Properly quantified performance of a solar-thermal cavity receiver must not only account for the energy gains and losses as dictated by the First Law of thermodynamics, but it must also account for the quality of that energy. However, energy quality can only be determined from the Second Law. In this paper an equation for the Second-Law efficiency of a cavity receiver is derived from the definition of available energy or availability (occassionally called exergy), which is a thermodynamic property that measures the maximum amount of work obtainable when a system is allowed to come into unrestrained equilibrium with the surrounding …
continued below
Publisher Info:
Jet Propulsion Lab., Pasadena, CA (USA)
Place of Publication:
Pasadena, California
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Properly quantified performance of a solar-thermal cavity receiver must not only account for the energy gains and losses as dictated by the First Law of thermodynamics, but it must also account for the quality of that energy. However, energy quality can only be determined from the Second Law. In this paper an equation for the Second-Law efficiency of a cavity receiver is derived from the definition of available energy or availability (occassionally called exergy), which is a thermodynamic property that measures the maximum amount of work obtainable when a system is allowed to come into unrestrained equilibrium with the surrounding environment. The fundamental concepts of the entropy and availability of radiation are explored from which a convenient relationship among the reflected cone half angle, the insolation, and the concentrator geometric characteristics is developed as part of the derivation of the Second-Law efficiency. A comparison is made between First- and Second-Law efficiencies around an example of data collected from two receivers that were designed for different purposes. The author attempts to demonstrate that a Second-Law approach to quantifying the performance of a solar-thermal cavity receiver lends greater insight into the total performance than does the conventional First-Law method.
Physical Description
59 pages
Notes
NTIS, PC A04/MF A01; 1.
Portions are illegible in microfiche products. Original copy available until stock is exhausted
This report is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Moynihan, P. I.Second-law efficiency of solar-thermal cavity receivers,
report,
October 1, 1983;
Pasadena, California.
(https://digital.library.unt.edu/ark:/67531/metadc1054107/:
accessed March 20, 2025),
University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.