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ABSTRACT

A boundary element formulation for planar, time-dependent, inelastic
deformation problems for bodies with cutouts is presented in this paper.
A stress function description for these nonlinear problems leads to a non-

homogeneous biharmonic equation for the stress function rate. An integral _

Areprésentation of the solution uses modified kernels which guarantee that

the cutout boundary is traction free for all time. This incorporation of
the effect of the cutout on the stress field into the kernels leads to an

accurate determination of stresses in the near field of the cutout.

~Illustrative analytical examples for circular plates with circular cutouts

are presented in this paper. In a companion paper [14], numerical solutions
are presented for probléms of finite plates with very narrow elliptic cut-

outs. These problems are of considerable importance in inelastic fracture.



INTRODUCTION

Tﬂe boundary elemeﬁt methgd (BEM - also called the boundary—integrai'
equation'method) has been applied quité extensively to p:oblemé of elasticity
and elastic fracture meéhaniés (seé,'for example, refs. [1,2]), but applica-
tions to nonlinear inelasticity probléms have been relatively few. The
}authors of this paper together with others, have been interestea in the~
application of the BEM to proﬁlems of time—depehdent inelastic deformation
[3-7]. Planar problems are considered in refs. [3-6] and plate bending
problems in ref. [7]. In‘thése papers, the governing differential equations
. are written in.terms of rates and material béhavior is assumed té be &eséribed
by one of a new class of combined creep-plasticity constitutive models
-using staté variables, proposed recently by several researchers. Tﬁe con-
stitutive model-due to Hart [8-9] has been usea in most of the numerical
examples presented in these papers. (See refs. [3-4] for references to
other sdch constitutive models). |

‘ This_apprpach appears very useful since these new constitutive mo&els 
attempt to describe inelastic deformation in metals‘more faithfully tﬁan is
possible wifh traditional models which separate plastic and creép strains,
| while, in most cases,‘their mathematical structure permits a éarticula:ly
simplé boundary e1emen£ scheme. Thus, this approach éeems to combine the
twin advantages of using a more realistic consfitutive model to describe
. material behévior, together with an efficient scheme for thelsolution of
boundary value problems of practical importance.

The mathematical structure of manf of the state variéble models of in-

elastic deformation can be summarized by the following equations
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Here eij’ sij -and sij are the elastic, non-elastic and thermal strain

rates respectively, ‘oij is the stress temsor, T is theltemperature and

(k)
qij

ferent models and they can be scalars or tensors. These state variables

are state variables. The number of state variables varies in the dif-

are assumed to‘éompletely characterize the present deformation sta;e}of the
material and the history deperdence of thé rate of non-elastic strain up to
the current time is assumed to be completely taken into account by their
‘current values. It is important to note that the rates of the non-elastic
strain and state variables at any time depend only on the current values of
the stress, state variables and temperature. . The usual equations of time-
hardening énd'strain—hardening cfeep also fit into;this general format.

Tﬁe kernels used in the integfal equatioqé in refs. [3-6] are the usual
Kelvin traction and displacement functions for unit point loads'in an
infinite region. In the numerical procedure, boundary conditions along
outside as wcll'ﬁs inéide bbundaries (in mnl;iply connected bodies) are
satisfied at discrete points. This formulation generally gives very good
numerical results except in a narrow region along the boundary. In non-
elastic probleﬁs, the nonelastic strain rates are typically proportional
to high powers of stress and the nonelastic strain rates over the entirc
region contribute tblthg rates of stress and displacement. Moreover, in
problems with regions of high concentration of stresses and stress gradients, .

