Kinetic Analysis of Dynamic PET Data

Brian Knittel
Master's Report
Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

230 Donner Laboratory
Lawrence Berkeley Laboratory
Berkeley, CA 94720

NOTICE
PORTIONS OF THIS REPORT ARE ILLEGIBILE.
It has been reproduced from the best available copy to permit the broadest possible availability.
Table of Contents

1. Introduction .. 1
2. Background ... 1
 2.1. Compartmental Models ... 1
 2.2. Parameter Estimation ... 2
 2.3. Parameter Covariance ... 4
3. The Minimization Method .. 6
 3.1. Gauss-Newton Method ... 7
 3.2. Steepest Descent Method ... 7
 3.3. Marquardt Interpolation .. 7
 3.4. Algorithm Outline ... 8
4. Program Fit – Numerical Methods .. 9
 4.1. Input Function Model ... 9
 4.2. Impulse Response Computation ... 9
 4.3. Convolution Method ... 11
 4.4. Residue Function .. 11
 4.5. Partial Derivatives ... 13
 4.6. Covariance Matrix ... 13
5. Implementation ... 14
 5.1. Software Tools .. 14
 5.2. Source of the Data ... 14
 5.3. Program Design .. 15
6. Simulations .. 18
 6.1 Simulation Program .. 18
 6.2. Two-Compartment Model .. 18
 6.3. Three-Compartment Model .. 19
7. Applications to Experimental Data ... 27
 7.1. 0-15 Water .. 27
 7.2. Fluorodeoxyglucose ... 27
8. Summary ... 31
References ... 32
Appendix A. Fit Source Listing .. 33
Appendix B. Format of ROI and Blood Data Files ... 85
Appendix C. Software Tools Library ... 88
Appendix D. Documentation .. 90
Kinetic Analysis of Dynamic PET Data

Brian Knittel
Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley
and Lawrence Berkeley Laboratory

1. Introduction

Our goal is to quantify regional physiological processes such as blood flow and metabolism by means of tracer kinetic modeling and positron emission tomography (PET). Compartmental models are one way of characterizing the behavior of tracers in physiological systems. This paper describes a general method of estimating compartmental model rate constants from measurements of the concentration of tracers in blood and tissue, taken at multiple time intervals. A computer program which applies the method is described, and examples are shown for simulated and actual data acquired from the Donner 290-Crystal Positron Tomograph.

2. Background

2.1. Compartmental Models

Compartmental models can account for the exchange of tracer between physiological spaces such as blood and tissue, and between chemical states such as metabolic substrate and its products.

For example, Figure 1 shows a model which might be used to represent the exchange of a tracer between capillary blood and cells in an organ, where \(b(t) \) is the concentration of tracer in the blood and \(q(t) \) the concentration of tracer in the cells. The rate constants of exchange \(k_1 \) and \(k_2 \) are the parameters which describe the behavior of the tracer in the differential equation

\[
\frac{dq(t)}{dt} = k_1 b(t) - k_2 q(t).
\]

(2.1)

The figure shows the concentration of tracer measured in the blood and in tissue after an ideal rapid bolus injection. The blood concentration \(b(t) \) is called the input function. The cell concentration function resulting from an impulse injection of a unit amount of tracer is called the impulse response, and is denoted \(h(t) \). For the model in Figure 1,

\[h(t) = k_1 e^{-k_2 t} \]

(2.2)

The tissue measurement \(w(t) \) is called the residue function, and includes contributions from both the cell concentration \(q(t) \), and blood in the vasculature.

The shape of the input function in actual experiments depends on the duration of the injection, the blood flow to the organ, and the behavior of the tracer in the rest of the body. The response of the model to an arbitrary input function is given by the convolution integral

\[
q(t) = \int h(\tau) b(t-\tau) d\tau = \int b(\tau) h(t-\tau) d\tau
\]

(2.3)

and is denoted \(q(t) = b \ast h(t) \). \(h(t) = 0 \) for \(t < 0 \) and we assume that \(b(t) = 0 \) for \(t < 0 \), so
The tissue tracer concentration $w(t)$ must account for the tissue volume occupied by blood in the vasculature. If the fractional volume of blood in a region of tissue is f_v, then the residue function is

$$w(t) = f_v b(t) + (1-f_v) q(t)$$

This is the basic equation for all the models discussed here.

In tomographic experiments, the two measurable quantities are $b(t)$ and $w(t)$; it is not possible to independently measure the compartments contributing to w. The impulse response required for the computation of $w(t)$ is that of the combination of all nonvascular compartments. The determination of $h(t)$ for arbitrary compartmental models is discussed in section 4.2.

The blood activity is sometimes measured at a location somewhat distant to the site which we are modeling. We assume that the input function is shifted in time only. That is, we assume that all blood leaving the heart at a given moment has the same concentration of tracer, but the time it takes to reach different parts of the body varies. To determine the residue function from such a shifted input function we need only shift the time of evaluation of the model function by the same amount.

2.2. Parameter Estimation

After injecting a tracer, we collect measurements of the input function and residue function which include errors due to the statistics of radioactive decay and artifacts due to PET reconstruction. After selecting a physiologically appropriate compartmental model, we wish to determine what values of the model's parameters gave rise to the measurements. We will use the following symbols for the quantities under discussion:
Notation:

\(R \)	italic letter: scalar function or variable
\(E \) | bold letter: column vector function or variable
\(E_i \) | \(i \)'th element of vector \(E \)
\(B \) | capital roman letter: matrix
\(B_{ij} \) or \([B]_{ij} \) | element in \(i \)'th row, \(j \)'th column of matrix \(B \).
\(E^T \) | row vector: transpose of \(E \)
\(B^T \) | transpose of matrix \(B \)

Measurements:

\(N_b \) | number of blood measurements
\(N_w \) | number of tissue measurements
\(B_i \) | \(i \)'th blood measurement, \(i = 1, 2, \ldots, N_b \)
\(W_i \) | \(i \)'th tissue measurement, \(i = 1, 2, \ldots, N_w \)
\(T_{bi} \) | time of \(i \)'th blood measurement
\(T_{wi} \) | time of \(i \)'th tissue measurement
\(\sigma_{wi} \) | uncertainty in \(i \)'th tissue measurement

Parameters:

\(\beta \) | an arbitrary set of \(k \) model parameters (a vector of dimension \(k \)). These could be rate constants, vascular partial volumes, time shifts, etc.
\(\beta^* \) | the true values of \(\beta \) in the region of interest.
\(\hat{\beta} \) | our estimate of \(\beta^* \)
\(\sigma_{\beta_i} \) | uncertainty in determined \(\hat{\beta}_i \)

Model Functions:

\(b(t) \) | input function
\(w(\beta, t) \) | residue function
\(w_i(\beta) \) | residue function evaluated at \(T_{wi} \)

We assume that there are only random errors in the measurements \(W_j \). That is, \(W_j = w_j(\beta^*) + \epsilon_j \), where \(\epsilon_j \) are random with zero mean. Since there are errors in the measurements, we cannot determine the exact rate constants \(\beta^* \) which generated the observed residue function. We must find some method of estimating \(\beta^* \) from imprecise measurements. Estimation theory is a branch of mathematical statistics which deals with problems of this nature. For an introduction to estimation theory with an emphasis on the type of modeling problem discussed here, the reader is referred to a text such as Bard [1].

We hope to find a criterion for selecting a \(\hat{\beta} \) which is as close to \(\beta^* \) as possible. Since the measurements have random variations and would vary in repetitions of the same experiment, we expect that our parameter estimates would vary as well. Two desirable constraints on this variability are that

(1) the average of \(\hat{\beta} \) in repetitions of the experiment should be \(\beta^* \), that is, the expectations \(E(\hat{\beta}_i) = \beta^*_i \), and

(2) the average squared errors (variances) in the estimated parameters are as small as possible, that is, the expectations \(E(\hat{\beta}_i - \beta^*_i)^2 = \sigma^2_{\beta_i} \) are the smallest obtainable for any estimator of \(\beta^*_i \) for every possible value of \(\beta^*_i \).

This is called the "uniform minimum variance unbiased" (UMVU) criterion. Proof that an estimation method is UMVU can only be obtained in certain cases. For example, when the function \(w \) is linear in \(\beta \) (that is,

\[
 w(\beta, t) = \sum_{i=1}^{k} \beta_i g_i(t) \quad (2.6)
\]

where \(g_i \) are arbitrary functions of \(t \), and the errors \(\epsilon_j \) are independent and distributed normally with mean 0 and variance \(\sigma^2_{\epsilon_j} \), then the parameters \(\hat{\beta} \) minimizing
are a UMVU estimate of β^* [2].

However, in PET kinetic modeling, the errors are not exactly normally distributed, and the function w is not linear in its parameters. Still, the least squares estimate is probably the best available estimate. If the model function is "locally" linear, that is, w varies more or less linearly when its parameters are varied small amounts (as we often consider the surface of the Earth to be locally flat), and the measurement errors are approximately normally distributed, then the β minimizing R in Equation 2.7 at least approximately meets the UMVU criterion.

We now need an algorithm to find the values of the rate constants which minimize R. The algorithm is to produce this $\hat{\beta}$ and is also to estimate σ_β.

2.3. Parameter Covariance

The variance $\sigma^2_{\beta_i}$ of an estimate β_i is the expected squared deviation of the estimate from its true value β_i^*. This is the variance we would expect to measure in $\hat{\beta}_i$ if the experiment were repeated many times. If our assumptions about the normal distribution of the errors in the residue function are true, there is a ≈ 68 percent (1 standard deviation) chance that β_i is in the range $\beta_i^*-\sigma_{\beta_i} \leq \beta_i \leq \beta_i^*+\sigma_{\beta_i}$.

σ_{β_i} is estimated as the amount β_i must be varied from $\hat{\beta}_i$ to increase $R(\beta)$ from the minimum by one (Fig. 2). The more β_i can be varied without much changing R, the greater its variance. When there is more than one parameter, we must consider the amount that β_i can be varied to increase R by one when the other parameters are allowed to vary as well. Figure 3 is a contour map of R as a function of β_1 and β_2. We see that σ_{β_1} and σ_{β_2} are the distances which increase R from the minimum $R_{\text{min}} = R(\hat{\beta})$ by one, under the most unfavorable circumstances (β_1 and β_2 increased together). When changing parameters together produces little net change in R, we say that the parameters are highly correlated. The covariance matrix C describes this relationship between parameters. Its elements are defined by

$$C_{ij} = E((\hat{\beta}_i - \beta_i^*)(\hat{\beta}_j - \beta_j^*)) \quad (2.8)$$

Note that the diagonal elements $C_{ii} = E(\hat{\beta}_i - \beta_i^*)^2$ are the variances $\sigma_{\beta_i}^2$. The correlation coefficient defined by

$$r_{ij} = \frac{C_{ij}}{\sqrt{\sigma_{\beta_i}^2 \sigma_{\beta_j}^2}} \quad (2.9)$$

conveniently describes the covariance between parameters β_i and β_j. It takes values between -1 and +1. r is zero for uncorrelated parameters and increases in magnitude toward 1 as correlation becomes greater.

The covariance matrix or the correlation matrix is important in the consideration of the significance of fit parameters, for they describe the reliability of the determination of the rate constants. One needs covariances to accurately estimate the uncertainty of functions (e.g. sums or ratios) of the determined parameters.

When comparing competing models for the explanation of tracer kinetics, one can consider the sum of squared errors $R(\beta)$; the model which produces the lowest R is considered better. R can always be lowered by increasing the number of compartments; with more parameters to adjust, the data can be better fit. However, as the number of parameters is increased, so are the parameter variances. When the number of parameters is increased beyond that required to adequately represent the data, the correlation between the fit parameters increases dramatically. The covariance matrix thus indicates the information content of the parameters.
Figure 2. Parameter Variance.

Figure 3. Parameter Variance with Correlation.
3. The Minimization Method

The minimum of $R(\beta)$ is found at the zero gradient point
\[
\frac{\partial R(\beta)}{\partial \beta_i} = 0, \quad i = 1, \ldots, k
\]
or in vector form
\[
\nabla R(\beta) = 0.
\] (3.1)

The gradient of R as defined in (2.7) is
\[
\frac{\partial R}{\partial \beta_i} = -2 \sum_{j=1}^{N_w} \frac{W_j - w_j(\beta)}{\sigma_j^2} \frac{\partial w}{\partial \beta_i}
\] (3.2)
or in matrix notation
\[
R(\beta) = [W - w(\beta)]^T \Psi^{-1} [W - w(\beta)]
\]
\[
\nabla R(\beta) = -2 T(\beta)^T \Psi^{-1} [W - w(\beta)]
\] (3.3)

where W is the observation vector, Ψ is the covariance matrix for the observations, $w(\beta)$ is the vector of model values generated from the parameters β, and $T(\beta)$ is the gradient of w:
\[
\begin{bmatrix}
 w_1(\beta) \\
 w_2(\beta) \\
 \vdots \\
 w_{N_w}(\beta)
\end{bmatrix}
\]
\[
W =
\begin{bmatrix}
 W_1 \\
 W_2 \\
 \vdots \\
 W_{N_w}
\end{bmatrix}
\]
\[
\Psi =
\begin{bmatrix}
 \sigma_1^2 & \text{Cov}(W_1, W_2) & \cdots & \text{Cov}(W_1, W_{N_w}) \\
 \text{Cov}(W_1, W_2) & \sigma_2^2 & \cdots & \text{Cov}(W_2, W_{N_w}) \\
 \vdots & \vdots & \ddots & \vdots \\
 \text{Cov}(W_1, W_{N_w}) & \text{Cov}(W_2, W_{N_w}) & \cdots & \sigma_{N_w}^2
\end{bmatrix}
\]

and
\[
T(\beta) =
\begin{bmatrix}
 \frac{\partial w_1}{\partial \beta_1} & \frac{\partial w_1}{\partial \beta_2} & \cdots & \frac{\partial w_1}{\partial \beta_k} \\
 \frac{\partial w_2}{\partial \beta_1} & \frac{\partial w_2}{\partial \beta_2} & \cdots & \frac{\partial w_2}{\partial \beta_k} \\
 \vdots & \vdots & \ddots & \vdots \\
 \frac{\partial w_{N_w}}{\partial \beta_1} & \frac{\partial w_{N_w}}{\partial \beta_2} & \cdots & \frac{\partial w_{N_w}}{\partial \beta_k}
\end{bmatrix}
\]

When we assume that the measurements are uncorrelated, the Cov terms in Ψ are zero.

If $w(\beta,t)$ is a linear function of β, R is quadratic and has a unique solution, easily obtained from (3.1). When $w(\beta,t)$ is not linear in β, the solution to (3.1) may not be unique — there may be many extrema of R. Furthermore, it may be difficult to solve (3.1) for β. Nonlinear least squares methods usually proceed by choosing β_0, an initial estimate of β, examining R at β_0, and iteratively moving β_0 toward the minimum.
3.1. Gauss-Newton Method

We can make a linear approximation to \(w \) with the first order Taylor expansion

\[
\begin{align*}
 w(\beta,t) & = w(\beta_0,t) + \sum_{j=1}^{k} (\beta_j - \beta_{0j}) \frac{\partial w(\beta_0,t)}{\partial \beta_j} \\
 \end{align*}
\]

or in matrix notation

\[
\begin{align*}
 w(\beta) \cong w(\beta_0) + T(\beta_0) (\beta - \beta_0) \\
\end{align*}
\]

if \(\beta \) is close to \(\beta_0 \). If we use this approximation in (3.3) and assume that \(T(\beta) \cong T(\beta_0) \) then the minimum is found at

\[
T(\beta_0)^T \psi^{-1} \left[\Psi - w(\beta_0) - T(\beta_0)^T (\beta - \beta_0) \right] = 0 .
\]

Defining \(A = T(\beta_0)^T \psi^{-1} T(\beta) \) and \(G = T(\beta_0)^T \psi^{-1} (\Psi - w(\beta_0)) \), we can solve (3.6) for \(\delta \):

\[
A (\beta - \beta_0) = G
\]

\[
\beta = \beta_0 + A^{-1} G
\]

where \(\delta = A^{-1} G \) is the Taylor series correction vector (iteration step).

When the measurements are uncorrelated, \(\psi \) is diagonal, and the elements of the matrix \(A \) and vector \(\mathbf{E} \) are

\[
\begin{align*}
 A_{mn} &= \sum_{j=1}^{N_w} \frac{\partial w_j}{\partial \beta_m} \frac{\partial w_j}{\partial \beta_n} \frac{1}{\sigma_j} \\
 E_m &= \sum_{j=1}^{N_w} \frac{\partial w_j}{\partial \beta_m} (w_j - w_j(\beta_0)) \frac{1}{\sigma_j}
\end{align*}
\]

In the Gauss-Newton minimization method, one iteratively solves (3.7) for steps \(\delta \). The magnitude of \(\delta \) must be reduced if it takes \(\beta \) to a higher value of \(R \) than \(R(\beta_0) \).

3.2. Steepest Descent Method

The gradient of \(R \) at an estimate \(\beta_0 \) is given by

\[
\nabla R(\beta) = -2 T(\beta_0)^T \psi^{-1} \left[\Psi - w(\beta_0) \right] = -2G .
\]

Iterative steps \(\delta_g \) proportional to \(\nabla R \) always lead to a lower value of \(R \) for a sufficiently small proportion of \(\delta_g \), but are slow to converge near the minimum. Near the minimum, where \(R \) is relatively flat, gradient steps tend to zig-zag across the true direction of the minimum (as streams will meander across a meadow). For this reason, strict steepest descent methods are seldom used in practice.

3.3. Marquardt Interpolation

The Marquardt Algorithm [3] interpolates between the Taylor and gradient steps \(\delta_T \) and \(\delta_g \) with a step computed by

\[
\delta = (A + \lambda I)^{-1} G
\]

As \(\lambda \rightarrow 0, \delta \rightarrow A^{-1} G \), the Taylor step, and as \(\lambda \rightarrow \infty, \delta \rightarrow G/\lambda \), the steepest descent step. The algorithm attempts to use as small a value of \(\lambda \) as possible. If the step \(\delta \) would increase \(R \), and \(\delta \) is not near the gradient \(\delta_g \), say more than 37° apart, the step is recomputed with a larger \(\lambda \). \(\lambda \) is typically increased or decreased by a factor \(v = 10 \), changing \(\lambda \).

When \(\delta \) increases \(R \) but \(\delta \) and \(\delta_g \) are close together, changing \(\lambda \) won't help as much as reducing the magnitude of \(\delta \), so the step is divided by two until \(R \) is no longer increased.

The numerical aspects of the algorithm are improved if the matrix \(A \) has one on the diagonal. To achieve this, the computation of \(\delta \) is performed with
scaled variables A* and G*. The true step δ is computed by reversing the scaling on δ*

3.4. Algorithm Outline

1. Initialize:
 \[\beta \leftarrow \beta_0, \lambda \leftarrow 1 \]

2. Start an iteration. Try reducing \(\lambda \), save initial conditions:
 \[\beta' \leftarrow \beta, R' \leftarrow R(\beta), \lambda \leftarrow \lambda / \nu \]

3. compute A, E by Equation (3.8).

4. Scale A and E so that A has 1 on the diagonal:
 \[A_{ij}^* \leftarrow A_{ij} / \sqrt{A_{ii} A_{jj}} \]
 \[G_i^* \leftarrow G_i / \sqrt{A_{ii}} \]

5. Compute (still scaled) step:
 \[\delta^* \leftarrow (A^* + \lambda I)^{-1} G^* \]

6. Unscale step:
 \[\delta_i \leftarrow \delta_i^* / \sqrt{A_{ii}} \]

7. Compute (tentative) new value of \(\beta \):
 \[\beta \leftarrow \beta' + \delta \]

8. Bad Step? — if so, alter the step:
 if \(R(\beta) \geq R' \)
 if angle between \(\delta \) and \(\delta_g < 37^\circ \), reduce step size:
 \[\text{(i.e. if } \delta^T \cdot \delta / \sqrt{\delta^T \cdot \delta} \quad \delta_g \cdot \delta_g \leq \cos(37^\circ)) \]
 repeat
 \[\delta_i \leftarrow \delta_i / 2 \]
 \[\beta \leftarrow \beta' + \lambda \delta \]
 until \(R(\beta) \leq R' \), then go to 9
 otherwise, repeat step calculation with increased \(\lambda \):
 \(\lambda \leftarrow \nu \lambda \), then go to 5.

9. check convergence:
 if any \[\frac{\hat{i}_i}{|\beta_i| + \tau} \geq \epsilon \), go to 2 for another iteration.

10. stop.

