## DECLAIMER

This report wis prepared as an socomat of work sponsored by at agency of the United Sites Government. Neither the United Sivas Government nor any agency thereof, or any of their employees, makes my warranty, express or implied, or assumes any legal liability or responsetitty for the accuracy, completeness, or cefinacms of any information, apparatus, product, or process tivelowed, or represents that its we would mon infringe privately owed rights. Referlace herein to my specific comnamerial produce, process, or service by trade same, trademark, menfactarer, or otherwise does ax eecemarily cometinte or imply its endorsement, roommentation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expected beria do sot necessarily state or reflect those of the United Stases Gevernmean $x$ any agency thereof.

# VALIDATION OF KENO Va AND TWO CROSSSECTICN LIBRARIES FOR CRITICALITY CALCULATIONS OF LOW-ENRICHED URANIUM SYSTEMS 

M. E. Easter

DE85 018148
Date P-whished - July 1985

COMPUTING AND TELECOMMUNICATIONS DIVISION
at
Oak Rider National Laboratory
Post Office Box X
Oak Ridge, TN 37831

Martin Marietta Energy Systems, Inc.
operation the
Oak Ridge National Laboratory Oak Ridge Gaseous Dificaion Plant Oak Ridge Y-12 Plant Padncah Gaseous Diffusion Plant
under Contract No. AC05-840R21400
for the
DEPARTMENT OF ENERGY

## CONTENTS

ACKNOWLEDGEMENTS ..... vii
ABSTRACT ..... ix
SUMMARY ..... xi

1. INTRODUCTION ..... 1
2. DESCRIPTION OF EXPERIMENTS ..... 2
2.1 Y-1948 CRITICAL EXPERIMENTS ..... 2
2.2 ROCKY FLATS PLANT CRITICAL EXPERIMENTS ..... 5
3. CALCULATIONAL METHOD ..... 7
4. VALIDATION OF KENO V.a AND TWO CROSS.SECTION LIBRARIES ..... 8
5. TESTS FOR TRENDS AND BIASES ..... I4
6. RESULTS AND CONCLUSIONS ..... 16
LIST OF REFERENCES ..... 26
APPENDIXES ..... 27
APPENDIX A DESCRIDTION OF SCALE CODE SYSTEM ..... 28
APPENDIX B COMPARISON OF NUMBER DENSITY CALCULATIONS ..... 30
APPENDIX C CODE INPUT FOR ALL CASES ..... 31
APPENDIX D ADDITIONAL COMMENTS ABOUT THE ROCKY FLATS CRITICAL EXPERIMENTS ..... 67
APPENDIX E CALCULATION OF TOLERANCE LIMITS ..... 74
FIGURE ..... PAGE
6.1 $\mathrm{K}_{\mathrm{af}}$ ( 16 -group) versus $\mathbf{A E}$, linear model and lower tolerance limit ..... 17
$6.2 \mathrm{~K}_{\text {eff }}$ (27-group) versus $\mathrm{H}:{ }^{\mathbf{2 3 5}} \mathrm{U}$ for $\mathrm{U}(1.4)$, linear model and lower tolerance limit ..... 18
$6.3 K_{\text {eff }}$ (27-group) versus $\mathbf{H}:{ }^{\mathbf{2 3 5}} \mathrm{U}$ for $\mathrm{U}(2.0)$, linear model and lower tolerance limit ..... 19
$6.4 K_{\text {efl }}$ (27-group) versus $H:{ }^{235} U$ for $U(3.0)$, linear model and lower tolerance limit ..... 20
6.5 $\mathrm{K}_{\text {eff }}$ (27-group) versus $\mathrm{H}^{235} \mathrm{U}$ for $\mathrm{U}(4.98)$, linear model and lower tolerance limit ..... 21
$6.6 \mathrm{k}_{\text {eff }}$ (27-group) versus AE for $\mathrm{U}(1.4)$. linear model and lower tolerance limit ..... 22
6.7 $\mathrm{K}_{\text {eff }}$ (27-group) versus at ior $\cup(2.0)$, linear model and lower tolerance limit ..... 23
$6.8 \mathrm{k}_{\text {eff }}$ (27-group) versus AE for $\mathrm{U}(3.0)$, linear model and lower tolerance limit ..... 24
$6.9 \mathrm{k}_{\text {efi }}$ (27-group) versus $\mathrm{A}^{\text {r }}$, for $\mathrm{U}(4.98)$, linear model and lower tolerance Iimit ..... 25
D. 1 North split table reflector map showing location of non-fire retardent Plexiglas ..... 69
D. 2 South split table reflector map showing location of non-fire retardent Plexiglas ..... 70
D. 3 Dimensions of north split table reflector used in computer models ..... 71
D 4 Dimensions of south split table reflector used in computer models ..... 72
E. 1 Plot of example data with linear model and lower tolerance limit ..... 76

## LIST OF TABLES

TABLE ..... PAGE
2.1 Calculated k-effectives ..... 3
4.1 Comparison of KENO V.a with KENO IV using the 27-group library ..... 9
4.2 Comparison of KENO V.a with KENO IV using the 16 -group library ..... 9
4.3 KENO V.a with defauit histories and modified histories usiug the 27-group libiary ..... 9
4.4 KENO V.a with default histories and modified histories using the 1 -group library ..... 10
4.5 KENO V.a with and without reflector biasing using the 27-group library ..... 10
4.6 KENO V.a with and without reflector biasing using the 16 -group library ..... 10
4.7 Values of sigma $\mathbf{P}$ ..... 12
4.8 Comparison of results from SCALE after revision ..... 13
5.1 Experiment parameters considered in trend analysis ..... 15
5.2 Correlation coefficients and significance levels obtained by comparing experiment parameters with results from 27 -group and 16-group calculations ..... 15
A. 1 Calculated $k$-effectives ..... 29
B. 1 Comparison of number densities ..... 30
D. 1 Hydrogenous material in fuel at $\mathrm{H} / \mathrm{U}=0.77$ ..... 68
D. 2 Comparison of $\mathrm{H}: \mathrm{U}$ values ..... 68
E. 1 Example data ..... 75

## ACKNOWLEDGEMENTS

The author is grateful to the following for their help and support in preparing this report: H. R. Dyer, R. M. Westfall, and H. L. Dodds for defining the project and directing my work, L. M. Petrie, N. C. Landers and J. C. Turner for their many consultations on the application of KENO V.a, and Lindy Norris for preparing the text.

This work was supported by Health, Safety and Environmental Affairs Division of the Oak Ridge Gaseous Diffusion Plant under account number 1207-0002.


#### Abstract

The SCALE' code system, utilizing the Monie Carlo computer code KENO V.a, ${ }^{2}$ was employed to caiculate 37 critical experimerts The critical assemblies had ${ }^{235} \mathrm{U}$ enrichments of $5 \%$ or less and cover a variety of geometries and materials. Values of $k_{\text {eff }}$ were calculated using two different cross-section libraries for each experiment te determine if certain experimental parameters affected results using either of the cross-section libraries. The !6-energy-group Hansen-Roach and the 27-energy-group ENDF/B-IV cross-sectipa libraries, availabie in SCALE, were used in this validation study, and both give good results for the experiments considered. It is coniluded that the code and cross sections are adequate for low-enriched uranium systems ar. that reliable criticality safety calculations can be made for such systems provided the limits of validated applicability are not exceeded.


## SUMMARY

Recently a new version of the KENO Monte Carlo criticality code was released for testing. This new version, KENO V.a, ${ }^{2}$ is an extensive revision of KENO IV ${ }^{3}$ and includes an improved geometry package. The purpose of this work is to validate ${ }^{4}$ the SCALE' version of the KENO V.a criticality code when usei with either 16-energy-group Hansen-Roach or 27 -energygroup ENDF/B-IV cross sections for low-eariched uranium systems. The effective neutron multiplication factor, $k_{\text {eff }}$ was calculated for 37 critical assemblies which have ${ }^{235} \mathrm{U}$ earichments of $5 \%$ or less. Some of the critical assemblies were included in an earlier validation report by Handley and Hoppers and some were taken from a series of intorstitially moderated and plexiglas reflected damp $\mathrm{U}_{3} \mathrm{O}_{2}$ experiments performed at the Rocky Flats Plant ${ }^{6-8}$ (RFP).

The RFP criticals are of interest because of their low H: ${ }^{235} \mathrm{U}$ atomic ratios (<50). However, these results cannot be compared directly with results from the other experiments because of the heterogeneous effect of the interstitial moderator. Eight RFP experiments were modeled, four were optimum-moderated ( 2.44 -cm-thick interstitial moderator) and the other four were undermoderated ( 0.929 -cm-thick interstitial moderator). It is noted that the $k_{\text {eff's }}$ calculated using Hansen-Roach cross sections are consistently higher than the ENDF/B-IV $k_{\text {efi }}$ 's for all of the Rocky Flats criticals.

For the 29 experiments cornmon to this study and Ref. 5, : 1 effort has been macie to define trends in $k_{\text {eff }}$ relative to the experimental parameters. The paramkters investigated include $\mathbf{H}{ }^{235} \mathrm{U}$ atom ratio, $H:{ }^{238} \mathrm{U}$ atom ratio, and enrichment. Also, the average energy of a neutron causing fission weighted by energy group number (AE), a calculated parameter, was used to investigate trends. This parameter was used in an earlier validation report ${ }^{5}$ and consists of summing the products of energy group number times the fission fraction for that group and then dividing by the sum of the fission fractions. However, the calculated parameter and the $\mathbf{H}:{ }^{235} \mathrm{U}$ atom ratio cannot be considered independent because there is a strong correlation between the two.

The values of $k_{\text {efl }}$ calculated using 27 -group ENDF/B-IV cross-section data show a strong correlation with H:U-235 ratio, average energy, and enrichment. Two linear models developed to describe these trends are:

$$
\begin{aligned}
& \text { 1) } k_{\text {eff }}=1.0098-2.9875 E-5^{*}\left(\mathrm{H}^{235} \mathrm{U}\right)+2.2407 \mathrm{E}-3^{*} \text { (enrichment) } \\
& \text { 2) } k_{\text {eff }}=1.1710-7.6653 \mathrm{E}-3^{*}(\mathrm{AE})+4.1472 \mathrm{E}-3^{*} \text { (enrichment). }
\end{aligned}
$$

The first model employs $\mathrm{H}:{ }^{235} \mathrm{U}$ and enrichment and accounts for $61 \%$ of the variation in 29 experiments, while the second noodel uses average energy and enrichment and accounts for $59 \%$ of the variation in the same 29 experiments. The mean value for all 29 experiments using the 27-group data is 1.0053 with standard deviation 0.0096 .

The values of $k_{\text {er }}$ calculated using 16 -group cross-section data exhibit a correlation with only one parameter, avcrage energy. This trend is described by the following linear model:

$$
k_{e f t}=1.2267-1.5297 \mathrm{E}-2^{*}(\mathrm{AE})
$$

This model accounts for $59 \%$ of the variation in 29 experiments. The mean value for all 29 experiments using Hansen-Roach data is 0.9097 with standard deviation 0.0094 .

The results of this work indicate that trends in $k_{\text {eff }}$ obtained using KENO V.a with 16 -group Hansen-Roach data can be generally described by a linear model for the validated range of average energy. Similarly, when using KENO V.a with the 27 -group ENDF/B-IV data, trends in $\mathrm{K}_{\text {erf }}$ can be generally described by linear models which depend on the validated range of $\mathrm{H}:{ }^{233} \mathrm{U}$ atomic ratio. :verage energy group, and enrichment. Both cross-section sets used with KENO V.a provide good agreement with experimental results for low-enriched uranium systems.

## 1. INTRODUCTION

In order to analyze nuciear criticality safety without undue conservatism or expense, experimental data are often supplerrented by calculations. Therefore, each calculational method must be correlated with relevant experimental data in order to establish a bias (if one exists) in the method over a specific area of applicability. The Oak Ridee Gaseous Diffusion Plant (ORGDP) Criticality Safety Group has previously used KENO IV for riticality safety calculations of plant operations. With the introduction of KENO V.a, which is an extensive revision of KENO IV, ORGDP has decided to validate KENO V.a as found in the SCALE code system (see Appendix A for a brief description of SCALE). This validation effort will allow the application of KENO V.a in the analysis of low-eariched ( $<5 \%$ ) uranium systems commonly found at ORGDP.

The purpose of this investigation is twofold, first to determine biases in calculated $\mathbf{k}_{\text {eri }}$ 's for systems with uranium earichments of $5 \%$ or less and, second, to validate a standardized procedure for performing criticality calculations. The effort to standardize criticality calculations utilizer the CSAS25 control module available in SCALE. This module requires a minimal ansount of eagineering data about the problem to run a successful calculation. From the inpot data, the control module calculates atomic number densities and certain resonance parameters; then it calls an established sequence of functional modules to process the cross sections and perform the criticality calculation. A check on the number densities calculated by SCALE is included in Appendix B.

The KENO V.a code was also validated by the Oak Ridge Y-12 plant for applicatinn $\boldsymbol{\omega}$ systems of highly enriched uranium. A fmzen version of the SCALE code system, containing the KENO V.a code and all the programs and cross-section data used by SCALE, was prepared by ihe Oak Ridge National Laboratory Computer Sciences Division to be used in the Y-12 validation. This special SCALE package was named Y12CSG and is under the control of the Y-12 Criticality Safety Group for quality assu ance purposes. The same version of SCALE was used in this validation because of the strict quality assurance precautions taken by the Y-12 plant.

A total of 37 low-enriched, experimentally critical systems applicable to the ORGDP, were modeled. Each experiment was modeled using the 16 -group Jansen-Roach library and the 27-group ENDF/B-IV library yielding two values of $k_{\text {eff }}$ for each experiment. Appendix $\mathbf{C}$ contains listings for all experiments modeled, and Appendix $\mathbf{D}$ contains some additional information about the Rocky Flats Plant criticals.

## 2. DESCRIPTION OF EXPERIMENTS

Included in this section are descriptions of the sritical experiments and the $k_{\text {enf }}$ calculated by KENO V.a (see Table 2.1). The first part of this section describes the experiments invertigated in Ref. 5 and employs the same notation for case number. Experiments in Ref. 5 were excluded if experimer.. documentation could not be found or if they were not of interest. Proper documentation could not be found for cases 1, 2, 3, 7, 8, 9, and 10 in Ref. S. Pipe intersections found in cases 37, 18, 39, and 40 are not included since the frozen version of KENO V.a does not include generalized geometry.

The sesond part of this section describes low-eariched damp oxide (i.e., H: ${ }^{235} \mathrm{U}<50$ ) experiments that are of special interest because of limited analysis previously available in this area. These experiments were performed at the RFP using fuel cubes 6 inches on a side at three different H:U atomic ratios. ${ }^{6-8}$ Cases 41 through 48 consist of eight interstitially moderated and Flexiglas reflected damp oxide experiments.

## 21 Y-1948 CRITICAL EXPERIMENTS

Case 4 - An unreflected rectangular parallelepiped of homozeneous U(1.4)F4 and paraffin with a $\mathrm{H}:{ }^{233} \mathrm{U}$ atomic ratio of 421.8 . Dimensions of the homogenized assembly are $93.1 \mathrm{~cm} x$ $93.0 \mathrm{~cm} \times 123.8 \mathrm{~cm}$ (Ref. 5 ).

Case 5 - An unreflected rectangular parallelepiped of homogeneous $U(1.4) F_{4}$ and paraffin with a $\mathrm{H}:{ }^{235} \mathrm{U}$ atomic ratio of 421.8. Dimensions of the homogenized assembly are $100.0 \mathrm{~cm} \times$ $99.9 \mathrm{~cm} \times 103.1 \mathrm{~cm}$ (Ref. 5).

Case 6 - An unreflected rectangular parallelepiped of homogeneous $\mathrm{U}(1.4) \mathrm{F}_{4}$ and paraffin with a $H^{233} \mathrm{U}$ atomic ratio of 421.8. Dimensions of the homogenized assembly are $130.7 \mathrm{~cm} x$ $130.6 \mathrm{~cm} \times 74.2 \mathrm{~cm}$ (Ref. 5).

Case 11-A reflected rectanguiar parallelepiped of homogeneous $\mathrm{U}(2) \mathrm{F}_{4}$ and paraffin with a $\mathrm{H}:{ }^{235} \mathrm{U}$ atomic ratio of 195.2 . Dimensions of the homogenized fuel assembly are $56.22 \mathrm{~cm} \times$ $56.22 \mathrm{~cm} \times 112.88 \mathrm{~cm}$, reflected with 15.2 cm of paraffin on top and sides and 15.2 cm of Plexiglas on the bottom (Ref. 5).

Case 12 - An unreflected rectangular parallelepiped of homogeneous U(2)F4 and paraffin with a $\mathrm{H}:{ }^{235} \mathrm{U}$ atomic ratio of 195.2 . Dimensions of the homogenized fuel assembly are $56.22 \mathrm{~cm} x$ $56.22 \mathrm{~cm} \times 112.88 \mathrm{~cm}$ (Ref. 5).

Case 13-A reflected rectangular parallelepiped of homogeneous $\mathrm{U}(2) \mathrm{F}_{4}$ and paraffin with a $\mathrm{H}^{233} \mathrm{U}$ atomic ratio of 293.9. Dimensions of the homogenized fuel assembly ars $51.11 \mathrm{~cm} \times$ $51.11 \mathrm{~cm} \times 73.87 \mathrm{~cm}$, seflected with 15.2 cm of paralfin on top and sides anu 15.2 cm of Plexiglas on the botom (Ref. 5).

Case 14 - An unreflected rectangular parallelepiped of homogeneous $U(2) F_{4}$ and paraffin with a $\mathrm{H}:{ }^{233} \mathrm{U}$ atomic ratio of 293.9 . Dimensions of the homogenized fuel assembly are $56.22 \mathrm{~cm} \times$ $56.22 \mathrm{~cm} \times 122.47 \mathrm{~cm}$ (Ref. 5).

Case 15-A reflected rectanguiar parallelepiped of homogeneous $\mathrm{U}(2) \mathrm{F}_{4}$ and paraffin with a $\mathbf{H}^{233} \mathrm{U}$ atomic ratio of 406.3 . Dimensiuns of the homogenized fuel assembly are $53.67 \mathrm{~cm} \times$ $53.67 \mathrm{~cm} \times 54.29 \mathrm{~cm}$, reflected with 15.2 cm of paraffin on top and sides and 15.2 cm of Plexiglas on the bottom (Ref. 5).

Case 16-A reflected rectangular parallelepiped of homogeneous $\mathbf{U}(2) \mathrm{F}_{4}$ and paraffin with a $\mathrm{H}:{ }^{233} \mathrm{U}$ atomic ratio of 495.9 . Dimensions of the homogenized fuel assembly are 46.00 cm x $46.00 \mathrm{~cm} \times 96.57 \mathrm{~cm}$, reflected with 15.2 cm of paraffin on top and sides and 15.2 cm of Plexigias on the bottom (Ref. 5).

Case 17-A reflected rectangular parallelepiped of homogeneous $\mathrm{U}(2) \mathrm{F}_{4}$ and paraffin with a H: ${ }^{233} \mathrm{U}$ atomic ratio of 613.6 . Dimensions of the homogenized fucl assembly are $56.32 \mathrm{~cm} \times$ $61.29 \mathrm{~cm} \times 54.08 \mathrm{~cm}$, reflected with 15.2 cm of polyethylene on top and sides and 15.2 cm of Plexiglas on the bottom (Ref. 5).

Table 2.1 Calculated $k$-effectives

| Case no. | Ref. | $\mathbf{k}$-effect-'e $\pm 1$ sigma |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ENDF/B-IV |  | Hansen-Roach |  |
| 04 | 5 | $1.001 \pm$ | 0.003 | $0.996 \pm$ | 0.003 |
| 05 | 5 | 0.992 | 0.003 | 0.998 | 0.003 |
| 06 | 5 | 0.994 | 0.003 | 1.008 | 0.003 |
| 11 | 5 | 0.998 | 0.004 | 0.996 | 0.004 |
| 12 | 5 | 1.009 | 0.004 | 0.997 | 0.063 |
| 13 | 5 | 0.999 | 0.004 | 1.003 | 0.003 |
| 14 | 5 | 1.000 | 0.004 | 0.996 | 0.004 |
| 15 | 5 | 0.998 | 0.004 | 1.001 | 0.004 |
| 16 | 5 | 0.999 | 0.004 | 0.997 | 0.003 |
| 17 | 5 | 0.996 | 0.003 | 0.984 | 0.003 |
| 18 | 5 | 1.000 | 0.003 | 0.989 | 0.004 |
| 19 | 5 | 0.992 | 0.002 | 0.995 | 0.003 |
| 20 | 5 | 0.991 | 0.003 | 0.988 | 0.003 |
| 21 | 5 | 1.016 | 0.004 | 1.014 | 0.004 |
| 22 | 5 | 1.014 | 0.004 | 1.017 | 0.004 |
| 23 | 5 | 1.022 | 0.005 | 1.009 | 0.005 |
| 24 | 5 | 1.014 | 0.005 | 1.012 | 0.005 |
| 25 | 5 | 1.014 | 0.005 | 1.010 | 0.005 |
| 26 | 5 | 1.017 | 0.004 | 1.006 | 0.004 |
| 27 | 5 | 1.016 | 0.004 | 1.019 | 0.004 |
| 28 | 5 | 1.013 | 0.004 | 1.009 | 0.004 |
| 29 | 5 | 1.015 | 0.004 | 0.995 | 0.005 |
| 30 | 5 | 1.012 | 0.004 | 0.993 | 0.004 |
| 31 | 5 | 1.021 | 0.004 | 1.001 | 0.005 |
| 32 | 5 | 1.004 | 0.004 | 0.992 | 0.004 |
| 33 | 5 | 0.993 | 0.004 | 1.000 | 0.004 |
| 34 | 5 | 1.003 | 0.004 | 0.996 | 0.00 \% |
| 35 | 5 | 1.009 | 0.004 | 0.986 | 0.004 |
| 36 | 5 | 1.003 | 0.605 | 0.987 | 0.004 |
| $1^{2}$ | 6 | 1.009 | 0.003 | 1.025 | 0.003 |
| $2{ }^{2}$ | 6 | 1.007 | 0.004 | 1.012 | 0.103 |
| $3^{\text {b }}$ | 6 | 0.992 | 0.003 | 1.012 | 0.004 |
| $1^{\text {b }}$ | 7 | 1.012 | 0.003 | 1.016 | 0.003 |
| $2^{\text {b }}$ | 7 | 1.009 | 0.003 | 1.018 | 0.003 |
| $3{ }^{\prime \prime}$ | 7 | 1.009 | 0.003 | 1.018 | 0.003 |
| $F^{6}$ | 8 | 1.027 | 0.004 | 1.041 | 0.004 |
| $\mathrm{G}^{\mathbf{a}}$ | 8 | 1.027 | 0.004 | 1.033 | 0.003 |

*Optimum moderated experiment.
${ }^{\mathrm{b}}$ Undermoderated experiment.

