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Resume* Des calculations^microscopiques et semi-classiques de la deformation
octupolaire sont comparees. Nouvell^es resultats semi-classiques, obtenus
avec potential Woods-Saxon, sont donees. Une comparison avec les dattes
experimentelles est donee.

Abstract Microscopic and semi-classical descriptions of octupole deformation
are compared. New semi-classical results, obtained with the use of a Woods-
Saxon potential are presented. Comparisons with experiment are made.

I. Introduction

The low-lying Kir=O- rotational bands in the even-even Ra and Th isotopes have
been known /I/ for many years and clearly signal the presence of strong octupole
correlation effects in this mass region. However, early calculations /2/ using
the shell correction method of Strutinsky /3/ did not find any nuclides in this
mass region with a reflection asymmetric ground stste shape.

Another approach to the study of this region comes from the calculations of Vogel
and Neergaard /4/. They found it necessary to go beyond the RPA, taking into
account particle-phonon interaction diagrams, in order to get any reasonable sort
of description of the even nuclides in this mass region. This approach is not
able to handle deformation, but it does extend the range of interaction strengths
that can be handled, relative to the RPA. Their results suggest that the even-
even nuclides of the A~224 mass region can be understood as being very anharmon-
ically vibrational, in an octupole sense.

My original interest /5/ in octupole correlation effects came from trying to
understand the low-lying 0+ excited state of 231fU. In *?1*U, one obtains an
excitation energy of the first 0+ excited state of ~1350 keV w'*h a conventional
pairing force model. Experimentally, this state is found at 810 kcv'~ One gets
roughly the same result with other choices of pairing force matrix elements, when
the single particle levels are adjusted to fit the observed excitation energies
in neighboring odd nuclides. Using a calculational approach that places pairing
interactions and octupole interactions on an equal footing, I found that the
calculated excitation energy of the 0+ excited state in 231HJ is lowered to ~900
keV, in reasonably good agreement with the experimental value of 810 kev.



recently, Piepenbring /6/ has shown that the inclusion of octupole correlation
effects leads to a fairly good description of the 0+ excited states in the mass
region 224<A<228, with the exception of 228Ra. His calculations were carried out
making use of an multi-phonon basis set, with octupole phonons generated from a
TDA calculation.
In 1980, we extended /7/ our approach to include the calculation of states in odd
mass nuclides. We also extended the calculation to include the quadrupole-
quadrupole particle-hole interaction as well as the pairing force and the
octupole-octupole interaction. In an odd mass system, the signature of octupole
deformation is a parity doublet. This doublet consists of a pair of states
having the same spins but opposite parities, almost degenerate in energy, with a
large E3 matrix element connecting the two levels. In our study, we found
several instances in which the calculation predicts parity doublets. The most
notable case was a 5/2± ground state doublet in 229Pa, with a splitting predicted
to be less than 1 keV. The low-lying states of 229Pa were not known at that
time. The calculation also gave a 3/2+ doublet, with a 23 keV splitting, as the
ground state of 227Ac, in good good agreement with the known levels. An ex-
perimental study of the structure of 229Pa was made by my colleagues, Ahmad
et al., who showed /8/ that the ground state of 229Pa is indeed a 5'2± parity
doublet, with a splitting considerably smaller than 1 keV (~200 eV). This work
demonstrated the existence of ground state octupole deformation in nuclei.

In 1981, Moller and Nix /9/ noted that the ground state binding energies of the
nuclides near A~224 are increased by more than 1 MeV, when the octupole degree of
freedom is introduced into the parameterization of nuclear shapes. These results
were obtained using the shell correction method /3/. The single particle energy
level spectrum used in their calculations was generated from a folded Yukawa
potential /10/. The result is in marked contrast with the findings of Ref. 2),
in which a modified oscillator potential was used to generate the single particle
spectrum. The finding of Moller and Nix has been expanded in the work of Leander
et al. /ll/, who have made a most valuable survey of the light actinide region.
Using the folded Yukawa potential, with the Strutinsky method, they have found
many nuclides in this region with a reflection asymmetric ground state shape.

In my contribution to this Workshop, I shall (1): discuss the microscopic
treatment of residual interactions that I have used to study octupole inter-
actions (2): present some new shell correction calculations of the properties of
nuclides this region using a Moods-Saxon potential to generate the single par-
ticle energy levels (3): make some connection between the calculations and the
experimental studies of this mass region. Because there are no nuclides with
reflection asymmetric ground state shapes obtained with the modified oscillator
potential, and many such nuclides calculated with the folded Yukawa potential, it
is worthwhile to investigate this phenomenon with another potential.