The convergence test parameters \(\tau \) and \(\epsilon \) are typically \(10^{-6} \) and \(10^{-4} \) respectively.
4. Program \textit{Fit} — Numerical Methods

Computer program \textit{fit} was written to implement the kinetic analysis method described above. The Marquardt Algorithm requires $u(t, \beta)$ and the derivatives $\partial u/\partial \beta$. This section describes the numerical methods used to compute the required functions.

4.1. Input Function Model

The computer program has four selectable input function models:

1. $b(t) = \sum_{j=1}^{2} A_j \ e^{-\lambda_j (t-t_f)}$ \hspace{1cm} (4.1)

2. $b(t) = \sum_{j=1}^{2} A_j (t-t_f) \ e^{-\lambda_j (t-t_f)}$ \hspace{1cm} (4.2)

3. $b(t) = \sum_{j=1}^{2} A_j (t-t_f) \ e^{-\lambda_j (t-t_f)^2}$ \hspace{1cm} (4.3)

where A_j: units of blood activity

λ_j: rate constants, min^{-1}

t_f: input function starting time in seconds

The times and time shifts are in seconds and the rate constants in min^{-1}; the program inserts the required $1/60$ conversion factors.

4. $b(t) =$ linear interpolation or extrapolation of input measurements

$$
B_j(t) =
\begin{cases}
0, & t < 0 \\
\frac{t - T_B_j}{T_B_j - T_B_{j-1}} (B_j - B_{j-1}), & 0 \leq t \leq t_j \\
B_{j-1} + \frac{t - T_B_{j-1}}{T_B_j - T_B_{j-1}} (B_j - B_{j-1}), & t_{j-1} < t \leq t_j \\
B_{N-1} + \frac{t - T_B_{N-1}}{T_B_N - T_B_{N-1}} (B_N - B_{N-1}), & t > t_N
\end{cases}
$$

(clipp to 0 if the interpolated or extrapolated value is negative).

Model 4 requires no fitting to the input measurements and does not make any assumptions about its form. However, as the input measurements are time averages of the input function over the image collection intervals, some information is necessarily lost. In Figure 4, we show a fast-rising input function, the averaged samples, and the resulting Model 4 function. The shaded areas show the error in the approximation. The areas of over- and underestimation should approximately cancel each other. If the input function is not fast-rising, these errors are small.

Also, Model 4 introduces statistical errors into the \textit{model} function, due to the \textit{fit} $b(t)$ term in Equation (2.5), which we do not currently account for in the fitting process. The uncertainty of the input measurements should be incorporated into the weighting of the squared-error function $R(\beta)$.

4.2. Impulse Response Computation

The program fits rate constants for the three-compartment model below (Fig. 5), which we apply to several physiological systems. Compartments q_1 and q_2 represent tracer in two spaces or chemical states in tissue. The differential equations for this system are
The impulse response may be derived by solving the differential equations for a delta function input \(b(t) = \delta(t) \), or by solving for \(b(t) = 0 \) with initial conditions \(q_1(0) = k_1 \) and \(q_2(0) = 0 \). Impulse response is more easily calculated by signal-flow graph analysis, which yields the impulse response of an arbitrary network of compartments with minimal effort. See Mason & Zimmermann[4] for a discussion of the method.

The impulse response \(h(t) \) of the sum of compartments \(q_1 \) and \(q_2 \) is

\[
h(t) = f_1 e^{-a_1 t} + f_2 e^{-a_2 t},
\]

where
When $k_3 = 0$, the model is effectively reduced to two compartments, and the impulse response is correctly evaluated using Equation (4.6); the function reduces to

$$h(t) = k_1 e^{-k_2 t}. \quad (4.7)$$

4.3. Convolution Method

The cell concentration $q(t)$ is computed by the convolution integral in Equation (2.3). Rather than explicitly solve the convolution integral for all input function models, we use an approximate method. To compute the convolution integral, we evaluate the impulse response and input function at the tissue and blood measurement times T_{k_f} and T_{B_k} respectively. Function `con` computes the convolution of the two linearly interpolated functions $b'(t)$ and $h'(t)$ described by these points. The error introduced by this piecewise-linearization is less than one percent with the exponential and near-exponential functions encountered in our studies; see section 6.3 for a discussion.

The integral of $h(t)b'(t-t)$ over the whole interval $0 \leq t \leq T$ is the sum of the integrals over intervals bounded by the set of times $0, T_{k_f}, T_{k_{f1}}, \ldots, T_{k_{fN}}$ (Fig. 6). The integrand over one of these intervals, say $r \leq t \leq s$, is the product of the line segments $(r, b_r) \rightarrow (s, b_s)$ and $(r, h_r) \rightarrow (s, h_s)$, where $h_r = h(r)$, $h_s = h(s)$, $b_r = b(t-r)$, and $b_s = b(t-s)$. The integral is

$$\int_r^s (h_r + \frac{t-r}{s-r} (h_s - h_r)) (b_r + \frac{t-r}{s-r} (b_s - b_r)) \, dt. \quad (4.8)$$

Let $\Delta t = s - r$, $\Delta h = h_s - h_r$, $\Delta b = b_s - b_r$, and change the variable of integration to $\eta = t - r$:

$$= \int_0^{\Delta t} (h_r + \frac{\eta}{\Delta t} \Delta h) (b_r + \frac{\eta}{\Delta t} \Delta b) \, d\eta$$

$$= \Delta t \left(h_r b_r + \frac{h_r \Delta b}{2} + \frac{b_r \Delta h}{2} + \frac{\Delta h \Delta b}{3} \right) \quad (4.10)$$

$$= \frac{\Delta t}{6} (2h_r b_r + 2h_s b_s + h_r b_s + h_s b_r). \quad (4.11)$$

so the complete convolution is

$$q(t) = \sum_{intervals \{r,s\}} \frac{\Delta t}{6} (2h_r b_r + 2h_s b_s + h_r b_s + h_s b_r). \quad (4.12)$$

The code in function `con` steps through the set of times T_{k_f} and $t-T_{B_k}$, looks for boundary points, and sums the interval integrals.

4.4. Residue Function

The residue function is computed as in Equation (2.5), as the sum of the vascular and cell components. There is an additional time shift parameter t_0 which accounts for a difference in the sampling time between the blood and tissue sites, as discussed in Section 2.1. The model function is

$$u(t, \beta) = f_1 b(t - t_0) + (1 - f_2) q(\beta, t - t_0). \quad (4.13)$$
Figure 6. Convolution by Summation of Linear Intervals.
4.5. Partial Derivatives

We compute the model residue function by the convolution method described above, and its derivatives by the forward difference equation. For a given parameter \(\beta_i \) in the vector \(\beta \),

\[
\frac{\partial w_j(\beta_i)}{\partial \beta_i} = \frac{w_j(\beta_i + h) - w_j(\beta_i)}{h}, \quad h > 0.
\] (4.13)

The error in this estimate is a function of \(h \), given by

\[
E(h) = \frac{1}{2} h |w''(\eta)|, \quad \beta_i \leq \eta \leq \beta_i + h
\] (4.14)

for some \(\eta \) in the range \(\beta_i \leq \eta \leq \beta_i + h \). Reducing \(h \) to zero would reduce the error to zero if it were not for the finite precision of digital computer floating point representations. Due to the round-off or discretization error in the calculation of \(w(\beta_i + h) - w(\beta_i) \), which we will call \(\Delta \), the error in the derivative estimate is

\[
E(h) = \frac{1}{2} h |w''(\eta)| + \frac{\Delta}{h}
\] (4.15)

The minimum \(E \) is found at

\[
h_{opt} = \left[\frac{2\Delta}{|w''(\eta)|} \right]^{\frac{1}{2}}
\] (4.16)

For single precision (24 bit mantissa) on the PDP-11, \(\Delta = 5 \times 10^{-7} \). We find \(h = 0.001\beta_i \) to work well in our application. The error in the derivative estimate is around one percent with parameters in the range we encounter.

While other numerical derivative formulae offer lower errors, the forward difference requires only one additional \(w \) evaluation for each required derivative. This is a considerable saving in this application, for we must compute, store, and convolve a complete set of impulse function samples for each derivative.

4.6. Covariance Matrix

The covariance matrix \(C \) of a set of linear parameters \(\beta \) is the inverse of the derivative matrix \(B \) (defined in Equation 3.9) evaluated at \(\beta^* \). The Marquardt subroutine estimates \(C \) by inverting \(B \) evaluated at \(\beta \) under the assumptions that \(w(\beta) \) is linear in the neighborhood of \(\beta \), that \(\beta \) is close to \(\beta^* \), and that \(B \) evaluated at our estimate \(\beta \) is a good approximation to \(B \) evaluated at \(\beta^* \).

After each fit we print the parameter uncertainties (square root of their variance, from the covariance matrix), and the correlation matrix:

\[
\sigma_{\beta_i} \approx \sqrt{[B^{-1}]_{ii}}
\]

\[
\tau_{ij} \approx \frac{[B^{-1}]_{ij}}{\sigma_{\beta_i} \sigma_{\beta_j}}
\] (4.17)
5. Implementation

5.1. Software Tools

Program fit (listing in Appendix A, documentation in Appendix D) is written largely in Ratfor for operation under the Software Tools (ST) Virtual Operating System. Software Tools is a portable program development environment which is modeled after UNIX, and whose design and philosophy are expounded in Software Tools by Brian W. Kernighan and P.J. Plauger [5]. ST provides the same programming and command languages, user interface, documentation, utilities, and library subroutines for all operating systems and computers on which it is supported. We use the RSX-11M V4.0f implementation of the Software Tools Virtual Operating System, obtained from the Computer Science and Applied Mathematics group at Lawrence Berkeley Laboratory [6]. This ST system is currently running on a PDP-11/44 computer.

An invaluable feature of ST is the ability to conveniently specify at run time whether the program's input and output are to be connected to the user's terminal, to disk files, or directly to other programs. This enables the same program to be used interactively, as a "batch" type program, or as part of a metaprogram comprised of several tools. In the words of the authors,

Whenever possible we will build more complicated programs up from the simpler; whenever possible we will avoid building at all, by finding new uses for existing tools, singly or in combination. Our programs work together; their cumulative effect is much greater than you could get from a similar collection of programs that you couldn't easily connect [7].

For example, the simulation data presented in Section 6 were generated, fit, plotted, and summarized by applying both newly-built and existing tools, with almost no manual manipulation. The versatility of ST makes it useful in the development and testing of scientific data analysis programs.

5.2. Source of the Data

Positron emission tomography (PET) noninvasively measures radioactivity in tissue volumes as small as one cubic centimeter, without superposition of activity, from other regions.

The Donner 280-crystal positron tomograph is capable of taking cross-sectional images as frequently as every second, and can synchronize data collection with the beating of the heart. The spatial resolution of 3 mm full width at half-maximum (FWHM) is sufficient to quantify radioisotope concentration in regions of tissue of 2 cm. dimension.

Images are typically taken every 2.5 to 5.0 seconds for the first one or two minutes after a rapid intravenous injection of 5 - 10 seconds duration, and at longer intervals thereafter.

The input function is measured tomographically if the left ventricle or aorta is visible in the field of view, otherwise the input function is measured by sampling arterial or arterialized blood from a catheter.

After imaging, regions of interest (ROIs) are drawn over a high statistics image in which anatomical details are well-defined. A region of interest in the middle of the left ventricle of the heart or the aorta may supply the input function.

Sequential PET images are reconstructed and the activity density in each region is computed after appropriate corrections for radioactive decay, attenuation, and detector efficiency. The units of activity for PET data are "PET events per second per pixel." A pixel is a unit of volume, and is a function of the reconstruction pixel size and the slice thickness.

The uncertainty in the number of events in a ROI is currently approximated by a naive estimate which assumes a Poisson distribution for the number of events in a entire region. The uncertainty of the per pixel quantity is taken as the square root of the number of events in the region, divided by the number of

*UNIX is a trademark of Bell Laboratories.
†PDP and RSX are trademarks of Digital Equipment Corporation.
pixels and multiplied by the decay correction factor. This estimate is an order of magnitude too small, and must be compensated for when the parameter uncertainties are reported (see subroutine dofit in Appendix A, page 42). A new uncertainty estimation algorithm has been developed correctly propagates errors through the entire reconstruction process, and will yield accurate uncertainties[10].

If taken, blood samples are counted on a gamma well counter with a multichannel analyzer. The well counter data are corrected for radioactive decay, weight of sample, counting duration, and background radiation. The units of these data are "well-counter events per gram per minute." The blood data differ from the PET data by three scale factors:

1) counts per minute vs. counts per second (factor of 60),
2) activity/pixel vs. activity/gm (function of blood density and pixel-volume correspondence), and
3) PET events vs. well counter events (function of the sensitivity of the two devices).

The overall scale factor for converting blood activity data to the corresponding PET activity has been determined empirically and is verified at each experiment by counting and imaging a vial of a radioactive solution.

The program read two input data file formats: "RO1" files from the PET image analysis program and "JOB" files from the blood analysis program. The format of these files is shown in Appendix C.

All data files for a given experimental subject, along with comments describing the experimental protocol and a history of the data processing steps, are combined into a single ASCII file in the Software Tools ar archive format. This is called the patient study archive. The flow of data from the PET to graphs and analysis results is shown in Figure 7.

5.3. Program Design

The program has three phases: initialization, data reading, and command processing. Command processing includes parameter setting, data fitting, and reporting.

In the initialization phase, subroutine init sets global variables to default values: the number of blood and tissue data points is set to zero, their descriptive labels to "Undefined".

In the data reading phase, subroutine getdat examines the program's command line arguments for data input instructions. The arguments may specify

1) a file from which data are to be read,
2) a scale factor to apply to the next region-of-interest read, and
3) a region of interest from which to read the blood or tissue measurements. These are specified by their cardinal order in the data file. At this point, times, activities, and uncertainties are read and scaled as necessary. Routine getfun reads these data by calling format-dependent routines getroi or getjob. The blood measurements taken in time intervals \((0, t_b), (t_{b1}, t_{b2}), \ldots\) are the time averages over these intervals, and the measurement times \(T_{b1}, T_{b2}\) are taken to be the middle of the intervals: \(T_{b1} = (t_{b1} + t_{b2})/2\). Likewise, the PET measurement times are taken to be the middle of the image collection intervals.

The command processor subroutine getcmd reads commands from the standard input, which is the user's terminal in interactive mode or a file in batch mode. Parameter setting commands are handled by subroutine setvar, the display of data and model values by subroutine dowrit, and fitting by subroutine defit, which in turn invokes the Marquardt algorithm routine subroutine marq, and the parameter value and uncertainty display subroutines shopar and shocov. Subroutine setvar allows the user to select the input and residue model functions, to set model parameters, and to alter the Marquardt parameters \(\tau, \varepsilon, \psi\), etc.
The input function and residue function models are evaluated by functions \texttt{funin} and \texttt{funup}. \texttt{Funup} contains code to evaluate and convolve the impulse response and input functions as necessary, and to compute the numerical derivatives. Only the impulse response function \texttt{fimpls} needs to know the particulars of the compartmental model in use; it can provide the impulse responses of any models of interest. The version of \texttt{fimpls} in Appendix A contains five impulse responses; the first is the function in Equation (4.6), and the others will not be discussed here.

Globally accessible data are stored in three named common blocks: model parameter names in \texttt{/namcom/} (these are set by \texttt{finit}, which is easily changed along with \texttt{fimpls}), the current set of model parameters in \texttt{/parcom/} and the input and residue measurements and uncertainties in \texttt{/datcom/}.

The general outline of the program is shown in Figure 8, with the smaller utility and library routines omitted.
In a typical fitting session, the operator invokes `fit` with a command line specifying the source of the data. Model functions are selected and initial parameters are set with commands of the form "parametername = value." The parameters are fit with the "fit parameter, parameter, ..." command. A file containing the measurements and model values can be created with the "write" command, to be fed to a suitable plotting program.

The program is also useful for simulation of compartment models, given a source of blood and tissue measurement times (from existing data files). The user may specify an input function and residue model, set rate constants, and generate the expected response with the "write" command.

Figure 8. Outline of fitting program.
6. Simulations

A program was written to simulate PET data. Data were generated using a biexponential input function with typical model parameters, and compared to the results of the fitting program. The method of simulation is described below.

6.1. Simulation Program

For the biexponential input function (model 1),

\[b(t) = \sum_{j=1}^{2} A_j e^{-M_j t} \]

(6.1)

the exact solution for the convolution of the input with the three compartment impulse response (Eq. 4.6) is

\[q(t) = b * h(t) \]

\[= \sum_{k=1}^{2} \sum_{j=1}^{2} \frac{A_j f_k}{\alpha_k - M_j} \left[e^{-M_j t} - e^{-\alpha_k t} \right] \]

(6.2)

For PET images taken over intervals \((T_{i-1}, T_i)\), the simulated measured activities \(B_i\) and \(W_i\) are averages over the collection interval:

\[B_i = \frac{1}{t_i - t_{i-1}} \int_{t_{i-1}}^{t_i} b(\tau) d\tau \]

(6.3)

\[W_i = \frac{1}{t_i - t_{i-1}} \int_{t_{i-1}}^{t_i} w(\tau) d\tau \]

These functions are:

\[B_i = \sum_{j=1}^{2} \frac{A_j}{(t_i - t_{i-1}) M_j} \left[e^{-M_j t_{i-1}} - e^{-M_j t_i} \right] \]

\[Q_i = \sum_{k=1}^{2} \frac{A_j f_k}{(\alpha_k - M_j)(t_i - t_{i-1})} \left[\frac{e^{-M_j t_{i-1}} - e^{-M_j t_i}}{M_j} - \frac{e^{-\alpha_k t_{i-1}} - e^{-\alpha_k t_i}}{\alpha_k} \right] \]

(6.4)

\[W_i = f_v B_i + (1 - f_v) Q_i \]

The simulation program adds Gaussian errors with mean zero and standard deviations \(\gamma B_i\) and \(\gamma W_i\) to \(B_i\) and \(W_i\) respectively, \(\gamma \geq 0\). Gaussian noise is generated by projecting the computer's pseudorandom, uniform \([0,1)\) numbers onto a polynomial approximation to the inverse of the normal distribution function. This distribution is not quite realistic, for the relative error \(\gamma\) should be a function of the activity in a region.

6.2. Two-Compartment Model

Data were generated for a two-compartment system, with parameters typical for injections of \(^{15}\text{O}\) in the dog heart.

Input Function:
- \(A_1 = 50\)
- \(M_1 = 6.2 \text{ min}^{-1}\)
- \(A_2 = 13\)
- \(M_2 = 0.12 \text{ min}^{-1}\)

Model Parameters:
- \(k_1 = 2.35 \text{ min}^{-1}\)
- \(k_2 = 1.75 \text{ min}^{-1}\)
- \(k_3 = 0\)
- \(f_v = 0.15\)

Collection Intervals:
- \(24 \times 5 \text{ sec}\)
- \(18 \times 10 \text{ sec}\)

Number of Simulations
- 1 with no noise,
- 10 each with \(\gamma = .03, .06, .09, .12, .15, .18\).

When the correct model values were given to the fitting program, the rms error in the model computation was 1.3 percent. The peak error was 1.5 percent and the average error was 0.5 percent. The computed value was always greater than the actual value. This error in the model computation is due to the errors in the piecewise linear approximation of the exponential impulse response and
input function, and to the fact that the interval-center value of the model will be higher than the interval-average value. This is only a problem with the functions are rapidly changing, as with injections of 3H$_2^{15}$O. This systematic error will result in slightly smaller fit values for k_3.

Representative fits to two compartments (k_3 held at 0.) are shown in Figure 9, and fit rate constants are summarized in Figure 10a. The mean and standard deviation of the fit values are shown, along with the standard error of the mean (SEM), the bias (error in mean), and mean estimated uncertainty. The useful comparisons are error in mean to SEM (accuracy of fit), and standard deviation to mean estimated uncertainty (accuracy of uncertainty estimate). Figure 10b shows relative uncertainty (standard deviation / true value) vs. noise.

The k_1 fits show that the estimated uncertainty in the rate constant determination is roughly correct, approximately equal to the sample standard deviation. While there is a small systematic error in the model computation, the error in the rate constant determination is of the same magnitude as the standard error of the mean for these simulations. The program gives even better estimates of the k_2 and f_v values and uncertainties.

In Figure 10b we see that relative uncertainty increases roughly linearly with noise, up to the 18 percent case. The sharp rise in uncertainty at 18 percent is due to the increasing frequency of poor fits observed when noise reaches approximately 20 percent. Some manual coaxing could have improved the bad fits.

When forced to fit three compartments to two compartment data, the program would not converge in the no-noise and several noise-added fits. The fits were discontinued after the 15 percent category. The partial results shown in Figure 11.

The estimated uncertainties clearly indicate that the program detects the lack of significance of the estimates, especially k_3 and k_4.

