Characteristics of the oceanic mixed layer over the North Pacific were examined utilizing a number of statistical methods. Based on the analyses of twelve years of data, a quasi-meridional differentiation (QMD) in sea surface temperature (SST) spectra across the North Pacific was observed. The SST spectra became increasingly red as an increasing function of latitude. A strong 21 to 26 day cycle in SST anomalies is discussed which may be a reflection of heat fluxes. These fluxes also vacillate significantly on this time-scale in conjunction with cycles observed in the atmospheric energy modes of available potential and kinetic energy. Examination …
continued below
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this thesis or dissertation.
Follow the links below to find similar items on the Digital Library.
Description
Characteristics of the oceanic mixed layer over the North Pacific were examined utilizing a number of statistical methods. Based on the analyses of twelve years of data, a quasi-meridional differentiation (QMD) in sea surface temperature (SST) spectra across the North Pacific was observed. The SST spectra became increasingly red as an increasing function of latitude. A strong 21 to 26 day cycle in SST anomalies is discussed which may be a reflection of heat fluxes. These fluxes also vacillate significantly on this time-scale in conjunction with cycles observed in the atmospheric energy modes of available potential and kinetic energy. Examination of an oceanic heat budget on a spatial and temporal basis suggest that the impact of latent and sensible heat fluxes upon ..delta..SST is partially a function of the magnitude of the heat fluxes as well as of the depth to which their effects are mixed. The heat budget analyses and the fitting of power spectra of SST anomalies over the North Pacific to a two-parameter oceanic model, suggest that SST behavior over the mid-oceanic regions of the North Pacific is dominated by the influence of latent and sensible heat fluxes. On the other hand, over the remainder of the North Pacific one could surmise that other processes, such as advection of heat within the ocean, the entrainment heat flux at the base of the mixed layer, and radiation are at least as important in determining the behavior of SST's. By analyzing anomalous patterns of atmospheric thickness and SST's, it appears that the modification of air masses as they are advected over oceanic waters, as well as the stability of the lower atmosphere, are instrumental factors in determining the nature of large-scale air-sea heat exchange processes.
This document is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Ciesielski, P E.Variability Within the Ocean-Atmospheric System Over the North Pacific,
thesis or dissertation,
January 1, 1980;
Fort Collins, Colorado.
(https://digital.library.unt.edu/ark:/67531/metadc1054994/:
accessed June 17, 2025),
University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.