Electrochemical photovoltaic cells. Project 65039 quarterly technical progress report, April 15-July 31, 1980

PDF Version Also Available for Download.

Description

Liquid-junction photoelectrochemical cells can be used either for the direct conversion of solar energy to electricity or to generate stored chemical species available for later electrochemical discharge. The objectives of this program are to identify experimental approaches for electrochemical photovoltaic cells that not only show promise of high power-conversion efficiencies but also have the potential to achieve long life and the capacity for energy storage. The work is organized as follows: (1) selection of high-efficiency semiconductor photoelectrode/electrolyte systems, (2) development of long-life electrochemical photovoltaic cells, (3) all solid-state electrochemical photovoltaic cell with in situ storage, and (4) demonstration of laboratory-size ... continued below

Physical Description

Pages: 18

Creation Information

Ang, P. G.P. & Sammells, A. F. September 1, 1980.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Liquid-junction photoelectrochemical cells can be used either for the direct conversion of solar energy to electricity or to generate stored chemical species available for later electrochemical discharge. The objectives of this program are to identify experimental approaches for electrochemical photovoltaic cells that not only show promise of high power-conversion efficiencies but also have the potential to achieve long life and the capacity for energy storage. The work is organized as follows: (1) selection of high-efficiency semiconductor photoelectrode/electrolyte systems, (2) development of long-life electrochemical photovoltaic cells, (3) all solid-state electrochemical photovoltaic cell with in situ storage, and (4) demonstration of laboratory-size photoelectrochemical cell with redox storage. This program is directed toward identifying a suitable match between the proposed semiconductor and the redox species present in aqueous, nonaqueous, and solid electrolytes for achieving the necessary performance and semiconductor stability requirements. Emphasis is on aqueous electrolyte-based systems where fast kinetics are favored. The proposed systems will be compatible with convenient storage of the electroactive species generated and its later electrochemical discharge in a redox cell. Progress is reported.

Physical Description

Pages: 18

Notes

NTIS, PC A02/MF A01.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SERI/PR-9175-1-T1
  • Grant Number: AC02-77CH00178
  • DOI: 10.2172/5030147 | External Link
  • Office of Scientific & Technical Information Report Number: 5030147
  • Archival Resource Key: ark:/67531/metadc1055280

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 1980

Added to The UNT Digital Library

  • Jan. 22, 2018, 7:23 a.m.

Description Last Updated

  • Jan. 25, 2018, 4:24 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Ang, P. G.P. & Sammells, A. F. Electrochemical photovoltaic cells. Project 65039 quarterly technical progress report, April 15-July 31, 1980, report, September 1, 1980; United States. (digital.library.unt.edu/ark:/67531/metadc1055280/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.