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Abstract 
A chemical reaction is treated as a quantum transition from reactants 

to products. A specific reaction Hamiltonian (in second quantization 
formalism) is introduced. The approach leads to Franck-Condon-like 
factor, and adiabatic method in the framework of the nuclear moti n 
problem. 

The influence of reagent vibrational state on the product energ.' 
distribution has been studied following the reaction Hamiltonian method. 
Two different cases (fixed available energy and fixed translational 
energy) are distinguished. Results for several bimolecular reactions are 
presented. 
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I. Introduction 
For bimolecular chemical reactions there are powerful methods for the 

investigation of collision dynamics [1-3]. The prediction of state-to-
state energy distributions, however, remains a formidable problem. 
Interest here focuses on the evaluation of product vibrational energy 
distributions for reactions that occur on a single potential energy 
surface. 

Two of us have described a method, based on a specific Reaction 
Hamiltonian in second quantization formalism, to predict state-to-state 
energy distributions. The approach, similar in structure to Bardeen's 
theory to tunneling, [ ] leads to the evaluation of a Franck-Condon-type 
(FC) matrix element [4-5]. The FC approaches have appeared for the deter
mination of product energy distributions of chemical reactions and of 
photodissociation [6,8-13]. These methods have been developed from 
scattering theory, [7] and from assumptions on the applicability of the 
Golden Rule in a dressed-oscillator model for both reaction and photo-
dissociation. In the latter case, the operator causing the transition 
was not obtained [14]. 

In this paper we summarize the RH method and apply it to selected 
A • BC reactions. Further, we treat the role of reagent vibrational 
energy on ths product energy distribution. 

The structure of the paper is as follows. The approach which leads 
to the description of a chemica' reaction as a quantum transition and to 
the introduction of the reaction Hasiltonian (in second quantization 
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representation) Is presented In the next section. The evaluation of the 
FC factor is then addressed in Sec. III. The effect of the initial 
excitation of the reactants on the vibrational distribution of the 
products is considered in Sec. IV and several applications of the theory 
are presented in Sec. V. Discussion follows in Sec. VI and a summary 
concludes the paper. 

II. Reaction as a Quantum Transition. Reaction Hamiltonian 
Consider a chemical reaction in which the reactants and products 

belong to the same potential energy surface e (R); here (R> denotes 
nuclear coordinates. The Schroedinger equation can be written in the 
form 

(H e + ?£) <F(r,it) - E*(r,it) (1) 

-»• * 

where {r} denotes electronic coordinates, It is the nuclear kinetic 
energy operator, and H g is the electronic KamiItonian, 

H e - f* - V(?,R) (2) 

" •+ •*• 

Here T* is the kinetic energy operator of the electrons, and V(r,R) is 
the total potential energy. In accord with the Born-Oppenheimer (BO) 
approximation, the electronic term is defined by the equation: 

He*„(r\R) - c„(R) *fl(r,R) (3) 
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where *_(r,R) is the electronic wave function. Now, consider Eqs. 
(l)-(3) with a new potential V{r,R). The effect of the substitution 
V » V is a change of the electronic terms from e n, c + 1 to efl, e p 

so that 

[T* + V(r.R)] ̂ (r.R) - « S(R) *fl(r.R) (4) 

[T* + V(r,R)] *p(?,R.) =• c p(R) * p(r,R) (5) 

We choose the potential V(r,R) such that the term eR{R) is given by 
•+• 

e (R)I - (the index "i" identifies the reactant channel). In an 
~ •*• -*• 

analogous way, we introduce a term e p(R) which behaves as e (R)i-
(the product channel). 

The terms ep{R) and ep(R) are similar to diabatic surfaces (see the 
next section). The corresponding nuclear wave functions are solutions of 

[T£ + c p(R)] # P v.(R) - E i p v.(R) (7) 

- . - + • * • ~ -* -»• -, -*• ~ -». -v 
Hence, one can introduce the states ¥fl(r,R) « *^(r,R) 4R(R) and *p(r,R) » 
^p(i",R) #p(R), which are eigenstates of the Hamiltonian 

H - T; • T* • V(r,iT) (8) 

and describe the states of the reactants (ft) and the products (?), 
respectively. Indeed, the function t^R) (and, hence, ^ r . R ) ) is 
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exponentially small in the product channel (see Eq. (6)), and # P(R) is 
exponentially small in the reactant channel. 