such regions provide nearly all the nonelastic contribution to the stress and



.displacement rates. It is imperative, therefore, that stresses in theée
regions be calculated sufficiently éccurately if the time hiscories of
stiesses and displacements are to be obtained with acceptable accuracy.
Inelastic deféfmation problems for plates with sharp cutouts are of
considerablé practical_interest. ’Soﬁe regions near these cutouts are
typically regions of high stress concentration. A nuﬁerical procedure using
the boundary element method witﬁ Kel?in kerneis (eg. [5]) would usually
require a large number of boundary elements in such regions in.order to
obtain the stresées accurately near the cutouts. This number cén become
vprohibitive for problems of plates with.cracké and this may lead to nuﬁerical
difficulties.
| An alternative BEM formulation for planar elastic problems for bodies
witﬁ cutouts has been presented recently [10-12].  In this approéch, the
_ Kelvin kernels are augmented so that the new kernels are the fundamental
solutionsvof:the governing differential eqﬁations for infihité regions
with cutoﬁts. Thus, the efféct of the cutout on the stress and displécement
.fields is incorpofated into the kernels of the integral equations. Use
of an'appropriate kerpel can guarantee, for example,.a traction free crack"
in a given regibn, and discrete modelling'of the crack boundary is no longer
necessary. .The<methods of Muskhelishvili Il3l,are used to ob;ain these
augmented kernels and this approach leads to an accurate determination of
stresses, espécinlly in the near field of the cutout.
The linear superposition principle is valid in linear elasticity and
is uséd to advantage in this alternative formulation for elastic problems;
Also, the augmentation of Kelvin kernels for Navigr's displacement equations
ié a natural in elastic problemg, In refs. [11,12], ior example, én
appropriate layer of body_force is applied on the outside.boundary of a

body in order to satiéfy the boundary conditions. Physical body forces



(eg. ceﬁtrifugal forcesj if present,. can also be taken éare of in a siﬁilar
:fashion. The subject of the present paper, howe#er; is nonlinear inelasticity
problems where the'presence of inelastic strains céuses the elastic strain
‘fields to become incompaﬁible. Thé to;al strains, of course, must be compatible;
A BEM'formulaﬁion using augmepted kernels, suitable for the solution

of planar time-dependenf inelastic problems, is preséntéd in this paper.' A
stress function description is usgd and writing the equations in terms §f
rates leads to'a nonhomogeneous biharmonic equation for the stress functioﬁ
rate. The nonhomogeneous term in this equation results from the presence

of nonel#stic strains. This equation is transformed into an integral equa-
‘tion by using, as kernels, two fundamental solutions of the.bih#rmonic
xequation. The unknown fuﬁctions are two concentration 1ayer§ on the béundary
of the body and these are obtained ffom the tragtion boﬁndéry conditions of
theAproblem. The augmented kernels that guarantee traction free cutouts

are obtained by Muékhelishvili'éA methods. The exﬁlicit augmented kerneis

for circular cutouts are derived and these are used in an analytical illustra-
tive examplé for inelastic deformation of a circular disc with a circular
cutout. In a companiqn paper [14], the kernels for an elliptical‘cutout

are derived and numerical results are presented.for several cracked plates

in pléne stress subjécted to normal or shearing stresses on the boundary.

The time~dependent redistribution of stress fields near the cracks are

studied in these numerical e#amples. Either power law creep or the constitu-
’tive model due to Hart [8,9] are usgd in the numerical calculations. Other
constitutive models having the mathematical structure of equations (1—4)'

can be gasily incorporated iﬁto the computer program that generates these

nmerical reaenltsg,



GOVERNING DIFFERENTIAL EQUATIONS

. 'A planar body is considered with the - x5 and x, axes in the plané

2

of the body and the X4 ‘axis normal to it. A stress function @ is

defined in the usual way

o o 30 3% o 3% S
11 2° 722 2’ 12 9%, 9%
ax 9x 1772
2 1
where qll"°22 and %19 arebthe‘étress components.

The strain rates are decomposed into elastic and nonelastic components
-as in equation (1) (the thermal strain rates are set to zero for simplicity).
Using Hooke's law to relate the rates of elastic strains and stresses, and

the coﬁpatibility equation in rate form

a2.e 2.e . 2.e 2.n 2.n 2.n

€17 3 €yp _ ¥ Epy €y ey, 36, |
2 + 2 9%, 9%, = - N + 2 -2 9%, 9%, (6
2 %~ 3 *

results in an inhomogeneous biharmonic equation for the rate of the stress

function
v = ¢® ‘ L (7)

The function C has the forms

,32én a2én aZén
) 2 . .
c™ - g 11, 22 , 12 1 eor plane stress (o,,=0)
2 2 9x, 9X . 33
3x2 9x 1772 4
1
: {.2.n 2.n 2.n
. 0 &, 2 ¢ 237¢ .
22 IS | B
¢ . - E 10 ;'|?.1 T T a;1c2+"‘72(51111+522)
1-v 8x2 Bxl 1772 :
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‘with E and v the Young's modulus and Poisson's ratio, respec-tively,
of the material of the body and V the gradient operator.