II. Microscopic Calculation of Octupole Correlation Effects

The Hamiltonian that we use in our study of octupole deformation /7/ is

H = I eKNK " X G i , j a K i a - j a j
N 1 , J

-V2
° | j> a.a* I < k | r 2 Y ° | > a+a,

1 J k , l K '
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where ê  are the single particle energies obtained from a deformed reflection
symmetric Woods-Saxon potential. The pairing force matrix elements, G.- ,-, are
not constant; they come from a density dependent delta interaction. This'set of



matrix elements /12/ explains many features of the actinides at low and high
spin. The quadrupole matrix elements that we use are proportional to the matrix
elements of riY(2,0) and the octupole matrix elements are proportional to the
matrix elements of r3Y(3,0). The quadrupole strength was adjusted to give the
observed onset of quadrupole deformation in the light actinides. The octupole
strength was adjusted to obtain the known energies of the low-lying 1- states in
the Th isotopes.

To solve this Hamiltonian, we exploit /5,7/ the fact that the interaction is
cylindrically symmetric and separable. We denote the deformed orbitals with a
given value of T_ and n as an a group. Orbitals with both positive and negative
parity are included in the group. Many configurations can be constructed by put-
ting particles in the orbitals of a given n group, and the number of configura-
tions rises rapidly with the number of doubly degenerate orbitals in the fi group.

For purposes of illustration, we consider an n group with only two doubly degen-
erate Nilsson orbitals; e. g. 5/2+ and 5/2-. There are six configurations that
are relevant for the description of 0+ and 0- states.

Configuration Occupied Orbitals Picture Particle # a n

*2

«3

1.2

3,4

2.3.4

1.4

2.3

-x—x-

—X X—

—X X—

—X

*5

*6

If we are interested in the odd mass nuclide with an a value of 5/2, there are
four configurations to consider.

1 5/2

02 1.3.4 3 5/2

©3 3 1 5/2

e4 1.2,3 3 5/2



Orbitals 1 and 2 in this illustration have positive parity; 3 and 4 have negative
parity. Orbital 1 and 3 have positive fl; 2 and 4 negative si. In an even-even
nucleus, the total wavefunction is of the form

V (Nn, Np, V.) = P (Nn, Np, n)

Parity and part ic le number are not conserved within any one of the si groups;
however, we project states of good proton number, neutron number, and parity to
construct the wavefunction ^Nn.Np.ir). This is denoted by the projection
operator P(N N w). The amplitudes C(n,Tz) are obtained by minimizing the
energy of tne fu l l y projected wavefunction. We solve the set of coupled
equations

8<y(Nn>Np,n)|Hl|y(NntNp>n)> n
3 C i(f i,Tz) u

I f we want to solve for the 5/2 states of an odd proton nucleus, the relevant
wavefunction is of the form

Y(Nn,Np,H) = P(Nn.Np.n) I C.(5/2,1/2) ^.(5/2,1/2) x

n,Tz / 5/2,1/2
JCJ(O.T2).J(O.TZ)

In practice, we can handle up to five doubly degenerate levels in a (si, Tz)
group. In the even particle number group, this amounts to 252 configurations
with 142 independent amplitudes. There are 210 independent amplitudes in an odd
particle number Si group. By varying the octupole, quadrupole or pairing
strengths, we generate many different wavefunctions with differing collective
properties. Our final solution is a linear combination of such wavefunctions,
taking their non-orthogonality into account. The structure of these solutions is
sufficiently rich to describe states that are spherical, vibrational or deformed
in these three degrees of freedom.

The calculations PI that we have made for odd mass actinides show the onset of
octupole deformation for several values of si in both odd proton and odd neutron
nuclides. The results of the calculations are shown in figures (1) and (2). In
Fig. (3), we show the ground state doublet spacing measured by Ahmad et al. /8/
for 2i3Pa.

