LEL--14644

DE82 018801

Optically Enianced Nuclear Cross Polarization
 in Acridine-Doped Fluorene

Copyright (C) 1982
by

Connie M. Oshiro

Ph.D. Thesis

Chemical Biodynamics Division Lawrence Berkeley Laboratory University of California Berkeley, CA 94720

The United States Department of Energy has the right to use this 1 thesis for any purpose whatsoever including the right to reprodure all or any part thereof.

This work was supported by the Assistant Secretary for Environnent, Office of Life Sciences Research and Nuclear Medicine Applications, Division of General Life Sciences of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

TABLE OF CONTENTS

1. Introduction 1
2. Proton Enhanced Nuclear Induction Spectrospcopy (PENIS) 4
2.1 Background 4
2.2 Description of experiment 7
3. Optical Nuclear Polarization (ONP) 14
3.1 Rate equations 15
3.2 Determination of $k, N_{j}, w_{i j}$ 18
3.3 Selective population and/or decay rates 23
3.4 Mixing coefficients 24
3.5 Level anti-crossing 25
4. Experimental set-up 30
4.1 Polarizing field 33
4.2 Optical system 37
4.3 Spectrometer 38
4.3.1 Probe 38
4.3.2 Associated rf hardware 43
4.3.2.1 PENIS set-up 43
4.3.2.2 ONP set-up 44
4.3.3 Generation of logic/data acquistion 45
4.3.4 Lock channel 46
4.4 Detection and tune-up 47
4.4.1 PENİ 47
4.4.2 ONP 47
4.5 Fluorene 49
4.5.1 Crystal structure 49
4.5.2 Crystal growth 49
5. Data Analysis 51
5.1 Background 51
5.2 Analysis 55
5.2.1 Determination crystal orientation 56
5.2.2 Rotation plots 56
5.2.3 Full tensor fit 59
6. Results 72
6.1 ONP 72
6.1.1 Single crystal 72
6.1.2 Powder 77
6.2 PENIS 81
6.3 Chemical shielding tensor 84
6.3.1 Tensors 84
6.3.2 Errors 91
6.3.2.1 Statistical error 91
6.3.2.2 Systematic error 91
Appendices
Apperidix 0. Solid State Echo 93
Appendix 1. Nicolet 293 Patch Panel Connections 97
Appendix 2. Modifications to NTCFT 102
A2.1 Patch for 2090/201 102
A2. 2 Patch for multiple contact PENIS 104
A2.3 Patch for second variable timer 106
Appendix 3. Data Transfer from Nic-80 to Vam/VHS 11/780 108
Appendix 4. ONP calculation programs 116
References 128

1. INTRODUCTION

NMR provides a dynamic and non-destructive probe of the chemical environment. In particular, in a solid or semi-solid where anisotropic interactions such as the chemical shift are retained, many nuclei other than protons can give valuable infomation about the structure and motion of molecules. However, the NMR signals from nuclei other than protons are extremely weak for a variety of reasons, including:
i) low natural abundance
ii) small gyromagnetic ratio
i :) lang spin-lattice relaxation times
iv) in the solid state, the presence of large dipole-dipole interactions and the existence of a quadrapole interaction which may dominate the NMR spectrum and mask chemical shift information.

Various schemes can be used to increase the sensitivity of these other nuclei:
i) use of large magnetic fields
ii) improvement of rf hardware and signal averaging
iii) for the case of dilute spins in solids, use of double resonance techniques, in particular, the proton enchanced nuclear induction spectroscopy (PENIS) experiment, in combination with decoupling techniques.

A combination of the above three schemes is becoming more prevalent in the study of dilute spins in solids. In the Pi:NIS experiment an improvement in signal to noise is accomplished by
transf. ring the abundant proton polarization to the dilute spins. The intensity of the dilute spin signal is then limited by the polarization of the abundant proton spins.

The objective of this work has been to create large polarizations of the dilute ${ }^{13} \mathrm{C}$ nuclei in the solid state. The idea was to create $\mathbf{1}_{\mathrm{H}}$ polarizations larger than Boltzmann and to use the PENIS cross polarization technique to then transfer this large polarization to the ${ }^{13} \mathrm{C}$ spin system.

Optical Nuclear Polarization (ONP) appeared to be an attractive method to create large non-Boitzmann proton polarizations simply and rapidly. Normal Boltzmann polarizations are on the order of .005\%. In singla crystals of fluorene doped with acridine, proton polarizations on the order of . 1\% have been reported [1,2]. Such polarizations are equivalent to the sample sitting in a magnetic field of approximately 3 MGauss. Magnetic fields strengths readily avaliable in the laboratory today are aproximately 65 kGauss. The polarization is approximately three orders of magnitude larger than coulid be conventionally obtained. Additionally, protons in fluorene could be polarized in a time much less than T_{1}, the spin lattice relaxation time. The ONP polarization time is determined by the illumination time, which is on the order of 1 minute, rather than T_{1}, which is on the order of 30 minutes.

ONP of acridine-doped fluorene single crystals has been studied here. In addition, 0 NP of powdered samples of the acridine-doped fluorene has been studied. In general, many compounds do not crystaliize easily or do not form large crystals suitable for NHR experiments. Powdered, amorphous and randomly dispersed samples are
generally far more readily avaliable than single crystals. One objective of this work has been to (first) create large $\mathbf{1}_{H}$ polarizations. Although large optical proton polarizations in single crystals have been reported previously $[1,2]$, optically generated polarizations in powdered samples have not been reported. For these reasons, ONP studies of powdered samples of the acridine-doped fluorene were also undertaken.

Using ONP in combination with the PENIS experiment, large ${ }^{13} \mathrm{C}$ polarizations have been created in fluorene single crystals. These large ${ }^{13} \mathrm{C}$ polarizations have permitted the detemination of the seven incongruent chemical shielding tensors of the fluorene molecule.

Part 2 of this thesis describes the PENIS experiment. Part 3 describes the ONP experiment. Part 4 is a description of the experimental set-up. Part 5 describes the data analysis for the detemination of the chemical shielding tensors. Part 6 presents the results of the ONP experiments performed in this work and the chemical shielding tensors detemined.
2. Proton Enhanced Nuclear Induction Spectroscopy

In the proton-enhanced nuclear induction spectroscopy (PENIS) experiment, spin order of an abundant spin species, such as protons, is transferred to a dilute spin system such $a={ }^{13} C$, resulting in ${ }^{13} C$ magnetization greater than Boltmann. The PENIS experiment has been described by many authors; for example, see Pines, Głbby, Waugh [3] and Mehring [4]. A general description is included here.

2.1 Background

The concept of spin temperature is important for an understanding of the PENIS experiment. It can be stated as follows: a spin system, I, isolated from the lattice and subjected to spin-spin interactions, proceeds toward a state of internal equilibrium such that the population of the spin energy levels is given by an exponential distribution $N\left(E_{i}\right)_{\alpha} \exp \left(-B E_{i}\right) . G=1 / K T s$ is the inverse spin temperature Ts of the system. If the population distribution is the Boltmann distribution, $T s$ is the lattice temperature.

The density matrix o of the spin system described by the Hamiltonian H is defined as

$$
\rho=\exp (-\beta H) / \operatorname{Tr}(\exp (-\theta H))
$$

Generally, for $T \gg 1$ degree K, E_{i} is less than $k T$ for all energy Jevels of the spin system. Hence ocan be well approximated by

$$
\rho=Z^{-1}\left[1-\beta_{\beta} H\right]
$$

where
$Z=\operatorname{Tr}(\underline{1})=(2 \mathrm{I}+1)^{\mathrm{N}}$ is the partition function
K is the number of I spins in the sample.

If a large external magnetic field, Ho, is applied to the spin system alung the coordinate z axis, the Hamiltonian becomes

$$
\mathrm{H}=- \text { rhHo.I }=- \text { rhHoIz }
$$

where r is the gyromagnetic ratio of the I spire and h is Pianck's constant.

The magnetization and energy of the system are

$$
\begin{array}{ll}
M_{i}=1 / 2 \operatorname{hr} \operatorname{Tr}\left(\rho I_{i}\right)=B C H 0 & 2.4 \\
E=-\operatorname{Tr}(\rho H)=-B \subset \mathrm{Ho}^{2} & 2.5
\end{array}
$$

where
C is the Curie constant equal to $1 / 3 N I(I+1) r^{2} h^{2}$
N is, as stated previously, the number of I spins in the sample. The term $\mathrm{CHo}{ }^{2}$ is the effective "heat capacity" of the I spins.

Consider a two spin system consisting of an abundant I spin system and a dilute S spin system. Botin spins are immersed in a large external magnetic field, Ho. Let the Larmor resonance frequency of the I spins in the field be $\omega_{o I}=h \gamma_{\mathrm{I}} \mathrm{Ho}$, and the Larmor resonance frequency of the S spins, $\omega_{o S}=h{ }_{S}{ }^{H o}$. Two strong rf fields of amplitude $H_{1 I}$ and $H_{1 s}$ are applied at the resonance frequencios $\omega_{O I}$ and $\omega_{O S}$ of the I and S spin systems. The rf fieldr are applied in the $x y$ plane perpendicular to the constant field Ho. The full Hamiltonian is

$$
H=H_{z}+H_{d i i}+H_{d i s}+H_{r f}
$$

where
H_{z} is the nuclear Zeeman interaction of both the I and S spins
$H_{d i j}$ is the dipolar interactions between I spins
$H_{\text {dis }}$ is the dipolar interactions between the I and S spins
$H_{r f}$ is the interaction of the spin system with the rf fields (scalar couplings have been ignored since $H_{s c a l a r} \ll H_{d i j}, H_{d i s}$). For Ho//z

$$
\begin{aligned}
& H_{z}=-h \omega_{0 I} I z-h \omega_{0 S} S z \\
& H_{d i}=\gamma_{I}{ }^{2}{ }_{i}{ }_{i, j}\left(I_{i} \cdot I_{j}\left(1-3 \cos ^{2} \theta / r_{i j}{ }_{i j}\right)-3 I_{i z} I_{j z}\right) \\
& H_{d i s}=\gamma_{I} Y_{S}{ }^{\Sigma_{i, j}}\left(I_{i} \cdot S_{j}\left(1-3 \cos ^{2} \theta / r^{3}{ }_{i j}\right)-3 I_{i z} S_{j z}\right) \\
& H_{r i}=H_{1 I}\left(I_{x} \cos ^{\omega_{0 I}}{ }^{t}+I_{y} \sin \omega_{O I} t\right)+H_{1 S}\left(S_{x} \cos \omega_{0 S} t+S_{y} \sin \omega_{o S}{ }^{t}\right)
\end{aligned}
$$

where
${ }_{i j}$ is the angle between the magnetic field vector and the vector joining the two spins \mathbf{i} and \mathbf{j}, and
$r_{i j}$ is the distance between the two pairwise coupled spins.
In the doubly rotating frame, the effects of the large magnetic field, Ho, can be eliminated. The operator R which transforms the system from the stationary laboratory frame to this doubly rotating frame is given by

$$
R=\exp \left[-i \omega_{I} I z^{t}-i \omega_{S} S z t\right]
$$

where ω_{I} and ω_{S} are the frequencies of the rotating frames. If $\omega_{I}=\omega_{D I}$ and $\omega_{S}=\omega_{0 S}$ in this new frame the Hamiltonian becomes

$$
H_{r}=-\gamma_{I} h_{1 I} I x-\gamma_{S} h_{1 S} S x+H_{d i j}+H^{\prime} \text { dis }
$$

$$
=H_{11}+H_{1 S}+H_{d i i}^{\prime}+H_{d i s}^{\prime} \quad 2.8
$$

This is the Hamiltonian of the PENIS experiment which will be used later in this section.
2.2 Description of PENIS experiment

The PENIS experiment proceeds through 5 major steps:
i) the I spins are polarized
ii) the I spins are cooled
iii) the I and S spins are brought into contact and order transferred from the I spins to the S spins
iv) 5 spins are detected while decoupled from the I spins
v) parts (iii) and (iv) are repeated until the 1 spin magnetization is depleted.
in this exper"ment, the abundant I spins are the protons and the dilute S spins are the ${ }^{13} \mathrm{C}$ in fluorene.
i) polarize l spins

In most cross polarization experiments, the I spins are polarized by placing the sample in a large external magnetic fisld Ho and waiting a time $>\mathrm{T}_{1}$, the spin lattice relaxation time. In the experiment described in this thesis, ita i spins are polarized optically.

When the I spins are polarized the density matrix of the syster is

$$
D=1-B \perp H_{z}
$$

Only H_{z} naters the above equation because $\mathrm{H}_{\mathrm{z}} \gg \mathrm{H}_{\mathrm{dij}}$ and $\mathrm{H}_{\mathrm{rf}}=0$. The

S spins are assumed to be unpolarized at this stage, so that their inverse spin temperature is 0 . When the 1 spins are placed in a large magnetic field Ho and are allowed to equilibrate, the spin temperature defined by the population difference of the abundant spir system equals $B_{\text {lat }}$, the inverse lattice temperature, of the I spin systemi. The normal Boltzmann magnetization $M_{o I}$ and energy E are

$$
\begin{align*}
& M_{\text {OI }}=\beta_{1 a t} C_{I} H 0 \\
& E=-\beta_{1 a t} C_{I} H_{0}^{2}
\end{align*}
$$

In the ONP experiment, the I spins are not in thermal equilibrium with the lattice and $\beta_{\text {onp }}$, the inverse spin temperature of the system, does not equal ${ }^{1}{ }_{1 a t}$. An effective magnetic field H^{\prime} can be defined as that magnetic field which would give rise to the actual I spin polarization at the lattice temperature. The actual magnetization in this case is given by

$$
M_{\mathrm{I}}=\varepsilon_{\text {onp }} C_{\mathrm{I}} H_{0}=\varepsilon_{\text {Iat }} C_{\mathrm{I}} H^{\prime}=M_{\mathrm{OI}} H^{\prime} / H O
$$

ii) cool l spins

The I spins can be cooled in a variety of ways. The I spins in these experiments are cooled by spin locking the magnetization (equation [2.12]) along $H_{1 I}$ in the rotating frame. (The remaining discussion is limited to this case.) This is accomplished by first applying a 90 degree pulse to rotate the magnetization into the $x y$ plane, followed imnediately by a long pulse phase shifted by 90 degrt: ${ }^{\text {f }}$ from the first pulse. The spin locking preserves the original
magnetic ordering along a rotating frame field much smaller than Ho. This resuits in an effective cooling of the I spins [5].

The Hamfltonian of the system is given by equation [2.8], with $H_{\text {II }} \gg H_{d i i}, H_{d i s}$.

Let the inverse spin temperature of the system at this point be ${ }^{B}{ }_{i}$. Neglecting $H_{d i j}, H_{d i s}$, the density matrix, magnetization and energy in the rotating frame become

$$
\begin{align*}
& \rho_{r}=Z^{-1}\left(1-g_{i} H_{1 I}\right) \\
& M_{I}=B_{\text {onp }} C_{I} H o^{\prime}=\beta_{1 a t} C_{I} H^{\prime}=\beta_{i} C_{I} H_{I I} \\
& B_{i} / \beta_{\text {onp }}=H_{0} / H_{1 I} \text { and } B_{i} / \beta_{1 a t}=H^{\prime} / H_{1 I} \\
& E=-B_{i} C_{I} H_{1 I}^{2}
\end{align*}
$$

iii) bring I and S spins into contact

The S spins are brought into contact with the I spins by applying a second rf field at the S spins resanant frequency. Two cases arise for the amplitude of this rf field:

1) matched Hartman-Hahn condition [6]:

$$
\begin{equation*}
\gamma_{S} H_{1 S}=\gamma_{I} H_{1 I} \tag{a}
\end{equation*}
$$

i.e., the amplitude $H_{1 S}$ of the S spin rf field is chosen such that in the rotating frame, the energy differance of the S spin system is equal to the energy difference of the i spin system or
2) unmatched Hartman-Hahn condition [3]:

$$
\begin{equation*}
\gamma_{S} H_{1 S}=a \gamma_{I} H_{1 I}, a \gg 1 \tag{b}
\end{equation*}
$$

Only if the time constant of the energy transfer $T_{I S} \leqslant T_{1 \rho}$, the rotating frame relaxation time, can the energy exchange be considerable. $T_{I S}$ is a function of the coupling between the I and S spins and the mismatch paramier, $a ; T_{I S}$ increases with increaeing values of a $[3,4,7]$.

If the Hartman-Habn colidition is satisfied ($a=1$), rapid energy transfer occurs between the I and S spins since energy conserving mutual spin flips are possible. The heat capacity of the S spins, $\mathrm{C}_{5} \mathrm{H}_{1 \mathrm{~S}}{ }^{2}$ is small and the heat capacity of the I spins, $\mathrm{C}_{1} \mathrm{H}_{1 \mathrm{I}}{ }^{2}$, large. Energy flows rapidly from the 5 spin system to the I spin system until a common spin temperature is established. A cooling of the S spins occurs, at the expense of a small heating of the I spins.

If the Hartman-Hahn condition is not satisfied (a>>1), the heat capacity of the S spins is large (since $H_{1 S}$ is large) and a large cooling of the S spins occurs, with a concomitant large heating of the I spins. However, $T_{I S}$ can become very leng. If $T_{I S}$ exceeds T_{10}, effective energy transfer is not possiv?e.

The Hamiltorian, H_{r}, is given by equation [2.8]. Let the final inverse spin temperature be ${ }^{B_{f}}$. The density matrix and energy after the spin temperatures have aqualized are given by

$$
\begin{align*}
& \rho_{f}=1-\beta_{f}\left[H_{1 I}+H_{I S}\right] \\
& E_{f}=-\beta_{f}\left[C_{I} H_{I I}^{2}+C_{S} H_{1 S}^{2}\right]
\end{align*}
$$

Assuming conservation of energy, $E_{i}=E_{f}$, and $\gamma_{S} H_{1 S}=a{ }_{Y} H_{1 I}$

$$
B_{i} C_{I} H_{I I}^{2}=\beta_{f}\left[C_{I} H_{I I}^{2}+C_{S} H_{I S}^{2}\right]
$$

or

$$
\begin{align*}
{ }^{\beta_{f} / \beta_{i}} & =\left(1+a^{2}\left(\gamma_{I}^{2} / \gamma_{S}{ }^{2}\right)\left(C_{S} / C_{I}\right)\right)^{-1} \\
& =\left(1+a^{2}[\operatorname{NSS}(S+1)] /[\operatorname{Ni}(I+1)]\right)^{-1}
\end{align*}
$$

Let $\mathrm{E}=[\mathrm{NsS}(\mathrm{S}+1)] /[\mathrm{Ni} I(\mathrm{I}+1)]$
Therefore, after one contact,

$$
\begin{align*}
M_{S} & =\varepsilon_{f} C_{S} H_{1 S} \\
& =\beta_{f} C_{S} a\left(r_{I} / r_{S}\right) H_{1 I} \\
& =B_{i} C_{S}\left(\gamma_{I} / \gamma_{S}\right)\left[a /\left(1+a^{2} \varepsilon\right)\right] H_{1 I} \\
& =\beta_{1 a t} C_{S}\left(\gamma_{I} / \gamma_{S}\right)\left[a /\left(1+a^{2} \varepsilon\right)\right] H^{\prime} \\
& =\left(r_{I} / r_{S}\right)\left[a /\left(1+a^{2} \varepsilon\right)\right]\left(H^{2} / H \partial\right) M_{o S}
\end{align*}
$$

$M_{O S}$ is the nomal Boltzmann magnetization of the S spins. The gain in magnetization after one contact is thus

$$
\begin{equation*}
\left(r_{I} / Y_{S}\right)\left[a /\left(1+a^{2} \varepsilon\right)\right]\left(H^{\prime} / H O\right) \text {. } \tag{a}
\end{equation*}
$$

For ${ }^{13} C, S=1 / 2$ and for $1_{H}, I=1 / 2$, the gain after a single matched Hartman-Hahn contact $\left(\varepsilon \ll 1, a=1,\left[a /\left(1+a^{2} \varepsilon\right)\right]=1\right)$ is

$$
\begin{equation*}
\left(\gamma_{I} / \gamma_{S}\right)\left(H^{\prime} / H o\right)=4\left(H^{\prime} / H o\right) \tag{~b}
\end{equation*}
$$

Under unmatched Hartman-Hahn conditions, the magnetization, M_{s}, is maximal when $a=(\varepsilon)^{-1 / 2}$ and the gain afier a single shot is

$$
1 / 2\left(r_{I} / r_{S}\right)(\varepsilon)^{-1 / 2} H^{\prime} / H_{0}=1 / 2\left(r_{I} / r_{S}\right)\left(N_{I} / N_{S}\right)^{1 / 2}\left(H^{\prime} / H o\right) 2.24(a)
$$

For ${ }^{13} \mathrm{C}$ at natural abundance, $\left(\mathrm{N}_{\mathrm{I}} / N_{\mathrm{S}}\right)=200$ and equation 2.24 a
becomes

$$
\begin{equation*}
\approx 30\left(H^{\prime} / H 0\right) \tag{~b}
\end{equation*}
$$

iv) detect S spins

The $H_{1 S}$ field is turned off suddenly and the proton enhanced iree induction decay of the S spins is detected and recorded in the presence of the $H_{1 I}$ proton field. The H_{11} field now acts as a decoupling field effectively removing the ${ }^{13} \mathrm{C}$ - ${ }^{1} \mathrm{H}$ dipolar interaction by modulating the flip-flop rate of the I spins. For a more detailed account of decoupling, see descriptions by Mehring [4] and Abragham [8].
v) recontact

If the proton reservoir is not depleted, a second (or a third, etc.) contact can be made and the ${ }^{13} \mathrm{C}$ signal(s) added. This is possible when $T_{I S} \ll T_{1 \rho}$ with the matched Hartman-Hahn condition, but generally not possible with the unmatched Hartman-Hahn condition.