The admissible boundary conditions for the probiems considered in
this paper are prescribed histérvies of traction on the outside Boundary

“of the body.



BOUNDARY ELEMENT FORMULATION

- Simply connected body

The biharmonic equation (7) can be transformed into an integral e@ua—
tion by using two singular . solutions of this equation, szzns and

its normal derivative at a field point, —3—(szlns)

-3nQ L
o ,
81d(p). = $ (s ins) (Q)dc + ¢ -———(s lns) (Q)dc
: 9B p"1 Q38 g | Q
2 (n) ' _
‘+-f (s Rns)pqc (q)qu A (8)

B

Here. C1 and C2 are unknown concentration functions to be determined
_fron boundary conditions and s ié the distance between the source point

P (or'%) and the field point ¢ (nr Q), where lower case letters denote
noints insine the body B and capital 1ettere denote points on its boundary
- 3B (see flgure 1). *

It is convenient to rewrite this eqnatlon in terms of complex variables

with a view towards conformal mapping technlques that will be used later to

derive the necessary augmented kernels. This has the form (see figure 1).

gnd(p) = 5 K, (p,c»c (Q)dc

+ $ (p,Q)C, (Q)dc
3B - Q 8 KZ z Q
+/ K (p q)C(n)(q)dA (9 |
B ’ 9
where
K, = Re[zb(z,2)) +%,(2,2))]

K, = ne[§$2(z,'zo) + iz(z,zon



¢1(Z,zo) = (z—zo)ln(z—zo)
Xl(z,zo) = —Z;(z-zo)ln(z—zo)
b (z,2) = - 3.(z,2) , X (z,2) = =% (z,2)
27" - ~an° 1 7% ? 27?*% ‘ano 1'°*%0

where n, is the dutward normal at the field point io on the soundéry‘ 3B,
Re denotes the real part of ;he complex function within brackets, and a
superscribed bar denotes the complex conjugafe.

The primary interest in the problems is the determination of'StfessesA
_rather fhan the stress'function. Thus, it is convenient to write the cor-.
résﬁonding equations for‘stress rates. Aléo, when the traction equations are
'written for é point 'Z on the.boundary, care musf be taken to inclﬁde
residueé, if any, that are geﬁérated from the singular kernels. These
matters will be given careful attention in the next section when fhe.equations

for multiply connected regions using augmentedlkernels are presented.

Body with cutout

Augpented kernels The singular kernels K, ‘and K, in equation (9) are
augmented with regulaf kernels so that the sﬁﬁ of ghese guarantee a traction
free inner boundary i#Aa body with cutout. The new kerﬁels afe derived by'
using the methods-of Muskhelishvili [13]. The apﬁroach is similaf to tha£>
‘uged in refs. [11,12] for‘the analogous elastié problem aﬁd will be briefi&
outlined here. | |
'Coﬁsider'an-infinite plane with a cutout of contour 3B (Figure 2);

The traction resultants fl énd F2 on a portion of arc. AB on 3Bj due

to the functions ¢ and X are [13,15] (6 can be either $1 or $2 of

equation (9) and similarly for X)
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Fl+iF2 J .(Tl

+ixt )dc.
2 4
A

n

L0822 ) + Tz ) + $T2 ), o an

‘whefé_ T and T, are the components of traction at a point -Z in AB

1’ dc is an element of the curve 331

the prime denoting differentiation with respect to the variable argument

on _3B and w(z’zo) = X'(Z,Zo),

z. If a mapping funcfion
z = w(k) R . o (11)

cén be foundbwhiéh méps the region on and outside aBl in the =z plahe to

a region on and ‘inside an unit circle y in the & plane, the expression
' within brackets on the right hand side of equation (io)at a point Z =«

on 3B, can be written as

w(B)

