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ABSTRACT 

A boundary element formulation for planar·, time-dependent, inelastic 

deformation problems for bodies with cutouts is presented in this paper. 

A stress function description for these nonlinear problems leads to a non

homogeneous biharmonic equation for the stress function rate. An integral 

. representation of the solution uses modified kernels which guarantee that 

the cutout boundary is traction free for all time. This incorporation of 

the effect of the cutout on the stress field into the kernels leads to an 

accurate determination of stresses in the near field of the cutout. 

Illustrative analytical examples for circular plates with circular cutouts 

are presented in this paper. In a companion paper [14}, numerical solutions 

are presented for problems of finite plates with very narrow elliptic cut

outs. These problems are of considerable importance in inelastic fracture. 



INTRODUCTION 

The boundary element method (BEM - also called the boundary-integral 

equation method) has been applied quite extensively to problems of elasticity 

and elastic fracture mechanics (see, for example, refs. [1,2]), but applica

tions to nonlinear inelasticity problems have been relatively few. The 

authors of this paper together with others, have been interested in the 

application of the BEM to problems of time-dependent inelastic deformation 

[3-7]. Planar problems are considered in refs. [3,....6]' and plate bending 

problems in ref. [7]. In these papers, the governing differential equations 

are written in terms of rates and material behavior is assumed to be described 

by one of a new class of combined creep~plasticity constitutive models 

using state variables, proposed recently by several researchers. The con

stitutive model due to Hart [8-9] has been used in most of the numerical 

examples presented in these papers. (See refs. [3-4]: for references to 

other such constitutive models). 

This approach appears very.useful since these new constitutive models 

attempt to describe inelastic deformation in metals more faithfully than is 

possible with traditional models which separate plastic and creep strains, 

while, in most cases, their mathematical structure permits a particularly 

simple boundary element scheme. Thus, this approach seems to combine the 

twin advantages of using a more realistic constitutive model to describe 

material behavior, together with an efficient scheme for the solution of 

boundary value problems of practical importance. 

The mathematical structure of many of the state variable models. of in

elastic deformation can be summarized by the following equations 
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. .e .n .T .n (k) 
e:ij = e: .. + e:i. + e: .. e:ij = h~j(cri.,q •. ,T) 

l.J J l.J l. J l.J 

• (k) (k) .n 
0 qij = gij (cr ij 'qij 'T) e:kk = 

.e .n . d Here e: .. , e: .. an 
l.J l.J 

.T 
e: .. 

l.J 
are the elastic, non-elastic and thermal strain 

rates respectively, cr .. 
l.J 

is the stress tensor, T is the temperature and 

are state variables. The number of state variables varies in the dif-

ferent models and they can be scalars or tensors. These state variables 

are assumed to completely characterize the present deformation state of the 

material and the history dependence of the rate of non-elastic strain up to 

the current time is assumed to be completely taken into account by their 

· curr~nt values. It is important to note that the rates of the non-elastic 

strain and state variables at any time depend only on the current values of 

the stress, state variables and temperature •. The usual equations of time-

hardening and strain-hardening creep also fit into this general format. 

The kernels used in the integral equations in refs. [3-6] are the usual 

Kelvin traction and displacement functions for unit point loads in an 

infinite region. In the numerical procedure, boundary conditions along 

outsids as well as inslue boundaries {in multiply connected bodies) are 

satisfied at discrete points. This formulation generally gives very good 

numerical results except in a narrow region along the boundary. In non-

elastic problems, the nonelastic strain rates are typically proportional 

to high powers of stress and the nonelastic strain rates ov~r the entire 

region contribute to the rates of stress and displacement. Moreover, in 

problems with regions of high concentration of stresses and stress gradients, 

such regions provide nearly all the nonelastic contribution to the strP.ss and 
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displacement rates. It is imperative, therefore, that stresses in these 

regions be calculated sufficiently accurately if the time histories of 

stresses and displacements are to be obtained with acceptable accuracy. 

Inelastic deformation problems for plates with sharp cutouts are of 

considerable practical interes.t. Some regions near these cutouts are 

typically regions of high stress concentration. A numerical procedure using 

the boundary element method with Kelvin kernels (eg. [5]) would usually 

require a large number of boundary elements in such regions iri order to 

obtain the stresses accurately near the cutouts. This number can become 

prohibitive for problems of plates with cracks artd this may lead to numerical 

difficulties. 