With multiple contacts and the Hartman-Hahrı condition satisfied, the S magnetization after the k contact is given by

$$
M_{S}^{k}=\left(\gamma_{1 / \gamma_{S}}\right)\left(H^{\prime} / H 0\right)[1 /(1+\varepsilon)]^{k} M_{O S}
$$

Therefore, the final magneicization is given by,

$$
\begin{align*}
M_{S} & =\left(Y_{I} \gamma_{S}\right)\left(H^{\prime} / H o\right) M_{O S}{ }^{\Sigma} k=1, n^{[1 /(1+\varepsilon)]^{k}} \\
& { }^{[}\left(Y_{I} Y_{S}\right)\left(H^{\prime} / H o\right) M_{O S}{ }^{\Sigma} k=1, n(1-\varepsilon)^{k}
\end{align*}
$$

If n contacts are done and the signals co-added, and assuming $n \varepsilon \approx 1$,

$$
\Sigma_{k=1, n}(1-\varepsilon)^{k}=1 / 2 \varepsilon
$$

The gain (in signal to noise) at the end of the nth contact (again, with neal) is

$$
1 / 2\left(Y_{I} Y_{S}\right)(n)^{-1 / 2}(1 / \varepsilon) H^{\prime} / H_{0}=1 / 2 \quad\left(Y_{I} Y_{S}\right)\left(N_{I} / N_{S}\right)^{1 / 2}\left(H^{+} / H_{0}\right) \quad 2.29
$$

That is, the gain at the end of a multiple contact, matched HartmanHahn PENIS experiment is approximately equal to the gain of a one shot, unmatched Hartman-Hahn PENIS experiment.

Ideally, large ${ }^{13} \mathrm{C}$ polarizations (on the order $30 \mathrm{H}^{\prime} / \mathrm{Ho}$) can be obtained using either multiple contact matched Hartman-Hahn conditions or one-shot, unmatched Hartman-Hahn conditions. The acridine-doped fluorene system is ideally suited for either case: $T_{1 p}$ is very long [47], on the order of a second. Approximately $1 / 2$ of the total Iproton spin polarization can, in theory, be transferred to the scarbon spins. For practical reasons (e.g.,to avoid probe burn-out), a one-contact, matched Hartman-Hahn experiment was perfomed here. The gain in this case is (only) $4 \mathrm{H}^{\prime} / \mathrm{Ho}$; the dominant term for gain, $H^{\prime} /$ Ho. Large S -carbon polarization can still be obtained by making $H^{\prime} / H 0 \gg 1$. This was accomplished by first optically polarizing the protons (see next section). It follows, however, with $\mathrm{H}^{\prime} / \mathrm{Ho} \gg 1$, that the gain for a multiple contact or a one-shot unmatched Hartman-Hahn experiment would be far larger.

3. Optical Nuclear Polarization

Optical Nuclear Polarization (ONP) is the non-Boltzmann proton polarization created by 111 uminating the sample with light. ONP can be created via different mechanisms in different systems. The mechanism particular to the acridine-doped fluorene system is described here. Descriptions of this mechanism can be also be found in papers by Stehlik, Hausser, et al [$1,9,10$] and by V. Macho in his thesis [11].

The essential ingredients for ONP are:
i) an optically induced non-Boltamann population of the excited electronic triplet state of the system
ii) a static electron-nuclear hyperfine interaction, which creates eigenstates which are mixtures of the electronic and nuclear basis states of the syster
iii) a selective electronic decay scheme which produces different decay rates from the various excited triplet substates to the ground singlet substates of the system.

ONP occurs when the return rates from the excited triplet substates to the proton Zeeman ground a and states differ ($\alpha=$ eigenstate parallel to magnetic field; $\beta=$ eigenstate anti-parallel to magnetic field).

The ONP effect can be understood by considering a single proton nuclear spin, $I=1 / 2,2$ electron, $S=1$, system. In a solid all the proton nuclear spins are tightly coupled and rapidly come to the same spin temperature. The only measurable quantity is the polarization of the total nuclear spin reservoir which can be described by considering
simply 1 proton. The simple 1 proton, 2 electron system considered here consists of the ground and excited electronic singlet (So and S_{1} respectively) and triplet ($T x, T y, T z$) states, each broken into doublets with the inclusion of the nuclear spin substates (α, B). Figure 3.1 depicts the relevant transitions for this system in a Jablonski energy level diagram.

A more detailed description of the ONP effect follows. Part 1 describes the various rate equations which govern the growth of optical nuclear polarization; part 2 detemines the population and decay rates of the various sublevels of the system which enter into the ONP rate equations; part 3 briefly disusses the selective population and decay rates of the excited triplet state; part 4 discusses the mixing coefficients which are used to determine the pupulation and decay rates of part 2 ; part 5 briefly discusses the level anti-crossing phenomenon which is responsitle to the large nonBoltzmann proton polarizations in.acridine-doped fluorene single crystals.

3.1 Rate equations

For a nuclear spin $I=1 / 2$ in a magnetic field Ho, the nuclear polarization is defined as

$$
p=\left(n_{c}-n_{B}\right) /\left(n_{a}+n_{B}\right)
$$

where n_{λ} is the population of the λ th nuclear sublevel of the electronic ground state ($\lambda=a$ or β) The population n_{λ} is governed by the rate equation,

Figure 3.1 Jablonski energy level diagram with relevant transitions. Energy level splittings not drawn to scale.

$$
d n_{\lambda} / d t=-P_{\lambda} n_{\lambda}+{ }^{S 1}{ }_{\lambda} N_{S 1}+\Sigma_{j} k_{\lambda}^{j} N_{j}
$$

where (see figure 3.1)
P_{λ} is the optical pump rate out of nuclear sublevel λ of the ground state
${ }_{k \lambda}{ }^{S 1}$ is the decay rate out of the S1 λ excited state to the sublevel λ of the ground state
$k_{\lambda}{ }_{\lambda}$ is the decay rate out of the j th excited triplet state to sublevel λ of the ground state
N_{j} is the population of the \mathbf{j} th excited triplet state
Here $2 . n d$ in later discussions, Greek letters refer to the nuclear spin states and the label j to an excited triplet eigenstate sublevel.

Since the transitions into and out of the ground singlet and the exited singlet states are electronic dipole transitions, the nuclear quantum number λ is conserved and the pump rates P_{λ} and decay rates $k_{\lambda}{ }_{\lambda}$ are independent of nuclear sublevel λ--

$$
\begin{align*}
& P_{a}=P_{B} \\
& k^{S 1}{ }_{a}=k_{B}^{S 1}
\end{align*}
$$

Assuming the nuclear spins are initially unpolarized, the final nuclear polarization is determined by the polarization created per triplet state and the number of triplet states. The polarization growth rate is governed by the rate equation

$$
\mathrm{dp} / \mathrm{dt}=\mathrm{d}\left(n_{\alpha}-n_{\beta}\right) / \mathrm{dt}=\varepsilon_{j}\left(\mathrm{k}_{\alpha}^{j}-\mathrm{k}_{\beta}^{j}\right) N_{j}
$$

From eqn [3.5] it can be seen that if $\mathrm{k}_{\mathrm{a}}^{\mathrm{j}}$ is not equal to $\mathrm{k}_{\mathrm{B}}{ }^{\mathrm{j}}$ for
each of the jth triplet levels, a nuclear polarization can develop.
The relative populations N_{j} of the triplet sublevels are governed by the rate equations,

$$
\begin{equation*}
d N_{j} / d t=\varepsilon_{\lambda} P_{j}^{\lambda} n_{\lambda}{ }^{S 1}-\left(k_{a}^{j}{ }_{a}+k_{\beta}^{j}\right) N_{j}-\Sigma_{W_{i j}}\left[\left(N_{i}-N_{j}\right)-\left(N_{i 0}-N_{j 0}\right)\right] \tag{a}
\end{equation*}
$$

where
P_{j}^{λ} is the populating rate from the S_{1} 故 excited state
${ }_{n}{ }^{\mathrm{S} 1}{ }_{\lambda}$ is the population of the $S_{1} \lambda$ th excited state
$w_{i j}$, the spin lattice relaxation rate, is the transition rate from triplet level \mathfrak{i} to triplet level \mathbf{j}
$N_{j 0}$ is the Boltzmann population of the triplet level.
For a single created triplet state,

$$
\begin{equation*}
\Sigma_{\lambda} p_{j}^{\lambda}{ }^{S 1}{ }_{\lambda}=P_{j}\left(n^{S l}{ }_{a}+n_{B}^{S 1}\right)=P_{j} \tag{b}
\end{equation*}
$$

and equation 3.6a becomes

$$
\begin{equation*}
\left.d N_{j} / d t=P_{j}-i k_{a}^{j}+k_{\beta}^{j}\right) N_{j}-\Sigma_{W_{i j}}\left[\left(N_{i}-N_{j}\right)-\left(N_{i 0}-N_{j 0}\right)\right] \tag{c}
\end{equation*}
$$

Assuming the optical system is in a steady state, $\mathrm{dN}_{\mathrm{j}} / \mathrm{dt}=0$, and a large increase in the populations of all the triplet states (N_{j}) $>$ $N_{j 0}$), the solution to the population equation 3.6 c is

$$
P_{j}=\left(k_{a}^{j}+k_{\beta}^{j}\right) N_{j}+\Sigma_{w_{i j}}\left[N_{i}-N_{j}\right]
$$

which gives N_{j} as an implicit function of P_{j} and $w_{i j}$. The problem then reduces to determing the rate constants $\mathrm{K}_{\lambda}^{\mathrm{j}}, \mathrm{P}_{\mathrm{j}}$ and w_{ij} 。
3.2 Population and decay rates $\mathrm{N}_{\mathrm{j}} \mathrm{s}, \mathrm{k}_{\mathrm{\lambda}}^{\mathbf{j}} \mathrm{s}$

The transitions from cice excited triplet to the ground singlet
are strictly electronic transitions. In the absence of hyperfine interaction, the electronic triplet sublevels would be simply direct products of the electronic and the nuclear basis states (in the zero field basis states, they could be represented as $[\mathrm{Tx}, \mathrm{Ty}, \mathrm{Tz},] \otimes$ $[a, B])$. Since the decays from the triplet state to the ground state are electronic transitions, independent of nuclear quantum number, $k_{\alpha}^{j}=k_{\beta}^{j}$ for all triplet substates j when the eigenstates are products of the pure states; nuclear polarization does not develop. However, the electron-nuclear hypefine interaction wixes the pure triplet sublevels leading to eigenstates which are linear combinations of the pure $T_{1}, l=x, y, z$. The admixture of the other states, parametarized by the mixing coefficients, $c^{j}{ }_{1 \lambda}$, leads to the inequality $k_{a}{ }_{a} \neq k_{B}^{j}$ and allows ONP to develop.

The tota? Hamiltonian of the combined electron triplet, $\mathrm{S}=1$, and nuclear spin system, $I=1 / 2$, in an external magnetic field Ho is given by

$$
H=H_{e}+H_{n}+H_{h f}
$$

where

$$
\begin{aligned}
H_{e} & =H_{z e r o}+H_{\text {zeeman }} \\
& =S . D_{e} . S+\text { bHo.g.S } \\
& =D\left(S_{z}^{2}-1 / 3 S^{2}\right)+E\left(S_{x}^{2}-S_{y}^{2}\right)+\text { bHo.g. } S \\
& \text { in the principal axis system of the tensor De } \\
H_{n} & =r_{n} h \text { Ho.I } \\
H_{h f} & =h \text { I.A.S }
\end{aligned}
$$

$H_{z e r o}$ is the dipole-dipole interaction between the 2 unpaired
electron spins S_{1} and S_{2} which make up the triplet state; $S=S_{1}+S_{2}$. De is the dipolar interaction tensor;
$H_{\text {zeeman }}$ is the electron-magnetic field interaction
H_{n} is the nuclear spin-magnetic field coupling;
$H_{h f}$ is the coupling between the electron and the nuclear spin; A denotes the hyperfine coupling tensor. The orientation of the hyperfine tensor A need not be coincident with the zero field tensor. In this system, A is not coincident with the dipolar tensor D_{e} [12]. The Hamiltonian is represented in matrix form in figure 3.2, with the zero field triplet states as the basis states. p, q, and r represent the direction cosines of the magnetic field with respect to the triplet axes defined by the orientation of the electron dipolar tensor D_{e}. The six eigenstates of the system are determined by diagonalizing this Hamiltonian.

3.2.1 Determination of k 's

After diagnolizing the Hamiltoniar, let the eigenstates $|j\rangle$ be given by

$$
|j\rangle=\Sigma c_{1, \lambda}^{j}\left|T_{1} \lambda\right\rangle \quad l=x, y, z \quad \lambda=\alpha, \beta
$$

where the $c_{1, \lambda}^{j}$ are the mixing coefficients.
If V is the coupling causing the transitions from the excited triplet states to the ground state So,

$$
\begin{align*}
k_{\lambda}^{j} & =|\langle S o| V| j\rangle\left.\right|^{2} \\
& =\mid\langle S O| V\left|\Sigma c^{j}{ }_{1, \lambda} T_{1} \lambda\right\rangle^{2} \\
& \left.=\Sigma\left|c^{j}{ }_{1, \lambda}\right|^{2}|\langle S o| V| T_{1}\right\rangle\left.\right|^{2}
\end{align*}
$$

Txa	Ty_{\square}	Tza	T× β	Tyß	$T_{\text {I }} / \boldsymbol{\beta}$
D-E-1/2 $g_{\text {d }} \mathrm{A}_{\mathrm{n}} \mathrm{rH}$	$-1\left(1 / 2 \mathrm{~A}_{z z}{ }^{\left.+g_{2 z}{ }^{8} \mathrm{e}^{\mathrm{rH}}\right)}\right.$	$i\left(9 y y e^{8} \mathrm{e}^{H+1 / 2} A_{y z}\right)$	$-1 / 2 g_{n} g_{n}(p-i q) H$	$-1 / 2 A_{y z}$	$1 / 2 A_{y y}$
	$\mathrm{D}+\mathrm{E}-1 / 2 \mathrm{~g}_{\mathrm{n}} \mathrm{n}^{\mathrm{rrH}}$		$1 / 2 A_{y z}$	$-1 / 2 g_{n} p_{n}(p-i q) H$	-1/2 $A_{x x}$
		$-1 / 2 g_{n} \theta_{n} \mathrm{rH}$	$-1 / 2 A_{y y}$	$1 / 2 A_{x x}$	$-1 / 2 g_{n} 4^{(p-1 q) H}$
			$0-E+1 / 29_{n}{ }^{1}{ }^{\text {rid }}$	1(1/2 $\mathrm{A}_{2 z^{-9}}{ }_{2 z^{*} e^{\text {ert }}}$	1) $1\left(9_{y y} \mathrm{Ce}^{\text {aH-1/2 }}\right.$ Ayz $)$
				$\mathrm{O}+\mathrm{E}+1 / 2 \mathrm{an}_{\mathrm{n}} \mathrm{m}^{\text {rH }}$	
					$1 / 2 g_{n} \mathrm{P}_{n} \mathrm{rH}$

Figure 3.2 ONP spin Hamiltonian. The lower triangular part of the matrix can be found by the relation $H_{i j}{ }^{\prime}=H_{j j}$. See text for details.

All dependence on nuclear quantum number λ is contained in the mixing coefficients $c_{1, \lambda}{ }_{1}$. The factor $\left.|\langle S o| V| T_{1}\right\rangle\left.\right|^{2}$ depends only on the electron quantum number, $l=x, y, z$ and can be measured by optically detected magnetic resonance and/or astimated if not known.

3.2.2 Detemination N_{j} 's

The population N_{j} is determined by equation [3.7], reproduced here for convenience.

$$
P_{j}=\left(k_{a}^{j}+k_{B}^{j}\right) N_{j}+\Sigma_{W_{i j}}\left[N_{i}-N_{j}\right]
$$

If Vo represents some intersystem crossing operator between the excited singlet state S_{1} and the triplet state T_{1},

$$
\begin{align*}
P_{j} & \left.=\left|\langle j| V_{0}\right| S_{1}\right\rangle\left.\right|^{2} \\
& \left.=\left|\left\langle\varepsilon_{c}{ }^{j}{ }_{1, \lambda} T_{1} \lambda\right| V_{0}\right| S_{1}\right\rangle\left.\right|^{2} \\
& \left.=\Sigma_{1 \lambda}\left|c^{j}{ }_{1, \lambda}\right|^{2}\left|\left\langle T_{1}\right| V_{0}\right| S_{1}\right\rangle\left.\right|^{2}
\end{align*}
$$

Again, the factor $\left|<T_{1}\right|$ Vo $\mid S_{1} \lambda_{1}^{12}$ depends only upon the electron quantum number and all the dependence on the nuclear quantum number, λ, is contained in the mixing coefficients, $c_{1, \lambda}{ }_{1}$.

The $w_{i j}{ }^{\prime} s$, the triplet spin lattice relaxation rates can be determined as sums of the T_{1}-dependent matrix elements times λ_{-} dependent mixing coefficients in a manner analogous to the method used to the determine $k_{\lambda}{ }_{\lambda}$ and p_{j}.

Given $w_{i j} ' s, p_{j} ' s, k_{\lambda}^{j}$ eqn 3.7 can then be solved for N_{j}. In matrix notation,

$$
P=(K+W) N \text { or }
$$

$$
N=(K+W)^{-1} P
$$

where
W is the 6×6 symmetric matrix with elements $w_{i j}=0, w_{i j}=w_{j i}$
K is the diagonal 6×6 matrix with elements $k_{j j}=k_{a}^{j}+k_{B}^{j}$ and $k_{i j}=0$
P is the 6×1 matrix with elements p_{j}.

