LBL-7233

NUMERICAL ANALYSIS OF FLOW FIELDS GENERATED BY ACCELERATING FLAMES

RECEIVED LAWRENCE BEDYYLEY LABORATORY

John Kurylo (Ph. D. thesis) MAR 2 3 1978

LIBRARY AND DOCUMENTS SECTION

LBL-7233

December 1977

Prepared for the U. S. Department of Energy under Contract W-7405-ENG-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5716

ł

LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

NUMERICAL ANALYSIS OF FLOW FIELDS GENERATED BY ACCELERATING FLAMES

by

John Kurylo*

Department of Mechanical Engineering University of California Berkeley, California 94720

* Work performed as a Ph. D. Thesis partially supported by the U. S. Army Research Office under Grant No. DAAG-2977-G-0064.

. . .

NUMERICAL ANALYSIS OF FLOW FIELDS GENERATED BY ACCELERATING FLAMES

Contents

Abs	tract	••••••••••••••••••••••••••••••••••••••
Nom	enclat	ureix
1.	Intro	duction
2.	Flow	Field Processes
	2.1.	Wave Processes
	2.2.	Wave Treatment as a Discontinuity 8
	2.3.	Flame Burning Speed Law
	2.4.	Initial Conditions
3.	Disco	ntinuity Interactions
	3.1.	Vector Polar Method 13
	3.2.	Interactions
		3.2.1. Non-Reactive Interactions
		3.2.2. Reactive Interactions
4.	Numer	ical Method
	4.1.	Governing Conservation Equations
	4.2.	Numerical Integration
	4.3.	Numerical Scheme
	4.4.	Time Step Criteria
5.	Float	ing Discontinuity Fitting
	5.1.	Floating Shock Fitting
	5.2.	Floating Contact Discontinuity Fitting
	5.3.	Floating Flame Fitting
	5.4.	Floating Detonation Fitting 42

6. A	Approach and Separation of Discontinuities	•	•	• •	•	•	•	•	•	48
7. 1	Application of the Numerical Method	•	•	•••	•	•	•	•	•	52
8. F	Results	•	•	••	•	•	•	•	•	- 54
. 8	3.1. Stable and Unstable Cases	•	•	••	•	•	•	•	• .	54
8	3.2. Critical Curve	•	•	••	•	•	•	•	•	58
9. s	Summary and Conclusions	•	•	•••	•	•	•	•	•	60
9	9.1. Summary	•	•	••	•	•	•	•	•	60
9	9.2. Conclusions	. •	•		•	•	•	•	÷	62
Ackno	owledgements	•	•	••	•	•	•	•	•	64
Apper	ndix A. Chapman-Jouguet Flame Burning Spe	eđ	La	ω.	•	•	•	•	•	65
Apper	ndix B. Programs for the Initial Conditio	ns	•	••	•	•	•	•	•	69
Apper	ndix C. Program Flame	•	•	• •	•	•	•	•	•	79
Refer	cences	.•	•	••	•	•	•	•	•	211
Figur	e Captions	•	•	•••	•	•	•	•	• .	218
Figur	ces	•	•	• •	•	•	•	•	•	223

-iv-

NUMERICAL ANALYSIS OF FLOW FIELDS GENERATED BY ACCELERATING FLAMES

John Kurylo

Lawrence Berkeley Laboratory University of California Berkeley, California 94720

ABSTRACT

Presented here is a numerical technique for the analysis of nonsteady flow fields generated by accelerating flames in gaseous media. Of particular interest in the study is the evaluation of the non-steady effects on the flow field and the possible transition of the combustion process to detonation caused by an abrupt change in the burning speed of an initially steady flame propagating in an unconfined combustible gas mixture.

Optically recorded observations of accelerating flames established that the flow field can be considered to consist of non-steady flow fields associated with an assembly of interacting shock waves, contact discontinuities, deflagration and detonation fronts. In the analysis, these flow fields are treated as spatially one-dimensional, the influence of transport phenomena is considered to be negligible, and unburned and burned substances are assumed to behave as perfect gases with constant, but different, specific heats. The basis of the numerical technique is an explicit, two step, second order accurate, finite difference scheme employed to integrate the flow field equations expressed in divergence form. For this purpose the conservation equations are expressed in Eulerian form. The progress of and interaction between all the gasdynamic discontinuities specified above were treated explicitly by a floating discontinuity fitting technique which was specially developed for this purpose.

Of particular importance in the computational scheme is the proper handling of deflagrations since the differentiating algorithm of the conservation equations cannot be applied across them. To accommodate this difficulty at each time interval, the Eulerian computational grid is shifted throughout the whole flow field so that it moves with the speed of the deflagration. The burning speed, governing the motion of the deflagration, is expressed in the form of a power law dependence on pressure and temperature immediately ahead of its front.

Each floating discontinuity fitting algorithm requires six to eight spatial grid points for the explicit handling of the discontinuity. This set of points defines a zone of influence. Discontinuities which propagate without interacting with each other nor with a plane, line, or point of symmetry, are considered to be well separated and their progress in the flow field established by the appropriate floating discontinuity fitting technique. When discontinuities are not well separated, that is when their zones of influence overlap, more elaborate difference algorithms are employed to ensure that differentiation, applicable only to the continuous portions of the flow field, is not carried out across a discontinuity. The actual interaction between non-reactive and reactive waves is considered to occur instantaneously. The resulting steady wave solution is obtained by the vector polar interaction technique, that is, by determining the point of intersection between the loci of end states in the plane of the two interaction invariants, pressure and particle velocity.

-vi-

The technique is illustrated by a numerical example in which a steady flame experiences an abrupt change in its burning speed. Solutions correspond either to the eventual reestablishment of a steady state flow field commensurate with the burning speed or to the transition to detonation. A stability curve, a line of demarcation between the regimes of solution leading to steady and non-steady flow fields on the plane of the increment in the burning speed and its initial value, is presented. The results are in satisfactory agreement with experimental observations.

-vii-

.

.

NOMENCLATURE

a	speed of sound
Α	area
Α	a/a _O (Figure)
В	constant Eq. (5.18)
At	transformation variable Eq. (4.9)
Cv	specific heat at constant volume
D	detonation wave speed
Es	stagnation energy
Gp	function of pressure Eq. (5.11)
G ρ	function of density Eq. (5.12)
Н	Hugoniot
i	position index on the computational plane
j	geometry index (0, 1 and 2 for plane-, line- and point-
N.	symmetrical geometries)
J	Chapman-Jouguet detonation state
K	Chapman-Jouguet deflagration state
M	mean molecular weight
м _n	shock Mach number
м _D	detonation Mach number
М	₩ _u /₩ _b
n	time index on the computational plane
р	pressure
p	pressure ratio across the discontinuity
P	p/p ₀ (Figure)
R	gas constant

-ix-

		-X-
· · · ·	R	x'/x _f (Figure)
	RH	Rankine-Hugoniot
	RL	Rayleigh Line
	S	flame burning speed
	t	transformed time variable Eq. (4.5a)
	t'	time
	T	temperature
	T	t'vpv/x' (Figure)
	u	particle velocity
	U	transformed velocity Eq. (4.11b)
	υ	u/a _O (Figure)
	v	specific volume
	W	transformation velocity Eq. (4.5b)
	W	experimental data (Figure)
	x	transformed space variable Eq. (4.5b)
	x'	position
	x'f	flame position at the instant of initial acceleration
	α	index Eq. (5.25)
ν.	β	asymptote of Hugoniot hyperbola
	γ	ratio of specific heats
	δ	temperature index Eq. (2.1)
	ε	coefficient Eq. (5.1)
	ζ,η,ξ	quadratic equation coefficients Eqs. (5.7), (5.16), (A.6)
	θ	pressure index Eq. (2.1)
	ν	specific volume ratio

π	explicit artificial viscosity
ρ	density
ρ	ρ/ρ _O (Figure)
õ	transformed density Eq. (4.lla)
x	constant Eq (5.12)
[]	conserved quantity Eqs. (5.1), (5.2)
	absolute value
Δ	step
+	node adjacent to a contact discontinuity
0	locus of end states (Figure)

Subscripts

b	state behind the combustion front
CJ	Chapman-Jouguet state
đ	ratio of combusted to uncombusted parameters across the
	deflagration front
f	constant pressure combustion at local pressure
F	constant pressure combustion at reference pressure
h	head of the rarefaction
G	constant specific volume combustion at reference specific
	volume
i	position index on computational plane
J	Chapman-Jouguet state
N	von Neumann state
0	undisturbed reference state
s	shock

-xi-

t	tail of the rarefaction
u	state ahead of the combustion front
x	position
1	state to the right of a discontinuity
2	state to the left of a discontinuity
3	state ahead of the discontinuity
4	state behind the discontinuity

Superscripts

n

time index on the computational plane

provisional value

-xii-

1. INTRODUCTION

From the point of view of gasdynamics, all combustion processes can be classified as either detonations or deflagrations. Detonation, first described by Berthelot¹ in 1881, is the more dynamic process, characterized by a supersonic wave speed on the order of kilometers per second and a significant increase in presure, density, and fluid velocity. Deflagration is characterized by low subsonic burning speeds, negligible pressure changes, and significant increases in specific volume. However, deflagrations are endowed with the unique ability to generate pressure waves.²⁻⁵

Oppenheim⁶ has established that if a sufficient amount of energy is deposited at a sufficiently high rate in an explosive gas, a detonation wave can be directly formed. Below a critical value of the initiation energy and power, there ensues a flame front that gradually recedes from that of the leading blast wave. Within the critical regime between the two, the non-steady mechanisms by which the process can accelerate from deflagration to detonation have been the subject of an intense wide-ranging experimental program of research over the last three decades. The development of and advances in optical techniques for viewing the flow field on a time scale commensurate with the non-steady mechanisms led Schmidt, Steinicke and Neubert^{7,8} to produce the first photographic records of the development of detonation. These photographs provided the first insight into the nature of the non-steady mechanisms associated with the transition to detonation. As confirmed by stroboscopic-schlieren photographs in experiments by Oppenheim and associates,^{6,9-11} the main

-1-

mechanism of the transition is the action of the transverse waves generated by the deflagration process and the formation of their wave intersections and interactions.

-2-

The capability of deflagration to accelerate to detonation is important in the assessment of the dangers associated with unconfined vapour cloud explosions. The rapidly increasing volume and rate at which flammable liquids and vapours are transported today throughout the world enhances the possibility of a variety of accidents that cause leaks and spills. An overview of the hazards due to such occurrences over the last 42 years was reviewed by Strehlow.¹² One hundred and eight fuel-air cloud explosions, the largest cloud encompassing 20 million cubic feet of combustible mixture, were documented. More recently, dangers associated with large-scale transport of fuels, in particular liquified natural gas (125,000 cubic meters or 5.6 x 10^7 kgs), gained a considerable amount of attention. This is exemplified by the reports of Fay^{13,14} about the dispersion and flammability of LNG vapour clouds, and by the paper of Haverdings et al.¹⁵ about the extent of damage which could be inflicted by the explosion of a fuel-air cloud resulting from the collision of a tanker at the entrance to Rotterdam harbor. As noted in the paper by Oppenhein, Kurylo, Cohen and Kamel,¹⁶ the scope of potential danger from such clouds extends well beyond their initial boundaries. They concluded that detonative combustion of the cloud produces a higher level of potential damage than the deflagrative combustion of the cloud. These differences in the intensity of the blast waves and character of the flow fields persist until the front of the leading blast wave reaches a distance of five initial cloud

radii. At greater distances, the question of whether transition to detonation did or did not take place inside the cloud is irrelevant. All this leads to the question: Under what conditions does deflagration maintain a steady state propagation rate and when does it accelerate to detonation? Such knowledge could lead to design requirements minimizing the occurrence of detonation by prohibiting design configurations, energy sources, and turbulence sources which could directly or indirectly trigger the transition to detonation.

In order to elucidate the conditions necessary to promote transition, Wagner et al.¹⁷ performed experiments using screens to increase the flame propagation rate in unconfined stoichiometric hydrocarbon-air mixtures. They reported that centrally ignited steady deflagrations, upon passing through a screen, experienced significant increases in burning speed but did not transist to detonation. Rather they developed a new thermodynamic and gasdynamic state commensurate with the higher burning speed. However, they noted that flames with higher initial propagation rates (of approximately 50 meters per second obtained in oxygen enriched hydrocarbon-air mixtures) did go to detonation. In fact, their results indicate that increasing the initial flame propagation rate decreases the level of disturbance necessary for transition.

Therefore, the object of this study is the evaluation of the non-steady effects on the flow field and the possible acceleration of the combustion process to detonation, due to a disturbance at the flame front. The disturbance is considered to have the effect of causing an instantaneous change in the relative flame burning speed. Such phenomena are well established in the combustion literature. It is

-3-

due to the effects of turbulence and has been exploited in the form of the so called Shchelkin turbolizers, used for detonation research.¹⁷ In particular, it is the aim of this work to quantify the level of the disturbance necessary to trigger the transition to detonation.

The key to achieving this result lies in the unique feature of flames to generate pressure waves. By focusing attention on the pressure waves generated by the initial disturbance and determining their subsequent interaction with the flame and the remainder of the flow field, the evolution of the non-steady processes can be traced.

Over the last 3 decades many methods have been employed to solve complex gasdynamic problems. Analytical analysis has been able to predict the structure of blast waves under a variety of conditions, 18, 19 including blast waves sustained by steady flames.²⁰ That analysis has been restricted to the case of self-similar solutions, whereas the problem now under consideration corresponds to a non-self similar flow field. Early numerical techniques based on the method of characteristics, 21-23 although exact in principle, suffered from losses in accuracy due to interpolation and extrapolation. A currently popular numerical technique^{16,24-26} for removing the explicit computation of shock fronts was developed by von Neumann and Richtmyer²⁷ and later modified by Wilkins.²⁸ This technique utilizes the concept of explicit artificial viscosity. The smoothing action of explicit artificial viscosity transforms the discontinuous state properties across a shock front into smooth but rapidly varying quantities over a small number of computational zones. However, the excessive influence of the explicit artificial viscosity during

-4-

the interaction process with the combustion front renders the technique inadequate for this problem.

During the last 15 years, great strides have been made in the theory of numerical analysis. The problems of the global conservation of mass, momentum, and energy, and the adequate treatment of shock fronts were overcome by the numerical differencing of the governing equations expressed in conservative²⁹ form and by the development of implicit artificial viscosity³⁰ techniques. The influence of the implicit artificial viscosity during the interaction process with a combustion front can be reduced through the technique of floating discontinuity fitting developed by Moretti.³¹⁻³³

The primary objective of the work reported here is the development of a numerical technique for the analysis of the non-steady flow fields generated by accelerating flames in a gaseous media. The numerical technique in its final form is not limited in scope to flow fields containing only blast waves, nor is the combustion process restricted to the case of detonation or Chapman-Jouguet deflagration.^{25,26} Rather the technique is capable of responding to and tracing the flow field processes which occur during the development of detonation. From the application of the technique, the level of disturbance necessary to trigger the transition to detonation can be specified.

Presented first is a discussion of the wave processes involved in the transition from deflagration to detonation. This provides physical reasons why the elementary wave processes of shock waves, contact discontinuities, deflagrations and detonations can be treated as plane discontinuities. The burning speed law governing the motion of the

-5-

deflagration is then reported, followed by a brief note on the initial conditions corresponding to flow fields with plane, cylindrical, and spherical symmetry. Chapter 3 indicates the method employed in solving the problem of multiple wave interactions involving non-reactive and reactive waves. Chapter 4 introduces the explicit difference scheme for the integration of the conservation equations that describe the dynamic behavior of the non-steady flow field. A description of the algorithm for the floating discontinuity fitting technique for shock waves, contact discontinuities, deflagrations and detonations follows in Chapter 5. The next chapter is devoted to the specification of the numerical procedures required during the short period of time prior to and immediately after a wave interaction. The method of application of the numerical procedure is given in Chapter 7. Detailed results for two cases corresponding to the same initial flame burning speed, but experiencing different increments in the burning speed, are presented in the form of timespace wave diagrams, pressure-space profiles and pressure signatures. The stability curve, a line of demarcation between the regimes of solutions leading to steady and non-steady flow fields on the plane of the increment in burning speed and its initial value, is presented. Finally, Chapter 9 includes a summary of the significant features of the computational technique presented here, and conclusions regarding it.

-6--

2. FLOW FIELD PROCESSES

2.1. Wave Processes

This section discusses the wave processes which can occur in the flow field due to an increase in flame burning speed and in the course of transition to detonation. During the last 3 decades an intense wideranging experimental program aimed at elucidating the non-steady processes that govern the development of detonation has been carried out. In contrast to the basic experimental apparatus for detonation experiments, a long slender tube, which today remains practically unchanged from that first described by Berthelot,¹ it was the development of and advances in optical techniques for viewing the flow field that provided insight into the nature of the non-steady processes associated with the transition to detonation.

At the Fourth International Symposium on Combustion, Schmidt, Steinicke and Neubert⁸ presented photographs of combustion waves in tubes obtained by the use of schlieren optics with a rotating drum-camera. Based on shock and flame traces in the time-distance domain as described by Schmidt et al.'s⁷ interpretation of a photographic record of the development of detonation, Oppenheim and Stern³⁴ extensively analyzed their results. They proposed that the transition from deflagration to detonation was controlled by wave interaction phenomena involving shock waves, contact discontinuities, rarefaction waves and deflagrations. Experimental and theoretical investigations of shock-flame interactions begun by Chu³⁵ and Markstein^{36,37} and enhanced by the ingeniously simple technique of Salamandra and Sevastyanova³⁸ for producing incident shock waves, concluded that the propagation of the flame was significantly

-7-

influenced by the interaction. The ability of flames to generate pressure waves in confined and unconfined atmospheres was established in experiments by Laderman et al.²⁻⁴ and Oppenheim, Kamel and Varvatsoulis.⁵ It was shown that the generation of pressure waves by the flame could be theoretically modelled by accounting for the change in the rate of heat release brought about by the increase in the surface area of the combustion. This demonstrated the dynamic effects of combustion on the flow field. The dependence of transition on the interaction processes between the waves generated by accelerating flames in an explosive gas mixture was confirmed by strobscopic-schlieren photographs in experiments by Urtiew and Oppenheim.^{6,9-11} Therefore, when considering the effects of an increase in flame burning speed on transition to detonation, it is essential to take proper account of the following elementary wave processes and of their interactions: shock waves, rarefaction waves, contact discontinuities and deflagrations.

2.2. Wave Treatment as a Discontinuity

Optically recorded experiments, notably in publications of Oppenheim and his associates, 4,5,39 show that the wave fronts of shock waves, contact discontinuities, detonations and flames have steep density gradients. Thus, all considerations associated with their structure and details of the progress of these waves, such as induction and relaxation phenomena and the effects of diffusion, viscosity and conductivity, can be neglected in favor of their dynamic effects. This yields a step-wise interpretation of the wave process which in reality has a more continuous character. The wave fronts are treated as plain

-8-

surfaces in the flow field, across which finite instantaneous changes in state occur. In particular, flame fronts are treated as deflagrations, that is, discontinuities associated with a finite pressure change.

By accounting only for the dynamic effects of the wave processes, Laderman, Urtiew and Oppenheim⁴⁰ were able to successfully reconstruct a time-space wave diagram obtained from a streak-schlieren photograph and two associated pressure transducer records of a flame and shock undergoing numerous interactions and intersections. The experiment was carried out in an equimolar H_2-O_2 mixture maintained initially at room temperature and 100 mm Hg. The flame had an initial burning speed of 35.1 meters per second and the left running shocks had strengths of 1.14 and 1.024. Further details of the experiment can be found in Laderman, Urtiew and Oppenheim.⁴⁰ Figure 1 shows the streak-schlieren photograph with the insert displaying the pressure records at stations 1 and 2. Figures 2 and 3 show the time-space diagram obtained by a finite wave analysis and the close comparison of the experimental and analytical pressure profiles. Therefore, the conclusion that proper account of the progress of shock waves, contact discontinuities, detonations and flames in the flow field can be achieved by treating these elementary waves processes as plane finite waves is justified.

2.3 Flame Burning Speed Law

In analyzing the effect of an increase in flame burning speed on transition to detonation, the burning speed governing the motion of the flame was considered to be proportional to the thermodynamic state immediately ahead of its front. The specific form adopted was

-9-

$$s = s_o \left(\frac{T}{T_o}\right)^{\delta} \left(\frac{p}{p_o}\right)^{\theta}$$

where S is the normal burning speed, T and p are respectively the temperature and pressure immediately ahead of the flame front, while subscript o denotes the undisturbed, reference, conditions. Numerical values of the indices were selected so as to best fit the available experimental data. Such data were based on the experiments of Gilbert,⁴¹ Goldenberg and Pelevin,⁴² and the more recent experiments by Bradley and Hundy,⁴³ and Andrews and Bradley^{44,45} Their correlations, valid over a wide ranges of pressures, temperatures and hydrocarbon-air mixtures, suggest that $\delta = 2.3$ and $\theta = 0.5$. In the case of a Chapman-Jouguet flame, the burning speed dependence on temperature, as shown in Appendix A, becomes

$$S_{CJ} = \frac{\sqrt{(1 + \beta)} R_{0}T}{(1 - \beta)} \left[\sqrt{v_{f} - \beta} - \sqrt{v_{f} - 1} \right]$$
(2.2)

where

$$\beta = \frac{\gamma_{b} - 1}{\gamma_{b} - 1}$$

and

$$v_{f} = \left(\frac{T_{o}}{T}\right) v_{F} + \left[1 - \frac{T_{o}}{T}\right] \left[\frac{\gamma_{o}}{\gamma_{b}} \frac{\gamma_{b} - 1}{\gamma_{o} - 1} - \frac{\overline{M}_{o}}{\overline{M}_{b}} + 1\right]$$

where subscript b refers to the combusted state behind the deflagration, R represents the gas constant, \overline{M} denotes the mean molecular weight,

(2.1)

 $v_{\rm F}$ and $v_{\rm f}$ refer to the specific volume ratio corresponding to a change of state at the reference and local pressures respectively. This relation arises due to the thermodynamic consideration associated with the Chapman-Jouguet condition of tangency of the Rayleigh line to the Hugoniot curve.

2.4. Initial Conditions

The initial flow field conditions used in determining the effect of an increase in flame burning speed on transition to detonation are evaluated based on Kuhl, et al.'s²⁰ analysis of the pressure waves that can be generated by clouds of explosive gas mixtures, in an atmosphere which is initially at rest. Their self-similar analysis assumes that the combustible mixture gives rise to a flame front, justifiably characterized as a deflagration, which propagates into the medium ahead of it at a given burning speed. As noted in Section 2.1, a steady blast wave preceeds the flame. The combustible medium is treated as a thermally and calorically perfect gas. In addition, the boundary condition of a zero particle velocity in the burned regime immediately behind the deflagration is used. The space profiles of the gasdynamic parameters, i.e., the pressure p, density 0, and particle velocity u, corresponding to a steady deflagration with a burning speed of 25 meters per second are presented in Figs. 4 to 6. These results are for a case of a typical hydrocarbon-air mixture with thermodynamic properties specified by

-11-

 $v_F = 7,$ $a_0 = 331 \text{ m/sec},$ M = 1, $\gamma_0 = \gamma_u = 1.3,$ $\gamma_b = 1.2$

where $\nu_{\mathbf{F}}$ represents the ratio of specific volumes at the undisturbed pressure, a refers to speed of sound, M denotes the ratio of molecular weights and subscripts o, u, and b refer to the reference, uncombusted, and combusted states respectively. The undisturbed pressure, density, and Newton's speed of sound have been used to nondimensionalize the ordinates in Figs. 4 to 6. The space coordinate has been nondimensionalized with respect to the flame location. The values of j equal to 0, 1, and 2 correspond to flow fields with plane, line and point symmetry. Maximum pressure and shock strength occur in the case of plane-symmetrical flow. In the cylindrical and spherical cases, the profiles increase from the leading shock to the deflagration front. These gasdynamicspace profiles represent the state of the flow field at the instant the combustion front experiences a sudden increase in its burning speed. This increase is specified as part of the initial conditions. Appendix B contains a listing of the computer codes used in generating the initial conditions.

3. DISCONTINUITY INTERACTIONS

3.1 Vector Polar Method

This section discusses the method of analysis used to evaluate the wave interaction phenomena which occur during transition from deflagration to detonation. In the 1940's the method of characteristics was effectively employed in the analysis of non-steady gasdynamic problems. However, its application to wave interaction processes was restricted to the continuous domains of the phenomena thus capable of only tracing the details of the process. Then, in 1958, Oppenheim and Stern³⁴ introduced the vector polar method, the simplest and best known of all the polar methods developed in the 1950's, for analysis of wave phenomena. In contrast to using the method of characteristics, Oppenheim and Stern³⁴ took the approach that it is more important to evaluate the gasdynamic states and wave system attained by a given wave interaction after all the transients have died down, than to trace the details of its progress. This is the method used in the present calculations. Leaving the zone of interaction completely outside the scope of the method of analysis is justified by our experience that the duration of the wave interaction event in the course of development of detonation is short in comparison to the rest of the wave propagation. The vector polar method is based on the use of wave polars, that is diagrams representing the loci of states attainable by a given wave front without any consideration given to the details of the flow process across the front. By using a logarithmic scale of pressure and local speed of sound ratio for the ordinate and

-13-

a linear scale of particle velocity for the abscissa, the plane of the polar diagram is rendered a vector character. Consequently, as pressure ratios are multiplied in crossing a discontinuity while the particle velocities are added, the solution for a given wave interaction is obtained by the addition of vectors, representing changes brought about by the action of the fronts that participate in the wave interaction process. The analysis assumes that the wave thickness is negligible in comparison to the flow field as a whole, and that the wave fronts are locally plane in the immediate vicinity of the interaction point. This thinness assumption has been justified in Section 2.2. For this purpose flame processes are treated as a deflagration, that is, a discontinuity associated with a finite pressure change. The most important aspect of the vector polar method is the facility it provides in solving interactions between shock waves, rarefaction waves, deflagrations, and contact discontinuities, thereby making tractable the problem of multiple wave interactions which occur as detonation develops. Phenomena associated with non-reactive and reactive interactions are discussed in Sections 3.2.1 and 3.2.2 respectively.