6.3. Three-Compartment Model

Data were generated for a three-compartment system, with parameters typical for the dog heart in injections of F-18 fluorodeoxyglucose.

<table>
<thead>
<tr>
<th>Input Function</th>
<th>Model Parameters</th>
<th>Collection Intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1 6.0</td>
<td>k_1 0.30 min$^{-1}$</td>
<td>24 x 5 sec.</td>
</tr>
<tr>
<td>M_1 0.82 min$^{-1}$</td>
<td>k_2 0.50 "</td>
<td>12 x 10 sec.</td>
</tr>
<tr>
<td>A_2 4.8</td>
<td>k_3 0.05 "</td>
<td>10 x 60 sec.</td>
</tr>
<tr>
<td>M_2 0.03 min$^{-1}$</td>
<td>k_4 0.006 "</td>
<td>5 x 60 sec.</td>
</tr>
<tr>
<td>f_v</td>
<td></td>
<td>0.15</td>
</tr>
</tbody>
</table>

Number of Simulations:
1. with no noise
16 each with $\gamma = .03, .06, .09, .12, .15, and .18.$

Representative fits are shown in Figure 12, and the results are summarized in Figures 13a and 13b.

In the three compartment case, estimation of k_1, k_2, and f_v and their uncertainties are good even with high noise. The evaluation of k_3 and k_4 is poor at high noise with the sampling intervals used, but the uncertainty estimate grows large as well, so there is no false confidence in the poor estimates. The sharp rise in uncertainty is again seen at 18 percent noise.
Two Compartment Simulations

\[k_1 = 2.35 \quad k_2 = 1.75 \]
\[f_v = .15 \]

- **o**: blood \times fit \(f_v \)
- **•**: tissue
- **—**: fit model

0% Noise

\[k_1 = 2.298 \quad k_2 = 1.718 \quad f_v = 0.150 \]

3%

\[k_1 = 2.296 \pm .0465 \quad k_2 = 1.742 \pm .0396 \quad f_v = 0.128 \pm .0073 \]

6%

\[k_1 = 2.277 \pm .0949 \quad k_2 = 1.673 \pm .0793 \quad f_v = 0.169 \pm .0159 \]

9%

\[k_1 = 1.763 \pm .0985 \quad k_2 = 1.348 \pm .0870 \quad f_v = 0.145 \pm .0180 \]

12%

\[k_1 = 2.862 \pm .2667 \quad k_2 = 2.373 \pm .2392 \quad f_v = 0.097 \pm .0338 \]

15%

\[k_1 = 2.135 \pm .2344 \quad k_2 = 1.749 \pm .2146 \quad f_v = 0.115 \pm .0415 \]

18%

\[k_1 = 2.430 \pm .3422 \quad k_2 = 2.063 \pm .3178 \quad f_v = 0.131 \pm .0496 \]

Figure 9. Representative Two Compartment Simulation Fits
Figure 10a. Two-Compartment Fits to Two-Compartment Data

Parameter $k_1 = 2.35$

<table>
<thead>
<tr>
<th>% Noise</th>
<th>Mean Fit Value</th>
<th>SEM in Mean</th>
<th>Standard Error in Mean</th>
<th>Mean Estimated Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.298</td>
<td>- .052</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.303</td>
<td>.020</td>
<td>-.047</td>
<td>.063</td>
</tr>
<tr>
<td>6</td>
<td>2.268</td>
<td>.059</td>
<td>-.082</td>
<td>.188</td>
</tr>
<tr>
<td>9</td>
<td>2.078</td>
<td>.084</td>
<td>-.272</td>
<td>.266</td>
</tr>
<tr>
<td>12</td>
<td>2.223</td>
<td>.060</td>
<td>-.127</td>
<td>.190</td>
</tr>
<tr>
<td>15</td>
<td>2.151</td>
<td>.112</td>
<td>-.199</td>
<td>.355</td>
</tr>
<tr>
<td>18</td>
<td>2.292</td>
<td>.192</td>
<td>-.058</td>
<td>.609</td>
</tr>
</tbody>
</table>

Parameter $k_2 = 1.75$

<table>
<thead>
<tr>
<th>% Noise</th>
<th>Mean Fit Value</th>
<th>SEM in Mean</th>
<th>Standard Error in Mean</th>
<th>Mean Estimated Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.718</td>
<td>- .032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.723</td>
<td>.015</td>
<td>-.027</td>
<td>.046</td>
</tr>
<tr>
<td>6</td>
<td>1.714</td>
<td>.046</td>
<td>-.036</td>
<td>.146</td>
</tr>
<tr>
<td>9</td>
<td>1.599</td>
<td>.068</td>
<td>-.151</td>
<td>.215</td>
</tr>
<tr>
<td>12</td>
<td>1.719</td>
<td>.048</td>
<td>-.031</td>
<td>.145</td>
</tr>
<tr>
<td>15</td>
<td>1.668</td>
<td>.104</td>
<td>-.082</td>
<td>.329</td>
</tr>
<tr>
<td>18</td>
<td>1.786</td>
<td>.141</td>
<td>.036</td>
<td>.445</td>
</tr>
</tbody>
</table>

Parameter $f = .15$

<table>
<thead>
<tr>
<th>% Noise</th>
<th>Mean Fit Value</th>
<th>SEM in Mean</th>
<th>Standard Error in Mean</th>
<th>Mean Estimated Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.150</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.152</td>
<td>.003</td>
<td>.002</td>
<td>.010</td>
</tr>
<tr>
<td>6</td>
<td>.157</td>
<td>.005</td>
<td>.007</td>
<td>.015</td>
</tr>
<tr>
<td>9</td>
<td>.144</td>
<td>.007</td>
<td>-.008</td>
<td>.022</td>
</tr>
<tr>
<td>12</td>
<td>.141</td>
<td>.009</td>
<td>-.009</td>
<td>.027</td>
</tr>
<tr>
<td>15</td>
<td>.168</td>
<td>.021</td>
<td>.018</td>
<td>.066</td>
</tr>
<tr>
<td>18</td>
<td>.194</td>
<td>.030</td>
<td>.034</td>
<td>.094</td>
</tr>
</tbody>
</table>
Figure 10b. Relative Uncertainty vs. Noise for Two-Compartment Simulations.

(Standard Deviation of fit parameter / true value)

* k_1 \quad Δk_2 \quad $\circ f_v$
Figure 1: Three-Compartment Fits to Two-Compartment Data

Parameter $k_1 = 2.35$

<table>
<thead>
<tr>
<th>% Noise</th>
<th>Mean Fit Value</th>
<th>SEM</th>
<th>Error in Mean</th>
<th>Standard Deviation</th>
<th>Mean Estimated Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3.97</td>
<td>1.87</td>
<td>1.62</td>
<td>5.28</td>
<td>4.27</td>
</tr>
<tr>
<td>6</td>
<td>2.10</td>
<td>0.19</td>
<td>-0.25</td>
<td>0.60</td>
<td>9.31</td>
</tr>
<tr>
<td>9</td>
<td>2.23</td>
<td>0.17</td>
<td>0.13</td>
<td>0.55</td>
<td>7.35</td>
</tr>
<tr>
<td>12</td>
<td>3.12</td>
<td>0.73</td>
<td>0.77</td>
<td>2.30</td>
<td>1.90</td>
</tr>
<tr>
<td>15</td>
<td>1.98</td>
<td>0.15</td>
<td>0.37</td>
<td>0.45</td>
<td>4.35</td>
</tr>
</tbody>
</table>

Parameter $k_2 = 1.75$

<table>
<thead>
<tr>
<th>% Noise</th>
<th>Mean Fit Value</th>
<th>SEM</th>
<th>Error in Mean</th>
<th>Standard Deviation</th>
<th>Mean Estimated Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>10.40</td>
<td>6.74</td>
<td>8.65</td>
<td>27.65</td>
<td>3.42</td>
</tr>
<tr>
<td>6</td>
<td>2.61</td>
<td>1.17</td>
<td>0.86</td>
<td>3.69</td>
<td>2.24</td>
</tr>
<tr>
<td>9</td>
<td>1.83</td>
<td>0.30</td>
<td>0.08</td>
<td>0.94</td>
<td>0.50</td>
</tr>
<tr>
<td>12</td>
<td>4.81</td>
<td>2.17</td>
<td>3.06</td>
<td>6.87</td>
<td>3.97</td>
</tr>
<tr>
<td>15</td>
<td>1.62</td>
<td>0.28</td>
<td>-0.12</td>
<td>0.83</td>
<td>2.72</td>
</tr>
</tbody>
</table>

Parameter $k_3 = 0$

<table>
<thead>
<tr>
<th>% Noise</th>
<th>Mean Fit Value</th>
<th>SEM</th>
<th>Error in Mean</th>
<th>Standard Deviation</th>
<th>Mean Estimated Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-0.44</td>
<td>1.23</td>
<td>-0.43</td>
<td>3.90</td>
<td>11.60</td>
</tr>
<tr>
<td>6</td>
<td>1.84</td>
<td>1.82</td>
<td>1.84</td>
<td>5.76</td>
<td>48.40</td>
</tr>
<tr>
<td>9</td>
<td>0.09</td>
<td>0.12</td>
<td>0.09</td>
<td>0.39</td>
<td>0.79</td>
</tr>
<tr>
<td>12</td>
<td>0.71</td>
<td>0.48</td>
<td>0.71</td>
<td>1.52</td>
<td>59.42</td>
</tr>
<tr>
<td>15</td>
<td>-0.26</td>
<td>0.42</td>
<td>-0.26</td>
<td>1.27</td>
<td>19.23</td>
</tr>
</tbody>
</table>

Parameter k_4 (no definite value)

<table>
<thead>
<tr>
<th>% Noise</th>
<th>Mean Fit Value</th>
<th>SEM</th>
<th>Standard Deviation</th>
<th>Mean Estimated Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4.66</td>
<td>2.28</td>
<td>7.21</td>
<td>33.67</td>
</tr>
<tr>
<td>6</td>
<td>3.53</td>
<td>1.71</td>
<td>5.40</td>
<td>256.</td>
</tr>
<tr>
<td>9</td>
<td>2.58</td>
<td>2.32</td>
<td>7.36</td>
<td>1106.</td>
</tr>
<tr>
<td>12</td>
<td>5.37</td>
<td>3.03</td>
<td>9.59</td>
<td>2172.</td>
</tr>
<tr>
<td>15</td>
<td>1.63</td>
<td>0.98</td>
<td>2.95</td>
<td>114.</td>
</tr>
</tbody>
</table>

Parameter $f_v = 0.15$

<table>
<thead>
<tr>
<th>% Noise</th>
<th>Mean Fit Value</th>
<th>SEM</th>
<th>Error in Mean</th>
<th>Standard Deviation</th>
<th>Mean Estimated Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.094</td>
<td>0.058</td>
<td>-0.056</td>
<td>0.184</td>
<td>0.148</td>
</tr>
<tr>
<td>6</td>
<td>0.170</td>
<td>0.014</td>
<td>0.020</td>
<td>0.045</td>
<td>0.196</td>
</tr>
<tr>
<td>9</td>
<td>0.160</td>
<td>0.010</td>
<td>0.010</td>
<td>0.032</td>
<td>0.154</td>
</tr>
<tr>
<td>12</td>
<td>0.107</td>
<td>0.033</td>
<td>-0.043</td>
<td>0.104</td>
<td>0.079</td>
</tr>
<tr>
<td>15</td>
<td>0.129</td>
<td>0.030</td>
<td>-0.021</td>
<td>0.060</td>
<td>0.122</td>
</tr>
</tbody>
</table>
Three Compartment Simulations

$k_1 = .3 \quad k_2 = .5$
$k_3 = .05 \quad k_4 = .006$
$f_V = .15$

o = blood × fit f_V
• = tissue
--- = fit model

Figure 12. Representative Three Compartment Simulation Fits.
Figure 13a. Three-Compartment Fits to Three-Compartment Data

Parameter $k_1 = .3$

<table>
<thead>
<tr>
<th>% Noise</th>
<th>Mean Fit Value</th>
<th>SEM</th>
<th>Error in Mean</th>
<th>Standard Deviation</th>
<th>Mean Estimated in Mean Deviation</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.300</td>
<td>0.</td>
<td>0.003</td>
<td>.006</td>
<td>.010</td>
<td>.008</td>
</tr>
<tr>
<td>3</td>
<td>.294</td>
<td>.006</td>
<td>-.006</td>
<td>.003</td>
<td>.019</td>
<td>.017</td>
</tr>
<tr>
<td>5</td>
<td>.289</td>
<td>.011</td>
<td>-.011</td>
<td>.036</td>
<td>.025</td>
<td>.025</td>
</tr>
<tr>
<td>6</td>
<td>.323</td>
<td>.017</td>
<td>.023</td>
<td>.055</td>
<td>.034</td>
<td>.034</td>
</tr>
<tr>
<td>9</td>
<td>.311</td>
<td>.014</td>
<td>.011</td>
<td>.043</td>
<td>.045</td>
<td>.045</td>
</tr>
<tr>
<td>12</td>
<td>.350</td>
<td>.061</td>
<td>.050</td>
<td>.193</td>
<td>.071</td>
<td>.071</td>
</tr>
</tbody>
</table>

Parameter $k_2 = .5$

<table>
<thead>
<tr>
<th>% Noise</th>
<th>Mean Fit Value</th>
<th>SEM</th>
<th>Error in Mean</th>
<th>Standard Deviation</th>
<th>Mean Estimated in Mean Deviation</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.501</td>
<td>0.</td>
<td>0.007</td>
<td>-.016</td>
<td>.022</td>
<td>.025</td>
</tr>
<tr>
<td>3</td>
<td>.483</td>
<td>.020</td>
<td>.016</td>
<td>.063</td>
<td>.054</td>
<td>.054</td>
</tr>
<tr>
<td>6</td>
<td>.497</td>
<td>.025</td>
<td>-.003</td>
<td>.078</td>
<td>.080</td>
<td>.080</td>
</tr>
<tr>
<td>9</td>
<td>.577</td>
<td>.055</td>
<td>.077</td>
<td>.175</td>
<td>.110</td>
<td>.110</td>
</tr>
<tr>
<td>12</td>
<td>.554</td>
<td>.046</td>
<td>.055</td>
<td>.146</td>
<td>.149</td>
<td>.149</td>
</tr>
<tr>
<td>15</td>
<td>.800</td>
<td>.274</td>
<td>.300</td>
<td>.866</td>
<td>.273</td>
<td>.273</td>
</tr>
</tbody>
</table>

Parameter $k_3 = .05$

<table>
<thead>
<tr>
<th>% Noise</th>
<th>Mean Fit Value</th>
<th>SEM</th>
<th>Error in Mean</th>
<th>Standard Deviation</th>
<th>Mean Estimated in Mean Deviation</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.0499</td>
<td>.001</td>
<td>-.001</td>
<td>.0050</td>
<td>.0058</td>
<td>.0058</td>
</tr>
<tr>
<td>3</td>
<td>.0490</td>
<td>.018</td>
<td>.0010</td>
<td>.0136</td>
<td>.0115</td>
<td>.0115</td>
</tr>
<tr>
<td>6</td>
<td>.0509</td>
<td>.043</td>
<td>.0009</td>
<td>.0197</td>
<td>.0177</td>
<td>.0177</td>
</tr>
<tr>
<td>9</td>
<td>.0516</td>
<td>.062</td>
<td>.0016</td>
<td>.0308</td>
<td>.0207</td>
<td>.0207</td>
</tr>
<tr>
<td>12</td>
<td>.0514</td>
<td>.097</td>
<td>.0014</td>
<td>.0339</td>
<td>.0315</td>
<td>.0315</td>
</tr>
<tr>
<td>15</td>
<td>.0607</td>
<td>.107</td>
<td>.0107</td>
<td>.0971</td>
<td>.0404</td>
<td>.0404</td>
</tr>
</tbody>
</table>

Parameter $k_4 = .006$

<table>
<thead>
<tr>
<th>% Noise</th>
<th>Mean Fit Value</th>
<th>SEM</th>
<th>Error in Mean</th>
<th>Standard Deviation</th>
<th>Mean Estimated in Mean Deviation</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.00600</td>
<td>0.</td>
<td>0.0001</td>
<td>.0062</td>
<td>.0056</td>
<td>.0056</td>
</tr>
<tr>
<td>3</td>
<td>.0059</td>
<td>.020</td>
<td>-.0001</td>
<td>.0114</td>
<td>.0108</td>
<td>.0108</td>
</tr>
<tr>
<td>6</td>
<td>.0052</td>
<td>.036</td>
<td>-.0008</td>
<td>.0109</td>
<td>.0163</td>
<td>.0163</td>
</tr>
<tr>
<td>9</td>
<td>.0014</td>
<td>.081</td>
<td>-.0046</td>
<td>.0296</td>
<td>.0216</td>
<td>.0216</td>
</tr>
<tr>
<td>12</td>
<td>.0015</td>
<td>.094</td>
<td>-.0045</td>
<td>.0362</td>
<td>.0358</td>
<td>.0358</td>
</tr>
<tr>
<td>15</td>
<td>.0049</td>
<td>.115</td>
<td>-.0011</td>
<td>.0470</td>
<td>.0438</td>
<td>.0438</td>
</tr>
</tbody>
</table>

Parameter $f_v = .15$

<table>
<thead>
<tr>
<th>% Noise</th>
<th>Mean Fit Value</th>
<th>SEM</th>
<th>Error in Mean</th>
<th>Standard Deviation</th>
<th>Mean Estimated in Mean Deviation</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.150</td>
<td>0.</td>
<td>0.005</td>
<td>.005</td>
<td>.003</td>
<td>.003</td>
</tr>
<tr>
<td>3</td>
<td>.150</td>
<td>.002</td>
<td>0.001</td>
<td>.008</td>
<td>.007</td>
<td>.007</td>
</tr>
<tr>
<td>6</td>
<td>.149</td>
<td>.002</td>
<td>-.001</td>
<td>.015</td>
<td>.010</td>
<td>.010</td>
</tr>
<tr>
<td>9</td>
<td>.148</td>
<td>.005</td>
<td>-.002</td>
<td>.015</td>
<td>.012</td>
<td>.012</td>
</tr>
<tr>
<td>12</td>
<td>.124</td>
<td>.005</td>
<td>-.026</td>
<td>.020</td>
<td>.016</td>
<td>.016</td>
</tr>
<tr>
<td>15</td>
<td>.139</td>
<td>.006</td>
<td>-.011</td>
<td>.024</td>
<td>.018</td>
<td>.018</td>
</tr>
<tr>
<td>18</td>
<td>.111</td>
<td>.008</td>
<td>-.039</td>
<td>.024</td>
<td>.018</td>
<td>.018</td>
</tr>
</tbody>
</table>
Figure 13b. Relative Uncertainty vs. Noise for Three-Compartment Simulations.

(Standard Deviation of fit parameter / true value)
7. Applications to Experimental Data

Below we show examples of fitting compartmental models to actual data from animal experiments. These examples are intended only to demonstrate the program's ability to provide useful data for the investigation of physiological models.

7.1. 0-15 Water

0-15 water ($H_2^{15}O$) is under consideration as an indicator of blood flow in the brain and heart. We find that 0-15 water in the dog heart is well modeled by two compartments, one for blood and one for tissue.

![Diagram of blood and cell water compartments](image)

Studies were carried out on mongrel dogs with 0-15 water generated in the LBL 80-inch cyclotron. ECG-gated images were collected with the time intervals noted in the 2-compartment simulations in section 6.2, before and after raising myocardial blood flow by injection of Dipyridimole. Actual blood flow in the heart was measured simultaneously by the microsphere reference organ technique [11]. Regions of interest were drawn in the middle of the left ventricle for the input function, and in the left ventricular wall for the residue function. The data and fits are shown in Figure 14, and the results are summarized below.

<table>
<thead>
<tr>
<th></th>
<th>Before 6 min.</th>
<th>After Dipyridimole</th>
<th>cc/gm/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Flow</td>
<td>0.66</td>
<td>1.47</td>
<td></td>
</tr>
<tr>
<td>k_1</td>
<td>0.93 ± 0.14</td>
<td>1.66 ± 0.28</td>
<td>min$^{-1}$</td>
</tr>
<tr>
<td>k_2</td>
<td>1.01 ± 0.20</td>
<td>1.68 ± 0.31</td>
<td>min$^{-1}$</td>
</tr>
<tr>
<td>f_u</td>
<td>0.18 ± 0.04</td>
<td>0.35 ± 0.05</td>
<td></td>
</tr>
</tbody>
</table>

The increase in blood flow was accompanied by a corresponding increase in k_1 and k_2 and f_u.