3.3 Selective rates

The total wave function of the electron, ψ, consists of an orbital part, and a spin part, S or T_{1} (the orbital wave function has been dropped in the discussion above). That is,

$$
\psi_{s}=\phi_{s} s \quad \phi_{T 1}=\phi_{T 1} T_{1}, \quad 1=x, y, z
$$

The factor $\left.\left|\left\langle\psi_{s}\right| V\right| \psi_{T l}\right\rangle\left.\right|^{2}$ (called $\left.|\langle S| V| T_{1}\right\rangle\left.\right|^{2}$ above) can be measured and/or estimated.
V is, oftentimes, the spin-orbit coupling operator; it is the interaction of the magnetic moment of the spinning electron with the magnetic field produced by the relative motion of the electrons and nuclei. Exact evaluation of the matrix element is complex, but for molecules having $C_{2 v}$ symmetry, or higher, predictions for nonvanishing matrix elements can be made using purely group theoretical agruments. For descriptions of symmetry selection rules and group theory, see, for example, Tinkham [13] and van der Haals and de Groot [14].

A?! molecular wave functions belong to one of the irreducible representations, F , of the molecular symmetry group. From group theory, $\left.\left|\left\langle\psi_{s}\right| V\right| \psi_{T i}\right\rangle\left.\right|^{2} \neq 0$ only when the function being integrated is
symmetric, i.e., the direct product of the representations of ${ }_{s}, V$, and ${ }^{4} 11$ contains the totally symmetric irreducible representation, A.

$$
A \varepsilon r_{\psi S} \otimes r_{V} \otimes r_{T l}
$$

$\Gamma_{V=s p i n}$ orbit $6 A$ and $F_{\$ S} 6 A$, from the "great orthogonality theorem" [13] equation [3.15] reduces to

$$
r_{\phi S}=r_{\phi T 1} \otimes \Sigma_{T 1}
$$

With $C_{2 y}$ symmetry, $T_{1} \quad l=x, y, z$ each belongs to different (orthogonal) irreducible representations. Therefore, $\left.\left|\left\langle\psi_{s}\right| v\right| \psi_{\mathrm{T}}\right\rangle\left.\right|^{2}$ will be nonzero for no more than one value of 1. Selective population in to and decay out of the triplet state can therefore occur.
3.4 Mixing coefficients

The ONP signal can be very large when the mixing coefficients are very large. The mixing coefficients are determined exactly by diagonalizing the Hamiltonian, but this gives little insight into their behavior as a function of the app!ied magnetic field Ho.

From first order perturbation theory, the eigenstate j is given by

$$
|j\rangle=T_{1} \lambda+\Sigma_{1 ; \lambda \prime} c^{j}{ }_{1 \prime \lambda} T_{1}, \lambda \prime
$$

The mixing coefficients are given by

$$
\begin{aligned}
c_{\gamma^{\prime} \lambda \prime}^{j}= & \left\langle T_{1}, \lambda\right| \chi\left|T_{1 \lambda}\right\rangle \\
& E_{1 \lambda}-E_{1^{\prime} \lambda^{\prime}}
\end{aligned}
$$

$\left\langle T_{1}, \lambda\right| \chi\left|T_{1} \lambda\right\rangle$ are the off-diagonal elenents of the Hamiltonian matrix in figure 3.2. The mixing coefficients will be large when either the hyperfine interaction A is large, or when the energy separation between the strictly electronic basis states, $6 E$, is small.

3.5 Level Anti-crossing

${ }^{\delta} \mathrm{E}$ is small when two of the triplet energy levels appear to eross each other. When these levels are coupled by some perturbing interaction, they will mix and the new eigenstates of the system are linear combinations of the orignal states. This phenomenon is known as level anti-crossing. For a more extensive treatment of level anticrossing, see Stehlik [10] and Veeman [15,16].

From the Hamiltonian in equation 3.9, it can be seen that the eigenstates of the system depend upon the strength and orientation of the applied magnetic field Ho with respect to the triplet axes. Figures 3.3 and 3.4 illustrate the field dependence of the energy levels of H_{e} when $\mathrm{Ho} / / \mathrm{y}$ and $\mathrm{Ho} / / 2$. Points labelled $\mathrm{Hy}_{1 \mathrm{l}}$ and $\mathrm{Hz} \mathrm{l}_{\mathrm{a}}$ are points of level anti-crossings. The top diagram in each figure illustrates the energy levels without the level anti-crossing phenomena. The new states are seen in the lower diagrams.

Figure 3.5 contains theorerical plats of the ONP as a function of field strength when the magnetic field is oriented along one of the zero field principal axes. The mixing coefficients, $c^{j}{ }_{1 \lambda^{\prime}}$ s, are large at $\mathrm{Hy} \mathrm{l}_{\mathrm{a}}$ and $\mathrm{Hz}_{\mathrm{la}}$. A characteristic dispersion-like curve due to level anti-cressing is observed when $H / / 2$ at approximately 140 gauss. Large ONP signals are observed when the magnetic field is oriented along the y axis in a field of approximately 80 gauss, near the level anti-
crossing region.

Figure 3.3 Triplet energy levels, $\mathrm{H} / / \mathrm{y}$. Top diagram: level-crossing. Bottom Diagram: level anti-crossing.

Figure 3.4 Triplet energy levels, $\mathrm{H} / / \mathbf{2}$. Top diagram: level-crassing. Bottom diagram: level anti-crossing.

Figure 3.5 Computed proton ONP as á function of Hp oriented along a principal axis. Thehorizontal line denotes a polarization equal to the Boltzmann signal.

All experiments were done using a two field technique. An initially unpolarized crystal was fixed in orientation in a polarizing field Hp of preset amplitude. The crystal was irradiated by broadband unpolarized uv light for a time Δt, after which the light was turned off. The crystal was then adiabadically moved to a measuring field $H m$ and either $i)$ the optically generated proton polarization was measured, or ii) the ${ }^{13} \mathrm{C}$ spins were cross polarized and the ${ }^{13} \mathrm{C}$ spectrum was measured.

Figure 4.1 and 4.2 contain a diagram of the experimental setup. The experimental apparatus consisted of
i) the polarizing magnetic field
ii) the optical system and
iii) a home-built double resonance spectrometer.

In order to create a larger working area above the probe, the 14 kGauss Varian magnet which provided the measuring field was rotated 45 degrees, as described by Kohler [17] and shown in figure 4.1. The optical setup was placed above the varian magnet. The sample could be moved smoothly in and out of both the polarizing field and the measuring field.

Figure 4.] Experimental set-up: physical layout two field technique.

Figure 4.2 Optical set-up.

4.1 polarizing field

4.1.1 ONP

In general, in the ONP experiments, the polarizirg field Hp was the residual magnetic field present at various heights above the center of the 14.1 kGauss fixed field Varian magnet which provided the measuring field. The strength of the residual field was measured at various points using a Bell 811A gaussmeter. The residual field appeared to be parallel to the measuring field Hm. A list of fie!d strength vs. distance from the center of the magnet is shown in Table 4.1.

The crystal was mounted at the bottom of the NMR tube. The NMR tube and the NMR tube holder were contained in a larger quartz tube which was mounted above the probe in the ceiter of the magnet.

The crystai was positioned at various points along the quartz tube, depending upon the polarizing field which was needed, by means of a controlled flow of N_{2} through the quartz tube. When the N_{2} was turned on, the NMR tube holder and tube containing the crystal would rise as far as a stopper positioned to place the crystal at the chosen polarizing field. When the N_{2} was turned off, the crystal would drop into the center of the magnet and into the probe. The NMR tube holder was grooved to fit into a guide in the quartz tube which prevented the NMR tube from rotating within the quartz tube. The quartz tube could be rotated about an axis perpendicular to both Hp and Hn_{n} to change the orientation of the crystal with respect to Hp and Hm .

The orientation of the crystal with respect to the magnetic
fields was determined by noting the angles the guide of the quartz tube made with a fixed circle marked in polar coordinates mounted above the center of the magnet.

4.2.2 PENIS experiments

In the ${ }^{13} \mathrm{C}$ experiments, the polarizing field H p was produced by a pair of small magnetic plates he?d 10.5 cm apart to give a field strength of 80 gauss in tite gap between them. The magnetic plates were positioned high above the center of the magnet. The residual field was <5 gauss. Its effects could essentially be ignored. Hp and the orientation of the crystal with respect to Hp were chosen to produce the maximum ONP.

As in the ONP experiments, the quartz tube containing the crystal in the NMR tube could be rotated to change the orientation of the crystal with respect to the measuring field 4 m . The 8 gauss field $H p$ could al so be rotated to keep constant the orientation of the polarizing field with respect to the crystal. In this way the maximum ONP could always be generated.

Table 4.1

Distance from center of magnet (cm)12133400
14 2900
15 2520
16 2150
17 1900
18 1600
19 1300
20 1180
21 1050
22 940
23 820
24 715
25 615
25 530
27 460
28 390
29 330
30 290
31 250
32 210
33 180
34 150

Table 4.1 (continuer?

Distance from center of magnet (cm)
35
36

37
38

39
40
41 45

80
65
55
H_{p} (gauss)
130 110

95

4.2 optical system

The samples were illuminated with an Osram 1000 watt $\mathrm{Hg}-\mathrm{Xe}$ lamp contained in a C-60-50 Oriel housing and powered by a Schoeffel power supply LPS 255HR. The housing contained a 2" condensor to collimate the light. IR wavelengths were filtered out with a 2 " continuous flow water filter, Oriel \#6123. Since fluorene absorbs at wavelengths shorter than 300 nm , acridine, the guest molecule in the crystal, was selectively excited by using a Corning band pass 1-64 filter which cut off wavelengths < 320 nm . The filter was necessary to prevent decomposition of the crystal. Illumination without the filter caused a "burning" of the top layer of the crystal and significant signal loss after an hour of continuous illumination.

The uv light was focussed with a 5 an diameter 15 cm focal length quartz lens onto the top of a quartz rod, which acted as a light pipe. The rod was held in place in the NMR tube and positioned with the end < 1mm from the crystal. The top of the rod was flared with a cor.e angle of 20 degrees such that the diameter of the rod at the top of the cone was 1-1/2 times the diameter of the rest of the rod. The NMR tube and quartz rod were moved as a unit in and out of the polarizing and measuring fields.

Light and dark cycles were controlled by a shutter operating in the bulb mode. The shutter release was attached to a solenoid which was controlled by gating an attzched ac switching relay.

4.3 spectrameter

All NMR measurements were done on a homebuilt spectrometer built around a 14.1 kGauss Varian electro-magnet. The ${ }^{13} \mathrm{C}$ Larmor frequency in this field was $\mathbf{1 5 . 1} \mathrm{MHz}$; the ${ }^{1} \mathrm{H}$ Larmor frequency was 60 MHz . The NMR spectrometer consisted of
i) the probe circuit
ii) the associated rf hardware which generated the rf transmitter pulses and detected the signal
iii) the transient recorder and signal averager/computer
iv) the lock channel.

Figure 4.3 and 4.4 contain a block diagram of the spectrometer including the probe and the associated rf hardware for the ONP and PENIS experiments.

4.3.1 probe

Various probe designs were considered [18]. The final probe circuit was a double-tuned resonance circuit based on a design by Waugh and co-workers [19]. The probe circuit diagram is shown in figure 4.5, along with the two equivalent resonance circuits which compose the probe. The associated $x / 4$ cables which protect the preamplifiers and the $\lambda / 2$ cables which block the signal from the transmitter amplifiers are also shown.

The coil was tuned to the two Larmor resonant frequencies of ${ }^{13} \mathrm{C}$ and ${ }^{1} H$ necessary for the PENIS experiment. The two tuned circuits were isolated by 35 dB by use of the $\lambda / 4 @ 60 \mathrm{MHz}$ cables. In the PENIS experiments, the single coil was used to transmit the rf fields for ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ (transmitter mode) and used to detect the ${ }^{13} \mathrm{C}$ signals

Figure 4.3 Block diagram OMP experiment.

Figure 4.4 Block diagram PENIS experiment.

(receive mode). In the ONP experiments, only the ${ }^{1} \mathrm{H}$ resonant circuit was used; it provided the necessary transmitter pulses and detection of the signal.

The double tuned coil configuration was chosen for two reasons:
i) to save space in the probe
ii) to allow effective power transfer and signal detection for both ONP (proton) and PENIS (carbon) experiments.

The probe Q 015 MHz was 30 . The ${ }^{13} \mathrm{C}$ field produced by the coil was 48 gauss with 500 watts of power. The ${ }^{1} H$ field was 12 gauss with 50 watts.

The coil was a 1.5 cm long, 12 turn solenoid made from flattened 20 gauge copper wire with an inductance of 0.15 Hh . R in figure 4.5 was a 1 watt, 0.27 ohm resistor which acted as a fuse to protect the coil and capacitors from burning out if too much power was accidentally sent to the probe.

The ${ }^{13} \mathrm{C}$ side of the probe circuit consisted of fixed ATC ceramic capacitors Cl and C 2 , the coil L and the shorted $\lambda / 4$ @ 60 MHz cable. Cl tuned the coil to 15.1 MHz C2 impedance-matched the tuned resonant ciruit to the 50 ohm impedance of the rest of the system. The shorted $\lambda / 460 \mathrm{MHz}$ provided the return to ground for the 15 MHz side. To compensate for the large inductance of the shorted $\lambda / 4$ @ 60 MHz cable at 15.1 MHz large value capacitors were added before the return to ground.

The ${ }^{1}$ H side of the probe ciriuit consisted of capacitors C3 and C 4 , the coil, L , and the open $2 / 4 \mathrm{a} 60 \mathrm{MHz}$ cable. The capacitors were 0.8-10 pf Johanson 5761 variable capacitors in parallel with fixed ATC ceramic capacitors. C3 tuned the coil to 60 MHz ; 64 impedance
matched the proton resonant circuit to 50 ohms. The open $\lambda / 4$ © 60 MHz cable provided an effective ground. The effects of the shorted $\boldsymbol{\lambda / 4}$ © 60 MHz could essentially be ignored.

4.3.2 Associated rf hardware

4.3.2.1 PENIS
${ }^{13}$ C:transmit
To create the necessary 15.1 MHz rf field of the correct phase, a fixed frequency phase-shifted 3 CHz signal was mixed with a 45.1 MHz signal.

HP 5100A frequency synthesizer provided both the 45.1 MHz and the fixed 30 MHz . The 30 MHz went immediately to the quadripolar phase splitter (LBL 16×627) which was gated to put out the appropriate sequence of the four quardrature phases, $(0,90,180,270)$. The transmitter rf phases followed the standard 4 pulse StejskalSchaefer, add/subtract quadrature phase sequence [20]. The selected output phase was mixed with the 45.1 MHz with an HP 10514A mixer, then low pass filtered through a 30 MHz low pass Cir-q-tel filter 20-30$9 / 50$ to form 15.1 MHz of the correct phase. This was then amplified by a Bruker high power amplifier then sent to the probe. ${ }^{13}$ C:receive

The signal from the probe was fed through a low noise preamplifier designed by W.C.Shih [21]. A series of shorted $\lambda / 4$ @ 15 MHz cables preceeded the the preamplifier to protect it from rf transmitter pulses. A Cir-q-tel 30 MHz low pass filter formed part of the $\lambda / 4$ line to prevent 60 MHz from saturating the 15.1 MHz preamplifier.

The detection system was based on an intermediate frequency of 60 MHz . The 45.1 MHz and the 30 MHz from the frequency synthesizer were mixed to form 75.1 MHz . This 75.1 MHz was filtered and amplified then combined with the output of the preamplifier to form 60 MHz . The 60 MHz was then ampilified by an RHG amplifier (LBL 10x1550), then sent to the quadrature phase detector (LBL 10x19550). The de outputs of the quadrature phase detector were filtered through Rockland 442 filter, recorded on a Nicolet 2090/201 transient recorder, then transferred to and signal averaged on a Nicolet.-80 computer. Raw data were transferred to the VAX/VMS $11 / 780$ for archival storage. Fourier transformed data were transferred to the VAX for plotting and analysis.

${ }^{1}$ H:transmit

The 60 MHz Larmor frequency of the protons was generated by doubling the appropriate value 30 MHz output of a second HP frequency synthesizer 5100B. The 60 MHz was sent to a gated phase shifter, then to a Relcom rf switch. The resulting rf pulses were then amplified through a series of amplifiers: a homebuilt $60 \mathrm{MH} / \mathrm{z}$ amplifier (LBL 16×970) which contained a Watkins-Johnson A-7 and a Motorola 592, followed by a KLM amplifier and a Henry radio amplifier both tuned to 60 MHz .

4.3.2.2 ONP

As in the PENIS experiment, 60 MHz was generated by doubling 30 MHz.

The 30 MHz output of the HP frequency synthesizer was split 3 ways. One outpui went to the quadrature phase splitter which again
provided the correct sequence of quadrature phases. The ovicput of the splitter was combined with the second 30 MHz output of the synthesizer to form the proton Lamor 60 MHz of the correct phase. This was then amplified by the same series of amplifisrs as in the PENIS experiment.

The detection system was based on an intermediate frequency of 60 MHz . The third 30 MHz output of the synthesizer was doubied and used as the reference frequency in the receiver system.

The output of the probe was sent to a low noise preamplifier designed by B.Leskovar [22]. The preamplifier was preceeded by a series of shorted $\lambda / 4$ g 60 MHz cables to protect it from transmitter rf pulses. The ouput of the preamplifier was amplified by an RHG amplifier (LBL 10×1550), then sent to the quadrature phase detector. The reference phase to the quadrature detector could be adjusted to control the output phases of the signal. The phase detected signals from the quadrature phase detector were filtered by the Rockland t1lters, then recorded by the Nicolet 2090/201 transient recorder and signal averaged on the Nicolet 80 computer. The data were recorded in quadrature.

Both raw data and fourier transformed data were transferred to the VAX.

4.3.3 Generation of logic/data aquisition

A Nicolet-80 computer attached to a modified Nicolet 293 timer running a modified NTCFT verison \#1002 program controlled the generation of rf pulses and data aquisition. A Nicolet 2090 with a 201 plug-in first recorded the solid echo or free induction deay, then
transferred the data to the Nic-80 computer. The 2090/201 was needed to record the solid echo because of the Nic-80's limited digitizing rate of 10 us. NTCFT version 1002 was modified to run with the 2090. An overlay, UD1080 provided by Nicolet, allowed sorting (unshuffiling) of overlapping quadrature data as obtained from the 2090. Additional changes to NTCFT are listed in Appendix 2.

10 one-shots were added to the Nicolet 293 timer to give additional flexibility in creating pulse sequences. The connections on the 293 timer patch panel which determined the PENIS and ONP pulse sequences are shown in Appendix 1. The output of the 293 controlled the ${ }^{1} \mathrm{H}$ pulse lengths and phases and the ac relay which controlled the shutter and the flow of N_{2} in the PENIS experiment.

In both the PENIS and ONP exneriments, the phase of the transmitter pulse was controlled externaliy. One of the outputs of the 293 went to a pulse sorter which could be programmed to sort up to 16 separate time frames. At the correct time, logic pulses were sent out 4 separate gate lines. In the ONP experiment, these 4 outputs of the sorter went to the 4 pulse generator (LBL 16×608) which contained 4 separate pulse length controls. The 4 outputs of the 4 pulse generator controlled the output phase and length of the transmitter pulse by gating on the appropriate rf phase gate of the quadripolar phase splitter. In th PENIS experiment, the 4 outputs of the pulse sorter went directly to the quadripolar phase splitter.

4.3.4 Lock Channel

The lock channel was designed by Alan Robertson and has been described elsewhere [17]. The magnetic field was locked on the
deuterium signal from an external sample of $\mathrm{D}_{2} 0$.