3.2. Interactions

3.2.1. Non-Reactive Interactions

Wave interactions in which none of the participating wave processes are driven by combustion constitute non-reactive interactions. Shock waves, rarefaction waves and contact discontinuities are examples of

-14-

such wave processes. The reason for the distinction between nonreactive and reactive interactions will become evident in the succeeding section. During the transition from deflagration to detonation, the following non-reactive wave interaction systems were encountered:

- (1) shock-shock collision
- (2) shock-shock merging
- (3) shock-contact discontinuity $a_2 > a_1$
- (4) shock-contact discontinuity $a_2 < a_1$
- (5) shock-plane of symmetry

where a₁ and a₂ refer to the local speed of sound in the states immediately to the right and left of the contact discontinuity. Interactions involving rarefactions waves can be handled by the numerical scheme discussed in the succeeding chapter. The gasdynamic states and resulting wave system for each interaction are evaluated by the vector polar method. Typical vector polar diagrams for interactions (1) to (5) are presented in Figs. 7 to 11. Included are the time-space wave diagrams. In the time-space diagrams the thin dashed lines indicate particle paths, the solid lines denote shocks, and the double lines denote contact discontinuities. In each case, wave processes are created and/or annihilated as a result of the interaction. For interaction (5) closed form analytical expressions for the reflected gasdynamic state parameters and shock Mach number in terms of the incident gasdynamic state parameters and shock Mach number exist.⁴⁶ In the numerical computations a criteria for determining when the resulting wave pattern has been found is required. With reference to Fig. 7, after known states 0, 1, and 2 are located in the P-U and A-U planes, and the loci of attainable states 3 and 4 drawn from states 1 and 2, the criterion for determining the exact location of states 3 and 4 is, as explained by Oppenheim and Stern:³⁴

"The utility of the P-U plane is a direct consequence of the fact that each wave interaction is governed by the dynamic compatability condition, that is, the condition that any new domain bounded by waves resulting from the interaction must contain particles which are all at the same pressure and move with the same velocity irrespective of their previous history (i.e., irrespectively through which boundary they get into the domain in guestion). Since such a condition does not apply to another thermodynamic parameter, each interaction generates in principle a contact surface, that is a surface dividing two different states within the same domain, which is, of course, parallel to the particle velocity. In other words, the salient feature of the P-U hodograph plane is the property that the domain resulting from any wave interaction is represented there, and only there, by a single point, in spite of the fact that it may represent two states separated by a contact surface."

"Unlike the P-U plane, the states on the two sides of the contact surface are here (A-U plane) represented by two points, having the same value of abscissa since they correspond to the same particle velocity."

3.2.2. Reactive Interactions

The wave interactions involving a wave process driven by combustion are reactive interactions. Deflagrations and detonations are examples of such a wave process. Whereas in non-reactive interactions the energy supporting the resulting wave system satisfies the Rankine-Hugoniot

-16-

relations, in reactive interactions the Hugoniot relations must be satisfied in order to account for the chemical energy released in the form of heat during the combustion process. The complexity lies in attempting to uniquely determine this quantity of heat. The flame burning speed law (Section 2.3) provides the necessary relation. In the development of detonation, the following reactive wave interaction systems were encountered:

- (1) initial deflagration acceleration
- (2) shock-deflagration merging
- (3) deflagration-contact discontinuity
- (4) detonation-contact discontinuity
- (5) detonation-shock merging

where interaction (1) represents the finite increment in the burning speed associated with the initial disturbance. Interactions (2) and (3) constitute the primary mechanisms for deflagration acceleration, while interactions (4) and (5) involve the detonation process. The gasdynamic states and resulting wave system for interactions (1) to (3) were evaluated by the vector polar method. Typical polar diagrams are presented in Figs. 12 to 14. The non-steady analysis of interactions (4) and (5) is presented in Figs. 15 and 16 respectively. Time-space wave diagrams are included. The thick dashed line represents a deflagration, "CJ" indicates a Chapman-Jouguet deflagration and a thick solid line denotes detonation.

The wave system for interaction (1) was obtained by specifying the increase in burning speed given by the initial conditions, rather than by the flame burning speed law. With interactions (2) and (3), two and three wave systems respectively could arise, each depending on the shock and contact discontinuity strengths. Figures 13A and 14A present the final wave systems in the polar and time-space planes for interactions (2) and (3) in which the deflagration burning speeds increased but remained below the Chapman-Jouquet value. However, Figs. 13B and 14B present wave systems corresponding to Chapman-Jouguet deflagration. Due to the increased shock and contact discontinuity strengths, the interactions were of sufficient intensity to produce Chapman-Jouguet deflagration. Figures 13C and 14C indicate how the loci of end states, states 5 and 6, fail to intersect when burning speeds less than the Chapman-Jouguet value are assumed for case B. Figure 14D presents the results for a Chapman-Jouquet deflagration-contact discontinuity interaction.

The non-steady wave systems generated by interactions (4) and (5) were analyzed in the thermodynamic plane of pressure and specific volume, shown in Figs. 15 and 16. The pressure and specific volume in these figures have been nondimensionalized with respect to an undisturbed reference pressure and specific volume. Indicated in Figs. 15 and 16 are the Rankine-Hugoniot and Hugoniot curves, denoted by symbols R-H and H respectively, associated with the thermodynamic states 1 and 2, corresponding to the right and left hand sides of the

-18-

contact discontinuity. In the analysis a detonation front is modelled as a shock front followed by a deflagration. Overdriven detonations arise in interactions (4) and (5) because the change of state across the shock front, associated with the detonation, propagating into state 1 must be compatible with its speed as it emerges from state 2. The thermodynamic states immediately behind the detonation front, just prior to the interaction and after the decay of the interaction's nonsteady effects, are indicated by points J_2 and J_1 respectively. These states are the Chapman-Jouquet states associated with initial states 2 and 1. They are determined by the condition of tangency of the Rayleigh line, denoted by symbol RL, to the Hugoniot curve. The non-steady phenomena in interactions (4) and (5) are associated with the transition from state J_2 to state J_1 . The decay from overdriven to Chapman-Jouguet detonation occurs due to the interaction of rarefaction waves, propagating at speeds greater than the detonation speed, with the leading detonation front. This condition is expressed by the inequality

a + u > D

where a and u represent the sound and particle speed immediately behind the detonation front and D represents the detonation front velocity. The inequality sign applies for overdriven detonations while the equality sign pertains to Chapman-Jouguet detonations.

In modelling the non-steady phenomena arising from interaction (4), the transition from state J_2 to state J_1 is assumed to occur over one time step characteristic of the method of calculation. In interaction (5),

-19-

the differences between states J_2 and J_1 are large. The non-steady decay of the overdriven detonation is modelled initially as an instantaneous decay of the overdriven detonation to a level such that the pressure behind the detonation front falls slightly below the pressure at state J_2 . This state is indicated in Fig. 16 by the dashed line. Then the decay to Chapman-Jouguet detonation occurs in 20 equal increments, requiring one time step, characteristic of the method of calculation, per increment.

-20-

4. NUMERICAL METHOD

4.1. Governing Conservation Equations

The most convenient form to cast the laws of conservation of mass, momentum, and energy, which describe the one-dimensional time-dependent flow of a compressible fluid, is the conservative form. If the area of the flow is variable, it is also convenient to include the area in the basic equations. In the absence of external body forces, energy, and mass sources, and with negligible effect of the transport processes of diffusion of mass, momentum, and energy, the basic governing equations can be written as

$$\frac{\partial(\rho \mathbf{A})}{\partial t'} = -\frac{\partial}{\partial \mathbf{x}'} (\rho \mathbf{u} \mathbf{A})$$
(4.1)

$$\frac{\partial (\rho u A)}{\partial t'} = -\frac{\partial}{\partial x'} (\rho u^2 A + p A) + p \frac{dA}{dx'}$$
(4.2)

$$\frac{\partial (\mathbf{E}_{s})}{\partial t'} = -\frac{\partial}{\partial x'} (u\{\mathbf{E}_{s} + \mathbf{p}\mathbf{A}\})$$
(4.3)

where

$$\mathbf{E}_{\mathbf{S}} = \rho \mathbf{A} \left(\mathbf{C}_{\mathbf{V}} \mathbf{T} + \frac{\mathbf{u}^2}{2} \right).$$

$$\mathbf{p} = \rho \mathbf{R} \mathbf{T}$$

(4.4)

where p, p, T, E_s , and u are the gasdynamic properties pressure, density, temperature, stagnation energy and particle velocity respectively; t', x' - independent variables time and position; A - area; C_v - specific heat at constant volume; and R the universal gas constant divided by the mean molecular weight.

For the purposes of simplicity and generality, the flow variables are nondimensionalized by scaling the pressure and density with respect to their reference values (p_0, ρ_0) , scaling velocities by $(p_0/\rho_0)^{1/2}$, scaling energy and temperature by (p_0/ρ_0) , scaling all lengths with respect to the flame's location at the instant of initial acceleration, x'_f , and scaling time with respect to $x'_f/(p_0/\rho_0)^{1/2}$. Section 5.3 discusses the necessity of the following transformation of the independent variables in applying the floating flame fitting technique:

$$\mathbf{x} = \mathbf{x}' - \mathbf{W}\mathbf{t}' \tag{4.5b}$$

where W is a time dependent but spatially independent quantity. Time and space derivatives become

$$\frac{\partial}{\partial t'} = \frac{\partial}{\partial t} - \left(W + t \frac{dW}{dt}\right) \frac{\partial}{\partial x}$$
(4.6a)
$$\frac{\partial}{\partial x'} = \frac{\partial}{\partial x}$$
(4.6b)

The nondimensionalized transformed governing equations can be written as

$$\frac{\partial(\rho A)}{\partial t} = -\frac{\partial}{\partial x} (\rho u A) - A_t \frac{\partial(\rho A)}{\partial x}$$
(4.7)
$$\frac{\partial (\rho u A)}{\partial t} = -\frac{\partial}{\partial x} (\rho u^2 A + p A) + p \frac{dA}{dx} - A_t \frac{\partial (\rho u A)}{\partial x}$$
(4.8)

$$\frac{\partial(\mathbf{E}_{s})}{\partial t} = -\frac{\partial}{\partial x} \left(u\{\mathbf{E}_{s} + p\mathbf{A}\} \right) - \mathbf{A}_{t} \frac{\partial(\mathbf{E}_{s})}{\partial x}$$
(4.9)

where

$$E_{s} = \rho A \left(C_{v}T + \frac{u^{2}}{2} \right)$$

and

$$A_t = -W - t \frac{dW}{dt}$$

 $\mathbf{p} = \rho \mathbf{R} \mathbf{T}$

(4.10)

4.2. Numerical Integration

These equations form a system of non-linear hyperbolic equations. The solution of this system can breakdown due to nonlinearity and exhibit a pattern of shock waves, contact surfaces with large energy differences, vortex sheets, and slip lines, the latter two surfaces being evident only in higher dimensions. Analytical analysis of these flows have been limited to cases of steady or self-similar flows, incorporating only a few such surfaces. As a characteristic length, the distance traversed by the flame prior to the instant of initial acceleration, is inherent in the problem, a self-similar analysis is ruled out.

4.3. Numerical Scheme⁴⁷

Over the last 3 decades, many methods have been employed to solve one-dimensional gasdynamic problems under a variety of circumstances. The most successful early techniques were based on the method of characteristics. $^{21-23}$ Although they were exact in principle, they suffered losses in accuracy due to interpolation and extrapolation. Also, the method of characteristics did not lend itself as readily to the digital computer as the more efficient finite difference technique. The method of shock capturing, a technique to remove the explicit computation of the discontinuity, developed by von Neumann and Richtmyer²⁷ and as modified by Wilkins,²⁸ utilized the concept of explicit artificial viscosity. The rapid changes of state produced by shocks waves were treated by replacing pressure, p, in the Lagrangian conversation equations with $p + \pi$ where π is a psuedo-viscous pressure depending on the form of the explicit artificial viscosity. The smoothing action of explicit viscosity transformed the discontinuous state properties across the discontinuity into smooth but rapidly varying quantities over a small number of cells, on either side of which the discontinuity relations were satisfied. As the whole flow field could be treated as a single continuous flow field, the method found many applications. 16,24-26 However, the excessive influence of the explicit artificial viscosity during the interaction of discontinuities with the combustion front rendered the technique inadequate in this problem.

The finite difference methods used to solve one-dimensional gasdynamic problems over the last 15 years and the difficulties encountered by these methods are discussed in Richtmyer and Morton³⁰

-24-

and Ames.⁴⁸ The two most prevelent problems were concerned with the global conservation of mass, momentum, and energy and the adequate treatment of discontinuities. The solution to these problems were accomplished by casting the governing equations into conservative form and by the development of implicit artificial viscosity techniques. Differencing equations in conservative form ensures global conservation of mass, momentum, and energy.²⁹ The method of shock capturing utilizing implicit artificial viscosity is based on generalizing the concept of a solution of Euler's equations to include weak solutions, i.e., discontinuities.³⁰

Hence the shock capturing technique developed by MacCormack⁴⁹ is employed in the solution of this complicated one-dimensional gasdynamic flow. MacCormack's method consists of an explicit, noncentered difference scheme applied to the equations of motion in conservative form. The artificial viscosity is implicit and a direct result of the numerical scheme as clearly shown by Tyler.⁵⁰ The method conserves global mass, momentum, and energy and will automatically capture any imbedded shocks which appear in the flow field. For the computational advantage of maintaining mass, momentum, and energy fluxes relatively constant through rapid area changes, a change in the dependent variables is made as follows

~	-		
ρ=	ρΑ	·	(4.11a)

 $\mathbf{U} = \tilde{\rho}\mathbf{u} = \tilde{\rho}\mathbf{u}\mathbf{A} \tag{4.11b}$

 $E_{s} = \frac{pA}{\gamma - 1} + \frac{U^{2}}{2\tilde{\rho}}$ (4.11c)

-25-

In terms of these variables, the basic Eqs. (4.7) to (4.10) become

$$\frac{\partial \tilde{\rho}}{\partial t} = -\frac{\partial U}{\partial x} - A_t \frac{\partial \tilde{\rho}}{\partial x}$$
(4.12)

$$\frac{\partial \mathbf{U}}{\partial \mathbf{t}} = -\frac{\partial}{\partial \mathbf{x}} \left(\frac{\mathbf{U}^2}{\widetilde{\rho}} + \mathbf{p} \mathbf{A} \right) + \mathbf{p} \frac{d\mathbf{A}}{d\mathbf{x}} - \mathbf{A}_{\mathbf{t}} \frac{\partial \mathbf{U}}{\partial \mathbf{x}}$$
(4.13)

$$\frac{\partial \mathbf{E}_{\mathbf{S}}}{\partial \mathbf{t}} = -\frac{\partial}{\partial \mathbf{x}} \left(\frac{\mathbf{U}}{\tilde{\rho}} \left\{ \mathbf{E}_{\mathbf{S}} + \mathbf{p} \mathbf{A} \right\} \right) - \mathbf{A}_{\mathbf{t}} \frac{\partial \mathbf{E}_{\mathbf{S}}}{\partial \mathbf{x}}$$
(4.14)

$$p = \left(E_{s} - \frac{U^{2}}{2\tilde{\rho}}\right) \frac{\gamma - 1}{A}$$
(4.15)

The basic algorithm in the MacCormack technique consists of a two step process, a predictor step and a corrector step. Both the predictor and corrector are made up of simple forward and backward differences of first order accuracy, but the combined two step process has a second order accuracy.⁴⁹ The numerical artificial viscosity required for accurate simulation of shock waves in the flow is applied implicitly where needed.⁵⁰ The predictor portion of the bilevel difference method is defined by

 $\tilde{\rho}_{i}^{n+1} = \tilde{\rho}_{i}^{n} - \frac{\Delta t}{\Delta x} \left[\mathbf{U}_{i+1}^{n} - \mathbf{U}_{i}^{n} \right]$

$$- A_{t} \frac{\Delta t}{\Delta x} \left[\tilde{\rho}_{i+1}^{n} - \tilde{\rho}_{i}^{n} \right]$$
(4.16)

$$\mathbf{U}_{\mathbf{i}}^{\overline{\mathbf{n}+1}} = \mathbf{U}_{\mathbf{i}}^{\mathbf{n}} - \frac{\Delta \mathbf{t}}{\Delta \mathbf{x}} \left[\left(\frac{\mathbf{U}^{2}}{\widetilde{\rho}} + \mathbf{p} \mathbf{A} \right)_{\mathbf{i}+1}^{\mathbf{n}} - \left(\frac{\mathbf{U}^{2}}{\widetilde{\rho}} + \mathbf{p} \mathbf{A} \right)_{\mathbf{i}}^{\mathbf{n}} \right] \\ + \Delta \mathbf{t} \left(\mathbf{p} \frac{d\mathbf{A}}{d\mathbf{x}} \right)_{\mathbf{i}+1/2}^{\mathbf{n}} - \mathbf{A}_{\mathbf{t}} \frac{\Delta \mathbf{t}}{\Delta \mathbf{x}} \left(\mathbf{U}_{\mathbf{i}+1}^{\mathbf{n}} - \mathbf{U}_{\mathbf{i}}^{\mathbf{n}} \right)$$
(4.17)
$$\mathbf{E}_{\mathbf{s}_{\mathbf{i}}}^{\overline{\mathbf{n}+1}} = \mathbf{E}_{\mathbf{s}_{\mathbf{i}}}^{\mathbf{n}} - \frac{\Delta \mathbf{t}}{\Delta \mathbf{x}} \left[\left\{ \frac{\mathbf{U}}{\widetilde{\rho}} \left(\mathbf{E}_{\mathbf{s}} + \mathbf{p} \mathbf{A} \right\}_{\mathbf{i}+1}^{\mathbf{n}} - \left\{ \frac{\mathbf{U}}{\widetilde{\rho}} \left(\mathbf{E}_{\mathbf{s}} + \mathbf{p} \mathbf{A} \right\}_{\mathbf{i}}^{\mathbf{n}} \right\} - \mathbf{A}_{\mathbf{t}} \frac{\Delta \mathbf{t}}{\Delta \mathbf{x}} \left[\mathbf{E}_{\mathbf{s}_{\mathbf{i}+1}}^{\mathbf{n}} - \mathbf{E}_{\mathbf{s}_{\mathbf{i}}}^{\mathbf{n}} \right]$$
(4.18)
$$- \left\{ \frac{\mathbf{U}}{\widetilde{\rho}} \left(\mathbf{E}_{\mathbf{s}} + \mathbf{p} \mathbf{A} \right\}_{\mathbf{i}}^{\mathbf{n}} \right\} - \mathbf{A}_{\mathbf{t}} \frac{\Delta \mathbf{t}}{\Delta \mathbf{x}} \left[\mathbf{E}_{\mathbf{s}_{\mathbf{i}+1}}^{\mathbf{n}} - \mathbf{E}_{\mathbf{s}_{\mathbf{i}}}^{\mathbf{n}} \right]$$
(4.18)

 $\overline{\mathbf{p}_{i}^{n+1}} = \begin{bmatrix} \overline{\mathbf{n}_{i}^{n+1}} & -\frac{\mathbf{U}_{i}}{\mathbf{n}_{i}} \\ \mathbf{E}_{i}^{n+1} & -\frac{\mathbf{U}_{i}}{\mathbf{n}_{i}} \end{bmatrix} \frac{\gamma - 1}{\mathbf{A}_{i}^{n+1}}$ (4.19)

where subscript i refers to the ith node at spatial location $x = x_0 + i\Delta x$ in the spatial mesh of constant spacing Δx , while superscript n refers to time $t = t_0 + n\Delta t$ where Δt is the time increment that the solution is advanced during each cycle of the predictor and corrector. The bar indicates the provisional nature of the values given by the predictor. the predictor uses only forward time and space differences.

The finite difference form for the corrector is as follows

$$\tilde{\rho}_{i}^{n+1} = \frac{1}{2} \left[\tilde{\rho}_{i}^{n} + \tilde{\rho}_{i}^{n+1} - \frac{\Delta t}{\Delta x} \left(u_{i}^{\overline{n+1}} - u_{i-1}^{\overline{n+1}} \right) - A_{t} \frac{\Delta t}{\Delta x} \left(\tilde{\rho}_{i}^{\overline{n+1}} - \tilde{\rho}_{i-1}^{\overline{n+1}} \right) \right]$$

$$(4.20)$$

$$u_{i}^{n+1} = \frac{1}{2} \left[u_{i}^{n} + u_{i}^{\overline{n+1}} - \frac{\Delta t}{\Delta x} \left\{ \left(\frac{U^{2}}{\tilde{\rho}} + pA \right)_{i}^{\overline{n+1}} - \left(\frac{U^{2}}{\tilde{\rho}} + pA \right)_{i-1}^{\overline{n+1}} \right\}$$

$$+ \Delta t \left(p \frac{dA}{dx} \right)_{i-1/2}^{\overline{n+1}} - A_{t} \frac{\Delta t}{\Delta x} \left(u_{i}^{\overline{n+1}} - u_{i-1}^{\overline{n+1}} \right) \right]$$

$$(4.21)$$

$$\mathbf{E}_{s_{i}}^{n+1} = \frac{1}{2} \left[\mathbf{E}_{s_{i}}^{n} + \mathbf{E}_{s_{i}}^{n+1} - \frac{\Delta t}{\Delta \mathbf{x}} \left(\left\{ \frac{\mathbf{U}}{\widetilde{\rho}} (\mathbf{E}_{s} + \mathbf{p}\mathbf{A}) \right\}_{i}^{n+1} \right] \right]$$

$$-\left\{\frac{\underline{U}}{\widetilde{\rho}} (\underline{E}_{s} + \underline{p}\underline{A})\right\}_{i=1}^{n+1} - \underline{A}_{t} \frac{\Delta t}{\Delta x} \left(\underline{E}_{s_{1}}^{n+1} - \underline{E}_{s_{1}-1}^{n+1}\right)\right]$$
(4.22)

$$\mathbf{p}_{i}^{n+1} = \begin{bmatrix} \mathbf{u}_{i}^{n+1} & \frac{\mathbf{u}_{i}^{n+1}}{\mathbf{u}_{i}} \\ \mathbf{u}_{i}^{n+1} & \frac{\mathbf{v}_{i}^{n+1}}{2\tilde{\rho}_{i}^{n+1}} \end{bmatrix} \frac{\gamma - 1}{\mathbf{A}_{i}^{n+1}}$$

(4.23)

The corrector step utilizes a forward time step, but a backward spatial step based on the predicted solution. The alternating use of forward and backward spatial derivatives models the fact that in hyperbolic systems at each location information travels by waves in both the positive and negative x direction. Completing the corrector at each mesh point advances the solution one complete time step. In order to proceed to the next point in time, the entire process of predictor and corrector is repeated. Examination of the set of difference equations shows that the mass, momentum, and energy are conserved during the calculations; that is, the differenced quantities at interior points of the mesh appear exactly twice during a sweep through the mesh, each time with opposite signs.

4.4. Time Step Criteria

The numerical stability of methods of the MacCormack type, namely, those of Lax and Wendroff³⁰ can not presently be completely analyzed in their general nonlinear form. The most successful attempt in this respect to date is to first linearize the set of basic differential equations and then to obtain a bound for the maximum amplification of any Fourier component of the solution by the difference method applied to the linearized set. Difference methods found unstable on locally linearized differential equations can be expected to be unstable in the general nonlinear case. Two conditions inherent in such an analysis are that the boundary conditions have no effect on the stability and that the exact solution to the basic equations is smooth. Even though the results apply principally to regions of flow away from the boundaries

-29-

and in which there are no discontinuities, such as shocks, they are taken as representative of the whole flow field. The stability of the MacCormack scheme has been treated very thoroughly in the literature.⁵¹

In order to avoid stability problems, the following criterion must hold between the time and space step sizes

$$\frac{\Delta t(|u| + a + |A_t|)}{\Delta x} \leq 1$$
(4.24)

where a is the local speed of sound in the gas, and A_t is related to the transformation of the spatial coordinate. This condition is the well known Courant-Friedrichs-Lewy (CFL) condition that often appears in fluid dynamics. This condition represents the best bound that can be realized in numerical methods. For all the calculations which have been carried out in the present research, a more conservative condition was used

$$\frac{\Delta t(|u| + a + |A_t|)}{\Delta x} = 0.7$$
(4.25)

-30-

5. FLOATING DISCONTINUITY FITTING

5.1. Floating Shock Fitting

Explicit and implicit artificial viscosity shock capturing techniques require no special treatment to deal with discontinuities. Therefore they have become an extremely popular way of computing. However, despite its present popularity, the results obtained with these techniques forces us to agree with Moretti's³² conclusion that, at times, shock capturing is a poor interpretation of the physical phenomena. As shock interactions with the combustion front represent the primary means of initial flame front acceleration, proper physical modelling of the interacting process is required.