An alternative BEM formulation for planar elastic problems for bodies 

with cutouts has been presented recently [10-12]. In this approach, the 

Kelvin kernels are augmented so tha.t the new kernels: are the fundamental 

solutions _of the governing differential equations f<i>r infinite regions 

with cutouts. Thus, the effect of the cutout on the· str.ess and displacement 

fields is incorporated into the kernels of the integral equations. Use 

of an appropriate kernel can guarantee, for example, a traction free crack 

in a given region, and discrete modelling of the crack boundary is no longer 

necessary. The methods of Muskhelishvili [13] are used to obtain these 

augmented kernels and this approach leads to an accurate determination of 

stresses, especially in the near field of the cutout. 

The linear superposition principle is valid in linear elasticity and 

is used to advantage in this alternative formulation for elastic problems. 

Also, the augmentation of Kelvin kernels for Navier~s displacement equations 

is a natural in el;:t~tic problema. In refs. [11,12],. tor example, an 

appropriate layer of body_ force is applied on the outside boundary of a 

body in order to satisfy the boundary conditions. Physical body forces 
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(eg. centrifugal forces) if present,. can also be taken care of in a similar 

fashion. The subject of the present paper, however, is nonlinear inelasticity 

problems where the presence of inelastic strains causes the elastic strain 

fields to become incompatible. The total strains, of course, must be compatible. 

A BEM formulation using augmented kernels, suitable for the solution 

of planar time-dependent inelastic problems, is presented in this paper. A 

stress function description is used and writing the equations in terms of 

rates leads to a nonhomogeneous biharmonic equation for the stress function 

rate. The nonhomogeneous term in this equation results from the presence 

of nonelastic strains. This equation is transformed -into an integral equa

tion by using, as kernels, two fundamental solutions o·f the biharmonic 

equation. The unknoWn functions are two concentration layers on the boundary 

of the body and these are obtained from the traction boundary conditions of 

the problem. The augmented kernels that guarantee traction free cutouts 

are obtained by Muskhelishvili's. methods. The explicit augmented kernels 

for circular cutouts are derived and these are used in an analytical illustra

tive example for inelastic deformation of a circular disc with a circular 

cutout. In a companion paper [14], the kernels for an elliptical cutout 

are derived and numerical results are presented for several cracked plates 

in plane stress subjected to normal or shearing stresses on the boundary. 

The time-dependent redistribution of stress fields near the cracks are 

studied in these numerical examples. Either power law creep or the constitu

tive model due to Hart [8,9] are used in the numerical calculations. Other 

constitutive models having the mathematical structure of equations (1-4) 

can be easily incorporated into the computer program that generates these 



GOVERNING DlFFERENTIAL EQUATIONS 

A planar body is considered with the and axes in the plane 

of the body and the x3 axis normal to it. A -stress function ~ is 

defined in the usual way 

= -

where and are the stress components. 

(5) 

The strain rates are decomposed into elastic and nonelastic components 

_ as in equation (1) (the thermal strain rates are set to zero for simplicity). -

Using Hooke's law to relate the rates of elastic strains and stresses,and 

the compatibility equation in rate form 

= (6) 

results in an inhomogeneous biharmonic equation for the rate of the stress 

function 

= 
c(n)_ (7) 

The function C(n) has the forms 

[ 

2.n 2.n 2.n J -. 
a e:11 a e:22 a e:12 · · 

-E 2 + 2 - 2 ax ax for plane stress 
ax2 axl _1 2 . . 

for plane strain (e:33 = 0) 
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with E and \1 the Young's modulus and Poisson's ratio, respectively, 

of the material of the body and V the gradient operator. 

The admissible boundary conditions for the problems considered in 

this paper are prescribed histories of traction on the outside boundary 

of the body. 



BOUNDARY ELEMENT FORMULATION 

Simply connected body 

The biharmonic equation (7) can be transformed into an integral equa-

tion by using two singular . solutions of this equation, 

its normal derivative at a field point, a 2 -;;-(s R.ns) 
·onQ . 