7.2. Fluorodeoxyglucose

$[^{18}F]2$-fluoro-2-deoxy-D-glucose (FDG) is a tracer for regional glucose metabolism in the brain and heart [12]. Cells in these organs treat FDG like glucose through the first reaction in glycolysis,

\[
\text{hexokinase: } \text{glucose} + \text{ATP} \rightarrow \text{glucose-6-phosphate} + \text{ADP}
\]

While glucose-6-phosphate is further metabolized, FDG-6-phosphate is not. However, the rates of transport and metabolic reactions of glucose and FDG are similar. A model for FDG kinetics in the brain and heart is
Figure 14. Oxygen-15 Water in the Canine Heart

Myocardium

Left Ventricle

15O-water Image and Regions of Interest

before Dipyridimole

After Dipyridimole

Before

\[
\begin{align*}
L_1 &= 9.13 \times 10^{-4} \\
L_2 &= 1.00 \times 10^{-3} \\
L_3 &= 1.83 \times 10^{-3} \\
\end{align*}
\]

Correlation Matrix:

\[
\begin{pmatrix}
1 & 0.949 & -0.499 \\
0.949 & 1 & -0.499 \\
-0.499 & -0.499 & 1
\end{pmatrix}
\]

After

\[
\begin{align*}
L_1 &= 1.40 \times 10^{-3} \\
L_2 &= 1.00 \times 10^{-3} \\
L_3 &= 1.00 \times 10^{-3} \\
\end{align*}
\]

Correlation Matrix:

\[
\begin{pmatrix}
1 & 0.949 & 0.949 \\
0.949 & 1 & 0.949 \\
0.949 & 0.949 & 1
\end{pmatrix}
\]

XBB 830-11016
where the first cell compartment represents free FDG and the second cell compartment represents phosphorylated FDG. Rate constants k_1 and k_2 account for the kinetics of glucose transport between the blood and the cell, and rate constants k_3 and k_4 account for the rate of the hexokinase and phosphatase reactions in the cell.

If we assume that the rate constants for glucose are proportional to the rate constants determined for FDG, then the glucose metabolic rate GMR in a region of interest is given by

$$GMR = \frac{[\text{Glu}]}{LC} \frac{k_1 k_3}{k_2 k_4 + k_3}.$$

where LC is the "lumped constant" which accounts for the difference between glucose and FDG rate constants, and $[\text{Glu}]_p$ is the plasma glucose concentration [13]. We can thus estimate GMR from PET determined rate constants, a blood analysis for glucose, and LC.

F-18 has a 112 minute half life. Data are collected for 45 minutes after injection, at the time intervals noted in the three compartment simulations in section 6.3. Data were obtained from the right frontal and temporal cortex of two human subjects, one healthy and one with diagnosed Alzheimer's Type Dementia (ATD). Images of FDG distribution after 45 minutes are shown in Figure 15, with the data and fits to the temporal cortex. The slices were obtained at slightly different levels of the brain. The ventricles seen as dark regions in the middle of the ATD brain are not observed in the normal brain; however, the cortex regions are approximately equivalent. Notice the reduced uptake in the temporal cortex of the ATD subject.

The determined rate constants are

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>ATD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\text{Glu}]_p$</td>
<td>102</td>
<td>98</td>
</tr>
</tbody>
</table>

Frontal

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>ATD</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_1</td>
<td>.121 ± .004</td>
<td>.104 ± .008 min⁻¹</td>
</tr>
<tr>
<td>k_2</td>
<td>.198 ± .018</td>
<td>.258 ± .031 min⁻¹</td>
</tr>
<tr>
<td>k_3</td>
<td>.0875 ± .0084</td>
<td>.1149 ± .0108 min⁻¹</td>
</tr>
<tr>
<td>k_4</td>
<td>.0094 ± .0024</td>
<td>.0412 ± .0020 min⁻¹</td>
</tr>
<tr>
<td>f_v</td>
<td>.070 ± .004</td>
<td>.041 ± .005</td>
</tr>
<tr>
<td>$GMR \cdot LC$</td>
<td>3.78</td>
<td>3.16 mg/min/100g tissue</td>
</tr>
</tbody>
</table>

Temporal

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>ATD</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_1</td>
<td>.136 ± .005</td>
<td>.062 ± .004 min⁻¹</td>
</tr>
<tr>
<td>k_2</td>
<td>.204 ± .018</td>
<td>.196 ± .029 min⁻¹</td>
</tr>
<tr>
<td>k_3</td>
<td>.0640 ± .0064</td>
<td>.0708 ± .0128 min⁻¹</td>
</tr>
<tr>
<td>k_4</td>
<td>.0012 ± .0028</td>
<td>.0339 ± .0050 min⁻¹</td>
</tr>
<tr>
<td>f_v</td>
<td>.075 ± .006</td>
<td>.034 ± .004</td>
</tr>
<tr>
<td>$GMR \cdot LC$</td>
<td>3.31</td>
<td>1.61 mg/min/100g tissue</td>
</tr>
</tbody>
</table>

The ATD temporal cortex has substantially lower k_1 and $GMR \cdot LC$ values. However, we cannot draw conclusions about GMR because we cannot know whether LC is altered with Alzheimer's dementia. The ATD cortex also seems to have a lower vascular volume and a higher phosphatase (k_4) activity.
Figure 15: Fluorine-19 Fluorodeoxyglucose in the Human Brain

Right Temporal Cortex

Normal

Alzheimer's Type Dementia

Correlation Matrix:

\[
\begin{array}{cccc}
 k_1 & 1.3643E-01 & 5.2305E-03 \\
 k_2 & 2.0400E-01 & 1.7877E-02 \\
 k_3 & 6.4048E-02 & 8.5700E-03 \\
 k_4 & 1.1498E-03 & 2.8333E-03 \\
 k_5 & 7.4571E-02 & 5.5381E-03 \\
 k_6 & 1.2071E-01 & 7.4430E-01 \\
\end{array}
\]

Correlation Matrix:

\[
\begin{array}{cccc}
 k_1 & 6.6998E-01 & 5.3151E-03 \\
 k_2 & 1.4637E-01 & 7.4610E-02 \\
 k_3 & 7.5945E-02 & 4.2098E-02 \\
 k_4 & 1.5094E-02 & 4.2063E-01 \\
 k_5 & 1.2678E-00 & 4.1464E-01 \\
 k_6 & 6.1431E-00 & 1.2689E-00 \\
\end{array}
\]

XBB 830-11017
8. Summary

Program fit provides good estimates of two- and three-compartment model rate constants from input function and residue functions acquired by PET. It also provides reasonable estimates of the uncertainty and covariance of the fit rate constants.

Program features include
1. easy addition of new models,
2. interactive or batch use, and
3. easy interface with other programs.

Needed improvements in the program fall into four categories:

1. Speed. Computation of the uptake function and derivatives is currently quite inefficient. In the case of models 1, 3, and 5, the impulse response characteristic decay constants are computed at every invocation. Routines mqchi, mqder, funup, and fimpla should be rewritten to compute values for all N_w values at once. This rearrangement would also make possible the use of an array processor for further speed increases.

2. Linear-Interpolation Approximations. The piecewise linear approximations of the input and impulse response functions introduce errors in the computation of the residue function. These errors are small but unnecessary. Funup could be rewritten to analytically convolve the piecewise linear input function with a vector of n exponentials (n is generally the number of non-vascular compartments in the model). This would likely increase speed as well, as the method of conv is not terribly efficient.

3. Sampling. We currently ignore the fact that our measurements are averages over known time intervals (Equation 6.3). We can more accurately model our measurements by using the time-average of $w(t)$ over these intervals.

4. Data Statistics. We ignore the effect of input function noise and input-residue measurement correlation in our least-square function R. This can be corrected when the new ROI uncertainty and correlation estimation algorithm has been implemented in our data collection system. This will require the addition of a new data field in the ROI file format, for covariance with respect to a designated input function region.
References

Acknowledgements

This work was supported by the Department of Energy under contract number DE-AC03-76SF00098.

I greatly appreciate the support and encouragement of my advisor, Dr. Thomas Budinger.

I want to thank the entire staff of the Donner Research Medicine Group for their friendship and supporting efforts, especially Dr. Ronald Huesman for the Marquardt code, his advice, and patience for my Unix proselytizing. I also extend my appreciation to the team responsible for the human and animal experiments mentioned in Section 7: Katie Brennan, Thomas Budinger, Robert Friedland, John Frisch, Marty Morimoto, Brian Moyer, Mohindar Singh, Julie Twitchell-Mathis, Donald Uber, and Yukio Yano.
fit — fit compartmental models to ring data

DRIVER (fit)

```
include datcom  # make sure these commons are in root overlay
include namcom
include parcom
```

```
string usestr "Usage: fit [[-sscale] [file] -i[n]] [[-sscale] [file] -u[r]]"
```

```
call query(usesr)
call init       # set defaults
call getdat     # read data files named on command line
call getcmd     # process fit commands
```

DRETURN

end
fit.h - definitions for FIT

define (VERSION, "FIT V1.3")
define (MAXNAME,40) # dimensions for
define (MAXLABEL,30) # ... character strings
define (ARGMAX,80) # ... parameter arrays
define (MAXINPAR,6) # ... measurement arrays
define (MAXUPPAR,8) # the types of variables we set
define (MAXFIT,8)
define (MAXDATA,80)
define (UNKNOWN,-1)
define (INPUTPAR,1)
define (UPTAKEPAR,2)
define (MARQPAR,3)
define (INPUTFUNCTION,4)
define (UPTAKEFUNCTION,5)
define (NSTEPS,6)

special definitions for .ROI file routines (tinit, penter, pget)
define (TABLESIZE,1000) # dynamic storage: 2K bytes
define (T_SIZE,1) # size of table entry
define (T_POINTER,1) # string pointer offset in table info
datcom

datcom - measured data common

real tblood(MAXDATA) # times of blood measurements
real blood(MAXDATA) # blood activity meas.
real ublood(MAXDATA) # uncertainty in blood meas.
integer nblood # number of tissue points
logical btrue # blood uncertainties correct

real ttissu(MAXDATA) # times of tissue measurements
real tissu(MAXDATA) # tissue activity meas.
real utissu(MAXDATA) # uncertainty of tissue meas.
integer ntissu # number of tissue points
logical tttrue # tissue uncertainties correct

character bfile(MAXNAME) # name of blood source file
real bscale # blood scale factor
integer breg # blood region number
character blabel(MAXLABEL) # label from blood region

character tfile(MAXNAME) # name of tissue source file
real tscale # tissue scale factor
integer treg # tissue region number
character tlabel(MAXLABEL) # label from tissue region

common /datcom/ \tblood,blood,ublood,nblood,btrue
 ttissu,tissu,utissu,ntissu,tttrue
 bfile,bscale,breg,blabel,
tfile,tscale,treg,tlabel

Fri 05 Aug 83 17:46:05

namcom

namcom - names of parameters

integer innam(MAXINPAR) # stored two characters in one word,
 # input function model param names
integer upnam(MAXUPPAR) # residue function model param names

common /namcom/ innam, upnam

Tue 05 Jul 83 16:36:03

parcom

parcom - model parameters

```plaintext
real inpar(MAXINPAR)  # input function parameters
integer ninpar  # number of input function parameters
integer infun  # input function selector
integer minfun  # maximum infun

real uppar(MAXUPPAR)  # uptake model parameters
integer nuppar  # number of uptake model parameters
integer upfun  # uptake function selector
integer mupfun  # maximum uptake function

integer idebug  # fitting trace flag
integer nsteps  # maximum number of iterations allowed

common /parcom/inpar,ninpar,infun,uppar,nuppar,upfun,minfun,mupfun,
    idebug,nsteps
```

tablecom

tablecom - roi parameter table memory

```plaintext
pointer table  # fake table declaration
common /table/ table
```

CATCH attaches the specified lun with an AS looking for CHAR. When one is received, FLAG is set to Fortran logical TRUE.

Fortran calling sequence.

logical flag
integer lun
byte char

call catch(flag, lun, char) ; arm

call catch ; disarm

The default for lun=5, for char=-C, for reatch=true.

After catching a CHAR, catch detaches the lun. Catch may also be forced to detach (disarm itself) by calling with no arguments.

If the attach fails, catch attempts to print a message on LUN

DEFAULT SETTINGS:

LUNIT = 5 ; default unit for read
BREAKC = 3 ; default break char -C

NARGS = 0 ; offsets into arg block
FLAG = 2
LUN = 4
CHAR = 6.

NOARG = -1 ; address of null argument
TRUE = -1 ; fortran logical values
FALSE = 0

.mcall qios, astx$s
.globl CATCH, note

; pure code
.psect $R,$ROI,1,RO,CON,REL,LCL

----------- CATCH -----------

CATCH: tstb NARGS(r5) ; if no arguments
ble disarm ; disable thyself

cmp FLAG(r5), #NOARG ; flag wasn't passed
beq disarm ; so this is a disable call
mov FLAG(r5), flagp ; get pointer to flag

cmp NARGS(r5), #2 ; see if LUN was passed
blt doqio ; no lun and no char - go qio

cmp LUN(r5), #NOARG ; see if LUN was passed
beq 2S
mov @LUN(r5), luntt ; save the unit number

2S: cmp NARGS(r5), #3 ; see if char arg is there
blt doqio

cmp CHAR(r5), #NOARG
beq doqio

movb @CHAR(r5), break ; store break character
```assembly
; doqio: cmp armed, #TRUE        ; see if we have to do this
    beq done                  ; if it's done, don't redo it
    mov #TRUE, armed
    jsr pc, ttydet            ; detach tty
    bcs bad
    cmp isb, #IS.SUC
    beq done

bad:  mov #badmsg, -(sp)       ; print error message
      mov #1, -(sp)            ; with call note("[CATCH]")
      mov sp, r5
      jsr pc, note
      tst (sp)+
      tst (sp)+

; DISARM - undo catchc

; DISARM:

disarm: cmp armed, #FALSE      ; if not armed, just return
    beq done
    mov #FALSE, armed
    QIOSS #IO.DET,luntt        ; issue detach from lun
    call ttyatt
    rts pc

; gotch - ast routine called when a character comes in

GOTCH:  bicb #200, (sp)        ; clear parity
    cmpb (sp), break          ; see if it's what we want
    bne IS
    mov #TRUE, @flagp         ; discard if not
    jsr pc, disarm
    tst (sp)+                 ; yes -- set users flag
    ASTXSS
    halt

; impure data

.armed: .word FALSE          ; flag indicating pending read
.flagp: .word 0              ; address of user's flag
.luntt: .word LUNIT          ; logical unit to read
.isb: .blkw 2                ; QIO success buffer
.break: .byte BREAKC
.even

; pure data

.badmsg: .asciz /[CATCH] Attach LUN failed/
.even
.end
```

Thu 30 Jun 83 17:01:30
con - convolution of two sampled functions.

real function con (a, b, ta, tb, time, a0, b0, ta0, tb0, na, nb)
integer na, nb
real a(na), b(nb), ta(na), tb(nb), time, a0, b0, ta0, tb0
#
Perform convolution of functions a and b
#
Evaluates a*b(time) where a(s) = linear interpolation
of points (ta0,a0), (ta(i),a(i)) and b(s) = linear interpolation
of points (tb0,b0), (tb(i),b(i)). Any ta(i) less than ta0 or
tb0 less than tb0 are ignored a is the maximum index in a, ta.
Nb is the maximum index in b, tb.
#
We integrate by summing a series of trapezoidal panels, delimited
by the known time points (ta0, ta(1), .. ta(na)) and
(time-tb0, time-tb(1), .. time-tb(nb)
The time interval of a panel is t = ts to te
For function a the panel is (ts,as), (te,ae). For function
b the panel is (ts,bs), (te,be). The logical flags tell
whether we know the functions exactly at the start and end points.
If we don't know, we interpolate.
#
real tend, ts, te, as, ae, bs, be, sum
logical enda, endb
integer ia, ib
#
begin con
--
ten = time - tb0
sum = 0.
ia = 1
ib = nb
ts = ta0
as = a0
while (((time-tb(ib)) < ts & ib > 1)
 ib = ib - 1
if (ib < nb)
 ib = ib + 1
bs = b(ib) + (b(ib-1)-b(ib))*(ts-(time-tb(ib)))/(tb(ib)-tb(ib-1))
while (ts < tend) [
 while (ta(ia) <= ts & ia < na)
 ia = ia + 1
 while ((time - tb(ib)) <= ts & ib > 1)
 ib = ib - 1
 te = time - tb(ib)
 if (ta(ia) < te | te <= ts)
 te = ta(ia)
 if (te <= ts)
 te = tend
enda = te == ta(ia)
endb = te == (time - tb(ib))
if (enda)
 ae = a(ia)
else if (ia == 1)
 ae = a0 + (a(1)-a0)*(te-ta0)/(ta(1)-ta0)
else
 ae = a(ia-1) + (a(ia)-a(ia-1))*(te-ta(ia-1))/(ta(ia)-ta(ia-1))
]
if (endb) # know it directly
 be = b(ib)
else if (te < (time - tb(ib)))
 be = b(ib+1) +
 (b(ib)-b(ib+1))*(te-(time-tb(ib+1)))/(tb(ib+1)-tb(ib))
else if (te == tend) # it's the endpoint
 be = b0
else # interpolate from (tb0, b0)
 be = b(1) + (b0-b(1))*(te-(time-tb(1)))/(tb(1)-tb0)

integral of panel
panel=(te-ts)*(1./3.*(ae-as)*(be-bs) + 0.5*(bs*(ae-as)+
 as*(be-bs))) + As*bs)

sum = sum + panel # add panel to sum
as = ae
bs = be
]

return(sum)
end
datlin — read ROI data line

integer function datlin(line, fdes, size)
character line(ARB)
files fdes
integer size(2)
#
reads a data line from archive file 'fdes'. Ignores blank lines and comments,
and enters parameter-setting comment lines into the table.
Returns EOF on end of file. This function is just like getlin except
it will not return blank or comment lines
#
ext_func integer length, agtlin
ext_subr skipbl, penter
character name(MAXNAME)
integer info(T_SIZE), i, j, last

while (agtlin(line, fdes, size)!=EOF) [# try reading a line
 call fprintf(STDERR, "[DATLIN] read: %s", line)
 last = 0
 for (j=1; line(j) ! = EOS; j=j+1) # find last nonwhite character
 if (line(j) ! = BLANK & line(j) ! = NEWLINE & line(j) ! = TAB)
 last = j
 line(last+l) = EOS # trim trailing whitespace
 j = 1
 call skipbl(line, j) # look at first nonblank char
 if (line(j) == EOS) # blank line — ignore it
 next
 if (line(j) != '#') [# not a comment:
 call fprintf(STDERR, "[DATLIN] *on") # return triumphant.
 return(OK)
 j = j + 1
 call skipbl(line, j)
 if (line(j) ! = '%') # this is just a comment
 next
 i = 1
 for (j=j-1; line(j) ! = '%'; j=j+1) [# no closing %, forget it
 if (line(j) == EOS | i == MAXNAME) # no closing %, forget it
 next 2
 name(i) = line(j) # extract the parameter name
 i = i + 1
 name(i) = EOS
 j = j + 1
 call skipbl(line, j)
call penter(name, line(j)) # enter definition
] # find beginning of definition
return(EOF)
dofit — perform fit on parameters

subroutine dofit (line, j)
character line(ARB)
integer j

line(j...) is a list of parameters to fit. It is picked apart by setmap. We print initial values, call marquardt, print results.

ext_func filedes open
ext_func integer isatty
character val(MAXNAME)
integer map(MAXFIT), nparm, which, flags(MAXFIT)
real uncert(MAXFIT), cov(MAXFIT*MAXFIT)
filedes ttydes
external funin, funup
logical quit # set by typing control-C
logical true # true uncertainties for our fit?
common /quit/ quit

include datcom
include parcom

call setmap(line(j), map, nparm, which)

if (nparm == 0) [
 call fprintf(STDERR,"No parameters to fit%n")
 return
]

call fprintf(STDOUT, "#Initial Conditions:
"
call shopar(STDOUT, NO, uncert, NO, flags)
call fprintf(STDOUT, "On# Fit %s", line(j))

chi = 0.
chi0 = 0.
istep = 0.
quit = .false.