To determine whether shock-combustion front interactions could be modelled appropriately, a test for the pressure-space profile of a shock wave was made. The solid line in Fig. 17 represents the exact pressure-space profile for shock reflection from a solid plane wall corresponding to an incident shock, Mach number 1.505, travelling into a quiescent air medium. Corresponding to that same instant in time, the "plus" profile represents calculations performed by the contemporary explicit artificial viscosity scheme, the Cloud Code,²⁴ while the "dotted" profile corresponds to MacCormack's implicit artificial viscosity scheme. For both numerical schemes the velocity and position of the shock agree with the exact results. Previous calculations, using the explicit artificial viscosity on the shock-combustion front interaction process. In addition, allowable time steps were reduced. This precluded the method's usefulness. With MacCormack, where artificial viscosity is

-31-

limited, the captured shock is distributed over six to eight spatial grid stations over which oscillation exists. Oscillation and overshoots are emblematic of numerical differencing across discontinuous or nonsmooth, rapidly varying quantities. To properly model the shock-combustion front interaction process, interpretation of the shock's physical phenomena is necessary.

A technique known as floating shock fitting,⁵² when used in conjunction with MacCormack's scheme, produces a pressure-space profile indistinguishable from the exact solution. Floating shock fitting is a technique for explicitly computing the discontinuity. A description of this combined scheme follows.

Except in the neighborhood of the discontinuity, all mesh points are computed using MacCormack's predictor-corrector algorithm to integrate Eqs. (4.12) to (4.15). Because the discontinuities are permitted to float about grid positions, special provisions must be taken when evaluating the spatial derivatives of conserved quantities at mesh points in the neighborhood of a discontinuity. Consider the situation of a right running shock in the computational plane between times n and n+1 as shown in Fig. 18A. There is difficulty in computing the predictor level of MacCormack's scheme at node (n,i), the high pressure side of the shock. Performing the forward spatial derivative using nodal points s and i leads to instabilities resulting from large truncation errors, while Moretti's³¹ recommendation of using values at the shock and the three adjacent mesh points introduces too large a numerical domain of dependence. Results replacing forward differences with backward differences in the predictor remained stable for axis speeds

-32-

less than the shock induced particle speeds. The cause of the instability is thought to involve the improper transmission of information along the three characteristics adjacent to the shock.⁵³ Instead the following second order accurate approximation for the forward derivatives is used⁵⁴

$$\frac{\partial []}{\partial x} = \frac{2(2-\varepsilon)}{1+\varepsilon} []_{s}^{n} + (2\varepsilon - 3)[]_{i}^{n} + \frac{(1-\varepsilon)(2\varepsilon - 1)}{1+\varepsilon} []_{i-1}^{n} (5.1)$$

where

$$\varepsilon = \frac{(x)\frac{n}{s} - (x)\frac{n}{i}}{\Delta x}$$

and [] represents a conserved quantity. In Fig. 18B a similar situation occurs, but involving the corrector level at node (n+1, i+1), the high pressure side of the shock. The backward derivative is approximated by

$$\frac{\partial []}{\partial x} = \frac{2(2-\varepsilon)}{1+\varepsilon} []_{s}^{\overline{n+1}} + (2\varepsilon - 3) []_{i+1}^{\overline{n+1}} + \frac{(1-\varepsilon)(2\varepsilon - 1)}{1+\varepsilon} []_{i+2}^{\overline{n+1}}$$
(5.2)

where

$$\varepsilon = \frac{\frac{n+1}{n+1}}{\Delta x} \frac{n+1}{\Delta x}$$

For the low pressure side, stable computations are obtained by reversing the forward and/or backward differences in the predictor and/or corrector levels.

Figure 19 presents the five identifiable cases of shock motion relative to the uniformly translating difference grid. The lower and upper mesh lines represent nodal positions at the beginning and end of the time step under consideration, the thick solid line is the shock trajectory, and the thin upward and downward arrowed lines are symbols used to indicate application of MacCormack's predictor or corrector step respectively at the note indicated by the head. The leftward or rightward direction of the arrowed lines denotes whether a forward or backward space difference is to be used. The strength of the shock is simply determined from the Rankine-Hugoniot relations for pressure as a function of shock strength. The predicted shock strength uses predicted values of pressure, while the corrected shock strength relies on corrected pressure values. To maintain higher order accuracy, the shock's trajectory is evaluated on the basis of the average of the initial and predicted speeds. After completion of the corrector step, a corrected shock speed and strength are calculated. These are retained as the initial shock speed and strength during the next cycle. The vertical arrowed lines appear because the discontinuity floated over a node of the mesh. In such cases the predicted and corrected values of the gasdynamic variables are determined by applying the Rankine-Hugoniot relations to upstream conditions at the beginning of the time step. The predicted values of the gasdynamic variables are based on the initial shock strength while the corrected values use an average of the initial and predicted shock strengths. The inverted "T" and "T" symbols indicate the use of Eqs. (5.1) and (5.2) respectively.

-34-

A technique developed by Moretti et al.^{33,55} utilizing the information carried along the characteristic intersecting the shock on the high pressure side, i.e., the compatability equation along with the Rankine-Hugoniot relations to determine the gasdynamic states about the shock, was tested. Moretti's technique showed no advantages over floating shock fitting. In addition, Salas⁵² mentions the difficulty of determining the origin of the characteristic reaching the shock in the immediate viscinity of other discontinuities.

MacCormack's scheme combined with the floating shock fitting techniue properly models the shock. The appropriate difference schemes for all five cases are thus completely described.

5.2. Floating Contact Discontinuity Fitting

A Contact discontinuity is an interface separating two fluids having a common pressure and fluid velocity but different densities and specific energies. Contact discontinuities are created by the following flow field interaction systems:

1) shock-shock collision and merging (Figs. 7 and 8)

2) shock-deflagration merging (Fig. 13)

3) deflagration-contact discontinuity (Fig. 14)

Strictly speaking, numerical differentiation of density and specific internal energy across the surface is not permitted. Figure 20 shows the resulting density-space profile of a contact surface after 40 cycles of the MacCormack scheme. Though the oscillation is minimal and negligibly influences shock wave calculations, the sensitivity of the combustion front parameters to small changes in density is significant. The floating contact discontinuity fitting technique devised by the author, as suggested by Chorin,⁵⁶ overcomes this difficulty by treating the contact discontinuity as a physical discontinuity. With reference to Fig. 21A, the basis for calculating the contact discontinuity's motion and associated discontinuous gasdynamic states is the generalization of the solution of Riemann's⁵⁷ problem to include any two arbitrary independent gasdynamic states, 1 and 2. States 3 and 4 are the required gasdynamic states on either side of the contact surface. A rapidly converging algorithm⁵⁸ is used for solving the Riemann problem. Figure 21B shows the trajectory of the contact discontinuity, denoted by the dashed line, in the computational plane between times n and n+1. Parameters at locations i+1 and i correspond to states 1 and 2 respectively while values for states 3 and 4 reside at the "+" nodes which travel with the contact surface. The "bursting star" symbol is used to identify states 1 through 4. In the course of the calculations the shock strengths associated with the Riemann solution were monitored and found to vary insignificantly from that of sound waves. Figure 22 presents the difference schemes in symbolic form used in the four identifiable cases of contact discontinuity motion relative to the difference grid.

5.3. Floating Flame Fitting

This section describes floating flame fitting, a novel technique for encorporating a flame, treated as a deflagration, into a bilevel difference scheme. The technique is based on the ability of sound waves to traverse a flame from positions upstream and downstream of the flame. Equations (2.1) and (2.2) relate the burning speed to the

-36-

value of the thermodynamic pressure and temperature immediately ahead of the flame. In order to avoid the complications of evaluating the thermodynamic state immediately ahead of the deflagration as the deflagration progresses through a stationary mesh, eventually crossing a mesh point, this technique requires that the deflagration always coincide with one of the nodes. <u>In addition the computational mesh</u> <u>moves with the deflagration velocity</u>. This is accomplished by judiciously distributing the initial mesh about the deflagration position and transforming the independent time and space coordinates of the governing differential equations as shown in Eqs. (4.5a) and (4.5b).

Figure 23 shows the deflagration trajectory, denoted by a thick dashed line, and the nodal distribution about the deflagration during time instant n to n+1. Nodes i and i+1 represent the gasdynamic states of the medium immediately ahead of, denoted by 3, and behind, denoted by 4, the deflagration respectively. For the case of a perfect gas, the conservation relations governing the motion of the deflagration can be expressed as⁵⁹

Continuity:
$$v_d = v_4 / v_3 = (S + u_3 - u_4) / S$$
 (5.3)

Momentum:
$$P_d = p_4/p_3 = 1 + \gamma_3 S^2 (1 - \nu_d)/a_3^2$$
 (5.4)

-

Hugoniot:

$$(P_{d} + \beta) (v_{d} - \beta) = (1 + \beta) (v_{f} - \beta)$$
 (5.5)

where

$$v_{\mathbf{f}} = \left(\frac{\mathbf{a}_{\mathbf{0}}}{\mathbf{a}_{\mathbf{3}}}\right)^2 v_{\mathbf{F}} + \left[1 - \left(\frac{\mathbf{a}_{\mathbf{0}}}{\mathbf{a}_{\mathbf{3}}}\right)^2\right] \left[\frac{\gamma_{\mathbf{3}}}{\gamma_{\mathbf{4}}} + \frac{(\gamma_{\mathbf{4}} - 1)}{\gamma_{\mathbf{3}} - 1} - \frac{\overline{\mathbf{m}}_{\mathbf{3}}}{\overline{\mathbf{m}}_{\mathbf{4}}} + 1\right]$$

-37-

$$\beta = \frac{\gamma_4 - 1}{\gamma_4 + 1}$$

where p, v, a, and u represent the pressure, specific volume, speed of sound, and particle velocity respectively, S - the burning speed, \overline{M} - the mean molecular weight, and γ - the ratio of specific heats. The Hugoniot equation has been written in terms of the hyperbolic relation where the heat liberated during combustion is expressed in terms of $v_{\rm F}$, the ratio of specific volumes at the reference pressure.

When conditions ahead of the deflagration affect conditions behind, the forward jump equations, obtained by substituting Eq. (5.3) into Eq. (5.4) and solving for specific volume, are used. For flame burning speeds less than the Chapman-Jouguet value, these equations are

$$S = S_{O} \left(\frac{P_{3}}{P_{O}}\right)^{\delta+\theta} \left(\frac{v_{3}}{v_{O}}\right)^{\delta}$$
(5.6)

$$\mathbf{v}_4 = \mathbf{v}_3 \frac{\xi - \sqrt{\zeta}}{n} \tag{5.7}$$

where

$$\eta = 2\gamma_{3}S^{2}/a_{3}^{2} \quad \text{and} \quad \xi = (1 + \beta)(1 + \eta/2)$$

$$\zeta = \xi^{2} - 2\eta[\beta\eta/2 + (1 + \beta)\nu_{f}]$$

$$p_{4} = p_{3}(1 + \eta(1 - \nu_{d})/2) \quad (5.8)$$

$$u_{4} = u_{3} - S(\nu_{d} - 1) \quad (5.9)$$

-38-

A Chapman-Jouguet deflagration corresponds to $\zeta = 0$. In the Chapman-Jouguet case, the burning speed law becomes

$$s_{CJ} = \frac{\sqrt{(1 + \beta) p_3 v_3}}{(1 - \beta)} \left[\sqrt{v_f - \beta} - \sqrt{v_f - 1} \right]$$
(5.10)

while the forward jump Eqs. (5.7) to (5.9) remain unchanged with the exception that S_{CJ} replaces S. When conditions behind the deflagration influence conditions ahead, the backward jump equations are employed. As the burning speed represents an additional unknown, these equations no longer have a closed form, rather the equations require Newton's method for their solution. The algorithm for the backward jump equations begins by guessing a value for the density, ρ_3 , and iteratively solving for pressure, p_3 , from Eq. (5.4) as follows

$$p_3 = p_3 - G_p / (\partial G_p / \partial p_3)$$
 (5.11)

where

$$s = s_{o} \left(\frac{p_{3}}{p_{o}}\right)^{\delta+\theta} \left(\frac{\rho_{o}}{\rho_{3}}\right)^{\delta}$$
$$g_{p} = p_{3} - p_{4} + s^{2} \rho_{3} (1 - v_{d})$$

$$\frac{\partial G}{\partial P_3} = 1 + 2s^2(\delta + \theta)(1 - v_d) \rho_3/P_3$$

Then by substituting Eq. (5.4) into Eq. (5.5) and using p_3 from Eq. (5.11), the value of ρ_3 is obtained by the following iteration

$$\rho_{3} = \rho_{3} - G_{\rho} / (\partial G_{\rho} / \partial \rho_{3})$$
(5.12)

where

$$\begin{split} s &= s_{0} \left(\frac{p_{3}}{p_{0}}\right)^{\delta + \theta} \left(\frac{\rho_{0}}{\rho_{3}}\right)^{\delta} \\ g_{\rho} &= p_{4} (\beta - \nu_{d}) \left(1 + \beta\right) + (1 + \beta) (\nu_{F} - \chi) \rho_{3} + p_{4} (1 + \beta) (\chi - \beta) \\ &+ s^{2} \rho_{3} (1 - \nu_{d}) \left[\beta (\nu_{d} - \beta) - (1 + \beta) (\chi - \beta)\right] \\ \chi &= \gamma_{3} (\gamma_{4} - 1) / \gamma_{4} / (\gamma_{3} - 1) - \bar{M}_{3} / \bar{M}_{4} + 1 \end{split}$$

$$\frac{\partial G}{\partial \rho_3} = s^2 \rho_3 (1 - \nu_d) \left[\beta (\nu_d - \beta) - (1 + \beta) (\chi - \beta) \right] \left[\frac{2}{s} \frac{\partial s}{\partial \rho_3} + \frac{(1 - 2\nu_d)}{\rho_3 (1 - \nu_d)} \right] - (1 + \beta) p_4 / \rho_4 + (1 + \beta) (\nu_F - \chi)$$

$$\frac{\partial s}{\partial \rho_3} = -\delta s/\rho_3 + (\delta + \theta) s \frac{\partial p_3}{\partial \rho_3}/p_3$$

$$\frac{\partial P_3}{\partial \rho_3} = \frac{[(2\delta - 1)(1 - v_d) + v_d] s^2}{1 + 2\rho_3(\delta + \theta) s^2(1 - v_d)/p_3}$$

Using the momentum equation, Eq. (5.4), to determine $(\partial p_3 / \partial \rho_3)$ proved a better choice than the Hugoniot equation, Eq. (5.5), for flame burning speeds approaching the Chapman-Jouguet value. A new value of p_3 , based on the value of ρ_3 from Eq. (5.12), is obtained from Eq. (5.11). The iterative procedure ends when the changes in p_3 and ρ_3 fall below 10^{-N} , where N is a large integer. The particle velocity ahead of the deflagration is evaluated from

$$u_3 = u_4 + S(v_d - 1)$$
 (5.13)

This completes the calculation of state 3.

In the case of a Chapman-Jouguet deflagration, Eq. (5.7) yields

$$s_{CJ}^{2} = \frac{(1 + \beta) p_{3}}{\rho_{3} [2\nu_{d} - (1 + \beta)]}$$
(5.14)

Substituting Eq. (5.14) into Eq. (5.4) gives

$$v_{d} = \frac{P_{d}(1 + \beta)}{2P_{d} - (1 - \beta)}$$
(5.15)

Substituting Eq. (5.15) into Eq. (5.5) yields the following relation

$$p_{3} = \frac{-\zeta + \sqrt{\zeta^{2} - 4\xi\eta}}{2\xi}$$
(5.16)

where

$$\xi = (1 + \beta)^2 \frac{\rho_4}{p_4} (v_F - \chi) - (1 - \beta)$$

$$\zeta = 2 \left[(\mathbf{1} + \beta) \chi - 2\beta \right]$$

$$η = (1 - β) [β - χ (1 + β)]$$

and χ is defined as Eq. (5.12). The values of $\rho_{3},~S_{CJ},$ and u_{3} are obtained

from Eqs. (5.15), (5.14), and (5.13) respectively. This completes the calculation of state 3 in the Chapman-Jouguet case.

Figure 23 presents the difference scheme in symbolic form used in the floating flame fitting technique. The semi-circular backward and forward arrowed arcs represent application of the forward and backward jump equations. The algorithm in Fig. 23 consists of the following five steps:

- 1) forward predictor at i+1
- 2) forward jump equations at i+1
- 3) forward predictor at i-1
- 4) backwards corrector at i
- 5) backward jump equations at i

An algorithm applying the backward jump equations prior to the forward jump equations gives the same results.

5.4. Floating Detonation Fitting

Floating detonation fitting is based on the classical treatment of a detonation front as a shock front followed by a deflagration. Figure 24 describes this thermodynamic process on the pressure-specific volume plane for the case of a Chapman-Jouguet detonation. Symbol u refers to the upstream conditions, N corresponds to conditions at the von Neumann spike, and J denotes conditions associated with the Chapman-Jouguet deflagration. Not shown are overdriven detonations which correspond to the upper interaction point of the Rayleigh line with the Hugoniot curve. Rayleigh lines associated with overdriven detonations have slopes in the pressure-specific volume plane greater than the Rayleigh line corresponding to Chapman-Jouguet detonation. This occurs because overdriven detonations have wave speeds greater than the Chapman-Jouguet detonation wave speed.

The condition of tangency of the Rayleigh line to the Hugoniot at state J is expressed by

$$u_{J} + a_{J} = D \tag{5.17}$$

where u_J and a_J represent the particle and sound speed respectively at state J, and D refers to the detonation speed. The physical interpretation of Eq. (5.17) is that detonation states N and J only depend on the upstream conditions, state u, as information carried by downstream disturbances cannot penetrate the detonation front. This condition is reflected in the floating detonation fitting technique by using the following relations⁵⁹ to evaluate states N and J

$$M_{D}^{2} = M_{J}^{2} = M_{N}^{2} = \frac{2P_{G_{u}} - (1 - \beta) + 2}{(1 - \beta) \gamma_{u}} \sqrt{P_{G_{u}}^{2} - (1 - \beta) P_{G_{u}} - \beta}$$
(5.18)

where

$$P_{G_{u}} = 1 + \frac{P_{G_{o}} - 1}{(a_{o}/a_{u})^{2}} + \gamma_{J} \left[1 - (a_{o}/a_{u})^{2} \right] (B\gamma_{u}/\gamma_{J} - \bar{M}_{u}/\bar{M}_{J})$$

$$P_{G_{O}} = \frac{(1 + \beta) (\nu_{F} - \beta)}{1 - \beta} - \beta$$

$$B = \frac{\gamma_J - 1}{\gamma_i - 1} \quad \text{and} \quad \beta = \frac{\gamma_J - 1}{\gamma_J + 1}$$

and n_F represents the heat liberated during combustion in terms of the ratio of specific volumes at the undisturbed pressure.

$$P_{J} = \frac{(1 - \beta)}{2} \left(1 + \gamma_{u} M_{D}^{2} \right) \qquad P_{N} = (1 + \beta) M_{N}^{2} - \beta \qquad (5.19a,b)$$

where

$$p_{J} = P_{J} \cdot p_{u} \qquad p_{N} = P_{N} \cdot p_{u}$$

$$\rho_{J} = \rho_{u} \frac{P_{J} + \beta}{(P_{J} + \beta) - (1 - \beta)(P_{J} - P_{G_{u}})}$$
(5.20a)

$$\rho_{\rm N} = \rho_{\rm u} \frac{M_{\rm N}^2}{\beta M_{\rm N}^2 + (1 - \beta)}$$
(5.20b)

$$U_{J} = \left[\frac{(1 - \beta)(P_{J} - P_{G_{u}})(P_{J} - 1)}{\gamma_{u}(P_{J} + \beta)}\right] a_{u} + u_{u}$$
(5.21)

$$U_{N} = \left[\begin{pmatrix} 1 - \beta \end{pmatrix} \begin{pmatrix} 1 - \frac{1}{M_{n}^{2}} \end{pmatrix} M_{n} \right] a_{u} + u_{u}$$
 (5.22)

Relations (5.18) to (5.22) are derived by applying the Chapman-Jouguet condition, Eq. (5.17), to the basic relations (5.3) to (5.5).

For overdriven detonations, a greater than inequality replaces the equality in relation (5.17). Under this circumstance, rarefaction waves can interact with the leading overdriven detonation front causing the overdriven detonation front to decay to Chapman-Jouguet detonation. The relations for evaluating the gasdynamic states associated with the overdriven detonation remain relations (5.19) to (5.22) with the exception that (5.19a) is replaced by⁵⁹

$$P_{J} = \frac{(1-\beta)}{2} \left(1 + \gamma_{u} M_{D}^{2}\right) + \Delta$$
(5.23)

where

$$\Delta^{2} = \frac{(1-\beta)^{2}}{2} \left(1 + \gamma_{u}M_{D}^{2}\right)^{2} - \gamma_{u}(1-\beta) M_{D}^{2} P_{G_{u}} + \beta$$

The overdriven detonation Mach number is obtained from the analysis given in Section 3.2.2.

In the floating detonation fitting technique, the difference mesh remains at rest. Figure 25 shows the appropriate differencing scheme in symbolic form used in the two identifiable cases of detonation motion relative to the grid. The detonation trajectory is denoted by a thick solid line.

A detonation wave is modelled as a detonation front followed by a rarefaction wave. Even though the gasdynamic parameters are continuous across a rarefaction wave, MacCormack's scheme, a combination of two first order difference steps, can only accurately model a rarefaction of sufficient smoothness. Numerical experiments performed by the author indicate that the rarefaction associated with Chapman-Jouguet detonation must span at least five node spacings to avoid instability induced by truncation error. The number of node spacings depends on the strength of the rarefaction wave. When modelling the early stages of a detonation wave, in addition to using floating detonation fitting, the rarefaction is treated analytically. For a perfect gas the equations for the distribution of the gasdynamic parameters in a right running rarefaction are⁵⁹

$$u_{x} = u_{h} + (u_{h} - u_{t}) \frac{(x_{h} - x_{x})}{(x_{h} - x_{t})}$$

$$a_{x} = \left(\frac{U_{x}}{\alpha} + 1\right) a_{h}$$
(5.24)
(5.25)

where

$$U_{\mathbf{x}} = \frac{u_{\mathbf{x}} - u_{\mathbf{h}}}{a_{\mathbf{h}}} \quad \text{and} \quad \alpha = \frac{2}{\gamma_{\mathbf{h}} - 1}$$

$$\rho_{\mathbf{x}} = \left(\frac{a_{\mathbf{x}}}{a_{\mathbf{h}}}\right)^{\alpha} \rho_{\mathbf{h}} \quad (5.26)$$

$$\mathbf{p}_{\mathbf{x}} = \left[\frac{\alpha \gamma_{\mathbf{h}}}{2 + \alpha} \begin{pmatrix} \frac{2 + \alpha}{\alpha} & -1 \end{pmatrix} + 1 \right] \mathbf{p}_{\mathbf{h}}$$
(5.27)

where subscripts h, t, and x represent the conditions at the head, tail, and intermediate point in the rarefaction wave respectively, and p, ρ , u, a, and x represent the pressure, density, particle velocity, speed of sound, and the position respectively. The velocity is distributed linearly in a rarefaction. Figure 26 compares the pressure-, density-, and particle velocityspace profiles computed by 139 cycles of MacCormack's scheme with floating detonation fitting to the exact solution¹⁸ for the case of a Chapman-Jouguet detonation in a closed end tube. The results are for a typical hydrocarbon-air mixture initially at atmospheric conditions. The profiles compare very well.

6. APPROACH AND SEPARATION OF DISCONTINUITIES

The Courant-Friedrichs-Lewy stability condition states that a necessary condition for stability is that the numerical domain of dependence at every point in the flow field include all of the partial differential equation's domain of dependence at least as the time step and mesh spacing approach zero. The floating discontinuity techniques were designed to satisfy this condition thereby ensuring that the computed motion of the discontinuities depended on all the data physically influencing the motion. Generally, the numerical domains of dependence exceed the analytical domains. These larger numerical domains of dependence do not increase the stability as the numerical scheme inherently neglects all but the physically meaningful data associated with the node under consideration. However, the accuracy of the solution can be upgraded if the numerical scheme is designed for that purpose.⁶⁰ The larger numerical domains arise in the attempt to include the physically pertinent data when the only data available exists at the equally spaced nodes.

The four discontinuities in the flow field explicitly treated in the numerical scheme are shock waves, contact surfaces, deflagrations, and detonations. When these discontinuities exist alone or are well separated from each other and points of symmetry, such as solid walls, Figs. 19, 22, 23, and 25 show the difference scheme to be applied in the immediate neighborhood of the discontinuity for each of the identifiable cases of the discontinuity's relative motion to the difference grid. The inner and outermost nodes specifically involved in the floating discontinuities computations define the left and right hand boundaries respectively of the numerical domain of dependence.