Case 18 - An unreflected rectangular parallelepiped of homogeneous $\mathbf{U}(2) \mathrm{F}_{4}$ and paraffin with a $\mathrm{H}:{ }^{235} \mathrm{U}$ atsmic ratio of 613.6. Dimensions of the homogenized fuel assembly are 56.32 cm x $61.29 \mathrm{cra} \times 54.08 \mathrm{~cm}$ (Ref. 5).

Case 19 - A reflected rectangular parallelepiped of homogeneous $\mathbf{U}(2) \mathrm{F}_{4}$ and paraffin with a $\mathrm{H}:{ }^{235} \mathrm{IJ}$ atomic ratio of 971.7 . Dimensions of the homogenized fuel assembly are $76.51 \mathrm{~cm} \times$ $76.44 \mathrm{~cm} \times 82.42 \mathrm{~cm}$, reflected with 15.2 cm of polyethylere on top and sides and 15.2 cm of Piexiglas on the bottem (Ref. 5).

Case 20 - Ac: unreflected rectangular parallelepiped of homogeneous $U(2) F_{4}$ and paraffir with a $\mathrm{H}:{ }^{235} \mathrm{U}$ atomic ratio of 971.7 . Dinensions of the homogenized fuel assembly are $81.45 \mathrm{~cm} \times$ $86.70 \mathrm{~cm} \times 88.22 \mathrm{~cm}$ (Ref. 5).

Case 21 - A reflected rectangular parallelepiped of homogeneous $U(3) F_{4}$ and paraffin with a $H:{ }^{235} U$ atomic ratio of 133.4 . Dimensions of the homogenized fuel assembly are $51.14 \mathrm{~cm} x$ $51.14 \mathrm{~cm} \times 51.27 \mathrm{~cm}$, reflected with 15.2 cm of paraffin on top and sides and 15.2 cm of Plexiglas on the bottom (Ref. 5).

Case 22 - A reflected rectangular parallelepiped of homogeneous $U(3) F_{4}$ and faraffin with a $H:{ }^{235} \mathrm{U}$ atomic ratio of 133.4 . Dimensions of the homogenized fuel assembly are $43.47 \mathrm{~cm} \times$ $43.47 \mathrm{~cm} \times 86.39 \mathrm{~cm}$, reflected with 15.2 cm of paraffin on top and sides and 15.2 cm of Plexiglas on the bottom (Ref. 5).

Case 23 - A reflected rectangular parallelepiped of homogeneous $U(3) F_{4}$ and paraffin with a $\mathrm{H}^{: 235} \mathrm{U}$ atomic ratio of 133.4 . Dimensions of the homogenized fuel assembly are $46.02 \mathrm{~cm} \times$ $46.02 \mathrm{~cm} \times 67.57 \mathrm{~cm}$, reflected with 15.2 cm of paraffin on $\mathrm{tc}, \mathrm{p}$ and sides and 15.2 cm of Plexiglas on the bottom (Ref. 5).

Case 24 - A : iflected rectangular parallelepiped of homogeneous $U(3) F_{4}$ and paraffin with a $\mathrm{H}:{ }^{235} \mathrm{U}$ atomic ratio of 133.4. Dimensions of the homogenized fuel assembly are $56.25 \mathrm{~cm} \times$ $56.25 \mathrm{~cm} \times 43.41 \mathrm{~cm}$, refected with 15.2 cm of paraffin on top and sides and 15.2 cm of Plexiglas un the bottom (Ref. 5).

Case 25 - A reflected rectangular parallelepiped of homogeneous $\mathbf{U ( 3 )} \mathrm{F}_{4}$ and paraffin with a $\mathrm{H}:{ }^{235} \mathrm{U}$ atomic ratio of 133.4. Dimensions of the homogenized fuel assembly are $6: .36 \mathrm{~cm} \mathrm{x}$ $61.36 \mathrm{~cm} \times 38.67 \mathrm{~cm}$, reflected with 15.2 cm of paraffin on top and sides and 15.2 cm of Plexiglas on the bottom (Ref. 5).

Case 26 - An unreflected rectangular parallelepiped of homogeneous $U(3) F_{4}$ and paraffin with a $\mathrm{H}:{ }^{235} \mathrm{U}$ atomic ratio of 133.4 . Dimensions of the homogenized fuel assembly are $56.47 \mathrm{~cm} \times$ $56.47 \mathrm{~cm} \times 86.64 \mathrm{~cm}$ (Ref. 5).

Case 27 - An unreflected rectangular paralleiepiped of homogeneous $\mathrm{U}(3) \mathrm{F}_{4}$ and paraffin with a $\mathrm{H}:{ }^{235} \mathrm{U}$ atomic ratio of 133.4 . Dimensions of the homogenized fuel assembly are 56.25 cm x $61.36 \mathrm{~cm} \times 74.38 \mathrm{~cm}$ (Ref. 5).

Case 28 - An unreflected rectangular parallelepiped of homogeneous $U(3) F_{4}$ and paraffin with a $\mathrm{H}:{ }^{235} \mathrm{U}$ atomic ratio of 133.4 . Dimensions of the homogenized fuel assembly are 61.40 cm x $61.40 \mathrm{~cm} \times 66.00 \mathrm{~cm}$ (Ref. 5 ).

Case 29 - A reflected rectangular parallelepiped of homogeneous $U(3) F_{4}$ and paraffin with a $H:{ }^{235} \mathrm{U}$ atomic ratio of 276.9. Dimensions of the homogenized fuel assembly are $40.81 \mathrm{~cm} \times$ $40.80 \mathrm{~cm} \times 39.49 \mathrm{~cm}$, reflected with 15.2 cm of polyethylene on top and sides and 15.2 cm of Plexiglas on the bottom (Ref. :i).

Case 30 - An unreflected rectangular parallelepiped of homogeneous $U(3) F_{4}$ and paraffin with a $H:{ }^{235} \mathrm{U}$ atomic ratio of 276.9 . Dimensions of the homogenized fuel assemblv are 40.90 cm x $40.93 \mathrm{~cm} \times 116.80 \mathrm{~mm}$ (Ref. 5).

Case 31 - An unreflected rectangular parallelepiped of homogeneous $\mathrm{U}(3) \mathrm{F}_{4}$ and paraffin with a $\mathrm{H}:{ }^{235} \mathrm{U}$ atomic ratio of 276.9 . Dimensions of the homogenized fuel assembly are $48.59 \mathrm{~cm} \times$ $51.14 \mathrm{~cm} \times 48.53 \mathrm{~cm}$ (Ref. 5).

Case 32 - An unreflected rectangular parallelepiped of homogen ${ }^{\text {nus }} \mathbf{U ( 3 ) F} F_{4}$ and paraffin with a $\mathrm{H}:{ }^{235} \mathrm{U}$ atomic ratio of 276.9. Dimensions of the homogenized fuel assembly are $81.71 \mathrm{~cm} \times$ $81.66 \mathrm{~cm} \times 31.34 \mathrm{~cm}$ (Ref. 5).

Case 33-A composite cadmium/steel/water side reflected stainiess steel cylinder filled to a he:ght of 54.45 cm with $\mathrm{U}(4.98) \mathrm{O}_{2} \mathrm{~F}_{2}$ solution at a $\mathrm{H}:{ }^{235} \mathrm{U}$ atomic ratio of 488 . The cylinder inner radius is 19.545 cm with wall thickness 0.079 cm and height 106.2 cm . The adjacent reflector consisted of 0.002 cm of cadmium, 2.54 cm of steel, and surrounded by an effectively infinite amount of water (Ref. 5).

Case 34 - A composite steel/water side reflected stainless steel cylinder filled to a height of 143.0 cm with $\mathrm{U}(4.98) \mathrm{O}_{2} \mathrm{~F}_{2}$ solution at a $\mathrm{H}:{ }^{235 \mathrm{U}}$ atomic ratio of 488 . The cylinder inner radius is 16.51 cm with wall thickness 0.079 cm and height 243.9 cm . The adjacent reflector consisted of 2.54 cm of steel surrounded by an effectively infinite amount of water (Ref. 5).

Case 35 - An unreflected stainless steel sphere filled with $\mathrm{U}(4.98) \mathrm{O}_{2} \mathrm{~F}_{2}$ solution at a $\mathrm{H}:{ }^{235} \mathrm{U}$ atomic ratio of 490 . The sphere inner radius is 25.3873 cm with wall thickness 0.0508 cm (Ref. 5).

Case 36 - An unreflected stainless steel cylinder filled to a height of 01.7 cm with $\mathrm{U}(4.98) \mathrm{O}_{2} \mathrm{~F}_{2}$ solution at a $\mathrm{H}:{ }^{233} \mathrm{U}$ atomic ratio of 496 . The cylinder inner radius is 19.55 cm with wall thickness 0.07874 cm and height 125.09 cm (Ref. 5).

### 2.2 ROCKY FLATS PLANT CRITICAL EXPERIMENTS

Case 41 - This is experiment number 1 as described in the report NUREG/CR-1071. ${ }^{6}$ Fuel for this experiment consisted of $\mathrm{U}(4.46)_{3} \mathrm{O}_{8}$ packed inside aluminum cans at a $\mathbf{H}: \mathrm{U}$ of 0.77 . These cans were then placed in a three dinensional array with plexiglas moderator between cans and a plexiglas reflector surrounding the array. The thickness of the interstitial moderator is approximately 2.5 cm putting the experiment in the optimum moderated categury. Criticality was achieved with an array of 42 fuel cans with critical table separation of 3.1 mm .

Case 42 - This is experiment number 2 as described in the report NUREG/CR-1071. ${ }^{6}$ Fuel for this experiment consisted of $\mathrm{U}(4.46)_{3} \mathrm{O}_{8}$ packed inside alum num cans at a $\mathrm{H}: \mathrm{U}$ of 0.71 . These cans were then placed in a three-dimensional array with a Plexiglas moderator between cans and a Plexiglas reflector surrounding the array. The thickness of the interstitial moderator is approximately 2.5 cm putting the experiment in the optimum moderated category. Criticality was achieved with an array of 100 fuel cans with critical table separation of 15.2 mm .

Case 43 - This is experiment number 3 as described in the report NUREG/CR-1071. ${ }^{6}$ Fuel for this experiment consisted of $\mathrm{U}(4.46)_{3} \mathrm{O}_{\mathbf{8}}$ packed inside aluminum cans at a $\mathrm{H}: \mathrm{U}$ of 0.77 . These cans were then placed in a three-dimensional array with a Plexiglas moderator between cans and a Plexiglas reflector surrounding the array. The thickness of the interstitial moderator is anproximately 1.0 cm putting the experiment in the undermoderated category. Criticality was achieved with an array of 100 fuel cans with critical table separation of 10.5 mm .

Case 44 - This is the first interstitially moderated experiment described in the report NUREG/CR-1653. ${ }^{1}$ Fuel for this experiment consisted of $U(4.46)_{3} \mathrm{O}_{8}$ pazked inside aluminum cans at a $\mathrm{H}: \mathrm{U}$ of 1.25 . These cans were then placed in a three-dimer:sional array with a Plexiglas moderator between cans and a Plexiglas reflector surrounding the array. The thickness of the interstitial moderator is approximately 2.5 cm putting the experiment in the optimum moderated category. Criticality was achieved with an array of 38 fuel cans with critical table separation of 12.608 mm .

Case a - i: ; is the second interstitially moderated experiment described in the report ivUREG/CR-1653. ${ }^{.}$Fuel for this experiment consisted of $\mathrm{U}(4.46)_{3} \mathrm{O}_{8}$ packed irside aluminum caus at a $\mathrm{H}: \mathrm{U}$ of 1.25 . These cans were then placed in a three-dimensional array with a Plexiglas moderator between cans and a Plexiglas reflector surrounding the array. ithe thickness of the interstitial moderatoi is approximately 1.0 cm putting the experiment in the undermoderated category. Criticality was achieved with an array of 78 fuel cans with critical table separation of 7.98 mm .

Case 46 - This is the third interstitially moderated experiment dessribed in the report NUREG/CR-1653. ${ }^{7}$ Fuel for this experiment consisted of $\mathrm{U}(4.46)_{3} \mathrm{O}_{8}$ packid ir.side aluminum cans at a H:U of 1.25 . These cans were then placed in a three-dinensional array with a Plexiglas moderator between cans and a Plexiglas reflector surrounding the array. The thickness of the interstitiai moderator is approximately 1.0 cm puting tive experiment in the undermoderated category. Criticality was achieved with an airay of 80 fuel cans with critical table separation of 15.61 mm .

Case 47 - This is experiment $F$ as described in the report NUREG/CR-2500. ${ }^{8}$ Fuel for this experiment consisted of $\mathrm{U}(4.46)_{3} \mathrm{O}_{8}$ packed inside aluminum cans at a $\mathrm{H}: \mathrm{U}$ of 2.03 . These cans were then placed in a three-dimensional array with a Plexiglas moderator between cans and a Plexiglas reflector surrounding the array. The thickness of the interstitial moderator is approximately 1.0 cm putting the experiment in the undermoderatad category. Criticality was acnieved with aarray of 48 fuel cans with critical table separation of 4.1 mm .

Case 48 - This is experiment $G$ as described in the report NUKEG/CR-2500. ${ }^{8}$ Fuel for this experiment consisted of $\mathrm{U}(4.40)_{3} \mathrm{O}_{8}$ packed inside aluminum cans at a $\mathrm{H}: I \mathrm{~J}$ of 2.03. These cans were then placed in a three-dimensional array with a Plexiglas moderator between cans and a Plexiglas reflector surroundi:g the array. The thickness of the interstitial ruocierator is approximately 2.5 cm faiting the experiment in the optimum moderated category. Criticality was achieved with an array of 30 fuel cans with critical table separation of 5.7 mm .

## 3. CALCULATVONAL METHOD

The experiments considered in this work are modeled with the SCAI E code system using the CSAS25 control module. This routine calculates number densities in a standardized fashion from the given experimental data and then calls a sequence of functional modules to process the data. Resonance parameters for the heavy absorbers used in the calculation are performed by BONAMI and/or NITAWL, with NITAWL converting the data into a working library. ICE next prepares the cross sections for the different mixtures of materials, and then KENO V.a performs the Monte Carlo criticality calculation.

The SCALE input for each calculation was submitted individually to an IBM-3033 computer. Unless otherwise specified, each calculation utilized default values available in SCALE. The experiments reflected with paraffin on top and sides and with Plexiglas on the bottom employed reflector biasing. The KENO V.a code dess not have reflector biasing data available for Plexiglas or polyethylene which were employed as reflectors in some of the experiments. Due to the similar hydrogen density of polyethylene and paraffin, paraffin biasing data can be safely used in polyethylene reflectors. Plexiglas has a lower hydrogen density than paraffin so some calculations were performed with and without reflector biasing to determine if there was an effect on the results (these results reported in Section 3).

## 4. VALIDATION OF KENO V. AND TWO CROSS-SECTION LIBRARIES

Calculational methods for predicting criticality safety are validated to ensure confidence in the method. In all processes involving fissionable material, specific conditions are required to maintain the safecy of the operation. The calculational methods available are used to predict limits for safe operation, thus requiring a high level of confidence in the calculational methods. This report validates the SCALE version of KENO V.a when used with either the 27-group ENDF/B-IV library or the 16 -group Hansen-Roach library by means of comparing experimental results with calculated results. Table 3.1 contains calculated kern's and their associated standard deviations (rounded off to three decimal places) for the 37 critical experiments considered in this validation study. For the benefit of future validation studies, Table A.l in Appendix A contains the valuee of $k_{\text {eft }}$ as given in the computer outpul.

Included in this section are comparative studies of KENO V.a versus KENO IV, and KENO V.a with defaclt options versus KENO V.a with specific options. An error was detected in the resonance treatment of the Hansen-Roach cross-section library during this study. The crosssection library and code were promptly modified to make them compatible. Tables $4.2,4.4$, and 4.6 contain values calculated before the char.ge was made. All other tables containing 16 -group library results are calculated with the new version. A more detailed explanation of the problem is included at the end of the section.

Five experiments were chosen to compare KENO V.a with KENO IV, cases 11, 12, 21, 22, and 26. These calculations were performed using 103 generations at 300 neutrons per generation and reflector biasing was not used in the reflected cases. Table 4.1 shows the results of these calculations when the 27 -group ENDF/B-IV cross-section library is used. It is noted that case 22 did not properly converge for the given number of histories. Case 22 shown in Table 4.1 is case 22 with reflector biasing and it is within one standard deviation of the KENO IV resu.t. Table 4.2 shows the results of the same experiments when the 16 -group Hansen-Roach library is used. The KENO V.a result and KENO IV result are within two standard deviations for each experiment (most comparisons are within one sigma), thus establishing the mechanics of the KENO V.a code to be in good working order. However, it is noted that the calculated value of $\mathrm{k}_{\text {eff }}$ can differ by as much as $3 \%$ according to which cross-section library is used, independent of the version KENO used.

Another item under investigation is the effect of changing the default number of generations and histories per generation while keeping the total number of histories approximately constant. This involves changing the number of generations from 103 to 53 and the number of neutrons per generation from 300 to 600 . Ten experiments at five different $H:{ }^{235} U$ atom ratios (reflected and unreflected at each $H:{ }^{235} U$ ) were modeled with this change, and the results are shown in Tables 4.3 and 4.4. The default version $k_{\text {efr's }}$ and modified version $k_{\text {eff's }}$ are within two standard deviations for each experiment according to cross-section library. Again, large differences in $k_{\text {eff }}$ exist depending on which cross-section library is used with the Hansen-Roach value being consistently higher.

The KENO V.a code has a reflector biasing option that helps reduce the amount of computer time used in a calculation. To evaluate this option several test cases were run with and without biasing to determine if biasing forced the calculation to diverge from the true solution. Table 4.5 contains the resr:ss of the 27 -group calculations, and Table 4.6 contains the results of the Hansen-Roach ca'culations. The results with and without reflector biasing are within two standard deviations (all but one is within one standard deviation) for each experiment, thus giving a high level confidence in ti,is option. Again, it is noted that there is a significant difference (as much as $\mathbf{3 \%}$ ) in the value of $k_{\text {eff }}$ according to which cross-section library is used.