2 
s R.ns and 

2 . a 2 
fJ (s R.ns) Qcl (Q)dcQ + I -a -(s R.ns) Qc2 (Q)dcQ . 
aB p 3B nQ p 

+I (s2R.ns) C(n) (q}dA (8) 
B pq q 

Here c1 and c 2 are unknown concentration functions to be determined 

from boundary conditions and s is the distance between the source point 

p (or P) and the field point q (or Q), where lower case letters denote 

points inside the body B and capital letters denote points on its boundary 

aB (see figure 1). 

It is convenient to rewrite this equation in terms of complex variables 

with a view towards conformal mapping techniques that will be used later to 

derive the necessary.augmented kernels. This has the form (see figure 1). 

= 

+! L(p,q)C(n){q)dA 
B -~ . . q 

(9) 

where 
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-z-(z-z )~n(z-z ) 
0 0 0 
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where n is the outward normal at the field point Z
0 

on the boundary aB, 
-o 

Re denotes the real part of the complex function within brackets, and·a 

superscribed bar denotes the complex conjugate. 

The primary interest in the problems is the determination of stresses 

rather than the stress function. Thus, it is convenient to write the cor-

responding equations for stress rates. Also, when the traction equations are 

written for a point Z on the boundary, care must be taken to include 

residues, if any, that are generated from the singular kernels. These 

matters will be given careful attention in the next section when the equations 

for multiply connected regions using augmented kernels are presented. 

Body with cutout 

Augmented kernels The singular kernels K1 and K2 in equation (9) are 

augmented with regular kernels so that the sum of these guarantee a traction 

free inner boundary in a body with cutout. The new kernels are derived by 

using the methods of Muskhelishvili [13]. The approach is similar to that 

used in refs. [11,12] for the analogous elastic problem and will be briefly 

outlined here. 

Consider an infinite plane with a cutout of contour aB1 (Figure 2). 

The traction resultants Fl and F2 on a portion of arc AB on aB1 due 

~ 
A 

[13,15] ($ 
A A 

to the functions and X are can be either $1 or $2 of 

equation (9) and similarly for x> 
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B 
f (-r

1 
+iT 2)dc 

A 

A ) A'( A B -i[4>(Z,z +Z<j> Z,z )+lji(Z,z )JA 
0 0 0 

(10) 

where and are the components of traction at a point . Z in AB 

is an element of the curve $(z~z ) = X'(z,z ), 
0 0 

the prime denoting differentiation with respect to the variable argument 

z. If a. mapping function 

z = w(~) (11) 

can be found which maps the region on and outside aB1 in the z plane to 

a region on and inside an unit circle y in the ~ plane, the expression 

within brackets o:n the. right hand side of equation (10) at a point Z = a 

on aB1 can be written as 

-F(I3,7. ) f(B z ) + w(B) f' (6 z ) + g(B :t: ) (12) -
0 . , 0 W'1'l31 , 0 , 0 

A 

f(~~z ) where 4>(z,z ) = 
0 . . .o 

~(z,z ) = g(~,zo) . 0 

the point Z = a maps to a point ~ = a on the unit circle y and 

A d A 

f' = d~ f(~,zo). 

In the physical problem under consideration, the contour 3B
1 

must 

be traction free. Thus, new functions 

obtained such that, the tractions due to 

<P{z,z ) = ~(z,z) +<f>*(z,z ) 
0 0 0 

<f>*(z,z ) . 0 and 11-r*(z,z ) 
0 

must be 
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and 

1jl(z,z) = ~(z,z )+1jl*(z,z) 
0 0 0 

vanish on the conto~r aB1 • The problem, therefore, reduces to the determina

tion of ~* and 1j1* such that 

f*(8 z ) + w( 8) f*' (8,z
0

) + g*(8,z
0

} = F(8,z ) 
. 'o wrm 0 

where; as·.before~· ~*(z,z ) = f*(~,z ) 
0 0 

and similarly for g*. 

This problem has the solution [13] 

* f (~,z ) 
0. 

1 
= 2'11'i f:. 

y 

F 'Q )d 0 f*'( 0 ,z) \...,,zo.., 1 w(8) ~-> o· 
8-~ - 2'11'i <I w'(8) 8-~ d8 

y . 

(13) . 