4.4 Detection and Tune-up

4.4.1 PENIS

${ }^{13} \mathrm{C}$ was detected at 15.1 MHz using the PENIS technique of Pines, et al [3]. The Hartman-Hahn condition was satisfied using the following tune-up procedure. The free induction decays of ${ }^{13} \mathrm{C}$ and ${ }^{1}{ }_{H}$ in 70\% ${ }^{13}$ C enriched methyl iodide were monitored. The lengths of the 180 degrees ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ pulses were made equal by adjusting the output power levels of the Bruker amplifier and/or the input to the (LBL 16×970) ${ }^{1} \mathrm{H}$ amplifier. ${ }^{13}$ C's in adamantane were then cross polarized and the rf levels and contact time adjusted until the maximum signal intensity was detected. In general, the Hartman-Hahn condition was satisfied with a rotating field strength of 48 gauss for ${ }^{13} \mathrm{C}$ and 12 gauss for ${ }^{l_{H}}$ and a contact time of 5 ms was used.

Ordinarily, for fluorene, $100-200$ spectra were signal averaged. The repitition rate was on the order of 1 minute and was limited by the illumination-optical polarization time of the crystal.

4.4.2 ONP

Since the dead time of the receiver system (M20us) was greater than T_{2}, the time constant of the ${ }^{1} H$ free induction decay in the solid crystal ($\sim 10 \mu s$), protons were detected using the (two-pulse) solid state (dipolar) echo technique, which refocused the spins at a selected time τ after the application of the second pulse [23]. The basic pulse sequence is $90^{\circ}(\pi / 2)-\tau-90^{\circ}$ - τ-[detect]. $\tau=20 \mathrm{us}$, the dead time of the receiver. A simple description of the echo is given
in Appendix 0. Rf transmitter pulse phases were initially checked with an HP vector voltmeter. The 180° pulse length of each phase was determined by monitoring the on-resonance free induction decay of protons in methyl iodide. In general, the 90° pulse time was $2 \boldsymbol{u s}$ (~ 30 gauss protons) with an input of 500 watts. The signal after a $90^{\circ}-\tau-90^{\circ}$ sequence (no phase shift) was monitored to check whether the signal intensity was at a minimum. The echo sequence was first used to detect protons in gypsum, $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, as a check of rf phases and pulse lengths.

4.5 Fluorene

4.5.1 Crystal structure

Fluorene crystallizes in the orthorhombic space group 0_{2}^{16} (Pnam), with 4 molecules per unit cell [24]. feefig 4.6. The 4 molecules in a unit cell are pairwise magnetically equivalent, since each member of a pair is related to the other by a screw axis rotation. The long in-plane axis of all 4 moiscules is parallel to the c axis of the crystal. The molecule posseses a mirror plane of symmetry which is parallel to the ab crystal plane. The planes of the molecules are inclined ± 34.5 degrees from the crystal h axis.

4.5.2. Crystal growth

Synthesized fluor ne was generously donated by Herbert Zimmerman. Acridine was zone refined by Sydney Wolfe. Fluorene crystals doped with 1000 ppm acridine were grown from the melt by Sydney Wolfe using the Bridgman technique [25].

Commercial fluorene, even after repeated zone refining, contained anthracene and benz-f-indane and was unsuitable for ONP experiments [1,26]. Although optically generated ${ }^{\mathbf{l}_{\mathrm{H}}}$ signals could be produced and detected, the time constant for the optical polarization was exceedingly long ($\gg 5$ minutes). The ONP signals measured during the first 1-2 minutes of illumination time were two orders of magnitude lower in intensity than the signals detected from pure synthesized fluorene.

fluorene

Figure 4.6 Top: molecular structure fluorene and acridine. Bottom,left: crystal structure. Bottom, right: schematic representation 2 magnetically inequivalent molecules in ab crystal plane.

5. DATA ANALYSIS

5.1 Background

The magnetic shielding Hamiltonian of a nuclear spin S in an external magnetic field Ho is

$$
H_{s}=\gamma H_{0} \cdot \sigma . S
$$

where σ is the second rank chemical shielding tensor representing the interaction of the nuclear spin with the surrounding electrons. In a single crystal the resonance frequency of the spin S is a function of the orientation of the external magnetic field with respect to the crystal. Since the eigenstates of the full Hamiltonian are S parallel Ho and S anti-parallel to Ho, the NMR experiment determines only certain elements of σ.

Let the laboratory frame be defined by the coordinate axes $1,2,3$. Ho is in the 2-3 plane, parallel to the 3 axis. See figure 5.1. Let the chemical shift tensor in this laboratory frame, ${ }^{o}{ }_{1 a b}$, be represented by the symmetric matrix

$$
\left[\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right]
$$

5.02

Let $R_{x t l \rightarrow \text { ab }}$ be the rotation matrix which transforms the chemical shielding tensor in the crystal frame, ${ }^{{ }_{x t l}}$ to the laboratory 1,2,3 frame, i.e.

laboratory frame

molecular frame
crystal frame

Figure 5.1 Orientation of various coordinate systems as used in data analysis.

$$
\sigma_{1 a b}=R_{x t l-1 a b} \cdot \sigma_{x t 1} \cdot R_{x t \mid \rightarrow 1 a b}^{-1}
$$

Expressed in terms of the standard Euler angles α, β and ψ, a rotation matrix R is given by,

$$
R=\left[\begin{array}{lcc}
\cos ^{\alpha} \cos ^{\beta} \cos \psi-\sin \alpha \sin \psi & \sin \alpha \cos \beta \cos \psi+\cos \alpha \sin \psi & -\sin \beta \cos \psi \\
-\cos ^{\alpha} \cos ^{\beta} \sin \psi-\sin ^{\alpha} \cos \psi & -\sin \alpha \cos \beta \sin \psi+\cos \alpha \cos \psi & \sin \beta \sin \psi \\
\cos ^{\alpha} \sin \beta & \sin \alpha \sin \beta & \cos \beta
\end{array}\right]
$$

where a is a rotation about the original $z a x i s, B$ is about the new y axis, and ψ is about the final z axis.

The crystal is mounted in a particular orientation and rotated abet the laboratory 2 axis. The component of ${ }^{0}{ }_{1 a b}$ which is parallel to the magnetic field Ho, σ_{1}, is measured as a function of rotation angle u, ie., since ho // 3,

$$
\begin{equation*}
\sigma_{1}=n \cdot R_{2} \cdot \sigma_{1 a b} \cdot R_{2}^{-1} \cdot n^{\top} \tag{a}
\end{equation*}
$$

where $\sigma_{1 a b}$ is the symmetric matrix given above and

$$
\begin{aligned}
& n=(0,0,1) \\
& R_{2}=\left[\begin{array}{ccc}
\cos (u) & 0 & -\sin (u) \\
0 & 1 & 0 \\
\sin (u) & 0 & \cos (u)
\end{array}\right]
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\sigma_{1 a b}=A+B \cos (2 u)+C \sin (2 u) \tag{b}
\end{equation*}
$$

where

$$
A=1 / 2\left(\sigma_{11}+\sigma_{33}\right)
$$

$$
\begin{aligned}
& B=1 / 2\left(\sigma_{33}-\sigma_{11}\right) \\
& C=\sigma_{13} \quad\left(\sigma_{i j}=\sigma_{j i}\right)
\end{aligned}
$$

A curve, called a rotation plot, is fitted to equation 5.05 to determine the coefficients A, B and C, and hence the elements $\sigma_{11}, \sigma_{33}, \sigma_{13}$ of $\sigma_{1 a b} \cdot \sigma_{x t 1}$ at this point is underdetermined.

The crystal is remounted and again rotated about the laboratory 2 axis. Let $R^{\prime}{ }_{x t l}{ }^{-m a b}$ be the (second) rotation matrix which transforms ${ }^{\sigma}{ }_{x t 1}$ to the laboratory frame, ie.

$$
\sigma^{\prime} 1 a b=R_{x t l \rightarrow-1 a b} \cdot{ }_{x t 1} \cdot R^{-1} x t 1-1 a b
$$

The chemical shift as a function of rotation angle u is again measured.

The coefficients from the rotation plots from the \mathbf{j} crystal mountings (orientations) can be written as,

$$
\begin{align*}
& A(n)=1 / 2 \Sigma_{k 1} \sigma_{k 1}\left[R(n){ }_{1 k} R(n){ }_{11}+R(n)_{2 k} R(n)_{21}\right] \\
& B(n)=1 / 2 \Sigma_{k 1} \sigma_{k 1}\left[R(n)_{1 k} R(n)_{11}-R(n)_{2 k} R(n)_{21}\right] \\
& C(n)=1 / 2{ }^{\Sigma}{ }_{k 1}{ }^{\sigma_{k 1}}\left[R(n)_{1 k} R(n)_{21}+R(n)_{2 k} R(n)_{11}\right] \\
& n=1, j
\end{align*}
$$

where the $R(n)_{i j} s$ are the elements of the nth rotation matrix R which transforms $\sigma_{x t 1}$ to the laboratory frame (ie., elements of $R_{x t 1-\ldots-H a b}$ and $R^{\prime}{ }_{x t l-H a b}$) and the $\sigma_{k 1} s$ are the elements of $\sigma_{x t 1}$, σ in the crystal frame.

The chemical shift measurements are repeated, and correspondingly, the coefficients of the rotation plots determined, until all elements of ${ }^{\circ}{ }_{x t}$ are determined. The tensor is then
diagonalized to yield the values of the principal elements and the orientation of the principal axes. Figure 5.1 depicts the various coordinate systems used in this text.

5.2 Analysis

The data were analyzed by methods outlined by Mehring [27]. The data analysis fell into three parts:
i) the orientations of the crystal a, b, c axes with respect to the laboratory coordinate system were determined with the crystal mounted in two separate orientations. (The laboratory frame was as described above: Ho was parallel to the 3 axis; the crystal was rotated about the axis perpendicular to $H 0$, the 2 axis; the 1 axis was perpendicular to axes 2 and 3.) The orientations of the molecules in the unit cell were known from x-ray diffraction.
ii) for each orientation of the crystal, the observed chemical shift σ_{1} as a function of rotation angle, u, was fitted to equation 5.05 by least squares analysis to detemined the coefficients A, B, C;
iii.i) by least squares analysis, the two sets of coefficients $(A(1), B(1), C(1)$ from orientation 1 and $A(2), B(2), C(2)$ from orieitation 2) obtained from (ii) were fitted to equation 5.07 using orientation information from (i). Tensors were determined in the molecular coordinate system, defined by the axes $k, 1, m$. (See figure 5.1). In this case, the $R_{i j} s$ are elements of the rotation matrices which make the laboratory coordinate system and the molecular coordinate system coincident for the two different orientations of the crystal; $\sigma_{i j} s$ are the elements of σ in the molecular frame.

5.2.1 Determination of crystal orientation

The orientation of the crystal axes with respect to the laboratory axes for the two different mountings of the crystal was determined differently.

In orientation 1, the crystal ab plane was chosen to be perpendicular to the rotation axis. This was called the ab plane orientation. Since the ab plane is the cleavage plane of the crystal, to reach this orientation, the crystal was first mounted with the cleavage plane approximately perpendicular to the rotation axis. The maximum ONP is observed when the magnetic field is oriented 10° away from the a axis in the $a b$ plane. To reach the ab plane orientation, the proton ONP was measured and the crystal orientatior: was adjusted until the ONP signal was maximized and the intensity of the signals 180° apart was approximately equal.

In orientation 2, the crystal ac plane was chosen to be roughly perpendicular to the rotation axis. The crystal was mounted in the NMR tube with the cleavage p!ane approximately parallel to the rotation axis. X-ray diffraction was then used to determine the orientation of the crystal axes with respect to the rube axis. The ac plane was found to be tilted approximately 16° with respect to the plane normai to the rotation axis.

5.2.2 Rotation plots

For each of the two approximately orthogonal crystal orientations described above, rotation plots of the chemical shift σ_{1} as a function of rotation angle u were made. To make the rotation plots, ${ }^{13} \mathrm{C}$ spectra were taken and the positions of peaks recorded at
approximately 10° intervals over a 180° range. Typical spectra from orientations 1 and 2 are shown in figure 5.2.

The major difficulty of the analysis was untangling the various peaks and determining which peaks belonged to which chemical shift tensor.

The maximum number of lines (peaks) in a typical fluorene carbon spectrum can be calculated from the crystal structure of fluorene. One line results from each carbon atom tensor on each of the two molecules, giving a total of 26 lines.

The ab plane is parallel to the the molecular mirror plane. Therefore, in the $a b$ plane orientation, the two halves of the molecule are magnetically equivalent. This reduces the number of possible lines, and the corresponding number of incongruent chemical shift tensors to 14: 1 methylene bridge carbon tensor and 6 aromatic carbon tensors from each of the two molecules.

In orientation 2, all 26 lines were possible, but due to the heavy overlap of peaks not all 26 separate lines were observed.

For both orientations, least squares fits were done to extract the coefficients A, B, C from the rotation plots using IMSLS subroutine ZXSSQ [28]. Coefficients from a fit were considered acceptable if the fit had a reduced chi-squared of less than 2, i.e., $x_{r}<2$. In orientation 1, 14 acceptable curves were found; in orientation $2>26$ acceptable curves were found. All curves were kept at this stage of the analysis.

5.2.3 Full tensor fit

Since data were taken for only two orientations of the crystal,

Figure 5.2 Typical spectra ${ }^{13} \mathrm{C}$. Top: ab plane orientation Bottom: "~ac" plane orientation.
the chemical shielding tensors in the crystal frame were underdetemined. The tensors of the carbons of the two molecules were assummed to be identical. Rotation plots from these carbon tensors were combined for the least squares fit of equation 5.07. In addition, for the armatic carbon tensors, the orientation of one of the principal axes was assumed to be perpendicular to the plane of the molecule. The methylene carbon tensor was also calculated with the orientation of one principal axis pre-determined.

For each of the 6 incongruent armatic tensors, $2^{3}=8$ rotation curves were possible: 2 orientaions $\times 2$ inequiva?ent molecules per orientation $x 2$ equivalent tensors per molecule (due to the mirror symmetry plane). However, in orientation 1 , the ab plane orientation, the rotation plots of the two equivalent tensors on each molecule were coincident. A total of 6 rotation curves for each of the 6 incongruent aromatic tensors was therefore possible. For the methylene carbon, a total of $2^{2}=4$ rotation curves was possible: 2 orientations $\times 2$ inequivalent molecules per orientation.

Rotation curves produced by the same tensor in different orientations were detemined in the followilg way. The line of intersection of the two orientation planes was determined. The spectrum taken here must be identical in both orientations. Those rotation curves from the two different orientations which go through the same peak at this line of intersection belong to the same tensor.

Rotation curves of identical tensors on different molecules were detemined in the following way. Since the ab plane contains the molecular symmetry plane, the two halves of the molecule are magnetically equivalent when the magnetic field lies in this plane.

Moreover, in this orientation, the two inequivalent molecules are related by a rotation about the c axis by 69°. The rotation curves of the ab plane orientation reflected this crystal symmetry, i.e.; there were two sets of rotation curves, one phase shifted from the other by 69°. This can be easily seen in figure 5.3. Curves with the same maximum chemical shift belong to identical tensors on different molecules.

The orientation Rijs were known from (i) and the rotation plot coefficients from (ii). IMSLS routine ZXSSQ was used to fit the sets of coefficients from orientations 1 and 2 to equation 5.07.

Many of the rotation eurves whose coefficients were used to calculate a tensor resulted in fits with $x_{r}>5$ and were discarded. Only fits with $x_{r}<2$ were kept. All the rotation curves which were kept are shown in figures 5.3 and 5.4 . The rotation curves which were used to fit each of the 7 incongruent tensors are shown in figures 5.5 through 5.12 along with the associated carbon. Note that the number of rotation plots used for the full tensor fit was less than the number of possible rotation plots. Due to the larger statistical error in orientation 2, (see section 6.2.2.1) the number of rotation plots used here for each tensor fit was less than the total possible rotation plots. In the rac plane orientation either i) two rotation plots from one molecule or ii) two rotation plots from molecule 1 and one rotation plot from the molecule 2 were used. This minimized x_{r}.

Aromatic tensor components were calculated with respect to the molecular coordinate system, defined by axes $k, 1$,m. See figure 5.1. One principal axis was assumed to be perpendicular to the plane of the
molecule ($\sigma_{m m}$). For case (i), 4 sets of coefficients (i.e. 12 equations) and for case (ii), 5 sets of coefficients (i.e. 15 equations) were used to fit 4 unknowns, the elements $\sigma_{k k}, \sigma_{k 1}, \sigma_{11}$, and $\sigma_{m m}$ (the perpendicular to the molecular plane) of the chemical shift tensor in the molecular coordinate system. ${ }^{\sigma} k k,{ }^{\circ}{ }_{k}$. and ${ }^{\sigma} 11$ were then used to determine the values of the other mrincipal elements and their orientations. The essi'ls of both fits (either case \mathfrak{i} or $\mathbf{i j}$) were identical.

The methylene tensor was also calculated with respect to the molecular coordinate system. The calculations were done assuming either:
i) one of the principal axes was oriented in the C-C-C bond plane, bisecting both the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond the the CH_{2} bond (along molecular axis k); or
ii) one of the principal axes was oriented perpendicular to the plane of the molecule (along axis m); or
iii) one of the principal axes was oriented perpendicular to the CH_{2} plane.

The results were as follows:
The values of the principal elements did not change with each assumption.

With assumption (i), the other principal axes were rotated an angle of $5^{\circ} \pm 12^{\circ}$ away from the moleclar 1 and m axes (rotation about the molecular avout the molecular k axis).

With assumption (ii), the direction of the other principal axes were rotated $9^{\circ} \pm 21^{\circ}$ away from the molecular k and 1 axes (about the molecular maxis).

With assumption (iii), the other principal axes were rotated $11^{\circ} \pm 26^{\circ}$ about the molecular 1 axis.

X-ray diffraction studies have shown that the fluorene molecule is planar and nesseses C_{2} symmetry [24]. In addition, the protonproton vecter of the methylene carbon has been shown to be perpendicular to the molecular plane [2]. Therefore, considering the symmetry of the molecule, the orientation of the methylene carbon bonds and the results of the above calculations, the orientation of the principal axes was taken to be, to first order, roughly coincident with the molecular coordinate system.

As a check of the full tensor calculations, the rotation plots from the ab plane (orientation 1) were studied, The largest (positive) values for each of the aromatic tensor rotation curves were found to be equal, within experimental error, to the calculated values of ${ }^{\sigma} 33^{\circ}$. Moreover, the maximum aromatic chemical shift should be measured when the magnetic field is perpendicular to the fluorene molecular plane. From x-ray diffraction, the vector normal to the fluorene molecular plane is in the ab plane, rotated 69° away from the b axis. The largest (positive) values for the rotation curves produced by the aromatic - bon tensors were found to be at the angle $\arctan (C / B) \sim 68^{\circ} \pm 3^{\circ}$, in agreement with the expected value. $\pm 3^{0}$ represents the error in orienting the crystal in the ab plane.

Figure 5.3 ab plane rotation curves. Vertical line denotes line of intersection with "ac" plane.

Figure $5.4 \quad$ " $\underset{\sim}{ } C^{\prime \prime}$ plane rotation curves. Vertical line denotes line of intersection with ab plane.
Figure 5.5 Rotation curves, $C 1$
chemical shift (ppm)

chemical shift (ppm)

orientation 1

orientation 2

degrees

Figure 5.6 Rotation curves, C 2

ORIENTATION 2

Figure 5.7 Rotation curves, C3

ORIENTATION 1

Figure 5.8 Rotation curves C 4

ORIENTATION 1

ORIEMATION 2

Figure 5.9 Rotation curves, C5

ORIENTATION 1

ORIENTATION 2

Figure 5.10 Rotation curves, C 6

ORIENTATION 2

degrees

Figure 5.11 Rotation curve5, 67

6. RESULTS

6.1 ONP

6.1.1. Single crystal

For selected orientations of the acridine-doped fluorene single crystal, the optically generated proton polarization is approximately 100 times greater than the Boltzmann polarization generated at room temperature in a 14.1 kGauss magnetic field.