The large differences in $k_{\text {eff }}$ 's according to cross-section library were further investigated in an effort to explain why the values calculated by Hansen-Roach data were consistently higher than those calculated by ENDF/B-IV data. It was suggested that the value of sigma $P$ (also known

Table 4.1 Comparison of KENO V.a with KENO IV using 27-group Library

| Case <br> no. | Reflected | KENO V.a | Std dev | KENO IV | Std dev | Within <br> One sigma |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | YES | 0.994 | 0.003 | 1.005 | 0.004 | NO |
| 12 | NO | 1.009 | 0.004 | 1.005 | 0.004 | YES |
| 21 | YES | 1.016 | 0.004 | 1.010 | 0.004 | YES |
| 22 | YES | 1.024 | 0.004 | 1.019 | 0.004 | NO |
| $22^{2}$ | YES | 1.015 | 0.004 |  |  | YES |
| 26 | NO | 1.017 | 0.004 | 1.013 | 0.004 | YES |

${ }^{2}$ Optimum moderated experiment.
Table 4.2 Comparison of KENO V.a with KENO IV using 16 -group library

| Case <br> no. | Reflected | KENO V.a | Std dev | KENO IV | Std dev | Within <br> one sigma |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | YES | 1.033 | 0.003 | 1.033 | 0.004 | YES |
| 12 | NO | 1.024 | 0.004 | 1.031 | 0.004 | YES |
| 21 | YES | 1.049 | 0.004 | 1.040 | 0.004 | YES |
| 22 | YES | 1.040 | 0.004 | 1.034 | 0.004 | YES |
| 26 | NO | 1.040 | 0.005 | 1.035 | 0.004 | YES |

Table 4.3 KENO V.a with default histories and modified histories using the 27 -group library

| Case <br> no. | Default <br> histories | Std dev | Modified <br> histories | Std dev | Within <br> one sigma |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 0.998 | 0.004 | 1.003 | 0.004 | YES |
| 12 | 1.009 | 0.004 | 1.002 | 0.004 | YES |
| 13 | 0.999 | 0.004 | 1.000 | 0.004 | YES |
| 14 | 1.000 | 0.004 | 1.003 | 0.004 | YES |
| 17 | 0.996 | 0.003 | 1.003 | 0.003 | NO |
| 18 | 1.000 | 0.003 | 1.004 | 0.003 | YES |
| 19 | 0.992 | 0.002 | 0.981 | 0.003 | NO |
| 20 | 0.991 | 0.003 | 0.984 | 0.003 | YES |
| 25 | 1.014 | 0.005 | 1.009 | 0.004 | YES |
| 26 | 1.017 | 0.004 | 1.012 | 0.004 | YES |

Table 4.4 KENO V.a with default histories and modified histories using the 16 -group library

| Case <br> no. | Default <br> histories | Std dev | Modified <br> histories | Std dev | Within <br> one sigma |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 1.028 | 0.004 | 1.030 | 0.004 | YES |
| 12 | 1.024 | 0.004 | 1.023 | 0.004 | YES |
| 13 | 1.031 | 0.004 | 1.018 | 0.004 | NO |
| 14 | 1.024 | 0.004 | 1.012 | 0.003 | NO |
| 17 | 1.018 | 0.004 | 1.004 | 0.003 | NO |
| 18 | 1.008 | 0.003 | 1.012 | 0.002 | YES |
| 19 | 1.003 | 0.003 | 1.013 | 0.003 | NO |
| 20 | 1.002 | 0.002 | 1.002 | 0.003 | YES |
| 25 | 1.037 | 0.005 | 1.042 | 0.004 | YES |
| 26 | 1.040 | 0.005 | 1.033 | 0.004 | YES |

Table 4.5 Comparison of reflector biasing using 27-group library

| Case <br> no. | Witl. <br> biasing | Std dev | Without <br> biasing | Std dev | Within <br> one sigma |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 0.998 | 0.004 | 0.994 | 0.003 | YES |
| 13 | 0.999 | 0.004 | 1.004 | 0.003 | YES |
| 21 | 1.016 | 0.004 | 1.017 | 0.004 | YES |
| 22 | 1.015 | 0.004 | 1.024 | 0.004 | NO |
| 24 | 1.014 | 0.005 | 1.011 | 0.004 | YES |

Table 4.6 Comparison of reflector biasing using 27-group library

| Case <br> no. | With <br> biasing | Std dev | Without <br> biasing | Std dev | Within <br> one sigma |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 1.028 | 0.004 | 1.033 | 0.003 | YES |
| 13 | 1.039 | 0.004 | 1.027 | 0.003 | YES |
| 21 | 1.0496 | 0.004 | 1.042 | 0704 | YES |
| 22 | 1.0415 | 0.005 | 1.041 | 0.004 | YES |
| 24 | 1.036 | 0.005 | 1.038 | 0.004 | YES |

as sigma $m_{\text {eff }}$ ) calculated by SCALE should be compared witin the ralues of sigma $P$ used in Ref. 5. The results of this comparison are listed in Table 4.7, which indicates that, vihen using the Hansen-Roach library, the sigma $P$ value is voderestimated by about 20\%. This in turn cauced the self-shielding calculation for ${ }^{238} \mathrm{U}$ to underestimate the capture cross section, thus leading to a higher value of $k_{\text {eff }}$. The problem was traced to a routine in BONAMI that calculated sigma $P$. This calculation required the total cross section but instead it was using a transport-corrected cross section from the Hansen-Roach cross-section library. This inconsistency was corrected and resulted in Hansen-Roach $k_{\text {eff's }}$ much closer to the ENDF/B-IV $\mathbf{k}_{\text {eff }}$ 's. Table 4.8 contains results - $f$ the first 29 experiments for both the old version and the new version.

Table 4.7 Values of sigma $P$

| Case no. | Value in ref. 5 | SCALE used with 27 gp . | SCALE used with old 16 gp . | SCALE usel with new 16 gp . |
| :---: | :---: | :---: | :---: | :---: |
| 04 | 160 | 160.8 | 128.3 | 165.7 |
| 05 | 160 | 160.8 | 128.3 | 165.7 |
| 06 | 160 | 160.8 | 128.3 | 165.7 |
| 11 | 120 | 114.7 | 93.8 | 119.8 |
| 12 | 120 | 114.7 | 93.8 | 119.8 |
| 13 | 160 | 160.8 | 128.7 | 166.2 |
| 14 | 160 | 160.8 | 128.7 | 166.2 |
| 15 | 220 | 213.5 | 168.5 | 219.0 |
| 16 | 260 | 255.5 | :99.2 | 261.2 |
| 17 | 330 | 310.6 | 242.0 | 316.5 |
| 18 | 330 | 310.6 | 242.0 | 316.5 |
| 19 | 400 | 479.1 | 369.4 | 485.5 |
| 20 | 400 | 479.1 | 369.4 | 485.5 |
| 21 | 120 | 118.2 | 96.2 | 124.0 |
| 22 | 120 | 118.2 | 96.2 | 124.0 |
| 23 | 120 | 118.2 | 96.2 | 124.0 |
| 24 | 120 | 118.2 | 96.2 | 124.0 |
| 25 | 120 | 118.2 | 96.2 | 124.0 |
| 26 | 120 | 118.2 | 96.2 | 124.0 |
| 27 | 120 | 118.2 | 96.2 | 124.0 |
| 28 | 120 | 118.2 | 96.2 | 124.0 |
| 29 | 220 | 220.0 | 174.2 | 226.3 |
| 30 | 220 | 220.0 | 174.2 | 226.3 |
| 31 | 220 | 220.0 | 174.2 | 226.3 |
| 32 | 220 | 220.0 | 174.2 | 226.3 |
| 33 | 600 | 602.3 | 464.9 | 609.1 |
| 34 | 600 | 602.0 | 464.9 | 609.1 |
| 35 | 600 | 602.2 | 465.0 | 609.2 |
| 36 | 600 | 602.4 | 464.9 | 609.1 |

Table 4.8 Comparison of results from SCALE after revision

| Exp. no. | $k$-effective $\pm 1$ sigma |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Old :ersion |  | New version |  |
| 04 | $1.02051 \pm$ | 0.00318 | $0.99647 \pm$ | 0.00337 |
| 05 | 1.03049 | 0.00318 | 0.99776 | 0.00326 |
| 06 | 1.02484 | 0.00329 | 1.00764 | 0.00311 |
| 11 | 1.02801 | 0.00399 | 0.99587 | 0.00365 |
| 12 | 1.02386 | 0.00371 | 0.99744 | 0.00327 |
| 13 | 1.03082 | 0.00446 | 1.00337 | 0.00335 |
| 14 | 1.02370 | 0.00368 | 0.99609 | 0.00395 |
| 15 | 1.01288 | 0.00363 | 1.00108 | 0.00378 |
| 16 | 1.01583 | 0.00341 | 0.99737 | 0.00325 |
| 17 | $1.017 \div 7$ | 0.00369 | 0.98408 | 0.00342 |
| 18 | 1.00872 | 0.00309 | 0.98871 | 0.00361 |
| 19 | 1.00263 | 0.00276 | 0.99527 | 0.00292 |
| 20 | 1.00172 | 0.00239 | 0.98804 | 0.00273 |
| 21 | 1.04861 | 0.00437 | 1.01363 | 0.00401 |
| 22 | 1.04053 | 0.00459 | 1.01660 | 0.00445 |
| 23 | 1.03795 | 0.00380 | 1.00874 | 0.00485 |
| 24 | 1.03600 | 0.00478 | 1.01190 | 0.00479 |
| 25 | 1.03692 | 0.00465 | 1.00980 | 0.00498 |
| 26 | . 03993 | 0.00492 | 1.00565 | 0.00397 |
| 27 | 1.04139 | 0.00448 | 1.01929 | 0.00407 |
| 28 | 1.02522 | 0.00447 | 1.00860 | 0.00411 |
| 29 | 1.02674 | 0.00513 | 0.99487 | 0.00462 |
| 30 | 1.01798 | 0.00578 | 0.99257 | 0.00382 |
| 31 | 1.02314 | 0.00407 | 1.00132 | 0.00450 |
| 32 | 1.01886 | 0.00447 | 0.99154 | 0.00420 |
| 33 | 0.99709 | 0.00404 | 1.00028 | 0.00374 |
| 34 | 1.00070 | 0.00402 | - 99565 | 0.00413 |
| 35 | 0.99341 | 0.00457 | 0.98574 | 0.00415 |
| 36 | 0.99651 | 0.00478 | 0.98733 | 0.00416 |

## 5. TESTS FCR TRENDS AND BIASES

In this stedy two cifferent cross-section libraries were used to obtain corresponding values of $\mathbf{k}_{\text {ef }}$ for each experiment. These calculated values differ slightly from the reported experimental values of $k_{\text {eff }}$ which could be caused in part by the statistical nature of the Monte Carlo solntion. It is of interest to ascertain if a trend exists in the solution which is related ? 3 some quantity associated with the experiments. If such trends exist and can be defined, then some departure from the expected value of $k_{\text {ef }}$ could be predicted based on information frota the experiment and crosssection library used.

Some of the quantities investigated include $\mathrm{H}:{ }^{233} \mathrm{U}$ atom ratio, enrichment, $\mathrm{H}:{ }^{23 n} \mathrm{U}$ ratio, and a calculated parameter, average energy of a neutron causing fission weighted by energy group number (AE). Some of the parameters considered are not independent; that is for a given $\mathrm{H}^{235} \mathrm{U}$ ratio and enrichment, the $\mathrm{H}_{:}^{238} \mathrm{U}$ ratio can be calculated. Also there is a relation between average energy and the $\mathrm{H}_{3}^{235} \mathrm{U}$ ratio which is not $I$ nown. This implies that separate models must be developed for $\mathrm{H}:{ }^{235} \mathrm{U}$ and average energy, and also a model cannot contain the three parameters $\mathrm{H}:{ }^{235} \mathrm{U}, \mathrm{H}:{ }^{238} \mathrm{U}$, and carichment. Linear relationships between $\mathrm{K}_{\mathrm{en}}$ (according 10 cross-section library) and experimental parameters can be determined. if any exist, from the data in Table 5.1. Tests for trends and biases are performed only on the homogeneous experiments thus excluding experiments 41 through 48 because of the interstitia! moderation.

The statistical analysis of the experimental parameter effects on $\mathbf{k}_{\text {efl }}$ consisted of first finding the simple correlation coefforients (Pearson Product Moment) between the $k_{\text {efi's }}$ (according to crosssection library) and each of the experimental parameters. The sorrelation coefficient is defined only on the nterval -1 to +1 , where +1 implies perfect positive correlation and -1 is perfect negative correlation. Each correlation coefficient has associated with it a significance level which is a measure of the uncertainty in the correlation coefficient. Table 5.2 contains the values of the correlation coefficients and their significance level for selected parameters.

When $k_{\text {efi's }}$ were calculated tsing the Hansen-Raach cross-section library results were correlated with average energy and were found to have a large corr:lation coefficient (-0.8) and a corresponding low significance level $(0.0001)$. When the Hansen-Roach $k_{\text {eri's }}$ were correlated with $\mathrm{H}:{ }^{235} \mathrm{U}$ the correlation coefficient was not as high as the one for average energy. A similar analysis was performed using the ker''s calculated using the $\mathbf{2 7}$-group library and it was found that the correlation coefficients were nearly identical for average energy and $\mathrm{H}:{ }^{235} \mathrm{U}$. It was found that for both crosssection libraries the $\mathrm{H}:{ }^{238} \mathrm{U}$ ratio was not as highly correlated as was the $\mathrm{H}:{ }^{235} \mathrm{U}$ ratio, and since these ratios are coupled by hydrogen, the $\mathbf{H}:{ }^{238} \mathrm{U}$ ratio was dropped from the investigation.

The above results indicate that there are three important models that can be developed to describe the effects of the parameters on the resulting $k_{\text {erf }}$. There would be one model for HansenRoach results that would show $k_{\text {eff }}$ as a function of average energy and two separate models for 27-group results, the first being a function of average energy and the second being a function of $\mathrm{H}:{ }^{235} \mathrm{U}$. The results of this study are presented in Section 6.

Table 5.1 Experiment parameters considered in trend analysis

| Case no. | $\begin{gathered} \mathrm{H}: \\ { }^{238} \mathrm{U} \end{gathered}$ | $\begin{gathered} \mathrm{H}: \\ { }_{235} \mathrm{U} \end{gathered}$ | $\begin{gathered} \text { 90 Wt } \\ { }^{235} \mathbf{L}^{\prime} \end{gathered}$ | $\begin{gathered} A E \\ 27-g^{\prime} 0^{\prime י} p \end{gathered}$ | AE 16-group |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 04 | 6.1 | 421.8 | 1.4 | 23.13 | 14.82 |
| 05 | 6.1 | 421.8 | 1.4 | 23.11 | 14.81 |
| 06 | 6.1 | 421.8 | 1.4 | 23.12 | 14.83 |
| 11 | 4.0 | 195.2 | 2.0 | 22.33 | 14.44 |
| 12 | 4.0 | 195.2 | 20 | 22.07 | 14.28 |
| 13 | 6.1 | 293.9 | 2.0 | 23.08 | 14.84 |
| 14 | 6.1 | 293.9 | 2.0 | 22.87 | 14.73 |
| 15 | 8.4 | 406.3 | 2.0 | 23.55 | 15.08 |
| 16 | 10.3 | 495.9 | 2.0 | 23.80 | 15.20 |
| 17 | 12.7 | 613.6 | 2.0 | 24.03 | 15.31 |
| 18 | 12.7 | 613.6 | 2.0 | 23.93 | 15.26 |
| 19 | 20.1 | 971.7 | 2.0 | 24.39 | 15.50 |
| 20 | 20.1 | 971.7 | 2.0 | 24.36 | 15.49 |
| 21 | 4.2 | 133.4 | 3.0 | 22.04 | 14.36 |
| 22 | 4.2 | 133.4 | 3.0 | 22.07 | 14.36 |
| 23 | 4.2 | 133.4 | 3.0 | 22.09 | 14.36 |
| 24 | 4.2 | 133.4 | 3.0 | 22.05 | 14.38 |
| 25 | 4.2 | 133.4 | 3.0 | 22.07 | 14.35 |
| 26 | 4.2 | 133.4 | 3.0 | 21.59 | 14.10 |
| 27 | 4.2 | 133.4 | 3.0 | 21.62 | 14.12 |
| 28 | 4.2 | 133.4 | 3.0 | 21.60 | 14.10 |
| 29 | 8.7 | 276.9 | 3.0 | 23.42 | 15.04 |
| 30 | 8.7 | 276.9 | 3.0 | 23.17 | 14.90 |
| 31 | 8.7 | 276.9 | 3.0 | 23.20 | 14.90 |
| 32 | 8.7 | 276.9 | 3.0 | 23.16 | 14.90 |
| 33 | 25.9 | 488.0 | 4.98 | 24.15 | 15.43 |
| 34 | 25.9 | 488.0 | 4.98 | 24.17 | 15.44 |
| 35 | 26.0 | 490.0 | 4.98 | 24.18 | 15.43 |
| 36 | 26.3 | 496.0 | 4.98 | 24.18 | 15.43 |

Table 5.2 Correlation coefficients and significance levels obtained by comparing results from 27 -group and 16 -group calculations with certain experiment parameters

|  | Correlation coefficient (significance levei) |  |
| :---: | :---: | :---: |
| Experiment | 27-group library | 16-group library |
| parameter | $-0.62(0.0004)$ | $-0.76(0.0001)$ |
| AE | $-0.74(0.0001)$ | $-0.66(0.001)$ |
| $\mathrm{H}:{ }^{235} \mathrm{U}$ | $-0.42(0.02)$ | $-0.60(0.0005)$ |
| $\mathrm{H}:^{238} \mathrm{U}$ | $0.31(0.08)$ | $-0.05(0.8)$ |
| Enrichment |  |  |

## 6. RESULTS AND CONCLUSIONS

The results obtained using KENO V.a and two cross-section libraries tu analyze 37 individual critical experiments are presented in Table 3.1. Results from the tests for :rends and biases indicate that there is a relationship between the experimental parameters and the cross-section library used. Linear models were developed to describe the relation between $k_{\text {eff }}$ (according to cross-section library) and the independent variables considerec. These simple linear models were estimated from the results of the 29 homogeneous experiments in Ref. 5. In addition, lower tolerance limits were approximated for the distribution of $\boldsymbol{k}_{\text {eff }}$ values around the model on a prescribed closed interval of the independent variable. The tolerance limits are such that one can say that $99.9 \%$ of the distribution of $k_{\text {eff }}$ values, for a given value of the independent varizile, will lie above the tolerance limits with 95\% confidence. A discussion of the tolerance limits is included in Appendix $\mathbf{E}$.

When the $\mathbf{1 6}$-group Hansen-Rcach library is used in the calculation of $k_{\text {efr }}$, there is a significant change in the value of $k_{\text {eff }}$ from the experimental value depending on the average energy of a neutron causing fission (AE). This trend can te described by the following linear model:

## 1) $k_{e f T}=1.2267-1.5297 \mathrm{E}-2^{*}(\mathrm{AE})$.

This model accounts for $59 \%$ of the variation (i.e., corrected total sum of squares) for the 29 observations. Figure 6.1 illustrates how the value of $k_{\text {eff }}$ varies over the range of AE and includes the lower tolerance limit for $99.9 \%$ of the population with a $95 \%$ confidence level. The tolerance limit is defined only on the closed interval of values of AE ranging from 14.1 to 15.5 (see Appendix E).

When the $\mathbf{2 7}$-group ENDF/B-IV library is used in the calculation of $k_{\text {efr, }}$, there is a significant deviation from the reported critical value of $k_{\text {eff }}$ for some of the cases. There are two separate trends associated with these deviations, one of which can be described by the following linear model:
2) $k_{\text {eff }}=1.0098+2.2407 \mathrm{E}-3^{*}$ (enrichment) $-2.9875 \mathrm{E}-5^{*}\left(\mathrm{H}:{ }^{23!} \mathrm{U}\right)$.

This model accounis for $61 \%$ of the variation for the 29 observations. The other trend can be described by the follcwing model:
3) $k_{\text {eff }}=1.1710+4.1472 \mathrm{E}-3^{*}($ enrichment $)-7.6653 \mathrm{E}-3^{*}(\mathrm{AE})$.

This model accounts for $59 \%$ of the variation for the 29 observations. Both of the linear models developed for the 27 -group library contain two variables making the resulting plots of $k_{\text {eff }}$ and their associated tolerance limits extremely difficult to interpret. In order to reduce the confusion, both of the above stated models and their tolerance limits are shown at specific values of enrichment. Equation 2 and its associated tolerance limits are shown in Figs. 6.2-6.5 at enrichment values of 1.4, 2.0, 3.0, and 4.98, respectively. Similarly, Equation 3 is shown in Figs. 6.6-6.9. The tolerance limits for Equation 2 are defined only on the interval of AE values ranging from 21.5 to 22.5 and the tolerance limits for Equation 3 are defined only on the interval of $\mathrm{H}:{ }^{235} \mathrm{U}$ values ranging from 133 to 975.

In conclusion, the results of this work indicate that trends in $k_{\text {eff }}$ obtained using KENO V.a and the 16 -group Hansen-Roach library can be generally described a linear model for the validated range of AE. Similarly, when using KENO V.a with the 27 -group ENDF/B-IV library, trends in $\mathbf{k}_{\text {eff }}$ can be generally described by two independent linear models dependent on the validated ranges of $H:^{235} \mathrm{U}$ ratio, AE, and enrichment. The mean value of $\boldsymbol{k}_{\text {eff }}$ using the Hansen-Roach library is 0.9997 with standard deviation 0.0094 , while the mean value using the 27 -group library is 1.0053 with standard deviation 0.0096 . Based on the results of this work for homogeneous UF systems, a safe upper limit for predicting criticality would be $k_{\text {eff }}+2 \sigma$ below the prescribed lower tolerance limit. Overall, both cross-section libraries give good results when used with KENO V.a in the SCALE code system.


Fig. 6.1 $k_{\text {efi }}$ (16-group) versus AE, linear model and lower tolerance limit


Fig. 6.2 $k_{\text {eif }}\left(27\right.$-group) versus $H:{ }^{235} \mathrm{U}$ for $\mathrm{U}(1.4)$, linear model and lower tolerance limit


Fig. 6.3 keff (27-group) versus $\mathrm{H}:{ }^{235} \mathrm{U}$ for $\mathrm{U}(2.0)$, linear model and lower tolerance limit


Fig. $6.4 \mathrm{k}_{\text {efr }}$ (27-group) versus $\mathrm{H}:{ }^{235} \mathrm{U}$ for $\mathrm{U}(3.0)$, linear model and lower tolerance limit


Fig. $6.5 \mathrm{k}_{\text {erf }}$ (27-grsup) versus $\mathrm{H}^{235} \mathrm{U}$ for $\mathrm{U}(4.98$ ), linear model and lower tolerance limit


Fig. $6.6 \mathrm{k}_{\text {eff }}(27$-group) versis AE for $\mathrm{U}(1.4)$, linear model and lower tolerance limit


Fig. $6.7 k_{\text {off }}$ (27-group) versus AE for $U(2.0)$, linear model and lower tolerance limit


Fig. $6.8 \mathrm{k}_{\mathrm{efr}}$ (27-group) versus AE for $\mathrm{U}(3.0)$, linear model and lower tolerance limit


Fig. $6.9 \mathrm{~K}_{\text {eff }}$ (27-group) versus AE for $\mathrm{U}(4.98$ ), linear model and lower tolerance limit

## LIST OF REFERENCES

1. C. V. Parks, Ed., SCALE: A Modular Code System for Performing Standardized Computer Analysis for Licensing Evaluation," NUREG/CR-0200, ORNL/NUREG/CSD-2 (1980).
2. L. M. Petrie and N. F. Landers, "KENO V a, An Improved Monte Cario Criticality Program with Supergrouping." NUREG/CR-0200, Volume 2, Section F11, ORNL/N:JREG/CSD-2/V1/R2 (1984).
3. L. M. Petrie and N. F. Landers, "KENO IV/S, An Improved Monte Carlo Criticality Program," NUREG/CR-0200, Volume 2, Section F5, ORNL/NUREG/CSD-2/V2 (1981).
4. "American National Standard for Validation of Calculational Method for Nuclear Criticality Safety," ANSI/ANS-8.11-1975, American Nuclear Society, Lagrange Park, 1llinois (1975).
5. G. R. Handley and C. M. Hopper, "Validation of the KENO Code for Nuclear Criticality Safety Calculations of Moderated, Low-Enriched Uranium Systems," Y-1948 (1974).
6. R. E. Rothe et al., "Critical Experiments with Interstitially Moderated Arrays of Low-Enriched Uranium Oxide," NUREG/CR-1071 (1980).
7. R. E. Rothe et al., "Critical Experiments on Low-Enriched Uranium Systems with H/U $=$ 1.25," NUREG/CR-1653 (1980).
8. R.E. Rothe et al., "Critical Experiments on Low-Enriched Uranium Oxide Systems with H/U = 2.03," NUREG/CR-2500 (1982).
9. D. K. Trubey and H. T. Hendrickson, "A Review of Multigroup Nuclear Cross Section Processing Proceedings of a Seminar-Workshop, Oak Ridge, Tennessee, March 14-16, 1978," ORNL/RSIC-4I (1981).
10. G. E. Hansen and W. H. Roach, Six and Sixteen Group Cross Sections For Fast and Intermediate Critical Systems," LAMS-2543 (1961).
11. N. L. Johnson, Ed., "Tolerance Interval in Regression," Query, Technometrics, 10, 207-09 (1968).
12. "SAS Users' Guide: Statistics, 1982 edition," p. 584, SAS Institute, Inc., Cary, NC (1982).
13. D. C. Bowden and F. A. Graybill, "Confidence Bands of Uniform and Proportional Width for Linear Models," American Statistical Association Journal 61, 182-98 (1966).
14. G. Tuck and I. Oh, "Benchmark Critical Experiments on Low-Enriched Uranium Oxide Systems With $\mathrm{H} / \mathrm{U}=0.77$," $\mathrm{NUREG} / \mathrm{CR}-0674$ (1979).

