ESTIMATE	45.89			3	50.00±	0.	.1000E+	11+	θ.
								XBL 8	06-	10248

L

Г

CALCULATED DATA	MEASURED DATA	MEASURED DATA		RESISTIVIT	THICKNESS(M)			
TILT ANGLE	TILT ANGLE	x	1	12 .90 ±	. 00	232.3	ŧ	ι.
			2	1.66±	.01	1236.	±	35.
DATA VARIENCE ESTIMATE 45.85	I		3	50.00×	0.	.1000E+	11±	₽.

L

XBL 806-10246

SODA LAKE D-D 2.8 KM SE TI

CALCULATED DATA		MEASUR	MEASURED DATA		RESISTIVITY(OHM-M)		THICKNESS(M)		
HR	<u> </u>	HAR	х	1	16.19±	.00	371.8	±	з.
HZ		HZ	*	2	1.31±	.02	939.5	٠	24.
				3	50.00±	0.	.1000E+	11±	0.
DATA	VARIENCE ESTIMATE 45.64								

L

r

XBL 806-10126

٦

COMPARSION OF CALCULATED AND MEASURED DATA 300.00 +++П Ш 11 280.00 260.00 П 240.00 PHASE 220.00 200.00 Ш $\downarrow\downarrow\downarrow\downarrow$ HOR I ZONTAL 180.00 Ŧ ╂ 160.00 4 Ш 140.00 AND Ħ 120.00 Ш ++++ 111 VERTICAL ITT 100.00 41 80.03 ф Π 60.00 40.00 <u>+ + + + |</u> П 20.00 Π 111 0.00 0.01 0.10 1.00 10.00 100.00 1000.00 FREQUENCY (HZ)

Г

L

CALCULATED DATA		MEASUR	ED DATA	DATA LAYER RE		RESISTIVITY(OHM-M)		THICKNESS(M)	
HR		HIR	x	1	16.19±	.00	371.8	ŧ	з.
HZ		HZ	*	2	1.31±	.02	939.5	ŧ	24.
DATA	VARIENCE ESTIMATE 45.64			3	50 .0 0*	0.	.1000E+1	Į±	0.
							XBL 80)6-1	10125

71

1.00 0.80-0.60-0.40 0.20-ELLIPTICITY 0.00 . -.20--.40 -.60-- .80 --1.00-0.10 1.00 10.00 100.00 1000.00 0.01 FREQUENCY (HZ) SODA LAKE D-D 2.8 KM SE TI

000	 -	_	 	

CALCULATED DATA	MEASURED DATA	MEASURED DATA		LAYER RESISTIVITY(OHN-M)		THICKNESS(N)	I.
ELLIPTICITY	ELLIPTICITY	х	1	16.19±	.00	371.8 ±	з.
			2	1.31±	.02	939.5 ±	24.
			3	50.00±	0.	.1000E+11±	0.
DATA VARIENCE ESTIMATE 45.64							

L

XBL 806-10124

٦

SODA LAKE D-D 2.8 KM SE TI

Г

L

CALCULATED DATA	MEASURED DATA	LAYER	RESISTIVITY(OHM-M)	THICKNESS(M)
TILT ANGLE	TILT ANGLE X	I	16.19± .00	371.8 ± 3.
		2	1.31± .02	939 . 5 ± 24.
DATA VARIENCE ESTIMATE 45.64		3	50.00± 0.	.1000E+11± 0.
				XBL 806-10123

73

____.

COMPARSION OF CALCULATED AND MEASURED DATA

SODA LAKE E-E 1.3 KM SW T2

CALCULATED DATA		MEASURED DATA		LAYER	RESISTIVITY	THICKNESS(N)			
HR		HR	х	I	11.30+	.00	204.0	t	۱.
HZ	<u> </u>	HZ	*	2	1.80±	.01	.1000E+1] ±	0.

DATA VARIENCE ESTIMATE 52.81

L

٣

XBL 806-10134

I.00 I FREQUENCY (HZ)

10.00

100.00

SODA LAKE E-E 1.3 KM SW T2

0.10

CALCULATED DATA		MEASURED DATA		LAYER	RESISTIVITY	THICKNESS(M)			
HR	<u></u>	HIR	х	I	11.30+	.00	204.0	*	ι.
ΗZ		HZ	*	2	1.80±	.01	.1000E+1	1±	0.