~F(B,7,) = £(8,2) +orgy E1(B,Z,) +8(Byz,) (12)
where 6(2’20), = .%(5;20)
V(z,z)) = g(E,2,)

the point Z = a maps to a point & = B on the unit circle ¥y and
~ d ~ ‘
v - =
£ aE £(8,2 ). o |
' In the physical problem under consideration, the contour anl must

be traction free. Thus, new functions ¢*(z,zo) and w*(z,zo) must be

obtained such that, the tractions due to

¢(z,zo) = ‘3(2320)4'¢*(z,z°)
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and
¥(z,z ) = @(z,zo) + \b*(z,zo)

vanish on the contour anl.' The ﬁroblem, therefore, reduces to the determina-

tion of ¢* and ¢* such that

L £*8,2 )+£’,‘TB% (8,2 ) +g (8,z) = F(B,z) - (13)

where; as before, ¢*(z,z°) = f*(E,zo) and similarly for g=.

This problem has the solution [13]

F(B,z) ~ £ (8,2, )
» D Nl M BT (> Wil
£7(6,2) = 57 ¢ - B-if o A dg (14)
Y Y .
F{B,z_)dB —. f*'(8,z )
S _ 1 ’“o __1 w(B) *“o
& (g’zo) To2ri i B-¢ 2ni i w' (B) B-& d8 (15)

The specific example for a circular cutout follows. Xf the contour

aBl is an unit c;rcle in the =z plaqe, the appropriate mapping function is

w() = 1/
In this case, for the functions $l and il of equation (9),
_ 4 1 3.l o=y 1
F(B,z ) = —(B—ZO)ln(B z) an(B z,) B
-+z°2n(B—z°)4-zo : (;6)

The second term in equation (14) vanishes and the second term in equation

(15) becoﬁes €3f*'(E,z°). Solving for f* and g*, the kernels, within
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additive functions of z, are

0 (2,2)) = (z-z)in(z-z)) + zoln(-i'- -2.)- 2in(1- ﬁo-) a7n

by (z,2) = -fazn('z_z;) -@-z)mE-2) -1 a+mez))

‘ -
+%2n(]_.— i )+~ o
2z z (1—2 zo)
b2 (18)
z(z zo—l)
3¢ X
_ 1 Y
amd o % T 2 T g

Since stresses involve derivatives of these functions with respect to 'z,
the additive functions of z, are of no consequence. It can be easily

verified that‘.

bylaz ) +obila,z )+, (az) = 0 (G =12

on any point‘ Z=qa on the circle |Z| = 1, ie the tractions due to these

functions vanish on aBl.

.Single valued displacement'on ioner boundary. The displacement vector u

must be single valued on the boundary of the cutout 3B in figure 3, ie,

1

it is required that

§ du = 0 ; SR | (19)
anl T ‘
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In the presence of nonelastic strain rates in the body but with zero.
tractions on ) aBl, this condition, in terms of the rate of the stress func-
* .

~tion, gives rise to three equations for plane strain problems.

¢ L w%yac = ¢ p™inac | o)
sp, 4o ' 3B, N ‘ :
%1 | | 1
$ (x LyvPbae = 5 %, -mac
2 d l de .
aB oB
1
—E_ $§ e dx dx +\)(e )dx
1 2 11 l 11 22 1
-v |9B
-1
(21)
#(x 4yo%bac = $ x) (D( doyde+—E=] ¢ &% ax
o 1dn *2 dc 4 12 |ep. 1271
1 1 1
szx -Fv(ell 22)dx (22)
where
g .n ae
(n) E 22 ) % S 1
D = - -v (€1,+€5,)
1 | 1—v2 Bxl 3x2 axl | 11 ~22
Dén) = Ez ' axlz ax11 "ai €5+ 22)
1-v 1 2 %
Note that Y-Q(n) = C(n).

The equations for plane stress have exactly the same form with v set

equal to zero.
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These equations are derived in a manner analogous to the elastic case.
The first of these equations is a statement of zero net rotation around the

boundary 3B., while the second and third guaréntee, respectively, .

l,
3 d(ul 2 12) 0 | and ¢ _d(u2 1 12) = 0
3B . 9B
1 1
where w,, = u -u is the rotation in the plane of the body. For a

12 2,1 1,2
- discussion of the elastic situation, see, for example, Timoshenko and Goodier
[15].