APPENDIXES

## APPENDIX A

## DESCRIPTION OF SCALE CODE SYSTEM

A computational system called SCALE bas been developed to provide a standard analysis tool for use by the NRC staft and licensees :- evaluating nuclear fuel facility and paciage derign. The SCALE system consists of several individual programs running in sequence which perform criticality, shielding. and/or heat transfer calculations with a minimum of user-required input. A detailed description of the entire SCALE code system is provided in Ref. I.

The SCALE system employs automated analytic sequences (control modules) to perform the necessary data processing (cross-section preparation) and manipulation of well-established computer codes (functional modules) required by the calculation. The application of KENO V.a in SCALE requires the CSAS25 (Criticality Safety Analysis Sequence Number 25) control module to the calleci. CSAS25 first reads input data and then calls BONAMI and/or NITAWL to process the cross-section data; next the information is passed to ICE where the cross sections are mixed for the designated materials, and then the criticality calculation is performed by KENO V.a.

KENO V.a is a multigroup Monte Carlo criticality program used to calculate the $k_{\text {efl }}$ of a three-dimensional system. Special features include simplified data input, supergrouping of energydependent data, the ability of specify origins for spherical and cylindrical geometry regions, a $P_{a}$ scattering treatment, extended use of differential albedo reflection, and an improved restart capability. The most noted improvement in KENO geometry is the addition of the "array of arrays" and "holes" capabilities. The array of arrays option allows the construction of arrays from other arrays. The depth of nesting is limited only by computer space restrictions. This option greatly simplifies the setup for arrays involving different units at different spacing. The hole option allows placing a unit of an array at any desired location within a geometry region. The emplaced unit or array cannot intersect any geometry region and must be wholly contained within a region. As many holes as will snugly fit without intersecting can be placed in a region. This option is especially useful for describing shipping casks and reflectors that have gaps or other geometrical features. Any number of holes can be described in a problem and holes can be nested to any depth.

Cross-section libraries used in this report include the 27 -energy-group EIJDF/B-IV and the I6-energy-group Hansen-Roach library. The data for the 27-group ENDF/B-IV library were collapsed from the Evaluated Nuclear Data File/B-Version IV9 (ENDF/B-IV). This broad group library was developed specifically for criticality analysis of a wide variety of thermal systems and has undergone extensive evaluation. The Hansen-Roach library is based on the original Los Alamos report by Hansen and Roach ${ }^{10}$ and was developed primarily for the analysis of fast systems. Data for a few nuclides missing in the original library were generated by collapsing the 218 -group ENDF/B-IV to 16 group.

## APPENDIX B

## COMPARISON OF NUMBER DENSITY CALCULATIONS

In an effort to standardize the calculation of number densities, and reduce the amount of user required input needed for a sucessful calculation, SCALE internally calculates number densities. From the Standard Composition Library' the user can designate the material to be a mixture of one or more standard compositions. These compositions include elements, compounds, alloys, solutions, and arbitrary materials (used to build componnds and alloys not available in the Standard Composition Library). For standard compositions taken from the Standard Composition Library, the user will have to enter the volume fraction or theoretical density of the standard composition in the mixture, and other engineering type data (see Ref. 1).

For selected experiments, the number densities were calculated by hand and compared with number densities used in Ref. 5 and the number densities generated by SCALE. Table A.l contains these values and from the comparison it is determined ihat SCALE accurately calculates material number densities in a standardized form.

Table B. 1 Comparison of number densities*

| Case <br> no. | Element | Hand <br> calculation | Value from <br> ref. 5 | SCALE <br> calculation |
| :--- | :--- | :--- | :--- | :--- |
| $4-6$ | ${ }^{235} \mathrm{U}$ | $6.9821 \mathrm{E}-5$ | $8.9443 \mathrm{E}-5$ | $8.9447 \mathrm{E}-5$ |
|  | ${ }^{238} \mathrm{U}$ | $6.2356 \mathrm{E}-3$ | $6.2094 \mathrm{E}-3$ | $6.2097 \mathrm{E}-3$ |
|  | F | $2.5304 \mathrm{E}-2$ | $2.5195 \mathrm{E}-2$ | $2.5197 \mathrm{E}-2$ |
|  | H | $3.7886 \mathrm{E}-2$ | $3.7727 \mathrm{E}-2$ | $3.7755 \mathrm{E}-2$ |
|  | C | $1.8215 \mathrm{E}-2$ | $1.8138 \mathrm{E}-2$ | $1.8152 \mathrm{E}-2$ |
|  |  |  |  |  |
| 33,34 | ${ }^{235} \mathrm{U}$ | $1.1599 \mathrm{E}-4$ | $1.1601 \mathrm{E}-4$ | $1.1644 \mathrm{E}-4$ |
|  | ${ }^{238} \mathrm{U}$ | $2.1852 \mathrm{E}-3$ | $2.1856 \mathrm{E}-3$ | $2.1936 \mathrm{E}-3$ |
|  | F | $4.6024 \mathrm{E}-3$ | $4.6031 \mathrm{E}-3$ | $4.6201 \mathrm{E}-3$ |
|  | H | $5.6605 \mathrm{E}-2$ | $5.6612 \mathrm{E}-4$ | $5.6891 \mathrm{E}-2$ |
|  | O | $3.2904 \mathrm{E}-2$ | $3.2909 \mathrm{E}-2$ | $3.3067 \mathrm{E}-2$ |
|  |  |  |  |  |
|  | ${ }^{235} \mathrm{U}$ | $1.1613 \mathrm{E}-4$ | $1.1614 \mathrm{E}-4$ | $1.1642 \mathrm{E}-7$ |
|  | ${ }^{238} \mathrm{U}$ | $2.1878 \mathrm{E}-3$ | $2.1881 \mathrm{E}-3$ | $2.1932 \mathrm{E}-3$ |
|  | F | $4.6080 \mathrm{E}-3$ | $4.6085 \mathrm{E}-3$ | $4.6192 \mathrm{E}-3$ |
|  | H | $5.6947 \mathrm{E}-2$ | $5.6909 \mathrm{E}-2$ | $5.6893 \mathrm{E}-2$ |
|  | O | $3.3081 \mathrm{E}-2$ | $3.3063 \mathrm{E}-2$ | $3.3666 \mathrm{E}-2$ |
|  |  |  |  |  |
| 36 | ${ }^{235} \mathrm{U}$ | $1.1501 \mathrm{E}-4$ | $1.1499 \mathrm{E}-4$ | $1.1644 \mathrm{E}-4$ |
|  | ${ }^{238} \mathrm{U}$ | $2.1666 \mathrm{E}-3$ | $2.1664 \mathrm{E}-3$ | $2.1936 \mathrm{E}-3$ |
|  | F | $4.5632 \mathrm{E}-3$ | $4.5628 \mathrm{E}-3$ | $4.6201 \mathrm{E}-3$ |
|  | H | $3.3086 \mathrm{E}-2$ | $3.3082 \mathrm{E}-2$ | $3.3066 \mathrm{E}-2$ |
|  | O | $5.7045 \mathrm{E}-2$ | $5.7038 \mathrm{E}-2$ | $5.6891 \mathrm{E}-2$ |

[^0]
## APPENDIX C <br> CODE INPUT FOR ALL CASES

Case 4

```
=CSAS25
BRITISH HANDBOOK OF CRITICALITY SAFETY U(1.42)F4 & PARAFFIN (CASE 04)
HANSEN-ROACH INFHOMMEDIUM
UF4 1 0.4903 29392235 1.402392238 98.5977 END
PARAFFIN 1 0.4572 END
END COMP
BRITISH HANDBOOK OF CRITICALITY SAFETY U(1.42)F4 & PARAFFIN (CASE 04)
READ PARM END PARM
READ GEOM
CUBOID 1 | 2P46.55 2P46.50 2P61.9
END GEOM
END DATA
END
```

Case 5
= CSAS25
BRITISH HANDBOOK OF CRITICALITY SAFETY U(1.42)F4 \& PARAFFIN (CASE 05) HANSEN-ROACH INFHOMMEDIUM
UF4 1 0.4903 2: 3922351.40239223898 .5977 END
PARAFFIN 10.4572 END
END COMP
BRITISH HANDBOOK OF CRITICALITY SAFETY U(1.42)F4 \& PARAFFIN (CASE 05)
READ PARM END PARM
READ GEOM
CUBOID 1 1 2P50.00 2P49.95 2P51.55
END GEOM
END DATA
END

Case 6
= CSAS 25
BRITISH HANDBOOK OF CRITICALITY SAFETY U(1.42)F4 \& PARAFFIN (CASE 06)
HANSEN-ROACH INFHOMMEDIUM
UF4 10.4903293922351 .40239223898 .5977 END
PARAFFIN 10.4572 END
END COMP
BRITISH HANDBOOK OF CRITICALITY SAFETY U(1.42)F4 \& PARAFFIN (CASE 06)
READ PARM END PARM
READ GEOM
CUBOID 11 2P65.35 2P65.3 2P 37.1
END GEOM
END DATA
END

Case 11

```
=CSAS25
RAFFETY AND MILHALCZO U(2)F4-1 REFLECTED (CASE 11)
HANSEN-ROACH INFHOMMEDIUM
U-235 10 1.581IE-4 END
U-238 1 0 7.6467E-3 END
H 10 3.0864E-2 END
C 101.4839E-2 END
F 103.1219E-2 END
PARAFFIN 21.0 END
PLEXIGLASS 3 0.918 END
AL 30.062 END
END COMP
RAFFETY AND MALHALCZO U(2)F4-1 REFLECTED (CASE 11)
READ PARM RUN = YES PLT = YES END PARM
READ GEOM
UNIT I
CUBOID : | 4P28.110 2P56.44
REPLICATE 2 25*3.0480.05
UNIT }
CUBOID 3 1 4P28.110 2*0.0
REPLICATE 324*3.0480.03.0485
END GEOM
READ ARRAY
NUX=1 NUY=1 NUZ=2
FILL 2 I END FILL
END ARRAY
READ BIAS ID = 400 26 END BIAS
READ PiOT TTL='XZ SLICE OF CASE II SHOWING BIASING REGIONS'
XUL=-1 YUL=20 ZUL=146
XLR=88 YLR=20 ZLR=-3
UAX=1 WDN=-1 NAX=130 NCH='0123456'
PIC=WTS
END PLOT
END DATA
END
```

Case 12

```
=CS.AS25
```

RAFFETY AND MILHALCZO U(2)F4-I UNREFLECTED (CASE 12)
HANSEN-ROACH INFHOMMI:DIUM
U-235 10 1.581IE-4 END
U-238 | 0 7.6467E-3 END
H $103.0864 \mathrm{E}-2$ END
C $\quad 101.4839 \mathrm{E}-2$ END
F $103.1219 \mathrm{E}-2$ END
END COMP
RAFFETY AND MALHALCZO U(2)F4-1 UNREFLECTED (CASE12)
READ PARM END PARM
READ GEOM
CUBOID I I 35.735 - 35.735 35.735-35.735 47.07-47.07
END GEOM
END DATA
END

## Case 13

```
=CSAS25
RAFFETY AND MILHALCZO U(2)F4-2 REFLECTED (CASE !3)
HANSEN-ROACH INFHOMMEDIUM
U-235 10 1.3303E-4 END
U-238 1 0 6.4370E-3 END
H 103.9097E-2 END
C 101.8797E-2 END
F 10 2.6280E-2 END
PARAFFIN 2 1.0 END
PLEXIGLASS 3 0.918 END
AL 30.062 END
END COMP
RAFFETY AND MALHALCZO U(2)F4-2 P EFLECTED (CASE 13)
READ PARM RUN = Y ES PLT ==YES END PARM
READ GEOM
UNIT !
CUBOID 1 I 4P25.555 2P36.935
REPLICATE 225*3.0480.05
UNIT 2
CUBOID 31 4P25.555 2*0.0
REPLICATE 3 24*3.048 0.0 3.048 5
END GEOM
READ ARRAY
NUX=1 NUY=1 NUZ=2
FILL 2I END FILL
END ARRAY
READ BIAS ID = 400 26 END BIAS
READ PLOT TTL = 'XZ SLICE OF CASE 13 SHOWING BIASING REGIONS'
XUL=-1 YUL=20 ZUL=106
XLR=83 YLR=20 ZLR=-3
UAX=1 WDN=.I NAX=130 NCH='0123456'
PIC = WTS
END PLOT
END DATA
END
```

Case 14
=CSAS 25
RAFFETY AND MILHALCZO U(2)F4-2 UNREFLECTED (CASE 14)
HANSEN-ROACH INFHOMMEDIUM
U-235 10 I.3303E-4 END
U-238 10 6.4370E-3 END
H $103.9097 \mathrm{E}-2$ END
C $101.8797 \mathrm{E}-2$ END
F $102.6280 \mathrm{E}-2 \mathrm{END}$
END COMP
RAFFETY AND MALHALCZO U(2)F4-2 UNREFLECTED (CASE 14)
READ PARM END PARM
REAL TEOM
CUBOID I | 28.11-28.1| 28.11 -28.1। 61.235 -61.235
END GEOM
END DATA
END

## Case 15

```
=CSAS25
RAFFETY AND MILHALCZO U(2)F4-3 REFLECTED (CASE 15)
HANSEN-ROACH INFHOMMEDIUM
U-235 1 0 1.1191E-` END
U-238 1 0 5.41د<L-3 END
H 10 4.5472E-2 END
C 102.1861E-2 END
F 102.2109E-2 END
PARAFFIN 2 1.0 END
PLEXIGLASS 30.918 END
AL 30.062 END
END COMP
RAFFETY AND MALHALCZO U(2)F4-3 REFLECTED (CASE 15)
READ PARM RUN = YES PLT = YES END PARM
READ GEOM
UNIT I
CUBOID 1 1 4P26.835 2P27.145
REPLICATE 22 5*3.048 0.05
UNIT 2
CUBOID 3 1 4P26.835 2*0.0
REPLICATE 3 2 4*3.048 0.0 3.0485
END GEOM
READ ARRAY
NUX=1 NUY=1 \UZ=2
FILL 2 1 END FILL
END ARRAY
READ BIAS ID =400 26 END BIA.S
READ PLOT TTL = 'XZ SLICE OF CASE 15 SHOWING BIASING REGIONS'
XUL=-1 YUL=20 ZUL=86
XLR=86 YLR=20 ZLR=-3
UAX =1 WDN=.1 NAX=130 NCH='0123456'
PIC=WTS
END PLOT
END DATA
END
```

Case 16

```
=CSAS25
RAFFETY AND MILHALCZO U(2)F4-4 REFLECTED (CASE 16)
HANSEN-ROACH INFHOMMEDIUM
U-235 10 0.9924E-4 END
U-238 1 0 4.7948E-3 END
H 104.9212E-2 END
C I 0 2.3660E-2 END
F 101.9596E-2 END
PARAFFIN 21.0 END
PLEXIGLASS 3 0.918 EN'D
AL 30.062 END
END COMP
```

```
RAFFETY AND MALHALCZO U(2)F4-4 KEFLECTED (CASE 16)
READ PARM RUN=YES PLT=YES END PARM
READ GEOM
UNIT 1
CUBOID : 1 4P23.000 2P48.285
REPLICATE 225*3.0480.05
UNIT 2
CUBOID 31 4P23.060 2*0.0
REPLICATE 3 24*3.048 0.0 3.0485
END GEOM
READ ARRAY
NUX=1 NUY=1 NUZ=2
FILL 21 END FILL
END ARRAY
READ BIAS ID=400 26 END EıAS
READ PLOT TTL ='XZ SLICE OF CASE 16 SHOWING BIASING REGION'`
XUL=-1 YUL=20 ZUL=129
XLR=79 YLR=20 ZLR=-3
UAX=1 WDN=-1 NAX=130 NCH='0123456'
PIC=WTS
END PLOT
END DATA
END
```

Case 17
$=$ CSAS25
RAFFETY AND MI!HALCZO U(2)F4-5 REFLECTED (CASE 17)
HANSEN-ROACH INFHOMMEDIUM
U-235 $100.8667 \mathrm{E}-4$ END
U-238 $104.1941 \mathrm{E}-3$ END
H $\quad 105.3187 \mathrm{E}-2 \mathrm{END}$
C $\quad 102.5570 \mathrm{E}-2$ END
F $101.7123 \mathrm{E}-2 \mathrm{END}$
POLYETHYLENE 2 1.0 END
PLEXIGLASS 30.918 END
AL 30.062 END
END COMP
RAFFETY AND MALHALCZO U(2)F4-5 REFLECTED (CASE 17)
READ PARM RUN = YES PLT=YES END PARM
READ GEOM
UNIT 1
CUBOID 11 2P28.160 2P30.645 $2 P 27.040$
REPLICATE 2253.0480 .05
UNIT 2
CUBOID 312P28.160 2P30.645 $2^{*} 0.0$
REPLICATE $324 * 3.0480 .03 .048 \mathrm{~s}$
END GEOM
READ ARRAY
NUX $=1 \quad$ NUY $=1 \quad$ NUZ $=2$
FILL 21 END FILL
END ARRAY

```
READ BIAS ID=400 26 END BIAS
READ PLOT TTL='XZ SLICE OF CASE 17 SHOWING BIASING REGIONS'
XUL=-1 YUL=20 ZUL=86
XLR=89 YLR=20 ZLR=-3
UAX=1 WDN=-1 NAX=130 NCH='0123456'
PIC=WTS
END PLOT
END DATA
END
```

Case 18

```
=CSAS25
```

RAFFETY AND MILHALCZO U(2)F4-5 UNREFLECTED (CASE 18)
HANSEN-ROACH INFHOMMEDIUM
U-235 $100.8667 E-4$ END
U-238 $104.1941 E-3$ END
H $105.3187 E-2$ END
C $102.5570 \mathrm{E}-2$ END
F $101.7123 E-2$ END
END COMP
RAFFETY AND MALHALCZO U(2)F4-5 UNREFLECTED (CASE18)
READ PARM END PARM
READ GEOM
CUBOID $1130.65-30.65 \quad 33.27-33.27 \quad 33.26-33.26$
END GEOM
END DATA
END

Case 19

```
=CSAS25
RAFFETY AND MILHALCZO U(2)F46 REFLECTED (CASE 19)
HANSEN-ROACH INFHOMMEDIUM
U-235 1 0 0.6232E-4 END
U-238 1 0 3.0100E-3 END
ii 106.0557E-2 END
C 10 2.9114E-2 END
F 101.2309E-2 END
POLYETHYLENE 2 I.0 END
PLEXIGLASS 30.918 END
AL 30.062 END
END COMP
RAFFETY AND MALHALCZO U(2)F4-6 REFLECTED (CASE 19)
READ PARM RUN = YES PLT = YES END PARM
READ GEOM
UNIT I
CUBOID | 1 2P3%.255 2P38.220 2P41.210
REPLICATE 2 2 5*3.048 0.0!
UNIT 2
CUBOID 3 1 2P38.255 2P38.220 2*0.0
REPLICATE 3 24*3.048 0.0 3.048 S
```

```
END GEOM
READ ARRAY
NUX=1 NUY=1 NUZ=2
FILL 2 I END FILL
END ARRAY
READ BIAS ID =400 2 6 END BIAS
READ PLOT TTL = 'XZ SLICE OF CASE 19 SHOWING BIASING REGIONS'
XUL=-1 YIJL=20 ZUL=115
XLR=108 YLR=20 ZLR=-3
UAX=1 WDN=-1 NAX =130 NCH='0123456'
PIC=WTS
END PLOT
END DATA
END
```