DATA VARIENCE ESTIMATE 52.81

0.00 0.01

L

Г

XBL 806-10133

1000.00

SODA LAKE E-E 1.3 KM SW T2

CALCULATED DATA	MEASURED DATA		LAYER	RESISTIVITY	ohm-m)	THICKNESS(M)		
ELLIPTICITY	ELLIPTICITY	х	1	11 .30 ±	.00	204.0	±	۱.
			2	1.80±	.01	.1000E+11±		0.

DATA VARIENCE ESTIMATE 52.81

L

Г

XBL 806-10131

SODA LAKE E-E 1.3 KM SW T2

CALCULATED DATA	MEASURED DATA		LAYER	RESISTIVITY(OHM-M)		THICKNESS(M)		
TILT ANGLE	TILT ANGLE	x	1	11 .30 ±	.00	204.0	t	ι.
			2	1.80±	.01	.1000E+1	1±	0.

DATA VARIENCE ESTIMATE 52.81

÷.

٤

Г

XBL 806-10132

÷5

_ . . _ . . .

COMPARSION OF CALCULATED AND MEASURED DATA

SODA LAKE E-E 2.8 KM NE T2

CALC	CALCULATED DATA		MEASURED DATA LA		RESISTIVITY(OHM-M)		THICKNESS(M)			
HR		HR	x	1	********	.00	80.63	±	0.	
ΗZ	- <u></u>	HZ	*	2	1.32*	.02	474.6	±	6.	
DATA	VARIENCE ESTIMATE 7464.			3	50.00±	0.	.1000E+	11±	0.	
							XBL 8	06-	10107	

L

SODA LAKE E-E 2.8 KM NE T2

CALCU	ILATED DATA	MEASUR	ED DATA	LAYER	RESISTIVIT	Y(OHM-M)	THICKNES	S(MI)	
HR		HiR	x	1	********	.00	80.63	±	0.
HZ		HZ	*	2	1.32±	.02	474.6	±	6.
DATA	VARIENCE ESTIMATE 7464			3	50.00±	0.	.1000E+	11+	0.

L

Г

XBL 806-10108

___

SODA LAKE E-E 2.8 KM NE T2

CALCULATED DATA	MEASURED DATA		LAYER	RESISTIVITY	(OHM-M)	DHM-M) THICKNESS(M		
ELLIPTICITY	ELLIPTICITY	х	1	•••••	.00	80.63	*	0.
			2	1.32±	.02	474.6	t	6.
			з	50.00±	0.	.1000E+11±		0.
DATA VARIENCE ESTIMATE 7464.								

XBL 806-10110

L

Г

CALCULATED DATA MEASURED DATA LAYER RESISTIVITY(OHM-M) THICKNESS(N) TILT ANGLE ____ -----TILT ANGLE X } ******** .00 80.63 t 0. 2 1.32± .02 474.6 6. ± 3 50.00± 0. .1000E+11: 0. DATA VARIENCE ESTIMATE 7464.

L

Г

CALCULATED DATA	MEASURED DATA		LAYER	RESISTIVIT	THICKNESS			
HR	HR	Х	1	8.7ر	.00	189.0	±	2.
HZ	HZ	*	2	2.20±	.01	1119.	ŧ	52.
			З	52.00±	83.67	.1000E+1	11±	0.
DATA VARIENCE ESTIMATE 105.1								

L

Г

SODA LAKE E-E 2.3 KM SW T2

L

CALCU	JLATED DATA	MEASURE	ED DATA	LAYER	RESISTIVIT	Y(OHM-M)	THICKNES	S(M)	
HR		HR	х	1	8.70:	.00	189.0	±	2.
ΗZ		HZ	*	2	2.20±	.01	1119.	t	52.
DATA	VARIENCE ESTIMATE 105	5.1		3	52 .00 ±	83.67	.1000E•	11±	0.