-48-

Deflagration has the smallest domain spanning only one mesh width on either side of the deflagration. Values at six nodal positions are included in the numerical domain of dependence for a right running shock or detonation crossing a node. A right running contact surface crossing a node has the largest numerical domain of dependence involving values at eight nodal positions and stretching over five cell spacings. Two discontinuities are well separated when the left hand boundary of the numerical domain of dependence of the leading discontinuity lies to the right of the trailing discontinuity's position during the time step Δt and the right hand boundary of the trailing discontinuity's numerical domain of dependence lies to the left of the leading discontinuity's initial location. When the discontinuities are not well separated from each other or points of symmetry, one or more of the predictor and/or corrector steps, indicated in Figs. 19, 22, 23, and 25, involve differentiation across a discontinuity. Therefore, special differencing algorithms about the discontinuities are necessary. Procedures for handling of discontinuities which are not well separated fall into two categories: (A) procedures involving only two discontinuities, (B) procedures involving three or more discontinuities. Generally, category (A) represents the approach of discontinuities prior to an interaction, while category (B) is representative of the flow field soon after the interaction process. The details of the interaction process are set forth in Chapter 3. The following interaction systems are included in category (A):

-49-

- (1) shock-shock
- (2) shock-contact discontinuity
- (3) shock-deflagration
- (4) shock-detonation
- (5) contact discontinuity-shock
- (6) contact discontinuity-deflagration
- (7) contact discontinuity-rarefaction (interface)
- (8) deflagration-shock
- (9) deflagration-contact discontinuity
- (10) detonation-shock
- (11) detonation-contact discontinuity
- (12) plane of symmetry-shock
- (13) rarefaction-CJ detonation

Associated with each situation are the many ways in which the discontinuities are not well separated. In the actual computations, it proved helpful to print a code number identifying the particular way in which the two discontinuities were not well separated. The code is calculated as follows

 $NSC = 100 (NDISCL1 - NDISCL2 - \Delta) + 10 NXS2 + NXS1$ (6.1)

where NDISCL1 and NDISCL2 are the mesh node numbers immediately behind the leading and trailing discontinuities respectively at time instant n. NXS1 and NXS2 indicate that the leading and trailing discontinuities cross over the node on the right, left or not at all during time interval n to n + 1 by assuming values 1, -1, or 0. Interaction systems involving a contact discontinuity assign Δ a value of unity, otherwise Δ equals zero. The appropriate numerical scheme and identifying code for all the ways for each of the first twelve interaction systems are presented in symbolic form in Fig. 27 to 38. Interaction system (13) has been discussed in Section 5.4. The chain dotted line in Fig. 33 denotes the trajectory of the tail of the rarefaction wave in interaction system (7). Interactions in which the identifying code points to another identifying code indicate that the difference scheme to be applied corresponds to the latter identifying code number. Asterisk superscripts denote that an interaction between discontinuities can occur. The interaction systems included in category B are:

(1) shock-shock-shock

(2) shock-shock-detonation

(3) shock-contact discontinuity-shock

(4) shock-contact discontinuity-deflagration

(5) shock-detonation-shock

(6) contact discontinuity-deflagration-shock

(7) contact discontinuity-rarefaction-CJ detonation

(8) detonation-shock-shock

(9) shock-contact discontinuity-deflagration-shock

(10) shock-contact discontinuity-rarefaction-CJ detonation

The first eight situations were treated by decomposing each situation into two appropriate category (A) situations and properly matching values at the interface. Situation (9) was decomposed into situation (6), category (B), and situation (2), category A, while situation (10) was decomposed into situation (7), category (B) and situation (2), category (A).

7. APPLICATION OF THE NUMERICAL METHOD

The flow diagram presented in Fig. 39 describes the executive instructions controlling the whole of the computational process. The block entitled FIDIF (Finite Difference) controls the application of the numerical method. The flow diagram of FIDIF is presented in Fig. 40.

The strategy in applying the numerical method is to first treat the flow field as it were devoid of discontinuities, and apply MacCormack's predictor corrector bilevel scheme at all points. By predicting values at nodes 1 to N and applying the corrector step in the reverse nodal order, that is, nodes N to 1, considerable savings in the required computer storage is realized.

The next step is to locate and identify the type of discontinuity nearest to the origin. A determination of whether the discontinuity is well separated in the flow field can be made after the next nearest discontinuity to the origin is located and identified. If the first discontinuity is well separated, then the flow field about the discontinuity is calculated using the appropriate floating discontinuity technique. Then the next nearest discontinuity to the origin is located and the type identified. Now the adequacy of the separation of the second discontinuity can be determined. This procedure continues until two discontinuities are not well separated. Again the location and type of the next nearest discontinuity is made. The adequacy of the separation between this discontinuity and the previous discontinuity is checked. If they are well separated, then the previous two discontinuities correspond to a situation in category (A), described in Chapter 6. The particular way in which the two discontinuities are not well separated is noted

-52-

and the appropriate difference scheme is used. If the discontinuities undergo an interaction, the appropriate solution to the interaction is obtained by the polar method discussed in Chapter 3. However, if the test fails, all three discontinuities are inadequately separated and a check for the possibility of a fourth or more is made. In any event, the situation belongs in category (B), described in Chapter 6. If the three or more discontinuities undergo an interaction, the vector polar method provides the solution. This step terminates when all the discontinuities have been explicitly handled.

The next step is to reorder the discontinuities in the flow field by location. The purpose is to add and/or terminate in the appropriate positions those discontinuities which, as a result of an interaction process, have been introduced or eliminated into the flow field. Prior to applying the polar method to interactions which occur in the burnt medium and involve shock waves and contact discontinuities, an evaluation of their strengths is made. Shocks with Mach number less than 1.001 and contact surfaces with density differences less than 2% are terminated in the flow field. This avoids needlessly computing infinitessimal disturbances as discontinuities and unclutters the flow field. The last two steps are enclosed by a dashed line in Fig. 40. The remaining steps are to calculate particle paths and characteristic trajectories along which information is transmitted and to print out and write on tape a description of the flow field at desired intervals. This completes the description of the numerical method used in solving the problem. Appendix C contains a listing of the computational code FLAME.

-53-

8. RESULTS

8.1. Stable and Unstable Cases

Of particular interest in the study reported here was the evaluation of the non-steady effects caused by an abrupt change in the burning speed of an initially steady deflagration propagating in an unconfined combustible gas mixture. The numerical solutions presented here were obtained for the particular case of hydrocarbon-air mixtures initially at NTP conditions. In the computations, the burned and unburned media were considered to behave as thermally and calorically perfect gases with constant isentropic indices, $\gamma_u = 1.3$ and $\gamma_b = 1.2$ respectively. The energy deposited by combustion was expressed in terms of the specific volume ratio corresponding to a change of state at constant pressure, $\gamma_p = 7$, and the ratio of molecular weights, *M*, set equal to one.

Time-space wave diagrams for two cases corresponding to the same initial burning speed of 9.6 meters per second but experiencing different increments in burning speed, ΔS , of 14.6 and 19.0 meters per second respectively, are illustrated in Figs. 41 and 42. The thick dashed lines in the wave diagrams denote deflagration, the solid lines represent shock fronts, the thick solid line denotes detonation, and thin dashed lines are the representative particle paths. In the first case, the disturbances associated with an increment in the burning speed of 14.6 meters per second have, after experiencing eight interactions with the deflagration, been reduced to sound waves. Meanwhile the deflagration's burning speed has increased to the final value of 37.2 meters per second. This process has taken approximately 240 $x_f^{'}$ milliseconds and the deflagration has travelled a distance equal to

-54-

53 $\mathbf{x}_{\mathbf{f}}^{\prime}$ meters, that is, 53 times the distance, expressed in meters, traversed by the deflagration prior to the actuation of the initial disturbance. The strength of the front of the leading blast wave has increased from a Mach number of 1.1 to 1.4. In this case, the nonsteady disturbances have died down and the flow field that is established corresponds to another steady state self-similar solution as it was at the start.

In contrast, in the second case, the disturbances associated with the increment in the burning speed of 19.0 meters per second have been of sufficient intensity to trigger transition to detonation. Associated with the establishment of a detonation wave travelling at 2250 meters per second into the unburned medium is the occurrence of a retonation wave, Mach number 1.29, travelling at 1250 meters per second into the burned medium. these wave speeds are quite typical of those reported in the literature.³⁴ Detonation occurred at 76 x_{f}^{\prime} milliseconds and at a distance of 20.3 x'_{f} meters from the origin. The Chapman-Jouguet detonation speed in the undisturbed medium is 1690 meters per second. The effect of the transition to detonation is manifested dramatically by the trajectories of the representative particle paths. Details of the transition to detonation, in the form of the trajectories of the forward and backward running characteristics denoted by thin solid lines, are illustrated in the time-space wave diagram in Fig. 43. The basis of their importance is that it is along these trajectories that gasdynamic information is transmitted from one part of the flow field to another. The time and space intervals used in Fig. 43 correspond to the area enclosed by the rectangle in Fig. 42.

-55-

At the establishment of detontation, the generation of a strong centered rarefaction wave attached to the back of the detonation front is evidenced. The strength of this rarefaction wave is qualitatively shown by the curvature of the backward running, u-a, characteristic behind the detonation front. The rapidly increasing extent of this centered rarefaction wave is indicated in Fig. 43 by the trajectory of the tail of the rarefaction, denoted by the chain double dotted line. Also the effect of the detonation-shock merging interaction, resulting in a non-steady overdriven detonation which decayed to the appropriate Chapman-Jouguet level, is aptly indicated by the separation of the trajectories of the backward running characteristics eminating from a position immediately ahead of and behind the point of interaction. The effect of the rarefaction fans on the particle path initiated at R = 18 is noted.

In addition, pressure-space profiles at various instants in time for the two cases are presented in Figs. 44 and 45. The vertical dashed lines denote a pressure change due to the deflagration process. The horizontal dashed lines, used only as a drawing aid to distinguish the individual profiles, indicate that over that portion of the profile the pressure equals that of the adjacent solid line. The pressure profile at T = 4.5 correspond to the spatial pressure distributions at the instant prior to the increment in the burning speed. In Fig. 45, the rapid pressure change which first appears at T = 22.3 and progresses into a rarefaction wave at T = 24.2 is attributed to the effect of the gasdynamics of overdriven detonation on the flow field in the

-56-

immediate neighborhood of the point of interaction. The detonation-shock interaction occurred at T = 22.2. The last pressure profile at T = 25.8 shows that the flow field is rapidly approaching that given by a steady state self-similar Chapman-Jouguet analysis.¹⁸

For completeness, pressure histories at various locations are presented in Figs. 46 and 47 for the stable and unstable solutions respectively. The vertical and horizontal dashed lines maintain their meaning as previously explained. In Fig. 46 all the pressure histories can be approximated by a single pressure rise followed by a pressure drop, due to the deflagration process. Such a pressure signature is indicative of a flow field corresponding to a steady state self-similar solution.²⁰ However, in Fig. 47, the evidence of transition to detonation is provided for in the pressure signature by the rapid exponential-like decrease of pressure with distance.¹⁶

In this section the differences in the time-space wave diagrams and the differences in the spatial and time distributions of the most significant physical parameter, pressure, have been presented for two cases of increase in burning speed leading to steady state deflagration and transition to detonation. A significant similarity of the timespace wave diagram in the case of transition to detonation to that of Oppenheim and Stern's³⁴ time-space wave analysis of Schmidt et al.'s^{7,8} experimental record of transition to detonation is noted.

-57-

8.2. Critical Curve

The most important conclusion reached on the basis of the results of the two cases presented in Section 8.1 is that for a given initial flame burning speed there exists a critical increment in the burning speed above which the acceleration process is capable of triggering the transition to detonation. Below this limit the flow field reaches a new steady state corresponding to a self-similar solution for the final deflagration velocity. Figure 48 presents the limit line between the steady, denoted by S, and non-steady unstable, denoted by U, regimes of solution in the case of plane-symmetrical flow. For example, with an initial flame burning speed of 6, 21, and 40 metes per second the critical increments in burning speed necessary to promote transition are 17.5, 10.0, and 2.5 meters per second respectively. The two cases considered in Section 8.1 are indicated in the stability plane by the "+" signs adjacent to the symbols S and U. The critical curves corresponding to flow geometries with line and point symmetry are expected to lie above the plane-symmetrical flow curve, that is, for each initial flame burning speed a larger increment in the burning speed would be required for transition than in the plane-symmetrical case. The expected greater stability with increasing geometrical symmetry is attributed to the decreasing maximum value of the thermodynamic variables with increasing geometrical symmetry for the same normal flame burning speed. For example, see Figs. 4 and 5.

Included in the stability plane are three data points obtained from the experimental results of Dörge, Pangritz and Wagner.¹⁷ They reported that large spherical stoichiometric hydrocarbon-air mixtures,

-58-
after being centrally ignited, burned at constant velocity. Then upon passing through a screen the flames experienced a significant increase in burning speed, but did not transist to detonation. Rather they developed a new thermodynamic and gasdynamic state commensurate with the higher flame burning speed. The largest such increases in burning rates, factors of six and twelve for single and triple screens respectively, occurred in the case of stoichiometric C_2H_2 -air. These conditions are denoted by points \mathtt{W}_{S_1} and \mathtt{W}_{S_3} respectively located in the stable lower portion of the stability plane. However, they reported that in the case of larger initial flame propagation rates, on the order of 50 meters per second, it was indeed possible to trigger transition to detonation. In fact, their results indicate that the higher the initial flame propagation speed, the fewer number of screens were required to promote transition. These higher burning speeds were achieved in C_2H_2 -air mixtures by reducing the N_2 content to 36%. For the case of a single screen, the data point is indicated by W_{U_1} .

The experimental results of Dörge et al.¹⁷ corroborate the predicted critical stability curve.

-59-

9. SUMMARY AND CONCLUSIONS

9.1. Summary

A brief summary of the more significant aspects of this work follow:

- Transition to detonation is dependent on the interaction processes between waves generated by the accelerating flame.
- 2) Proper account of the progress of shock waves, contact discontinuities, detonations, and flames in the flow field can be achieved by treating these elementary wave processes as plane finite waves.
- 3) The flame burning speed law governing the motion of the deflagration was expressed in the form of a power law dependence on the pressure and temperature immediately ahead of the deflagration.
- 4) The vector polar method provided a facility for solving the problem of multiple wave interactions involving non-reactive and reactive waves.
- 5) The conservation equations, governing the non-steady motion of the flow field, formed a system of non-linear hyperbolic equations which had to be solved numerically.
- 6) MacCormack's algorithm, an explicit two step second order accurate finite difference technique utilizing implicit artificial viscosity, was employed to integrate the governing equations expressed in divergence form. Time steps were computed using the Courant-Freidrichs-Lewy stability condition times the factor 0.7.

-60-

- 7) Shock fronts, contact discontinuities, detonations, and deflagrations were computationally maintained as sharp discontinuities through the technique of floating discontinuity fitting. A technique based on the solution of the Riemann problem was proposed for the treatment of contact discontinuities. Detonation fronts were modelled as a shock front followed by a deflagration, thereby allowing for the possibility of obtaining overdriven as well as Chapman-Jouguet detonations. The most important principle in the floating flame fitting technique was that at each time interval the Eulerian computational grid is shifted throughout the whole flow field with a speed equal to that of the deflagration. When detonation is established the computational mesh is stationary.
- 8) Associated with each of the floating discontinuity techniques was a zone of influence. When two or more zones of influence overlaped, more elaborate difference algorithms were employed.
- 9) The results of the computations for two cases, one leading to the transition to detonation and the other to a steady state self-similar flow field were presented in the form of time-space wave diagrams, pressure-space profiles and pressure-time signatures.
- 10) Presented in the stability plane, for the case of plane-symmetrical flow is a limit curve, a line of demarcation between the steady and non-steady regimes of solution. Agreement with experiments was noted.

-61-

9.2. Conclusions

A numerical technique for the analysis of non-steady flow fields generated by accelerating flames in gaseous media has been introduced. This versatile technique is not limited in scope to flow fields containing only blast waves, nor are the combustion processes restricted to the case of detonations or Chapman-Jouguet deflagrations.^{25,26} Rather the numerical technique is capable of responding to and tracing the flow field processes which occur during the development of detonation. Contrary to many currently proposed numerical schemes,^{24,25} this technique is devoid of explicit artificial viscosity. The influence of the existing implicit artificial viscosity has been minimized through the judicious choice of the basic algoritm of MacCormack and the implementation of floating discontinuity fitting techniques. In addition, provisions for the evaluation of interaction phenomena involving reactive and nonreactive waves, necessary for the transition to detonation, are included.

The most significant conclusion derived from the results of this work is that in the plane of increment in flame burning speed and its initial value, the possible solutions to the problem of an initially steady flame experiencing an instantaneous increment in burning speed can be divided into steady and non-steady regimes. That is, for each and every initial burning speed there exists a critical burning speed increment above which the acceleration process is capable of triggering transition to detonation. Below this limit the flow field reaches a new steady state commensurate with a final higher flame burning speed. the significance of this result is that in so far as it has been well established⁶ that if a sufficient amount of energy is deposited at

-62-

a sufficiently high rate in an explosive gas a detonation wave is directly initiated, while below a certain critical value of the initiation energy and power there ensues a flame front that gradually recedes from that of the leading blast wave, no indication as to the level of disturbance necessary to trigger transition from deflagration to detonation has ever been reported. The importance of the existence of a critical level of disturbance necessary to cause acceleration to detonation is that in the event of an accidental fuel spill, 12-15 the potential danger resulting from the blast waves generated by the exploding cloud practically depends on the combustion process¹⁶ by which the cloud is consummed. Detonative combustion of the cloud produces a higher level of damage than in the case of deflagrative combustion. However, it is noted that by time the leading front reaches a distance of five initial cloud radii, these individual differences fade away. Therefore, knowledge of this critical level of disturbance should make it possible to minimize the occurrence of detonation by prohibiting design configurations, including the location of energy sources and turbulence sources which could directly or indirectly trigger detonation.

-63-

ACKNOWLEDGEMENTS

The author expresses his gratitude to Professors H. Dwyer and A. J. Chorin for their expert advice on numerical analysis and enlightening discussions throughout the course of this research. He also wishes to thank his wife, Anne, and his family for their continued support and encouragement. Finally, the author acknowledges his deepest appreciation to his research advisor, Professor A. K. Oppenheim, whose foresight, inspiration and guidance over the past years have provided the author both the opportunity and the ability to meet future challenges.

This work was done with support from the U. S. Department of Energy.

APPENDIX A. CHAPMAN-JOUGUET FLAME BURNING SPEED LAW

For the case of a thermally and calorically perfect gas, the conservation equations governing the motion of the deflagration can be expressed as 59

Continuity:
$$v_d = v_4 / v_3 = (S + u_3 + u_4) / S$$
 (A.1)

Momentum:
$$P_d = p_4/p_3 = 1 + \gamma_3 s^2 (1 - v_d)/a_3^2$$
 (A.2)

Hugoniot:
$$(P_{d} + \beta)(v_{d} - \beta) = (1 + \beta)(v_{f} - \beta)$$
 (A.3)

where

$$\nu_{f} = \left(\frac{a_{0}}{a_{3}}\right)^{2} \nu_{F} + \left[1 - \left(\frac{a_{0}}{a_{3}}\right)^{2}\right] \left[\frac{\gamma_{3}}{\gamma_{4}} \cdot \frac{\gamma_{4} - 1}{\gamma_{3} - 1} - \frac{\overline{M}_{3}}{\overline{M}_{4}} + 1\right]$$
$$\beta = \frac{\gamma_{4} - 1}{\gamma_{4} + 1}$$

where p, v, a, and u are the gasdynamic parameters pressure, specific volume, speed of sound, and particle velocity respectively, S is the deflagration burning speed, \overline{M} is the mean molecular weight and the ratio of specific heats. Subscripts 0, 3 and 4 denote the undisturbed reference state, and the uncombusted and combusted states immediately ahead of and behind the deflagration respectively. The Hugoniot relation has been written in terms of a hyperbolic relation where the heat liberated during combustion is expressed in terms of $V_{\mathbf{F}}$, the ratio of specific volumes at the undisturbed pressure.

Substituting Eqs. (A.2) into (A.3) and solving for the specific volume ratio yields

$$\begin{bmatrix} (1 + \beta) + \frac{\gamma_{3}s^{2}}{a_{3}^{2}} & (1 - \gamma_{d}) \end{bmatrix} (v_{d} - \beta) - (1 + \beta) v_{f} - \beta (1 + \beta) = 0$$
 (A.4)

-66-

$$\left(\frac{\gamma_{3}s^{2}}{a_{3}^{2}}\right)v_{d}^{2} - \left[\left(1 + \beta\right)\left(1 + \frac{\gamma_{3}s^{2}}{a_{3}^{2}}\right)\right]v_{d}^{+} \left[\left(1 + \beta\right)v_{f} + \frac{\beta\gamma_{3}s^{2}}{a_{3}^{2}}\right] = 0$$

$$\left[\left(1 + \beta\right)v_{f} + \frac{\beta\gamma_{3}s^{2}}{a_{3}^{2}}\right] = 0$$

$$(A.5)$$

Therefore

$$v_{d} = \frac{\xi \pm \sqrt{\zeta}}{\eta}$$

(A.6)

where

$$\eta = \frac{2\gamma_3 S^2}{a_3^2} \quad \text{and} \quad \xi = (1 + \beta) \left(1 + \frac{\eta}{2}\right)$$

$$\zeta = \xi^2 - 2\eta \left[\beta \frac{\eta}{2} + (1 + \beta) v_{f}\right]$$

The two roots correspond to strong and weak deflagration. Chapman-Jouguet correspond to $\zeta = 0$. That is

$$(1 + \beta)^{2} \left(1 + \frac{\gamma_{3} s^{2}}{a_{3}^{2}}\right)^{2} - \frac{4\gamma_{3} s^{2}}{a_{3}^{2}} \left(\frac{\beta \gamma_{3} s^{2}}{a_{3}^{2}} + (1 + \beta) v_{f}\right) = 0 \qquad (A.7)$$

Expanding in powers of S^2 yields

$$\left[\frac{\gamma_3}{a_3^2} (1 - \beta)\right]^2 s^4$$

$$+\left[\frac{2\gamma_{3}}{a_{3}^{2}}(1+\beta)(1+\beta-2\nu_{f})\right] s^{2} + (1+\beta)^{2} = 0$$
 (A.8)

Solving for S^2 gives

$$s^{2} = \frac{(1 + \beta) a_{3}^{2}}{\gamma_{3}(1 - \beta)^{2}} \cdot \left[(2\nu_{f} - \beta - 1) \pm 2\sqrt{\beta - \nu_{f} - \beta\nu_{f} + \nu_{f}^{2}} \right]$$
(A.9)

$$s^{2} = \frac{(1 + \beta) a_{3}^{2}}{\gamma_{3}(1 - \beta)^{2}} \cdot \left[(\nu_{f} - 1) + (\nu_{f} - \beta) \pm 2\sqrt{(\nu_{f} - \beta)(\nu_{f} - 1)} \right]$$
(A.10)

$$s^{2} = \frac{(1 + \beta) a_{3}^{2}}{\gamma_{3}(1 - \beta)^{2}} \left[\sqrt{\nu_{f} - 1} \pm \sqrt{\nu_{f} - \beta} \right]^{2}$$
(A.11)

Therefore

$$S = \frac{a_3}{1-\beta} \sqrt{\frac{1+\beta}{\gamma_3}} \left[\sqrt{\nu_f - \beta} - \sqrt{\nu_f - 1} \right]$$
(A.12)

where the positive subsonic character of the flame burning speed has been used to eliminate the extraneous solutions. In terms of temperature, the Chapman-Jouguet flame burning speed law becomes

$$S_{CJ} = \frac{\sqrt{(1 + \beta) R_3 T_3}}{1 - \beta} \left[\sqrt{\nu_f - \beta} - \sqrt{\nu_f - 1} \right]$$
(A.13)

where

$$\begin{split} \nu_{\mathbf{f}} &= \begin{pmatrix} \mathbf{T}_{\mathbf{o}} \\ \mathbf{T}_{\mathbf{3}} \end{pmatrix} \nu_{\mathbf{F}} + \begin{pmatrix} \mathbf{1} &- \frac{\mathbf{T}_{\mathbf{o}}}{\mathbf{T}_{\mathbf{3}}} \end{pmatrix} \begin{pmatrix} \gamma_{\mathbf{o}} & \gamma_{\mathbf{4}} - \mathbf{1} \\ \gamma_{\mathbf{o}} &- \mathbf{1} &- \frac{\bar{\mathbf{M}}_{\mathbf{3}}}{\bar{\mathbf{M}}_{\mathbf{4}}} + \mathbf{1} \end{pmatrix} \\ \beta &= \frac{\gamma_{\mathbf{4}} - \mathbf{1}}{\gamma_{\mathbf{4}} + \mathbf{1}} \end{split}$$

where subscript 0, 3, and 4 refer to the reference, uncombusted, and combusted states respectively.