A chemical reaction can be treated as a quantum transition from 
reactants to products. From the above considerations, the Schroedinger 
equation (1) can be rewritten in the form 

(H + AH) T(r,Rj =« E f(r,R) (9) 

where H is defined by Eq. (8), and 

AH * V(r,R) - V(r,R) (10) 

The term AH can be considered as the part of the Hamiltonian that 
governs transitions between eigenstates of the Hamiltonian H. We can use 
the usual theory of quantum transitions (see, e.g., Ref. 16) based 
on the time-dependent Schroedinger equation with Hamiltonian H • H + AH 
to determine the probability of reaction. Further, we are concerned 
here with reactions occurring on a single adiabatic potential energy 
surface, which we treat in a quasiadiabatic (nondiagonal) representation. 
Thus in accordance with the BO approximation, one can neglect the coupling 
of electronic and nuclear motions owing to T«; see also ref. 11. This 
coupling is important, for example, in electronic predissociation 
accompanied by a change of adiabatic potential energy surface. The term 
aH, which does not depend on time, can cause transitions between states 
of the same energy (see, e.g., ref. 16). (This property is relevant 
because energy is conserved in th« elementary step). Tnus, we arrive at 
the expression for the probability of the transition per unit of time: 
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where dv f - p*dE-, p f is the density of states, and the amplitude 
if * is given by 

a f i *fvf*(rj) AHf^r.R) drdR (12) 

Here i = # denotes the state of the reactants and f = p denotes the state 
of the products. 

Equation (11) is the result of first-order time-dependent perturba
tion theory and involves the approximation of neglect of all virtual 
transitions; cf, ref. 11. If higher-order corrections are important, the 
probability is given by an expression of the same form as (11) with, 
however, the matrix element a f i replaced by the T-matrix element17 

connecting states i and f. See the paragraph following Eq. (21) for 
further discussion. 

Based on Eqs. (2) and (10), we obtain (cf., Ref. 15) 

afi - / * f W ) *f*W t H
e-'i (^ ) ] *l£»«l *i^> d** <13> 

Equation (13) can be rewritten in the form 

*fi "/*fW *i& L & d* <14> 

where 
L(R) -J* f1r,R) CH e-c f(R)] ̂ (r.R) dr" (15) 
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The orthogonality of ̂  and 4>f enables Eq. (15) to be expressed in 
-». y»«. *-•• -•• A .>. •*••*• -*• 

the form L(R) » / <Mr,R) H i|»-(r,R)dr. One sees that the function 
-*• ~ 

L(R) contains the electronic wave functions describing the diabatic 
states (see below) and the electronic Hamiltonian (2). 

The function L(R) contains relatively smooth functions, and one can 
write 

a f i - L(R0)F (16) 

where 

(R) dR (17) 

is a FC-type factor and L(R Q) is a constant (R Q denotes the geometry 
of the transition state, i.e., the crossing point of the diabatic 
states). Hence, the determination of product energy distributions 
reduces to the analysis of the nuclear dynamics and to the evaluation of 
a FC-type factor (see Sec. III). 

The transformation V > V introduced above is most conveniently 
pictured in terms of quasiadiabatic states as introduced by O'Malley 
[18]. The electronically adiabatic potential energy surface results from 
the interaction of two quasiadiabatic surfaces which cross. One of the 
two adiabatic surfaces corresponds to the reactant state, the other one 
corresponds to the product state. In this sense they give a localized 
picture of the potential energy surface. The crossing of the two 
quasiadiabatic surfaces occurs at the saddle point of the adiabatic 
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surface. In the FC approximation, the quantum transition occurs near the 
crossing point of the quasladlabatlc surfaces. 

We have Introduced In Eqs. (11)—(17), the matrix element for chemical 
reaction. As a next step, one can Introduce the reaction Hamlltonlan (In 
second quantization representation). In this representation the total 
Hamiltom'an can be written in the form: 

H = H Q + H p ^ (18) 

A A /\ 

where H • H p + HR describes the state of reactant and product 
subsystems and Hp*# governs reaction per se. The latter term can be 
written in the form: 

Hp</? * L a f 1 » f
+ b. (19) 

M 

Here i = {n,v} denotes reactant states, n is a set of electronic states, 
v corresponds collectively to vibrational, translational, and rotational 
motions; {f} denotes product states, and b- and b f+ are the operators 
of annihilation and creation. This Hamiltonian is analogous to the 
tunneling Hamiltonian [19]. 