(14) 

(15) 

The specific example for a circular cutout follows. If the contour 

aB1 is an unit circle in the z plane, the appropriate mapping function is 

w(~) = 1/~ 

... .. 
In this case, for the functions ~l and x1 of equation {9), 

F(S,z ) = -(1 - z )R.n(1 - z ) ..:.! fn(8-~-) _! 
o 8 o a o 8 o 8 

+ z R.n(8-;-) + z 
0 0 0 

(16) 

The second term in equation (14) vanishes and the second term in equation 

(15) becomes ~3f*'(~,z ). 
0 

Solving for f* and g*, the kernels, within 
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additive functions of 

= 1 - 1 (z-z ) ,tn(z-z ) + z R.n(-- z ) - z.!l.n(l- -_-) 
0 . 0 0 Z 0 .ZZ . a 

.. 

= ·_;- .!l.n(z-z)- (1 - i"").!l.n(1 - z) _ _! (l+R.n(-z )) 
0 0 .z 0 z 0 z 0 

and = , = 

z 
+! R.n{l--=-) +---,-2-....:o::___ 

zz z (1-z i"") 

1 +---=---
z(z z -1) 

0 

0 0 

{17) 

{18) 

Since stresses involve derivatives of these functions with respect to z, 

the additive functions of z are of no consequence. It can be easily 
0 

verified that 

cjl.(a,z ) +acj>!(a,z) +1jl.(a,z ) = 0 r o 1 o 1 o {i = 1,2) 

on any point · Z = a on t.he circle I Z I • 1, ie the tractions due to these 

functions vanish on aB1 • 

Single valued displacement on inner boundary. The displacement vector ~ 

must be singlP. valued on the boundary of the cutout 3B
1 

in figure 3, ie, 

it is required that 

(19) 
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In the presence of nonelastic strain rates in the body but with zero 

tractions on .aB1, this condition, in terms of the rate of the stress func

tion, gives rise to three equat~ons for plane strain problems. 

where 

d d 2· (x --- x -)V ~de 
2 dn 1 de 

= 

Note that V·P(n) = C{n). 

(20) 

= 

(21) 

(22) 

The equations for plane stress have exactly the same form with v set 

equal to zero. 
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These equations are derived in a manner analogous to the elastic case. 

The first of these equations is a statement of zero net rotation arou~d the 

boundary aB1 , while the second·and third guarantee, respectively, 

where w12 = u2 1 -u
1 2 is the rotation in the plane of the body. For a 

. ' ' 
discussion of the elastic situation, see, for example~ Timoshenko and Goodier 

[15]. 
,. 

It is rioted that if figure 3, in fact, represented a simply connected 

body, the field equation (7) would be valid everywhere including the region 

B1 and the equatio~s (20-22) for single valued displacements .would be 

·satisfied on the boundary aB
1

. In fact, in such a case~ equations '(20-22) 

on aB1 can be derived directly from equation (7) in B1 by using Green's 

theorem and the divergence theorem, provided these theorems are applicable. 

This matter will be alluded to in the next section. 

Integral equations for.stresses and tractions 

The stress rates-in a body with a cutout (figure 4) are written as 

(with i;j = 1,2) 

8m1i. (p) . J = 

+I Hi(~) (p,q)C(n) (q)dA - 9 
B J · q aB 

1 

(23) 

where tho uugmcnt@.d keti.ud~ k -= 1,2, are 
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= 

= 

The first three terms _on the right hand side are analogous to those 

i . t. (9) Th 1 1· f · . D(n) n equa ~on • e ast· term represents a ayer o concentrat~on n• 

on the cutout boundary aB1 and is included with a view towards obtaining 

single valued displacements on this boundary. This term is motivated as 

follows. As stated in the last section, a simply connected region would 

require a concentration distribution C(n) 
.. 

throughout the body B +B • 

.. 
Thus, -if the divergence theorem is applicable in the region B, 

[ c(n)dA 

B 
= = n n·D de 

the negative sign being a consequence of the direction of the normal to 

aB1 in. figure 4. In the body with a cutout, however» B is a forbidden 

zone and n n•D is distributed on aB . instead. 
. 1 It is postulated that 

inclusion ·of this term.· in equation (23) leads to satisfaction of equation 

(19). While a direct proof of this conjecture. has not yet been possible» 

correct expressions for stress rates are obtained in an analytical example 

of a circular disc with a circular cutout, presented later in this paper» 

and numerical results for a square plate with an elliptical cutout, 

presented in the companion paper [14], agree well with those obtained 

from a direct formulation of the problem with Kelvin kernels of Navier's 

equations [5]. Note that the corresponding elastic problem has C(n) = 0 , 



- ) 

- 15 -

the last two terms of equation (23) vanish, and the first two give the 

correct solution. 