APPENDIX B. PROGRAMS FOR THE INITIAL CONDITIONS

```
PROGRAM ZF(INPUT,OUTPUT,PUNCH)
      PHASE PLANE INTEG IN FL, FCR CONST VEL UNIF INITIAL DENSITY DEFLAG
¢-
C
      D2LDFL(AJ,G,FL,2L)=(2.*(EXF(2L)-(1.-EXP(FL))**2)*AJ*(G-1.)*(1.-EXP
     *(FL))*EXP(FL))/((AJ+1.)*EXP(ZL)-(1.-EXF(FL))**2)
      CXLDFL(AJ,G,FL,ZL)=-(EXP(ZL)-(1.-EXP(FL))**2)/((AJ+1.)*EXP(ZL)-
     *(1.-EXP(FL))**2)
С
      DATA INPUT
c --
С
      NJOBS=ND. OF CASES TO BE FUN
      20=Z(FISTCN)
C
С
      FO=F(FISTEN)
      XC=INITIAL VALUE CF X/XF
С
С
      SO=INITIAL STEF SIZE(INPLT AS A NECATIVE NC.)
      DELO=REQD ACC IN (22-2) TO TERMINATE THIS CASE
С
      J=0,1,2 SYMMETRY FACTOR
C
      N=NAX NC. OF ITERATIONS ALLOWED TO ACHIEVE DELO
C
      READ 1000,NJOBS
 1000 FCFMAT(15)
      DO 1 JOB=1,NJC85
      READ 1001, G, ZO, FO, XO, SC, DELO, J.M.
 1001 FCFWAT(F10.8,F10.4,2F10.8,2F10.5,215)
С
c –
      PRINT INPUT DATA
      PKINT 1002, J, G, Z0, F0, X0, S0, DEL0, M
 1002 FORMAT(1H1,2/,2CX,*SELF SIMILAR, CONST FRONT VEL, UNIF INITIAL DEN
     *SITY, EULERIAN SFACE ELAST WAVE*,2/,5x,*J=*,11,5x,*G=*,F5.3,5x,
     **Z0=**F15*6*5×**FC=**F1C*8*5×**×0=**F 10*8*5×**S0=**F7*5*5*5×
     **DEL0=*,F10.8,5X,*M=*,14,3/,16X,*Z*,22X,*F*,16X,*X/XP*,16X,*Z2+Z*
     * ,/)
С
c-
      INITIAL CONDITIONS
      F = F 0
      Z = Z 0
      X=>0
      FL=ALOG(F)
      ZL=ALCG(Z)
      XL=ALOG(X)
      A J= J
      5=50
      PRINT 1003,Z,F,X
 1003 FCFMAT(1H ,4(5x,F16.10))
С
      DC 2 KK=1,M
      IF(F.LT.0.).CR.F.GT.1.0) CC TC 2
C
      INTEGRATION RUNGE KUTTA
      A0=S*CZLCFL(AJ, C, FL, ZL)
      A1=S*DZEDFE(AJ,C,FL+.5*S,ZE+.5*A0)
      A2=S*CZLDFL(AJ, C,FL+.E*S,ZL+.E*A1)
      A3=S*DZLDFL(AJ+C+FL+S+ZL+A2)
      B0=S*DXLDFL(AJ,(,FL,ZL)
      81=S*DXLDFL(AJ, 6,FL+.5*5,ZL+.5*A0)
      E2=S*CXLDFL(AJ, (,FL +.5*5,ZL+.5*A1)
      B3=5*DXLDFL(AJ, C,FL+S, ZL+A2)
      ZL=ZL+(A0+2.*A1+2.*A2+A3)/6.
      XL=XL+(80+2.*E1+2.*E2+83)/6.
```

```
FL=FL4S
      Z=EXF(ZL)
      F=EXP(FL)
      X=EXP(XL)
С
c-
      BC AT SHOCK FRONT
      Z2=(G-1.)*(1.-F)*(2./(G-1.)+F)/2.
      DEL=22-2
C
С
      PRINT RESULTS
      PRINT 1003,Z,F,X,DEL
c
      IF(DEL) 3,5,5
      FLSAV=FL
 з
      ZLSAV=ZL
      XLSAV=XL
      GO TO 2
      IF(DEL0-DEL) 4,6,6
 5
 4
      FL=FLSAV
      ZL=ZLSAV
      XL=XLSAV
      S=5/2.
2
      CENTINUE
C
 6
      F2=F
      Z 2 = Z
      Y=1.-(G+1.)*F2/2.
      XF=1./X
      AMACH=1./SGRT(Y)
      PRINT 1004, J, G, ZC, FC, Y, XF, Z2, F2, AMACH
 1004 FCRMAT(1H ,3/,1X,*J=*,11,3X,*G=*,F6.4,3X,*ZC=*,F16.10,3X,*F0=*,
     *F 12.10, 3X, *Y=*, F15.12, 3X, *XF=*, F15.12, /, 1X, *Z2=*, F15.12, 5X,
     **F2=+,F15.12,5X,*AMACH=*,F15.10}
      PRINT 3000,KK
3000 FCFMAT(1+ ,5x,*KK=*,15)
      FUNCH DATA
с-
      PUNCH 10CE, J, G, DEL 0, ZC, FC, Y, XF, 22, F2
1005 FCFMAT(11,F7.4,E12.5,2E20.12,/,4E2C.12)
      CENTINUE
1
c
      STCF
      END
```

1.0 -1.3 4.855 1.0 0.006 .000001 1 2000

PEDGEAM DELAG(INPUT, DUTPLT, PUNCE) PHASE PLANE INTEG IN FL, FCF CONST VEL UNIF DEN DELAG OF PIST PBM **Cc**-SELFSIMILAR EULERIAN SPACE PROFILES DINENSICN XUPV(4,110) С DZLDFL(AJ, G,FL,ZL)=(2.+(EXP(ZL)-(1.-EXP(FL))++2)+AJ+(G-1.)+(1.-EXP *(FL))*EXP(FL))/((AJ+1.)*EXF(ZL)-(1.-EXF(FL))**2) DXLOFL(AJ,G,FL,ZL)=-(EXP(ZL)-(1.-EXP(FL))**2)/((AJ+1.)*EXP(ZL)-*(1.-EXF(FL))**2) с c DATA INPLT Cс NJOBS=NO. OF CASES TO BE RUN c--FELLEWING 9 PIECES OF DATA GETAINED FROM PROGRAM ZF с J=0,1,2 SYMMETRY FACTCH G=UECOMBUSTED VALUE OF THE SPECIFIC HEAT RATIO С С DELO=ACC TC WHICH Z2 WAS CALC IN FFCG ZE-KURYLO ZO=INITIAL VALUE OF Z (1.E. 2-FISTON) С FO=INITIAL VALUE OF F (I.E. F-FISTON) с С Y=1/(MACH NC. ##2) с XP=INITIAL VALUE OF X (I.E. X-FISTON) Z2=VALUE OF Z AT SHOCK FRONT С c F2=VALUE OF F AT SHOCK FFONT Cс G4=CCMBLS1FD VALUE OF THE SFECIFIC HEAT RATIO AA=UNDISTUREED VELOCITY OF SOUND IN M/SEC с с R4R1=RATIC OF MOLECULAR WIS. (STATE1/STATE4) SC=INITIAL STEP SIZE С С ANUFO=SPEC VOL RATIC FER CENST PRESS DEFLAG (WRT. STATE1) DELNU=ACC REOD IN CALC ANUF (THIS FIXES THE FLAME POSITION) C С M=MAX NC. OF DO LOOP TO GENERATE FLOW PROFILE С NFUNCH=(0,1), (NE PUNCHING REGE THIS CASE, PUNCHING REQD) С NPIST=(0,1) (THIE IS A DELAG FUN, THIE IS A FISTEN FEW FUN) NC=ND. OF CFLLS EETWEEN X=0.0 AND X=1.C C С WWN=SHOCK FRONT VELOCITY IN WISEC AMACH=FRENT MACH NO С READ 1000, NJCES 1000 FORMAT(15) CC 1 JOE=1,NJCES READ 1001, J,G, DEL0, 20, F3, Y, XF, 22, F2 1001 FCRMAT(11,F7.4,F12.5,2E2C.12,/,4E2C.12) READ 1002, G4, FA, R4R1, S0, ANUFO, DELNU, M, NPUNCH, NPIST, NC 1002 FORMAT(FE.3, 5F10.7, 15, 12, 13, 15) AMACH=1./SORT(Y) NEN=AA#AMACH Z1=Y 1211=22/21 P2P1=(G-1.)/(G+1.)*(2.*G/(G-1.)/Y-1.) V2V1=(G-1.+2.+Y)/(G+1.) C2D1=1./V2V1 C PEINT INFUT DATA **C**-IF(NPIST.EQ.0) PRINT 1010 IF(NFIST.EQ.1) PRINT 1011 1010 FCRMAT(1H1,/,25X,*SELFSIMILAR EULERIAN SPACE PROFILES FOR CONST VE *L UNIF INITIAL DENSITY DEFLAGRATICN*,2/)

-73-

1011	FORMAT(1H1,/,25X,*SELFSIMILAF EULEFIAN SFACE PROFILES FOR CONST VE
	L UNIF INITIAL DENSITY PISTEN FFOBLE⊬+2/)
	PRINT 1003,Z0,F0,XP,Y,Z2,F2,DEL0,J,G,G4,AA,R4R1,AMACH,WWN,S0,
	*ANUFO,DELNU,M,NFUNCH,NPIST,NC,T2T1,F2F1,D2D1
1003	FCFMAT(1H +1X,+Z0=++F14+7+3X,+F0=++
	*F 5.7.5X.** XP=* .F/12.10.5X.**Y=*.F12.10.5X.**Z=*.F12.10.5X.*F2=*.
	#F12,10,4X,#DF10=#.F11.9,/.#
	\pm
	(1 + (1 + (1 + (1 + (1 + (1 + (1 + (1
	11A, + 30 - 4 ; / 0 ; 3 ; 3 ; 4 ; 4 ; 0 - 4 ; / / 0 ; 3 ; 3 ; 7 ; 0 = 1 ; 0 - 7 ; 7 ; 0 + 7 ; 5 ; 3 ; 7 ; - 7 ; 1 + ; 3 ; 3 ; 4 ; 7 ; - 7 ; 1 + ; 7 ; 7 ; 7 ; 7 ; 7 ; 7 ; 7 ; 7 ; 7 ;
	** NPUNCF= *, 11, 3X, *NP 151= *, 11, 3X, *NC = *, 12,
	* 27,5X, *12711=*,+12.82,5X, *P27P1=*,+12.83,5X,
	**D2/D1=*,F12.E,3/, 5X,*F*,15X,*Z*,16X,*X*,12X,*L/SGRT(FV)*,10X,
	**P/P1*,13X,*D/D1*,12X,*T/T1*,12X,*ANUF*, /)
C	
c	
C-	INITIAL FRCFILE VALUES
c	
C	SYMBOL REPRESENTATION
c	H=DENSITY/DENSITY2
c	UPV=PARTICLE_VEL/SGRT(P1/D1)
r i	ANDERCALCHATED SECTETC VEL BATTE (VEZVI) FOR THAT P.I.
c c	ce-ename ven in ansee perative tr cactory of in states
c c	WE CONTINUE TO BE THE CONTINUE TO THE TREET TO THE CONTINUES
c c	
ι	
	TT2=ZC+XP++2/22
	111=112+1211
	H=112**(1·/(G-1·))
	DD1=1•/VV1
	PP2=F##G
	FF1=FF2#P2F1
c	
C-	PFINT INITIAL PROFILE VALUES
	PRINT 1004,FJ,ZO,XP,UPV,FP1,CC1,TT1
1004	FCRMAT(1+ , 1x,F14+12,5E17+1C,E16+9,EX,+*INFINITY*)
c	
C-	INITIAL CONDITIONS
	F=FO
	Z = 20
	X= XP
	7L=ALCG(2)
	F1=A1CG(F)
~	
C C	
	IFINFISI-EG-01 GL 10 15
	KGL = 1
	IF(NPUNCH+LE+C) GD TO 15
	XM1=XLPV(1,1)=X
	UM1=XUPV(2,1)=UPV
	P#1=XUPV(3+1)=PF1

```
DM1=XUPV(4,1)=DD1
      DX=1./FLCAT(NC)
      NC = 2
      XUFV(2,1)=X+DX
C
 15
      Dn 2 MM=1,M
      1F(F+LT+0+3+CR+F+GT+1+0)_GC TC 1
С
C
      INTEGRATION FUNCE KUTTA
      A0=S*DZLDFL(AJ,G,FL,ZL)
      A1=S+DZLDFL(AJ,C,FL+.5+S,ZL+.5+AC)
      A2=S*DZLDFL(AJ,(,FL+.5*5,ZL+.5*A1)
      A3=S*DZLDFL(AJ,G,FL+S,ZL+A2)
      E0=S*CXLDFL(AJ, C, FL, ZL)
      B1=S*DXLDFL(AJ,G,FL+.5*S,ZL+.5*A0)
      B2=S*DXLDFL(AJ,C,FL+.5*S,ZL+.5*A1)
      E3=S*DXLDFL(AJ, (,FL+S, ZL+A2)
      ZL=ZL+(A0+2.*A1+2.*A2+A3)/6.
      XL=XL+(B0+2.*E1+2.*E2+B3)/6.
      FL=FL+S
      Z=EXP(ZL)
      F=EXF(FL)
      X=EXP(XL)
C .
      144=X*&WN*F/AA
      UFV=UAA*SORT(G)
      TT2=Z*X**2/Z2
      111=112+1211
      H=TT2##(1./(G-1.))
      VV1=V2V1/H
      DC1=1./VV1
      FF2=+**G
      PF1=PP2*P2P1
      ANUF=X#X#Z/Z1#(1./(1.-F)-G/G4#F/Z#(1.+(G4-1.)/2.#F))-
     *(G*(G4-1.)/G4/(G-1.)-R4R1+1.)*(X*X*Z/Z1-1.)
C
C-
      FRINT RESULTS OF THIS STEP
      KF=KF+1
      IF(KP-53.LT.0) GC TO 3
      PRINT 1005
 1005 FORMAT(1H1,/, 9x,*F*,15x,*Z*,16x,***,12x,*U/SCFT(FV)*,10x,*P/P1*,
     *13X,*E/D1*,12X,*T/T1*,12X,*ANUF*,/)
      KP=0
 1009 FORMAT(1H ,1X,F14.12,5E17.1C,2E16.5)
      PRINT 1009, F, Z, X, UPV, PP1, DD1, TT1, ANUF
 3
С
      IF (KGC) 4,4,6
 4
      DEL=ANUFO-ANUF
      IF(DEL) 7,8,8
 8
      IF(DELNU-DEL) 9,10,10
С
 10
      V4V3=1./(1.-F)
      v4v1=v4v3#vV1
      D4C1=1./V4V1
      P4P3=1.+G/Z#(1.-V4V3)/V4V3/V4V3
      P4P1=P4P3*PP1
```

ł

-75-

Z4=G4/G*P4P3*V4V3*Z T4T3=Z4*G/Z/G4/R4R1 SF=X#WWN#(1.-F) SFPV=SF/AA*SQRT(G) PRINT 1009, F, Z, X, UPV, PP1, DD1, TT1, ANUF PRINT 1008, P4P3, V4V3, T4T3, P4P1, C4C1, ANLF0, SF, SFPV 1008 FORMAT(1H ./.1X,*P4/P3=*.E16.1C.3X,*V4/V3=*.E16.10.3X,*T4T3=*.E *16.10,3X,*P4/P1=*,E16.10,3X,*D4/D1=*,E16.1C, #2/,10×, *THE LAST TWO LINES ABOVE CORRES TO THE FLAME FRONT *(STATE3) FOR WHICH ANUFC=*+F1E+1C+/+1CX+*FLAVE SFEED=*+F17+12+ #1X,##/SEC#,5X,#SF/PV= #,F16.12) PRINT BOIC, MM 3010 FORMAT(1+ ,5x,*MM +,15) С **C**-PUNCHING IF(NPUNCH+LE+0) GC TC 11 DX=1./FLCAT(NC) NCFLM=NC=X/DX+2 PRINT 1006, X, NC 1006 FORMAT(1H ,2/,10X,*FLANE FOSTION *,F13.10,* CORRES TO MESH PT NO **,I4) DO 17 L=1,NC XUFV(1+L)=X-FLGAT(NC-L)+CX XLFV(2,L)=0.0 XUPV(3,L)=P4P1 XUPV(4,L)=C4D117 XUPV(1,NC+1)=X XUFV(2,NC+1)=UPV XUFV(3, NC+1) = FP1XUPV(4,NC+1)=DD1NC=NC+2 xUPV(1,NC) = x + DXС 11 FLN1=FL ZL⊬1=ZL XLM1 = XLKGC=1 S=S0 KF=53 GC TD EO 7 FLM1=FL ZL₩1=ZL XLM1 = XLτ GC TC 2 9 S=5/2. 14 FL=FLM1 ZL=ZL₩1 XL=XLM1 GC TC 2 С IF (KGC.EC.2) GO TO 12 6 IF(F.LT.F2) GC TC 13 IF (ABS(PP1-1.).GT.E.E-6.CR.ABS(LFV).GT.E.E-C.CR./ES(CC1-1.).GT. #5.E-6) GC TC 53 DP=PP1-1. \$ KGC=2 PRINT 1022, CP,X

```
1022 FORMAT(1H ,2/,1X,+SHCCK TREATED AS SNC &VE AS SHK STENGTH= +.E15.7
     *,* AT X= *,E15.7)
      GO TO 54
53
      FLM1=FL
      ZL M1 = 2L
      XLM1=XL
      GC TO 50
      S=ALCG(F2)-FLM1
 13
c--
      REMEMBER 5 IS A NEG OTY
      K G C = 2
      GC TD 14
C
      2Z=.5*(G-1.)*(1.-F)*(2./(G-1.)+F)
 12
      DEL=ZZ-Z
      FFINT 1007, CEL, CELO
 1007 FORMAT(1H ,/,10X,*ACC IN EVAL SHECK FRENT FESITION ON THIS RUN=*,
     #E11+4 ,9X, #ACC IN EVAL IT IN PROG 2F-KURYLC=#,E11+4 ,/)
54
      IF(NEUNCHALE.0) CC TC 1
      GC TC 52
с
 50
      IF(NPUNCH.LE.C) GC TC 2
 52
      IF(X.GT.XUPV(1,NC)) GC TC 51
      IF(KGC.EC.2) GC TC 1
      XM1=X $ UM1=UPV $ PM1=PF1 $ CM1=DC1
      GC TC 2
      xLPv(2,NC)=LM1+(XUFv(1,NC)-XM1)/(X-XM1)*(UFv-UM1)
 51
      XUPV(3,NC)=PM1+(XUPV(1,NC)-XM1)/(X-XM1)*(PF1-FM1)
      XUPV(4,NC)=DM1+(XUFV(1,NC)-XM1)/(X-XM1)*(DC1-DM1)
      NC=NC+1
      XUFV(1,NC)=XUFV(1,NC-1)+DX
      XM1=X $ UN1=UEV $ EM1=PE1 $ DM1=DD1
      IF(KGC.EQ.2) GC TC 1
 2
      CENTINUE
С
 1
      FRINT 3010,MM
      IF(NPUNCH+LE+0) STEP
С
      NCF5=NC+5
      DD 60 N=NC,NCF5
      XUFV(1,N)=XUPV(1,N-1)+DX
      XUFV(2,N)=0.0 $ XUFV(3,N)=1.0
 €C
      XUPV(4.N)=1.0
      PEINT 1020
 1020 FORMAT(1H1,2/,* CELL NC*,7X,*X*,13X,*U/SCRT(F1/D1)*,12X,*P*,17X,
     **C/D1*,15X,*E*,/)
      DC 61 #=1, NCP5
      GE=G4 $ IF(M.GT.NCFLM) GE=G
      E=XUPV(3, N)/XUPV(4, N)/(CE-1.)+XUPV(2, N)**2/2.
      PRINT 1021, M, (XUPV(I, M), I=1,4),E
 1021 FCFMAT(1H , 14, 2x, E16.5, 4(3x, E16.5))
      FUNCH 2000, M, XUFV(1, M), XUFV(2, M) , M, XUPV(2, M), XUPV(4, M), E
 61
2000 FORMAT(15,2225.17,/,15,3225.17)
С
      STOP
      END
```

-78-

APPENDIX C. PROGRAM FLAME

PROGRAM FLAME(INPUT,OUTFUT,FUNCH,TAPE1) CQMMON/URDCND/NUBC COMMENZPARAMZN, J, AJ, G, GF, DELR, NFLM COMMON/TIME/T, DT, DTL, TWRITE, DELT, DTDX, AT COMMON/FIRFFTC/INDEX, NOYCLE, NN, NNN, NSTORE, NS, NITROTN COMMEN/FIR/LSTART, TERMIN, NCELL, NSTERS, NEISC, NPUNCH, PF, DF, UF COMMCN/ARRAYS/R(501),U(2,501),F(2,501),D(2,501),E(2,501),R2(501) CCMMCN/DISCS/NTDISC,NDISCND(51),NTYPE(E1),NDISCL(51),SE(51),SL(51) *,RD(51),NTDISCT,NTDISCS С --RESULTS FOR PLANE-SYMMETRIC FLOW FIELDS c-LSTART=NO OF RUNS FOR THIS CASE THUS FAR C C NCYCLE=NC OF CYCLES ASOF LSTART=0 С NFUNCH=(0,1) (NC PUNCH, FUNCH) NSTORE=(0,1) (DC NCT WRITE ON TAPE, WRITE ON TAPE) с NSTEPS=MAX NO OF CYCLES FOR THIS RUN C ¢ NCELL=MAX NO OF CELLS FORMING THE FLOW FIELD NDISC=MAX NO OF DISCONTINUITIES IN THE FLOW FIELD С С NN=PRINT ON PAPER EVERYTE NN CYCLE (MUST BE .GT. 0) c NNN=PRINT ON PAPER EVERYTH NNN CELL IN CYCLE NN (MUST BE .GT. 0) NS=WRITE ON TAPE EVERYTH NS CYCLE (MUST BE .GT. 0) с с TERMIN=MAX COMPUTING TIME IN DECIMAL SECONDS с N=NO DF CELL BOUNDARIES FORMING THE FLOW FIELD J(0,1,2)=GECMETRY INDEX NO. (PLANE,LINE, POINT-SYMMETRY) c С G,GF=UNCMBSTD,CMBSTD RTIC CF SPCFC HTS (NFLM,NFLM+1 BDRS FOR G,GF) c DELR=CELL SPACING VCAPF=CENSTANT FRESSURE SPECIFIC VELUME RATIO AT UNDIST CONDITS с R4R1=RATIO OF BURNT TO UNBURNT GAS CONST. I.E. (MWUNBURNT/MWBURNT) С POPOWER, FFCWER=PWER IN FLME SPD LAW - S=(P/D) ++POPOWER + P++PPOWER С P,D,U(0,1,F)=PRESS,DENSTY,PRTCL VL(CNESTD,CNPRSC,UNDSTURAD) с С XF=INITIAL FLM POSITION DELT=TIME BETWEEN STEFS ON TAFE C SFLMNEW=SS FLM SPD REL PRTCLE AFD FLM WRT UNDST STTE, AFT INIT ACC С NTDISCT=ND OF DISC IN THE FLOW FIELD AT TIME T С С NDISCNO=DISC NO WRT THE INITIAL FLEW FIELD NTYPE(1,2,3,4,5,6,7,8)=(FLM,SHK,CD,PARECD,DET,COTRD,TRARE,CDRARE) с с NDISCL=CELL NO CONTAINING THE DISC (+LT+ 0 + TERMINATE DISC) SL=SHK-MCH NO WRT STTE AHD, FLM-SPD REL PRICLE AHD WRT UNDST С С RD=FOSITION OF THE DISCONTINUITY NPPTHEND. OF INITIAL PARTICLE PATHS с С PTHNEXT=POSITION OF THE NEXT PARTICLE PATH DELPPTHEDST BET SECSEVE PRTCL FIFS(MST BE > 0. TO FVE ADDTLN PTHS) С NUMA=NO. OF INITIAL NEGATIVE CHARACTERISTIC TRAJECTORIES С RUMANXT=FOSITION OF THE NEXT NEGATIVE CHARACTERISTIC TRAJECTORY С с DELUMA=DST RET SCCSSVE NG CHR TRJS(MST BE > 0. TC HVE ACDTLN TRJS) С NUPA=ND. OF INITIAL POSITIVE CHARACTERISTIC TRAJECTORIES С TUPANXT=FOSITION OF THE NEXT FOSITIVE CHARACTERISTIC TRAJECTORY DELUPA=DST BET SCCSSVE PS CHR TRJS(MST BE > 0. TC HVE ADDTLN TRJS) С С RPPTH, PUMA, RUPA=PRTCLE, NEGTVE CHRACT, FCSTVE CHARCT PSTN с INDEX=ND. OF TIME STEPS FOR THIS VALUE OF LETART c с T,DT,DTL=CURRENT TIME , LAST TIME STEP , PREVIOUS TIME STEP С TWRITE = NEXT TIME THAT SHOULD BE ON TAPE С CND=NCNDIM CONST USED IN THE FLAME SPD LAW IFLM,NFLM=DISC NO OF FLM WRT INTL FLWFLD, CEL ND. CNT FLM OR DET C C NTDISC=NO OF DISC THT ARE OR HAVE BEEN IN THE FLW FLD AS OF TIME T

-80-

```
QCAPF=HEAT RELEASED AT UNDIST CONCITIONS FOR CONST PRESS COME
С
С
      SE=EULFRIAN DISCENTINUITY SPEED
с
      NTOISCS = NO DISC IN FLWELD AFT INTERCTN USD IN DET INCRSG SPCL DRDR
      DTDX=RATIO OF THE TIME STEP TO THE CELL SPACING
С
      AT=ACDTNL THE DERVE DUE TO CHNGE IN INDP CEDS FRM (X+T) + (X+ST+T)
С
      SFE, SFFOLD=EULERIAN FLM SPEED AT THE CURRENT, PREVIOUS TIME STEP
С
      NUBC( NO, YFS)=(STD, MCDIFD L.H.B. VELCCITY CNDT)
С
      NCJ( NO,YES)=(FLM SPD LT CJ VALUE, CJ FLM SPC)
C
С
      PLTR, DLTR, ULTR, FLTR=PRSS, DNSTY, FRTCL SFD, ENRGY AT TAIL OF CJ RARE
      CVERDNM=QVERDRIVEN DETENATION MACH NUMBER
C
с
      NOVERDN=NO. OF TIME STEPS DET HAS BEEN CVERCRIVEN
      NUMAESTEND. DE THE ERST NEG CHARACT TRU NTH PSTN > 0.0
С
С
      NCLPPTH,NCLUMA,NCLUPA=CL ND CF FFTCL PTH,NC CHRCT TRJ,PS CHPCT TRJ
      NITRCTN(YES, ND)=(DO,DO NT) WRITE CN TAFE AS INTRCTN BET DISCS OCRD
C
С
1000 FORMAT(415)
 2300 FORMAT(1H), *COMPUTER TIME IS AFPROACHING DESIGNATED MAXIMUM*)
 2001 FORMAT(1H0, #TIME STERS EQUAL CESIGNATED MAXIMUM*)
 2002 FORMAT(1H0* MESH EXPANSION(N) CR DISC(NTDISC) LIMIT*,216)
2003 FORMAT (1H0, #NEN-POSITIVE TIME STEP #,E13.6)
С
C
C----DETERMINE INITIAL OF RESTART CONDITIONS
    CALL SECOND(TA)
      INDEX=0
      READ 1000, LSTART, NCYCLE, NPUNCH, NSTERE
      IF(LSTART.EQ.D) CALL INITIAL & IF(LSTART.NE.D) CALL RESTART
С
С
C----SET LSTART
      L START=LSTART+1
      INDEX=INDEX+1 $ NCYCLE=NCYCLE+1
 1
  ----CHECK CENTRAL PROCESSOR ELAPSED TIME
C-
      CALL SECOND(TB) $ TC=5.*(TE-TA) $ TD=TERMIN-TE $ TA=TB
      IF(TC.CE.TD) PRINT 2000
C----CHECK NUMBER OF TIME STEPS
      IF(INDEX.GT.NSTEPS) PRINT 2001
C
C----CHECK FOR MESH EXPANSION
      IF(A95(D(2,N-6)-DF).LT.1.5-5) GD TC 2
      N=N+1 $ F2(N)=R2(N-1)+CELR
      P(2,N)=PF $ D(2,N)=DF $ U(2,N)=UF*DF
      E(2+N)=DF*(PF/DF/(G-1+)+UF**2/2+)
 2
      IF(R2(1).LT.0.3) GO TC 5
      N = N + 1
      DC 3 M=2.N
      L = N + 2 - M
      D(2,L)=D(2,L-1) $ U(2,L)=U(2,L-1) $ P(2,L)=F(2,L-1) $ R2(L)=R2(L-1)
З
      E(2,L) = E(2,L-1)
      NFLM=NFLM+1 $ R2(1)=R2(2)-DELR $ U(2,2)=-U(2,2)
      IF(NUBC.EQ.3HYFS) U(2,2)=-U(2,2)
      DO 4 II=1.NTDISCT
4
      NDISCE(II)=NDISCE(II)+1
С
C----CHECK FOR MESH EXPANSION OR DISCONTINUITY LINIT
5
      IF (N.GT.NCELL . OF .NTDISCT.GT.NDISC) PRINT 2002.N.NTDISCT
```

```
C----DETERMINE TIME STEP, TIME AND REINITIAL FROPERTIES
      CALL TSTEP
      IF(DT+LE+0+0) PRINT 2007+DT
     IF (TC.GT.TD.DR.INDEX.GT.NSTEPS.DR.N.GE.NCELL.CR.NTDISCT.GF.NDISC
     *.OR.DT.LE.0.0) GC TC 20
C----DETERMINE PROPERTIES AT NEW TIME
    CALL FIDIF
C----PECYCLE
     GC TC 1
с
C
C----PUNCH RESTART AND TERMINATE
20
    CALL RESTART
c
      STOP $ END
```