The amplitude of a R > p transition is (for a 3ose system) 

V a " <*P SP«S V " S •« (VD 1' 2 "i I / 2 <»> 
f.i 

For Femions one replaces (nf*l) by (-1) ' (i-nf) where v | t f ) is 
the number of states preceding 1(f) as described, for example, in ref. 19. 
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If one assumes initially that n f - 0, then the number of transitions 
P f (per unit time) to product states of the same energy is 

P f - £ |*fi|2 ^ atEf-E^ P f(E) dE (21) 
i 

Equations (21) and (11) arisa from first-order time-dependent 
perturbation theory. It is important here to recall that the validity of 
this approximation depends on the product of the coupling matrix element 
and the characteristic time of the perturbation being small [17]. Hence 
(21) and (11) are valid even if a f i is large for sufficiently short 
characteristics times. Note that higher-order corrections correspond to 
virtual transitions. The second-order correction is non-zero only 1,~ one 
includes transitions to electronic states above the diabatic states 
discussed above. Here we assume that such electronic states are too high 
in energy to contribute, ref. 11. The matrix element corresponding to a 
virtual transition between vibronic states belonging to the same diabatic 
state vanishes in secona order because of orthogonality. 

Ill, Franck-Condon Factor. Distribution of Reaction Products 
According to Eqs. (16) and (17), the calculation of product energy 

distributions is reduced to one of nuclear dynamics. In order to evaluate 
the FC factor (17), It Is necessary to obtain expressions for the nuclear 
wave functions £^, ip. These wave functions are the solutions of the 
nuclear Schroedinger equation: 
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[T R + U k(R)] » k(R) « E * k(R) (22) 

U k(R) = c k(R); k - {R,p} 

The main difficulty in solving Eq. (22) for R and p states arises 
from nonseparability of variables. Indeed, if we consider, for example, 
the state of reactants, the potential energy ^(R) can be expressed in 
terms of q# and p^, where q# denotes the internal coordinates of the 
reactants, and p describes the intermolecular separation of the 
reactants. The potential energy V#(R) cannot be expanded in a series o,' 
deviations of all variables from equilibrium, because p, corresponds to 
translational motion. To address this problem, we employ our adiabatic 

-*• 

method [20] in which the nuclear wave function iRW is written as the 
product 

*R<h « *v1b(qfl.p*) * t r(p f l) * r o t (23) 

The interaction between reactants results in a dependence of the 
vibrational frequencies on the distance o and, moreover, the effective 

R 
potential energy describing the relative translational motion contains 

wih 
the vibrational energy E (ft,) as an additional term. Based on this 
method, we have evaluated the FC factor and product energy distributions 
for several systems. 

Consider the evaluation of the FC factor (see Eq. (17)) for a 
atom-diatom system. According to Eqs. (16), (17), ano (23), we obtain 
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*fi - «-0F (24) 

Here L is defined by Eqs. (13)-(16); the subscript o denotes the region 
of overlap, and 

F - M f r ( P 2 ) *V

f

ib{T2,P . ^ ( P i ) i f V j . P ! ) clxdp (25) 

(TJ » q x - q l 0; ^ 3 q 2 ~ q2o> 

Both T, and p, can be written as a linear combination of p? and x 2. 
Hence, the integrand of Eq. (25) can be expressed solely in terms of p^ 
and T-. For present purposes, rotational degrees of freedom are ignored 
which reduces angular integrations to a constant multiplicative factor. 
The integrand is nonseparable and so cannot be written, in general, as a 
product of independent functions of p« and T~. 

In this paper, we limit consideration to the case AB + C » 8C + A 
(cf., ref. 21) where 

M B » M A, M c (26) 

Other cases will be considered elsewhere. The condition (26) means that 
the reaction is an exchange of the lighter mass atoms A and C. An example 
of such a reaction is 

HO • D * H + OD (27) 

which has been studied by Margitan, e* al. [22a]. 
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Condition (26) 1s approximately satisfied for the reactions 
C1I+D > C1+I0 . (28) 

Li + HF > LiF + H (29) 

A molecular-beam and study of reaction (28), see ref. [22b], included the 
measurement of the product translational energy distribution. This 
distribution is characterized by a peak at small relative translational 

tr energy E . It is of interest to understand the origin of this peak 
and to determine the distribution. Reaction (29) has been studied by 
Becker et al. [37]. 