Case 20

```
=CSAS25
RAFFETY AND MILHALCZO U(2)F4-6 UNREFLECTED (CASE 20)
HANSEN-ROACH INFHOMMEDIUM
U-235 10 0.6232E-4 END
U-238 10 3.0100E-3 END
H 106.0557E-2 END
C 102.9114E-2 END
F I O l.2309E-2 END
END COMP
RAFFETY AND MALHALCZO U(2)F4-6 UNREFLECTED (CASE20)
READ PARM END PARM
READ GEOM
CUBOID 1 1 40.725-40.725 43.35-43.35 44.110-44.110
END GEOM
END DATA
END
```

Case 21
=CSAS25
RAFFETY AND MILHALCZO U(3)F4-1 REFLECTED (CASE 21)
HANSEN-ROACH INFHOMMEDIUM
U-235 I 0 2.3494E-4 END
U-238 I 0 7.4999E-3 END
H $103.1341 \mathrm{E}-2$ END
C $101.5067 \mathrm{E}-2$ END
F $103.0939 \mathrm{E}-2$ END
PARAFFIN 2 I.0 END
PLEXIGLASS 30.918 END
AL 30.062 END
END COMP
RAFFETY AND MILHALCZO U(3)F4-1 REFLECTED (CASE 21)
READ PARM RUN = YES PLT = YES END PARM
READ GEOM

```
UNIT I
CUBOID 1 1 2P25.57 2P25.57 2P25.635
REPLICATE 22 5*3.048 0.05
UNIT }
CUBOID 3 1 2P25.57 2P25.57 2*0.0
REPLICATE 324*3.0480.03.048 5
END GEOM
READ ARRAY
NUX=1 NUY=1 NUZ=2
FILL 21END FILL
END ARRAY
READ BIAS ID =400 26 END BIAS
READ PLOT TTL='XZ SLICE OF CASE 21 SHOWING BIASING REGIONS'
XUL=-1 YUL=20 ZUL=8?
XLR=83 YLR = 20 ZLR = -3
UAX=1 WDN=-1 NAX=130 NCH='0123456'
PIC=WTS
END PLOT
END DATA
END
```


## Case 22

```
=CSAS2S
RAFFETY AND MILHALCZO U(3)F4-1 REFLECTED (CASE 22)
HANSEN-ROACH INFHOMMEDIUM
U-235 1 0 2.3494E-4 END
U-238 10 7.4999E-3 END
H 10 3.1341E-2 END
C 10 1.5067E-2 END
F 10 3.0939E-2 END
PARAFFIN 21.0 END
PLEXIGLASS 3 0.918 END
AL 30.062 END
END COMP
RAFFETY AND MALHALCZO U(%)F4-1 REFLECTED (CASE 22)
READ PARM RUN = YES PLT = YES END PARM
READ GEOM
UNIT I
CUBOID 11 2P21.735 2P21.735 2P43.1950
REPLICATE 225*3.0480.05
UNIT 2
CUBOID 31 2P21.735 2P21.735 2*0.0
REPLICATE 324*3.048 0.0 3.048 5
END GEOM
READ ARRAY
NUX=1 NUY=1 NUZ=2
FILL 2 I END FILL
END ARRAY
READ BIAS ID =400 26 END BIAS
READ PLOT TTL = 'XZ SLICE OF CASE 22 SHOWING BIASING REGIONS'
```

```
XUL=-1 YUL=20 ZUL=129
XLR=79 YLR=20 ZLR=-3
UAX=1 WDN=-1 NAX=130 NCH='0123456'
PIC=WTS
END PLOT
END DATA
END
```

Case 23

```
= CSAS25
RAFFETY AND MILHALCZO U(3)F4-1 REFLECTED (CASE 23)
HANSEN-ROACH INFHOMMEDIUM
U-235 102.3494E-4 END
U-238 10 7.4999E-3 END
H 103.1341E-2 END
C 101.5057E-2 END
F 103.0939E-2 END
PARAFFIN 2 1.0 END
PLEXIGLASS 30.918 END
AL 30.062 END
END COMP
RAFFETY AND MALHALCZO U(3)F4-1 REFLECTED (CASE 23)
READ PARM RUN = YES PLT=YES END PARM
READ GEOM
UNIT I
CUBOID 11 2P23.010 2P23.010 2P33.785
REPLICATE 22 5*3.048 0.05
UNIT 2
CUBOID 31 2P23.010 2P23.010 2*0.0
REPLICATE 3 24*3.048 0.0 3.0485
END GEOM
READ ARRAY
NUX=1 NUY=1 NUZ=2
FILL 2 I END FILL
END ARRAY
READ BIAS ID = 400 26 END BIAS
READ PLOT TTL = 'XZ SLICE OF CASE 23 SHOWING BIASING REGIONS'
XUL=-1 YUL=20 ZUL=99
XLR=79 YLR=20 ZLR=-3
UAX=1 WDN=-1 NAX=130 NCH='0123456'
PIC=WTS
END PLOT
END DATA
END
```


## Case 24

```
=CSAS25
RAFFETY AND MILHALCZO U(3)F4-1 REFLECTED (CASE 24)
HANSEN-ROACH INFHOMMEDIUM
U-235 10 2.3494E-4 END
U-238 10 7.4999E-3 END
H 103.1341E-2 END
C 1 01.5067E-2 END
F 103.0939E-2 END
PARAFFIN 2 I.0 END
PLEXIGLASS 3 0.918 END
AL 30.062 END
END COMP
RAFFETY AND MALHALCZO U(3)F4-1 REFLECTED (CASE 24)
READ PARM RUN = YES PLT = YES END PARM
READ GEOM
UNIT I
CUBOID 1 1 2P28.125 2P28.125 2P21.705
REPLICATE 2 2 5*3.048 0.05
UNIT }
CUBOID 3 1 2P28.125 2P28.125 2*0.0
REPLICATE 324*3.048 0.0 3.048 5
END GEOM
READ ARRAY
NUX=1 NUY=1 NUZ=2
FILL 21END FILL
END ARRAY
READ BIAS ID=400 26 END BIAS
READ PLOT TTL=`XZ SLICE OF CASE 24 SHOWING BIASING REGIONS'
XUL=-1 YUL=20 ZUL=75
XLR=88 YLR=20 ZLR=-3
UAX=1 WDN=.1 NAX=130 NCH='0123456'
PIC=WTS
END PLOT
END DATA
END
```

                                    Case 25
    $=$ CSAS 25
RAFFETY AND MILHALCZO U(3)F4-1 REFLECTED (CASE 25)
HANSEN-ROACH INFHOMMEDIUM
U-235 10 2.3494E-4 END
U-238 1 0 7.4999E-3 END
H $103.1341 \mathrm{E}-2 \mathrm{END}$
C $101.5067 \mathrm{E}-2 \mathrm{END}$
F $103.0939 \mathrm{E}-2$ END
PARAFFIN 2 I.0 END
PLEXIGLASS 30.918 END
AL 30.062 END
END COMP

```
RAFFETY AND MALHALCZO U(3)F4-1 REFLECTED (CASE 25)
READ PARM RUN = YES PLT = YES END PARM
READ GEOM
UNIT 1
CUBOID I I 2P30.680 2P30.680 2P19.335
REPLICATE 225*3.0480.05
UNIT 2
CUBOID 3 1 2P30.680 2P39.680 2*0.0
REPLICATE }324*3.0480.03.048
END GEOM
READ ARRAY
NUX=1 NUY=1 NUZ=2
FILL 21 END FILL
END ARRAY
READ BIAS ID=400 26 END BIAS
READ PLOT TTL = 'XZ SLICE OF CASE 25 SHOWING BIASING REGIONS'
XUL=-1 YUL=20 ZUL=71
XLR=93 YLR=20 ZLR=-3
UAX=1 WDN=-1 NAX = 130 NCH='0123456'
PIC=WTS
END PLOT
END DATA
END
```

Case 26
$=$ CSAS 25
RAFFETY AND MILHALCZO U(3)F4-I UNREFLECTED (CASE 26)
HANSEN-ROACH INFHOMMEDIUM
U-235 10 2.3494E-4 END
U-238 10 7.4999E-3 END
H $103.1341 \mathrm{E}-2$ END
C $101.5067 E-2$ END
F $103.0939 E-2$ END
END COMP
RAFFETY AND MALHALCZO U(3)F4-I UNREFLECTED (CASE 26)
READ PARM END PARM
READ GEOM
CUBOID 11128.235-28.235 28.235-28.235 43.32-43.32
END GEOM
END DATA
END

## Case 27

```
=CSAS25
RAFFETY AND MILHALCZO U(3)F4-1 UNREFLECTED (CASE 27)
HANSEN-ROACH INFHOMMEDIUM
U-235 10 2.3494E-4 END
U-238 1 0 7.4999E-3 END
H 103.1341E-2 END
C 101.5067E-2 END
F 10 3.0939E-2 END
END COMP
RAFFETY AND MALHALCZO U(3)F4-I UNREFLECTED (CASE 27)
READ PARM END PARM
READ GEOM
CUBOID 11 1 28.125 -28.125 30.68-30.68 37.19 -37.19
END GEOM
END DATA
END
Case 28
=CSAS25
RAFFETY AND MILHALCZO U(3)F4-I UNREFLECTED (CASE 28)
HANSEN-ROACH INFHOMMEDIUM
U-235 1 0 2.3494E-4 END
U-238 1 0 7.4999E-3 END
H | 0 3.134IE-2 END
C 101.5067E-2 END
F | 0 3.0939E-2 END
END COMP
RAFFETY AND MALHALCZO U(3)F4-1 UNREFLECTED (CASE 28)
READ PARM END PARM
READ GEOM
CUBOID I I 30.7-30.7 30.7-30.7 33.00-33.00
END GEOM
END DATA
END
```

Case 29
=CSAS25
RAFFETY AND MILHALCZO U(3)F4-2 REFLECTED (CASE 29)
HANSEN-ROACH INFHOMMEDIUM
U-235 10 1.6709E-4 END
U-238 10 5.3355E-3 END
H $104.6262 \mathrm{E}-2$ END
C $\quad 102.2241 \mathrm{E}-2$ END
F $102.2011 E-2$ END
POLYETHYLENE 2 1.0 END
PLEXIGLASS 30.918 END
AL 30.062 END
END COMP

```
RAFFETY AND MALHALCZO U(3)F4-2 REFLECTED (CASE 29)
READ PARM RUN = YES PLT = YES END PARM
READ GEOM
UNIT I
CUBOID : 1 2P20.405 2P20.400 2P19.745
REPLICATE 22 5*3.048 0.05
UNIT 2
CUBOID 3 1 2P20.405 2P20.400 2*0.0
REPLICATE 3 24*3.048 0.0 3.0485
END GEOM
READ ARRAY
NUX=1 NUY=1 NUZ=2
FILL 2 I END FILL
END ARRAY
READ BIAS ID=400 26 END BIAS
READ PLOT TTL='XZ SLICE OF CASE 29 SHOWING BIASING REGIONS'
XUL=-1 YUL=20 ZUL=71
XLR=73 YLR=20 ZLR=-3
UAX=1 WDN=-1 NAX=130 NCH='0123456'
PIC=WTS
END PLCT
END DATA
END
```

Case 30

```
=CSAS25
RAFFETY AND MILHALCZO U(3)F4-2 UNREFLECTED (CASE 30)
HANSEN-ROACH INFHOMMEDIUM
U-235 1 0 1.6709E-4 END
U-238 I 0 5.3355E-3 END
H 104.6262E-2 END
C 102.224IE-2 END
F 1 0 2.2011E-2 END
END COMP
RAFFETY AND MALHALCZO U(3)F4-2 UNREFLECTED (CASE 30)
READ PARM RUN = YES END PARM
READ GEOM
CUBOID 1 1 2P20.450 2P20.465 2P58.400
END GEOM
END DATA
END
```


## Case 31

```
=CSAS25
RAFFETY AND MILHALCZO U(3)F4-2 UNREFLECTED (CASE 31)
HANSEN-ROACH INFHOMMEDIUM
U-235 10 1.6709E-4 END
U-238 1 0 5.3355E-3 END
H 10 4.6262E-2 END
C 102.224IE-2 END
F 102.2011E-2 END
END COMP
RAFFETY AND MALHALCZO U(3)F4-2 UNREFLECTED (CASE 31)
READ PARM RUN = YES END PARM
READ GEOM
CUBOID 1 1 2P24.295 2P25.570 2P24.265
END GEOM
END DATA
END
```

Case 32

```
=CSAS25
RAFFETY AND MILHALCZO U(3)F4-2 UNREFLECTED (CASE 32)
HANSEN-ROACH INFHOMMEDIUM
U-235 1 0 1.6709E-4 END
U-238 1 0 5.3355E-3 END
H 10 4.6262E-2 END
C 102.2241E-2 END
F 10 2.201IE-2 END
END COMP
RAFFETY AND MALHALCZO U(3)F4-2 UNREFLECTED (CASE 32)
READ PARM RUN = YES END PARM
READ GEOM
CUBOID I I 2P40.855 2P40.830 2P15.670
END GEOM
END DATA
END
```

Case 33
$=$ CSAS 25
CRITICAL REFLECTED CYLINDER OF AQUEOUS U(4.98)O2F2 (CASE 33)
HANSEN-ROACH INFHOMMEDIUM
SOLNUO2F2 1910.360 .01298922354 .989223895 .02 END
SS304 2 1.0 END
H2O 3 1.0 END
CD 4 1.0 END
END COMP
CRITICAL REFLECTED CYLINDER OF AQUEOUS U(4.98)O2F2 (CASE 33)
READ PARM RUN $=$ YES END PARM
READ GEOM

```
UNIT I
CYLINDER 1 1 19.545 2P27.225
CYLINDER 0 I 19.545 78.975 -27.225
CYLINDER 2 I 19.624 79.054-27.304
CYLINDER 4 1 19.705 79.054-27.304
CYLINDER 2 I 22.245 79.054-27.304
CYLINDER 3145.00079.054-27.304
CUBOID 014P45.000 79.054 -27.304
END GEOM
READ PLOT TTL = 'XZ SLICE OF CYLINDER CASE 33'
XUL=-4S YUL=0.0 ZUL = 81
XLR=45 YLR=0.0 2LR=-29
UAX=1 WDN=-1 NAX=130 NCH='01234'END
TTL='ENLARGEMENT OF LOWER RIGHT HAND CORNER OF CYLINDER'
XUL=18 YUL=0.0 ZUL= -25
XLR=23 YLR=0.0 ZLR = - 28
UAX=1 WDN=.I NAX=130 NCH='01234'
END PLOT
END DATA
END
```

Case 34
= CSAS25
CRITICAL REFLECTED CYLINDER OF AQUEOUS U(4.98)O2F2 (CASE 34)
HANSEN-ROACH INFHOMMEDIUM
SOLNUO2F2 1910.360 .01298922354 .989223895 .02 END
SS304 2 1.0 END
H2O 3 1.0 END
END COMP
CRITICAL REFLECTED CYLINDER OF AQUEOUS U(4.98)O2F2 (CASE 34)
READ PARM RUN = YES END PARM
READ GEOM
UNIT 1
CYLINDER 1116.510 2P71.500
CYLINDER $0116.510172 .400-71.500$
CYLINDER 2116.589172 .479 -71.579
CYLINDER 2119.129172 .479 -71.579
CYLINDER 3145.000172 .479 - 71.579
CUBOID 014 P45.0.0 172.479 - 71.579
END GEOM
READ PLOT TTL = 'XZ SLICE OF CYLINDER CASE 34'
$\mathrm{XUL}=-45 \mathrm{YUL}=0.0 \mathrm{ZUL}=174$
$X L R=45 \quad Y L R=0.0 Z L R=-73$
UAX $=1$ WDN $=-1 \quad$ NAX $=130 \quad$ NCH $=10123$ 'END
TTL = 'ENLARGEMENT OF LOWER RIGHT CORNER OF CYLINDER'
$\mathrm{XUL}=15 \mathrm{YUL}=0.0 \mathrm{ZUL}=-69$
$X L R=20 \quad Y L R=0.0 \quad$ ZLR $=-73$
UAX $=1 \quad \mathrm{WDN}=-1 \quad \mathrm{NAX}=130 \quad \mathrm{NCH}={ }^{\prime} 0123^{\prime}$
END PLOT
END DATA
END

Case 35

```
=CSAS25
CRITICAL SPHERE OF AQUEOUS U(4.98)02F2 (CASE 35)
HANSEN-KOACH INFHOMMEDIUM
SOLNUO2F2 1910.18 0.0129292235 4.98 92238 95.02 END
SS304 2 1.0 END
END COMP
CRITICAL SPHERE OF AQUEOUS U(4.98)O2F2 (CASE 35)
READ PARM RUN = YES END PARM
READ GEOM
UNIT I
SPHERE 1 1 25.3873
SPHERE 2 1 25.4127
CUBOID 016P25.4127
END GEOM
READ PLOT TTL='XZ SLICE OF SPHERE CASE 35'
XUL=-26 YUL=0.0 ZUL=26
XLR=26 YLR=0.0 ZLR=-26
UAX=1 WDN=-1 NAX=130 N'CH= 012'
TTL='ENLARGEMENT OF SF HERE WALL'
XUL =24 YUL=0.0 ZUL=2
XLR=26 YLR=0.0 ZLR=.L
UAX=1 WDN=-1 NAX=130 NCH='012'
END PLOT
END DATA
END
```

Case 36
$=$ CSAS 25
CRITICAL CYLINDER OF AQUEOUS U(4.98)O2F2 (CASE 36)
HANSEN-ROACH INFHOMMEDIUM
SOLNUO2F2 1910.360 .01298922354 .989223895 .02 END
SS304 2 1.0 END
END COMP
CRITICAL CYLINDER OF AQUEOUS U(4.98)O2F2 (CASE 36)
READ PARM RUN = YES END PARM
READ GEOM
UNIT I
CYLINDER 1119.5500 2P50.85
CYLINDER 0119.5500 74.16 -50.85
CYLINDER 2119.6287 74.16-50.9287
CUBOID 014 P19.6287 74.16-50.9287
END GEOM
READ PLOT TTL = 'XZ SLICE OF CYLINDER CASE 36'
$\mathrm{XUL}=-21 \quad \mathrm{YUL}=0.0 \mathrm{ZUL}=76$
$X L R=21 \quad Y L R=0.0 Z L R=-52$
$U A X=1 \quad W D N=-1 \quad N A X=130 \quad N C H=' 012{ }^{\prime} E N D$
TTL = 'ENLARGEMENT OF LOWER RIGHT CORNi
$\mathrm{XUL}=18 \mathrm{YUL}=0.0 \mathrm{ZUL}=-49$
$X L R=21 \quad$ YLR $=0.0 \mathrm{ZLR}=-52$
$U A X=1 W D N=-1 \quad N A X=130 \quad N C H=' 012 \prime$
END PLOT
END DATA
END

Case 41
//JOBCARD
// EXEC SPDASCR
T.GEE00000.RSTI.HSNRCH.RFPI
//* PREVIOUS TWO LINES CLEAR T.GEE00000.RSTI.HSNKCH.RFPI SO
//* A RESTART FILE CAN BE WRITTEN ON UNIT 30 IN THIS FILE
//MIKE EXEC Y12CSG,REGION.GO = 1024K
//FT84F001 DD DSN = T.GEE 00000. HSNRCHI,DISt $=$ SHR
//FT30F001 DD DSN = T.GEE00000.RSTI.HSNRCH.RFP1,UNIT = SrDA,
// SPACE=(TRK,(20,10)),DCB=(RECFM=VBS,LRECL=X,BLKSIZE=3156,BUFL=4038),
// DISP=(,CATLG)
//GO.SYSIN DD*
$=$ CSAS25
F.OCKY FLATS CRITICALS NUREG/CR-1071 EXPERIMENT NUMBER 1 (HANSEN-ROACH) 2:8GROUPNDF4 LATTICECELL
HAVEREDEFINED
U3O8 $15.4078 \mathrm{E}-1293.0922340 .03922354 .46922360 .089223895 .43$ END
H2O $18.9514 \mathrm{E}-2 \mathrm{END}$
ARBM-BAGGIE 1.030001001 14.0i $601284.980161 .2011 .9134 \mathrm{E}-2$ END
ARBM-ALI100 $1.030011302799 .18260000 .5290000 .229 .5390 \mathrm{E}-1$ END
ARBM-TAPE(VINYL) 1.0700010015 .92601245 .91801610 .8217000
$25.73200406 .9220001 .6820001 .121 .1115 E-2$ END
ARBM-TAPE(MYLAR) 1.0300010016 .83601265 .50801627 .022 1.7491E-2 END

ARBM-MODERATOR 1.185300010017 .83601259 .49801632 .483 END
ARBM-PLEX(REG) 1.0300010017 .84601259 .59801632 .234 1.1773 END