Using c(n)(q) in the area integral in equation (23) and 
. . 

applying the divergence theorem, equation (23) can be written in a more 

convenient form where p(n)·, with first'·derivatives of the strain rates, 

rather than C(n), with second derivatives,appear 

B1ra •• <P> 
l.J 

= 

{1) (n) (1) · {n) + <J1 H .. (p,Q)Dk (Q)~{Q)dcQ-f Hi" k (p,q)Dk (q)dA 
C>B l.J B. J,. o o q 

2 
(24) 

Here the k 
0 

in tpe last term denotes differentiation of H(l) 
ij 

with respect 

to the field point. 

The boundary conditions of the problem must be specified in terms of 

traction histories on The traction rates i ~ are obtained from· 
l:. 

equation;(24) by taking the limit:. as p in B approaches a point P on 

aB2• -If aB2 is locally smooth at P, 

(1) (n) 
-I H .. k (P,q)Dk (q)n.(P)dA 

B l.J' o o J q 
(i,j ,k = 1,2) (Z5) 
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The first three integrals in the above equations must be interpreted in 

the sense of Cauchy principal values. It can be shown that the limiting 

p~ocess does not yield residues.in the above equation for traction rates. 

In case of boundary stress rates» however, while the equations for normal 

and shearing stress rates do not yield a residue, the one for the tangential 

stress rate yields a residue of 4~c2 as p apvroaches P on the boundary 

where it is locally smooth, ie» if Bna · (p*) = h(p*) cc . 

8~a (P*) = h (P*) + 4nc2 (P*) 
cc 

where p* is infinitesimally close to P*. 

then 



ILLUSTRATIVE EXAMPLES 

Solid circular disc under uniform axisymmetric external load-elastic 

solution (plane strain or stress) 

The problem under consideration here is that of a circular disc of 

radius b under an axisymmetric external load p . per unit area (figure 
o· 

5) ~ Since the region is simply connected, the fo,rmulation presented in 

equation (9) is used with . C{n) = 0 for the elastic case. Using polar . 

coordinates, the stresses at an inside point p are· 

81ra •• (r,a.) 
1J . 

= 
21T (1) . 

c1 (b) 1 H .. (r,a.; b,S)bde 
0 1J 

21T {2) 
+ c2{b) 1 H •• (r,a.; b,9)bd9 

0 1J 

where the kernels corresponding to ·K1 and K2 of equation (9) are 

H(2) 
11 
22 

= 

= 

2 ·2 . 
2 (l+~ns) + r cos2a.+p cos2(e;a.)-2prcos(9+2a.} 

s 

-~2sin2a.-e 2sin2{9+Ct)+2prsiri(9+2il) 
'1 

s 

= 2(p-rcos9) 
2 

± .-2pcos2(9+a.)+2rcos(9+2a.) 
2 

s s 

(26) 

± 
2
4 {er

2
cos2a. + e 3 cos2 (e+a.) - 2p 

2
rcos (8+2a.) - r 3 cos2a.cose 

s 
2 2 

- p rcos2(9+a.)cos9+ 2pr cos(9+2a)cos9} 

-.17-
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. (2) 
H12 = -2psin2(9+ci)+2rsin(9+2a) 

2 
s 

+ 2
4 

{pr2sin2a+p
3

sin2(9+a)..:. 2p
2
rsin(S+2a)- r 3sin2acose 

s 
2 .. 2 . 

- p rsin2(9+a)cos9 +2pr sin(9+2a)cos8} 

The symbols are shown in figure 5 and 
2 . 2 2 

s = p +r - 2prcose 

For a point P 

8np cosa = 
0 

= 

8np sina · = 
0 . 