SUBROUTINE INITIAL CDMMON/UBDCND/NUHC COMMEN/PARAM/N,J,AJ,G,CF,DELR,NFLM COMMON/TIME/T, DT, DTL, TWRITE, DELT, DTDX, AT CCMMCN/TEDT/PLTE, DLTR, ULTR, ELTR, CVERDNN, NOVERDN COMMON/FIRFETC/INDEX, NCYCLE, NN, NNN, NSTCRE, NS, NITRCTN COMMON/FIR/LSTART, TERMIN, NCELL, NSTEPS, NDISC, NPUNCH, PF, DF, UF COMMON/POWER/VCAPF, R4R1, FDPOWEF, FFOWEF, CND, GCAPF, SFFOLD, SFE, NCJ COMMEN/ARRAYS/R(501),U(2,501),P(2,501),D(2,501),E(2,501),R2(501) CCMMCN/DISCS/NTCISC,NDISCND(51),NTYPE(51),NDISCL(51),SE(51),SL(51) *,RD(51),NTDISCT,NTDISCS CCMMON/PPCHR/NPPTH,NUMA,NUMAFST,NUFA,FFPTH(24),FUMA(150),RUPA(150) +,NCLPFTH(24),NCLUMA(150),NCLUFA(150),PTHNEXT,RUMANXT,TUPANXT, *DELPPTH, DELUMA, DELUPA С 2000 FORMAT(1H1,*RESTART NC+*,13,/,* NAX-CPTINE*,F7+1,/,* MAX-STEPS*, *IG.//* GECMETRY*,12,/,* GANNA UNCENB*,E13.6,7X,*GANMA CCMP*,E13. *6,/,* CFLL SPACING*,F13.f,/,* TIME BETWEEN TAPE WRITES*,E13.6,/, ** FREE FIELD P+D+U *+3E2C+10) 2001 FORMAT(1H ,/, + CONST PRESS COME SPEC VEL RATIE(AT UNDIST STATE CON *D)*+E13+6+/+* RATIC CF CAS CONST, R4R1*+E13+6+/+* HEAT RELEASE AT #UNDIST CONDIT##E13.6,/,# FLAME ACCELERATION LAW FDPCWER*,F7.3. *3X,*PFOWER*,F7.3,/,* LAGRANGE FLAME SFFEDS EEFORE, AFTER ACCL*, #2E20.10,/,# CELL CENTAINING THE FLAME#,15,/,# INITIAL FLAME POSITI *CN *, E20.10) 2002 FORMAT(IH ,/,* NC. OF INTL PATCLE FTHS *, I3,5X,*NEXT PRICLE PTH *, #F10.5,5X, #SPCING PET SCCSSVE PRTCLE FTHS #,F10.5,/,# FRST AND TOT *NC. OF INTL NEG CHPCT TRAJS +, 214, EX, *NEXT TRAJ AT +, F10.5, 5X, *SPC *ING BET SCCSSVE TRAJS *,F10.5,/,* NC. CF INTL PCS CHRCT TRAJS *,[4 *,5X,*NFXT TRAJ AT *,F10.5,5X,* SPCING BET SCCSSVE TRAJS *,F10.5) С C-----PEAD INPUT (DISC MUST BE INPUT IN INCREASING SPATIAL ORDER) READ 1000,NSTEPS,NCELL,NDISC,NN,NNN,NS,TERMIN, N,J,G,GF,DELR, *VCAPF+P4R1,PDFOWER,FPOWER, P0,D0,U0, P1,D1,U1, PF,DF,UF,XF, *DELT, SFLMNEW, NTDISCT, #(NDISCNO(I),NTYPE(I),NDISCL(I),SL(I),FC(I),I=I,NTDISCT) 1000 FCRMAT(615,F10.4,/,215,7F10.8,/,3F25.17,/,3E25.17,/, *2F20.15,E30.17,F1C.7,/,2F20.15,/,15,/,(315,2E25.17)) READ 1001, NPP TH, FTHNEXT, DELPPTH, NUMA, RUMANXT, DELUMA, NUPA, TUPANXT, **†DFLUPA** 1001 FORMAT(3(15,2F1C.5)) IF(NFFTH.GT.0) READ 1002, (RPPTH(I), I=1, NPPTH) IF(NUMA.GT.O) READ 1002, (RUMA(I), I=1, NUMA) IE(NUPA.GT.0) READ 1002, (RUPA(I), I=1, NUPA) 1002 FCRMAT(8F10.5) С c--INITIALIZE PROGRAM VARIABLES AJ=FLCAT(J) \$ T=DT=0.0 \$ TWRITE=T+DELT \$ CNC=0.0 \$ NTDISC=NTDISCT NU9C=3H ND \$ NCJ=3H ND \$ PLTR=DLTR=ULTR=ELTR=0.0 \$ NUMAFST=1 OVERDNM=0.0 \$ NEVERDN=100 \$ NITRCTN=3H ND С C----DET IFLM AND NELM DC 1 I=1,NTDISCT IF(NTYPE(1).EC.1) GD TD 2 1 CONTINUE

-83-

```
NFLM=IFLM=0 $ SFE=0.0 $ GO TO 3
2
      NFLM=NDISCL(I) $ IFLM=I
С
C----DEFINE INITIAL MESH POINTS AND PARAMETERS.
C-----SPECIAL PROCEDURE FOR J=0, IFLN=1, NTDISCT=2
      IF((J.NE.0).PR.(IFLM.NE.1).OR.(NTCISCT.NE.2)) GC TC 3
      NFLM=NDISCL(1)=((FC(1)-1.E-12)/DELR+2.)
      R2(1)=RD(1)-FLOAT(NFLM-1)*DELR
      NDISCL(2)=((RC(2)-1.F-12)/DELR+3.) $ N=NDISCL(2)+6
      DD 10 M=1.N
      IF(M \cdot NE \cdot 1) R2(M) = R2(M-1) + DELR
      IE(M_{*}FC_{*}NELM+1) = F2(M-1)
      IF(M.GT.NDISCL(2)) GC TC 12.
      IE(M.GT.NDISCI(1)) OD TO 11
      P(2,M)=P0 $ D(2,M)=D0 $ U(2,M)=U0
      GO TO 13
      P(2,W)=P1 $ D(2,W)=D1 $ U(2,M)=U1
 11
      GC TC 13
 12
      P(2,N)=PF $ D(2,M)=DF $ U(2,M)=UF
      GE=GE $ IF(M.GT.NFLM) GE=G
 13
 10
      E(2,M)=P(2,M)/D(2,M)/(GE-1.)+U(2,M)**2/2.0
      GC TC 15
C `
C----PROCEDURE FOR ALL OTHER CASES
3
     READ 1003, (K, R2(M), U(2, M), K, F(2, M), C(2, M), E(2, M), N=1, N)
1003 FORMAT(1001(15,2225.17,/,15,3225.17,/))
C
C----SET REMAINING GASDYNAMIC VALUES
 15
      00 16 M=1,N
      F(N)=F2(M) $ U(1,M)=U(2,N) $ F(1,M)=F(2,M) $ D(1,M)=D(2,M)
 16
      E(1,N)=E(2,M)
C
C-----CALCULATE HEAT RELEASE AT UNDIST CONDITS FOR CONST PRESS CONB
      QCAPF = \{VCAPF - 1, \} \neq GF / (GF - 1, \}
с
C-----CALC LAGRANGIAN FLAME SPEED CONST, EULERIAN DISCS SPDS
     IF(IFLM+NE+0) CNC=SL(IFLM)/(P(2+NFLM+1)/D(2+NFLM+1))**PDPCWER
     */P(2,NFL#+1)**PECWER
      CF=GF
      DO 20 I=1.NTDISCT
      NDISCLS=NDISCL(I)
      L=1 $ IF(SL(I).LT.C.0) L=0
      IF(NDISCLS.GT.NFLM) GE=G
      SE(I)=SL(I)+SORT(GE+P(2,NDISCLS+L)/D(2,NDISCLS+L))+U(2,NDISCLS+L)
      IF(NTYPE(I).EC.1) SE(I)=SL(I)+U(2,NDISCLS+1)
20
      CONTINUE
C
C-----PARTICLE PATHS AND CHARACTERISTIC TRAJECTCRIES AT THE INITIAL TIME
      CALL CHARDIR (NCYCLE)
С
C----PRINTING INSTRUCTIONS
      PRINT 2000,LSTART, TERMIN(NSTEPS, J, G, GF, DELR, DELT, PF, DF, UF
      IF(IFLM.NE.0) PRINT 2001,VCAPF,R4R1,GCAPF,PDFOWER,PPOWER,SL(IFLM),
     *SFLMNEW,NFLM, XF
      PFINT 2002,NPPTH,PTHNEXT,DELPFTH,NUMAFST,NUMA,RUMANXT,DELUMA,
```

```
*NUPA, TUPANXT, DELUPA
```

-84-

	NCCDE=10FINITIAL \$ (ALL PRNTEF(NCOCE)
с	
c	
	IF(NSTDPE.LE.C) GD TC 30
	WRITE(1) J.G.GF.DELR.VCAPF.R4R1.GCAPF.FDFDWER.PPCWER.DELT.XF.
	*PTHNEXT, DELPPTH, RUMANXT, DELUMA, TUPANXT, DELUPA
	WRITE(1) NCYCLE, T, NTDISCT, NFLM, NPFTH, NUMAFST, NUMA, NUPA, (NDISCND(1)
	*. NTYPE(1). NDISCL(1). SE(1). SL(1). RD(1). I=1. NTDISCT). N. (R2(M). U(2. M)
	*.P(2.M).D(2.M).M=1.N)
	IF(NPPTH.GT.0) write(1) (RPPTH(1), I=1, NPPTH)
	IF(NUMA.GT.0) WRITE(1) (FUMA(I),I=NUMAFST,NUMA)
	IF(NUPA.GT.O) WRITE(1) (FUPA(1).I=1.NUFA)
c	
c	
Č	FOR SUDDEN FLM ACC- DET S.S. CENDITS, FRINT AND WRITE
30	IF(IFLM.FG.0) GC TO 40
C-~	
	IF (ABS(SFLMNFW-SL(IFLM))+LT+1+E-6) GC TC 33
	CALL FLMACCE(SFLMNFW, IFLM, F30, D30)
	DT=T=1+F=10; S NCYCLE=NCYCLE+1 S INCEX=INDEX+1
. 71	
32	
	WEITERS NOVELET, TOTOTEL, AND AND THE MANAGEST, AND A AND CONOTS
	# NTVE/TT NOTCELYTENDISCTYNTEWINTETTYNDWAINOFALUNDISCHULTY
	\pm , $p(2, M)$, $p(2, M)$, $p(2, M)$, $p(1)$, $p(2, M)$
	16(NDD1W,CT:0) WEITE/I) /EDOTL/I).1-1.NDOTL)
	TELNING (* A) WRITELLY CREATELY LIVE ALANDER ALAN
	IF (NUMA-GI (U) WEITE(I) (NUMA(I)) I-NUMAESI(NUMA)
22	$\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} + 1$
- 3	
c c	
· • •	
40	
41	<u> </u>
ι	
~	AI=-SFE
C	
	REFURN & ENC

SLARDUTINE RESTART	
COMMENT INFET CALINATION AND A COMMENTAL AND A	
COMMENTE INTELSTART, TERMIN, NEFEL, ASTEPS, NDISC, APUNCA, PF, DF, UF	
CCMMCN/FOWER/VCAPF,R4RI,FCPOWEN,FFCWEF,CND,GCAPF,SFEDLD,SFE,NCJ	
COMMEN/ARRAYS/R(501),U(2,501),F(2,501),D(2,501),E(2,501),R2(501)	
COMMEN/DISCS/NTDISC,NDISCNO(51),NTYPE(51),NDISCL(51),SF(51),SL(51)	
*,RD(51),NTDISCT,NTDISCS	
COMMEN/PRCHR/NPPTH,NUMA,NUMAFST,NUFA,FPPTH(24),RUMA(150),RUPA(150)	
*,NCLPFTH(24),NCLUMA(150),NCLUFA(150),PTHNEXT,RUMANXT,TUPANXT,	
*DELPPTH, DELUPA, DELUPA	
1000 FC=MAT(415)	
1001 EDEMAT(615-E1C-4-/-3E25-17)	
1007 FORMAT (215, 7610, 8.7.4620, 17.7.525, 17.3617, C.7.2525, 17.10.7.	
$\frac{1}{100} + \frac{1}{1000} + \frac{1}$	
1003 FORMAT(1001112,EZ2017,7,12,27,22017,7)	
1004 F CHMAI(5X,215,5X,215,10X,7,3225.17)	
1035 FORMAT(15,2F10.5,215,2F10.5,15,2F10.5)	
1006 FCFMAT (40(4(F10.5,15,5x),/))	
2300 FORMAT(IH1,*PESTART.NC+*,I3,/,* PAX-CFTINE*,F7+1,/,* MAX-STEPS*,	
#I6,/,# GFCMETRY#,I2,/,# GAMMA UNCCMB#,E13.6,7X,#GAMMA CCMB#,E13.	
6,/, CELL SPACING*,E13.6,/,* TIME BETWEEN TAPE WRITES*,E13.6,/,	
** FREE FIELD P,D,U *,3E20.10)	
2001 FCRMAT(1H ,/, + CONST PRESS COME SPEC VOL RATIO(AT UNDIST STATE CON	
D).E13.6./.* RATIC CF GAS CONST. FAR1*.E13.6./.* HEAT RELEASE AT	
*UNDIST CONDIT ** F13.6.7.* F1AME ACCELERATION LAN POPOBR**F7.3.	
*34.*000%F24.F7.3./.* FULLETAN FLANE SEC4.F20.10./.* CF11 CONTAININ	
AC THE ELANES, ISSA CONTRACTOR OF STREET, CONTRACTOR	
TO THE FERNETIES OF DETCHE OTHER A TRIEN ANT DEM 4 FIG & EV	
2002 FURTHING TO PRICE PIPS A LIGENARMAN PIP AF LUSTING	
++ SPACING +, FIU-3,7,4 FSI AND ILI NL. NEG CPARLI IRAJS +,214,33,	
**NEX1 TRAJ #,FI0.5,5X,*SPACING #,FI0.5,7,* RC. LF FD5 CHARCE TRAJS	
* *,I4,5X,*NEXT TRAJ *,F10.5,5X,*SFACING *,F10.5)	
IF(INDEX.NE.0) GC TC 10	
CPEAD IN DATA CARDS	
READ 1001,NSTEPS,NCELL,NDISC,NN,NNN,NS,TERMIN, PF,DF,UF	
READ 1002,N,J,G,GF,DELR,VCAPF,R4R1,PDPCWER,FPCWER,	
*DELT,QCAPF,SFE,SFECLD, CND,T,CT,TWFITE, AT,CVERCNM,NOVERDN,	
*NFLM.NTDISC.NTDISCT.NCJ.NUBC. FLTR.DLTF.ULTF.	
*(NDISCND(I),NTYPE(I),NCISCI(I),SE(I),SE(I),RC(I),I=I,NTDISCT)	
$PFAD = 1007 \cdot (K \cdot P(2,1) \cdot K \cdot U(2,1) \cdot P(2,1) \cdot D(2,1) \cdot 1 = 1 \cdot N)$	
DEAD 1005 NODTH DTWIEVT DEL DTL AN MAEST AN MA DIMANUT DEL MA ANDA	
*TIDANT.DELIDA	
TERNOLUCER TERNOLUCER	
$ \begin{array}{c} \mathbf{f} \in \{1, 0\}, \mathbf{f} \in \{1, 0\}, $	
if (NUMASGISU) READ 1000, (NUMP(1), N(LUMP(1), I=NUMAFST, NUMA))	
(FINUMA.GI.O) READ 1300, (RUPA(I), RCLUFA(I), [=1, NUFA)	
NITHCIN=3H NO \$ FLIR=0.0	
IF(DLTR+GT+1,E-10)ELTR=DLTR+(PLTR/CLTR/(GF-1+)+ULTR++2/OLTR++2/2+)	
G E = GF	
DC 1 [=1,N	

-86-

ł

IF(I.GT.NFLM) GE=G F(2,1)=P(2,1)/D(2,1)/(CE-1.)+U(2,1)**2/2. 1 AJ=FLCAT(J) \$ GC TC.20 С С C----PUNCH DATA CARDS NCYCLE=NCYCLE-1 \$ INDEX=INDEX-1 \$ T=T-CT \$ CT=DTL 10 DC 11 1=1,N U(2,1)=U(2,1)/D(2,1)11 F(2,I) = E(2,I) / D(2,I)IF (NPUNCH .NE . 1) GD TO 20 PUNCH 1000, LSTART, NCYCLE, NPUNCH, NSTORE PUNCH 1004, NCELL NDISC . NNNINS, PF.CF.UF PUNCH 1002, N. J. G. GF. DELR. VCAPF. RAR1, PEPENER, PPENER. +DELT, CCAPF, SFE, SFECLD, CND, T, CT, TWFITE, AT, CVERCNW, NOVERDN, #NFLM, NTDISC, NTDISCT, NCJ, NUBC, PLTR, DLTR, ULTR, *(NCISCNC(I),NTYPF(I),NDISCL(I),SL(I),SE(I),RC(I),I=1,NTDISCT) PUNCH 1003, (I,R2(I), I,U(2,I),P(2,I),D(2,I),I=1,N) PUNCH 1005, NEPTH, PTHNEXT, DELPPTH, NUMAFST, NUMA, RUMANXT, DELUMA, NUPA, *TUPANXT,DELUPA IF(NPPTH.GT.0) FUNCH 1006, (REFTH(I), NCLPETH(I), I=1, NPPTH) IF (NUMA.GT.0) PUNCH 1006, (RUMA(I), NCLUMA(I), I=NUMAFST, NUMA) IF (NUPA.GT.0) PUNCH 1006, (RUPA(I), NCLUFA(I), I=1, NUFA) c С 20 PRINT 2000, LSTART, TERMIN, NSTEPS, J, G, GF, DELF, DELT, PF, DF, UF IF(NFLM.NE.0) PFINT 2001,VCAPF,R4R1,GCAPF,FCPDWFR,PPOWER,SFE,NFLM PRINT 2002, NPPTH, PTHNEXT, DELEFTH, NUMAFST, NUMA, RUMANXT, DELUMA. *NUPA,TUPANXT,DELUPA NCODE=10HRESTART \$ CALL FRNTFF(NCOCE) С IF(INDEX.NE.0) RETURN DO 21 1=1.N U(2,1)=U(2,1)=O(2,1)E(2,I) = E(2,I) * D(2,I)21 С RETURN \$ END

-87-

```
COMMON/URDOND/NUEC
      COMMON/PARAM/N, J, AJ, G, GF, DELR, NFLM
      CCMMCN/TIME/T,DT,DTL,TWRITE,DELT,DTDX,AT
      CCMMCN/FIRFETC/INDEX, NCYCLE, NA, NNN, NSTCRE, NS, NITRCTN
      COMMEN/POWER/VCAPF, RAR1, FDPCNEF, FFCWEF, CND, CCAPF, SFEOLD, SFE, NCJ
      CCMMCN/ARRAYS/R(501),U(2,501),P(2,501),D(2,501),E(2,501),R2(501)
      COMMCN/DISCS/NTDISC.NDISCND(51), NTYPE(51), NDISCL(51), SE(51), SL(51)
     *,RD(51),NTDISCT,NTDISCS
     CCMMCN/PPCHR/NPPTH,NUMA,NUMAFST,NUFA,RPPTH(24),RUMA(150),RUPA(150)
     *,NCLPPTH(24),NCLUMA(150),NCLUFA(150),PTHNEXT,RUMANXT,TUPANXT,
     *DELPPTH, DELUMA, DELUPA
С
C----ADVANCE MESH POSITIONS
      SDT=SFF#DT
      DO 1 1=1+N
      R2(I)=R(I)+SDT
1
C
   ---DIFFERENCE SCHEME-----
c-
      AT=-SFE $ IF(NCYCLE.GT.1) AT=-SFE-(T+DT)*(SFE-SFEDLD)/DTL
      DTDX=DT/DELR $ NL=N-1 $ CE=GF
C----PREDICTOR
      DC 5 1=2,NL
      D(2,1)=D(1,1)-DTDX*(U(1,1+1)-U(1,1))-AT*DTCX*(D(1,1+1)-D(1,1))
      U(2,I)=U(1,I)-DTDX*(U(1,I+1)**2/C(1,I+1)+P(1,I+1)-U(1,I)**2/
     *D(1,1)-P(1,1))-AT+DTDX*(U(1,1+1)-U(1,1))
      E(2, I)=E(1,I)-DTDX+(U(1,I+1)/C(1,I+1)+(E(1,I+1)+P(1,I+1))
     *-U(1,1)/C(1,1)*(E(1,1)+P(1,1)))-AT*CTCX*(E(1,1+1)-E(1,1))
      IF(I.GT.NFLM) GE=G
     P(2,1)=(E(2,1)/D(2,1)-U(2,1)**2/D(2,1)**2/2.C)*D(2,1)*(GE-1.)
 5
C----PREDICTOR B.C.
      U(2,1)=-U(2,2) $ P(2,1)=P(2,2) $ D(2,1)=D(2,2) $ E(2,1)=E(2,2)
      IF(NUBC.EC.3HYES) U(2,1)=U(1,1)
С
C----CCRRECTOR
      GF = G
      DC 6 1=2,NL
      11=N-1+1
      D2II=(D(1,II)+D(2,II)-DTCX*(U(2,II)-U(2,II-1))-AT+DTCX+
     *(D(2,II)-D(2,II-1)))/2.
      U21I=(U(1,II)+U(2,II)-DTCX*(U(2,II)**2/C(2,II)+P(2,II)-U(2,II-1)**
     #2/D(2, II-1)-P(2, II-1))-AT*DTDX*(U(2, II)-U(2, II-1)))/2.
      E(2,II)=(E(2,II)+E(1,II)-DTDX*(U(2,II)/D(2,II)*(E(2,II)*P(2,II))
     #-U(2,II-1)/D(2,II-1)*(E(2,II-1)*P(2,II-1)))
     *-AT*DTDX*(E(2,II)-E(2,II-1)) 0/2.
      D(2,11)=D211 $ U(2,11)=U211
      IF(II.LE.NFLM) GE=GF
      P(2,II)=(E(2,II)/D(2,II)-U(2,II)**2/D(2,II)**2/2.)*D(2,II)*(GE-1.)
 6
C----CORRECTOR B.C.
      U(2,1)=-U(2,2) $ P(2,1)=P(2,2) $ D(2,1)=D(2,2) $ E(2,1)=E(2,2)
      IF (NUEC.FG. 3HYES) U(2,1)=U(1,1)
с
C
      SFEOLD=SFE
C
C----DISCONTINUITY DYNAMICS
```