ARBM-PLEX(PAPER) 1.0300010016 .48601242 .17801649 .54 3.7534E-3 END

ARBM-PLEX(GLUE) 1.03000100111 .67601286 .2980161 .204 1.1648E-3 END

ARBM-PLEX(TRIS) 1.0800110017 .16601252 .0370140 .16801629 .82
150311.02170001 .81350794 .260350812 .84051 .2757 END

ARE M-PLEX(PAPER) 1.0300010016 .48601242 .17801649 .55 3.7534E-3 END

ARBM-PLEX(GLJE) 1.03000100111 .67601286 .2980161 .205 1.1648E-3 END

ARBM-FILLER 1.185300010017 .83601259 .49801632 .486 .88 END
END COMP
SPHTRIANGP 19.946218 .58571318 .95792 END
ROCKY FLATS CRITICALS NUREG/CR-1071 EXPERIMENT NUMBER I (HANSEN-ROACH)
READ PARM RUN $=$ YES NPG $=500$ RES $=103$ WRS $=30$
END PARM
READ GEOM
UNIT 1
COM = 'FUEL BOX 15.28 CM ON A SIDE WITH . 15 CM WALLS .OSCM STACKING VOID'
CUBOID 11 6P7.49
CUBOID 216 P7. 64
CUBOID 01 6P7.6650

```
UNIT 2
COM ='X-FACE INTERSTITIAL MODERATOR'
CUBOID 31 2P1.2200 4P7.665
UNIT 3
COM='Y-FACE INTERSTITIAL MODERATOR'
CUBOID 3 1 2P7.665 2PI.2200 2P7.665
UNIT 4
COM='Z-FACE INTERSTITIAL MODERATOR'
CUBOID 3 I 4P7.665 2P1.2200
UNIT 5
COM ='MORE X-FACE MODERATOR'
CUBOID 3 1 4P1.2200 2P7.665
UNIT 6
COM='MORE Y-FACE MODERATOR'
CUBOID 31 2P7.665 4P1.2200
UNIT }
COM='MORE Z-FACE MODERATOR'
CUBOID 31 2PI.2200 2P7.665 2P1.乞200
UNIT }
COM=`LAST OF INTERSTITIAL MODERATOR'
CUBOID 316PI.2200
UNIT }
COM= 'NONTH SPLIT TABLE CORE'
ARRAY I 3*0.0
UNIT 10
COM='SOUTH SPLIT TABLE CORE'
ARRAY 2 3*0.0
UNIT 11
COM = 'PLEXIGLASS REFLECTOR SHEET WITHOUT TRIS, NORTH BOTTOM REFLECTOR'
CUBOID 4 1 2P16.5500 2P38.7500 2P0.6150
UNIT 12
COM ='PLEXIGLASS REFLECTOR SHEET WITH TRIS, NORTH BOTTOM REFLECTOR'
CUBOID 5 1 2P16.5500 2P38.7500 2P0.6150
UNIT 13
COM = 'UPPER PORTION NORTH BOTTOM REFLECTOK WITH TRIS'
CUBOID 5 1 2P16.550 2P38.75 2P8.24
UNIT 14
COM='LOWER PORTION NORTH BOTTOM REFLECTOR WITH TRIS'
LUBOID S। 2P16.550 2P38.7S 2P3.69
UNIT 15
COM='NORTH BOTTOM REFLECTOR INCLUDES REGULAR AND TRIS'
ARRAY 3 3*0.0
UNIT 16
COM='PLEXIGLAS SHEET BOTTOM SOUTH REFLECTOR WITHOUT TRIS'
CUBOID 0 1 2P5.1 2P2.55 2P0.615
CUBOID 4 1 44.3-5.1 2P38.75 2PC.615
UNIT 17
COM ='PLEXIGLAS SHEET BOTTOM SOUTH REFLECTOR WITH TRIS'
CUBOID O 1 2P5.1 2P2.55 2P0.615
CUBOID 5 | 44.3-5.1 2P38.75 2P0.6150
```

UNIT 18
COM ='LOWER PORTION SOUTH BOTTOM REFLECTOR WITH TRIS'
CUBOID 0 I 2P5.1 2P2.55 2P8.855
CUBOID S 1 44.3-5.1 2P38.75 2P8.855
UNIT 19
COM = 'SOUTH EOTTOM REFLECTOR WITH REGULAR AND TRIS'
ARRAY $43^{*} 0.0$
UNIT 20
COM = 'EAST AND WEST REFLECTORS FOR NORTH REFLECTOR WITH TRIS' CUBOID 5 1 2P16.550 2P12.65 2P54.2825
UNIT 2I
COM='ARRAY FOR EAST AND WEST REFLEC TORS FOR NORTH REFLEC: ${ }^{\prime}$ UR'
ARRAY $53^{*} 0.0$
UNIT 22
COM = 'EAST AND WEST REFLECTORS FOR SOUTH REFLECTOR WITH TRIS'
CUBOID 51 2P24.700 2PI2.65 2P54.2825
UNIT 23
COM = 'ARRAY FOR EAST AND WEST REFLECTORS FOR SOUTH REFLECTOR'
ARRAY $63^{*} 0.0$
UNIT 24
COM $=$ 'NORTH TOP REFLECTOR WITH TRIS'
CUBOID 5 1 2P29.100 2P64.05 2P12.15
UNIT 25
COM = 'ARRAY FOR NORTH TOP REFLECTOR'
ARRAY $73^{* *} 0.0$
UNIT 26
COM = 'SOUTH TOP REFLECTOR WITH TRIS'
CUBOID 012 P5.1 2P2.55 2P12.15
CUBOID 5 1 69.4-5.1 2P64.05 2P12.15
UNIT 27
COM = 'ARRAY FOR SOUTH TOP REFLECTOR'
ARRAY 8 3* 0.0
UNIT 28
COM = 'NORTH END REFLECTOR 9.8CM PORTION WITHOUT TRIS'
CilBOID 4 1 2P4.9000 2P64.0500 2P54.2825
UNIT 29
COM = 'NORTH END RELFECTOR 5.2 CM PORTION WITH TRIS'
CUBOID 512 P 2.6 2P64.0500 2P54. 2825
UNIT 30
COM = 'NORTH END RELFECTOR 10.1 CM PORTION WITHOUT TRIS'
CUBOID 4 1 2P5.05 2P64.05 2P54.2825
UNIT 31
COM = 'ARRAY FOR NORTH END REFLECTOR'
ARRAY $93^{*} 0.0$
UNIT 32
COM $=$ 'SOUTH END REFLECTOR'
CUBOID 5 1 2P12.55 2P64.05 2P54. 2825
UNIT 33
COM ='ARRAY FOR SOUTH END RFFLECTOR'
ARRAY $103^{*} 0.0$
UNIT 34
COM = 'BOTTOM MODERATING PLASTIC NORTH CORE'
CUBOID 612 Pl 6.550 2P38.7500 2P13.0500

```
UNIT 35
COM ='TOP MODERATING PLASTIC NORTH CORE'
CUBOID 6 I 2P16.550 2P38.7500 2P3.2525
UNIT }3
ARRAY II 3*0.0
UNIT }3
ARRAY 12 3*0.0
UNIT }3
COM='NORTH CORE WITH BOTTOM REFLECTOR'
ARRAY 13 3* 0.0
UNIT }3
COM='NORTH CORE WITH EAST AND WEST REFLECTOR'
ARRAY 14 3*0.0
UNIT 40
COM ='NORTH CORE WITH END REFLECTOR'
ARRAY I5 3*0.0
UNIT 4l
COM = 'NORTH SPLIT TABLE FACEPLATE'
CUBOID 31 2P0.0150 2P64.0500 2P66.432S
UNIT }4
COM ='NORTH CORE WITH TOP REFLECTOR'
ARRAY 16 3*0.0
UNIT 43
COM ='NORTH CORE WITH FACEPLATE'
ARRAY 17 3*0.0
UNIT }4
COM='12.95 CM THICK MODERATOR SOUTH CORE'
CUBOID 61 2P23.924 2P6.475 2P40.183
LNNIT }4
COM ='2.95 THICK MODERATOR SOUTH CORE'
CUBOID 6 I 2P23.924 2P38.5285 2P1.475
UNIT }4
COM ='COMBINATION OF CORE WITE'' 12.95 THICK MODERATOR'
ARRAY 18 3*0.0
UNIT }4
COM ='COMBINATION OF CORE WITH 2.95 THICK MODERATOR'
ARRAY 19 3*0.0
UNIT 48
CGM='SOUTH CORE WITH EAST WEST REFLECTORS'
ARRAY 20 3*0.0
UNIT }4
COM ='SOUTH CORE WITH EAST WEST REFLECTORS'
ARRAY 21 3*0.0
UNIT 50
COM = 'SOUTH CORE END REFLECTOR'
ARRAY 22 3*0.0
UNIT 51
COM ='FACEPLATE FOR SOUTH SPLIT TABLE'
CUBOID 31 2P0.4620 2P64.0500 2P66.4325
UNIT !2
COM = 'SOUTH CORE WITH TOP REFLECTOR'
ARRAY 23 3*0.0
```

```
UNIT 53
COM ='SOUTH CORE WITH FACEPLATE'
ARRAY 24 3*0.0
UNIT S4
COM ='AIR GAP'
CUBOID O I 2P0.1550 2P64.0500 2P66.4325
GLOBAL
UNIT 55
COM='TOTAL'
ARRAY 25 3*0.0
UNIT }5
COM='EMPTY FUEL LOCATION'
CUBOID 016P7.6650
UNIT 57
COM='SIDE MODERATOR'
CUBOID 61 2P16.550 2P4.4300 2P25.4350
UNIT 58
COM = 'END MODERATOR'
CUBOID 312P8.1500 2P38.7500 2P25.4350
UNIT 59
COM='SOUTH CORE BOTITOM MODERATING PLASTIC'
CUBOID 6 1 2P24.7000 2P38.7500 2P13.0500
UNIT 60
COM = 'SOUTH CORE TOP MODERATING PLASTIC'
CUBOID 6 1 2P24.7000 2P38.7500 2P3.2525
UNIT 61
COM = 'Y-FACE MODERATOR VOID'
CUBOID O I 2P7.665 2P1.2200 2P7.665
END GEOMETRY
READ ARRAY
ARA=1 NUX=3 NUY=7 NUZ=5
COM='NORTH SPLIT TABLE CORE'
FILL 1213532Q6121
    4746862Q6474
    IQ42
    56213531213531Q656 2 1 END FILL
ARA=2 NUX=3 NUY=7 NUZ=5
COM='SOUTH SPLIT TABLE CORE'
FILL 1213532Q6121
    4746862Q6474
    1Q42
    12563561 2Q61256 END FILL
ARA=3 NUX=1 NUY=1 NUZ=3
COM='NORTH BOTTOM REFLECTOR'
FILL 141113 END FILL
ARA=4 NUX=1 NUY=1 NUZ=7
COM ='SOUTH BOTTOM REFLECTOR'
FILL 18 16 17 16 16 17 17 END FILL
ARA=5 NUX=1 NUY=1 NUZ=1
COM='EAST AND WEST WALLS OF NORTH REFLECTOR'
FILL 20 END FILL
ARA=6 NUX=1 NUY=1 NUZ=1
COM = 'EAST AND WEST WALLS OF SOUTH REFLECTOR'
FILL 22 END FILL
```

```
ARA=7 NUX=1 NUY=1 NUZ=1
COM='ARRAY FOR NORTH TOP REFLECTOR'
FILL }24\mathrm{ END FILL
ARA=8 NUX=1 NUY=1 NUZ=1
COM='ARRAY FOR SOUTH TOP REFLECTOR'
FILL 26 ENDD FILL
ARA=9 NUX=3 NUY=1 NUZ=1
COM='ARRAY FOR NORTH END REFLECTOR'
FILL 28 2930 END FILL
ARA=10 NUX=1 NUY=1 NUZ=1
COM='ARRAY FOR SOUTH END REFLECTOR'
FILL }32\mathrm{ END FILL
ARA=11 NUX=1 NUY = 2 NUZ=1
COM = 'COMBINARION OF CORE WITH SIDE MODERATOR'
FILL 9 57 END FILL
ARA=12 NUX=1 NUY=1 NUZ=3
COM ='COMBINATION OF PREVIOUS ARRAY WITH TOP AND BOTTOM MODERATOR'
FILL 3436 35 END FILL
ARA=13 NUX=1 NUY=1 NUZ=2
COM = 'COMBINATION OF NORTH CORE WITH BOTTOM REFLECTOR'
FILL 15 37 END FILL
ARA=14 NUX=1 NUY=3 NUZ=1
COM:= 'NORTH CORE WITH SIDE REFLECTORS'
FILL 21 3821 END FILL
ARA=15 NUX=2 NUY=1 NUZ=1
COM ='NORTH CORE WITH END REFLECTOR'
FILL 31 39 END FILL
ARA=:6 NUX=1 NUY = 1 NUZ = 2
COM='NORTH CORE WITH TOP REFLECTOR'
FILL 40 25 END FILL
ARA=17 NUX=2 NUY=1 NUZ=1
COM='NORTH CORE WITH FACEPLATE'
FILL 4241 END FILL
ARA = 18 NUX =1 NUY=2 NUZ=1
COM='COMBINATION OF S. CORE WIT & SIDE MODERATOR'
FILL 10 57 END FILL
ARA=19 NUX=2 NUY=1 NUZ=1
COM = 'COMBINATION OF CORE WITH END MODERATOR'
FILL 4658 END FILL
ARA=20 NUX=1 NUY=1 NUZ=4
COM='SOUTH CORE WITH BOTTOM MODERATOR AND REFLECTOR'
FILL 19594760 END FILL
ARA=21 NUX=1 NUY=3 NUZ=1
COM='SOUTH CORE WITH EAST WEST REFLECTORS'
FILL 2348 23 END FILL
ARA=22 NUX=2 NUY=1 NUZ=1
COM = 'SOUTH CORE WIT'H END REFLECTOR'
FILL 49 33 END FILL
ARA=23 NUX=1 NUY=1 NUZ=2
COM = 'COMBINATION OF CORE WITH TOP REFLECTOR'
FILL 50 27 END FiLL
```

```
ARA=24 NUX=2 NUY=1 NUZ=1
COM = 'SOUTH CORE WITH FACEPLATE'
FILL 51 52 END FILL
ARA=25 NUX=3 NUY=1 NUZ=1
COM ='TOTAL'
FILL 43 54 53 END FILL
END ARRAY
READ PLOT TIL='XZ SLICE OF RFPI SF/OWING MATERIAL REGIONS'
XUL=-2 YUL=32.3 ZUL = 136
XLR=137 YLR=32.3 ZLR = -2
UAX=1 WDN=-1 NAX=130 NCH=`0123456'END
TTL ='YZ SLICE OF NORTH CORE SECOND ROW'
XUL=28 YUL=-2 ZUL = 136
XLR=}=\quadYLR=136 ZLR=-2
VAX = WDN=-I NAX = 130 NCH='0123456'END
TTL = \Z SLICE OF SOUTH CORE FIRST ROW'
XUL=62 YUL=-2 ZUL=136
XLR=62 YLR=136 ZLR=-2
VAX=1 WDN=-1 NAX=130 NCH='0123456'END
TTL= 'TOP VIEW OF SOURCE HOLE'
XUL=-2 YUL=136 ZUL=125
XLR=136 YLR=-2 ZLR=125
UAX=1 VDN =-1 NAX = 130 NCH ='0123456'
END PLOT
END DATA
END
```

Case 42

```
//JOBCARD
// EXEC SPDASCR
T.GEE00000.RSTI.HSNRCH.RFP2
//* PREVIOUS TWO LINES CLEAR T.GEE00000.RSTI.HSNRCH.RFP2 SO
//* A RESTART FILE CAN BE WRITTEN ON UNIT 30 IN THIS FILE
//MIKE EXEC Y12CSG,REGION.GO=1024K
//FT84F001 DD DSN = T.GEE00000.HSNRCH1,DISP = SHR
//FT30F001 DD DSN = T.GEE00000.RST1.HSNRCH.RFP2,UNIT = SPDA,
// SPACE=(TRK,(20,10)),DCB=(RECFM=VBS,LRECL = X,BLKSIZE=3156,BUFL=4088),
// DISP=(,CATLG)
//GO.SYSIN DD*
=CSAS25
ROCKY FLATS CRITICALS NUREG/CR-1071 EXPERIMENT NUMBER 2 (HANSEN-ROACH)
218GROUPNDF4 LATTICECELL
HAVEREDEFINED
U3O8 1 5.4078E-1 293.0922340.0392235 4.46 922360.08 92238 95.43 EIND
H2O I 8.9514E-2 END
ARBM-BAGGIE 1.030001001 14.01 601284.98016 1.2011.9134E-2
    E'jD
ARBM-ALI100 1.0 300113027 99.18 26000 0.5 29000 0.2 29.5390E-1
    END
```

```
ARBM-TAPE(VINYL) 1.070001001 5.92601245.918016 10.8217000
    25.73200406.922000 1.6 82000 1.1 2 1.1115E-2 END
ARBM-TAPE(MYLAR) 1.0300010016.83601265.508016 27.02 2
    1.7491E-2 END
ARBM-MODERATOR 1.185 30001001 7.83601259.49 801\leqslant 32.48 3 END
ARBM-PLEX(REG) 1.030001001 7.84 601259.59 8016 32.234
    1.1773 END
ARBM-PLEX(PAPER) 1.030001001 6.48601242.178016 49.54
    3.7534E-3 END
ARBM-PLEX(GLUE) 1.030001001 11.67601286.298016 1.204
    1.1648E-3 END
ARBM-PLEX(TRIS) 1.080011001 7.16601252.03 70140.168016 29.82
    150311.02 17000 1.81 35079 4.260 35081 2.840 5 1.2757 END
ARBM-PLEX(PAPER) 1.030001001 6.486012 42.17 8016 49.55
    3.7534E-3 END
ARBM-PLEX(GLUE) 1.030001001 11.67601286.298016 1.205
    1.1648E-3 END
ARBM-FILLER 1.185 30001001 7.836012 59.498016 32.48 6 .89 END
END COMP
SPHTRIANGP 19.9462 18.585713 18.9579 2 END
ROCKY FLATS CRITICALS NUREG/CR-1071 EXPERIMENT NUMBER 2 (HANSEN-ROACH)
READ PARM RUN=YES NPG=500 RES=103 WRS=30
END PARM
READ GEOM
UNIT I
COM = 'FUEL BOX 15.28 CM ON A SIDE WITH .15 CM WALLS .OSCM STACKING VOID'
CUBOID 11 6P7.49
CUBOID 216P7.64
CUBOID 016P7.6650
UNIT }
COM ='X-FACE INTERSTITIAL MODERATOR'
CUBOID 31 2PI. }2200\mathrm{ 4P7.665
UNIT 3
COM='Y-FACE INTERSTITIAL MODERATOR'
CUBOID 31 2P7.665 2P1.2200 2P7.665
UNIT }
COM = 'Z-FACE INTERSTITIAL MODERATOR'
CUBOID 314P7.665 2P1.2200
UNIT 5
COM='MOP.E X-FACE MODERATOR'
CUBOID 314P1.2200 2P7.665
UN T }
'OM = 'MORE Y-FACE MODERATOR'
CUBOID 31 2P7.665 4PI.2200
UNIT }
COM ='MORE Z-FACE MODERATOR'
CUBOID 31 2P1.2200 2P7.665 2P1.2200
UNIT }
COM = 'LAST OF INTERSTITIAL MODERATOR'
CUBOID 316P1.2200
```