It is ﬁoted-that if figufe 3, in faét, re;}ésented a siﬁply connected
body, the field equation (7) would be valid everywhere including the regionb
B1 and the equétiohs (20—22) for singlé valued displacements would be
‘satisfied on the boundary aBl. In fact, in such a case, equations (20-22)
- on BBl can be dgrived directly ffom equation (7) in B1 by using Green's

theorem and the divergence thedrem, provided these theorems are applicable.

This matter will be alluded to in the next section.

Integral equations for stresses and tractions

The stress rates-in a body with a cutout (figure 4) are written as

(with i,j = 1,2)

Brog @) = 6 HD (,00 eyt § E (2,00, @dc,
3 3B 3B

2 | 2

v

(n) (L) (n)
(p,q)C’ (q)qu-a; L (p.,Q)Dk (@ (Qde,

1 .
(23)

(k)

where tho uvugmented Ketuels Hij s

k = 1,2, are
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B (22 = Rel26)(z,20) - 347.(2,%0) - Yy (e,2,)]
H(k)(z z) = Re[2¢;(z zv)4'2¢"(z z )+y (2,2 )]
22 (%> Releq (z,2,) + 20, (2,250 T 9 (252,
H(k)(z z‘)' = Im[z¢"(z,z )44¢'(z z )]

© 12 ) ) k"% k*"’%o

The first three terms on the right hand side are analogous to those

(n)

" in equation (9). The last term represents a layer of concentration n-D
on the cutout boundary anl and is included with a view towards obtaining
. single valued displacements on this boundary. This term is motivated as

follows. As stated in the last. section, a simply connectedlregion would

(n)

require a éoncentfation distribution C throughout the body B+ B.

A

Thus,:if the divergence theorem is applicable in the region B,

fc™a = r9p™aa = - ¢ e
B

B B 8

the negative sign being a cénsequenceAéf‘the direction of the normal to
asl in figure 4. . In the body with a cutout, however, B 1is a forbidden

zone and B'Pn- is distributéd on 3B, instead. It is postulated that
inclusion of this term in equation (23) leads to satisfaction of equatioﬁ
(19). While a direct proof of this conjectﬁre,has not yet been possible,
‘correct éxp;essions_for stress rates are obtained in an’anaiytical example
of a circular disc.with a circular cutout, presented later in this paper,
and numerical results for a square‘plate with an elliptical cutout,
presented in the compénioh paper [14], agree well with those obtained

from a direct formulation of the pfoblem witﬁ Kelvin kernels of Navie;'s

(n)

equations [5]. Note that the correspdnding elastic problem has C = 0,
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the laét.two terms of equation (23) vanish, and the first two give the
correct solution.
(n) (n) . o el - -
U51ng C i (q) = D (q) in the area integral in equation (23) and

applying the divergence theorem, equation (23)_cén be written in a more

(n)

convenient form where D' °, with first derivatives of the strain rates,

(n)

rather than C' 7, with second derivatives,apbear

gns, . (p) = ¢ H<1><p,Q)c @deg+ * u‘”cp,o)czcmaco
1T g, ]

+ 9 13 0,00 (@n, @acy -/ n‘ ’ (p,q)n‘“)@)cm
. B | q

BBZ o

- (24)

(1)

Here the ko in the last term denotes differentiation of HiJ

with respect
to the field point.
The boundary conditions of the problem must be specified in terms of

traction histories. on BBZ. The traction rates i; are obtained from

eqqatidn124)by taking the limit as p in B approaches a point P .bn

3B,. »If: 9B, 1is locally smooth ét P,
srt.®) = ¢ 5V, Q) (P)Cy (@)dey + ss H(z)(P,Q)n @), (@dcq
! on, 13 Q

2 2

+ 8 H(l) ®, Q)n(“)(Q)n (P)n, (Q)de,,
) aB

(1) (n) : e ey
—é Hij’ko(P,q)Dko (Q)nj(P)qu (i,J ok = 1,2) (25)
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The first three integfalé in the above equétions‘must Se iﬁterprefe& in
'the sense of Cauch&’principal values. It can be shown that the limiting
process does not yield residues.in the abové equation for t?action rateé.