-88-

SUBROUTINE FIDIE

CALL DISC(0)

```
С
C-----PRINT GASDYNAMIC PARAMETERS ABOUT EACH DISC AT EVERY NOV-TH CYCLE
      NCY=5000
      IF (NCYCLE/NCY+NCY-NE+NCYCLE) GC TC 20
      DO 10 II=1,NTDISCT
      NF=NDISCL(11) $ IF(NF.LT.5) NF=5 $ K=NF+4 $ L=NF+4 $ NFM3=NF-3
      DO 11 M=K+L
      U(2, M) = U(2, M) / D(2, M)
 11
     F(2,N)=F(2,N)/D(2,M)
     PRINT 2000,NCYCLE,NDISCNC(II),NTYPE(II),NDISCL(II),SE(II),SL(II),
     *RD(11),R2(1),(R2(1),I=NFM3,L),T,CT, (U(2,1),I=K,L),(P(2,1),I=K,L),
     *(D(2,1),I=K,L), (F(2,1),I=K,L)
2000 FCFMAT(1H ,1X,14,13,12,14,2F14.9,10F7.4,2F1C.7,4(/,1X,SF14.10))
      DC 12 M=K+L
      U(2,4)=U(2,M)*D(2,N)
 12
      E(2,M)=F(2,M)+D(2,M)
     CENTINUE
 10
      PEINT 2001
2001 FORMAT(1H ,2/)
C
C----PARTICLE PATHS AND CHARACTERISTIC TRAJECTORIES
    CALL CHARDIR(NCYCLE)
20
C
C----PRINT AND WRITE INSTRUCTIONS
      NX=NSX=0
      IF (NCYCLF/NN+NN.FC.NCYCLE) NX=1 $ IF (NCYCLE/NS+NS.EQ.NCYCLE) NSX=1
      IF((NX.EG.0).AND.((NSTORE.LE.0).CF.(NSX.EG.0)).AND.((NSTORE.LE.0).
     *CF.(T.LT.TWRITE)).AND.((NITRCTN.EG.3F NC).CF.(NSTCRE.LE.C)))
     *GC TC 50
C
C----CALCULATE U.E
      DO 30 M=1.N
      U(2,M)=U(2,M)/C(2,M)
30
     E(2,M)=E(2,M)/D(2,M)
С
C----WRITE
     IF((NSTORE.GT.0).AND.((NSX.FQ.1).CF.(T.GE.ThFITE).CR.(NITRCTN.EQ.
     #34YES))) GO TO 35
     GC TC 36
 35
      WRITE(1) NCYCLE, T, NTDISCT, NFLM, NPFTH, NUMAFST, NUMA, NUPA, (NDISCND(1)
     *, NTYPE(I), NDISCL(I), SE(I), SL(I), RC(I), I=1, NTDISCT), N, (R2(M), U(2,M)
     *,P(2,N),D(2,N),N=1,N)
      IF(NPPTH.GT.0) WRITE(1) (RPPTH(I), I=1, NPPTH)
      IF(NUMA.GT.O) WRITE(1) (RUMA(1), I=NUMAFST, NUMA)
      IF(NUPA.GT.0) WRITE(1) (RUPA(1),1=1.NUPA)
С
36
      NITRCIN=3H NO
C
C----PRINT HEADERS
      IF(NX+EQ+0) GC TC 4C
                          $ CALL PRNIFF(NCCDE)
      NCCDE=10FFIDIF
С
 40
      DO 41 M=1.N
      U(2,N)=U(2,N)+D(2,N)
 41
      E(2,M)=E(2,M) +D(2,M)
```

C. 50 IF(T.GE.TWRITE) TWRITE=T+DELT C Return \$ END

```
SUPROUTINE DISC(NINITL)
      CCMMON/PARAM/N, J, AJ, G, GF, DELR, NFLM
      COMMON/TIME/T, DT, DTL, TWRITE, DELT, CTDX, AT
      COMMON/FIREET C/INDEX, NCYCLE, NN, NNN, NSTOPE, NS, NITROTN
      COMMON/DISCSKF/FDSAV(51),NLHS(51),NRHS(51),NCRCSS(51)
      CCMMCN/ARRAYS/R(501),U(2,501),F(2,501),D(2,501),E(2,501),R2(501)
      CCMMCN/DISCS/NTDISC,NDISCNO(51),NTYPE(51),NDISCL(51),SE(51),SL(51)
     *,RD(51),NTDISCT,NTDISCS
С
      NLHS, NRHS=LEFT, RIGHT HAND CELL NO. INFLUENCED BY THE DISC
С
      NI=ND. OF DISCS INTERACTING
С
С
      NFIRST, NLAST=FIRST, LAST DISC IN THE INTERACTION
с
      NUMBER=INTERACTION CODE NC.
      NINITL(0,1)=(DOESNT, DOES COME FROM SUB-INITIAL SO ONLY RESET DISC)
С
с
С
C----DET IF CALLED FROM SUE-INITIAL
      IF(NINITL.EQ.1) GC TC 100
C
С
C----LOCP 1 DETS AND EXECUTES ALL DISC(FLM, SHK, CD, DET, TRARE) INTRCTNS
      NTDISCS=NTDISCT $ NI=0 $ NFIRST=1
      DC 1 I=1,NTDISCS
      NI=NI+1
С
C----DETERMINE CELL RANGE INFLUENCE OF THE DISC
      NDISCLS=NDISCL(I)
      RDSAV(1) = RD(1) + SE(1) + CT
      IF((NTYPE(I).EQ.2).OR.(NTYPE(I).EC.5)) GC TC 2
      IF ((NTYPE(I).EQ.3).OR.(NTYPE(I).EC.4).OF.(NTYPE(I).EQ.C).OR.
     *(NTYPE(I).EQ.8)) GC TC 4
      IF(NTYPE(1).FC.7) GD TD 7
С
     NCROSS(1)=0
      NLHS(I)=NDISCLS-1 $ NEFS(I)=NDISCLS+2
      GC TC 5
С
      IF(((RDSAV(I).LT.P2(NCIS(LS)).ANC.(SL(I).LT.0.0)).CR.
2
     *((RDSAV(I).GT.R2(NDISCLS+1)).AND.(SL(I).GT.0.C)).CF.((RDSAV(I).GT.
     *R2(NDISCLS)).AND.(RDSAV(I).LT.F2(NDISCLS+1))) GO TO 3
     PRINT1000, I, NDISCNO(I), NDISCLS, NTYFE(I), RD(I), RDSAV(I), R2(NDISCLS)
     #,R2(NDISCLS+1),SL(1),SE(1),DT
1000 FOFMAT(1H ,/,1X,* SPECIAL CISC X/C *,415,7E13.6)
     NCROSS(1)=)
 ч.
      IF(PDSAV(I).GT.R2(NDISCLS+1)) NCRDSS(I)=1
      IF(RDSAV(I)+LT+R2(NDISCLS)) NCFCSS(I)=-1
      NLHS(I)=NDISCLS-1-NCFOSS(I)*(NCROSS(I)-1)/2
      NRHS(I)=NCISCLS+3+NCFCS5(I)
      GO TO 5
     NCECSS(I)=0
      IF(RDSAV(I).GT.R2(NDISCLS+2)) NCFCSS(I)=1
      IF(RDSAV(I).LT.R2(NDISCLS-1)) NCRCSS(I)=-1
      NLHS(1)=NDISCLS-2+NCFCSS(1)+(NCFCSS(1)-1)/2
     NRHS(I)=NDISCLS+4+NCROSS(I)
      GC TC 5
     NCROSS(1)=)
7
```

IF(RDSAV(I).GT.R2(NDISCLS+1)) NCFOSS(1)=1 IF(RDSAV(I).LT.R2(NDISCLS)) NCFCSS(1)=-1 NLHS(I)=NDISCLS & NRHS(I)=NDISCLS+12 C C-----LOOP 10 DETS IF THE DISC IS SUFF CLOSE FOR INTERACTION IF(NLHS(I).LT.1) NLHS(I)=1 5 IF(NTDISCS.E0.1) GC TC 20 TE(NI-EQ-1) GO TO I MI HS=0 IF((NTYPE(1)*NCROSS(1).EQ.-3).CF.(NTYPE(1)*NCFCSS(1).FC.-4).OR. *(NTYPE(1)*NCROSS(1)*FQ*-6)*OR*(NTYPE(1)*EQ*7)) MLHS=+1 IF((NTYPE(1)*NCPCSS(1).EG.-2).AND.(NTYFE(1-1).NE.1).ANC. *(NCROSS(I-1).NE.-1)) MLHS=1 IF(NRHS(I-1).LE.NLHS(I)+1+MLHS) GC TO 10 \$ CC TO 21 С C----NC INTERACTION 10 NI = NI - 1GO TO 20 C----INTERACTION 21 IF((NI.EQ.2).AND.(NTYPE(I-1).EG.2).AND.(NTYPE(I)*NCFCSS(I).EQ.-2) *.AND.(((NDISCL(I)-NDISCL(I-1).EG.C).AND.(NCFCSS(I-1).NE.-1)).OR. *((NDISCL(I)-NCISCL(I-1).EQ.1).ANC.(NCFCSS(I-1).EG.1))) GD TD 22 GD TO 25 IF(NDISCL(I-1).EQ.NDISCL(I)-1) GC TO 22 22 NCROSS(I-1)=0 \$ NRHS(I-1)=NDISCL(I-1)+3 24 NCFDSS(I)=0 \$ NR+S(I)=NCISCL(I)+3 \$ NL+S(I)=NDISCL(I)-2 GC TC 25 23 M=NDISCL(1) IF(RD(1)+(RC(1)-RC(1-1))/(SE(1-1)-SE(1))*SE(1)+LT+R2(M)) GD TD 25 GC TO 24 IF(I.NE.NTDISCS) GD TC 1 25 c C----DETERMINE INTERACTION CODE NO. 20 NUMBER=0 DO 30 II=1.NI 30 NUMBER=NUMBER+10##(4-11)#NTYPE(NFIRST-1+11) NI=NEISST+NI-1 C-+---PRINT THE INTERACTION NO. AT EVERY NOY-TH CYCLE NCY=5000 IF (NCYCLE/NCY*NCY.EG.NCYCLE) FFINT 1002, NUMEER, (N.NCFCSS(M), NCISCL *(M),NTYPE(N), N=NFIRST,N1) 1002 FCRMAT(1H .1715) C----CHECK IF INTERACTION BELONGS TO A KNOWN MOTION IF((NUMBER.F0.1000).DR.(NUMBER.F0.1200).DR.(NUMBER.EQ.1400).DR. (NUMBER.E0.2000).CR.(NUMBER.EG.2100).CR.((NUMBER.E0.2200).AND. * *(SL(NFIRST)+GT+0+))+OR+(NUMBER+FQ+2220)+CR+(NUMBER+EC+2250)+OR+ (NUMBER.EQ.2300).CR.(NUMBER.EG.2310).OR.(NUMBER.EQ.2312).OR. (NUMBER+FQ+2320)+OR+(NLMBER+EG+2400)+CR+(NUMPER+EG+2500)+OR+ (NUMBER.F0.2520).OR. (NUMBER.E0.2600).OR. (NUMBER.E0.2670).OR. ± (NUMBER-EQ.2675)+OR+(NUMBER+EG.2870)+CR+(NUMBER+EG.3000)+OR+ (NUMBER-E0.3100).OR.(NUMBER-E0.3120).CR.(NUMBER-EC.3200).OR. (NUMBER-E0.4000).CF. (NUMEEF.E0.4200).DF. (NUMEER.E0.5000).DR. (NUMBER.EQ.5200).OR. (NUMBER.EQ.5220).CR. (NUMPER.EG.5300).OR. (NUMBER-10.5400).0R.(NUMBER.EQ.6000).0R.(NUMBER.EQ.6700).0R. * (NUMBER-E0.6750).0R. (NUMBER-EG.7000).CF. (NUMBER-EG.7500).0R.

* (NUMBER.EQ.8000).OR.(NUMBER.EQ.8200)) GC TO 35

-92-

DELR=-ABS(DELR) \$ PRINT 1001,NUMBER \$ RETURN 1001 FCRMAT (1H +5/+* NUMBER= *+15) C----CARRY DUT THE INTERACTION 35 IF(NUMBER.E0.1000) CALL FLM(RD(N1),SE(N1),SL(N1),6H) IF(NUMBER.EQ.1200) CALL FLMSHK(4HZERC,NFIRST,N1) IF(NUMBER.EQ.1400) CALL FLRCD(NFIRST, N1, NCFESS(N1)) IF(NUMBER.FQ.2000) CALL SFK(RC(N1),SE(N1),SL(N1),NDISCL(N1)) IF(NUMBER.EQ.2100) (ALL SHKFLM(NFIRST,N1) IF ((NUMBER.F0.2200) .AND. (SL(N1).GT.0.C). AND. (SL(NFIRST).GT.0.0)) *CALL SKSKPP(NFIRST,N1,NFIRST,7F DISCSS) IF((NUMBER.EQ.2200).AND.(SL(N1).LE.0.0).AND.(SL(NFIRST).GT.0.0)) *CALL SKSKPN(NFIRST,N1) IF (NUMBER.EG.2220) CALL SKSKSK (NFIFST, NFIRST+1, N1) IF (NUMBER.EQ. 2250) CALL DISKSK(NEIEST,NI-1,NI) IF(NUMBER.FG.2300) CALL SHKCD(NFIRST,NI, EH ZERO) IF(NUMBER.FO.2210) CALL SCOFL*(NFIFST,NFIRST+1.N1) IF(NUMRER.E0.2312) CALL SCOFLMS(NFIRST,NFIRST+1,NFIRST+2,N1) IF (NUMPER.EQ. 2320) CALL SKCDSFK (NF1RST, NF1RST+1, N1) IF(NUMBER.E0.2400) CALL SHKCD(NFIRST,N1,8HRARCD IF (NUMBER.EQ.2500) CALL CSCRSC(NEIRST,N1,N1,7H DISCSD) IF(NUMBER.EQ.2520) CALL CISKSK(NFIFST,N1-1,N1) IF(NUMBER.EQ.2600) CALL SHKCD(NFIRST,N1,8HSKCDDT) IF (NUMBER.EQ.2670) CALL SCTEDTE (NFIRST, NFIFST+1, N1, NDISCL (N1)) IF(NUMBER.EQ.2675) CALL SCOTDET(NEIRST, NCRCSS(NEIRST), N1-2, *NCFCSS(N1-2), N1-1, NCFOSS(N1-1), N1, NCRCSS(N1), 442675) IF (NUMBER.EQ.2800) CALL SHKCD(NEIFST,N1,8HSFKCDRAR) IF(NJMBER.EQ.3000) CALL CD(RD(N1),SF(N1),NDISCL(N1),5H IF(NUMBER.E0.3100) CALL CDFLM(4+ZEF0,NFIRST,N1) IF(NUMBER.EQ.3120) CALL COFLMSK(NFIRST,NFIRST+1,N1) IF(NUMBEP.EG.3200) CALL CDSHK(NFIRST,N1,6H ZERD) IF(NUMBER.E0.4000) CALL CC(RC(N1),SE(N1),NDISCL(N1),SHRARCD) IF (NUMBER.ED.4200) CALL COSHK (NEIRST,N1,6H RARCD) IF(NUMBER.FG.5000) CALL DET(FD(N1),SF(N1),SL(N1),NDISCL(N1),NCROSS ¥(N1),7H DE T) IF (NUMBER-EQ-5200) CALL DECRED (NEIRST, NI, NI, 7H DISCOS) IF(NUMBER.EQ. 2220) CALL CISKSK(NFIRST,NI-1,NI) IF (NUMBER.EQ.5300) CALL SHKCD(NFIRST,N1, CHEETCD IF(NUMBER.EQ.5400) CALL SHKCD(NFIRST,N1, #HDETRARCD) IF(NUMBER.EQ. 6000) CALL CD(RD(N1), SE(N1), NDISCL(N1), SHCDIRD) IF (NUMEER.EQ.600C) NTYPE (NEIRST)=3 IF (NUMBER.EG. 6700) CALL CDTFDTF (NFIRST, NI, NCISCL(NI)) IF(NUMBER.EQ.6750) CALL SCDTDET(NFIRST,NCRCSS(NFIRST),NI-2, *NCFCSS(N1-2),N1-1,NCFCSS(N1-1),N1,NCFCSS(N1),4+675C) IF(NUMBER.EQ.7000) CALL TRARE(NDISCL(NFIRST)) IF(NUMBER.E0.7500) CALL IRDET(NFIRST,NCRCSS(NFIRST),N1,NCRCSS(N1), *8HDISC TD) IF(NUMBER.EQ. CCO) CALL CD(RD(NI),SE(NI),NDISCL(NI),SHCDFAR) IF (NUMBER.EQ.8200) CALL CDSHK (NFIRST,N1, FHCORSHK) C----CHECK IF ALL DISC HAVE BEEN HANDLED NF IRST = I NI = 1IF((N1.EQ.NTDISCS-1).AND.(I.EC.NTCISCS)) GE TE 20 CONTINUE 1

С

r с

-93-

```
c
С
C----LOOP 200 RESETS DISC IN AN ASCENDING SPACIAL CRDEF
 100 NT=0
      DO 200 1=1.NTDISCT
      IF(NDISCL(I).LT.0) GO TO 200
      NT = NT + I
      IF(NT.NE.1) GO TO 210
С
C----SET IST DISC FOSITICN AND PARAMETERS
      NTYPE(NT)=NTYPE(1) & NDISCL(NT)=NDISCL(1) & NDISCNC(NT)=NDISCNC(1)
      SL(NT)=SL(1) $ SE(NT)=SE(1) $ FD(NT)=RC(1)
      GO TO 200
С
C----SET DISC RELATIVE TO THE CTHER DISC
 210 IILAST=NT-1
      DD 220 11=1,11LAST
      IF(RD(1).ST.RD(11)) GC TC 220
C
C----SET DISC OFTNEEN THE CTHERS
      NTYPE(NTDISCT+1)=NTYPE(1) $ NDISCL(NTDISCT+1)=NDISCL(1)
      NDISCNC(NTDISCT+1)=NDISCNC(I)
      SL(NTDISCT+1)=SL(1) $ SE(NTDISCT+1)=SE(1) $ RC(NTDISCT+1)=RD(1)
      DC 221 III=II, IILAST
      L = NT - III + II
      NTYPE(L)=NTYPE(L-1) $ NDISCL(L)=NDISCL(L-1)
      NDISCNU(L)=NDISCNC(L-1) $ SL(L)=SL(L+1 ) $SE(L)=SE(L-1)
 221
      RD(L)=RD(L-1)
      NTYPF(II)=NTYPE(NTOISCT+1) $ NDISCL(II)=NDISCL(NTDISCT+1)
      NDISCNO(II)=NCISCNC(NTDISCT+1)
      SL(II)=SL(NTDISCT+1) $ SE(II)=SE(NTDISCT+1) $ RD(II)=RD(NTDISCT+1)
      GC TC 200
220 CONTINUE
С
C----SET DISC AS LAST DISC
      NTYPE(NT)=NTYPE(1) $ NDISCL(NT)=NDISCL(1) $ NDISCNC(NT)=NDISCNC(1)
      SL(NT)=SL(I) $ SF(NT)=SE(I) $ RC(NT)=RC(I)
С
200 CENTINUE
с
      NTDISCIENT
      RETURN $ END
```

-94-

-95-

```
P30=P30+DELP30
 2
      P31=F30/P10
      SSL31=SORT((P31+BETI)/(1.+BETI))
      SSE30=SSL31#A10#SORT(G)+L10
      U310=(1.-BETI)*(1.-1./SSL31**2)*SSL31*A10*SCRT(G)
      U30=U310+U10
      D31=1+/(BET1+(1+-BET1)/SSL31**2) f C3C=C31*C10
      A21=SORT((1.-BETI)**2*(SSL31**2-BET1/(1.+BETI))*(1./SSL31**2+
     *BETI/(1.-BFTI))*G
      A20=A31#A10
С
      PG3=1++(PG0-1+)/A30*+2+GF+(1+-1+/A30*+2)+(G/GF+P-R4R1)
      SSL43=SFLMNEW/SORT(G)/A30
      SSE40=SFLMNEw+U30
     P43=(-(BETA-1.-SSL43**2*(1.-EETA)*C)+SGRT((EETA-1.-SSL43**2*(1.-
     *BETA)#G)##2+4.#(BETA-SSL43##2#(1.-EETA)#PG3#G)))/2.
     F40=F43#P30
     D43=1+/(1+-BETA)*(P43-PG3)/(P43+EETA)) $ D40=043*D30
     U430=-SORT((1.-EETA)*(P43-PG3)*(P43-1.)/G/(P43+BETA))*A30*SORT(G)
     U40=U430+U30
     A43=SQRT(((PG2+RFTA)+BETA+(P42-FG3))/(F43+FETA)+GF/G+P43)
      A40=A43+A30
C
C---- ASSUNE F50=P40
     P5C=P40
     PE2=PE0/P20
     SSL52=-SCRT((P52+PFTA)/(1.+RETA))
      SSE50=SSL52#A20#SORT(G)+L20
     U520=(1.-BETA)*(1.-1./SSL52**2)*SSL52*A2C*SCFT(G)
      U50=L520+U20
     D52=1+/(BETA+(1+-BETA)/SSL52**2) $ D5C=D52*C20
     A52=SOFT((1.-EFTA)**2*(SSL52**2-PFTA/(1.+BETA))*(1./SSL52**2+
     *BETA/(1.-BETA))*GF)
      A50=A52*A20
С
     DELU=A85(040-050)
С
     PRINT 1000, NITER, J, DELP30, FG0, FG3, CELU,
     *P10,D10,U10,A10
                       *P2C+D20+U2C+A20+SL(IFL*)+
     *P31,P30,D31,D30,U310,U30,A31,A30,SSL31,SSE30,
     *P43,P40,D43,D40,U43(,U4C,A43,A40,SSL43,SSE4C,
     #P52,P50,C52,D50,U520,U50,A52,A50,SSL52,SSF50
1000 FORMAT(1H ,1X,215,4E16+8,/,1X,4F13+8,13X,5F13+8,3(/,1X,10F13+8),/)
С
С
     IF(DELU.LE.EPS) GC TO 1C
     IF((U40.LT.U50).AND.(NSIGN.E0.1)) DELP3C=AES(DELF30)/2.0
     IF(U40.LT.U50) GC TC 1
     DELP30=-ABS(DELP30)/2.0
     NSIGN=1 $ GC TC 1
с
С
C---- ADD THE DISCS TO THE FLOW FIELD
10
    NT=NTDISCT
     NDISCNC(NT+1)=NT+1 $ NDISCNC(NT+2)=NT+2 $ NCISCND(NT+2)=NT+3
     NTYPE(NT+1)=2 $ NTYPE(NT+2)=3 $ NTYPE(NT+3)=2
```

-96-

SL(NT+1)=SSL52 \$ SL(NT+2)=0.0 \$ SL(IFLM)=SFLMNEW \$ SL(NT+3)=SSL31 SE(NT+1)=SSE53 \$ SE(NT+2)=L43 \$ SE(IFLM)=SSE40 \$ SE(NT+3)=SSE30 RD(NT+1)=RC(IFLM)*(1.-1.E-10) \$ RD(NT+2)=RD(IFLM)*(1.-.SE-1C) RD(NT+3)=RD(IFLM)*(1.+1.E-13)

DC 130 [=NFLM,N M=N+NFLM-I+? D(2,N)=D(2,M-2) \$ U(?,M)=U(2,M-2) E(2,N)=E(2,M-2) \$ P(2,N)=P(2,M-2) 100 R2(M)=R2(N-2) N=N+2 R2(NFLM)=R2(NFLM+1)=RC(NT+2) DC 131 I=IFLM,NT 131 NDISCL(I)=NCISCL(I)+2 NFLM=NFLM+2 NDISCL(NT+1)=NFLM-3 \$ NDISCL(NT+2)=NFLM-2 \$ NDISCL(NT+2)=NFLM+1 NTDISCT=NT3ISC=NT+3 -----SET TFERMO AND GAS PARAMETERS IN CELLS NFLM-2,-1,0,+1 D(2,NFLM-2)=D53 \$ U(2,NFLM-2)=U50 \$ F(2,NFLM-2)=P50 D(2,NFLM-1)=D40 \$ U(2,NFLM-1)=U40 \$ F(2,NFLM-1)=P40

С

с

RETURN \$ END

NTD1SCT=NTD1SC=NT+3 C-----SET THERMO AND CAS PARAMETERS IN CELLS NFLM-2,-1,0,+1 D(2,NFLM-2)=D50 \$ U(2,NFLM-2)=U50 1 F(2,NFLM-2)=P50 D(2,NFLM-1)=D40 \$ U(2,NFLM-1)=L40 \$ F(2,NFLM-1)=P40 D(2,NFLM)=D40 \$ U(2,NFLM)=U40 \$ F(2,NFLM)=P4C D(2,NFLM+1)=D30 \$ U(2,NFLM)=U40 \$ F(2,NFLM)=P4C D(2,NFLM+1)=D30 \$ U(2,NFLM+1)=L30 \$ F(2,NFLM+1)=P30 E(2,NFLM-2)=P50/D50/(GF-1.)+U5C##2/2. E(2,NFLM-1)=E(2,NFLM)=F40/D40/(GF-1.)+U40##2/2. E(2,NFLM+1)=P30/D30/(G-1.)+U30##2/2.