If condition (26) is satisfied, then the center of mass is found on 
atom B, and ^ • °<2 a n d p2 * ''l* The m a i n contribution to the 
integral (25) comes from the region of overlap of $^ and 4^, and one 
can write 

a.f - a J *J r( q i) *J i b(V ' i ^ * * i i b ( V d qi d q2 • { 3 0 ) 

Here 
,vib,~ . = 4vib,~ . ,vib,~ A = ,vib.T > 
if ( T

2) - # f (T
2.<Ii0). #1 (Ti) - *i (Ti.fl2o)» 

T2 ' VV'Zo*' ̂"VloWo** B " ( q l o q 2 o ) _ 2 /"*Hfr)(31) 

Expression (30) can be written In the form: 

a,f - BIJIJ (32) 
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where 

*i - / *}r<<ii> *?1 b<V *ii { 3 3 a ) 

h * f *irtq2) *Vb(*Z) dq2 (33b) 
Thus, the integration in (30) can be separated into two independent 
parts. The integrals (33a) and (33b) have clear physical meaning. The 
R » P transition results in the transformation of the initial.vibrational 
degree of freedom into a final transiational degree of freedom and vice 
versa. The integral (33a),.describing the probability of the R*P transi
tion, contains the overlap of i^r and t* ; the reverse relationship 
holds for term I~. We assume that the reactant AB is in the ground 
vibrational state. (The effect of reagent vibrational excitation will be 
considered in the next section.) 

Note also that the function d1*' describing the transi ational motion 
of the reactants (products) can be determined in the semi classical 
approximation. The result of the evaluation of the FC factor for 
reaction (28) is presented in ref. 4. Me note that the transiational 
distribution has a peak in the region E t r / E t o t * 20S, in accord with 
experimental data. Correspondingly, the vibrational distribution is 
inverted up to v • 4. The origin of this inversion is the same as that 
previously described for polyatomic photodissociation [20]. A decrease 
of v and a corresponding increase of E results in an increase of the 
number of oscillations of the semiclassical wave function. (Here it is 
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assumed that the momentum p f is large: p ^ » 1, A i is the reagent 
vibrational amplitude. The increase of the number of oscillations leads 
to a decrease of F and, hence, to an inverted vibrational distribution. 

For reaction (28) we have used the approximation Q^ * ^ A S -
384.3 cm" 1 and ftf * flf A S » 1639.64 cm" 1 [23a], where the subscript 
AS denotes the free molecule or "asymptotic" frequency. Based on this 
approximation, we have obtained a qualitative description of this reaction 
and good agreement with experimental data [26b]. In order to carry out a 
detailed comparision of theory and experiment, one should calculate the 
p-dependent frequencies, (not approximate them by free molecule asymptotic 
values, see above), evaluate the equilibrium distances, and take into 
account the exact relation between the masses Mft, MQ, and M~. Note 
that calculations of Eades and Dunning [24] establish the appropriateness 
of the use of asymptotic frequencies for reaction (29). 

We emphasize that the present analysis is not restricted to the 
col linear approximation. Me are interested in the relative vibrational 
distribution of products. (According to adiabatic theory, slow 
rotational and bending motions can be considered as a next step.) For 
the light plus heavy-light system, one has the relations, p, » q 2, 
°2 * q l ( s e e a b o v e ) a n d t n e integrand of the FC factor depends only 
on two variables. 

For reaction (27), we have found [4,5] that the translational 
distribution of the products drops off much more rapidly with increasing 
E than it does for reaction (28). The measurements of the product 
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energy distribution for reaction (27) have not been carried out. It 
would be interesting to perform such measurements to test the theoretical 
predictions. 

IV. Effect of Reagent Vibrational Excitation on the Product Vibrational 
Distribution 

The influence of reagent vibrational state on the product vibrational 
energy distribution has been studied by various methods. Polanyi and 
coworkers measured and analyzed the vibrational state dependence of 
reaction rates for a number of systems using arrested-relaxation infrared 
chemiluminescence experiments complemented by classical trajectory 
studies [25,26]. The reactions of K with HC1 and Sr, Ca, and Ba with HF 
provide excellent examples of large increases in reactivity that can be 

obtained by vibrational excitation [27]. The reactions of H~ with 
3 1 0( P) and 0(D) have been studied experimentally [28] and theoretically 

[29], the latter using ab initio potential energy surfaces and a number 
of collision approaches. Comparisons of quantum with classical calcula
tions for the Li + FX (X » H,D) system have also appeared [30]. 