III. Shell Corr3Ction Calculation of Qctupole Deformation

The Strutinsky method /3/ is well known and I shall not discuss it here in any
detail. The total energy of a nucleus is calculated as a function of the nuclear
shape. The energy is taken to be the Liquid Drop energy with microscopic shell
and pairing corrections; i. e.

where v̂  denotes a set of deformation parameters. ^Shell 1S tne difference in
energy between the actual set of occupied levels and a suitably smoothed
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distribution of levels. We have use an 8th order Hermite polynomial, with a
width of 10 MeV for our smoothing function. The quantity Epa<r is the difference
in pairing correlation energy between the true set of .levels and the suitably
smoothed set. We note that the smoothed set of levels is essentially independent
of the shape for the purpose of a pairing calculation. For our pairing strength,
we use G=21/A for neutrons and 30/A for protons. The pairing calculations are
carried out using 15 pairs of particles and 30 doubly degenerate levels. We go
slightly beyond the BCS approximation to calculate the pair correlation energy,
using the method of correlated quasi-particles /13/. The advantage of this
method is that i t gives good correlation energies when the level spacings are
large. The BCS method gives too l i t t l e correlation energy in such cases; i . e.
when the shell effects are largest. The single particle energy level spacings
are generated from a Woods-Saxon potential for the nuclide 22ltRa. For the proton
orbitals, we took rQ=1.27 fm ,a=0.65 fm, and a spin orbit radius of .85rQ« To
calculate the neutron single particle energies, we choose rp=1.33 fm and a=0.72
fm, with the spin-orbit radius parameter equal to TQ. This set of parameters
gives a good representation of the level spacings in the mid-actim'de region.
Our parameterization of the deformation differs slightly from that used in the
modified oscillator calculations. We introduce deformation via the trans-
formation

r2—• r 2 |exp(-3) sin2© + exp ( - - 3 ) cos2© + Jv. (k + 1/2) P. (cos©) Iexp(-^
k>2*

In our calculations, we have used a grid with the set of points

v?=0, .05 , .10, .15 , .20
\4=0, .05 , .09, .13
v4=0, - . 0 3 , - . 06 , - . 0 9 , - .12

We have also used the smoothing relations /ll/

v5 = -0.9*v2*vo
v6 = -v4*(v2+0.1)

In fact these choices of vg and V5 reduce the effective magnitudes of V3 and v4,
rather than smoothing the nuclear surface.

In Figures 4-8, I present some comparisons of the energy gains associated with
octupole deformation, as well as the magnitude of the octupole deformation
obtained with Woods-Saxon levels and the folded Yukawa potential /ll/. In this
series of figures, the vertical axis is the proton number and the horizontal axis
is the neutron number of the nuclide being studied. The numbers in Fig. (4) are
the difference in binding energy obtained for a reflection asymmetric shape
relative to the binding energy obtained for symmetric shapes, given by /ll/ a
folded Yukawa potential. A positive number means that the reflection asymmetric
shape is more tightly bound. There is a large region where this energy gain is
greater than 0.5 MeV, and many cases in which it is substantially larger than 1
MeV. In Fig. (5), we show the magnitude of e, at these minima. The calculated
octupole deformation effects are largest for 132 and 134 neutrons. To put these
energy gains into perspective, it is worth noting that the energy gained in going
from a spherical shape to the reflection symmetric shapes of the mid-actinide
region is 10-15 MeV, compared with the ~1 MeV shifts associated with octupole
deformation. This is a comparatively small effect and difficult to calculate.

In Figs. (6) and (7), we present new results that we have obtained with a Woods-
Saxon potential. The energy gains are displayed in Fig. (6) and the associated
deformations V3 in Fig. (7). The most striking feature of a comparison with the
folded Yukawa results is that the region of nuclides calculated to be octupole
deformed is much smaller. The increase in binding energy due to octupole de-
formation is also considerably smaller in most instances. However, the region
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that shows maximum octupole correlation effects is much the same in both cases
i.e. at 132 and 134 neutrons. I have also included results for Z=94 and 2=96 and
find energy minima for shapes with octupole deformation in isotopes of Pu and
Cm. The maximum energy gain in these elements occur at 130 and 132 neutrons. In
Fig (8), we display the energy gains associated with octupole deformation in the
odd nass nuclides of this region, as obtained with the Woods-Saxon potential.

Both the Woods-Saxon and folded Yukawa potentials give reflection asymmetric
minima near A~224, hut the effects are .onsiderably more pronounced in the
calculations using a folded Yukawa potential. The differences are surprising in
view of the similarity of the shapes of the two potentials.