In case of boundary stress rates; however, while the ;quations for normal

and shearing stress rafeé do not yield a residue, the one for_the tangential
stress rate.yields a residue of 4n02 as p approaches Pl on the’boundary

where it is locally smooth, ie, if '8n&éc(p?) = h(p*) then

&:&cc(P*) - h(p*)+4nc2(i>*)

where p* is infinitesimally close to P*.



ILLUSTRATIVE EXAMPLES

Solid circular disc under uniform axisymmetric external load-elastic

solution (plane strain or stress)

The problem under consideration here is that‘of a circular diéc of
'radius b under an axisymmetric external load p&. per unit area (figure

5). Since the region is simply connected, the formulation preéented in

equation (9) is used with C(n) = 0 for the elastic case. Using polar .

coordinates, the_stresées at an inside point p are

8ncij(r,a? = Cl(b)_ £ Hij (?,c; b,08)bdo

‘ VA (2) ' ' _ .
+C2(b) (J; Hij (r,a; b,0)bds (26)

where the kernels corresponding to 'Kl and K2 of eqﬁation (9) are

: 2 -2 ..
H{i) - 2(1+lns)-;'r cos2atp gosZ(SZa)-Zp?cqs(6+2a)
22 s .
: 2 2 . ‘
H(l) _ ~r sin2a-p~sin2(8+0)+2prsin(6+2a)
12 . 2 ' :
s
H(2) _ 2(p-rcosB) , -2pcos2(8+a)+2rcos(6+2a)
11 : 2 - 2

i-é%A{pr2c052a-+p3c032(6+a)-2p2rcos(e+2a)-r3cos20cose
s .

'-p2rc032(6+a)cose+-2pr2cos(6+Za)cose}

-.17 -
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(2) -Zpéin2(6+-d)+2rsin(.9+2&) ‘

12 o C 2
: S

+ -gz {przsinZa + p3sin2(e+a) - 2p2rsin(6+2a) - r3sin2acosé
s A

- pzrsinZ(e;*;a) cosf + Zprzsin(6+2a) cos6}

The symbols ére shown in'figure 5 é.nd ‘sz = p2+r2— 2prcosb

For a point P on the boundary,

81rp°cosa = 81r'rl (b,a)

¢, (b) f [H(l)(b a3 b, 6)cosa+H( )(b a3 b,6)sina]bde

+C, (b) f [H(?‘) (b o3 b,e)éosa+n( )(b a; b,08)sinalbde
a0 . ’

(27) |

A81rp°sir.m = 81r1'2(b,r.1)_

: Cl(b) f [H(l)('b o3 b,Q)cosa-Fng)(b a3 b,a)sj.na]bde

+C, (b) f [H(z) (b,a; b,e)cosa-E-H( )(b ,a; b,8)sinalbde

(28)

The nonvanishing integrals of these kernels, used in the equations,

are given in table 1. Using thesev, both equafions (27) and (28) give
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2p = C;b(1+mb) +C, _(29)

and, from equatibns (26)

931 (F>9) - /2 [Cl‘?(lﬂ.nb)fczl' = o,

'ozz(r,a) = Py clz(r,a) =..0 f‘

The stresses on the boundary can be obtained from equation (26) by
taking the limit p > P. In this case, the appropriate residues 4ﬂsin2acl,

for the tangehtial

2 2, 2

stresé dee) must be include&. This gives, for e#ample, '

AHCOSZGC' and -4wsinacosaC (corresponding to _4ﬂC

8noll(b,a) = C f&nb(1+2ﬁb)b-+C22w(1+c032a)-FCzhwsinza

1
and finally

oll(b,a) = °22(b’°‘) = Py s °12(b’°‘) = 0

as expected.