if (isatty(STDIN) == YES) # lun for control-C is terminal
ttydes = STDIN
else
ttydes = open("TI:", READ)

call catch(quit, ttydes)

if (which == INPUTPAR)
call marq(funin,ninpar,inpar,uncert,cov,nparm,map,nblood,
tblood,blood,ublood,nsteps,chi0,istep,chi,ierr,flags,idebug)
else
call marq(funup,nuppar,uppar,uncert,cov,nparm,nmap,ctissue,
ttissue,tissue,utissue,nsteps,chi0,istep,chi,ierr,flags,idebug)

call catch
if (ttydes != STDIN)
call close(ttydes)

call rtoe(chi0, val, 11, 4)
call fprintf(STDOUT, "On# Results: Initial chi square: %s%n", val)
call rtoe(chi, val, 11, 4)
call fprintf(STDOUT, "# Final chi square: %s after %d iterations%n", val, istep)

if (ierr /= 0) [
call fprintf(STDOUT, "# *** Marquardt error %d: ", ierr)
select (ierr) [
 case -1:
 call fprintf(STDOUT, "Parameter setup")
 case 1:
 call fprintf(STDOUT, "Too many iterations")
 case 2:
 call fprintf(STDOUT, "Matrix invert while stepping")
 case 3:
 call fprintf(STDOUT, "Matrix invert after convergence")
 case 4:
 call fprintf(STDOUT, "Terminated by user before convergence")
 default:
 call fprintf(STDOUT, "?"
]
]
if (which == INPUTPAR) [
 npar = ninpar
 ndat = nblood
 true = btrue
]
else [
 npar = nuppar
 ndat = ntissu
 true = ttrue
]
ndf = ndat - nparm # degrees of freedom
call fprintf(STDOUT, "# Number of degrees of freedom: %d", ndf)
if (!true) [
 # have to fudge uncertainties
 sc = sqrt(chi / float(ndf)) # pretend model fit: chi=ndf
 do i = 1, npar
 uncert(i) = uncert(i) * sc
 do i = 1, npar**2
 cov(i) = cov(i) * sc
 call fprintf(STDOUT, " — Uncertainties fudged")
]
else
 call putch(NEWLINE, STDOUT)
call shpar(STDOUT, which, uncert, which, flags)
call shocov(cov, npar, which)
end
C DOT - Compute Dot-Product of Vectors

FUNCTION DOT(A,B,N)
DIMENSION A(1),B(1)

 D = 0.
 DO 10 I = 1,N
 D = D + A(I)*B(I)
10 CONTINUE
 DOT = D
RETURN
END
dowrit — write input or uptake data & model to file

subroutine dowrit (line, j)
character line(ARB)
integer j
#
line(...) is a write-data command. Format is:
[Input] [.] [Uptake] (> file)
#
#
ext_func integer gettok, equal
ext_func filesdes open
character var(MAXNAME), filnam(MAXNAME)
filesdes fdes
integer which, mode, ndat
real time, meas, uncert, model, inp, par
external funin, funup

include parcom
include datcom

fdes = STDOUT
mode = WRITE

if (gettok(var, line, j) == EOF) [
 call fprint(STDERR, "*** Usage: write in|up [>|>> file]@n")
 return
]

if (var(1) == 'i' & var(2) == 'n') [
 which = INPUTPAR
 npar = ninpar
]
else if (var(1) == 'u' & var(2) == 'p') [
 which = UPTAKEPAR
 npar = nuppar
]
else
 goto 100

call gettok(var, line, j)
if (var(1) == 'r') [
 if (line(j) == '>') [
 mode = APPEND
 j = j + 1
]
]

filnam(1) = EOS
while (gettok(var, line, j) != EOF) [
 call concat(filnam, var, filnam)
 if (length(filnam) <= 0) goto 100
]
fdes = open(filnam, mode)
if (fdes == ERR) [
 call fprint(STDERR, "Can't write to %s", filnam)
 return
]

call rtoe(bscale, var, 10, 3)
call fprint(fdes,"Input: %s - %s (reg. %d * %s Model %d@n",
bfile, blabel, breg, var, infun)

if (which == UPTAKEPAR) {
 call rtoe(tsclae, var, 10, 3)
 call fprint(fdes, "Uptake: \%s - \%s (reg. \%d * \%s) Model \%ddn",
 tfile, tlabel, treg, var, upfun)
}
else
 call putch("\dn", fdes)

for (i = 1; i <= npar; i=i+1) {
 call getnam(var, which, i) # parameter name
 call fprint(fdes, "\%s = ", var)
 if (which == INPUTPAR)
 par = inpar(i)
 else
 par = uppar(i)
 call rtoe(par, var, 11, 3)
 call putlin(var, fdes)
 if (mod(i,4) == 0)
 call putch("\dn", fdes)
 else
 call putlin(" ", fdes)
}
if (mod(i,4) != 1)
 call putch("\dn", fdes)

if (which == INPUTPAR) {
 call fprint(fdes, "\n time input uncert in_model\n")
 ndat = nblood
} else {
 call fprint(fdes,
 "\n time uptake uncert up_model input\n")
 ndat = ntissu
}
do i = 1, ndat [
 if (which == INPUTPAR) {
 time = tblood(i)
 meas = blood(i)
 uncert = ublood(i)
 call funin(.false., inpar, time, radex)
 } else {
 time = ttissu(i)
 meas = tissu(i)
 uncert = utissu(i)
 call funup(.false., uppar, time, model)
 }
 call rtof(time, var, 7, 1) # time
 call putlin(var, fdes)
 call rtoe(meas, var, 11, 3) # measured value
 call putlin(var, fdes)
 call rtoe(uncert, var, 11, 3) # uncertainty
 call putlin(var, fdes)
 call rtoe(model, var, 11, 3) # model value
 call putlin(var, fdes)
if (which == UPTAKEPAR) [
 call rtoe(inp, var, 11, 3)
 call putlin(var, fdes)
]

 call putch('®n', fdes)
]

if (fdes := STDOUT) [
 call close(fdes)
 call fprintf(STDOUT,"# Wrote data/fit list to file '%s'@n". filnam)
]

 return
end
real function fimpls(par, t)
real par(ARB), t

Impulse function for compartmental models
t = time of evaluation in terms of input function time, in sec.
This routine evaluates several different model input functions:
1 three compartments in a row e.g. (FDG)
2 three exponentials (bastard function for 3, below)
3 four compartments
4 two compartments, kl both ways
5 four compartments, kb held equal to ka

real ka6, k16, p0, p1, p2, a1, a2, a3, f1, f2, f3, time
include parcom

define (K1,par(1))
define (Fv,par(5))
define (KA,par(7))
define (KB,par(8))
define (Fe,par(9))
define (K2,par(2))
define (K3,par(3))
define (K4,par(4))

inline functions for case 3: numerator polynomials
anume(a) = ka6*(s**2 + (K2+K3+K4)*s + K2*K4)
anume12(s) = ka6*K1*(s + K3 + K4)

if (t < 0.) return(0.)
return 0 for t < 0

time = -t/60.
k16 = K1*(1.-Fv)/60.
a frequently needed number

select (upfun) [
 case 1:
 # par(1) = k1 (blood fdg <=> tissue fdg)
 # par(2) = k2
 # par(3) = k3 (tissue fdg <=> phosphorylated)
 # par(4) = k4
 # par(5) = Fv (vascular partial volume)

 if (time >= 0.) return(k16)
 beta1 = K2 + K3 + K4
 beta2 = beta1**2 - 4.*K2*K4
 if (beta2 <= 0.) [call fprint(STDERR,"Unable to solve roots") return(0.)]
 beta2 = sqrt(beta2)
 alpha1 = (beta1 - beta2)*.5
 alpha2 = (beta1 + beta2)*.5
 f1 = k16 * (K3+K4-alpha1)/beta2
 f2 = k16 - f1
 return((f1*exp(time*alpha1) + f2*exp(time*alpha2)))

 case 2:
 # par(1) = f1 coefficient for first exponential
 # par(2) = k1 rate constant for first exponential
 # par(3) = f2 (second exp)
 # par(4) = k2

 Wed 03 Aug 83 18:23:58
par(7) = f3 (third exp)
par(8) = k3
par(5) = Fv (vascular partial volume)

if (time == 0.)
 return(((par(1)+par(3)+par(7))*(1.-Fv))/60.)

case 3:
 case 5:
 # par(1) = k1 (extracellular space <=> tissue)
 # par(2) = k2
 # par(3) = k3 (tissue fdg <=> phosphorylated)
 # par(4) = k4
 # par(7) = ka (blood <=> extracellular space)
 # par(8) = kb (always equal to ka in model 5)
 # par(5) = Fv: vascular partial volume
 # par(9) = Fe: extracellular partial volume

 take care of time unit dependence of Ka: convert 1/min to 1/sec
 ka6 = KA / 60.
 if (time == 0.)
 return(ka6*Fe)
 time = -time

 if (upfun == 5) # model 5: ka and kb equal
 KB = KA
 p2 = KB+K1+K2+K3-K4
 p1 = (K1+K3)*(K3+K4)-K2*(KB+K4)
 p0 = KB*K2*K4
 call rt3(p2,p1,p0,a1,a2,a3,ierr)# find its roots
 if (ierr < 0) [# a's are already < 0
 call remark("***Unable to solve roots in fimpls")
 return(1.0e+10)
]
 if (ierr > 0)
 call remark("***Equal roots, hope that's ok")

 ea1 = exp(time*a1)
 ea2 = exp(time*a2)
 ea3 = exp(time*a3)

 Fc = 1. - Fv - Fe
 # cell volume
 f1 = (Fe*anume(a1)+Fc*anume12(a1))/(a1-a2)*(a1-a3))
 f2 = (Fe*anume(a2)+Fc*anume12(a2))/(a2-a1)*(a2-a3))
 f3 = (Fe*anume(a3)+Fc*anume12(a3))/(a3-a1)*(a3-a2))
 return(f1*ea1+f2*ea2+f3*ea3)

 case 4:
 # two comp, kl both directions
 if (time == 0.)
 return(k16)
 return(k16*exp(time*K1))

 default:
 call error("*** in fimpls, can't happen")

 end
finit — initialize parameter names and values

subroutine finit

this routine defines the names of the parameters and the maximum number # of parameters. Initialization must be done by assignment statements. # The routine is called whenever the input or uptake function is changed.

 include datcom
 include parcom
 include namcom

 minfun = 4
 mupfun = 5

 ninpar = 5
% innam(1) = 'al'
% innam(2) = 'ml'
% innam(3) = 'a2'
% innam(4) = 'm2'
% innam(5) = 'ti'
 innam(6) = 0
% upnam(5) = 'fv'
% upnam(6) = 't0'

 select (upfun) [
 case 1:
 nuppar = 6
 upnam(1) = 'k1'
% upnam(2) = 'k2'
% upnam(3) = 'k3'
% upnam(4) = 'k4'
 case 2:
 nuppar = 8
 upnam(1) = 'f1'
% upnam(2) = 'k1'
% upnam(3) = 'f2'
% upnam(4) = 'k2'
% upnam(5) = 'f3'
% upnam(6) = 'k3'
 case 3:
% case 5:
% nuppar = 9
% upnam(1) = 'k1'
% upnam(2) = 'k2'
% upnam(3) = 'k3'
% upnam(4) = 'k4'
% upnam(5) = 'ka'
% upnam(6) = 'kb'
% upnam(7) = 'k3'
 case 4:
% nuppar = 6
% upnam(1) = 'k1'
% upnam(2) = 'k2'
% upnam(3) = 'k3'
% upnam(4) = 'fe'
% default:
% call error("*** in finit, can't happen")
]
 return
end
funin — compute input function (& maybe derivatives)

subroutine funin (tderiv, par, t, y, tder, dy)
logical tderiv, tder(ARB)
real par(ARB), t, dy(ARB)
#
input function for fitting
choices are:
1 biexponential \(a_1 \exp(-m_1 T) + a_2 \exp(-m_2 T) \)
2 time biexponential \(a_1 T \exp(-m_1 T) + a_2 T \exp(-m_2 T) \)
3 gamma variate \(a_1 \frac{a_2}{T \exp(-m_2 T)} + a_2 \frac{m_2 T \exp(-m_2 T)}{T^2} \)
4 linear interpolation from input measurements
where \(T = (t-T_i)/60 \). This \(T_i \) shift does not affect model 4.
#
units: \(a_1, a_2 \) — units of the input measurements (cts/min/cc)
\(m_1, m_2 \) — 1/min
\(t, T_i \) — seconds
#
include parcom
include datcom
real time, tk, em1, em2
integer lo, hi, try
define (A1, 1)
define (M1, 2)
define (A2, 3)
define (M2, 4)
define (Ti, 5)

if (infun == 4) [
 # linear interpolation
 if (t < 0.)
 y = 0.
 else [
 lo = 1; hi = nblood
 while (lo < hi) [
 try = (lo + hi) / 2
 if (tblood(try) < t)
 lo = try + 1
 else
 hi = try - 1
]
 if (tblood(lo) > t)
 lo = lo - 1
 if (lo <= 0)
 lo = 1
 else if (lo >= nblood)
 lo = nblood - 1
 # we want to interpolate between (lo) and (lo-1) so
 # make sure lo points where it
 # should.
 y = blood(lo) - (t-tblood(lo)) * (blood(lo-1)-blood(lo)) / (tblood(lo-1)-tblood(lo))
 if (y < 0.)
 y = 0.
]
]
if (tderiv)
 do i = 1, ninpar
 if (tder(i))
 dy(i) = 0.
 return
]
funin.r

```r
funin.r

# other models:
# convert to minutes
# and handle t-ti < 0

time = (t-par(Ti)) / 60.
if (time < 0.) [  
y = 0.
if (tder)
    do i = 1, ninpar
        if (tder(i))
            dy(i) = 0.
return
]

if (infun == 1 | infun == 2) [  
    y = par(A1)*em1 + par(A2)*em2
    if (tder)
        if (tder(A1)) dy(A1) = em1
        if (tder(A2)) dy(A2) = em2
        if (tder(M1)) dy(M1) = -time*par(A1)*em1
        if (tder(M2)) dy(M2) = -time*par(A2)*em2
        if (tder(Ti)) dy(Ti) = (par(M1)*par(A1)*em1 + par(M2)*par(A2)*em2) / 60.
]

if (infun == 2) [  
y = y * time
if (tder)
    do i = 1, ninpar
        if (tder(i))
            dy(i) = dy(i) * time
        if (tder(Ti))
            dy(Ti) = dy(Ti) - (par(A1)*em1 + par(A2)*em2) / 60.
]

else [  
    y = par(A1)*time*em1 + par(A2)*time*em2
    if (tder)
        if (tder(A1)) dy(A1) = time*em1
        if (tder(A2)) dy(A2) = time*em2
        if (tder(M1)) dy(M1) = -par(A1)*time**3*em1
        if (tder(M2)) dy(M2) = -par(A2)*time**3*em2
        if (tder(Ti)) dy(Ti) = -((2.*par(M1)*time**2-1.)*par(A1)*em1 + (2.*par(M2)*time**2-1.)*par(A2)*em2) / 60.
]

return
end
```

Thu 30 Jun 83 16:43:33
funup - compute uptake (residue) function (& maybe derivatives)

subroutine funup (tderiv, par, t, y, tder, dy)
logical tderiv, tder(ARG)
real par(ARG), t, y, dy(ARG)

uptake function for fitting. Returns tissue activity level at time t according to parameters 'par' (and implicitly, the input function and its parameters). If tderiv is true, for every true tder(i) we return dy(i) = dy / dpar(i).

parameters:
par(1=4,7,8) = k1,k2,k3,k4 FDG rate constants
par(5) = f0 fractional blood volume
par(6) = t0 time shift between input and tissue blood

This routine uses actual blood measurements and times for convolution when possible (infun==4).

external real fimpls, con
real time(MAXDATA), f(MAXDATA,MAXFIT), b(MAXDATA), tlast
integer k
data tlast /1.0e+20/
include parcom
include datcom

if (t < tlast) [# start new run-through
 k = 0
 call funinf(.false., inpar, 0., b0)
]

k = k + 1
k = k + 1
k = k + 1
tlast = t # store current point # remember last seen

call funinf(.false., inpar, t-par(6), bhere)
f(k, 1) = fimpls(par, t) # add one more input # and impulse point

if (infun == 4)
 y = con(f(1,1),blood,time,tblood,t-par(6),
 fimpls(par,0.),b0,b0,0.,0.,k,nblood)
else [# need to see infun # need to see blood
 call funinf(.false., inpar, t,b(k))
y = con(f(1,1),b, time,time, t-par(6),
 fimpls(par,0.),b0,0.,0.,k)
]

y = y + par(5)*bhere

if (tderiv) [# need to see infun
 jder = 1
 do i = 1, nuppar
 if (tder(i)) [# need to see blood
 jder = jder + 1
 opar = par(i)
 if (i == 6) [
 h = abs(.01 * par(i)) + 1.0e-3
 par(6) = par(6) + h
 call funinf(.false., inpar, t-par(6), b1here)
]

 if (infun == 4)
y1 = con(f(1,1),blood, time,tblood,t-par(6),
 fimpls(par,0.),b0,0.,0.,k,nblood)
 else

 enddo
]
funup.r

```r
yl = con(f(1, b, time, time, t - par(6)),
           fimpls(par, 0.), b0, 0., 0., k, k)

  yl = yl + par(5) * b1here
]
else [
  h = abs(.005 * par(i)) + 1.0e-6
  par(i) = par(i) + h
  f(k, jder) = fimpls(par, t)

  if (infun == 4)
    yl = con(f(1, jder), blood, time, t, blood, t - par(6),
              fimpls(par, 0.), b0, 0., 0., k,wblood)
  else
    yl = con(f(1, jder), b, time, time, t - par(6),
              fimpls(par, 0.), b0, 0., 0., k, k)

  yl = yl + par(5) * bhere
]
par(i) = opar

dy(i) = (yl - y) / h
]
return
end
```
getbld — get time—activity—uncertainty data from .JOB format file

subroutine getbld (file, ndat, time, value, uncert, scale, true)
 character file(ARB)
 integer ndat
 real time(ARB), value(ARB), uncert(ARB), scale
 logical true

 # Reads activity vs. time from the (archived) blood file named 'file'
 # Sets number of values 'ndat' and fills arrays time (collection time
 # (in sec. after injection), value (counts/min/gm), uncert.
 # Function returns OK if successful, ERR if file was not found or
 # a read error was encountered. The the filename can be of the form
 # name, archivename'filename, archivename'subarchive'filename, etc.
 # Scale is a scale factor to apply to the data and uncertainties.

 ext_func integer aopen, agtlin, ctoi
 ext_func real ctor
 integer fd, size(2)
 character line(ARGMAX)

 define (HEADERLINES, 8) # blood file junk

 ndat = 0
 call fprint(STDERR, "([GETBLD] file = %s@n", file)
 if (aopen(file, fd, size) == ERR)
 call cant(file)
 for (i = 1; i <= HEADERLINES; i = i + 1) [# skip header
 if (agtlin(line, fd, size) == EOF)
 goto 100
 call remark(line)
]
 while (agtlin(line, fd, size) != EOF) [
 j = 1
 i = ctoi(line, j) # sample number
 t = ctor(line, j) # time
 x = ctor(line, j) # weight
 x = ctor(line, j) # counts/min
 v = ctor(line, j) # corrected counts/min/gm
 if (ndat >= 1)
 if (t < time(ndat)) # check for early junk at end
 break
 ndat = ndat + 1
 time(ndat) = t
 value(ndat) = v*scale
 uncert(ndat) = 1. # a kludge for now
]
 true = .false.
 call close(fd)
 return

 100 call sprint(line, "Error — bad format in blood file %s@n", file)
 call putlin(line, STDOUT)
 call error(line)
end
getcmd.r

getcmd - read commands

subroutine getcmd

 ext_func integer prompt, gettok, equal, setvar, index
 character line(ARGMAX), var(MAXNAME)
 real ctor
 real val
 string prstr ":
 include parcom

 call fprintf(STDERR, "[GETCMD] On")

 while(prompt(prstr, line, STDIN) != EOF) [
 # get instruction
 call fold(line)
 # force lower case

 j = index(line, '#')
 # clip comments
 if (j > 1)
 line(j) = EOS

 call fprintf(STDERR,"command = '%s'@n", line)

 j = 1
 if (gettok(var, line, j) == EOF)
 next
 # ignore empty lines

 call fprintf(STDERR,"var = '%s'@n", var)

 call skipbl(line, j)
 if (line(j) == '=') [
 # it is an assignment
 val = ctor(line, j)

 if (setvar(var, val) == ERR)
 # set it
 call fprintf(STDERR,"*Error - couldn't set %s@n", var)
 return

 else if (equal(var, "write") == YES)
 call dowrit(line, j)

 else if (equal(var, "fit") == YES)
 call dofit(line, j)

 else if (equal(var, "debug") == YES) [
 idebug = STDERR
 while (gettok(var, line, j) != EOF)
 if (equal(var, "verbose") == YES)
 idebug = -STDOUT
 else
 if (equal(var, "nodebug") == YES)
 idebug = 0
 else
 call fprintf(STDERR,"*Error - illegal command: %s@n", var)
]

 else if (equal(var, "nodebug") == YES)
 idebug = 0

 else
 call fprintf(STDERR,"*Error - illegal command: %s@n", var)
]

 end
getdat — read data as directed by command line arguments

subroutine getdat

```fortran
ext_func integer getarg, getepi, getbld, ctoi
ext_func real ctor
real scale
character arg(ARGMAX), file(MAXNAME)

include parcom
include datcom

scale = 1.
call strcpy("No file specified", file)

for (i = 1; getarg(i, arg, ARGMAX) != EOF; i = i + 1) [
call fold(arg)

if (arg(1) == '-')
  select (arg(2)) [
    case 's':
      j = 3
      scale = ctor(arg, j)
      if (scale <= 0.)
        call error("Bad scale factor")
    case 'i':
      j = 3
      breg = ctoi(arg, j)
      bscale = scale
      call strcpy(file, bfile)
      call getfun(bfile, breg, bscale, nblood, tblood, breg, btrue)
      scale = 1.
      call rtoe(bscale, arg, 1,4)
      call fprintf(STDOUT,
          "# Input: %s — %s (region %d) Scale = %s %d points@n",
              bfile, blabel, breg, arg, nblood)
    case 'u':
      j = 3
      treg = ctoi(arg, j)
      tscale = scale
      call strcpy(file, tfile)
      call getfun(tfile, treg, tscale, utissu, tfalse, treg, ttrue)
      scale = 1.
      call rtoe(tscale, arg,1,4)
      call fprintf(STDOUT,
          "# Tissue: %s — %s (region %d) Scale = %s %d points@n",
            tfile, tlabel, treg, arg, ntissu)
    default:
      call error("Unknown flag")
  ]
else
  call strcpy(arg, file)
]

return
```