Figure 6.1 plots the growth of proton polarization of the fluorene single crystal as a function of illumination timf for a particular light intensity and orientation. The growth is exponential.

Figure 6.2 shows a typical proton N MR spectrum of the fluorene single crystal. The crytal is oriented with respect to the magnetic field to yield the maximum ONP signal. The illumination time here is approximately one minute. The line width is $35 \mathrm{khz}, \mathrm{g}$ gauss.

Figure 6.3 shows the intensity of the optically generated signal over a restricted angular range where the ONP signal is maximal.

The optically generated polarization is of comparable magnitude to the polarizations reported by Stehlik, at al [9], using a 1600 watt Xe lamp. The magnitude of the signal depends critically upon the light intensity; $\mathrm{dp} / \mathrm{dt}$ depends linearly upon the light intensity. The 1000 watt xe - Hg bulb has an intrinsically higher luminosity at uv wavelengths than the 1600 Xe or the 100 watt Hg lamps used by Stehlik, et al [29] and one might expect that larger polarizations would be generated. However, the sondensing system used
here is smaller than that used by Stehlik, et al [11,30] and therefore less light is collected. The 1000 watt Xe - Hg lamp has a much larger arc than the 100 watt Hg lamp and cannot be focused down to as small an image size. In addition, the crystal may not have been optimally oriented to produce the maximum ONP signals; it may have been misoriented by $\pm \sim 3^{\circ}$ (see section 5.2.3). (Care was taken to orient the crystal in the ab plane.) More care could be taken to maximize the light intensity illuminating the crystal--larger diameter collecting,focusing lens, shorter light pipe, etc.

Note that the magnitude of the polarizaticil reported here is for the fully protonated fluorene/acridine system. The polarizations are approximately an order of magnitude smaller than for the fluorene, $\mathrm{d}_{8} \mathrm{~h}_{2}$-acridine, h_{9} cystals reported by Stehlik, et al [1,2].

Figure $6.1 \mathrm{dp} / \mathrm{dt}$. Proton polarization growth as a function of time.

Figure 6.2 Typical spectrum proton ONP: single crystal, acridine-doped fluorene.

degrees

Figure 6.3 Proton ONP as a function of field orientation in ab plane, near maximum ONP signal. $\mathrm{Hp}=80$ gauss.

6.1.2. Powder samples

In general, many compounds do not crystallize easily or do not fonm large crystals suitable for NMR experiments. Powdered and randomiy dispersed samples are generally far more readily avaliable than single crystals. Studies of powdered samples of acridine-doped fluorene appeared to be the next step in the attempt to create large ${ }^{1} H_{H}$ polarizations, and hence, ${ }^{13} \mathrm{C}$ polarizations, in a typical NMR system.

Optically generated proton signals in powdered samples of acridine-doped fluarene have been detected. Figure 6.4 shows a cypical optically generated proton NMR powder spectrum. The intensity of the signal as a function of field strength over a restricted field strength region where the ONP is maximal is shown in figure 6.5 The powder ONP signals are approximately of the same amplitude as the 14 kGauss Boltzmann generated signals. This measured intensity is approximately 10 rimes smaller than what is expected.

In a field of 80 gauss, the proton ONP of a single crystal can be measured as a function of orientetion of the crystal axes with respect to the magnetic field (for example, see figure 6.3). The single crystal ONP is maximai when the magnetic field is oriented in the ab plane, 10° away from the a axis. The measured ONP ,bout this restricted angle is far greater than at any other orientation of the crystal.

To first order, the ONP of the powdered sample is determined by that fraction of sample with the axis oriented within approximately 20^{0} of the magnetic field direction. Furthermore, assuming a uniform ONP of $100 \times$ Boltzmann for the crystallites in such an orientation,
the ONP of the powdered sample should be approximateiy fraction (1/10) \times polarization (100 \times Boltzmann) $=10 \times$ Boltzmann.

The measured intensity is lower than that predicted probabiy because of the large amount of light scattering produced by the tiny crystallites, reducing the effective illumination of the sample. A pawdered sample cannot be illuminated as well as a cleaved single crystal. Since the polarization is dependent upon the light intensity, the powdered sample, with its reduced illumination, would not have as large a polarization.

Attempts to reduce the light scattering were unsuccessful. Attempts to fuse the powder into a clear wafer proved unsuccessful. Also, the solid material could not be refractive index-matched: it dissolves quite well in various oils and solvents.

Althcugh the optically generated signals of the powdered samples are not large, they can be generated and measured in a time less than than T_{1}, the proton spin lattice relaxation time in the dark. T_{1} of the fluorene protons in the dark is >30 minutes 014 kGauss [31]. The equilibrium Boltzmann magnetization 14 kGauss is generated is a time 3-5 $\times \mathrm{T}_{1}$, on the order of an hour. Optically generated magnetization can be measured in $10^{\prime \prime} s$ of minutes, the time detemined by the illumination time of the sample,

Figure 6.4 Optically polarized ${ }^{\prime} \mathrm{H}$: powder, acridine-doped fluorene

Figure 6.5 Proton ONP as a function of polarization field: powder, acridine-doped fluorene

6.2 PENIS

ONP of protons in combination with the PENIS double resonance experiment produces large ${ }^{13} \mathrm{C}$ signals in fluorene single crystals. The ${ }^{13} \mathrm{C}$ signal is estimated to be 400 times larger than the normal Boltzmann ${ }^{13} \mathrm{C}$ signal generated at room temperature in a 14.1 kGauss magnetic field.

Figure 6.6 shows a ${ }^{13} \mathrm{C}$ 1-contact PENIS spectrum of the fluorene single crystal, obtained by first optically polarizing the protons. Since attempts to measure the nomal Boltamann ${ }^{13} \mathrm{C}$ signals directly and attempts to cross polarize the ${ }^{13} \mathrm{C}$ using the normal Boltamann proton reservoir were both unsuccessful, the estimate of the gain in ${ }^{13} \mathrm{C}$ polarization is determined in the following way. First, the ${ }^{13} \mathrm{C}$ signal is observed to be roughly directly proportional to the proton ${ }^{1} \mathrm{H}$ signal. This linear dependence can be observed by varying the intersity of the light illuminating the sample, hence, varying the proton polarization, and measuring the cross polarized ${ }^{13} \mathrm{C}$ signal. Second, cross polarized ${ }^{13} \mathrm{C}$ signals in adamantane are observed to be 4 times larger than their Boltzmann polarization when ir: contact with their normal Boltzmann proton reservoir. Since the optically generated proton signal is approximately 100 times greater than the normal Boltzmann polarization, the resultant gain is approximately $4 x$ 100. This gain is roughly in accordance with expectations.

Although the proton polarization is large and is not depleted after one cortact with ${ }^{13}$ C, multiple contacts under matched HartmanHahn conditions and one-shot PENIS experiments under unmatched Hartman-Hahn conditions were not generally done becalre the high rf power levels and long contact and data acquisition times could fry the
probe components.
Atisupts to cross polarize the carbons using simply the proton Boltzmain population proved unsuccessful for two reasons:
i)the proton Boltzmann spin temperature is 100 times smaller than the optically polarized spin temperature;
ii)the spin lattice relaxation time, T_{1}, of the fluorene protons in the dark is >30 minutes 14 kGauss [31].

Optical polarization of the protons is necessary to short circuit the long T_{1} and to build up the proton reservoir. More important, maximum proton polarization is needed to produce a measurable carbon signal. As can be seen in figure 6.3, rotating the crystal approximateiy 20 degrees away from one of the maximum ONP positions decreases the proton signal-- and in effect, the proton reservoir--by a factor of three. It would take an order of magnitude longer to accumulate the same spectrum without the maximum optical proton polarization. Since an average spectrum taken under optimum conditions requires $2-3$ hours to accumulate, any dimunition of a proton polarization would make the experiment extremely difficult.

Figure 6.6 Optically enhanced cross polarized ${ }^{13}$ c syactrum: single crystal, acridine-doped fluorene

6.3. Chemical shift tensors

6.3.1 Tensors

A schematic representation of the seven incongruent ${ }^{13} \mathrm{C}$ shift tensors is shown in figure 6.7. Table 6.1 lists the actual values of the priacipal elements and their orientation in the molecular plane. Table 6.2 lists, the directions cosines of the principal axes with respect to to crystal axes.

There are three different types of carbons, each with characteristically different tensors:
i) aromatic rarbons bonded to hydrogen
ii) fused aromaitic carbons, i.e. aromatic carbons bonded to another carbon rather than hyorogen
iii) methylene carbon.

All elements of all of the tensors were calculated using the methods outlined in the data analysis section. Values for the principal elements of the tensors could not be obtained from the powder spectra since attempts to cross polarize powder samples were unsuccessful.

Tensor assignments were made following "common sense" arguments: the orientation of the tensors would be generally consisterit with those determined by others; for each tensor, $\overline{\bar{\sigma}}$ would be, within experimental error, equal to $\sigma_{\mathbf{i}}$.

6.3.1.1 H-bonded aromatic carbon (C3,C4,C5,C6)

For all of the H-bonded aromatic carbon tensors, the mean value of the principal elements, $\bar{\sigma}=1 / 3\left(\sigma_{11}+\sigma_{22}{ }^{+\sigma} 33\right)$, agrees within experimenta, error with the measured isotropic chemical shift σ_{i}

Figure 6.7 Schematic representation of the incongruent carbon shielding tensors of fluorene. The reference 0 for the aromatic tensors is taken to be 120 ppm downfield from the resonance of neat liquid benzene; reference 0 for the methylene carbon is taken to be the resonance of neat liquid benzene. Tensors are represented by ellipsoids, with the shortest axis beig the mest downfield compenent of the tensor. Labels are as used in text.
Top: orientation of tensors in molecular plane
Bottom: orientation of tensors in plane pe pendicular to molecular plane. Molecale rotated 90° from top diagram.

Table 6.1

carbon	σ_{11}	σ_{22}	σ_{3}	$\bar{\sigma}$	σ_{i}^{*}	θ^{+}
C1	76 (3)	90 (3)	102 (4)	89 (2)	91	**
C2	-99 (9)	-47 (9)	119 (5)	-9 (5)	-14	-35^{0} (5)
C3	-84 (8)	-12 (5)	97 (3)	1 (3)	4	$17^{0}(6)$
C4	-92 (5)	-14 (6)	114 (4)	3 (3)	2	80° 6)
C5	-102 (10)	-10 (9)	115 (5)	1 (5)	2	-41 ${ }^{\circ}$ (3)
C6	-83 (7)	-17 (7)	116 (5)	5 (4)	9	16° (6)
67	-71 (6)	-27 (8)	93 (2)	-2 (3)	-12	-70° (9)

All shifts relative to neat liquid benzene. Errors given in parenthesis.
*ref 48 solvent is either CDCl_{3} or $\mathrm{DMSO}_{6} \mathrm{~d}_{6}$
${ }^{+}$rotation angle about molecular M axis to make molecular axis coordinate system and principal axis system coincident (see figures 5.1, 6.7)
**
σ_{11} coincident with molecular M axis; σ_{22} with K axis; σ_{33} with L axis (see figures $5.1,6.7$)

principal value (ppm)

Table 6.2 direction cosines
(relative to crystal axes)

N~~~~

स~N
呙
io

\%
measured in the liquid state.
The tensors of C4 and C5 are equivalent tensors differing only in their orientation in the molecular plane. This is consistent with their measured isotropic shifts being equal.

All of the ti-bonded carbon tensors which have been determined here are similar to those detemined by others [32-37]. All tensors have their most shielded component σ_{33} Ferpendicular to the plane of the molecule. ${ }^{\prime}{ }_{11}$ bisects the hexad angle and is parallel to the C H bond. σ_{22} is tangent to the ring and orthogonal to the other two axes. The magnitude of σ_{33} of these tensors follows the general trend that the value of the most shielded component of the tensor decreases with increasing substitution on the aromatic ring; i.e., σ_{33} of the H-bonded carbon tensor of pentamethyl benzene is less than σ_{33} of the tensors of $\mathrm{C}, \mathrm{C4}, \mathrm{C}, \mathrm{C}, \mathrm{E}$, which in turn are less than σ_{33} of the benzene carbon tensor. In addition, σ_{33} of the tensors of $\mathbf{C 4}, \mathrm{C5}$, and $C 6$ are all approximately equal to ${ }^{0} 33$ of $t l$. A-bonded carbon tensors of p -xylene [35].

Although C3 and C6 are both adjacent (ortho) to fused aromatic carbons, ${ }_{33}$ of their respective tensors are quite different; their in-plane components, however, are essentially the same. Since σ_{33} of the C6 tensor equals those of the tensors of C4 and C5 it seems that the electronic structure perpendicular to the plane of the ring around $\mathbf{i} 3$ is perturbed to a greater extent that that around $C 6$.

6.3.1.2 fused (non-H bonded) aromatic carbons (C2,C7)

$\bar{\sigma}$ of C 2 equals the measured 1 iquid σ_{i}. The orientation of this tensor is consistent with other non-H bonded aromatic carbons tensors
[32-37]: σ_{33} is perpendicular to the plane of the molecule, σ_{11} is parallel to the carbon-substituent bond and σ_{22} is tangent to the ring of the molecule.
$\bar{\sigma}$ for $C 7$ is 3 standard deviations greater than σ_{i}. The orientation of σ_{22} is turned away approximately 10 degrees from the C4-C7 bond, and is closer to being parallel to the bisector of the hexad angle.

As has been observed previously, σ_{22} for non-H bonded aromatic carbon tensors are quite different from H -bonded aromatic carbon tensors. ${ }^{0} 22$ for $C 2$ and $C 7$ tensors are -47 ppm and -27 ppm respectively, in comparison to -12 ppm to -18 ppm for the H -bonded carbon tensors.

The values of the principal elements of the two tensors are quite different from one another. $\mathrm{C7}$ is bonded to an aromatic ring; C 2 is bonded to the me:hylene carbon. The orientations of the substituent bonds with respect to their respective bisector of the hexad angles are aliso quite different, van Dongen Torman [37], has observed that the substituted carbon tensor in acetophenore was similar to those tensers on carbons bonded to methyl groups. If substituent type does not alter the ${ }^{13} \mathrm{C}$ shift tensor, then the difference in the two tensors must come from the different orientations of the substituent bonds.

6.3.1.3 methylene carbon (C1)

As has been generally the case here, the the trace of the chemical shift of the methylene carbon tensoi equals the isotropic shift. The methylene tensor has a much smaller anisotropy thean the aromatic tensors. The least shielded tensor element, ${ }^{\sigma}{ }_{11}$ is
perpendicular to the plane of the molecule; ${ }^{\circ}{ }_{22}$ bisects the $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond and lies in the plane containing the CH_{2} group; ${ }^{\mathbf{o}} 3$ is in the plane of the molecule, orthogonal to the other two directions and lies "along" the C-C-C bond direction.

The assignments of σ_{11}, σ_{22}, and σ_{33} are consistent with other methylene tensors. The most shielded direction is in the plane approximately "along" the C-C-C bond and the least shielded is approximately perpendicular to the plane of the C-C-C bond (in this case, the perpendicular to the plane of the molecule) for eicosane [38], ammonium hydrogen malonate [39] and malonic acid [40].

The values of the principal elements and their respective orientations of this methylene tensir are approximately equal to the methylene tensor determined for "interior methylene" carbons on the long chain molecule eicosane [38]. It is symmetrically located between two ic intical functional groups, in this case, two benzene rings. On the other hand, relative to the values of the principal elements of the methylene carbons on ethyl benzene ($\sigma_{11}=100, \sigma_{22}=103$, $\sigma_{33}=121$), the values of the principal elements of the methylene carbon tensor here are all shifted down-field and have a slightly greater anisotropy. The ethyl benzene methylene carbon is, however, not symmetrically located between two identical substituents, but rather bet:ween two very different substituents. This may account for the observed differences.

6.3.2 error analysis

6.3.2.1 statistical errors

The statistical errors generated here are large in comparison to
those reported elsewhere $[34,36]$, but are of the same order of magnitude as those recorded by Gibby [41].

The errors are relatively large because the errors in the coefficients of the rotation plots are large. In orientation 1 , the errors are approximately ± 1 unit for the constant term (A) and ± 2 to 3 units for the cosine (B) and sine terms (C). Ir oriontation 2, the errors are consistently larger: ± 2 units for the constant term, ± 3 to 4 units for the cosine and sine terms. The larger error in orientation 2 is due to the large error in measured peak positions due to the heavy ovarlap of peaks. A large simplification of the spectra in orientation 2 would occur if ihe crystal were mounted such that the magnetic field were in some symmetry plane of the crystal, e.g. the ac plane, and causing various ${ }^{13} \mathrm{C}$ tensors to becone magnetically equivalent. The number of inequivale.,t carbons and, in consequence, the number of peaks in a spectrum could be reduced by a factor of 2. The errors in determining peak positions would then be reduced and the errors of the coefficients of the rotation plots could become comparable to those in orientation 1.

For both orientatiors, a larger magnetic field would help to simplify the specira by increasing th: separation of the peaks.

6.3.2.2 systematic errors

Two systematic eriors are possible:
i) an error in the location of the chemica? shift reference and
ii) a shift in the measured peak position caused by bulk susceptibility efiects.

i) reference zero

Solid adamantane and neat methyl iodide at room temperature were used as references. Adamantane was assumed to resonate 90.5 ppm (methylene) and 100 ppm (methine) from neat liquid benzene [42]. Methyl iodide was assumed to resonate 149 ppm from neat liquid benzene [42]. Reference positions were recorded before and generally after a set 0 oi about $4{ }^{13}$ c spectra were taken. An error in the reference zero would essentially change the constant tem of the rotation plots, shifting the the resultant principal axes values by the same amount.
ii) bulk susceptibility

The measured resonant frequency of a given nucleus in a molecule depends upon the shape of the macroscopic sample through its bulk susceptibility [43]. Following the method of Vaughn [44], the crystal shape was approximated oy an ellipsoid. The bulk volume susceptibility x, as well as its anisotropy, Δx are $.94 \times 10^{-6}$ and -5 $x 10^{-6}$ respectively [45]. Using the demagnetizing facters of Osborn [46], the shift in peak positions was calculated as a function of a few rotation angles. The peaks shift by approximately +.5 to +1.5 ppm, depending upon the crystal orientation. This shift is very small in comparison to the large aromatic carbon anisotropy of $\pm 100 \mathrm{ppm}$ and small in comparison to the methylene carbon anisotropy of $\pm 15 \mathrm{ppm}$. To approximate the bulk susceptibility effect on the methylene carbon tensor, the measured peak positions were all increased a uniform 1 ppm and the tensor was recalculated. Within statistical errors, the new tensor was identical with the old tensor.

Appendix\% O. SOLID ECHO

The two-pulse solid (dipolar) echo sequence refocuses dipolarcoupled spins a time τ after the application of the second pulse. The basic pulse sequence is:

$$
90^{\circ} y-\tau-90^{\circ} x-\tau-\text { detect }
$$

The dipolar echo of a simple two spin system can be described exactly and is given here.

Let I_{1} and I_{2} be the two spins coupled via the dipolar interaction; ie. in the rotating frame, the Hamiltonian is given by

$$
\begin{equation*}
H=A\left(I_{1} \cdot I_{2}-3 I_{1 z} I_{2 z}\right) \tag{AD. 2}
\end{equation*}
$$

where A is equal to $\left(\left(\gamma_{I 1}{ }^{\gamma} I 2^{h}\right) / 2 r^{3}\right)\left(3 \cos ^{2} \theta-1\right)$ and θ is the angle between the magnetic field Ho and the vector connecting I_{1} and I_{2}.