Circular disc with concentrié circular cutout under uniform axisymmetric

external load - inelastic plane stress solution

A circular disc of radius b with a concentfic circular cutout of unit
radius is subjected to an axisymmetric external load history po(t)

(figure 6). The governing equa;ion-in polar coordinates for this problem is

.N
de
4. () _ Ed ..n _.n 80
ve = ¢C T or dr [err €60 " ¥ "ar ] (30)
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and
de . ' B
(n) _ E ,n _.n —r () :
D, T or (err €oo”T d ) > Dy - 0 (31)
The equation for stress rates (23), with the source ﬁoint p on the
x, axis (this can be done without loss of generality for this axisymmetric

1
problem) and Cz(b)

0 (using only - Cl(b) is sufficient here because of

" axisymmetry) give

2w , b 2w

Broyg () = ) H(l)(r b,6)bdg+S I Hgl)(r,p,e)c(n)(p)DdedD
J o 1 o J
b : ' .
4'D(n)(1) / HS%)(r;l,e)de ' (32)
r o 1J ’ .
For this point on the Xy axis, 011 = orr’A022'= oee and 012 = cre.

The augmented kernels 'Hij are obtained from equation (23) using the

stress functions ¢, and ¢, from equation (18). They are rather lengthy

A

and will not be given here..

The traction equations for a boundary point P are
. _ g * - (l)
81rpo = Snrl(b) = C (b) .f H (b;b,0)bdo

b 2w o
4'f .f H(l)(b,p,e)c( )(p)pdedp

‘ ™) (1) f nﬁ)(b 1,0)d0 O ((33)

(o]
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6 e
11 - ;eplaced by

"and the expression for 0 = 8n%2(b)' is similar with H
(1) ‘ '

' le everywherg. - |
The nohvanishihg ihtegrals‘of the kernels, in this case, are,iisfed

in.table 2. Using these, equation (32) on the boundary can be solved for -

. Cl(b) to give

2bp oy EER (b)
C.l(b) = o . —D(n)(b) —:;(—%ei“gs'
(b°-1) (1+2nb) , n
L
_ : E . r rr ee4_pézz dp
b(b“-1)(1+nb) 1 e

(32)

Substituting for Cl(b) into eqﬁation (32) gives the equations for

stress rates:'

r et -l 2b (" -2
§ () = %_ [ Ir 08 d __(r =1) hf f rr 66 do
rr ) (b=1) r° 1 P
’ r ‘ 2 2
+——E2 I eE) dp———)-(rz_-l [ pE) doyp (r-1) b
2r° 1 %% (b°-1) 1 z ° b°-1) r
' .0 .n .l .M
. _E T Srr oo (r2+1) b2 b (err—eee)
Tgg(r) AV Y I 5 do
1 (b™-1) r 1
r 2 b 2 2
-5 S oen a0+ 1 0f oy il 4p ST D
2r |1 ' (b"-1) 1 (b™-1) r
r0 = ~0

which were derived earlier by direct methods [17].



CONCLUSIONS

. A boundary element forﬁula;ion using augmentea kerﬁels is presented
here.for problems of'planar, inelastic deformation 6f plateé‘with cutouts.
In this approach, two fundamental solutioﬁs 6f the biharmonic equation are
augmented so thaﬁ the resultant kefnels.yiéld the stress distributions'for
point concentrgtions iﬁ an‘infinife.pléte ﬁith a traction_freé-cuto@t. Thus,
theAeffect‘of the cutqutkon the'stress figld is incoréo;ated into the
kernels andﬁthe cutout bounaary need not be modelled discretely iﬁ a
‘ﬁgmerical application.{ The specific kernelsvfor a plate with a{circular'

. cutout are de;ived. _Analytical'iliustrative examéles for an uniform circular
‘piate uhdergoing‘elastic deformatioﬁ and a circuiar plate with a circular
cutout undergoing inelas;ic deformatién are carried out and the formul#tiqn
is shown to yield ‘the correct expressions for stresses in these caées;
Numerical solutions for finite platgs with élliptic cutougs, with applica—.
tions to iﬁelastic fracture mechanics, are presented in a cqmpénion paper

4. N | - ' -

-2 -
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APPENDIX 1

Residues for traction and stress rates from equation (24)

"The kernel Hi;) has no residue.