A FC approach has been used to study the reaction 0 + HI > DI * H at 
low energy [10]. By reducing the reactive transition matrix to products 
of 1-0 integrals of distorted wave basis functions on diabatic surfaces, 
it was found that change of the initial vibrational quantum number did 
not noticeably affect the 01 vibrational distribution. A similar approach 
was used with the distorted wave Born approximation to describe exchange 
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reactions of X + Cl 2 and X + F ? (X - H,D) with "half-collision" 
diabatic surfaces [8]. The reactant vibrational state did not affect the 
product distribution for these reactions. Other FC-ty^e models have 
appeared that give qualitative agreement for certain reactions [14,31,32]. 

A mixed stochastic/FC approach has been developed [33] and applied to 
reactions which are assumed to proceed through the formation-of an 
intermediate complex and applied to H + Cl 2 > HC1 + CI. The authors 
neglected the influence of the relative translationat motion of the 
reactants (products). Baer [34] has also investigated this reaction 
using a quantum mechanical close-coupling method. For vibrationally 
excited reactants, the product energy distribution was found to broaden 
and to contain more structure. 

Exothermic triatomic exchange reactions have been treated in a 
col linear reaction model leading to an analytic expression for the 
population of product vibrational states for a number of mass 
combinations [35]. Some earlier treatments focused on the bobsled 
effect, but they were unable to account for multiquantum transitions 
[32-36]. We want to emphasize the important role of translational motion 
in governing these distributions. 

Evaluation of the FC factor provides a prediction of the relative 
vibrational distribution of products for a given initial state of 
reactants. Having determined this distribution for reagents in the 
ground state, our goal here is to study the change of the distribution 
(if any) caused by vibrationally excited reagents. 
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It is useful to distinguish between two different cases. One 
corresponds to reaction at fixed total energy and the other to reaction 
at fixed initial translational energy. Both cases can be studied 
experimentally. 

Me use a semiclas^ical approximation to describe the relative 
translational motion of the reactants (products) in the region where 
p.A, » 1; p. is the relative linear momentum of reactants and A. is the 
vibrational amplitude of the production diatomic. The harmonic approxima
tion was employed to describe the vibrational motion but is not essential. 
In refs. 4 and 5 it was established that the vibrational frequencies are 
rigorously those for the FC overlap region. Here, however, we assume 
that they do not differ significantly from their asymptotic values. 
Strongly speaking, this corresponds to the neglect of final-state 
interactions. 

V. Applications 
We have applied the reaction Hamiltonian method to the atom-diatom 

reactions: 

Li • FH » LiF • H (34a) 

H • BrCl > HBr + CI (34b) 

There are several reasons for this choice. First, both reactions 
involve the exchange of the lighter mass atoms A and C, i.e., M, » 
N A, H-. As shown in Sec. Ill, FC factor for siiCh a system can be 
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evaluated analytically, and it allows one to make a qualitative analysis 
of the main factors governing product vibrational distributions. In 
addition, these reactions represent two limiting cases. Reaction (34a) 
is usually characterized by a noticeable relative change of the initial 
translational energy when reactants are excited to their first excited 
state for fixed total energy (see Sec. VI), whereas reaction (34b) 

tr involves only a small change of E . This difference is shown below to 
be an important factor in determining the magnitude of the change of the 
product distribution as a function of reagent vibrational state v^. 
Furthermore, these reactions have been studied experimentally for v* * 0 
[37,38]. 

Reactions (34a) and (34b) are characterized by different values of 
the ratio r » u / M where w. and aa- are the reactant and product 
diatomic vibrational frequencies. The frequencies used here are [23]: 
u(LiF) - 910.39 cm - 1 and u(FH) - 3958.4 cm" 1, so that r . 4.3. For 
reaction (6b), u(BrCl) « 444.3 cm" 1, and u(HBr) =* 2559.3 cm" 1 leading 
to r - 0.17. 

(a) Li • FH. 
Figure 1 shows the product translational energy distribution for 

ground state reactants at E > 3 kcal/mol. The present theoretical 
prediction is found to be in good agreement with the measurement of Lee 
and coworkers £37]. 
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Figures 2 and 3 show how the distribution may be affected by changing 
the initial state of the reactants. Figures 2a, 2b, and 2c are for the 
case of constant total energy while Fig. 3 illustrates the effect of 
fixed translational energy. 