This Hamiltonian can be easily represented as a matrix:

$$
A / 2\left[\begin{array}{cccc}
|S\rangle & \left|T_{+}\right\rangle & \left|T_{0}\right\rangle & \left|T_{-}\right\rangle \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

with basis vectors

$$
\begin{aligned}
& |S\rangle=1 / \sqrt{2}(|+-\rangle-|-+\rangle) \\
& \left|T_{+}\right\rangle=|++\rangle \\
& \left|T_{0}\right\rangle=1 / \sqrt{2}(|+-\rangle+|-+\rangle) \\
& \left|T_{-}\right\rangle=|--\rangle
\end{aligned}
$$

From this point on $|S\rangle$ is ignored.
The density matrix ρ satisfies the equation

$$
\begin{equation*}
\mathrm{d} \rho / \mathrm{dt}=-\mathrm{i}[\mathrm{H}, \mathrm{p}] \tag{A0. 4}
\end{equation*}
$$

which has the formal solution when H is time independent,

$$
\begin{equation*}
p(t)=e^{-i H t} p(0) e^{i!H t} \tag{A0.5}
\end{equation*}
$$

where $p(0)$ is the density matrix at time $t=0$.
The normalized x-component of the free induction decay in the rotating frame, assuming no relaxation, is given by

$$
\begin{equation*}
\left\langle I_{x}\right\rangle=\operatorname{Tr}\left[I_{x} \rho(t)\right] / \operatorname{Tr}\left[I_{x} \rho\left(0_{+}\right)\right] \tag{A0. 6}
\end{equation*}
$$

The rest of the appendix discusses the state of the density matrix and〈1 $\left.{ }_{x}\right\rangle$ at various points in the dipolar echo sequence.
$p(0)=I_{z}$. The net effect of the first $90^{0}{ }_{y}$ pulse is to bring the magnetization along the rotating frame x axis; i.e.

$$
\begin{align*}
\rho\left(0_{+}\right) & =e^{-i I y \pi / 2} I_{z} e^{i I y \pi / 2} \tag{A0. 7}\\
& =I_{x}
\end{align*}
$$

Following this initial $90^{\circ} y$ pulse, the system evolves under the influence of the interaction term H. Substituting for H and $p\left(0_{+}\right)$in equation A0.6, $p(t)$ is given by

$$
\rho(t)=1 / \sqrt{2}\left[\begin{array}{llll}
e^{i A t / 2} & 0 & 0 \\
& e^{-i A t} & 0 \\
& & e^{i A t / 2}
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
& 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
e^{-i A t / 2} & & \\
& e^{i A t} & \\
& & \\
& & \\
& & \\
& &
\end{array}\right]
$$

$$
=1 / 2\left[\begin{array}{llc}
0 & e^{i 3 A t / 2} & 0 \\
e^{-i 3 A t / 2} & 0 & e^{-i 3 A t / 2} \\
0 & e^{i 3 A t / 2} & 0
\end{array}\right]
$$

A0. 8

Substituting for o(t) in equation A0. 6

$$
\begin{equation*}
\left\langle I_{x}\right\rangle=\cos (3 A t / 2) \tag{A0. 9}
\end{equation*}
$$

The system is unperturbed for a time t, after winch a second, $90^{\circ}{ }_{x}$ pulse is applied. Inmeediately after this pulse the density matrix $\rho\left(t_{+}\right)$is given by

$$
\begin{aligned}
& \rho\left(t_{+} \dot{)}=e^{-i I x_{\pi} / 2} \rho(t) e^{i I x_{\pi} / 2}\right. \\
& \rho\left(t_{+}\right)=1 / \sqrt{2}\left[\begin{array}{rrr}
0 & e^{-i 3 A t / 2} & 0 \\
e^{i 3 A t / 2} & 0 & e^{i 3 A t / 2} \\
0 & e^{-i 3 A t / 2} & 0
\end{array}\right]
\end{aligned}
$$

where

$$
e^{-i I x \pi / 2}=\left[\begin{array}{ccc}
1 / 2 & -i / 2 & -1 / 2 \tag{A0. 11}\\
-i / \sqrt{2} & 0 & -i / \sqrt{2} \\
-1 / 2 & -i / \sqrt{2} & 1 / 2
\end{array}\right]
$$

That is, immediately after the second 90° pulse

$$
p\left(t_{+}\right)=p(-t)
$$

If the system is unpertubed for a time τ, it again evolves under the influence of the interaction term, H.

$$
\begin{align*}
\rho(t+\tau) & =e^{-i H \tau} \rho\left(t_{+}\right) e^{i H \tau} \\
& =1 / \sqrt{2}\left[\begin{array}{ccc}
0 & e^{i 3 A(t-\tau) / 2} & 0 \\
e^{-i 3 A(t-\tau) / 2} & 0 & e^{-i 3 A(t-\tau) / 2} \\
0 & e^{i 3 A(t-\tau) / 2} & 0
\end{array}\right]
\end{align*}
$$

$\rho(t+q)$ has the same form as $\rho(t)$ before the $90^{\circ}{ }_{x}$ pulse is applied, with ($t-\tau$) substituted to t. Therefore, the magnetization is given by

$$
\begin{equation*}
\left\langle I_{x}\right\rangle=\cos (3 A(t-\tau) / 2) \tag{AO. 14}
\end{equation*}
$$

For times $\tau=t\left\langle I_{x}\right\rangle=1$, the initial magnetization.

Appendix 1. NICOLET 293 PATCH PANEL CONNECTIONS

The Nicolet 293 timer patch panel connections are shown in figures A1.1 and A1.3. The patch panel connections are essentially the same for the two experiments: the ONP experiment contains one additional input to the $O R$ gate which goes to the pulse sorter. The timers are connected to different outputs in the two experiments. Figure A1.2 and A1.4 depict the resultant pulse sequences. Typical times are also listed.

The figures follow the convention of preceeding connections in patch panel A with the letter A; connections in panel B are not preceeded with the letter B. Thiner outputs are located at AAl through AA10. Output connections are labelled for the two experiments.

Nine inverting buffers are located on panel A; inputs are located at AH1 through AH9; outputs, AG1 through AG9. Ten one shots are also located on panel A; inputs are located at AF1 through AF10; outputs at AII through AIl0. The first seyen one shots trigger on the rising edge of the trigger pulse; the last three one shots trigger on the falling edge.

ENERAL PURPOSE CONTROLEA
PATCH PNEL
HICOLET 293

$P 4=4.5$ us
$D 2=400 \mathrm{~ms}$
D1 $=5 \mathrm{~ms}$
typical times PENIS experiment
$\mathrm{C4}=5 \mathrm{~ms}+200 \mathrm{us}$
D3 (1ight off) 5 s

light off

D1, $\mathrm{Pl}=2.5$ us
D2
$=2.5$ us
$=20$ us
$=45$
us
typical times ONP experiment
light off 5 s

Appendix 2. MODIFICATIONS OF NTCFT

A2.1 Patch for 2090/201

The modifications to NTCFT $\# 1002$ which allow data acquisition through the transient recorder 2090;201 are listed on the following page. Program chariges were accomplished using Nicolet's HIBUG program. The format used is

```
address/old instruction ---->new instruction
```

The assembler mnemonic and/or a description of the instruction is included.

The modifications can be divided into three parts:
i)change of ADC control word
ii)changes to rake 2090/201 and Nic-80 data collection compatible
ifi)changes to allow data acquistion <20 us after start of rf pulses.

The IPLS experiment must be used. The total length of time from the start of the rf pulses to the start of data acquistion must be >20 us. This last requirement insures that the Nic-80 is in measure mode before it is triggered.

*LOA NTCCON 5640
 *RUN h!sug

$6151 / 0000026$----> 0100026 /set chord (bit 15 high) 76006
*STO NTCCON 5620-7577; 7500:P
*LOA NTCEXC
*RUN HIBLG
$637 / 0005001$----> 0005000 134/3103427 ----> 136 7600G
*STO NTCEXC 0-1777:P

```
*LOA NTCDIN 2000
*RUN HIBUG
```

$4133 / 0111777$	$---->$	2111479
$5470 / 0000000$	$---\gg$	101777

/to maintain bit 15 of cword when cword /gets reset
/MPOM POINTI
/MPOM POINT2
/JMP 5472
to acquire data <20us
after start of rf pulses
/JNP to 4736
/JMP to 5272
/JMP to 347
/JWP to 453
/JMP to 464
/JMP to 5272 (JMP TO <RUNSTEM)

76006

[^0]A2.2 Patch for multiple contact pENIS
Modifications to NTCFT \#1002 to allow mutiple contacts in the PENIS experiment are shown in Table A2.I. Nicolet's HIBUG program was used; format for changes are as shown below

> address/instruction /mnemonic

Changes for the multiple contact experiment can be divided into three parts:
i) create new command=NC
ii) initialize for counting number of contacts
iii) determine number contacts left to do, retrigger rf pulses if not equal to zero.

The number of contacts are entered using the command 'NC'. E7 (PP04) on the Nicolet 293 patch panel retriggers the contact/mix PENIS pulse.
*LOA MTCDIN
*RUN HIBUG
2776/2707056
/MMOMZ
2777/ 1003
3000/3111005
$3001 / 2405006$
3002/1001007
3003/ 4204
3004/1001010
3005/ 6151
3006/ 0
3007/ 4406
/JMP (to 4003)
/MEMA @ PNCON
/ACCM NCODO
/JMP @ PGOR1
/PP04
/JMP @ PGOR4
/PGOR1
3010/ 4541 /PGOR4

$3011 /$ O	/INI
$3012 / 3111005$	/MEMA @ PNCON
$3013 / 2405006$	/ACCA ICODO
$3014 / 1001011$	/JMP O INI

4124/3000:26 /JMS @ FLG
4125/ $133 / J M P$ (to 4133)
4126/ 3011 /FLG
5017/1001465 /JMP BADSET
5075/ 0 /NC
5076/3001447 /JMS @ YFIN
5077/ 6152 /YFIN
$5520 / 316303 \quad /(n=316, c=303)$
7600G
*STO NTCDIN 2000-5617;7600
*LOA NTCDIN 110000-113617;7600:P
*STO NTCDIN 110000-113617;7600:P

A2.3 Patch for second variable timer
Table A2.3 lists the changes to NTCFT which create a second variable timer. Changes to NTCPAR allow input of variable times. Changes to NTCDIN implement the variable times during ran time.

A second variatle timer was necessary when varying the contact/mix time in the PENIS experiment. NTCFT has only on variable timer (DI) which was used to vary the contact/mix pulse. The second timer was used as the receiver gate=contact/mix + 1 dwell time.

Variable times are entered with the command 'CD' (CCD on). D3 is the variable timer; the list is terminated with the entry 0.

*LOA NTCDIN 2060

*RUN HIBUG
4215/ 1
4217/2405728 /ACCM YD3
4220/3001457 /JMS @ TWI04
4221/ 5273 /YD3
4222/ 346 /JMP 346
7600G
*STO NTCDIN 2000-5617;7600
*LOA NTCDIN 110000-113617;7600
*STO NTCDIN 110000-113617;7600:P
,
*LOA NTCPAR
*RUN HIBUG
4154/3025204 /ONEM © UFLAG4
4155/ 156 /JMP 156
4161/3001206 /JMS @ TWIO4
4164/545160 /EXCT POAC
4170/3024162 /ONEM @ POINTC
7600G
*STO NTCPAR 2000-5617;7600
*LOA NTCPAR 104000-107617;7600
*STO NTCPAR 104000-107617;7600:P

Appendix 3. DATA TRANSFER FROM NIC-80 TO VAX/VMS $11 / 780$

Data collected on the Nic-80 was transferred to the VAX/VMS 11/780. The purpose of the data transfer was
i) for archival storage of data on magnetic tape.
ii) for efficient plotting of all fourier transformed files
iii) for efficient determination of peak position in ${ }^{13} \mathrm{C}$ spectra.

Data was Eransferred to the VAX using the command 'U2'. The necessary program changes to NTCFT $\$ 1002$ are shown in Table A3.1. The 'U2' command can be used in the standard Nicolet link ('LI' command). A fortran program is simeltaneously run on the VAX and listed on the succeeding pages. 8oth programs are based on programs by W.Shin[21] and J.McCracken.

The Nic-80 is connected to the VAX via an RS232 bus. Cormunication lines operate in normal mode, with the baud rate set to 2400. For a more extensive description of various parts of the programs, see W.Shih [21].
*LOR NTCUSR 2000 *RUN HIBUG

20.1 ande did． 3 280 2 8045 －0．5 5 dos？ Ade＊ ＜tcio 2012 くなり 1 2212


```
Wherf zizy% are sigitficat bits. Lel desjres roccotrol
gnaracters. progran to te used with uc comrang of ticft lud2.
u? far be usej in link (li). strictly jata irdnsferred, cot
paratmier sablu. paratiters ecterez diterminal;
nutput file is titie 1:A * no.f e.g. for tifle 'peris" outpit
files (if in link) are renivi.dar,penddzadet,etc.
ossit unpsc⿱⿰㇒一母⿱⿰㇒一丶⿱⿰㇒一丶⿴⿱冂一⿰丨丨丁心
    {{(%) DAFA PJIMT ABEEF
    CRECSST* RUNKIVF COLCRSUM CALCOLAT&% DJinjvG LATA R&CmIYe
    TIILF ASa GEADER &LDCI #RITIEN ON OITFJ? HIIL
    fnampl titie i:4 (usea for output fi:e gane)
```



```
    *&E{ 111111111111111111111 MASE USED TJ SaL&CT
    22 IS 3s Of EACH 32 HIT YDal CN #AX
    SET TC OCTAL 21 IOF CTHL-& TO INITIAI!
    DATA FRANSMISSIDN
    v fron nic-Er(to start receiving Ietd
    tagal pumper of sfectita tc le sent
    VUMHFR gF DATA POINTS
```



```
    ONT BYT: PER IOCATION
    RJvVINS SUY USED IN FACEIK: DATA
    IIMENE{O4 A(15736),ST(2),JJ(4),FATE(23)
    INTEJER A,EGESRSTM,ANS,DATL&,PA,IVP,Ifatiten
    PFAL HA,ME,DT
    CHARACTIR SI
    cmaracterFa fratel
    CHARACT&R*G ?name
    CRAR&CTEP=EZ TITまL
    I.JうIVAL COVIIV,CDUNT.TIFF,LDS
    1r!ल^लr*4 OTSSCYT_I_TI.STSSG&TMSS
    cme?Ectn= 5y5TSg=j32
    1ntegeraz but
    c!aracierm2 =h!
```



```
    yFJRN= UNETRMATIED*)
    COYTIW = .TRUE.
    EวJYT = FALSE.
    *YPE = FGLSE.
    105 = FA15E,
    Mazly" = 1%d
    C. SURWETSS FGROR MESSASES FHOM IAJE{ER OVEHELCE
    C. CRITSEF SY E!ECTSOM ChLCHLRTION
    CALI &PFSLT(TB,CCVTIN,COUNT,TYPE,ICS,*AYIJM)
    *&{\] = 37
    ~&5s% = 3rファファ?
```

40.23		IT－ 21
1824	313	Yritp（E，H81）
Hacs	381	format（＇¢0日ter nusper of spectra＊）
0265		real（E，${ }^{\text {P }}$ ）ncs
0227	184	U15E（6，2103）
－ace	2133	FOHMAT（¢EMTIE POIHES PER ILIE＊）
－423		
2832		VRITE（5， 403 ）
2831	143	FSRHAT（ 5 EVIER TEE DATE（10A1）＊）
0232		
0.333	404	FDRYAT（2842）
\％ast	178	dhIIE（5， 5 ¢0）
ct3s	5	Fthyar spee frez，ifmartare
0.35		
ens？	522	70月4AP（f5．2， 5 ，312 0.5 ）
00035		URITE（3．582）
203）	590	forntit（215）＂）
dus？		Retis（s）ipp，ifatter
2041	591	F5R＂AT（215）
	${ }_{5}^{5}$	SET IIPLE AYD SPIV FILE
dus 2	195	URITE（E，918）
8343	${ }^{313} 1$	FORY\＆T（＂OEYIER TIFLE（A6U）．JILENAHE IS TIPsT 4 C口AR 1rcrementes ${ }^{1} 1$
3244		REAF（5．911）f1TLE
d345	911	TJRMAT（150）
845	611	VAITE（6，620）
$23_{4} 7$	623	FORMATI＇ZyEEN RELDI TD RFCEITE ITPE GO ON TEEE YAX＇I
33^{5}		READ（5．525）35
dess	525	FoRYAF（2A1）
8058		1F（SI（1）．EV．＊s＊）65 90630
3751		3515311
－ 32	633	CONTINUE
	c c c	start of eo loop to transtiz gns spectra
2053		$10239 \mathrm{gmital}$,
325		1cegtit
2atc		
2355		
	1	YSELTN，STSM3：EVAL（ -21.1
2057		
0.853	89	FORMAT（17，A）
dass		framel＝title（1：4）
－cti		franerfarmel／／chi
2361	c 1	carflagecontrol＝＇11st＂） fill in parameter pable
2252		Y1TE（3，911）frate
22， 3		URIIE $(9,474)$ DAFE
6364		URITE（9，425）15PEC，IP
3365		GRIIE（9．591）1\％p．ifater
2255		

```
867 485 F0RmAT(215)
446?
285%
3273
d\71
8872
d273
C474
375
co75
00??
7d7
407%
28E%
35E1
2052
0353
33E4
4d?5
Mo35
ty37
235?
y29
dzez
02yI
2332
0ud3
b2y!
3355
dEyS
R2y?
ว&5E
HOY LOOP OVER TEE MUMAIR OI POINTS, PECLITING LND
PACIIVS T近y juE ATA SIME, EACE IIME TEL TAX IS
REAEP TOR A YEN YORD A CONTLOL-G COMMLND IS 1SSULD to
TEE VIC-Dg. DPJN AECIVIME
A EJYTRL-& JEE NIC ODTPOTS ONE dORD
urite q to start transtissiog
vait for Fryon aicen to siganl ready to seci iata
Feas (1,993) B,(ij(i).1=1,0)
Pornat(q,<rjal)
15d*-%
d0 9E5 1=4,1,-1
```



```
ISE1f&=(1-1)*S
```



```
kl=1man(isum. nast2)
YP1te(5,755)FI
U65 Gormyt("$resefmes r1m".020)
1:(sI.eq.-23) then
                                    AF{&= (2)EK
```



```
                                    yrite(3,777)
                                    ypite(3;F77)
                    else
ent if
C TOR EACH FILE, LJOP TEROUGE IP TI*ES TO RLCGNSTROCI
C IP IORDS FROMIP*A EITES. A ZU AIT IORD IS DECEIYES
C IN TEE TOLLOUINS BTTE SLQUANC&:
C
C RTCCNSTRICTION (PACEING) OCCORS EI APPROPRIATL
```



```
C BTIES STORED IN IJ{#%
            IPP=1P+1
            DO 200, K-1.IP
            VRITE (2) EK
Ind MFAD(1,IHad) N,(IJ(I),I=1,N)
LedE TJRMAT (2.<N>A1)
            ISOM= 6
            DS 123 L-4,1,-1
            IJ(L)=IAND(IJ(L).mASEI)
            ISEIFT (L-1)=5
123 ISUM = IOR(ISOM.15aFT(IJiL),LSEITT))
            checes!m-cEscESOM + ISOM
            A(C) - ISDM
    2%% CJYIIYDE
C NSN GECEIFE ANT RECONSTRDCT Thi CHLCESDM
C NSNGECEITE ANN RECONSTRDC口
C IND EJMPARE YO P星E LOCALLY CALCDLATED OAL.
```

```
    #BITE (2) E5
```



```
    15|4 - E
    D2 222. I-4,1,-2
    IJ(L) IAND(IJ(L).MASEI)
    15#IFT = (L-1)Mg
22* ISD* = IDN(ISTM,ISETY(IJ\I).ISBTFT))
```



```
ISU* - IAND(I5TM,MASE2)
#RITE(6,1612) f\ame,CHICISUM,ISOM
```



```
    1 ORE=EITED CHICESOME',Oy)
C
CBTCE FO? NTEATIVL vum&ERS
E\Y="24%2020
DO 21 I=1.IP
                                IF(A(I).IT.EEE)GO TO 22
                                A(I)=A(I)="3777777
    CCNTINOE
42% 20*P|T MJ"IERS
iflIF(S,20.dz)(A(I).I=1.IP)
FOR4AT (EI2J)
2vzs cormat conimup
yrife(5,905)
ydE formaf('sunotuer set of flies? (y/r,*)
real(5,j0E)ans
ges fornge(01)
IP(303.Eq.*T*)PO &S 31'́
IND
```