XBL 806-10143

COMPARSION OF CALCULATED AND MEASURED DATA

CALCULATED DATA		MEASURED DATA		LAYER	RESISTIVIT	Y(O HM-M)	THICKNES	S(M)		
ELLIPTICITY		ELLIPTICITY	х	I	8.70±	.00	189.0	t	2.	
				2	2 .20 ±	.01	1119.	ŧ	52.	
DATA VARIENCE ESTIMATE	105.1			3	52 .00 ±	83.67	.1000E+	ll±	0.	
DATA VANTENCE ESTIMATE	10011						XBL 8	06-	1014	5

L

COMPARSION OF CALCULATED AND MEASURED DATA

SODA LAKE F-F 0.6 KM SE T2

CALC	JLATED DATA	MEASURED	DATA	LAYER	RESISTIVITY	OHM-MI)	THICKNESS	M)	
HR	IT	HFR	х	1	2.10*	.00	58.00	±	۱.
HZ		HZ	*	2	1.10±	.01	.1000E+11	ŧ	0.

DATA VARIENCE ESTIMATE 578.1

L

Г

COMPARSION OF CALCULATED AND MEASURED DATA

SODA LAKE F-F 0.6 KM SE T2

CALCU	JLATED DATA	MEASURED DATA		LAYER	RESISTIVITY	THICKNESS			
HR	*#**	HRR	x	1	2.10=	.00	58.00	±	۱.
HZ		HZ	*	2	1.10±	.01	.1000E+11	t	Ø.

DATA VARIENCE ESTIMATE 578.1

L

Г

CALCULATED DATA	MEASURED DATA		LAYER	RESISTIVITY	RESISTIVITY(OHM-M)		G (MD)	
ELLIPTICITY	ELLIPTICITY	x	1	2.10+	.00	58.00	±	ι.
			2	1.10±	.01	.1000E+1	11	0.

DATA VARIENCE ESTIMATE 578.1

L

Г

.

CALCULATED DATA	MEASURED DATA		LAYER	RESISTIVITY	THICKNESS(M)			
TILT ANGLE	TILT ANGLE	x	I	2.10:	.00	58.00	ŧ	١.
			2	1.10±	.01	.1000E+11		0.

DATA VARIENCE ESTIMATE 578.1

L

٣

XBL 806-10117

CALCULATED DATA	MEASURE	MEASURED DATA		RESISTIVITY(OHM-M)		THICKNESS(M)		
HR	HR	x	1	3.00±	.00	82.20	٠	2.
HZ	HZ	*	2	1 .20 ±	.01	460.0	ŧ	9.
			· 3	50. 00 *	19.11	.1000E+	11±	0.
DATA VARIENCE ESTIMATE 4	48.1							

L

Г

XBL 806-10106

CALCULATED DATA		MEASURED DATA		LAYER	RESISTIVITY(OHM-M)		THICKNESS(M)		
HR		HER	x	1	3.00±	.00	82.20	±	2.
ΗZ	<u> </u>	HZ	*	2	1.20*	.01	460.0	±	9.
	VARIENCE ESTIMATE 448			3	50.00×	19.11	.1000E+11	±	0.

L

٣

XBL 806-10105

CALCULATED DATA		MEASURED DATA L		LAYER	RESISTIVITY(OHM-M)		THICKNESS(M)			
	ELLIPTICITY	ELLIPTICITY	x	1	3.00±	.00	82.20 ±	2.	•	
				2	1.20±	.01	460.0 ±	9.	•	
				з	50.00±	19.11	.1000E+11±	Ø		
	DATA VARIENCE ESTIMATE 448.1									

L

٢

XBL 806-10103

Г

L

1

CALCULATED DATA	MEASURED DATA		LAYER	RESISTIVITY(OHM-M)		THICKNESS(M)		
TILT ANGLE	TILT ANGLE	x	ł	3 .00 ±	.00	82.20	ŧ	2.
			2	1.20±	.01	460.0	ŧ	9.
DATA VARIENCE ESTIMATE 448.1			3	50.00±	19.11	.1000E+11±		0.

XBL 806-10104

1