= 

on the boundary, 

2n (l) · ( ) 
c1 (b) f [H

11 
(b,a; b,8}cosa+H

1
i (b,a; b,8)sina]bd8 

0 

21T (2) . (2) 
+C

2
(b)· f [H

11 
(b,a; b,9)cosa+H

12 
(b,a; b;e)sina]bd8 

(•0 

(27) 

2n (2) . (2) . 
+ c2 (b) f [H

12 
(b,a; b,9)cosa+H

22 
(b,a; b,e)sina]bde 

0 

(28) 

The nonvanishing integrals of these kernels, used in the equations, 

are given in table 1. Using these, both equations (27) and (28) give 
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(29) 

and, from equations (26) 

a
11

(r,a) = 

= = 0 

The stresses on the boundary can be obtained from equation (26) by 

taking the limit p ~ P. In this case, the appropriate residues 
2 . 

411'sin ac2, 

and -411'sinacosac2. (corresponding to .411'C2 for the tangential 

stress a
68

) must be included. This gives, for example, 

811'a11 (b,a) = 

and finally 

a11 (b,a) = = 0 

as expected. 

Circular disc with concentric circular cutout under uniform axisymmetric 

external load- inelastic plane stress solution 

A circular disc of radius b with a concentric circular cutout of unit 

radius is subjected to an axisymmetric external load history p (t) 
0 

(figure 6). The governing equation in polar coordinates for this problem is 

= = 
d£n 

E d [ .n • n eel 
r dr e:rr -e:ee- r dr"" (30) 
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and 

= 0_ (31) 

The equation for stress rates (23), with the source point p on the 

x1 axis (this can be done without loss of generality for this axisymmetric 

problem) and c2 (b) = 0 (using only . cl (b) is sufficient here because of 

axisymmetry) give 

8m1ij (r) · = 
27T (1) . . b 21T (1) (n) . 

c1 (b) f Hi. (r;b,e)bde+f f Hi. (r;p,S)C (p)pd9dp J . J . 
0 1 Q 

( ) 21T (1) 
+D n (1) f H •. (r;l,9)d9 
. r o ~J 

(32) 

For this point on the x1 axis, a11 = arr' a22 .= a99 and a12 =are· 

The augmented kernels· H .. are obtained from equation (23) using the 
~J 

stress functions ~1 and wl from equation (18). They are rather lengthy 

and will not be give~ here •. 

The traction equations for a boundary point P are 

27T 
81rp

0 
= B1ri1 (b) = c1 {b) r H~i) (b;b~e)bde 

0 

b 21T 
+ f f · H~i) (b;p,e)c(n) (p)pd6dp 

1 0 

(33) 
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and the expression for 0 = 8nf
2

(b) · is similar with H(l) 
11' 

replaced by 

everywhere. 

The nonvanishing integrals-of the kernels, in this case, are listed 

in table 2. Using these, equation (32) on the boundary can be solved for 

c1 (b) to give 

c
1

(b) 
2bp 

0 
(n) · · EE~9(b) = . . - D (b) - ........,--~ 

(b2-l){l+inb) r b(l+inb) 

E 
b 

(

.n .n ) e: -e: 
f rr ee + En d p p zz p 
1 

(32) 

Substituting for c1 (b) into equation (32) gives the equations for 

stress rates 

a {r) 
rr 

2 2 b ( .n .n ) . } 
(r -1) b e:rr-e:ee 

dp- -J----dp 
(b2~1). r

2 1 P 

P.n d (r -1) f .n d • 2 b t. e: p- . pe: p p 
zz (b2-l) 1 zz 0 

(r
2-l) b2 

. 2 l 
(b -1) r 

{ 

.n .n 
r e: -e: = E 1 , rr ee 

2 1 p 

- 2Er/~1 PEn dp + (r2 +1) ~ 
\ Z.Z (b2 -1) 1 

= 0 

which were derived earlier by direct methods [17]. 

(r
2+1) b

2 

(b
2

-:-l) r
2 



CONCLUSIONS 

A boundary element formulation using augmented kernels is presented 

here for problems of planar, inelastic deformation of plates with cutouts. 

In this approach, two fundamental solutions of the biharmonic equation are 

augmented so that the resultant kernels.yield the stress distributions for 

point concentrations in an·infinite plate with a traction.free cutout. Thus. 

the effect of the cutout on the stress field is incorporated into the 

kernels and the cutout boundary need not be modelled discretely in a 

numerical application.· The specific kernels for a plate with a circular 

cutout are derived. Analytical illustrative examples for an uniform circular 

plate u~dergoing elastic deformation and a circuiar plate with a circular 

cutout undergoing inelastic deformation are carried out and the formulation 

is shownto yield the correct expressions for stresses in these cases. 