Fri 05 Aug 83 17:47:18
getfun — read input or uptake function from blood file or epi file

subroutine getfun (file, region, scale, ndat, time, value, uncert, label, true)
character file(ARB), label(ARB)
integer region, ndat
real scale, time(ARB), value(ARB), uncert(ARB)
logical true

ext_func integer index
real t1(MAXDATA)

if (index(file, ".") <= 0)
 if (region > 0)
 call concat(file, "roi", file)
 else
 call concat(file, "blood", file)
 endif
else
 call fprintf(STDERR, "[GETFUN] file = %s\n", file)
endif

if (region <= 0) [
 call getbld(file, ndat, time, value, uncert, scale, true)
 call strcpy("Blood draws", label)
]
else
 call getroi(file, region, ndat, time, value, uncert, label, scale, true)
endif

return
end
getnam - get parameter name by type. Inverse of whopar.

subroutine getnam (var, kind, index)
character var(ARB)
integer kind, index

byte name(2)
integer iname
integer in, up, ns
integer mqnam(NQPAR)
equivalence (iname, name)

include namcom
include parcom
common /mqnam/ mqnam, in, up, ns

% iname = ???
if (index >= 1)
 select (kind) [
 case INPUTPAR:
 if (index <= ninpar)
 iname = innam(index)
 case UPTAKEPAR:
 if (index <= nuppar)
 iname = upnam(index)
 case MARQPAR:
 if (index <= NQPAR)
 iname = mqnam(index)
 case INPUTFUNCTION:
 iname = in
 case UPTAKEFUNCTION:
 iname = up
 case NSTEPS:
 iname = ns
]

var(1) = name(1)
var(2) = name(2)
var(3) = EOS

return
end
getroi - read time-activity-uncertainty data from .ROI format file

subroutine getroi (file, region, ndat, time, value, uncert, label, scale, true)
character file(ARB), label(ARB)
integer region, ndat
real time(ARB), value(ARB), uncert(ARB), scale
logical true

Set ndat, time, value, and uncert, label, true. If the file or the specified region does not exist we print an error message and exit.

character line(134)
filedes fdes
real t0, t1
ex_func integer datlin, aopen, pget
integer size(2)
call tinit
if (aopen(file, fdes, size) == ERR)
call cant(file)
if (datlin(line, fdes, size) == EOF)
call error("No data in ROI file")
if (pget("NTIMES", 'd', ndat) != YES)
call error("NTIMES not defined")
if (pget("NREGIONS", 'd', novI) != YES)
call error("NREGIONS not defined")
if (region < 1 | region > novI)
call error("Region out of range")
for (i = 1; i <= ndat; i = i + 1) {
 j = 1
t0 = ctor(line, j)
t1 = ctor(line, j)
time(i) = (t0+t1)/2.
 if (i < ndat)
call datlin(line, fdes, size)

for (i = 1; i < region; i = i + 1)
 for (j = 1; j <= ndat; j = j + 1)
 if (datlin(line, fdes, size) == EOF)
call error("Out of data in ROI file")
for (i = 1, i <= ndat; i = i + 1) {
 goto 1
 j = 1
 value(i) = ctor(line, j); uncert(i) = ctor(line, j)
 if (scale != 1.) {
 value(i) = value(i)*scale
 uncert(i) = uncert(i)*scale
 }
}
if (pget("LABEL", 's', label) == NO)
call strcpy("(No LABEL)", label)
true = .false. # true only if TRUE_UNCERT == 1
if (pget("TRUE_UNCERT", 'd', i) == YES)
true = i == 1
call close(fdes)
return
gettok — extract alphanumeric or punc. token from string

integer function gettok (tok, str, j)
character tok(ARB), str(ARB)
integer j

extracts a token from str starting at j. Skips blanks and
takes a string consisting of all alphanumeric or one punctuation
character.
Returns EOF when there no such tokens to find, OK otherwise.

ext_func integer type
function returns LETTER
or DIGIT or char.

while (str(j) == ' ' | str(j) == '@' | str(j) == 'n')
j = j + 1
if (str(j) == EOS) [
 return(EOF)
]

iout = 2
tok(1) = str(j)
j = j + 1

if (type(tok(1)) != tok(1))
 while (type(str(j)) != str(j)) [
 tok(iout) = str(j)
iout = iout + 1
 j = j + 1
]
tok(iout) = EOS
call fprint(STDERR,"[GETTOK] EOF@n")

return(OK)

end
init - initialize data variables, parameters, etc.

subroutine init

```fortran
integer now(9)
character dat(10), tim(9)
include datcom
include parcom

data init /1.0, 1.0, 1.0, .01, 0., 0./
data upper / .1, 0.1, 1.0, .001, .1, 0., 0., 0./

infun = 1
upfun = 1
nsteps = 1000

# initialize function stuff

call strcpy("No file specified", bfile)
call strcpy(bfile, tfile)
blabel(1) = EOS
tlabel(1) = EOS

nblood = 0
ntissu = 0
breg = 0
treg = 0
tscale = 1.
bscale = 1.

call errset(72, true, false.) # ignore floating overflow

call errset(73, true, false.) # zero divide

call errset(74, true, false.) # underflow

call errset(75, true, false.) # float to integer ofl.

call errset(84, true, false.) # sqrt(<0)

call getnow(now)
call fmtdat(dat, tim, now, LETTER)

call fprintf(STDOUT,"# %s %s @n", VERSION, det, tim)

return
end
```
SUBROUTINE MARQ (FUN, NPAR, PAR, DPAR, COV, NPARM, MAP,
NDAT, T, DAT, ERR,
NSTEP, CHIO, ISTEP, CHI, IERR, JERR, IDEBUG)

EXTERNAL FUN

INTEGER NPAR, NPARM, MAP(l), NDAT, NSTEP, ISTEP, IERR, JERR(1)
REAL PAR(l), DPAR(l), COV(l), T(l), DAT(l), ERR(l), CHIO, CHI

Subroutine MARQ finds the set of parameters of function
FUN which minimizes chi—squared for the set of measurements
provided. In the argugment descriptions below, [I] means
that the argument is an input (used by the subprogram), [O] means
that the argument is an output (set by the subprogram), [IO] means
that it is both used and set.

FUN [I] — Function and derivative routine supplied by user
SUBROUTINE FUN (TDERIV, PAR, TIME, Y, TDER, DY)
LOGICAL TDERIV, TDER(l)
REAL PAR(l), TIME, Y, DY(l)
TDERIV [I] — If .true., compute derivatives, if .false., do not return any derivatives in DY
PAR(l) [I] — Parameters of function
TIME [I] — Value of independent variable
Y [O] — Value of the function at TIME
TDER(l) [I] — Logical array: if TDER(i) then compute
DY(l) = dFUN/dPAR(i)
DY(l) [O] — Array of derivatives

NPAR [I] — Length of parameter array PAR
PAR(l) [O] — Parameter array
DPAR(l) [O] — Uncertainties of fit parameters (0 if not fit)
COV(l) [O] — Covariance matrix:
COV((I-1)*NPARM + J) = cov(par(i), par(j))
if par(i) and par(j) were fit, 0 otherwise

NPARM [I] — Number of parameters in PAR to fit
MAP(l) [I] — List (indices) of which parameters in PAR to fit

NDAT [I] — Length of data array
T(l) [I] — Values of the independent variable
DAT(l) [I] — Data array
ERR(l) [I] — Error array (uncertainties in DAT)

NSTEP [I] — Maximum number of steps to take
CHIO [G] — Initial chi—squared
ISTEP [O] — Number of steps taken
CHI [O] — Final chi—squared

IERR [O] — Error flag:
-1, Error in parameter setup
 1, Too many iterations
 0, No errors detected
 2, Failed to invert matrix while stepping
 3, Failed to invert matrix after convergence
 4, Fit interrupted by QUTT before convergence

JERR [O] — Parameter error flags:
-1, Parameter not fit
 0, Normal parameter fit
 1, Parameter insensitive
 2, Parameter correlated
C IDEBUG [I] - file descriptor for reporting debug information:
C <0 large amount of info on unit iabs(idebug)
C 0 no debugging information
C >0 iterations reported on unit idebug

MARQ will exit prematurely with exit status 4 if the
logical flag QUIT in common /QUIT/ is set true.

Variables internal to this routine:

A - Second derivative matrix in various forms:
 originally calculated in upper triangle,
 normalized into lower triangle,
 brought to upper triangle and inverted in place.
 This is the matrix 'B' in the Marquardt algorithm.
D - Step
G - Gradient. This is the vector 'E' in the Marquardt algorithm.
GS - Normalized gradient
JFLAG - Flags from SPDINV
 JFLAG = 0, Normal
 JFLAG = 1, Insensitive parameter
 JFLAG = 2, Correlated parameter
PARM - Mapped parameters
RTID - Normalization factors (square—root of inverse
 of diagonals of A)
TAR - Temporary parameters
TDER - Logical array indicating which derivatives
 to return
DEBUG,VERBOS - logical debug printing flags
TEST - used in debug printout; true if just had a bad step

PARAMETER maxp = 10 ! max # of parameters (See also MQDER)
PARAMETER mpsq = 100 ! and squared

DIMENSION JFLAG(maxp),COM(3)
DIMENSION PARM(maxp),G(maxp),GS(maxp),RTID(maxp),TAR(maxp)
DIMENSION D(maxp),/(mpsq)
LOGICAL TDER(maxp), debug, verbos, quit, test
COMMON/MARQ/TCON,ECON,ZLAM,VLAM,COZ,VCONST,EPS
COMMON/LST/LS(maxp)
common /quit/ quit
common /mdebug/ debug, verbos, idebug
DATA EPS/1.E-6/

C Convergence parameters
DATA TCON,ECON/1.E-5,1.E-4/
C Diagonal increment, factor to change it by,
C limiting cosine of angle from the gradient,
C factor to cut step size.
DATA ZLAM,VLAM,COZ,VCONST/0.1,13.,0.8,0.5/

SETUP

Check some input parameters.
IERR = -1
DEBUG = IDEBUG .NE. 0 ! flags for switching debug info
VERBOS = (DEBUG .LT. 0
LDEBUG = IABS(IDEBUG)
IF (NPARN.LT.1 .OR. NPARN.GT.MAXP .OR. NPARM.LT.1 .OR. NPARM.GT.NPAR) RETURN ; out of range

DO 12 I = 1,NPAR
 J = MAP(I)
 IF (J.LT.1 .OR. J.GT.NPAR) RETURN ; out of range
 IF (I.GT.1) THEN
 II = I - 1
 DO 10 JJ = 1,II
 IF (J.EQ.MAP(JJ)) RETURN ; duplicate
 10 CONTINUE
 ENDIF
12 CONTINUE

IERR = 0

C Setup virtual row origins
C (For a square matrix, because we will use both upper
C and lower triangles)
LS(1) = 0
DO 14 I = 2,NPAR
 LS(I) = LS(I-1) + NPAR
14 C Setup derivative flags for variable parameters.
 DO 16 I = 1,NPAR
 TDER(I) = .FALSE.
 DO 18 I = 1,NPARM
 J = MAP(I)
 TDER(I) = .TRUE.
18 C Map parameters and calculate initial chi-squared.
 CALL MQMAP (1,NPAR,PAR,NPARN,MAP,PARHM)
 CALL MQCHI (FUN,NPAR,PAR,NPARN,MAP,PARHM,
 NDAT,TDAT,ERR,CHI)
 CHIO = CHI
C.... DEBUG PRINTOUT
 IF (DEBUG) THEN
 CALL RTOE(CHI,A,11,3) ; use A as string scratch
 CALL FPRINT(LDEBUG,'Entering MARQ. Chi = %s\n', A)
 ENDIF
C Setup initial values for stepping.
XLAM = XLAM 'starting value of diagonal increment
ISTEP = 0 'initialize step number

C TOP OF STEPPING LOOP
C C Stay within step limit.
30 IF (ISTEP GE NSTEP) THEN
 IERR = 1
 RETURN
ENDIF
IF (PUT) THEN
 IERR = 4
 GOTO 81
ENDIF
ISTEP = ISTEP + 1
CONST = 1. !keep track of step cut factor

C Get gradient (G) and second derivative matrix (A);
second derivatives go to upper triangle.

CALL MQDFR (FUN,NPAR,FAR,NPARM,MAP,PARM,
NDAT,T,DAT,ERR,TDER,G,A)

C Calculate normalization factors.
DO 32 I = 1,NPARM
 LI = LS(I)
 RTID(I) = 0.
32 IF (A(I+LI) .GT. 0.) RTID(I) = 1 /SQRT(A(I+LI))

C Normalize gradient (G) and second derivative matrix (A);
normalized gradient goes to GS, and
normalized second derivatives go to lower triangle.

DO 34 J = 1,NPARM
 LJ = LS(J)
 GS(J) = G(J)*RTID(J)
34 DO 34 I = J,NPARM
 LI = LS(I)
 A(J+LI) = A(I+LI)*RTID(I)*RTID(J)

C Cut XLAM if not too small already.
IF (XLAM .GT. EPS) XLAM = XLAM/VLAM

C ADJUST DIAGONALS AND INVERT

C Put XLAM + 1. on the diagonal (same as adding XLAM; we've
normalized the diagonal to one, and bring the normalized matrix
to the upper triangle.

40 DO 42 J = 1,NPARM
 LJ = LS(J)
 IF (RTID(J) .GT. 0.) THEN
 A(J+LI) = XLAM + 1.
 ELSE
 A(J+LI) = XLAM
 ENDIF
42 DO 42 I = J,NPARM
 LI = LS(I)
 A(I+LI) = A(J+LI)

C Invert the matrix.
CALL SPDINV (A,NPARM,IFLAG,JFLAG)
IF (IFLAG .NE. 0) THEN
 IERR = 2
 RETURN
ENDIF

C Matrix multiply and unnormalize to get new parameters.

DO 50 I = 1,NPARM
 LI = LS(I)
 GO TO 50
D(I) = 0.
IF (JFLAG(I) .EQ. 0) THEN
 DO 52 J = 1,LI
 LJ = LS(J)
 D(I) = D(I) + A(I+U)'GS(J)
 IF (J .NE. NPARM) THEN
 JJ = I + 1
 DO 54 J = JJ,NPARM
 D(I) = D(I) + A(J+LI)'GS(J)
 ENDIF
 endif
 ENDIF
 D(I) = D(I)'RTID(I)
 TAR(I) = PARH(I) + D(I)
50 CONTINUE

C TEST STEP
C
C Test for a good step.
CALL MQCHI (FUN,NPAR,PAR,NPARM,MAP,TAR,
1 NDAT,T,DAT,ERR,TCHI)
IF (TCHI .LE. CHI) GO TO 70
TEST = .TRUE.
IF (VERBS) GOTO 73 ; go do debug printout first
C Not a good step; see if we're near the gradient.
51 COSINE = DOT(G,D,NPARM)/
1 SQRT(DOT(G,G,NPARM)*DOT(D,D,NPARM))
IF (COSINE .GT. COZ) GOTO 60
C Increase XLAM and try again.
XLAM = XLAM'VLAM
IF (QUIT) THEN
 IERR = 4
 GOTO 81
ENDIF
GOTO 40
C Bad step but right direction;
C reduce step size until chi-squared is ok.
60 CONST = CONST'VCONST
 DO 62 I = 1,NPARM
 D(I) = D(I)'VCONST
62 TAR(I) = PARM(I) + D(I)
 CALL MQCHI (FUN,NPAR,PAR,NPARM,MAP,TAR,
1 NDAT,T,DAT,ERR,TCHI)
 IF (TCHI .LE. CHI) GO TO 70
 IF (QUIT) THEN
 IERR = 4
 GOTO 81
 ENDIF
 GOTO 60
C Good step; update chi-squared and parameters.
70 TEST = .FALSE.
 CHI = TCHI
 DO 72 I = 1,NPARM
 PARM(I) = TAR(I)
72
C DEBUG PRINTOUT
C
IF (DEBUG) THEN ! sorry, this is sooooo grody
 CALL RT0E(CHI.COV,11,3) ! use COV as string scratch
 CALL FPRINT(LDEBUG,'@nIteration %d Chisqr = %s', ISTEP, COV)
 CALL RT0E(XLAM,C0V,11,3)
 CALL FPRINT(LDEBUG,' Lam = %s', COV)
 CALL RT0E(CONST,C0V,11,3)
 CALL FPRINT(LDEBUG,' Const = %s', COV)
DO 94 I = 1, NPARM
 CALL RT0E(PARM(I),COV,11,3)
 CALL FPRINT(LDEBUG,' Par %3d %s', I, COV)
 CALL RT0E(D(I), COV, 11, 3)
 CALL FPRINT(LDEBUG,' Const = %s', COV, JFLAG(I))
94 CONTINUE
IF (TEST) GOTO 51 ! we were just testing this set of params
ENDIF
C Test for convergence; if not, go take another step.

 DO 74 I = 1, NPARM
 IF (ABS(D(I))/(TCON+ABS(PARM(I))) .GT. ECON) GO TO 30
74 CONTINUE
C CONVERGENCE
C Put 1. on the diagonal, and
C bring the normalized matrix to the upper triangle.

 IF (DEBUG) CALL FPRINT(LDEBUG,'OnConvergence!!!@n')
 DO 80 J = 1, NPARM
 LJ = LS(J)
 IF (RTID(J) .GT. 0.) THEN
 A(J+LJ) = 1.
 ELSE
 A(J+LJ) = 0.
 ENDIF
 DO 80 I = J, NPARM
 LI = LS(I)
 A(I+LJ) = A(J+LI)
80
C Invert the matrix.

 CALL SPDINV (A,NPARM,IFLAG,JFLAG)
 IF (IFLAG .NE. 0) THEN
 IERR = 3
 RETURN
 ENDIF
C Unnormalize the inverted matrix (gives covariance matrix).

 DO 84 J = 1, NPARM
 LJ = LS(J)
 DO 84 I = J, NPARM
 A(I+LJ) = A(I+LI)*RTID(I)*RTID(J)
84
C Extract uncertainties, and symetrize
C covariance matrix to lower triangle.