UNIT 9
COM = 'NORTH SPLIT TABLE CORE'
ARRAY $13^{*} 0.0$
UNIT 10
COM = 'SOUTH SPLIT TABLE CORE'
ARRAY $23^{*} 0.0$
UNIT 11
COM = 'PLEXIGLASS REFLECTOR SHEET WITHOUT TRIS, NORTH BOTTOM REFLECTOR'
CUBOID 412 P 16.5500 2P38.7500 2P0.6150
UNIT 12
COM = 'PLEXIGLASS REFLECTOR SHEET WITH TRIS, NORTH BOTTOM REFLECTOR'
CUBOID 512 2P16.5500 2P38.7500 2P0.6:50
UNIT 13
COM = 'UPPER PORTION NORTH BOTTOM REFLECTOR WITH TRIS'
CUBOID 512 P 16.550 2P38.75 2P8. 24
UNIT 14
COM = 'LOWER PORTION NORTH BOTTOM REFLECTOR WITH TRIS'
CUBOID 512 P 16.550 2P38.75 2P3.69
UNIT 15
COM = 'NORTH BOTTOM REFLECTOR INCLUDES REGULAR AND TRIS'
ARRAY $33^{*} 0.0$
UNIT 16
COM = 'PLEXIGLAS SHEET BOTTOM SOUTH REFLECTOR WITHOUT TRIS'
CUBOID $012 P 5.1$ 2P2.55 2P0.6150
CUBOID 4 I 44.3-5.1 2P38.75 2P0.615
UNIT 17
COM = 'PLEXIGLAS SHEET BOTTOM SOUTH REFLECTOR WITH TRIS'
CUBOID 012 P 5.1 2P2.55 2P0.6150
CUBOID $5144.3-5.12 P 38.75$ 2P0.6150
UNIT 18
COM $=$ 'LOWER PORTION SOUTH BOTTOM REFLECTOR WITH TRIS'
CUBOID 01 2P5.1 2P2.55 2P8.855
CUBOID $5144.3-5.12 P 38.75$ 2P8.855
UNIT 19
COM = 'SOUTH BOTTOM REFLECTOR WITH REGULAR AND TRIS'
ARRAY $43^{3 *} 0.0$
UNIT 20
COM = 'EAST AND WEST REFLECTORS FOR NORTH REFLECTOR WITH TRIS'
CUBOID 5 I 2P16.550 2PI2.65 2P54.2825
UNIT 21
COM = 'ARRAY FOR EAST AND WEST REFLECTORS FOR NORTH REFLECTOR'
ARRAY $53^{*} 0.0$
UNIT 22
COM = 'EAST AND WEST REFLECTORS FOR SOUTH REFLECTOR WITH TRIS'
CUBOID 51 2P24.700 2PI2.65 2P54.2825
UNIT 23
COM = 'ARRAY FOR EAST AND WEST REFLECTORS FOR SOUTH REFLECTOR'
ARRAY $63^{* *} 0.0$
UNIT 24
COM $=$ 'NOR ?H TOP REFLECTOR WITH TRIS'
CUBOID 512P29.100 2P64.05 2P12.15

```
UNIT 25
COM ='ARRAY FOR NORTH TOP REFLECTOR'
ARRAY 7 3*0.0
UNIT }2
COM='SOUTH TOP REFLECTOR WITH TRIS'
CUBOID 01 2P5.1 2P2.55 2P12.15
CUBOID 5 1 69.4-5.1 2P64.05 2P12.15
UNIT 27
COM='ARRAY FOR SOUTH TOP REFLECTOR'
ARRAY 8 3*0.0
UNIT 28
COM ='NORTH END REFLECTOR 9.8CM PORTION WITHOUT TRIS'
CUBOID 41 2P4.9000 2P64.0500 2P54.2825
UNIT 29
COM ='NORTH END RELFECTOR 5.2 CM PORTION WITH TRIS'
CUBOID S I 2P2.6 2P64.0500 2P54.2825
UNIT 30
COM='NORTH END RELFECTOR 10.1 CM PORTION WITHOUT TRIS'
CUBOID 4 1 2P5.05 2P64.05 2P54.2825
UNIT 3I
COM='ARRAY SOR NORTH END REFLECTOR'
ARRAY 9 3*0.0
UNIT }3
COM = 'SOUTH END REFLECTOR'
CUBOID 5 I 2P12.55 2P64.05 2P54.2825
UNIT }3
COM ='ARRAY FOR SOUTH END REFLECTOR'
ARRAY 10 3*0.0
UNIT }3
COM = 'BOTTOM MODERATING PLASTIC NORTH CORE'
CUBOID 6 l 2PI6.550 2P38.7500 2P13.0500
UNIT 35
COM = 'TOP MODERATING PLASTIC NORTH CORE'
CUBOID 6 I 2P16 550 2P38.7500 2P3.2525
UNIT 36
ARRAY 11 3*0.0
UNIT 37
ARRAY 12 3*0.0
UNIT 38
COM='NORTH CORE WITII BOTTOM REFLECTOR'
ARRAY I3 3* 0.0
UNIT }3
COM = 'NORTH CORE WITH EAST AND WEST REFLECTOR'
ARRAY 14 3*0.0
UNIT 40
COM = 'NORTH CORE WITH END REFLECTOR'
ARRAY 15 3*0.0
UNIT 41
COM = 'NORTH SPLIT TABLE FACEPLATE'
CUBOID 31 2P0.6150 2P64.0500 2P66.4325
```

```
UNIT }4
COM='NORTH CORE WITH TOP REFLECTOR'
ARRAY 16 3*0.0
UNIT 43
COM='NORTH CORE WITH FACEPLATE'
ARRAY 17 3*0.0
UNIT 44
COM='12.95 CM THICK MODERATOR SOUTH CORE'
CUBOID 6 1 2P23.924 2P6.475 2P40.183
UNIT 45
COM='2.95 THICK MODERATOR SOUTH CORE'
CUBOID 6 1 2P23.924 2P38.5285 2P1.475
UNIT }4
COM ='COMBINATION OF CORE WITH I 2.95 THICK MODERATOR'
ARRAY 18 3*0.0
UNIT 47
COM ='COMBINATION OF CORE WITH 2.95 THICK MODERATOR'
ARRAY 19 3*0.0
UNIT }4
COM='SOUTH CORE WITH EAST WEST REFLECTORS'
ARRAY 20 3*0.0
UNIT }4
COM='SOUTH CORE WITH EAST WEST REFLECTORS'
ARRAY 21 3*0.0
UNIT 50
COM='SOUTH CORE END REFLECTOR'
ARRAY 22 3*0.0
UNIT 5l
COM='FACEPLATE FOR SOUTH SPLIT TABLE'
CUBOID 3 1 2P0.4620 2P64.0500 2P66.4325
UNIT 52
COM='SOUTH CORE WITH TOP REFLECTOR'
ARRAY 23 3*0.0
UNIT 53
COM='SOUTH CORE WITH FACEPLATE'
ARRAY 24 3*0.0
UNIT }5
COM='AIR GAP'
CUBOID O I 2P0.7600 2P64.0500 2P66.4325
GLOBAL
UNIT 55
COM='TOTAL'
ARRAY 25 3*0.0
UNIT 56
COM ='EMPTY FUEL LOCATION'
CUBOID O16P7.6650
UNIT 57
COM = 'SIDE MODERATOR'
CUBOID 6 1 2P16.550 2P4.4300 2P25.4350
UNIT }5
COM = 'END MODERATOR'
CUBOID 6 1 2P8.1500 2P38.7500 2P25.4350
```

UNIT 59
COM = 'SOUTH CORE BOTTOM MODERATING PLASTIC' CUBOID 61 2P24.7000 2P38.7500 2P13.0500
UNIT 60
COM = 'SOUTH CORE TOP MODERATING PLASTIC'
CUBOID 61 2P 24.7000 2P38.7500 2P3.2525
UNIT 61
COM = 'Y-FACE MODERATOR VOID'
CUBOID 01 2P7.665 2P1. 2200 2P7.665
END GEOMETRY
READ ARRAY
ARA $=1 \quad$ NUX $=3$ NUY $=7 \mathrm{NUZ}=5$
COM = 'NORTH SPLIT TABLE CORE'
FILL 1213532 Q6 121
474686 2Q6474
1Q42
56213531213531 Q65621 END FILL
ARA $=2 \quad$ NUX $=3 \quad$ NUY $=7 \mathrm{NUZ}=5$
COM = 'SOUTH SPLIT TABLE CORE'
FILL $1213532 Q_{6} 121$
4746862 Q6474
1Q42
1256353121353125635611256 END FILL
$A R A=3 \quad$ NUX $=1 \quad$ NUY $=1 \quad$ NUZ $=3$
COM $=$ 'NORTH BOTTOM REFLECTOR'
FILL 141113 END FILL
ARA $=4$ NUX $=1$ NUY $=1 \mathrm{NUZ}=7$
COM = 'SOUTH BOTTOM REFLECTOR'
FILL 18161716161717 END FILL
ARA $=5$ NUX $=1$ NUY $=1 \mathrm{NUZ}=1$
COM = 'EAST AND WEST WALLS OF NORTH REFLECTOR'
FILL 20 END FILL
ARA $=6$ NUX $=1$ NUY $=1$ NUZ $=1$
COM = 'EAST AND WEST WALLS OF SOUTH REFLECTOR'
FILL 22 END FILL
ARA $=7$ NUX $=1$ NUY $=1 \mathrm{NUZ}=1$
COM ='ARRAY FOR NORTH TOP REFLECTOR'
FILL 24 END FILL
ARA $=8 \quad$ NUX $=1 \quad N U Y=1 N U Z=1$
COM = 'ARRAY FOR SOUTH TOP REFLECTOR'
FILL 26 END FILL
$A R A_{1}=9$ NUX $=3$ NUY $=1 \mathrm{NUZ}=1$
COM='ARRAY FOR NORTH END REFLECTOR'
FILL 282930 END FILL
ARA $=10$ NUX $=1$ NUY $=1 \quad \mathrm{NUZ}=1$
COM = 'ARRAY FOR SOUTH END REFLECTOR'
FILL 32 END FILL
ARA $=11$ NUX $=1$ NUY $=2 \mathrm{NUZ}=1$
COM = 'COMBINARION OF CORE WITH SIDE MODERATOR'
FILL 957 END FILL
ARA $=12$ NUX $=1$ NUY $=1 \mathrm{NUZ}=3$
COM = 'COMBINATION OF PREVIOUS ARRAY WITH TOP AND BOTTOM MODERATOR'
FILL 343635 END FILL

```
ARA=13 NUX=1 NUY=1 NUZ=2
COM='COMBINATION OF NORTH CORE WITH BOTTOM REFLECTOR'
FILL 15 37 END FILL
ARA=14 NUX=1 NUY=3 NUZ=1
COM ='NORTH CORE WITH SIDE REFLECTORS'
FILL 21 3821 END FILL
ARA=15 NUX=2 NUY=1 NUZ=1
COM='NORTH CORE WITH END REFLECTOR'
FILL 31 39 END FILL
ARA=16 NUX=1 NUY=1 NUZ=2
COM='NORTH CORE WITH TOP REFLECTOR'
FILL 40 25 END FILL
ARA=17 NUX=2 NUY=1 NUZ=1
COM='NORTH CORE WITH FACEPLATE'
FILL 4241 END FILL
ARA=18 NUX=1 NUY=2 NUZ=1
COM='COMBINATION OF S. CORE WITH SIDE MODERATOR'
FILL 10 57 END FILL
ARA=19 NUX=2 NUY=1 NUZ=1
COM='COMBINATION OF CORE WITH END MODERA IOR'
FILL 46 58 END FILL
ARA=20 NUX=1 NUY=1 NUZ=4
COM ='SOUTH CORE WITH BOTTOM MODERATOR AND REFLECTOR'
FILL 19594760 END FILL
ARA=2! NUX=1 NUY=3 NUZ=1
COM='SOUTH CORE WITH EAST WEST REFLECTORS'
FILL 23 48 23 END FILL
ARA=22 NUX=2 NUY=1 NUZ=1
COM='SOUTH CORE WITH END REFLECTOR'
FILL 4933 END FILL
ARA=23 NUX=1 NUY=1 NUZ=2
COM='COMBINATION OF CORE WITH TOP REFLECTOR'
FILL 30 27 END FILL
ARA=24 NUX=2 NUY=1 NUZ=1
COM ='SOUTH CORE WITH FACEPLATE'
FILL 51 52 END FILL
ARA=25 NUX=3 NUY=1 NUZ=1
COM='TOTAL'
FILL 435453 END FILL
END ARRAY
READ PLOT TTL = 'XZ SLICE OF RFP2 SHOWING MATERIAL REGIONS'
XUL=-2 YUL=32.3 ZUL=136
XLR =137 YLR = 32.3 ZLR=-2
UAX=1 WDN=-1 NAX=130 NCH='0123456'END
TTL='YZ SLICE OF NORTH CORE SECOND ROW'
XUL=28 YUL=-2 ZUL=136
XLR=28 YLR=136 ZLR=-2
VAX=1 WDN=.1 NAX=130 NCH=`0123456'END
TTL='YZ SLICE OF SOUTH CORE SECOND ROW'
XUI = 80 YUL=-2 ZUL=136
XLR=80 YLR=136 ZLR=-2
VAX=1 WDN=-1 NAX=130 NCH='0123456'
END PLOT
END DATA
END
```

Case 43

```
//JOBCARD
// EXEC SPDASCR
T.GEE00000.RST1.HSNRCH.RFP3
//* PREVIOUS TWO LINES CLEAR T.GEE00000.RSTI.HSNRCH.RFP3 SO
//* A RESTART FILE CAN BE WRITTEN ON UNIT 30 IN THIS FILE
//MIKE EXEC Y12CSG,REGION.GO=1024K
//FT84F001 DD DSN = T.GEE00000.HSNRCH1,DISP = SHR
//FT30F001 DD DSN = T.GEE00000.RST1.HSNRCH.RFP3,UNIT = SPDA,
// SPACE=(TRK,(20,10)),DCB=(RECFM=VBS,LRECL=X,BLKSIZE=3156,BUFL=4088),
// DISP=(,CATLG)
//GO.SYSIN DD *
=CSAS25
ROCKY FLATS CRITICALS NUREG/CR-1071 EXPERIMENT NUMBER 3 (HANSEN-ROACH)
218GROUPNDF4 LATTICECELL
HAVEREDEFINED
U3O8 1 5.4078E-1 293.0 92234 0.03 92235 4.46 92236 0.08 92238 95.43 END
H2O 1 8.9514E-2 END
ARBM-BAGGIE 1.039001001 14.01 601284.980161.2011.9134E-2
    END
ARBM-AL1100 1.0300113027 99.18 26000 0.5 290000.2 29.5390E-I
    END
ARBM-TAPE(VINYL) 1.070001001 5.926012 45.91 801610.8217000
    25.73200406.9220001.6820001.121.1115E-2 END
AF 7M-TAPE(MYLAR) 1.0300010016.83601265.508016 27.02 2
    1.7491E-2 END
AR BM-MODERATOR 1.185 300 0 1001 7.83 6012 59.49 8016 32.48 3 END
ARBM-PLEX(REG) 1.0300010017.846012 59.598016 32.234
    1.1773 END
ARBM-PLEX(PAPER) 1.030001001 6.48601242.17801649.54
    3.7534E-3 END
ARBM-PLEX(GLUE) 1.030001001 11.676012862980161.204
    1.1648E-3 END
ARBM-PLEX(TRIS) 1.080011001 7.16601252.0370140.168016 29.82
    IS0311.02 17000 1.81 350794.260 35081 2.840 5 1.2757 END
ARBM-PLEX(PAPER) 1.0300010016.48601242.17801649.55
    3.7534E-3 END
ARBM-PLEX(GLUE) 1.030001001 11.67601286.298016 1.20 5
    1.1648E-3 END
ARBM-FILLER 1.185 300 01001 7.83 6012 59.49 8016 32.48 6 .70 END
END COMP
SPHTRIANGP 19.0018.5857 1 3 18.9579 2 END
ROCKY FLATS CRITICALS NUREG/CR-1071 EXPERIMENT NUMBER 3 (HANSEN-ROACH)
READ PARM RUN = YES NPG=500 RES = 103 WRS = 30
END PARM
READ GEOM
UNIT I
COM='FUEL BOX 15.28 CM ON A SIDE WITH . }15\mathrm{ CM WALLS .05CM STACKING VOID'
CUBOID 116P7.49
CUBOID 216P7.64
CUBOID 0 1 6P7.6650
```

```
UNIT 2
COM='X-FACE INTERSTITIAL MODERATOR'
CUBOID 312P0.4645 4P7.665
UNIT 3
COM ='Y-FACE INTERSTITIAL MODERATOR'
CUBOID 312P7.665 2P0.4645 2P7.665
UNIT 4
COM='Z-FACE INTERSTITIAL MODERATOR'
CUBOID 314P7.665 2P0.4645
UNIT 5
COM = 'MORE X-FACE MODERATOR'
CUBOID 314P0.4645 2P7.665
UNIT }
COM='MORE Y.FACE MODERATOR'
CUBOID 312P7.665 4P0.4645
UNIT }
COM ='MORE Z-FACE MODERATOR'
CUBOID 3 1 2P0.4645 2P7.665 2P0.4645
UNIT }
COM = 'LAST OF INTERSTITIAL MODERATOR'
CUBOID 316P0.4645
UNIT 9
COM='NORTH SPLIT TABLE CORE'
ARRAY 1 3*0.0
UNIT }1
COM='SOUTH SPLIT TABLE CORE'
ARRAY 2 3*0.0
UNIT 11
COM='PLEXIGLASS REFLECTOR SHEET WITHOUT T\kappaIS, NORTH BOTTOM REFLECTOR'
CUBOID 4 1 2P15.8000 2|38.7500 2P0.6150
UNIT }1
COM='PLEXIGLASS REFLECTOR SHEET WITH TRIS, NORTH BOTTOM REFLECTOR'
CUBOID S12P15.8000 2P38.7500 2P0.6150
UNIT 13
`OMM='UPPER PORTION NORTH BOTTOM REFLECTOR WITH TRIS'
CUBOID 51 2P15.8 2P38.75 2P8.24
UNIT 14
COM='LOWER PORTION NORTH BOTTOM REFLECTOR WITH TRIS'
CUBOID 5 1 2P15.8 2P38.75 2P3.69
UNIT 15
COM='NORTH BOTTOM REFLECTOR INCLUDES REGULAR AND TRIS'
ARRAY 3 3*0.0
UNIT 16
COM = 'PLEXIGLAS SHEET BOTTOM SOUTH REFLECTOR WITHOUT TRIS'
CUBOID 01 2P5.1 2P2.5 2P0.6150
CUBOID 4144.3-5.1 2P38.75 2P0.615
UNIT 17
COM = 'PLEXIGLAS SHEET BOTIOM SOUTH REFLECTOR WITH TRIS'
CUBOID 0!2P5.1 2P2.5 2P0.C150
CUBOID 5 1 44.3-5.1 2P38.75 2P0.6150
```

```
UNIT }1
COM = 'LOWER PORTION SOUTH BOTTOM REFLECTOR WITH TRIS'
CUBOID O I 2P5.1 2P2.5 2P8.855
CUBOID 5 1 44.3-5.1 2P38.75 2P8.855
UNIT 19
COM='SOUTH BOTTOM REFLECTOR WITH REGULAR AND TRIS'
ARRAY 4 3*0.0
UNIT 20
COM='EAST AND WEST REFLECTORS FOR NORTH REFLECTOR WITH TRIS'
CUBOID S 1 2P15.8 2P12.65 2P54.2825
UNIT 21
COM='ARRAY FOR EAST AND WEST REFLECTORS FOR NORTH REFLECTOR'
ARRAY 5 3*0.0
UNIT }2
COM='EAST AND WEST REFLECTORS FOR SOUTH REFLECTOR WITH TRIS'
CUBOID 5 1 2P24.700 2P12.65 2P54.2825
UNIT 23
COM='ARRAY FOR EAST AND WES'T REFLECTORS FOR SOUTH REFLECTOR'
ARRAY 6 3*0.0
UNIT }2
COM='NORTH TOP REFLECTOR WITH TRIS'
CUBOID 5 1 2P28.3S 2P/f
UNIT 25
COM='ARRAY FOR NORTH TOP REFLECTOR'
ARRAY 7 3*0.0
UNIT: }2
COM = 'SOUTH TOP REFLECTOR WITH TRIS'
CUBOID 0 1 2P5.1 2P2.5 2P12.15
CUBOID 5 1 69.4-5.1 2P64.05 2P12.15
UNIT 27
COM='ARRAY FOR SO!JTH TOP REFLECTOR'
ARRAY & 3*0.0
\JNIT 28
COM='NORTH END REFLECTOR 9.8C!/ PORTION WITIIOUT TRIS'
CUBOID 4 1 2P4.9000 2P64.0500 2P54.2825
UNIT 29
COM='NORTII END RELFECTOR 5.2 SM PORTION WITH TRIS'
CUBOID 5 , 2P2.6 2P64.0500 2P54.2825
UNIT 30
COM='NOR' H END RELFECTOR 10.1 CM PORTION WITHOUT TRIS'
CUBOID 4 1 ?P5.05 2P64.05 2P54.2825
UNIT 31
COM='ARRAY FOR NORTH END REFLECTOR'
ARRAY 9 3*0.0
UNIT 32
COM = 'SOUTH END REF!.ECTOR'
CUBOID 5; 2P12.55 2P64.05 2P54.2825
UNNIT 33
COM = 'ARRAY FOR SOUTH END REFLECTOR'
ARP.AY 10 3*0.0
```

```
UNIT }3
COM='12.95 THICK MODERATING PLASTIC NORTH CORE'
CUBOID 6 1 2PIS.7945 2P6.4750 2P40.1830
UNIT 35
COM ='2.95 THICK MODEP.ATING PLASTIC NORTH CORE'
CUBOID 6 1 2P15.7945 2P38.5285 2P1.475
UNIT }3
ARRAY 11 3*0.0
UNIE }3
ARRAY 12 3*0.0
RIPLICATE 0 1 0.00.011 0.4430.00.15900.0 1
UNIT }3
COM='NORTH CORE WITH BOTTOM REFLECTOR'
ARRAY 13 3* 0.0
UNIT }3
COM='NORTH CORE WITH EAST AND WEST REFLECTOR'
ARRAY 14 3*0.0
UNIT 40
COM='NORTH CORE WITH END REFLECTOR'
ARRAY 15 3*0.0
UNIT 4I
COM='NORTH SPLIT TABLE FACEPLATE'
CUBOID 31 2P0.6150 2P64.0500 2P66.4325
UNIT }4
COM:=`NORTH CORE WITH TOP REFLECTOR'
ARRAY 16 3*0.0
UNIT }4
COM='NORTH CORE WITH FACEPLATE'
ARRAY 17 3*0.0
UNIT }4
COM='12.95 CM THICK MODERATOR SOUTH CORE'
CUBO1D 6 1 2P23.924 2P6.475 2P40.183
UNIT 45
COM='2.95 THICK MODERATOR SOUTH CORE'
CUBOID 6 1 2P23.924 2P38.5285 2P1.475
UNIT }4
COM ='COMBINATION OF CORE: WITH 12.95 THICK MODERATOR'
ARRAY 18 3*0.0
UNIT 47
COM = 'COMBINATION OF CORE WITH 2.95 THICK MODERATOR'
ARRAY 19 3*0.0
REPLICATE 011.552 0.0 0.4430 0.0 0.:59 0.01
UNIT 48
COM = 'SOUTH CORE WITH EAST WEST REFLECTORS'
ARRAY 20 3*0.0
UNIT }4
COM = 'SOUTH CORE WITH EAST WEST REFLECTORS'
ARRAY 21 3*0.0
UNIT 50
COM = 'SOUTH CORE END REFLECTOR'
ARRAY 22 3*0,0
```