PROjPA4 SENTIJVS

Name	Sytes	Attrib	tes						
－ $\mathrm{CODP}^{\text {c }}$	1713	PIC Con			SER	EXI	RD	NOERT	IDYG
2 STO．${ }^{\text {a }}$	355	－1c	hEb	LCL	Sga	NOEXE	E	NDAAT	LJNS
－\＄LOCAL	67E05	PIC $=0 \mathrm{~N}$	REL	LCL	noser	Notiza	8 D	dit	LONG

EYIRY PJINTS

A11ress	Trpe	Hzワe
ט－女0zaditn		KHITSMMAI

dAPIABLES

Aytress	Fyos	Name
2－204105n9	$8{ }^{1-4}$	LTAM1
2－8062位ここ	1＊4	こafcisum
	R＂4	$I T$
2－zdu14EFC	I＊ 4	1
2－3082＊723	104	IPP
2－i801 6 ¢4	［＊4	IVP
2－000196C4	［＊4	15
C－DC01 1454	L＝4	C53
2－： $061 \div 5 C 8$	1－4	－1st2
2－3231：5F5	140	\forall
2－28の145A2	Сヲィя	315us3

Adzress	Type	Aste
2－®0¢1ロEDC	\％${ }^{\text {\％}}$	ADam2
C－H071．05E4	CEAR	íl
2－ $006145 B E$	Czar	ENiME
2－854166L4	$1{ }^{-4}$	1 C
2－4caldsF4	1＊4	ISPとC
2－icdici6EC	$1{ }^{-4}$	J4ES
2－8いるすが29	104	rix
	$1{ }^{\text {E }}$	LSEIFT
2－0041263＊	$1{ }^{164}$	IM
2－JDsiv6ç	I＊4	N5
2－98A185C4	Czar	TITLi

Agress Ty	Vate	
2－7culasec	J＊4	A45
2－2002＊6A5	L＊4	23NTTV
$2-2.3620534$	Cyan	FVA＂E1
	144	IPATIEN
C－rCEINALS	144	157AT
2－204106I2	104	J4IT
	1＊4	51
＜－ivcl：${ }^{\text {cha }}$	P＝4	$\square 1$
2－8201 458	R＂4	\cdots
2－aかu10593	1F4	P1
8－2241才6g？	104	ITPE

ARAATS

Agiress	Pype	Vene
C－acosedo3	$1 * 4$	A
2－200145きは	1＊4	DATE
2－80002A5 ${ }^{\text {a }}$	1＊4	IJ
2－icalusbe	CH．${ }^{\text {¢ }}$	57

Hytes Dinensions
65944（25735）
44（18）
10 （4）
2 （2）

Appendix 4. ONP calculation programs

This appendix contains a listing of the computer program used to calculate the theoretical curves of figure 3.5. The flow chart of figure A4.1 describes both the control program, NEWONP, and the program which does the actual intensity vs field strength calculation, ONPOL. PLONP is a routine which plots the output of ONPOL. It is based on a subroutine by D.Goodin and is not reproduced here. Subroutines VCVTCH,EIGCH,LINVIF, and VMULFF are all IMSL subroutines which (respectively), converts a Hermitian matrix to a full complex storage mode matrix, diagonalizes a Hermitian matrix, inverts a matrix, multiplies two matrices.

Definition of input values:
D, E as defined by equation 3.8 are elements of the electron dipolar interaction tensor.
gama=r as given in equation 3.8 is the gyromagnetic ratio of the proton spin.

A is the hyperfine interaction tensor.
$p_{m} m=x, y, z$ is the relative population rate into the mth triplet state (normalized to one triplet state).
$k_{m} m=x, y, z$ is the relative decay rate from the mth triplte state (normalized to one triplet).
$w_{m, n} m, n=x, y, z i s$ the spin lattice relaxation rate between the mth and nth triplet states.

Typical values:
$D=395 \mathrm{MHz}, E=15.3 \mathrm{MHz}$

$$
\begin{aligned}
& \text { gama }=4.257 \mathrm{E}-07 \\
& A_{x x}=-29 \mathrm{MHz}, A_{y y}=-9.2 \mathrm{MHz}, A_{L z}=-29.0 \mathrm{MHz} \\
& k_{x}=k_{y}=k_{z}=.333 \\
& p_{x}=.9, p_{y}=.05, p_{z}=.05
\end{aligned}
$$


```
2201 propgsm neugup
L
*
    c
3344
ddx
0055
0.07
<dis
80%j
*81\Delta
2312
201?
4213
3214
2215
235
217
3815
a21 
dが安
0221
202?
d823
822:
0<<5
2225
82%?
02%=
AR2J
8.53
C231
2232
033
803s
2035
0235
2237
0C3%
22J%
840
```


propgat nevenp


```
comron/cnst/1, e,Fams.
```

comron/cnst/1, e,Fams.
irates/Kx,ky,隹,px,Py,pz.
irates/Kx,ky,隹,px,Py,pz.
foyperfar.ajuaz.
foyperfar.ajuaz.
frelaz/vaj,wxz,*yz
frelaz/vaj,wxz,*yz
vr1te(S: ==こ?)
formatíchanee }2,p=1,k=2,A\#3,|=4"
real(5,*)ict
if (1ch.Ej.1) treo
resils,*:px,pJ,p=
Alse if (1en,Ej.z) thed

```

```

else 1f (1eh.\SigmaN.3) \&Rer
pFsy(5,*)sx,ey,dz
else 1: T1ch.Ej. <l inen
resi(5,")|rJ,*Iz,vyz
else
cortinme
erj 1f
c
995
cogt1mue
c
541
vrize(6,501)
forngif(fixgi fleli=1 or fized orgentatioc=<%*;
7p3g(5,F!i:0
If(1fj.Ej. 2) inen
Mr1fe\5:323:

```

c
```

qpen(vel t=3, status="vev", mame='elvec")

```
qpen(vel t=3, status="vev", mame='elvec")
```

qpen(vel t=3, status="vev", mame='elvec")
eall erstri(4214,2)

```
```

eall erstri(4214,2)

```
```

eall erstri(4214,2)

```
```



```
```

PEsi(E,F)\&,E,g47a

```
```

PEsi(E,F)\&,E,g47a
reai(c,*)kx,kJ,kz,px.pJ.pz
reai(c,*)kx,kJ,kz,px.pJ.pz
Peas(g.F)在,37,az
Peas(g.F)在,37,az
Teal(E.*)wTy,wtz,wyy
Teal(E.*)wTy,wtz,wyy
close(unit"\#, status='treep*)
close(unit"\#, status='treep*)
cotilmye
cotilmye
write(5:143)

```
```

write(5:143)

```
```



```
```

WEITE P5.F) YX.KY,KZ.PK.PY.PZ

```
```

WEITE P5.F) YX.KY,KZ.PK.PY.PZ
vf18%(5,207)
vf18%(5,207)
Cornat(ithyperfine constetas ent reldretion retes*)
Cornat(ithyperfine constetas ent reldretion retes*)
YRI\&E (6,m)AI,RE,AZ,Y%I,Y%Z,UIZ

```
YRI&E (6,m)AI,RE,AZ,Y%I,Y%Z,UIZ
```



```
    -a,8 thev r-i*%
    * xy plare is yb,arglé",
    ; Jz olane is aosle.go.%*
        Tt plere is eogle,0"J
        reas(5,*)& rera, phi
```

```
    c
        22!2
        40&?
        <2&3
        824.4
        204:%
        d245
        2247
        cise
        004J
        20%z
        **51
        8%j?
        *453
        <254
        2055
        2753
        <SE7
        3253
        8852
        **54
        4251
        3%s?
        4<03
23E&
4355
<205
\partialठ&7
40うミ
c&゙j
2%"a
3071
0<72
3273
n%?!
<875
2275
3077
007ミ
237=
%05%
\Delta3E1
4て5
DES 
<AE%
2005
2355
\DeltaKE?
3253
2053
4CO
82y1
%%こ?
24%3
22ys
8むこ5
c
c
444
777
```

```
77
```



```
4Fit=(5,1PQ)
PONVEIC'IN+ER NOMBLR OF FIEID POSITIONS'I
PEa:iEDFINELS
urife(s,1%)
FCA*AT(* INTIR EmIN.DLITA',
PE&!?:0)H*IN,IELTA
DO IIE =I.NFLD
F. n*in t delfa=ilv
T1ge(j,0)!
cel! onpal(fheta,p&1.0.pol)
Tp(IIR)=pol
zp(11F)= b
ery }1
*1f:(5,444)
OOT##{((%)
reay(5,777)an2
format(al)
1:(ar2.r2."y') then
                                    10pt=1
El3E
                                    10pt =0
enj if
c&11 plogo(xp,jp.n:14.10pt)
else if (1:0.E2.1) gher
*r1te(5.782)
72% Poromi(% Enteremele)
resif5,*'h
*4&=15,7%!,
```



```
resi(5.*)iplo
17=y
1: (1pln.E.j.2) ther
pf: = -tac.
do 11%m=E%.0.5
1n=1n+1
ineta = 11k
cell onpsl(zeera,pni,n,pol)
yp(1T)=FC1
Ip(i:n)=czeta
ecd do
phi= 5;1.
Co 11%=S.Y4.5
1n=1 n+1
theta - ilr
call orpol(ryera,phi,M,pol)
yp(1*i)=001
xp(it)= r.teta
erido
write(6,444)
TEad (5,777)are
1f (as2.LO.'5') ther
10pr=1
El se
ens 1:
```

```
23:15
วまミ7
00うこ
80y:
314
S1:1
Elic?
4103
C144
2105
0105
C147
8163
810?
C11d
021
3112
0113
0114
2115
<125
d117
011 三
<113
42%
|}1
41<2
3125
3144
Cl<5
8125
4127
<12#
3125
713n
6131
2132
8133
4234
c135
8235
4137
313E
2139
0148
$141
0142
C143
414%
3145
71&5
C147
414E
014シ
425a
21$1
ヒリぢ
1233
H151
2155
```

2345
วปミ7
32y 2146 d1：1 E1．2？ 3103 と144 3105 0105 C147 3143 210き 110 1之1
0132
0113
2115
2115
4125
$211 \equiv$
x11
412．
121
$41<2$
125
3144
125
0127
12
2125
6131
2132
0133
0234
c135
8135
6137
213 ミ
2137
0148
0141
b142
C143
8144
3145
7145
4147
2143
814
625
1
I
4151
－ 155

```
call plopp（xp，5p，37，19pt）
else if（1pin．EC．1）sten
tifeta＝ys．
\(1011 \mathrm{~L}=-54.18 .5\)
\(1 \pi=1 \pi+1\)
phimidt
estil onpol（thera，pai，a，pol）
7pil7］＝pol
Tp（iv）＝phi
e0140
vilit（6，444）
reci（5．777）ant
```



```
10pt＝ 1
Else
1opy \(=0\)
end if
call ploep（xp．7p．37．10p：）
else 1：（1plt－E：3）ther
phi \(=0.0\)
```



```
thets－ 112
\(1 \pi=1 \pi+1\)
call orpol（theta，phit， \(\mathrm{t}, \mathrm{pal})\)
Jp（in）＝pol
xpifite theza
ent \(=0\)
phy＝19x．
is 11 ta 5 ．We． 5
theta＝11k
\(1 \eta=1 n+1\)
call onpol\｛thete，pei，a，pol\}
Jp（17）＝pcl
xp（1п）\(=\) theta
end 80
veice（5．444）
re：t（5，777）ar2
1f（anz．＝0．＂y＇，ztec
10pt 1
else
10pt \(=\)
est 1：
cill plorp（xp，yp，37，1opt）
ent if
els：
60 to 599
e
end 1：
555
1
－Pite（S，EEE）
fortat corifrue et reb oriertation fieldia＂
continue win zer constatis＝2＂）
```



```
1f（1an．E0．1）bhen
50 tg \(\bar{y} 5\)
else 1f（isc．EO．E）ther
\＆ 5 to 3 등
els：
－ 1 If
c
coll erstop
closéun）t＝3．5taruse＂keep＂
eri
```


Address	Itpe	Name
2－92vวธ34	144	1v2
3－02006u0b	R4	D
2－4240\％34	R＂4	E
2－pzu3\％324	15^{4}	
2－46400358	1F4	IPIN
く－6dič33）	1＊4	MFID
4－pabambla	744	PI
	8＊4	d12

Address	Type	Hame
5－ubuvabis	H^{+4}	AX
3－06uboud4	月＊＊	I
2－らとvíc35e	$\underline{1 *}$	1血
2－46＊＊＊＊354	1＊4	14
4－viciducus	R＊4	K
2－＊tior344	d＊4	POL
2－ヶดบロบ3\％	月F¢	98ETh

Ahars

Astress	Iy	re
2－88000000	月95	$\underline{1}$
2－a0bob1 30	H＊ 4	IF

Hepes	HTEns10：5
400	（10d）
400	（140

```
    C
    C IEIS PRJSAAR FON EONNINE ON TAYOTILLD DLPENSENEE OMP
        subroutife SNPSL(xmeta,phi,h, poi)
    L
```

 freiam/#xy.viti,vyg
    ```
c
0
3nd dick \(22: 5\) add c2a三 4203 9218 0411 6212 0813 \(3<14\) 3815 4225
2417 2015 0＜1

3822
c841
\(\square \partial<2\)
d 423 2024 クロ」こ
－085 4227 \(02<5\)

032 g 3233
2631
\(\$ 232\) 2233

4234
2335
4235
2337
2ヘ3ミ
d：3
028

834
e
c
e
c
c
e
c
c

TEIS PRJSAAR FON EONNINE ON TAY：TILLD DLPENDENEE DNP
subroutine JNPSL（xerta，phi，h，pol）
c
```

covnon/Cr.gt/J,P.gsma

```
covnon/Cr.gt/J,P.gsma
                            /rates/tx.Ey,zz,Dz.py.pz
```

```
                            /rates/tx.Ey,zz,Dz.py.pz
```

```


```

／ratesfra．ty，xz，Dz．py．pz
fyper／ax，ay，ax

```
freiax／vif．vitavy：
chapacter ent．arz
14 rension dEI（1aみ天）．IIJIN（5．5）
COMPLEX 2（5，5），ITEC（6），YR（2g40）
 11mersion \(5042(5), 5 \times 0\) R4（5），2（5）
11tersior ha（5，5），Aha（ 6,5\()\)
COMPLEX OO（5．5），Sך？，ZENTZ
PEAL 5I．TY． 32
REAL（5）
COMPIET U（5，©）
11 nensior \(5(5)\)
11＊ersion（5，5），YIJ（6，6），CALv（6，5）
diversion TJIP（6），P（6），CAIP（s）
ELEA \(=1.4\)
CXI＝ 2.0 egz
\(379=2.0603\)
GZZ－2．40ひろ

rithta＝thets conv roh1－pht Font

q＝siritithetalosiri（rpei）
\(r=\cos (r\) thera）
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}


7SI＝3IT BETA E BY



TRCSS－COS（IR）
TASIN－SIN（Tf）
4ス1＝1x

AZ2＝17（（（IRSIM）
A2T＝（42－AT）＊TRCNJTRSIN
finteh mathiz azyiltoniay
```

O（1．1）＝D -E －ZYOI

```
```

2042
043
d24
nys5
4bs5
0\&7
0442
d4%
445
\partialวう1
352
cos3
3)ว?
0255
d355
2257
C4E
COE` 32EZ ABE1 <<52 0&ES 2334 C005 &るEZ 0;\mp@code{7} 2a65 405% 7d7% 0<71 372 2373 C274 4075 3375 4077 3じミ 37? *&% d&-1 *)S <゙E3 48E! P%E5 0855 dag? ODEF かんEy 32%8 3851 Cy2 ddy3 dるご 22=5 3255 E|`?

```
```

 m(1.2)=-(0.0.1.0)F(2.5*472+2%2)
    ```
            m(1.2)=-(0.0.1.0)F(2.5*472+2%2)
            O(1.3)=(0.0,1.8)=(2%I + .5*AZI!
            O(1.3)=(0.0,1.8)=(2%I + .5*AZI!
            O(1.4) = -ZENDZ
            O(1.4) = -ZENDZ
            \nabla(1,5)=-n.5*AZT
            \nabla(1,5)=-n.5*AZT
            U(2,5) = 5 AYI
            U(2,5) = 5 AYI
            T(2,2)=D+E - 2&N[1
            T(2,2)=D+E - 2&N[1
            0(2,3)=-(0.0,2.0)=2GX
            0(2,3)=-(0.0,2.0)=2GX
            U(2.4) = 0.5*42Y
            U(2.4) = 0.5*42Y
            I(2,5) = - 2FY\2
            I(2,5) = - 2FY\2
            T(2.5) = - [4.0.1.d)=(0.5*aII)
            T(2.5) = - [4.0.1.d)=(0.5*aII)
            O(3,3) = -2INOI
            O(3,3) = -2INOI
            O(3.4) = - .5 ATY)
            O(3.4) = - .5 ATY)
            O(3,5) ■ (3.0,2.3)*(0.501II)
            O(3,5) ■ (3.0,2.3)*(0.501II)
            O(3.5) =-2ENO2
            O(3.5) =-2ENO2
            O(4,4)=\-E + ZENO2
            O(4,4)=\-E + ZENO2
            0(4,5)=(0.3,1.3)=(0.5#422-262)
            0(4,5)=(0.3,1.3)=(0.5#422-262)
            U(4.5) = (0.0.2.J)*(zar - 4.5"4ZI)
            U(4.5) = (0.0.2.J)*(zar - 4.5"4ZI)
            M(E.E) = E+F + 2ENTI
            M(E.E) = E+F + 2ENTI
            \eta(5.5)=-(8.2.1.2) =2G工
            \eta(5.5)=-(8.2.1.2) =2G工
            U(5.5)= 2INDI
            U(5.5)= 2INDI
            IJ 11 I = 1.5
            IJ 11 I = 1.5
            IC 21 J = 2.5
            IC 21 J = 2.5
            IF(I.3E.J) 35 %0 21
            IF(I.3E.J) 35 %0 21
            \Pi(J,I) CCNJうfC(I,J:,
            \Pi(J,I) CCNJうfC(I,J:,
        21 CCMEIYMt
        21 CCMEIYMt
        11 CJNTIVOT
        11 CJNTIVOT
            12-5
            12-5
            Call (tyTCB(0,5,5,0)
            Call (tyTCB(0,5,5,0)
            CAELEIFCE (O.5.1.EISC.Z.IZ.UR,IER)
            CAELEIFCE (O.5.1.EISC.Z.IZ.UR,IER)
            IT E 1- 1,5
            IT E 1- 1,5
            IC 5 J=2,6
            IC 5 J=2,6
            Z2(I.J) =CABS(Z(I.J.)**2
            Z2(I.J) =CABS(Z(I.J.)**2
            5 CONO!4तE
            5 CONO!4तE
            5 CONTIVME
            5 CONTIVME
            Dj (2) I=1.5
            Dj (2) I=1.5
            DO \J1 J*1,5
            DO \J1 J*1,5
    4^1 SU*2(I)FSU*7(I)+7ZII.J)
    4^1 SU*2(I)FSU*7(I)+7ZII.J)
    &%d CCNINME
    &%d CCNINME
                D5 422 I=1,5
                D5 422 I=1,5
                SVSH*(!'m\\RT(STMZ|!)
                SVSH*(!'m\\RT(STMZ|!)
    4z2 CONTIVIL
    4z2 CONTIVIL
                    DO 423 I=1.5
                    DO 423 I=1.5
                    0) 474 J=1.5
                    0) 474 J=1.5
    44& 2(!,J)=Z(I.J)/SN5R4(I)
    44& 2(!,J)=Z(I.J)/SN5R4(I)
    43 CONTINOE
    43 CONTINOE
                10 j=1,5
                10 j=1,5
                wite(g,=)(z(1,J),i=1,0,
                wite(g,=)(z(1,J),i=1,0,
                er1 10
                er1 10
                D 485 {-1.5
                D 485 {-1.5
                IJ 4.25 J=1.5
                IJ 4.25 J=1.5
    406 2Z(I,J)=CABS(Z(I,J))=#2
    406 2Z(I,J)=CABS(Z(I,J))=#2
    4DE CJNIIVOE
    4DE CJNIIVOE
O
    P(1) = PT
    P(1) = PT
    P(2):PI
```