Numerical solutions for finite plates with elliJ>tic cutouts, with applica-

tions to inelastic fracture mech;;tnics, are presented in a companion paper 

[14]. -
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APPENDIX 1 

Residues for tracti~n and stress rates from eguation (24) 

·The kernel 

For the kernel 

has no residue. 

H~~), it. is sufficient to consider the kernel 
1J 

since the rest of the kernel is regular. 

a 
an 

0 

2 . 
(s R.ns) 

Consider around the semi-circular co:ntour of figure 

A-1. 

K = 

aK 
an 

0 

()K 

ac = 

= 2 (s R.ns) 

0 

2 a 2 2 
'iJ K = ()if·· ('iJ s R.ns) 

0 

()2 2 
= - 2 (s · R.ns) 

as 
= 

= a (4tns+4) 
as 

3+ 2R.ns 

= 4 
s 

Integrating around the semi-circular contour of figure A-1, the residue for 

aK 'IT 

= lim r (3+2tns)sde = 0 an 
0 s~ o 

and the residue for 
()K 

0. --ac 

aK aK aK = -- co sa -- sina ax1 an de 
0 

()K ()K . ()K = an SJ.na. +a-c CO Sa ox 2 0 



• Residues for aK . and ax1 
are zero. 

This ·.implies that residues for ,force resultants (see [15] p. 180) are zero. 

The residues in. the formulae for traction rates (equation (25)) are thus 

zero. 

The residue.for v2K is 

1T 4 
1 - sde = 41T s 
0 

and this quantity gives the sum of the normal and tangential stress rates 

cr + cr nn cc 

Since the formulae for traction rates have no residues, the formulae 

for normal (crnn) and shearing (cr ). stress rates has nO· residues. nc 

However, b'y virtue of the residue from V2K, the formula for cr cc has an 

. . 
extra term 41TC2 as p approaches P on the boundary, ie 

if s1rcr (p*) = h(p*) cc . 
I 

then 81rcr (P*) = h (P*) + 4TIC
2 

(P*) 
cc 

where p* is infinitesimally close to P*. 



APPENDIX 2 

Kernels in equation (32) 

. . 

H~~) = 2(l+tns)- 2(0/r) j;ose-e~cos26i- 2(tnsl-tn(pr)) + 2(1-pr2cos6) 

22 · L · · 5 1 J · 5 1 

:..:. r(r-pcose) _ p [ 2 2 2 2 · 2 2 J 
+ 

5
2 + rsi - 2pr + (1+4p. r )cose- ?Pr(l~. r )cos29 + p. r cos3J 

2 2 3 3 - (1-prcose) _ prcos9-2p r +p r cose 
+ 2 + 4 

sl . sl 

. 2 . 
_ (p cos29-prcos9) _ 2(1+1np) _ (prcos8-l) 
+ 2- + 2 + 22 

s r r s.li. 

p [ 2 2 . 3 3 2 2 ·] ±"'""34 -3pr+(2+6p r )cos6-(4pr+3p r)cos26+2p r cos38 
r s · 1 . . . . 

1 [' 22 . 33 . 22 ~ ±24 -1- 4p r + (4pr+2p r )cose- p r cos2e 
r s

1
. 



where 

2 2 2 . 
s = p +r - 2prcose 

2 2 2 
s

1 
= 1 + p r - 2prcose 
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SIGN 
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·. 2(p-rcose) 
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. : ~· ... 

. -.: 
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.. -... 

":·. ~2p.sin2 (a+a) +. 2rsin(6+2a) 
·. - 2 
.·.. .s -

2'11' 
:I f(e)de 

0 

.p.· > r 

4'1T-{l+R.np) . 

·4tt 
p 

P .. = r 

2'1T 
·r 

·., 

·r 
·.-. 

._· :·_: . . · · .. _: ·: 
. . •. 

.:·:·-

. .- . 

0 
2 '1T.sin2a 
r 

.. . :; ... 

Table 1.· Non-vanishing integral~ of kernels [Ref. 16-]! for solid circt~lar 
disc. 
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Table 2. Non-vanishing integrals of kernels [Ref. 16] for annular disc. 
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