 DO 86 J = 1, NPARM
LJ = LS(J)
D(J) = SQRT(A(J+LJ))

DO 86 I = J,NPAR
 LI = LS(I)
 A(J-LI) = A(I-LJ)
C Unmap parameters, errors, and covariance matrix.
CALL MQMAP (-1,NPAR,PAR,NPAR.MAP,PARM)
CALL MQMAP (-101,NPAR,DPAR,NPAR.MAP.D)
CALL MQMAP (-102,NPAR,C0V,NPAR.MAP,A)

C Set JERR equal to JFLAG when fit; set to -1 when not.
DO 88 I = 1,NPAR
 JERR(I) = -1
DO 89 I = 1,NPARM
 J = MAP(I)
 JERR(J) = JFLAG(I)
RETURN
END
SUBROUTINE MQCHI (FUN,NPAR,PAR,NPARM,MAP,PARM,NDAT,T,DAT,ERR,CHI)

EXTERNAL FUN
INTEGER NPAR, NPARM, MAP(1), NDAT
REAL PAR(1), PARM(1), T(1), DAT(1), ERR(1), CHI
BYTE VAL(40)
LOGICAL TDERIV
DATA TDERIV/.FALSE./
DATA BIG /1.0E+20/ ! upper limit on chi square
LOGICAL DEBUG, VERBOS, TEST
COMMON /HDEBUG/ DEBUG, VERBOS, LDEBUG

C Unmap parameters before calling FUN.
CALL MQMAP(-1,NPAR,PAR,NPARM,MAP,PARM)

IF (VERBOS) THEN
 CALL FPRINT(LDEBUG,[CHI] Params:@n)
 DO 1 K = 1, NPARM
 CALL RTOE(PARM(K),VAL,11,3)
 CALL FPRINT(LDEBUG, '%d) %s ', K, VAL)
 1 CONTINUE
 CALL FPRINT(LDEBUG,'@n')
ENDIF

C Calculate the chi-squared.
CHI= 0.
DO 10 K = 1,NDAT
 CALL FUN (TDERIV,PAR,T(K),Y)
 CHI = CHI + ((DAT(K)-Y)/ERR(K))**2
 IF (CHI .GE. BIG) GOTO 11
10 CONTINUE
11 CONTINUE

IF (VERBOS) THEN
 CALL RTOE(CHI, VAL, 11, 3)
 CALL FPRINT(LDEBUG, '>> Chi = %s@n', VAL)
ENDIF
RETURN
END
SUBROUTINE MQDER (FUN,NPAR,PAR,NPARM,MAP,PARM,
 1 NDAT,T,DAT,ERR,TDER,G,A)

EXTERNAL FUN
LOGICAL TDER(1)
INTEGER NPAR, NPARM, MAP(1), NDAT
REAL PAR(1), PARM(1), T(1), DAT(1), ERR(1), G(1), A(1)

PARAMETER maxp = 10 ! max # of parameters
REAL DY(maxp),DYM(maxp)
COMMON /LST/LS(1)
LOGICAL TDERIV, DEBUG, VERBOS
COMMON /MDERIV/ DEBUG, VERBOS, LDEBUG
DATA TDEERIV /.TRUE./

! clear gradient & deriv products
DO 11 J = 1,NPARM
 G(J) = 0.
 LJ = LS(J)
 DO 10 I = J,NPARM
 A(I+LJ) = 0.
 10 CONTINUE
11 CONTINUE

CALL MQMAP(-1,NPAR,PAR,NPARM,MAP,PARM) ! L'nmap the parameters before calling FN

C Calculate the gradient (G) and the second derivative matrix (A).

DO 23 K = 1,NDAT
 CALL FUN (TDERIV,PAR,T(K),Y,TDER,DY)
 ERSQI = 1./ERR(K)**2
 CALL MQMAP(1,NPAR,DY,NPARM,MAP,DYM) ! map derivatives
 DO 20 I = 1,NPARM
 G(I) = G(I) + DYM(I)*(DAT(K) - Y)*ERSQI
 20 CONTINUE

 DO 22 J = 1,NPARM
 LJ = LS(J)
 DO 21 I = J,NPARM
 A(I+LJ) = A(I+LJ) + DYM(I)*DYM(J)*ERSQI
 21 CONTINUE
22 CONTINUE

IF (VERBOS) THEN
 CALL RTOF(T, VAL, 6, 1)
 CALL FPRINT(LDEBUG,'Der> @t=%s', VAL)
 CALL RTOE(Y, VAL, 11, 3)
 CALL FPRINT(LDEBUG,' y=%s@n', VAL)
 DO 1 J = 1, NPARM
 CALL RTOE(DYM(J), VAL, 13, 3)
 CALL FPRINT(LDEBUG,'d%d=%s ',J, VAL)
 1 CONTINUE
 CALL FPRINT(LDEBUG,'@n')
ENDIF

23 CONTINUE
RETURN
END
C MQMAP — Map/Unmap parameter array or matrix

SUBROUTINE MQMAP (N,NPAR,X,NPARM,MAP,XM)

Map (or unmap if N<0) NPAR (of the NPAR) values of X into XM according to MAP.
MAP contains the indices to the unmapped array.
N indicates the dimension of the array (2 or less).
and legal values are 1, 2, -1, -2, -101, -102.
Negative values of N indicate unmapping, and for those less than -100, X is zeroed before the transfer.

INTEGER N, NPAR, NPARM, MAP(1)
REAL X(1), XM(1)
LOGICAL ZERO

NABS = IABS(N)
ZERO = NABS .GT. 100
IF (ZERO) NABS = NABS - 100
IF (N .GT. 0) GO TO (10, 20) NABS
IF (N .LT. 0) GO TO (110,120) NABS
RETURN

10 DO 12 IM = 1,NPARM
 I = MAP(IM)
 XM(IM) = X(I)
12 RETURN

20 IJM = 0
DO 22 JM = 1,NPARM
 J = NPAR*(MAP(JM)-1)
 DO 22 IM = 1,NPARM
 IJM = IJM + 1
 IJ = J + MAP(IM)
 XM(IJM) = X(IJ)
22 CONTINUE
RETURN

110 IF (ZERO) THEN
 DO 112 I = 1,NPAR
5 X(I) = 0.
112 ENDFI

114 DO 116 IM = 1,NPARM
 I = MAP(IM)
116 X(I) = XM(IM)
RETURN

120 IF (ZERO) THEN
 NPSQ = NPAR**2
 DO 122 I = 1,NPSQ
5 X(I) = 0.
122 ENDFI

124 IJM = 0
DO 126 JM = 1,NPARM
 J = NPAR*(MAP(JM)-1)
 DO 126 IM = 1,NPARM
 IJM = IJM + 1
 U = J + MAP(IM)
 X(U) = XM(IJM)
126 CONTINUE
RETURN
END
penter — enter definition into symbol table
subroutine penter (name, par)
character name(ARB), par(ARB)
#
enters definition 'par' of parameter 'name'.

pointer point
integer info(T_SIZE)
est_func pointer sdupl
est_func integer lookup, enter
ext_subr strcpy, dsfree, error
include tablecom

if (lookup(name, info, table) == YES) [# there's an old definition
 call dsfree(info(T_POINTER)) # so free its string space
]

point = sdupl(par) # enter defn into data storage
if (point == LAMBDA)
 call error("Couldn't allocate string space for parameter")

info(T_POINTER) = point # this is the stuff to store
if (enter(name, info, table) == ERR)
 call error("Couldn't add definition to table")

? call fprintf(STDERR, "[PENTER] '%s' '%s'\n", name, par)
end

return
pflag - print strings for flags MARQ returns

subroutine pflag (fdes, flag)
 integer fdes, flag

 # prints a character string on fdes

 select(flag) [
 case -1:
 call putlin(" (not fit)", fdes)
 # nothing - fit ok
 case 0:
 call putlin(" insensitive", fdes)
 case 1:
 call putlin(" correlated", fdes)
 default:
 call putlin(" ??? flag ???", fdes)
 # unknown flag
]

end return
pget - get ROI symbol definition in desired format

integer function pget(name, fmt, par)
character name(ARB), fmt
integer par(2)
#
fetches parameter 'name' into 'par' interpreted in format 'fmt':
's' = string, 'd' = decimal integer, 'o' = octal integer, 'f' =
floating point (single precision).
If the parameter was defined, returns YES. If not, doesn't alter par
and returns NO.

character cmem(1)
extr_func integer lookup, ctoi
extr_func real ctor
extr_subr strcpy
integer info(T_SIZE)
real rpar
integer ipar(J)
equivalence (rpar, ipar(1)) # union {real, integer(2)}
include tablecom
common /cdsmem/ cmem

? call fprintf(STDERR, "[PGET] '%s' \"%c", name, fmt)

if (lookup(name, info, table) != YES) # well, that's that.
? call fprintf(STDERR, " *®n")
? return(NO)

j = cvt_to_cptr(info(T_POINTER)) # convert integer array index to
character array index

? call fprintf(STDERR, " = '%s'®n", cmem(j))

select (fmt) [
 case 's': # s: copy string
 call strcpy(cmem(j), par)

 case 'd': # d: decode as integer
 par(1) = ctoi(cmem, j)

 case 'r': # r: decode as real
 rpar = ctor(cmem, j)
 par(1) = ipar(1)
 par(2) = ipar(2)

 case 'o': # o: decode as octal
 par(1) = 0
 while (cmem(j) >= '0' & cmem(j) <= '7') [
 par(1) = par(1)*8 + cmem(j)-'0'
 j = j + 1
]

 default: # PGET with undefined format
 call error("PGET with undefined format")
]

return(YES)
end
rt3 — find roots of cubic polynomial with three real roots.

```fortran
subroutine rt3 (p, q, r, alpha, beta, gamma, ierr)
real p, q, r, alpha, beta, gamma
integer ierr
!
# Finds the 3 real roots of the cubic equation:
# y**3 + p y**2 + Q y + R = 0 .
# The roots are returned in alpha, beta, and gamma.
# If three real unequal roots exist, ierr=0 is returned;
# if three real roots exist, at least two of which are
# equal, ierr=1 is returned; otherwise ierr=-1 is returned,
# and alpha, beta, and gamma are meaningless.
!
real real3 = (-2.*p**3 - 9.*p*q + 27.*r) / 54.
sqimag = -(4.*p**3*r - (p*q)**2 - 18.*p*q*r + 4.*q**3 + 27.*r**2)/108.

if (sqimag < 0.) [
    ierr = -1
    return
]

if (sqimag == 0.)
    ierr = 1
else
    ierr = 0

theta3 = atan2(sqrt(sqimag), real3) / 3.
abs3 = (real3**2 + sqimag)**(1./6.)

real3 = abs3 * cos(theta3)
aimag3 = abs3 * sin(theta3)
sqrt3 = sqrt(3.)

alpha = 2.*real3 - p/3.
beta = - real3 - sqrt3*aimag3 - p/3.
gamma = - real3 + sqrt3*aimag3 - p/3.

return
end
```


setmap — determine which parameters to fit

subroutine setmap (line, map, nparm, which)
character line(ARB)
integer map(ARB), nparm, which

line() is a list of parameters to fit. It is picked apart into a list (map) of parameters to fit.

ext_func integer type, gettok, equal
character var(MAXNAME)
integer set, i, ind
logical dupe

nparm = 0
idebug = 0
j = 1

while (gettok(var, line, j) != EOF) [
 if (equal(var, ",") == YES)
 next

 call whopar(var, set, ind)
 call fprintf(STDERR,"* parameter set ind %s %d %d\n", var, set, ind)

 if (set == UNKNOWN) [
 call fprintf(STDERR,"Unknown parameter %s\n", var)
 nparm = 0
 return
]

 if (set != INPUTPAR & set != UPTAKEPAR) [
 call fprintf(STDERR,"Can only fit input or uptake parameters\n")
 return
]

 if (nparm == 0)
 which = set
 else [
 if (set != which) [
 call fprintf(STDERR,"Can’t mix in/up params in one fit\n")
 nparm = 0
 return
]

 dupe = .false.
 do i = 1, nparm
 if (map(i) == ind) [
 call fprintf(STDERR,"%s duplicated in parameter list\n")
 dupe = .true.
]
]
]

 if (! dupe) [
 nparm = nparm + 1
 map(nparm) = ind
]

 call skipbl(line, j)
]

return

end
setvar.r

setvar - set parameter by name

integer function setvar (var, val)
character var(ARB)
real val

 real qpar(l)
 ext_func integer index
 integer kind, status

 include parcom
 common /marq/ qpar

 status = OK

 call whopar(var, kind, index)
 call fprintf(STDERR,"[SETVAR] %s = %d %d@n", var, kind, index)

 select (kind)[
 case INPUTPAR:
 inpar(index) = val
 case UPTAKEPAR:
 uppar(index) = val
 case MARQPAR:
 qpar(index) = val
 case [INPUTFUNCTION:
 i = int(val)
 if (i < 1 | i > minfun)
 call fprintf(STDERR,"Bad input function number %d@n",i)
 else[
 infun = i
 call finit
]
 case UPTAKEFUNCTION:
 i = int(val)
 if (i < 1 | i > mupfun)
 call fprintf(STDERR,"Bad uptake function number %d@n",i)
 else[
 uf = i
 call finit
]
 case NSTEPS:
 nsteps = int(val)
 default:
 status = ERR
]

 return(status)
end
shocov – print covariance matrix

subroutine shocov(cov, npar, which)

real cov(ARB)

integer npar, which

prints covariance matrix and correlations for the parameters. We print covariances in upper triangle and correlations in the lower triangle.

version 2: only prints correlations (lower triangle).

character var(MAXNAME)

define (COV,cov((S1-1)*npar+S2))

call fprintf(STDOUT, "\nCorrelation Matrix: \n")

do i = 1, npar

 call getnam(var, which, i)
 call fprintf(STDOUT, " %s \n", var)

call putch("\n", STDOUT)

do i = 2, npar

 call getnam(var, which, i)
 call fprintf(STDOUT, " %s \", var)

 for (j = 1; j < i; j = j + 1) [
 cor = COV(i,i)*COV(j,j)
 if (cor > 0.)
 cor = COV(i,j)/sqrt(cor)
 else
 cor = 0.
 call rtof(cor, var, 7, 3)
 call fprintf(STDOUT, " %s \n", var)
]

 for (; j <= npar; j = j - 1) [
 call rtoe(COV(i,j), var, 11, 3)
 call putch(var, STDOUT)
]

call putch("\n", STDOUT)

end

return
shopar — print parameters on file

subroutine shopar(fdes, dounc, uncert, doflag, flags)
integer fdes, dounc, doflag, flags(ARB)
real uncert(ARL)

shopar prints the input and uptake function numbers and
parameters on 'fdes'. If dounc is INPUTPAR or UPTAKEPAR
we print uncertainties next to the appropriate parameters.
Likewise, we print the flag labels next to
the parameters if doflag = INPUTPAR or UPTAKEPAR:
for param(i), we print
(not fit) if flags(i) = -1
correlated 1
insensitive 2

call fprint(fdes, "Input_function %d", infun)
 do i = 1, ninpar [
 call getnam(name, INPUTPAR, i)
 call rtoe(inpar(i), val, 11, 4)
 call fprint(fdes,"%s = %s", name, val)
 if (dounc == INPUTPAR) [
 call rtoe(uncert(i), val, 11, 4)
 call fprint(fdes, " H— %s", val)
]
 if (doflag == INPUTPAR)
 call pflag(fdes, flags(i))
 call putch("No", fdes)
]

 call fprint(fdes, "Uptake_function %d", upfun)
 do i = 1, nuppar [
 call getnam(name, UPTAKEPAR, i)
 call rtoe(uppar(i), val, 11, 4)
 call fprint(fdes,"%s = %s", name, val)
 if (dounc == UPTAKEPAR) [
 call rtoe(uncert(i), val, 11, 4)
 call fprint(fdes, " H— %s", val)
]
 if (doflag == UPTAKEPAR)
 call pflag(fdes, flags(i))
 call putch("On", fdes)
]

 return
end
C SPDINV - Invert Symmetric PosDev Matrix.

SUBROUTINE SPDINV(S,N,IFLAG,JFLAG)
C
C INVERTS SYMMETRIC POSITIVE-DEFINITE MATRIX "S" IN PLACE
C USING ONLY THE UPPER TRIANGLE.USER PROVIDES ARRAY "LS"
C OF POINTERS TO THE VIRTUAL ROW ORIGINS OF "S".
C
C S (I + LS(J)) IS THE (IJ) ELEMENT OF THE MATRIX
C FOR I .LE. J .LE. N , J .LE. I .LE. N

DIMENSION S(1),JFLAG(1)
COMMON/LST/LS(l)
DOUBLE PRECISION SA,SB
DATA EPS1,EPS2/1.E-35,1.E-6/

DO 10 I = 1,N
 LI = LS(I)
 IF(LI+I .LT. EPS1) GO TO 14
 IF(I .EQ. 1) GO TO 11
 TEMP = S(LI+I)
 KK = I - 1
 DO 12 K = 1,KK
 LK = LS(K)
 12 S(LI+I) = Z(LI+I) - S(LK+I)**2
 IF(S(LI+I) .LT. EPS2*TEMP) GO TO 15
 JFLAG(I) = 0
 SA = S(LI-I)
 SB = DSQRT(SA)
 S(LI-I) = SB
 IF(I .EQ. N) GO TO 10
 JJ = I + 1
 DO 13 J = JJ,N
 IF(I .EQ. 1) GO TO 13
 DO 50 K = 1,KK
 LK = LS(K)
 50 S(LI+J) = S(LI-J) - S(LK+I)*S(LK-J)
 13 S(LI-J) = S(LI-J)/S(LI+I)
 GO TO 10
 JFLAG(I) = 1
 GO TO 18
 JFLAG(I) = 2
 IF(S(LI+I) .LT. -EPS2*TEMP) GO TO 100
 DO 18 J = 1,I
 LJ = LS(J)
 18 S(LI+I) = 0.
 DO 19 J = I,N
 S(LI+J) = 0.
 19 S(LI-I) = 1.
 10 CONTINUE
 DO 20 I = 1,N
 LI = LS(I)
 S(LI-I) = 1./S(LI-I)
 IF(I .EQ. N) GO TO 20
 JJ = I + 1
 20 J = JJ,N
LI = LS(I)
S(LI+J) = S(LI+J) * S(LI+I)
IF(J .EQ. J) GO TO 21
KK = J - 1
DO 52 K = JJ, KK
 LK = LS(K)
52
 S(LI+J) = -S(LI+J) / S(LJ+J)
21
CONTINUE
DO 30 I = 1, N
 LI = LS(I)
 DO 30 J = I, N
 LJ = LS(J)
 IF(J .EQ. N) GO TO 30
 KK = J + 1
 DO 54 K = KK, N
54
CONTINUE
IFLAG = 0
RETURN
100 IFLAG = 1
RETURN
END
tinit – initialize ROI symbol table

subroutine tinit

 ext_func integer mktabl
 DS_DECL(mem,TABLESIZE)
 include tablecom

 call dsinit(TABLESIZE)
 table = mktabl(T_SIZE)
 if (table == LAMBDA)
 call error("Can't create parameter table")

 call fprint(STDERR, "[TINIT] Size = %d\n", TABLESIZE)

end
whopar — find out what kind of parameter the named variable is

```fortran
subroutine whopar (var, kind, index)
character var(ARB)
integer kind, index

define(NQPAR,7)
byte name(2)
integer iname
integer in, up, ns
integer mqnam(NQPAR)
equivalence (iname, name)

include namcom
include parcom
common /mqnam/ mqnam, in, up, ns

% data mqnam/ ’tc’, ’ec’, ’zl’, ’vl’, ’co’, ’vc’, ’ep’/
% data in, up, ns /’in’, ’up’, ’ns’/

name(1) = var(1)
name(2) = var(2)

? call fprint(STDERR, "[WHOPAR] ’%c’ ’%c’@n’, name(1), name(2))

  do i = 1, ninpar 
    if (iname == innam(i)) [ 
      kind = INPUTPAR
      index = i
      return 
    ] 
  ]

  do i = 1, nuppar 
    if (iname == upnam(i)) [ 
      kind = UPTAKEPAR
      index = i
      return 
    ] 
  ]

  do i = 1, NQPAR 
    if (iname == mqnam(i)) [ 
      kind = MARQPAR
      index = i
      return 
    ]
  ]

  if (iname == in)
    kind = INPUTFUNCTION
  else if (iname == up)
    kind = UPTAKEFUNCTION
  else if (iname == ns)
    kind = NSTEPS
  else
    kind = UNKNOWN

return
end
```
Appendix B. Format of ROI and Blood Data Files

B 1. Region of Interest (ROI), "c Format

Data reduced from PET images consist of several activity-per-volume-element vs. time sets. This section describes a file format to represent these data with adequate internal documentation, allowing for easy extension of the types of included data.

A ROI file consists of the following parts:

1. header comments (2 or more lines)
2. sample times
3. activity values (1 or more sets)

Comment lines begin with $, and may appear anywhere in the file. Blank lines may appear anywhere; they are ignored.

B.1.1. Header comments

Comment lines with % as the first nonblank character after # are parameter definitions, and have the following format:

%PARAMETER_NAME" parameter_value

The parameter name consists of one or more printing characters enclosed between %'s. The parameter value (string representation) starts with the first nonblank character after the closing % and continues to the end of the line. Thus

%LABEL% My Dog Has Fleas
%ITEM%
%DIGIT% 5
this is a comment

defines three parameters, LABEL="My Dog Has Fleas", ITEM="" (empty string), and DIGIT="5".