UNIT 51
COM = 'FACEPLATE FOR SOUTH SPLIT TABLE'
CUBOID 31 2P0.4620 2P64.0500 2P66.4325
UNIT 52
COM = 'SOUTH CORE WITH TOP REFLECTOR'
ARRAY $233^{*} 0.0$
UNIT 53
COM = 'SOUTH CORE WITH FACEPLATE'
ARRAY $243^{*} 0.0$
UNIT 54
COM = 'AIR GAP'
CUBOID 01 2P0.5250 2P64.0500 2P66.4325
GLOBAL
UNIT 55
COM = 'TOTAL'
ARRAY $253^{*} 0.0$
END GEOMETRY
READ ARRAY
ARA $=1 \quad$ NUX $=3$ NUY $=7 \mathrm{NUZ}=9$
COM = 'NORTH SPLIT TABLE CORE'
FILL $1213532 Q 6121$
474686 2Q6474
3Q42
$1213532 Q 6121$ END FILL
ARA $=2$ NUX $=5$ NUY $=7$ NUZ $=9$
COM $=$ 'SOUTH SPLIT TABLE CORE'
FILI. 12121353532 Q1012121
$47474686862 Q 1047474$
3Q70
I 2121353532 Q1012121 END FILL
ARA $=3 \quad$ NUX $=1 \quad \mathrm{NUY}=1 \quad \mathrm{NUZ}=3$
COM = 'NORTH BOTTOM REFLECTOR'
FILL 141113 END FILL
ARA $=4 \quad$ NUX $=1 \quad \mathrm{NUY}=1 \quad \mathrm{NUZ}=7$
COM = 'SOUTH BOTTGM REFLECTOR'
FILL 18161716161717 END FILL
ARA $=5 \quad$ NUX $=1 \quad$ NUY $=1 \quad$ NUZ $=1$
COM = 'EAST AND WEST WALLS OF NORTH REFLECTOR'
FILL 20 END FILL
$A R A=6 \quad N U X=1 \quad N U Y=1 N U Z=1$
COM = 'EAST AND WEST WALLS OF SOUTH REFLECTOR'
FILL 22 END FILL
ARA $=7$ NUX $=1$ NUY $=1 \mathrm{NUZ}=1$
COM = 'ARRAY FOR NORTH TOP REFLECTOR'
FILL 24 END FILL
$A R A=8 \quad N U X=1 \quad N U Y=1 \quad N U Z=1$
COM = 'ARRAY FOR SOUTH TOP REFLECTOR'
FILL 26 END FILL
$A R A=9 \quad N U X=3 \quad N U Y=1 \quad N U Z=1$
COM ='ARRAY FOR NORTH END REFLECTOR'
FILL 282930 END FILL

```
ARA=10 NUX=1 NUY=1 NUZ.=1
COM='ARRAY FOR SOUTH END REFLECTOR`
FILL }32\mathrm{ END FILL
ARA=11 NUX=1 NUY=2 NUZ=1
COM ='COMBINARION OF CORE WITH 12.95CM THICK MODERATOR'
FILL 9 34 END FILL
ARA=12 NUX=1 NUY=1 NUZ=2
COM='COMBINATION OF PREVIOUS ARRAY WITH 2.95CM THICK MODERATOR'
FILL 36 35 E:!口 FILL
ARA=13 NUX=1 NUY =1 NUZ=2
COM ='COMBINATION OF NORTH CORE WITH BOTTOM REFLECTOR'
FILL 15 37 END FILL
ARA=14 NUX=1 NUY=3 NUZ=1
COM = 'NORTH CORE WITH SIDE REFLECTORS'
FILL 21 3821 END FILL
ARA=15 NUX=2 NUY=1 NUZ=1
COM = 'NORTH CORE WITH END REFLECTOR'
FILL }3139\mathrm{ END FILL
ARA=16 NUX=1 NUY=1 NUZ=2
COM='NORTH CORE WITH TOP REFLECTOR'
FILL 4025 END FILL
ARA=17 NUX=2 NUY=1 NUZ=1
COM='NORTH CORE WITH FACEPLATE'
FILL 4241 END FILL
ARA=18 NUX=1 NUY=2 NUZ=1
COM ='COMBINATION OF S. CORE WITH I2.95 CM THICK MODERATOR'
FILL 1044 END FILL
ARA=19 NUX=1 NUY=1 NUZ=2
COM='COMBINATION OF CORE WITH 2.95 CM THICK MODERATOR'
FILL }4645\mathrm{ END FILL
ARA=20 NUX =1 NUY =1 NUZ=2
COM = 'SOUTH CORE WITH BOTTOM REFLECTOR'
FILL 1947 END FILL
ARA=21 NUX=1 NUY = 3 NUZ=1
COM='SOUTH CORE WITH EAST WEST REFLECTORS'
FILL 2348 23 END FILL
ARA.=22 NUX=2 NUY=1 NUZ=1
CUM='SOUTH CORE WITH END REFLECTOP'
FILL 4933 END FILL
ARA=23 NUX=1 NUY=1 NUZ=2
COM ='COMBINATION OF CORE WITH TOP REFLECTOR'
FILL 50 27 END FILL
ARA=24 NUX=2 NUY=1 NUZ=1
COM = 'SOUTH CORE WITH FACEPLATE'
FILL 51 52 END FILL
ARA=25 NUX=3 NUY=1 NUZ=1
COM='TOTAL''
FILL 435453 END FILL
END ARRAY
READ PLOT TTL='XZ SLICE OF RFP3 SHOWING MATERIAL REGIONS'
XUL=-1 YUL=32.3 ZUL=135
XLR=136 YLR = 32.3 ZLR=-2
```

```
UAX=1 WDN=-1 NAX=130 NCH='0123456'END
TTL='YZ SLICE OF NORTH CORE SECOND ROW'
XUL=28 YUL=-2 ZUL=136
XLR=28 YLR=136 ZLR=-2
VAX=I WDN=-1 NAX=130 NCH='0123456'END
TTL='YZ SLICE OF SOUTH CORE SECOND ROW'
XUL=90 YUL=-2 ZUL=136
XLR=90 YLR=136 ZLR=-2
VAX=1 WDN=-1 NAX=130 NCH='0123456'
END PLOT
END DATA
END
//
```


## APPENDIX D

## ADDITIONAL COMMENTS ABOUT THE ROCKY FLATS CRITICAL EXPERIMENTS

The reports describing the critical experiments performed at the Rocky Flats Plant (Refs. 6-8) include many details about the experiments. The following discussion wiil explain why certain values were used in the input for the calculational model. For the first set of critical experiments performed at an $\mathrm{H}: \mathrm{U}$ of 0.77 , an effort was made to verify the given $\mathrm{H}: \mathrm{U}$ and calculate the $\mathrm{H}:{ }^{235} \mathrm{U}$ of the fu:l. The most accurate description of the hydrogenous contents of the fuel cubes is given in Ref. 14 and is shown in condensed form in Table D.I. The atomic weight of the fuel is calculated to be 237.9122 for the isotopic weight percents given in Ref. 14, Table V. On page 28 of the same document the average assay of the oxide is given as 0.8449 and the average weight of the oxide in a can is 15129.1 g (note: this also includes the weight of the initial moisture of 40.84 g , so the true average weight of the oxide is 15088.26 ), therefore, the mass of uranium in the oxide is 12748.1 g .

The : $: \mathrm{U}$ ratio can be calculated with the above information in the following fashion:

$$
\mathbf{H}: \mathbf{U}=(\mathrm{mH} / \mathbf{A}(\mathbf{H})) /(\mathrm{mU} / \mathbf{A}(\mathrm{U})) .
$$

Where mH is the mass of hydrogen, $\mathbf{A}(\mathrm{H})$ is the atomic weight of hydrogen, mU is the mass of uranium, and $A(U)$ is the atomic weight of the uranium for the given isotopic content. This yields a H:U of 0.769 for the experiments given in Ref. 6. A comment about this calcuiation is the true $\mathrm{H}: \mathrm{U}$ should not include the hydrogen contribution from the mylar tape and the vinyl tape because it is not intimately mixed with the fuel. thus reducing the $\mathrm{H}: \mathrm{U}$ to $\mathbf{0 . 7 6 0}$. The number densities calculated in SCALE give a $\mathrm{H}: \mathrm{U}$ of 0.787 which is well within the 0.06 uncertainty associated with the $\mathrm{H}: \mathrm{U}$ calculated in Ref. 14. Similarly, the $\mathrm{H}:{ }^{233} \mathrm{U}$ ratio is calculated to be 17.02 and the ratio of the number densities in SCALE give $\mathrm{H}^{2}{ }^{235} \mathrm{U}$ equal to 17.4.

References 7 and 8 contain experiments performed at a higher $\mathrm{H}: \mathrm{U}$. The higher $\mathrm{H}: \mathrm{U}$ is obtained by injecting the same amount of water into each fuel cube. In Ref. 7 the experimenters inject an additional 224.0 g of water into each fuel cube, and in Ref. 8 they inject an additional 360.0 g of water into each cube. The $\mathrm{H}: \mathrm{U}$ values could not be reproduced from the data given in these individual reports. However, if the additional water injected in each experiment is added to the water in Table D. 1 and the calculation of $\mathrm{H}: \mathrm{U}$ is performed, the $\mathrm{H}: \mathrm{U}$ values can 'e reproduced. Table D. 2 compares the H:U values given in Refs. 6-8 with the values calculated from the information in the reports with and without the hydrogen contribution from the tape.

One of the problems confronted when modeling these experiments was localized absorption in the reflector. All of the experiments modeled used the same reflector shell with only minor changes due to the thickness of the interstitial moderator. At one point during the course of the experiments it was found that the reflector shells had been made from two types of Plexiglas, one type being regular Plexiglas and the other containing TRIS, a fire retardent chemical. It turns out that the Plexiglas containing TRIS has an increased absorption cross section due to chlorine and bromine contained in the TRIS. An analysis of the reflector shells indicated that nearly $80 \%$ of the Plexiglas in the rellector contained TRIS. Figure D. 1 is a map showing the location us non-TRIS Plexiglas in the north reflector and Fig. D. 2 is a similar map of the south reflector. These maps were obtained from J. A. Bucholz at ORNL, who received them from I. Oh of the RFP while working on the design of some of the RFP critical experiments.

For the reader who is familiar with KENO IV, the computer input previously listed may seem a little confusing. The array-of-arrays option in KENO V.a is actually very simple to use, but, if not properly documented, it can cause havoc. What is meant by documentation is that a comment is included about each unit (box type) describing its function and location in the model (e.g., top reflector north core means top portion of the north reflector). This is done to prevent confusion

Table D. 1 Hydrogenous material in fuel at $\mathrm{H} / \mathrm{U}=0.77$

| Materal | Weight <br> (grams) | Weight percent <br> hydrogen | Hydrogen <br> content (grams) |
| :--- | :---: | :---: | :---: |
| $\mathrm{H}_{2} 0$ in $\mathrm{U}_{3} \mathrm{O}_{8}$ | 40.84 | 11.19 | 4.57 |
| $\mathrm{H}_{2} \mathrm{O}$ injected | 259.52 | 11.19 | 29.04 |
| Polyethelyne bags | 53.2 | 14.01 | 7.45 |
| Mylar tape | 4.0 | 6.83 | 0.27 |
| Vinyl tape | 3.0 | 5.92 | 0.18 |
|  | Total hydrogen content per fuel cube |  | 41.51 |

Table D. 2 Comparison of H:U values

| With Hydrogen from Tape | Without Hydrogen from Tape |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Ref. | Calculated | Calculated | Calculated | SCALE |
| H:U | H:U | H:U | H: $:^{235} \mathrm{U}$ | H: $:{ }^{235} \mathrm{U}$ |
| 0.77 | 0.77 | 0.76 | 17.02 | 17.4 |
| 1.23 | 1.23 | 1.22 | 27.11 | 27.67 |
| 2.03 | 1.98 | 1.97 | 43.63 | 44.15 |



Fig. D. 1 North split table reflector map showing location of non-fire retardent Plexiglas


END REFLECTOR


Fig. D. 2 South split table reflector map showing location of non-fire retardent Plexiglas

## NORTH



「ig. D. 3 Dimensions of north split table reflector used in computer models


Fig. D. 4 Dimensions of south split table reflector used in computer models
when all of the pieces of the model are assembled in the READ ARRAY portion of the input. $\mathrm{Fi}_{0}$-re D. 3 shows the north reflector shell for undermoderated experiments (the thickness of the interstitial moderator between fuei cubes in the north-south direction will effect the noith-south dimension of the reflector shell), and Fig. D. 4 shows the south reflector shell for the same type of experiment.

## APPENDIX E

## CALCULATION OF LOWER TOLLRANCE LIMITS

The lower tolerance limits associated with the equations given in Section 6 were derived from an article in Ref. 11, pp. 207-9. This article is a query about one-sided tolerance bands such that a portion of the population $\mathbf{P}$ lies above the lower tolerance limit with confidence alpha for all $\mathbf{X}$ in a stated interval. In criticality safety this is the same type of relation that will give a sound statistical basis to the safety associated with a calculation.

To illustrate the method used in this validation effort, we use the example in Ref. 11. We are looking for a tolerance limit about a curve based on the data from Ref. 11. These data are given in Table E.I. In this example the portion of the populaticn considered is $95 \%$ ( $\mathrm{P}=.95$ ) with a confidence level of $95 \%$ ( $\alpha=.95$ ).

The lower tolerance limit is found by evaluating Equation 1 over

1) $\mathbf{Y}=\mathrm{m}^{*} \mathrm{X}+\mathbf{B} \cdot \mathbf{k}^{*} \mathrm{~s}$
the range of $\mathbf{X}$. The first two terms in Equation 1 make up the simple linear model for the data in Table E.1. The last term, $\mathbf{k}^{*} \mathrm{~s}$, is constant over the range of $\mathbf{X}$, thereby generating a uniform tolerance band. The value of $\mathbf{k}$ is to be determined and $s$ is the square root of the mean square error (root MSE). The coefficients $m$ and B are estimated by the method of least squares and can be easily found using a suitable regression program. In this example we used the PROC GLM command available in SAS. ${ }^{12}$ From the SAS output the intercept (B) equals 51.41 , the slope ( $\mathbf{m}$ ) equals - 10.32 , and the root MSE is equal to 0.095 .

The variable $k$ is defined to be:

$$
\mathrm{k}=\mathrm{C}+\mathrm{Zp} \mathrm{p}^{*} \sqrt{\frac{\mathrm{~N}-\mathbf{2}}{\mathrm{x}^{2}}}
$$

where C is a constant, Zp is a standard normal deviate (e.g., a portion $\mathbf{P}$ of the standard normal area is enclosed above -Zp ), and $\chi^{2}$ is the $\chi^{2}$ for $\mathrm{N}-2$ degrees of freedom and percentage point $=$ $\boldsymbol{\gamma}_{2}$. To find the value of C , one must first find the values of $\mathrm{g}, \mathrm{h}, \mathrm{A}$, and $\rho$. The reader is referred to Ref. 13, pp. 185-87 for the equations describing these variables. The values of $\mathrm{g}, \mathrm{h}, \mathrm{A}$, and $\rho$ depend on the interval over which the tolerance band is to be determined; this example has endpoints, $a=4.26, b=4.43$. These endpoints, used in the equations given in Ref. 13, yield $\mathrm{g}=0.7299, \mathrm{~h}=0.3670, \mathrm{~A}-1.9888$, and $\rho=0.23$. One of several typographical errors found in Ref. 11 is the quantity $\Sigma X^{2}$, which should be $\Sigma\left(\mathrm{X}_{\mathrm{i}}-\mathrm{X}\right)^{2}$. This latter quantity is easily found by squaring the standard deviation and multiplying hy the nusiber of samples minus one. In the example the value of this quantity is 0.0515 .

From the values of $\mathrm{A}, \rho$, and $\mathrm{N}-2$, the reader is referred to Ref. 13 to find a value of D from the tables on pages 194-6. A new value used in the tables is $\gamma_{1}$, or 1 minus the confidence level (i.e., $1-\alpha$ ) which, in this example, is 0.05 . By linear interpolation of Table III on page 194 we estimate a value of 2.47 for D . D is multiplied by g to obtain C . Zp is determined from the cumulative standard normal distribution according to $\mathbf{P}$ set forth in the problem. In this case $\mathbf{P}$ is selected to be $95 \%$ of the population, so we find the value of Zp in the table associated with an area of 0.05 which is -1.64 (the minus sign determines which side of the mean Zn is located). To find the value of the last variable, $\chi^{2}$, we look in a $\chi^{2}$ distribution table with $\mathrm{N}-2$ degrees of freedom for the designated percentage point. This percentage point is found by solving the following expression for $\gamma_{2}$ :

$$
\alpha=1-\frac{\gamma_{1}}{2}-\gamma_{2}
$$

Thus, $\alpha-0.95, \gamma_{1}=0.05$, so $\gamma_{2}=0.025$ and the value of $\chi^{2}(6,0.25)$ is 1.64 .
With the above data, we can now solve Equation 1 and find the line which defines the ower limit. Figure E.l shows the data with the linear model and the lower tolerance limit for $\mathrm{P}=0.95$ and $\alpha=0.95$. The derivation of the tolerance limits for the linear models described in the report are calculated similarly for $99.9 \%$ of the population at a confidence level of $95 \%$.

Table E. 1 Example dat. 1

| X | Y |
| :---: | :---: |
| 4.52 | 4.75 |
| 4.49 | 5.00 |
| 4.46 | 5.26 |
| 4.43 | 5.68 |
| 4.40 | 5.96 |
| 4.36 | 6.56 |
| 4.32 | 6.69 |
| 4.27 | 7.28 |



Fig. E. 1 Plot of example data with linear model and lower tolerance limit

## INTERNAL DISTRIBUTION

| I. | D. Bakerj | 31. | L. M. Petrie |
| ---: | :--- | ---: | :--- |
| 2. | Y. Y. Chan | 32. | G. E. Ragan |
| 3. | H. L. Dodds | 33. | D. A. ReeJ |
| 4-13. | H. R. Dyer | 34. | J. E. Shoemaker |
| 14-18. | M. E. Easter | 35. | R. V. Stachowiak |
| 19. | C. D. Ellis | 36. | R. G. Taylor |
| 20. | W. R. Golliher | 37. | J. T. Thomas |
| 21. | G. R. Handley | 38. | R. M. Westfall |
| 22. | C. M. Hopper | 39. | G. E. Whitesides/R. P. Leinius/C \&TD Library |
| 23. | J. C. Ingram | 40. | K-25 CS Library |
| 24. | T. A. Jokerst | $41-43$. | K-25 Plant Library |
| 25. | W. C. Jordan | 44. | Central Research Library |
| 26. | N. F. Landers | 45. | Document Reference Section, Y-12 |
| 27. | L. C. Masters | $46-47$. | Laboratory Records |
| 28. | W. T. Mee | 48. | ORNL Patent Section |
| 29. | C. E. Newlon | $49-50$. | ORGDP Library |
| 30. | C. V. Parks |  |  |

## EXTERNAL DISTRIBUTION

51. Division of Engineering, Mathematigs and Geosciences, DOE, Washington, DC 20545
52. Office of Assistant Mgr. for Energy Research and Development, DOE/ORO, Oak Ridge, TN 37830
53. T. Albert, Science Applications, Inc., Clearwater, FL
54. C. S. Barnette, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
55. G. H. Bidinger, Transportation Branch, Office of Nuclear Material Safety and Safeguards, Nuclear Regulatory Commission, PiS 396-SS, Washington, D.C. 20555
56. S. R. Bierman, Battelle-Pacific Northwest Labs, P.O. Box 999, Richland, WA 99352
57. C. Brown, Exxon Nuclear Idaho Co., Inc., Idaho Falls, ID
58. C. L. Brown, Criticality Engineering \& Analysis, Rockwell Hanford Operations, P.O. Box 800, Richland, WA 99352
J. S. Bullington, Savannah River Laboratory, Aiken, SC 29808
59. R. D. Carter, Rockwell Hanford Operations, P.O. Box 800. Richiand, WA 99352
60. M. Chandler, Savannah River Laboratory, Aiken, SC 29808
61. H. K. Clark, Savannah River Laboratory, Aiken, SC 29808
62. E. D. Clayton, Batte !le-racific Northwest Labs, P.O. Box 9y9, Richland, WA 99352
63. L. C. Dolan, Nationa! !.sad Co. of Ohio, P.O. Box 39158, Cincinnati, OH 45239
64. D. R. Finch, Savannal. River Laboratory, Aiken, SC 29808
65. H. M. Forehand, Los Alamos National Laboratory, P.O. Box 1.63, Los Alamos, NM 98545
66. D. L. Honkonen, Savannah River Laboratory, Aiken, SC 29808
67. J. A. Irvin-Zamora, Rockwell International, Rocky Fin:- Plant, P.O. Box 464, Golden, CO 8041 ,
68. N. Ketzlach, Transportation Branch, Office of Nucleaı Material Safety and Safeguards, Nuclear Regulatory Commission, MS 396-SS, Washington, D.C. 20555
O. C. Kolar, Lawrence Livermore Naiional Laboratory, P.O. Box 808, Livermore, CA 94550
69. O. C. Kolar, Lawrene Lawre Livermore National Laboratory, P.O. Box 808, Livcrmore, CA 94550
70. K. D. Lewis, Goociyear Atomic, Portsmouth, OH
71. J. D. McCarthy, Rockwell International, Rocky Fiats Plant, P.O. Box 464, Golden, CO 80401
72. T. P. McLaughlin, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545
73. R. E. Miles, Rockwell International, Rocky Flats Plant, P.O. Box 464. Golden, CO 80401
74. J. W. Morfitt, EG \&G Idaho, Inc., P.O. Box 1625, Idaho Falls, ID 83415
75. R. L. Newvahner, Goodyear Atomic, Portsmouth, OH
76. R. H. Odegaarden, Transportation Branch, Office of Nuclear Material Safety and Safeguards, Nuclear Regulatory Commission, MS 396-SS, Washington, D.C. 20555
77. J. S. Pearson, Rockwell International, Rocky Flats Plant, P.O. Box 464, Golden, CO 80401
78. T. H. Pigforud, Uuiversity of Caiifornia, Derikeiey, CA
79. N. L. Provost, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545
80. T. A. Reilly, E. I. DaPont de Nemours Co., Savannah River Plant, Aiken, SC 29808
81. J. N. Rogers, Div. 8324, Sandia Laboratories, Livermore, CA 94550
82. R. Rothe, Rockwell International, Rocky Flats Plant, P.O. Box 464, Golden, CO 80401
83. D. R. Smith, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545
84. B. Waltz, Savannah River Laboratory, Aiken, SC 29808
85. R. E. Wilson, Exxon Nuclear-Idaho Co., P.O. Box 2800, Idaho Falls, ID 83401
86. F. E. Woltz, Goodyear Atomic Corp., P. O. Box 628, Piketon, OH 45661

89-115. Technical Information Center, U.S. Departmeni of Energy, Oak Ridge, TN 37830


[^0]:    *atoms/barn-cm