IV. Comparison with Experiment

The position of the low-lying 1- state serves as a first indicator of octupole
deformation effects in even-even nuclides. In Fig. (9), we show the known
excitation energies of 1- states in this region. - There are a few nuclides in
which the 1- state is below 300 keV, and none in which the excitation energy is
less than 200 keV. In the case of strong octupole deformation, we expect to see
a ground state rotational band sequence of 0+, 1-, and 2+. So far as I know,
there are no nuclides in which the 1- state is below the 2+ state. There are
several cases in which a 1- state has been found slightly above or slightly below
the 4+ level. These data argue against permanent octupole deformation in the
even-even nuclioas. On the other hand, there is no evidence /14/ for a two
phjnon 0+ octupole state at twice the energy of the 1- state in the cases when
the 1- energy is less than 300 keV. This means that the octupole correlation
effects are much stronger than vibrational; i. e. we are in a transitional reyion
for these even-even nuclides. These data suggest that octupole correlation
effects are stronger in nuclides with 136 and 138 neutrons than we estimate with
shell correction methods.

The next data we consider are the single particle states of the odd mass
nuclides. The observed parity doublets and the ground state spins are consistent
with the level orderings that one calculates with the microscopic approach /7/
and with the results one obtains /ll,15/ after introducing octupole deformation
into the single particle potential. The level orderings that I obtain with a
Woods-Saxon potential are quite similar to those obtained with the folded Yukawa
potential. Studies /16/ of the structure of 22SAc show that the coriolis matrix
elements are reduced in this nuclide by roughly an order of magnitude, relative
to the values observed in the mid-actinide region. This result is consistent
with calculations /15/ of single particle properties that include octupole de-
formation. In the limit of octupole deformation, the value of ĝ  should be the
same for positive and negative parity members of a parity doublet. This con-
dition is rather well fulfilled /17/ for the 3/2+ ground state doublet of
2 2 7Ac. On the other hand, the absolute value of the decoupling parameter should
De the same for positive and negative parity members of a l/2± band in the limit
of octupole deformation. Such is not the case for the excited state 1/2+ and
1/2- bands of 2 2 7Ac. This difference in the 3/2± and 1/2 bands was anticipated
in the microscopic /7/ calculations.

In a study /18/ of 225Ra, Sheline et al. noted that the decoupling parameters of
the 1/2+ and 1/2- bands were much closer in magnitude than calculations using a
reflection symmetric potential would suggest. However, the absolute values of
the two decoupling parameters still differ from each other substantially. In
this same nuclide, the 1/2+ ground state is populated /19/ strongly in a one
nucleon transfer reaction. The angular momentum decomposition of the 1/2+
intrinsic states calculated in reflection symmetric potentials shows no appreci-
able J'=0 component; i. e. this state should not be populated. Recently, I have
made an angular momentum decomposition of the single particle states in a
potential with octupole deformation. The introduction of octupole deformation
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(vj = .09) gives a wavefunction with a J30 component large enough to explain the
observed population of the 1/2+ state.

In the last month Rose and Jones report /20/ spontaneous 1I»C decay of 2 2 3Ra.
This suggests a picture of octupole deformation in the ground state of 223Ra. We
envisage this nuclide as consisting of a Pb like particle and a C like particle
all suitably smoothed, as sketched in Fig. 10.

Figure 10. Sketch of 223Ra as Pb and C cores.

On the whole, the data in odd mass nuclides is consistent with a picture of
octupole deformation for some values of a. In the microscopic calculations PI,
we find that the presence of an odd particle in an appropriate orbital can polar-
ize the nuclear core strongly. We found that the octupole correlation effects
are stronger in these states than they are in nearby even-even nuclides. In the
shell correction calculations these differences are not so apparent. Both the
folded Yukawa and Woods-Saxon based semi-classical description of this mass
regions indicate that the light U isotopes might be an interesting region in
which to search for octupole deformation. The Woods-Saxon calculations indicate
possible octupole deformation in light Pu and Cm isotopes, as well.

Finally, I should like to note /21/ that science has been anticipated by art. A
semi-classical description of octupole deformation was given by the French artist
Daumier exactly 150 years ago. His description of this phenomenon can be seen in
F,g. (11).

I thank I. Ahmad, B. Wi1 kins and G. Leander for helpful discussions on various
aspects of this work.



Figure 11. Semi-classical treatment of
octupole deformation by Daumier
(Caricature of Louis-Phiilipe).
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