Parameters may be redefined anywhere in the file. The definition of a parameter may thus depend on how far one has read into the file. The only parameters which may be sensibly redefined are LABEL and NPIXELS. Definition of NREGIONS and NTIMES is mandatory. The basic set of parameters for the ROI files are:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>BED</td>
<td>bed position in mm</td>
<td>450</td>
</tr>
<tr>
<td>BOI</td>
<td>time of injection</td>
<td>14:43:12</td>
</tr>
<tr>
<td>COMPOUND</td>
<td>compound injected</td>
<td>Palmitate</td>
</tr>
<tr>
<td>DATE</td>
<td>date of study</td>
<td>21-Aug-82</td>
</tr>
<tr>
<td>H GAP</td>
<td>ring half-gap in cm</td>
<td>1.</td>
</tr>
<tr>
<td>HLIFE</td>
<td>half life of isotope in seconds</td>
<td>1230.</td>
</tr>
<tr>
<td>ISOTOPE</td>
<td>labeling isotope in XXnn format</td>
<td>C11</td>
</tr>
<tr>
<td>LABEL</td>
<td>description of region</td>
<td>Left ventricle</td>
</tr>
<tr>
<td>NPIXELS</td>
<td>number of pixels in region</td>
<td>234</td>
</tr>
<tr>
<td>NREGIONS</td>
<td>number of regions of interest</td>
<td>2</td>
</tr>
<tr>
<td>NTIMES</td>
<td>number of time points</td>
<td>45</td>
</tr>
<tr>
<td>ORGAN</td>
<td>organ counted/imaged</td>
<td>Heart</td>
</tr>
<tr>
<td>OVDATE</td>
<td>date overlay file was created</td>
<td>22-Aug-82</td>
</tr>
<tr>
<td>OVLABEL</td>
<td>overlay file label</td>
<td>Spot Heart Overlays</td>
</tr>
<tr>
<td>OVTIME</td>
<td>time overlay file was created</td>
<td>10:12:01</td>
</tr>
<tr>
<td>PWID</td>
<td>pixel width in proj. bins</td>
<td>2</td>
</tr>
<tr>
<td>SPECIES</td>
<td>subject species</td>
<td>Dog</td>
</tr>
<tr>
<td>STUDY</td>
<td>experiment title</td>
<td>PA #2, +drug, Sn spheres</td>
</tr>
<tr>
<td>SUBJECT</td>
<td>subject's name</td>
<td>Spot</td>
</tr>
<tr>
<td>XCENT</td>
<td>image horizontal offset</td>
<td>2</td>
</tr>
<tr>
<td>YCENT</td>
<td>image vertical offset</td>
<td>0</td>
</tr>
</tbody>
</table>
B.1.2. Sample Times

There are NTIMES samples represented in a ROI file. The sample time list gives the start and stop times in seconds of each sample counted. The times are in floating point format, one start/stop pair per line, separated by white space.

B.1.3. Activity Data

N'REGIONS sets of NTIMES data lines each follow the sample times. These lines contain two numbers each: activity in counts/volume/sec at the corresponding sample time, and the uncertainty in the measurement. Before each set of activities there will be at least one comment line describing the data. The parameters LABEL, NPIXELS and UNITS would be useful to set as well.

B.1.4. Sample ROI file

ROI file with 2 overlays of 4 files each
%DATE5S 21-Aug-82
%BO1% 14:43:12
%HLIFE% 76.
%ISOTOP% Rb82
%COMPOUND% Rb-82
%SPECIES% Dog
%SUBJECT% Spot
%ORGAN% Heart
%STUDY% Rb #3
%BED% 450
%HAP% 1.
%OVLABEL% Spot Heart Overlays
%OVTIME% 10:12:01
%OVDATE% 22-Aug-82
%PW1D% .2
%XCENT% 2
%YCENT% 0
%NTIMES% 5
%NREGIONS% 2

Times:
start stop
0. 5.
5. 10.
10. 15.
15. 20.

Overlay 1
%NPIXELS% 1033
%LABEL% Left Ventricle
%UNITS% Cts/pix/sec
1.4032E-03 5.4543E-02
3.0123E-02 6.3432E-02
4.4343E-01 9.3432E-02
1.3432E-02 7.2353E-03

Overlay 2
%NPIXELS% 194
%LABEL% Myocardium
1.5432E-03 2.3423E-04
3.1938E-01 3.5234E-02
4.1945E+00 1.2345E-02
3.5343E+00 1.3433E-02
3.2. Blood File Format

The blood data format has a long, sad history. The only relevant parts for this program are:

1. Eight lines of text at the top, to be ignored.
2. Variable number of data lines after header, with five fields: sample number, draw time (seconds after injection), weight (gm), counts/min, counts/min/gm. The second and fifth fields are the data we use in fit.

There are often spurious entries at the end of the file with odd times; therefore, we read data lines until we find a time earlier than the one last read, or end-of-file.

B.3. Archiving Convention

The ROI and blood files are stored in Software Tools ar archive files, in a hierarchical scheme. The outer file is given the subject's last name, with extension "a". This file is an archive of study archive files, given names such as "rb1", "fdg2", and "water2", which denote the several studies for a given subject. The study archives contain data files with standardized names:

- roi ROI data from PET analysis
- blood Blood draw data (if any)
- comments any useful information about the particular study

For example, if patient Wilson had two Rubidium-82 studies and one FDG study with blood draws, the file structure would be:

wilson.a
 rb1
 roi
 comments
 rb2
 roi
 comments
 fdg
 roi
 blood
 comments

There are several programs and command files to manipulate these archives; see appendix D.
Appendix C. Software Tools Library

The table below lists library routines used by the fitting program. The routines are from the Software Tools Portable Library, except those marked * (local additions to Ratfo: Library) and † (RSX-11 M Fortran Library).

integer function agtlin
- get next line from an archive module

filedes function aopen
- open archive module for reading

subroutine cant
- print “Can’t open” message and terminate execution

subroutine close
- close (detach) a file

subroutine concat
- concatenate 2 strings together

integer function ctoi
- convert string at in(i) to integer, increment i

real function ctor
- convert string at in(i) to real, increment i

subroutine dsfree
- free a block of dynamic storage

subroutine dsinit
- initialize dynamic storage space

integer function enter
- place symbol in symbol table

integer function equal
- compare str1 to str2; return YES if equal

subroutine error
- print single-line message and terminate execution

subroutine errset
- control printing of error messages

subroutine fmtdat
- convert date information to character string

subroutine fold
- convert string to lower case

subroutine fprintf
- formatted output conversion to file

integer function getarg
- get command line arguments

subroutine getarg
- get command line arguments

subroutine getnow
- determine current date and time

integer function index
find character c in string str

integer function isatty
 determine if file is an interactive device

integer function length
 compute length of string

integer function lookup
 retrieve information from a symbol table

integer function nrktabl
 make a symbol table

filedes function open
 open an existing file

subroutine penter
 place symbol in symbol table

integer function prompt
 get next line from file, prompting if a terminal

subroutine putch
 write character to file

subroutine putlin
 output a line onto a given file

subroutine query
 print command usage information on request

subroutine remark
 print single-line message

subroutine rtoe*
subroutine rtof*
 convert real to character string

pointer function sdupl
 duplicate a string in dynamic storage

subroutine skipbl
 skip blanks and tabs at str(i)

subroutine sprint*
 formatted output conversion to string

subroutine strcpy
 copy string at "from" to "to"

integer function type
 determine type of character
NAME
Fit — fit compartment models to ROI data

SYNOPSIS
fit [file] [-sfactor] [-i[n]] [file] [-sfactor] [-u[n]]

DESCRIPTION
Fit reads region-of-interest data from ROI-format files and can fit compartmental models to them. It generates two forms of output: a commentary on fitting progress and results, and a table of input data and model values. This latter can be used to plot the results of fitting, and for simulation purposes.

COMMAND LINE ARGUMENTS specify the source and treatment of input and residue function data.

file
Specifies a file from which the next region(s) are to be read. The file may be changed between regions. The file may be a subfile in an archive; the file's...file... format of acat(1) is accepted. If there is no period in the filename (that is, no extension), a subfile name ('roi or 'blood) is appended to the name when the region number is specified.

-sfactor
Specifies a scale factor by which the next region data and uncertainties are multiplied. 'Factor' is a number in floating point or exponential notation. A scale factor is applied only to the next region read with the -i or -u flag.

-i[n]
-u[n]
These direct fit to read input (-i) or uptake (-u) data from the last specified file. If the region number n is omitted or zero, data are assumed to be in the format of the .JOB file produced from well counter data by CTDSON. If the region number is a positive integer, the data are assumed to be in ROI format. If current filename does not contain a period (.) a subfile is appended to the specified filename: 'roi if there is a region number or 'blood if the region number is missing or 0. Examples:
 fit dog'fdgl -i -u
 fit [15,1]human.job -s6.26e-6 -i [100,6]human.roi -u3

COMMANDS are read from the standard input and direct fit to set parameters, fit to models, and report the results. A commentary is produced on the standard output, describing the input data, commands, and results. This documentation may be collected by redirecting fit's output to a file.

If the standard input is a terminal, fit prompts with a colon (:). The commands are:

debug [verbose|cff]
Controls fit's comments on the progress of fitting. If the command 'debug' is given, chi-square and the current parameters are reported to the standard error output at the end of each iteration. If the 'debug verbose' command is given, further information is printed. This mode is generally useful only for debugging fit. The 'debug off' command suppresses debug output.

\textbf{name=value}

Sets the parameter named 'name' to 'value' expressed in floating point or exponential notation. The parameters select the input and uptake models, their rate constants, and control the behavior of the Marquardt fitting algorithm. Names may be abbreviated to two letters. The names are:

\textbf{infun}

selects input function model:

1. $a_1 \exp(-m_1 T) + a_2 \exp(-m_2 T)$
2. $a_1 T \exp(-m_1 T) + a_2 T \exp(-m_2 T)$
3. $a_1 T \exp(-m_1 T^2) + a_2 T \exp(-m_2 T^2)$
4. linear interpolation of input data

where $T = (t - t_i)$.

\textbf{al, a2, ml, m2, ti}

input function model parameters. T_i does NOT affect the linear interpolation input model.

\textbf{upfun}

selects uptake function model. All are of form

$Up(t) = f v \text{In}(t') + (1-f v) \text{Imp}(t')$, $t' = t - t_0$

where Up = uptake model, In = input model, Imp = impulse response, and $*$ denotes convolution.

The impulse responses are selected by upfun for the following models:

1. $\text{blood} \xrightarrow{} \text{tissue} \xrightarrow{} \text{tissue}$
 $\xrightarrow{} k_1 \xrightarrow{} k_3 \xrightarrow{}$ \\
 $\text{blood} \xrightarrow{} \text{tissue} \xrightarrow{} \text{tissue} \xrightarrow{} \text{tissue}$
 $\xrightarrow{} k_2 \xrightarrow{} k_4 \xrightarrow{}$

2. same model as 3 but parameters are those of its triexponential impulse response:

 $f_1 \exp(-k_1 t) + f_2 \exp(-k_2 t) + f_3 \exp(-k_3 t)$

3. $\text{blood} \xrightarrow{} \text{tissue} \xrightarrow{} \text{tissue} \xrightarrow{} \text{tissue}$
 $\xrightarrow{} k_a \xrightarrow{} k_1 \xrightarrow{} k_3 \xrightarrow{}$

 $\text{blood} \xrightarrow{} \text{tissue} \xrightarrow{} \text{tissue} \xrightarrow{} \text{tissue}$
 $\xrightarrow{} k_b \xrightarrow{} k_2 \xrightarrow{} k_4 \xrightarrow{}$

\textbf{tcon, econ}

fit convergence parameters. When an iteration ends with
abs(step)/[abs(parameter) + tcon] <= econ for each parameter, the fitting algorithm terminates. Default values: 1.E-5, 1.E-4.

\textit{zlam, vlam, eps}

Marquardt diagonal lambda control. Lambda is initially set to \textit{zlam}. It is changed by multiplying or dividing by \textit{vlam} but it not permitted to become smaller than \textit{eps}. Default values: 0.1, 10, 1.E-6.

\textit{coz}

limit of cosine of angle between gradient and Gauss-Newton vectors. When the angle exceeds arccos(\textit{coz}), lambda is increased. Default: 0.8

\textit{vconst}

factor by which stepsize is cut when gradient/Gauss angle is ok (cosine >= coz) but chi-square was not reduced. Default: .5

\textit{nsteps}

maximum number of iterations allowed in fitting attempts. If the number of iterations exceeds \textit{nsteps}, the fit is abandoned and a message is printed to the effect that a minimum was not found. This is not a fatal error.

\textit{fit list}

specifies the names of parameters to fit, separated by commas. The list may contain all input or all uptake parameters. Input function parameters are varied to minimize the errors between the selected input function model and the input data read by the \textit{–i} flag. Uptake function parameters are varied to minimize the errors between the selected uptake function model and the uptake data read by the \textit{–u} flag, using the selected input function model and its current parameters.

During the fitting process, typing a \texttt{<CONTROL-C>} at the terminal keyboard will interrupt the fit at the current iteration. This works whether or not the standard input has been redirected. A note is printed on the output to the effect that fitting was interrupted before convergence.

The input and uptake function numbers and parameters are printed before and after fitting. The parameters have an estimated uncertainty next to them, and may include the comments:

\textit{(not fit)} not listed in the \textit{fit} command
\textit{correlated} correlated to another parameter in the model
\textit{insensitive} has no effect on the model value.

The parameter uncertainty is computed with the assumption that the model is correct and that the uncertainties in the JOB or ROI file are off by a constant factor. We assume that \textit{chi-squared} is equal to the number of degrees of freedom (number of data points minus
number of fitted parameters), and compute the uncertainties thereupon. The correlation matrix is printed after the parameters. For parameters bearing one of the comments above, the correlation is shown as 0.

write in|up [>|» file]

Prints the input or uptake data and model values. The report goes to the standard output, or to a specified file. The » version of file redirection means "append" rather than "write from scratch".

The first lines of the file describe the input data, the models selected and the input or uptake parameters. Subsequent lines are printed for each sample, listing the time, measurement, measurement uncertainty, and model value. The "write up" report also gives the value of the input function model at each time point.

In the examples bel~..., the columns have been made a bit narrower to fit this page. The actual reports have the same layout.

Sample "write in" report:

```
Input: dog.roi - BLOOD (reg. 1 * 1.000E+00) Model 1
al = 1.82E+01 m1 = 1.07E+01 a2 = 2.26E+00 m2 = ...
rt = 7.00E+00

<table>
<thead>
<tr>
<th>time</th>
<th>input</th>
<th>uncert</th>
<th>in_mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>2.61E-01</td>
<td>3.04E-02</td>
<td>0.00E-01</td>
</tr>
<tr>
<td>7.5</td>
<td>1.76E+01</td>
<td>2.33E-01</td>
<td>1.90E-01</td>
</tr>
</tbody>
</table>

```

Sample "write up" report:

```
Input: man.epi - SAG SINUS (reg. 1 * 1.00) Model 4
Uptake: man.epi - CORTEX (reg. 2 * 1.00) Model 1
kl = 3.80E-03 k2 = 4.76E-02 k3 = 0.00E-01 k4 = ...
fv = 1.52E-01 t0 = 4.80E+00

<table>
<thead>
<tr>
<th>time</th>
<th>uptake</th>
<th>uncert</th>
<th>up_mod</th>
<th>input</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>2.147E-03</td>
<td>2.147E-03</td>
<td>1.99E-03</td>
<td>7.877E-03</td>
</tr>
<tr>
<td>7.5</td>
<td>5.565E-03</td>
<td>5.565E-03</td>
<td>2.212E-05</td>
<td>0.000E-01</td>
</tr>
</tbody>
</table>

```

IMPLEMENTATION

Fit is a Software Tools Ratfor program (with some Fortran-77 and Macro-11). The source is currently in [21,10]fit.tcs but may be moved to the ST binary directory "bin. Fit.tcs maintains fit.w, which contains all necessary files:

Include files:

datcom, parcom, namcom, tablecom, fit.h
Sources (and routines):

- fit.r main
- fun.r funin, funup, con, rt3
- fimpls.r fimpls, finit
- init.r init
- getdata.r getdat, getfun, getjob, getroi, datlin, tinit, penter, pget
- getcmd.r getcmd
- dofit.r dofit
- misc.r getnam, gettok, pflag, setmap, setvar, shocov, whopar, dowrit
- marq.f marq, mqchi, mqder, mqmap, spdinv, dot
- catch.mac catch

Build files:
- makefit.cmd, fit.tkb, fit.odl

Documentation:
- fit.fmt

The file fit.h contains a macro definition of a string 'VERSION' which should be updated to reflect the TCS revision level.

The program is overlayed as follows:

```
  fit,fun,fimpls  ----> init,getdata
    |          |
    +----- getcmd,dofit,catch  ----> misc
          |          |
          +----- marq
```

AUTHORS

Brian Knittel, Ron Huesman
NAME
makearch — make new patient archive

SYNOPSIS
makearch

DESCRIPTION
The data generated in Ring studies are stored in Software Tools archive files. The ST archive program combines many files into one, and provides the capability to insert, extract, list, and update constituent files. Thus we can access the entire set of patient data with just one file name, but will retain the ability to play with the individual files.

Several study archives (e.g. fdg, rbl...) are combined in one patient archive. The study archives contain ROI, blood, and other study data files. In particular, there is an optional 'comments' file which can contain text describing the experimental protocol and the regions of interest.

This program creates new patient archives — it is faster than modarch because it does not try to extract study archives before updating, and it does not update (or create) the patient archive until all the studies have been entered. The archive is given the patient name with extension '.a'.

The program asks for input in this order:

Patient name: enter a 1-9 letter name, or <return> to stop making archives.

Study name: enter a 1-9 letter name or <return> to stop entering studies into the patient archive. Studies should named something like xxxn where xxx is "rb" or "water" or "fdg" or some such, and n is the study number. For example, rb2 and water1.

For each study, you are asked for 6 files:

<table>
<thead>
<tr>
<th>comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>blood</td>
</tr>
<tr>
<td>roi</td>
</tr>
<tr>
<td>enter name (including extension) or <return></td>
</tr>
<tr>
<td>counts</td>
</tr>
<tr>
<td>weights</td>
</tr>
</tbody>
</table>

If one of the files you specify does not exist, you are returned to the Study Name question.

When all the files have been specified, you are given a chance reject the set of files and return to the Study Name without adding the study to the patient archive.

| back to Study name question |
| back to Patient name question |

FILES
patient.a patient archive created
dr0:[100,1]makearch.cmd command file
NAME
modarch - modify patient archives

DESCRIPTION
Modarch modifies patient data archives made with "mak..rch". The procedure is exactly the same, except that the patient archive must already exist. The questions asked and the procedure are the same.

Modarch attempts to extract named study archives from the patient archive. If they do not exist, they are created. Named study data files are inserted into the study archives, replacing any old files of the same type in the archive. Other files are left untouched.

For example, if a patient archive 'ROGER' was made with two studies composed as follows

```
roger
  'fdgl
    'roi
    'comments
    'blood
    'rbl
    'roi
    'comments
```

and we told Modarch

```
ROGER
fdgl
comments: ROGERNEW.CMT
counts: [15,1]ROGERFDG1.CTS
```

then the new archive would be

```
roger
  'fdgl
    'roi
    'comments
    'blood
    'counts
    'rbl
    'roi
    'comments
```

FILES
patient.a patient archive
drO:[100,1]modarch.cmd command file
NAME
plotfit - plot results of compartment model fits on line printer

SYNOPSIS
plotfit [file [inscale [timescale [spool [ymax [plotsize]]]]]]

DESCRIPTION
Plotfit reads a "write in" or "write up" file from FIT and plots
the ROI data and the model values on the line printer. Plotfit is
a command file in [100,1] and can be run in one of two ways:
from inside another command file, with
@dr0:[100,1]plotfit <args>
or from the terminal with
plotfit <args>
where <args> is an optional list of arguments separated by spaces:

file the name of the "write ..." file
inscale factor to scale input function by in uptake plots. This can be a number in floating point format or the letters 'Fv', which scales the input function by the fit vascular fraction. This shows how much of the tissue activity is due to blood. "-" suppresses plotting of the input function; this should be used when plotting input function fits.
timescale 'L' for log time x axis, 'T' for linear time axis, 'S' for sample number axis.
spool "Y" - yes, spool plot immediately
 "N" - no, make PLOTFIT.LST but dont spool yet.
 "XXX" - use XXX instead of LPP
 "XXX/YY" - use XXX and use /YY flag too. For example, answering "N" is the same as answering "LPP/-SP"
ymax maximum Y value for plot (Default - max data value)
plotsize x, y size in inches for plot (Default "8,8.5")

If any of the first four arguments are not given, they are prompted for.

The fit rate constants are printed at the top of the plot.

FILES
plotfit.par temporary parameter file for PLT.
plotfit.plt temporary graphics file between PLT and LPP.
plotfit.lst output listing (autodeleted if spool = "Y")
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.