 P(2):PI
    ```
```

323E
AB=a
820%
8202
C1-2
143
214%
dicE
2145
047
cicg
814)
211%
4121
8112
2113
C124
0115
3125
d12
\$133
\$125
M1%2
0121
\Delta122
423
<1<c
2125
8125
*12?
812?
8123
1130
4131
H132
3132
C134
4135
135
013?
*13ミ
*13%
2142
21f:
4142
0143
0144
2145
2145
<1\&?
31\&5
2\& COMTIVIE
1% cONTIVUE
IO 3%(J)= 1.6 -5 TgTP(J)
32
P(4) = PI
P(S) = 02
DO 13 J=1.5
TOMP(J)= 故
D0 20 I=1.5
CATP(I) - ZZ(I.J) P(I)
7jnP(J)=CALD'I) - JoTP(J)
K(1) = EX
g(2) - g
T(3)-E2
Y(a)=EI
I(5)=EI
SOR=SORT(1.2*R)
2C 50 J= 1,6
TコT3{J,1\=0.
[0 60 I = 1.3
N=I+3
CAET(I) = I(I) E (こASS(ZI\.J)*

```

```

 2((I-(3.0.1.0)*2)/(50R*50R:(2.0))))]*#2)
 -yTr(J.1) Ealy(I) - ToTz(N.1)
 E3 CDNTINDE
 50 ここN*Iv!i
 DS 72 J=1.5
 TOT\(J,2) 6.
 20 ミa I=1.3
 H=I+3
 CAIE(I)=K(I) - CASS(-2(I,J)A
 1(I-(0.2.1.0)*J)/(5@RT(2.E)*SO.)
    ```

```

 TOEE{J.2) - TJIE(J.2! + CALE(I)
 O% contrvil
 73 ESVITVDE
 10 32 I=2,5
 STME(I) = TOTE(1.1) - TOTE(I.2)
 DIFI(1)= IOIE(I,1: - TOTE!I,2)
 9: CONTIVRE
 L
 10 1=1.5
do {=1.6
v(1.j) = \&.a
er1 10
eri4o
c
1(1,2) = \T\
*(2.3)=1%2
v(2,3) =4%?
(14.5) = बत्
|(4.5) = 172
Y(5,5)=0%?

```
```

C143
2152
N151
0152
3123
2154
c
0155
815?
6153
3153
\$23
cl-1
\$26
1253
2154
40F
2105
15%
46%
215%
017%
6171
4172
2173
417%
\$175
175
17?
17?
129
C120
2151
31ミ2
21=3
01E4
01=5
01こ5
21%7
815.
01=%
219%
31こ!
8y2
21:=3
81%4
21-15

```

0143
2153
151
3103 2154
t1E5 0155 2157 6153 3153 8153 \(62-1\)
322 1253

2154 ن20 Clis 2157 426 \(815=\) 0173 6171 1172 8173 1179 8175 0175 d17？ 172 117 2151
31ミ2
21＝3 － 135 －1シ5 R107 \(01=\) 21ヶ2 －1き！ 8142 \(21=3\)

21） 5
\(21=15\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{6}{*}{\[
2,1!
\]}} \\
\hline & \\
\hline
\end{tabular}
c
DC \(1821=2,5\)
［5 139 Јキザ． 5
シIJ（I，J）＝
工0 122 IL \(=1.3\)
\(v=51+3\)
IO \(122 \mathrm{f}=1.3\)
－ \(4=3\)
1IJ（I．J）＝VIJ（I．J）－
1 （CABS（ \(\operatorname{cosNS}(2(E R, I)])=2(L, J)\)

224 CO4ITVE
1：AJ CONTIMEL
10152 1＝1．6
152 1J（I．Ilay．
TO 142 1－1． 5
\(\mathrm{N}=1+1\)
D \(143 \mathrm{~J}=\mathrm{N}, 5\)
244 UIJ（J．I）dIJ（I．J）
DC \(151 \quad 1=1.6\)
D0 \(152 \mathrm{~J}=1.5\)
ABA（I．J）＝－IIJ（I．J）
162 CONTINTE
151 CJNTINJE
50 1 E3 I＝1．6
C（1）\(=2\) ．
TO \(151 \mathrm{~L}=1.5\)
G（I）G（I）＋1IJ（I，L）
151 CONTINOE
153 AAA（I．I）\(=\) SOME（I）＋－（I）
20 P1 I \(=1.5\)
DC 22 J＝1．6
AA（I．J）＝AAB（I，J）
42 CCNTINOE
91 CONIINOL

CALL TMOLFF（बIJIN，TこさP，5，5，1，6，5，5，5，1EP2）
PDI \(=3\) ．
DO 334 j＝1．5
POI＝POL＋EITI（J）\(=5(\mathrm{~J})\)
303 CONJIVOE
c
return
FHD

PAhJables
\begin{tabular}{|c|c|c|c|c|c|}
\hline Adsress & IFDE & Note & Adoress & Type & Name \\
\hline 2－089056DE & CHAR & A 41 & 2－bust\％6D9 & CHMP & 1 N2： \\
\hline 5－4abiduta & P星 4 & a & 2－04805744 & \(8 \cdot 4\) & MI \\
\hline  & 策 & H2 &  &  & H2TA \\
\hline 3－4LPBabd4 & \％＊年 & \(E\) & 3－dududdis & 1944 & 6HAS \\
\hline  & 1064 & 322 &  & 89 & 8 \\
\hline Z－bปが572d & \(\mathrm{T}^{24}\) & 82 & 2－¢060575¢ & \(1{ }^{\circ}\) & I \\
\hline  & 104 & ITR2 & 2－90065755 & 154 & 12 \\
\hline  & R＊ & E 1 &  & R\％ & \(\mathbf{T}\) \\
\hline 2－8t965770 & 184 & M & 2－06045764 & \(1{ }^{-4}\) & HM \\
\hline AP－EDSODOLEt & R－4 & P51 &  & R\％4 & PI \\
\hline 2－92005712 & R＂4 & 0 & 2－04663714 & Res & f \\
\hline 2－4CDESGEA & CFS & 50R & 2－0レமく576C & \(\mathrm{H}^{+4}\) & T \\
\hline 2－30025739 & R＂4 & FPCOS & 2－42d05730 & \(\mathrm{BP}^{64}\) & TRSIN \\
\hline S－62P：004P & \(7{ }^{64}\) & －IZ & 2－6204573t & \(\mathrm{R}+{ }^{4}\) & 21\％U1 \\
\hline く－40d0572C & He4 & 23I & 2－50才05724 & 2＊4 & 252 \\
\hline dadress & sype & Aste & gatress & Sype & Name \\
\hline 5－s ctudsun & \(\mathrm{H}^{+4}\) & 6I &  & \(77^{4}\) & Aट\％ \\
\hline 5－．tectyvo合 & 5 \％ 4 & A2 & 2－n¢\％＊574C & \(4{ }^{4}\) & AZY \\
\hline を－4もあごら70 & RF4 & CDN & 3－60068＊40 & P44 & \(i\) \\
\hline くーへ0ざ5654 & R4．4 & GII &  & R44．4 & EIY \\
\hline 2－0dvoว718 & \(\mathrm{H}^{+4}\) & 41 & 2－4hte571C & ［19454 & HY \\
\hline 2－2006572C & 1＊4 & I \(\downarrow \boldsymbol{R}\) & 2－㭖ひら774 & \(1{ }^{+4}\) & 12HI \\
\hline 2－と价皆754 & 144 & J &  & 14安 & XX \\
\hline 4－HEがひnde & 月＊年 & 82 & 2－6046575C & \(1{ }^{+4}\) & I \\
\hline 2－dかもせち75ゅ & \(1{ }^{-4}\) & A &  & \(\mathrm{P}^{+4}\) & PäI \\
\hline 4－5゙6くすくぜ & 844 & PY &  & \(1{ }^{1} 4\) & P2 \\
\hline 2－6と60570日 & 134 & RPEI & 2－thetspos & P＝4 & RTblg． \\
\hline AD－IUCOCSBEL & R＊E & Tb上Ts & ＜－4000573 & \(\mathrm{R}^{*} 4\) & 5 \\
\hline b－ヶ40vadus & R＂4 & dX & ¢－batougat & P－4 & 182 \\
\hline －2－งリciobele & CW & 21NO2 & 2－t⿺尢日572a & p＝4 & ZGX \\
\hline
\end{tabular}

AREAY
\begin{tabular}{|c|c|c|}
\hline A1tress & type & 4572 \\
\hline 2－8んけめ53きロ & \(\mathrm{P}^{-4}\) & 4 \\
\hline 2－38085420 & 月04 & AnA \\
\hline 2－640052a & R＂¢ & CALK \\
\hline 2－8すט656c & 月64 & CALP \\
\hline 2－82nu55月7 & P／4 & Etir \\
\hline く－2め0う528 & \(8 \cdot 4\) & ［158 \\
\hline 2－bcusdi2z & C＊ & 1820 \\
\hline  & PF 4 & ； \\
\hline 2－U6－125480 & R＂4 & \(!\) \\
\hline 2－zdelsear & 17＊ & P \\
\hline 2－606054こ3 & 8 P 4 & 5 \\
\hline 2－2duc536a & R＋4 & SNOR \\
\hline 2－8大日＊527\％ & P＊4 & 50ッ？ \\
\hline c－rcucs349 & i＊4 & Sc゙\％ \\
\hline 2－6くut524a & R＂4 & t5？ \\
\hline く－306055うネ & R＊4 & ICID \\
\hline ＜－deuss \({ }^{\text {coss }}\) & C－5 & 0 \\
\hline 2－80日63FD & CF5 & 0 J \\
\hline c－athosatio & 月＊4 & 1 \\
\hline ＜－b20＇A 578 & H44 & 11J \\
\hline 2－2080．51 日 & R＂4 & 『IJN \\
\hline 2－3dज刀421号 & \(\mathrm{R}^{50} 4\) & 131 \\
\hline 2－dtucal 50 & \({ }^{+6}\) & UR \\
\hline 2－20uncodo & \(\mathrm{C}^{+0}\) & 2 \\
\hline 2－2de3528： & P＊\({ }^{\text {\％}}\) & 22 \\
\hline
\end{tabular}

Byies Dimessiors
\begin{tabular}{|c|c|}
\hline 144 & \((6,5)\) \\
\hline 144 & \((\overline{0}, 5)\) \\
\hline 24 & （6） \\
\hline 24 & （6） \\
\hline 144 & （5．5） \\
\hline 24 & （5） \\
\hline 48 & （6） \\
\hline 24. & （5） \\
\hline 24 & （5） \\
\hline 24 & （5） \\
\hline 24 & is： \\
\hline 24 & （6） \\
\hline 24 & （3） \\
\hline 24 & （b） \\
\hline 42 & （6，2） \\
\hline ct & （5） \\
\hline とEE & （5，6） \\
\hline \(25 E\) & \((6,6)\) \\
\hline 144 & （ 5,5 ） \\
\hline 144 & （6，6） \\
\hline 144 & （6，5） \\
\hline 404d & （1040） \\
\hline 640 & （ 5080 ） \\
\hline ceg & \((6,5)\) \\
\hline 144 & （3．5） \\
\hline
\end{tabular}

\section*{REFERENCES}
01. H. Schuch, D. Stehlik, and K.H. Hausser, Z. Naturforsh. 26, 1944 (1971)
02. P. Lau, D. Stehlik, and K.H. Hauser, J. Mag. Res. 15, 270 (1974)
'03. A. Pines, M.G. Gibby, and J.S. Waugh, J. Chem. Phys 59, 569 (1973)
04. M. Mehring, High Resolution NMR Spectroscopy in Solids, Chapt. 4 Springer-Verlag: Berlin (1976)
05. see e.g. C.P. Slichter, Principles of Magnetic Resonance, Chapt. 6 Springer-Verlag: Berlin (1978)
M. Go7dman, Spin Temperature and Magnetic Resonance in Solids, Chapt. 2 Clarendon Press: 0xford (1970)
06. S.R. Hartman and E.L. Hahn, Phys. Rev. 128, 2042 (1962)
07. D.A. MacArthur, E.L. Hahn, and R.E. Walstedt, Phys. Rey. 188, 609 (1969)
08. A. Abragham, Principles of Nuclear Magnetism, Chapt. XII Oxford University Press: London (1961)
09. D. Stehlik, A Doehring, J.P. Colpa, E._ Callaghan, and S. Kesmarky, Chem. Phys. 7, 165 (1975)
J.P. Colpa and D. Stehlik, Chem. Phys. 21; 273 (1977)
D. Stehlik and J.P. Colpa, Chem. Phys. 21, 289 (1977)
D. Stehlik, P. Rosch, P. Lau, H. Zimmerman, and K.H. Hausser, Chem. Phys. 21, 301 (1977)
10. D. Stehlik, "Mechanism of Optical Nuclear Polarization in Molecular Crystals" in Excited States, Vol. 3, ed. E.C. Lim,

Academic Press: New York (1975)
11. V. Macho, thesis, Free Univ. of Berlin (1981)
12. R. Furrer, M. Heinrich, D. Stehlik, and H. Zimmerman, Chem. Phys. 36, 27 (1979)
13. M. Tinkham, Group Theory and quantum Mechanics, McGraw Hill: New York (1964)
14. J.H. van der Waals and M.S. de Groot, "Magnetic Interactions Related to Phosphorescence" in Triplet State, ed. A.B. Zahlan, Cambridge University Press: Cambridge (1967)
15. W.S. Veeman, thesis, Univ. of Leiden (197?)
16. W.S. Yeeman, A.L.J. van der Poel and J.H. van der Naals, Mol. Phys. 29, 225 (1975)
17. S.J. Kohler, thesis, Univ. of California, Berkeley (1975)
18. J.D. Ellett, Jr., M.G. Gibby, U. Hzebrlen, L.M. Huber, M. Mehring, A. Pines, and J.S. Waugh, in Adv. in Mag. Res., Vol. 3 (1971)
M.E. Stoll, A.J. Vega, an R.W. Vaughan, Rev. Sci. Instrum. 48, 800 (1977)
R.F.Karlicek, Jr., I.J. Lowe, J. Mag. Res. 32, 199 (1978)
19. V.R. Cross, R.K. Hester and J.S. Waugh, Rev. Sci. Instrum. 47, 1486 (1976)
20. E.O. Stejskal and J. Schaefer, J. Mag. Res. 14, 160 (1974)
21. W. Shih, thesis, Univ. of California, Berkeley (1979)
22. B. Leskovar, Nucl. Instr. and Meth. 47, 29 (1967)
23. J.G. Powles and P. Mansfield, Phys. Let. 2, 58 (1962)
J.G. Powles and J.H. Strange, Proc. Phys. Soc. 82, 6 (1963)
J.S. Waugh and C.H. Wang, Phys. Rev. 162, 209 (1967)
24. D.M. Burns and J. Iball, Prac. Ray. Sac. Lond. A 227, 200 (i955)
25. see, e.g. H.E. Buckley, Crystal Growth, John Wiley and Sons: New York, pg. 73 (1951)
26. H. Zimmerman, personal communication
27. M. Mehring, High Resolution NMR Spectroscopy in Solids, Chapt. 2 Springer-Verlag: Berlin (1976)
28. IMSL library, version 8.0, Houston, Texas (1980)
29. Oriel Corp. Catalog, Stamford, Conn.
30. D. Stehlik, private communication
31. K.H. Hausser, D. Lauer, H. Schuch, and D. Stehlik, Proc. XVIth Congress AMPERE, Bucharest (1970)
32. S. Pausak, A. Pines, and J.S. Waugh, J. Chem. Phys. 59, 591 (1973)
33. S. Pausak, J. Tegerreldt, and J.S. Waugh, J. Chem. Phys. 61, 1338 (1974)
34. M. Mehring, High Resolution NMR Spectroscopy in Solids, Chapt. 5 Springer-Verlag: Berlin (1976)
35. J. van Dongen Torman and W.S. Veeman, J. Chem. Phys. 68, 3233 (1978)
36. W.S. Veeman, Phil. Trans. Roy. Soc. Lond. A 299, 629 (1981)
37. J. van Dongen Torman, W.S. Veeman, and E. De Boer, J. Mag. Res. 32, 49 (1978)
38. D.L. Van der Hart, J. Chem. Phys. 64, 33D (1976)
39. J.J. Chang, R.G. Griffin, and A. Pines, J. Chem. Phys., 62, 4923 (1975)
40. J. Tegenfeldt, H. Feucht, G. Ruschitzka, and U. Haeberlen, J. Mag. Res. 39, 509 (1980)
41. M. Gibby, thesis, M.I.T. (1972)
42. J.B. Stothers, Carbon-13 Spectroscopy, Academic Press: New York (1972)
43. see e.g. J.A. Pople, W.G. Schneider, and J.J. Bernstein, High Resolution NMR, McGraw Hill: New York (1959)
44. L.B. Schreiber and R.W. Vaughn, Chem. Phys. Let. 26, 586 (1974)
45. K.S. Krishnan, and Banerjee, Philos. Trans. Roy. Soc. Lond. 234, 265 (1935)
46. J.A. Osborn, Phys. Rev. 67, 351 (1945)
47. D. Stehlik, personal comunication personal observation
48. J. Giraud and C. Marzin, Org. Mag. Res. 12, 647 (1979)
L.F. Johnson and W.C. Jankowski, \({ }^{13} \underline{C}\) NMR Spectra, Wiley: New York (1972)

Additional references (in chronological order)
ONP
J.P. Colpa, K.H. Hausser, and D. Stehlik, Z. Naturforsch. 26a, 1792 (1971)
G.Dittrich, D. Stehlik, and K.H. Hausser, Z. Naturforsch. 32a, 652 (1977)
J.P. Colpa, F Seiff, and D. Stehlik, Chem. Phys. 33, 79 (1978)
H.M. Vieth, V. Macho, and D. Stehlik, Chem. Phys. Let. 60, 368 (1979)
H.M. Vieth, V. Macho, and D. Stehlik, J. Phys. Chem. 83, 3435 (1979)
D. Stehlik, R. Furrer, and V. Macho, J. Phys, Chem. 83, 3440 (1979)
J.P. Colpa, D. Stehlik, and H.M. Vieth, Chem. Phys. 47, 73 (1980)

\section*{EPR}
R. Furrer, J. Gromer, A. Kacher, M. Schorer, and H.C. Wolf, Chem. Phys. 9; 445 (1975)
R. Furrer, J. Petersen, and D. Stehlik, Chem. Phys. 44, 1 (1979)
V. Macho, J.P. Celpa, and D. Stehlik, Chem. Phys. 44, 113 (1979)
R. Furrer, F. Fujara, and J. Petersen, J. Chem. Phys. 73, 3139 (1980)```


[^0]:    *STO NTCDIN 2000-5617;7600
    *LOA NTCDIN 110000-113617;7600:P
    *STO NTCDIN 11000C-113617;7600:P