For the kermel Hiﬁ), it is sufficient to consider the kernel 3%— (SZZns)
since the rest of the kernel is regular.
Consider K = 3%—.(322ns) around the semi-circular contour of figure.
. o .
. A—lo
K = o (szzns)
%
2 2 :
K .
22 . A (szlns) = 2 (szlns) = 3+ 2¢ns
on 2 2
: an : 9s
(<]
3K
2c = 0
VZK = —%7 (stzlns) = JL:(&Qns#—A) - 4
- ané 3s s

Integrating around the semi-circular contour of figure A-1, the residue for

- - ' . :
—— = 1im S (34+22ns)sdé = O
on

o s>0 o :

and the'residuepfor 3K = 0.

sc
IxX an oc
1 o ‘
9K oK

sinmmkég coson,
o¢C

axz 3no



.. Residues for — and 2K are zero.
,axl 2 Ve

Thiszimpliés that residues for force résulténts (seeA[15] p- 180) are zero.

- The residues in the formulae for traction rates (equation (25)) are thus

" Zero.

The residue'for VZK is

4 sd6 = 4n
s

0 -3

and this quantity gives the sum of the normal éud_tangential stress rates

LJ +. .
nn Cecc _ v A
Since the formulae for traction rates have no residues, the formulae
for normal (6nn) and shearing (6nc) stress rates has no residues.
. . . 2 ' - i
However, by virtue of the residue from V K, the formula for Occ has an

extra term lmCz~ as p approaches P on the boundary, ie

. > % *
if 8ns ,(P7) h(p™)

: . By _ *\ g *
then 81ro'cc(P ) = h(? )+411C2(P )

where p* is infinitesimally close to . P*.



APPENDIX 2

Kernels in equation (32)

H{i) = 2(1+2né_) -2(p/r) F:ose.-p;gosZe-! - 2(2nsl—ln(pr)) +________2(1—pr2cose)
22 | | -5 4 | ®1
:- r(r—p;ose); 94 [_ 2or + (1+4p.2r2)cose - 2pr(1+p2r2)c0326 + pzrzcos36]
' s rs g S L
1
— (1-prcosB) _ prcosd-2p 2r2+p 3r3cose
T2 + 4
sy .8y

- (p2c0326—pfcose) ~ 2(1+2np) .. (prcosd-1) ‘

+ 2 . + 2 2 2
. S r .rsl

Co+ ; A [—3pr + (2+6p2r2)cos9 - (4pr+3p3r3)c0526 + 2p2r2cos3é]
1 : ' ' -

=5 [-1 - l;pzr2 + (4pr+2p3r3) cosf ~ pz‘rzcos%]
rs;.

H](é) = ‘&én-e-+—°i; [(i+4p2r2)sine - 20i‘(l+p2r2)sin26 + pzrzsin3é]
‘s rs
, 1

prsinb prsine@zrz—l) (prsine-pzsinZ‘e,)
2 4 M 2

451 . Sl s
+ pr;irzw - 3p A [(2+602r2)sin9 - (401“!_-3p3"r3 )sin26 + 2p2rzsin3e]
- Sl r S1 ) .

- 214 [2p3r351n6—p2rzsin26]
rsy ' : o




where

7]
i

p2 + rz - 2prcosH

1+ p2r2 - 2prcosh

=N
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Coa el r i o Memzees®) ot dm o 2w
T L .'-SZ e T

‘5?;:L29c052(94a):F2rcos(a+2a)"I
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@
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i -2ps1n2 (4a) + 2rsin(8+20)
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Table 1. Ndn—vanisﬁiﬁg'integrals of kernels [Ref. 16] for solid circular
. disc. L - ] S :




. - £(e)de . ..

K M A. . o .

Hl_l ,' :HZZ_-,EZ (

'ui,Z(liﬁﬁé):;_izfgt '4ﬂ(i+lnp): ’fﬁn(i+inr)jt:ki;(l¥£nf)tu;:ﬂf:if

‘Vf}fh”fpzcosﬁe;ﬁféoée'j‘ 

:Aﬁ(i+2np)";;4*(1+2“r).:1:4n(1+2n9)f@5
B PRI TR s

" Table 2. bNon—vanishing ihtégralé of kernels [Ref. 16] for annular disc.



' Figure 1.







Figure 3.



Cuto

Figure 4.

.

ut

B,



TR b

. Figure 5.

Figure 6.



= ~'f’igure A-1