All distributions have different peak positions in addition to 
varying shapes. For excited reactants the peak (maximum) is shifted to 
smaller final vibrational quantum number. Figures 2 and 3 also indicate 
that one effect of vibrationally excited reactants is bimodality in the 
product vibrational distribution. This is consistent with Child's 
finding [39] concerning interference structure in reaction probabilities. 
He reports that product distributions of direct reactions should have the 
same number of maxima or minima as the reagent wavefunction. For the 
maximum energetically allowed final quantum vibrational state (e.g., 
vmax " ̂ ' t h i s n e w ^ s e e n l ° w e r frequency peak becomes increasingly 
important as the initial available energy is decreased (compare Figs. 2a 
and 2b). In addition to a direct pathway, reaction (34a) can also proceed 
through the formation of a long-lived intermediate. The good agreement 
between the direct channel analysis presented here and experimental data 
shows that the direct channel is dominates in determining the product 
energy distribution for the energy range for which comparison with experi
ment has been made. This conclusion regarding reaction mode (direct or 
complex) is possible in principle for this system as discussed by Becker, 
et al. [37a]. A detailed analysis will be presented elsewhere. 
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(b) H + BrCl. 
Figure 4 illustrates the good agreement obtained between the present 

calculations and the Polanyi and Skriac [38] experimental results for 
BrCl(V. * 0). Figure 5, however, shows no affect on the product energy 
distribution for 8rCl(Vi - 1). 

VI. Discussion 
The effect of reagent vibrational state on the product energy 

distribution depends on several factors. In the reaction Hamiltonian 
approach, the analysis of these dependencies is reduced to the analysis 
of a FC-type factor [4,5]. 

Consider a reaction at fixed initial translational energy for ground 
state (v.j « 0) reactants characterized by a peak (maximum) in the 
product distribution at v * v . If r » 1 and E t r --flu^, then the 
total energies for v^ » 0 and v^ * 1 are considerably different. For 
the case of the same product state v - v , there is more product 
translational energy for v i « 1 than for v^ - 0. This increase of 
product translational energy results in an increase of the number of 
oscillations in the translational wavefunction (see Eq. (23) and ref. 
20b), and hence a decrease of the FC factor (see Eq. (17)). Therefore, 
one can expect to find the peak of the product distribution when v, - 1 
at larger v than that for v - 0. This situation is exemplified by 
reaction (34a) in Fig. 3. On the contrary, if I* < 1, and E t r »-n u. 
then the difference in total energy between v^ * 0 and v^ « 1 at fixed 
translational energy is not Urge enough to cause change of v . 
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In a similar way, one can analyze the appearance of the shift for 
fixed total energy. For example, since the initial translational energy 
is much smaller for v^ » 1 than for v^ » 0, then the FC factor v»ill 
be larger for v- » 1 (due to the decrease in oscillations of the 
translational function) leading to a larger probability at a smaller 
final vibrational state than that for v i « 0. (See Fig. 2) 

This effect is easily seen by analyzing the reaction probability. 
Upon integration of the FC-type term, the probability (as a function of 
product vibrational quantum number) is given by 

W - - J — H 2(s) (35) 
2vvl v 

where H y is the vth Hermite polynomial and 

s « (2mi £ t r/m f rfUf ) i r ' 

mf m reduced mass of product diatom, and E * E t o t - (v. + l/2)f\u>-. 

Therefore, for reactions (34a) and (34b), 

s(v. - 0) - (2E / * » f ) 1 / 2 ; 

s(v. - 1) - [2(E - 1 l i i 1 ) / f c . f ] 1 / 2 - [s(v. - 0) - r ] 1 / 2 ; 

so that 

&s = s(v^ - 0) - s(v. m 1) 
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-(*r|wu,-M,i 
where 

E - E t r for v 1 » 0 

The function AS shows the dependence of the reaction probability on 
the relative change in initial translational energy for vibrationally 
excited reactants. When E »4\u>., there is no substantial change in 
s and the FC integral is similar for ground-state and first-excited-state 
reactants. Thus, the two product energy distributions for reaction (6b) 
are similar in structure. However, when E and flu * are similar in magni
tude, the percentage change in s is very large. In fact, A = AS/S(V^ * 0) * 1 
for E t r - ^ . 

When s for the excited reagent is very different from that of the 
ground-state reagent, the nuclear wavefunction may change significantly 
leading to a change in the product distribution. 

