Permeability of salt-crystal interfaces to brine

PDF Version Also Available for Download.

Description

To investigate the movement of brine along grain boundaries in polycrystalline salt, measurements have been made of the radial flow of brine through the interface between cylindrical salt crystals under axial stresses to 140 bar and temperatures to 80/sup 0/C. For constant conditions, the total flow of brine showed a linear dependence on the logarithm of time, and the reciprocal permeability increased linearly with time. Loss of salt from the interface by pressure solution effects was more than enough to account for the decrease in the apparent thickness of the interface (i.e., that which may be estimated for an interface ... continued below

Physical Description

Pages: 17

Creation Information

Gilpatrick, L.O.; Baes, C.F., Jr.; Shor, A.J. & Canonico, C.M. June 1, 1982.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

To investigate the movement of brine along grain boundaries in polycrystalline salt, measurements have been made of the radial flow of brine through the interface between cylindrical salt crystals under axial stresses to 140 bar and temperatures to 80/sup 0/C. For constant conditions, the total flow of brine showed a linear dependence on the logarithm of time, and the reciprocal permeability increased linearly with time. Loss of salt from the interface by pressure solution effects was more than enough to account for the decrease in the apparent thickness of the interface (i.e., that which may be estimated for an interface of the same permeability formed by plane parallel surfaces). This apparent thickness, initially as large as 10 ..mu..m, decreased to as little as 0.2 ..mu..m with exposure to stress and flowing brine. It decreased quickly with sudden increases in axial stress and usually increased, though not reversibly, with decreases in stress. The rate of increase in the reciprocal permeability with time was roughly proportional to the stress and to the square of the hydraulic pressure drop. Assuming similar apparent thicknesses for the grain boundaries in polycrystalline salt, permeabilities are predicted that are quite consistent with the low values reported for stressed core specimens.

Physical Description

Pages: 17

Notes

NTIS, PC A02/MF A01.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE82016580
  • Report No.: ORNL-5874
  • Grant Number: W-7405-ENG-26
  • DOI: 10.2172/5130242 | External Link
  • Office of Scientific & Technical Information Report Number: 5130242
  • Archival Resource Key: ark:/67531/metadc1055103

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 1982

Added to The UNT Digital Library

  • Jan. 22, 2018, 7:23 a.m.

Description Last Updated

  • Feb. 1, 2018, 3:19 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Gilpatrick, L.O.; Baes, C.F., Jr.; Shor, A.J. & Canonico, C.M. Permeability of salt-crystal interfaces to brine, report, June 1, 1982; Tennessee. (digital.library.unt.edu/ark:/67531/metadc1055103/: accessed September 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.