This qualitative analysis enables one to understand the mechanism of 
the shift of the viorational peak of the product energy distribution. 
Note that the important parameters in this analysis are E t r and-flu-. 
We emphasize the importance of the behavior of the translational 
wavefunction. The form chosen to describe the translational wavefunction, 
i.e., delta function, Airy function, or step function is also important. 

Lagana [30f] has discussed the affect of reagent translational energy 
on total reactive probabilities in tems of oscillating structure in the 
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distribution. Here we also stress its importance on the product 
vibrational distribution and on the most favored product vibrational 
state. 

The present approach can be extended to provide rigorous comparisons 
for systems with arbitrary mass ratios. Note that Polanyi, et al. [40] 
observed a shift in the product energy distribution for the reaction F + 
HC1 > HF + CI for v. - 0,1. This measurement was for fixed initial 
translational energy (cf., Fig. 2a), and the increase in total available 
energy from reactant vibrational energy produced a shift in v . 

The reaction D + HI > H + DI has been studied [10] using Airy 
functions to describe the translational motion in the low temperature 
region. In this study the excitation of reactants from v. = 0 to v i - 1 
was not accompanied by significant shift in the product distribution. 
Note that these cases do not result in a large change in S(A - 0.2). 
Hence, the previous finding is consistent with the present qualitative 
analysis. A detailed analysis based on a more accurate treatment of the 
translational wavefunction will be given elsewhere. Note that the 
semiclassical approximation is not valid if the translational energy is 
smal1. 

VII. Sunwary 
The reaction Hamiltonlan method provides a quantum state-to-state 

description of a bimolecular chemical reaction. The main results can be 
summarized as follows: 
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(1) Clerical reaction and polyatomic photodissociation can be treated 
as nonstationary phenomena. An analysis based on the theory of quantum 
transitions can be used to evaluate the energy distribution of the 
products (fragments). 

A second-quantisation formalis-n facilitates the introduction of a 
specific reaction Hamiltonian. 

(2) The evaluation of the energy distribution is reduced to the 
calculation of a FC factor. The nuclear wave function can be obtained 
following our previously published theory of polyatomic photodissociation. 

(3) The FC factor has been evaluated for triatomic systems of 
experimental interest (CH + D » CI + ID and OH + D > 00 + H). A paak in 
the translational distribution of the products has been obtained. The 
appearance of the peak is due to semiclassical features of the wave 
function describing the translational motion of the products. 

(4) The energy distribution of the products depends strongly on tne 
reagent vibrational state. If .he reagent is prepared in an excited 
state, it can result in a noticeable shift of the peak of the product 
vibrational distribution, as well as in the appearance of new structure, 
for example, bimodality for v^ * 1. The occurrence; of a shift in the 
maximum of the distribution is connected! with characteristics of the 
translational and vibrational wave functions. 

(5) The magnitude of the change of the vibrational distribution for a 
atom-diatom reaction depends strongly on the relative magnitude of t«e 
initial translational energy to the vibrational spacing as well as on 
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r = m*l*f* whfe »« and * f are the vibrational frequencies of the diatom 
reactant and product, respectively. Horeover, it is important to distin
guish between cases: 1) fixed total energy and 2) fixed translational 
energy. 

The reactions Li + FH * LiF + H and H + BrCl * HBr + CI have been 
studied. 
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Figure Captions 
Fig. 1 Product translational energy distribution for Li * HF(v. » 0) * 

Lif + H. Hatched area indicates limits of fit to experimental 
data. 

Fig. 2 Product energy distributions for Li + HF » LiF + H. denotes 
HF( V i » 0); denotes HF(vi - 1) (a) E t o t - 16.5 kcal/mol; 
(b) E t o t - 15.6 kcal/mol; (c) E t o t » 20.8 kcal/mol. 

Fig. 3 Product energy distributions for Li + HF > LiF + H. denotes 
HF(vi - 0 ) ; denotes HF(vi » 1). Initial relative transla-

tr tional energy E =* 3.4 kcal/mol. 
Fig. 4 Product translational energy distribution for H + BrCl(v. » 0) » 

HBr + CI; solid line is the theoretical curve; experimental 
curve (ref. 18). 

Fig. 5. Product energy distribution for H + BrCl > HBr + CI. — 
denotes BrCl(vi » 0); denotes BrCl(vi =• 1); E t o t = 43.89 
kcal/mol. 
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Fig. 2b 
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Fig. 5 
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