-97-

```
CONNEN/PARAM/N, J, AJ, G, GF, DELR, NFLN
      COMMON/TIME/T, DT, DTL, TWRITE, DELT, DTDX, AT
      CCMMEN/PREDCCF/EPC(2,13), UPC(2,13), EFC(2,13), PPC(2,13)
      COMMON/POWER/VCAPF, R4R1, PDPOWER, FFCWER, CND, GCAPF, SFEDLD, SFE, NCJ
      CCMMEN/AFRAYS/R(501),U(2,501),P(2,501),D(2,501),E(2,501),R2(501)
С
С
      PD, VD=PRESS, SPECIFIC VOL RATIC ACROSS THE FLAME
С
      IF (NAME.EQ. CH FLRCD) GD TO 1
C----PREDICTOR FOR NFLM+1 = 3
      M=NFLM+1
      DPC(1,3)=DP(M,0) $ UPC(1,3)=UF(N,C)
      EPC(1,3)=EP(N,0) $ FPC(1,3)=PP(3,C)
C----PREDICTOR FOR NELM = 2
      CALL SFVDPD(G, GF, PPC(1,3), DPC(1,3), SFL, VD, FD, DELR)
      DPC(1,2)=DPC(1,3)/VD $ PFC(1,2)=PPC(1,3)*PC
      UPC(1,2)=(SFL*(1.-VD)+UPC(1,3)/DFC(1,3))*DFC(1,2)
      EFC(1,2)=DPC(1,2)*(FFC(1,2)/DFC(1,2)/(CF-1.)+UPC(1,2)**2/DPC(1,2)
     ***2/2.0)
C----PREDICTOF FOR NELM-1 = 1
      M=NELM-1
 1
      DPC(1,1)=DP(M,0) \leq UPC(1,1)=UP(N,C)
      EPC(1,1)=EP(N,0) $ PFC(1,1)=PF(1,6F)
C----CORRECTOR FOP NELM = 2
      DPC(2,2)=C(2,NFLM)=CC(2,NFLM,0) $ UPC(2,2)=U(2,NFLM)=UC(2,NFLM,C)
      EPC(2,2)=E(2,NFLN)=EC(2,NFLN,0) $ PPC(2,2)=F(2,NFLM)=PC(2,GF)
C-----CORRECTOR FOR NELM+1 = 3
      VC=CPC(1,3)/0PC(1,2)
      CALL FLM43(2+VD, SFL)
      M=NFLH+1
      D(2,N)=DFC(2,3) $ U(2,M)=UFC(2,3) $E(2,N)=EFC(2,3)$P(2,M)=PPC(2.3)
C----SET FLAME POSITION AND SPEED
      PF=SFFS#CT+RF $ SFES=SFE
С
```

-98-

SUBROUTINE FLM(RF, SFES, SFL, NAME)

	SLPROUTINE SFVDPC(G,GF,FAVG,CAVG,SF,VC,PC,CELR)
	COMMCN/PRWER/VCAPF,R4R1,PDPDWER,FFCWER,CND,GCAPF,SFEOLD,SFE,NCJ
c	
	FLMSPD1(PAVG,CAVG)=CND+(FAVG/CAVG)++FEFCWEF+FAVG++PPOWER
c	
c	VF=CCNST PRESS SPECIFIC VEL RATIC AT FLAME STATE CONDITIONS
C	
	SFSAV=SF
	BETA=(GF-1+)/(GF+1+)
	VF=VCAPF/PAVG*DAVG+(1DAVG/PAVG)*(G*(GF-1.)/GF/(G-1.)-R4R1+1.)
÷	SF=FLWSFD1(FAVG, CAVG)
	IF(ARS(SFSAV-SF)+LT+1+E-CR) SF=SFSAV
	C=2.*G*SF**2/G/PAVG*DAVC \$ A=(1.+PETA)*(1.+C/2.)
	B=A*A-2.*C*(C/2.*BETA+(1.+BETA)*VF)
	IF(R.GE.0.0) GD TO 1
	SFSAVI=SF \$ IF(NCJ.EG.3F NC) CELF=-AES(CELR)
	SF=SORT((1++BETA)*PAVG/DAVG)/(1++BETA)*(SQRT(VF-PETA)-SQRT(VF-1+))
	IF (ABS (SFSAV-SF).LT.1.E-08) SF=SFSAV
. •	C=2.*G+5F**2/G/FAVG*DAVG \$ A=(1.+EETA)*(1.+C/2.)
	PRINT 1000-B-PAVG-DAVG-SESAVI-SE-NCJ
1000	FOFMAT(1H .5X.+E.LT.0+.E17.9.1X.4F20.13.5X.A3)
	VD=A/C
	GC TC 2
1	IF (NCJ_F0_3HYES) DELR=-AFS(DELR)
•	IF (NCJ.EQ. 3HYES) PRINT 1000.B.PAVG.DAVG.SESAV.SE.NCJ
	vD = (A - SQGT(P))/C
2	
•	

c

-99-

```
SUBROUTINE FLW43(K, VD, SFL)
      CEMMEN/PARAM/N, J, AJ, G, GF, DELR, NFLW
      COMMEN/PREDCOR/DPC(2,13), UPC(2,13), EPC(2,13), PPC(2,13)
      CCMMCN/POWER/VCAPF, R4R1, PCFOWER, PPCWER, CNC, CCAPF, SFEDLD, SFE, NCJ
С
      FLWSFD2(PAVG, DAVC)=CND*(PAVG/DAVG) ** PDFCWEF * FAVG** FPCWER
      L=K+1 $ CCNST=G#(GF-1.)/GF/(G-1.)-F4R1+1. $ EETA=(GF-1.)/(GF+1.)
С
C
      SFL SAV=SFL
      IF (NCU.EG.3HYES) GD TC 15
С
      NITER=0 $ EPS=1.E-14
      DPC(2,L)=DPC(2,K)*VD $ FFC(2,L)=FPC(1,L)
      DO 1 ITER=1,45
      SFL=FLMSPD2(PPC(2,L),DFC(2,L))
      G1=-FPC(2,K)+FFC(2,L)+SFL**2*CFC(2,L)*(1.-VC)
      DC10P3=1++2+*SFL**2*(PDPC%ER+PFC%ER)*(1-VC)*DPC(2+L)/FFC(2+L)
      DF3=-G1/DG1DP3 $ PPC(2,L)=FPC(2,L)+DP3
      IF(AHS(DP3)+LT+FPS*PPC(1+L)) GC TC 2
 1
      CONTINUE
      PRINT 2000,NITER, PPC(1,L), PPC(2,L), CP3, C1, CC1CP3, SFL, SFL
 2000 FORMAT(1H 1+1X+*FLM43++14+7E17+10)
      IF (ABS(DP3) .LE .2000 . #EFS#PPC(1,L)) GO TO 2
      DELR=-ARS(DELR) $ RETURN
2
      SFL=FLMSPD2(PPC(2,L), DPC(2,L))
C
 5
      NITER=NITER+1
      IF(NITER+LT+35) GO TO 6
      IF (NITER.E.).35) DV3SAV=DV3
C
      PRINT 2000,NITER,G3,DV3,PPC(2,L),PPC(2,K),DFC(2,L),DPC(2,K),SFL
      IF(NITER.LT.40) GC TC 6
      IF((ABS(DV3SAV)+LT+500+#EPS#DFC(1+L))+AND+(#ES(DV3)+LT+500+#EPS#
     *CPC(1,L))) GC TC 16
      PRINT 2000,NITER,G3,DV3,FPC(2,L),FFC(2,K),EFC(2,L),DPC(2,K),SFL
      PRINT 2001
2001 FORMAT(1H ,5/,1X, #ITERATION EQUALS MAXIMUM IN FLM43#)
      DELR=-ABS(DELR) $ RETURN
      D3D4=DPC(2+L)/DPC(2+K)
 6
      G3=PPC(2,K)*(EETA-D3D4)+(1.+BETA)*(VCAFF-CCNST)*CPC(2,L)+
     *(SFL **?*DPC(?,L)*(1.-D3D4)-PPC(2,K))*(BETA*C3C4-BETA**?~(1.+BETA)*
     *(CCNST-BFTA))
      DPDV3=(D3D4/(1--D3D4)+2+*PDF0%EF-1-)/(1-/SFL**2/(1--D3D4)+
     #2.#CPC(2.L)/PPC(2.L)*(PCFOWER+PFCWER))
      DSDV3=-PDFOWER*SFL/CPC(2,L)+(FCFCWER+FFCWER)*SFL/FPC(2,L)*DPDV3
      DG3DV3=-(1.+RETA)*PPC(2,K)/DPC(2,K)+(1.+RETA)*(VCAPF-CCNST)+
     *SFL**2*DPC(2,L)*(1.-D3D4)*(EETA*(C3D4-EFTA)-(1.+BETA)*(CCNST-BETA)
     #) #(2+/SFL#DSDV3+(1+-2+#D3D4)/DPC(2+L)/(1+-D3D4)+BFTA/DFC(2+K)/
     *(BETA*(D3D4-BETA)~(1.+BETA)*(CCNST-BETA)))
      DV3=-G3/DC3DV3
      DPC(2,L)=DPC(2,L)+DV3
c
      DC 10 ITER=1,45
      G1=-PPC(2,K)+PPC(2,L)+SFL+#2#CPC(2,L)#(1.-VD)
      DG1DP3=1.+2.*SFL**2*(PDPC%ER+FFC%EF)*(1.-VC)*CPC(2,L)/PPC(2,L)
      DP?==G1/DG1DP3 $ PPC(2+L)=PPC(2+L)+DP3
```

-100-

	SFL=FL#SPD2(PPC(2,L),DPC(2,L))
	IF(ABS(DP3)+LT+EPS*PPC(1+L)) GD TC 11
10	CCNTINUE
	PRINT 2000,NITER,PPC(1,L),PPC(2,L),DF3,G1,CG1DP3,SFL
	IF(A95(DP3)+LE+2000+#EPS#PPC(1+L)) GC TC 11
	DELR=-ARS(DELR) \$ RETURN
11	IF(ABS(DV3).GT.EPS*DPC(1.L)) GC TC E
c	PRINT 2003,NITER
2003	FORMAT(1+ ,1X, +NITER +,15)
	GC TC 16
с	
c	
15	CCNST=G*(GF-1.)/CF/(C-1.)-F4R1+1.
	A=(1.+BETA)**2*DPC(2.K)/FPC(2.K)*(VCAFF-CDNST)-1.+BETA
	B=2.*((1.+BFTA)*CCNST-2.*BETA) \$C=(1BETA)*(BETA-CONST*(1.+BETA))
	PD=(-P+SQRT(8+E-4.+A+C))/2./A \$ VE=PC+(1.+EETA)/(2.+PD-1.+BETA) .
	PPC(2,L)=PPC(2,K)/PD \$ DPC(2,L)=DFC(2,K)*VD
	SFL=SGFT((1++EETA)*PPC(2,L)/DFC(2,L)/(2+*VC-1+-BETA))
C	
C	
16	UPC(2,L)=(CPC(2,L)/CFC(2,K)#SFL-SFL+UFC(2,K)/CFC(2,K))#CPC(2,L)
	EPC(2,L)=DPC(2,L)*(PPC(2,L)/DPC(2,L)/(G-1,)+UPC(2,L)**2/DPC(2,L)**
1	*2/2.)
c	
	IF(ARS(SFLSAV-SFL).GT.1.E-08) CC TC 17
	SFL=SFLSAV
	DPC(2,L)=DPC(1,L) \$ UPC(2,L)=UPC(1,L)
	EPC(2,L)=EPC(1,L) \$ PPC(2,L)=FPC(1,L)
17	CONTINUE
	SFE=SFL+UPC(2,L)/DPC(2,L)
с	

-101-

SUBFOUTINE DET(FS, SSE, SSL, NSHK, NXSS, NAME) CCMMCN/PARAM/N, J, AJ, G, GF, DELR, NFLM CCWMCN/TIME/T, DT, DTL, TWR ITF, DELT, DTDX, AT COMMEN/TEDI/FLTE, DLTE, ULTE, ELTE, EVERCHA, NEVERCH COMMCN/PRFDCOR/CPC(2,13), UPC(2,13), EFC(2,13), PPC(2,13) CCWMCN/FCWER/VCAPF, R4F1, FCFDWEF, FFCWEF, CND, CCAPF, SFEDLD, SFE, NCJ COMMCN/ARRAYS/R(501),U(2,501),F(2,501),C(2,501),E(2,501),R2(501) C PG1(A)=1.+(PG0-1.)/A++2+CF+(1.-1./A++2)+(G/CF+B+R4R1) C C CVERDNM=OVERDRIVEN DETCNATION MACH NUMBER С NOVERDN=NO. OF TIME STEPS DET HAS EEEN CVERCRIVEN C BETA=(GF-1.)/(GF+1.) \$ E=(CF-1.)/((-1.) PG0=(1.+PETA)*(VCAPE-BETA)/(1.-BETA)-PETA с С C----PREDICTOP FOR NSHK = 2 A=SORT(P(1+NSFK+1)/D(1+NSFK+1)) \$ FG=PG1(A) PS1=(1.-PETA)/2.*(1.+G*SEL**2) IF (NOVERDN+LT+20) PS1=PS1+SORT(PS1++2+(1+PETA)+G+SSL++2+PG+BETA) PS=PS1*P(1,NSHK+1) DS=D(1,NSHK+1)/(1.-(1.-BETA)*(PS1-PG)/(PS1+BETA)) US=DS#(SORT(G)#A*SCFT((1.-EET#)*(PS1-FC)*(PS1-1.)/G/ *(PS1+BETA))+U(1,NSHK+1)/D(1,NSHK+1)) ES=(PS/DS/(CF-1.)+US**2/DS**2/2.)*DS IF(NAME.EQ.7HIRDET) GC TC 10 EPS=(RS-R(NSHK))/DELR C1=2.*(2.+EFS)/(1.+EFS) C2=2.*FPS-3. \$ C3=(1.-EPS)*(2.*EPS-1.)/(1.+EPS) CPC(1,2)=C(1,NSFK)-DTDX4(C1#US+C2#U(1,NSFK)+C3#U(1,NSHK-1)) UPC(1,2)=U(1,NSHK)-DTDX*(C1*(LS*US/DS+FS*RS**J)+C2*PM(NSHK)+ *C3#PM(NSHK-1)) EPC(1+2)=E(1+NSHK)-DTDX#(C1*US/ES#(FS+PS#RS##J)+C2#PE(NSHK)+C3# *PE(NSHK-1)) PF((1,2)=PP(2,GF)IF (NAME.EQ. 7HSKCD DT) GC TC 10 C----PREDICTOR FOR NSHK-1 = 1 M=NSHK-1 DPC(1,1)=DP(M,0) \$ UPC(1,1)=UP(M,C) EPC(1,1)=EP(M,0) \$ PPC(1,1)=PP(1,CF) C----CORRECTOR FOR NSHK = 2 D(2,NSHK)=DP((2,2)=DC(2,NSHK,0) \$ L(2,NSHK)=LPC(2,2)=UC(2,NSHK,0) E(2,NSHK)=EPC(2,2)=EC(2,NSHK,0) \$ F(2,NSHK)=PPC(2,2)=PC(2,GF) C----PREDICTOR FCR NSHK+1+NXSS = 3+NXSS 10 H=NSHK+1+NXSS \$ MM=3+NX55 DPC(1,MM)=DP(N,0) \$ UPC(1,MN)=UP(N,0) EPC(1,MM)=EP(N,C) \$ PPC(1,MM)=FF(NN,G) C----PREDICTOR FOR NSEK+2+NXSS = 4+NXSS M=NSHK+2+NXSS \$ MM=4+NXSS DPC(1,MM)=CP(N,0) \$ UPC(1,MM)=UP(N,0) EPC(1, NN) = EP(N, 0) \$ PFC(1, NN) = FF(NN, C) C----CORRECTOR FOR NSHK+1+NXSS = 3+NXSS M=NSHK+1+NXSS \$ MM=3+NXSS D(2,N)=DPC(2,NN)=DC(NN,N,1) \$ U(2,N)=UFC(2,NN)=UC(NN,N,1) E(2,N)=EPC(2,NN)=FC(NN,N,1) \$ P(2,N)=PFC(2,NN)=FC(NN,G)

-102-

```
IF(NXSS.EC.0) GC TO 1
C----PREDICTOR AND CORRECTOR FOR NSHK+1 = 3
      M=NSHK+1
      D(2, N)=DPC(2,3)=DPC(1,3)=DS $ U(2,N)=UPC(2,3)=UPC(1,3)=US
      F(2, N)=EPC(2,3)=EPC(1,3)=ES $ P(2,N)=FFC(2,3)=PPC(1,3)=PS
      SSESAV=SSE
      IF (NOVFRON.GE.20) GC TC 2
      A=SQRT(P(1,M)/D(1,M)) $ FG=PG1(A)
      SSLSAV=SCRT((2+*PG-(1+-EETA)+2**SCFT(FC**2+(1+-BETA)*PG-BETA))/
     *{1.-BETA)/G)
      IF (OVEFDNM.GT.SSLSAV) SSLSAV=(SSL+SSLSAV+(CVEFDNM-SSLSAV)/20.*
     *FLCAT(20-NOVEFDN-1))/2.
      IF(OVERDNM.LF.SSLSAV) SSLSAV=(SSL+SSLSAV)/2.
      SSESAV=SSLSAV#A#SCRT(G)+U(1,M)/C(1,M)
      P(2+M)=(1+-BETA)/2+*(1+G*SSLSAV**2)
      P(2, N)=(F(2, N)+SCRT(P(2, N)++2-C+(1--EETA)+55LSAV++2+PG+BFTA))+
     #P(1,M)
      PS1=P(2,M)/P(1,M)
      D(2,M)=D(1,NSHK+1)/(1.-(1.-BETA)*(FS1-PC)/(FS1+BETA))
      U(2,M)=D(2,M)*(SORT(G)*A*SCRT((1.-EETA)*(PS1-PG)*(PS1-1.)/G/
     *(PS1+8ETA))+U(1,NSHK+1)/C(1,NSHK+1))
      E(2,M)=D(2,N)*(F(2,N)/D(2,M)/(GF-1*)+U(2,N)**2/D(2,M)**2/2*)
      GD TD 2
C----CALCULATE DETENATION POSITION
      A=SORT(PPC(1,3)/DPC(1,3)) $ PG=FG1(A)
 Ł
      SSLSAV=SORT((2.*PG-(1.-BETA)+2.*SCRT(PG**2-(1.-BETA)*PG
    *-BETA))/(1.-BETA)/G)
      SSESAV=A*SORT(G)*SSLSAV+UPC(1,3)/DFC(1,3)
      IF(CVERDNM+LF+SSLSAV) G0 T0 2
      IF(NOVERDN+1.GE.20) GC TC 2
      SSL=SSLSAV+(OVERDNM-SSLSAV)/20.*FLCAT(20-NCVERDN-1)
      SSESAV=SSL*A*SORT(G)+UPC(1,3)/CFC(1,3)
 2
      RS=RS+(SSE+SSESAV)/2.*DT
      IF (((RS.GT.R2(NSHK+1)).AND.(NXSS.EG.C)).DR.((RS.LT.R2(NSHK+1)).
     #AND.(NXSS.EQ.1))) RS=R2(NSHK+1)
С
C----ADVANCE DETENATION INDEX
      NFLM=NSHK=NSHK+NXSS
C
C----CALCULATE DETENATION SPEED
      A=SORT(PPC(2, 3+NXSS)/DPC(2, 3+NXSS)) $ PG=PG1(A)
      SSL=SCRT((2.+PG-(1.-EETA)+2.+SCRT(PG+#2-(1.-PETA)#PG-BETA))/
     *(1.-BETA)/G)
     SSE=SSL #SGPT (C) #A+UPC(2,3+NXSS)/CPC(2,3+NXSS)
      IF(NOVERDN.GF.20) RETURN
      IF (OVERDNM.LE.SSL) NOVERDN=100
      IF(OVERDNM.LE.SSL) FETUEN
      SSLSAV=SSL $ SSESAV=SSF
      NEVERDN=NEVERDN+1
      SSL=SSL+(OVERDNM-SSL)/20.#FLCAT(20-NOVERCN)
      SSE=SSL#A#SQPT(G)+UPC(2,3+NXES)/DPC(2,3+NXES)
      PPINT 1000, NOVERCN, DVERCNM, SSL, SSLSAV, SSE, SSESAV
1000 FORMAT(1H ,16,3E20.1C,10X,2E20.10)
c
      RETURN $ END
```

C

```
SUBROUTINE SHK(AS, SSE, SSL, NSHK)
      COMMON/UBDCND/NUBC
      CCNNCN/PARAM/N, J, AJ, G, GF, DELR, NFLM
      CCMMCN/TIME/T,DT,DTL,TWRITE,DELT,CTDX,AT
      CCMMCN/PREDCDR/DPC(2,13),UPC(2,13),EPC(2,13),PPC(2,13)
      COMMEN/ARRAYS/R(501),U(2,501),F(2,501),C(2,501),E(2,501),R2(501)
С
C
      GE=GF $ IF(NSHK.GT.NFLM) GE=G
C----CHECK SHK DIRN AND SHK X/D
      NSHKSGN=0 $ IF(SSL.GT.0.0) NSHKSGN=1
      NCROSS=0 $ IF(RS+SSE#DT.CE.R2(NSHK+1)) NCRCSS=1
      IF(NSHK.EG.1) GO TO I
      IF(RS+SSE#DT.LT.R2(NSHK)) CC TC 10
C
С
C----PREDICTOR FCP NSHK-1 = 1
      M=NSHK-1
      DPC(1,1)=DP(N,3) $ UPC(1,1)=UP(N,0)
     EPC(1,1)=EP(M,0) $ PPC(1,1)=PP(1,CE)
C----PREDICTOR FOR NSHK = 2
      IF(NSHKSGN.FQ.1) GF TE 3
      DPC(1,2)=DP(NSHK,-1) $ UPC(1,2)=UP(NSHK,-1)
      EPC(1,2)=EP(NSHK,-1) $ FFC(1,2)=PP(2,(E)
      GD TO 4
      FS=P(1.NSFK+1)+(2.+GE/(CE+1.)+SSL++2-(CE-1.)/(CE+1.))
 з
      DS=D(1,NSHK+1)/((GE-1.)/(GE+1.)+2./(GE+1.)/SSL**2)
     US=DS*(U(1,NSHK+1)/D(1,NSHK+1)+SORT(CE#P(1,NSHK+1)/D(1,NSHK+1))*2.
     #/(GE+1.)*SSL*(1.-1./SSL*#2))
     ES=(PS/DS/(CE-1.)+US**2/DS**2/2.)*DS
      EPS=(RS-R(NSHK))/DELR
      C1=2.*(2.-EPS)/(1.+EPS)
      C2=2.*EPS-3. 1 C3=(1.-FPS)*(2.*EPS-1.)/(1.+EPS)
      DPC(1,2)=D(1,NSHK)-DTDX*(C1*US+C2*U(1,NS+K)*C3*U(1,NSHK-1))
     #-AT#DTDX#(C1#DS+C2#D(1.NSHK)+C3#D(1.NSHK-1))
     UFC(1,2)=U(1,NS+K)-DTDX*(C1*(US*US/DS+PS*R5**J)+C2*PM(NSHK)+
     *C3*PN(NSHK-1)}-AT*DTDX*(C1*LS+C2*U{1;NSHK}+C3*U(1;NSHK-1)}
     EPC(1,2]=E(1,NSHK)-DTDX#(C1#US/DS#(F5+P5#R5##J)+C2#PE(NSHK)+C3#
     *PE(NSHK-1))-AT*CTDX*(C1*ES+C2*E(1,NSHK)+C3*E(1,NSHK-1))
     PPC(1+2)=PP(2+GE)
C----CCRRECTCP FCP NSHK = 2
      D(2, NSHK)=DPC(2,2)=DC(2, NSHK,0) $ L(2, NSHK)=UPC(2,2)=UC(2, NSHK,0)
 4
      E(2,NSHK)=EPC(2,2)=EC(2,NSHK,C) $ P(2,NSHK)=PPC(2,2)=PC(2,GE)
с
      IF(NSHK.NE.2) GD TO 2
С
C----SET D, U, E, P FCR NSHK(=2)-1 = 1
      D(2,1)=D(2,2) $ U(2,1)=-U(2,2) $ E(2,1)=E(2,2) $ P(2,1)=P(2,2)
      IF (NUBC.EC.3HYES) U(2,1)=U(1,1)
      GC TC 2
C
C \rightarrow ---SET D, U, E, P FCR NSFK(=1) = 2
1
      D(2,1)=DPC(1,2)=D(1,1) $ U(2,1)=UPC(1,2)=U(1,1)
      E(2,1)=EPC(1,2)=E(1,1) $ P(2,1)=PPC(1,2)=P(1,1)
С
С
```

-104-

C----SHK CROSS OVER DECISION IF (NCRCSS.FC.1) CO TO 5 2 С C----PREDICTOR FOR NSHK+2 = 4 M=NSHK+2 $DPC(1,4)=DP(M,0) \le UPC(1,4)=UP(N,C)$ EPC(1,4)=EP(M,0) \$ PPC(1,4)=PP(4,CE) C----PREDICTOR FOR NSHK+1 = 3 M=NSHK+1 DPC(1,3)=DP(N,0) \$ UFC(1,3)=UF(N,C) EPC(1,3)=EP(M,0) \$ PPC(1,3)=PP(3,CE) C----CALC SHK POSITION SSLSAV=SORT((PPC(1,3-NS+KSGN)/FFC(1,2+NS+KSGN)+(GE-1.)/(GE+1.))* *(CE+1.)/2./GE) * SSL/ARS(SSL) PS=(SSLSAV*SCRT(GE*PPC(1,2+NSFKSCN)/CPC(1,2+NSFKSGN))+ #UPC(1,2+NSHKSGN)/DPC(1,2+NSHKSGN)+SSE)/2.#CT+RS IF((NSFK.EG.1).AND.(NSFKSGN.EG.C).AND.(NUBC.EG.3H NC)) FS=RS-#2.#UPC(1,2+NSHKSGN)/DFC(1,2+NSFKSGN)/2.#DT IF(RS.CT.R2(NSHK+1)) RS=R2(NSHK+1) IF((NSHK.EC.1).AND.(NSHKSGN.EC.C)) CC TC 5 IF(RS.LT.R2(NSHK)) RS=R2(NSHK) C----CCRRECTCR FOR NSHK+1 = 2 9 IF(NSHKSGN.EG.D) GC. TC 6 D(2, M)=OPC(2, 3)=DC(3, M, 1) \$ U(2, M)=UFC(2, 3)=UC(3, M, 1) E(2, M)=FFC(2, 3)=EC(3, M, 1) \$ P(2, M)=PPC(2, 3)=PC(3, GE) GC TC 7 6 SSL=(SSL+SSLSAV)/2. PS=P(1,NSHK)*(2.*CE/(CE+1.)*SSL**2-(CE-1.)/(GE+1.)) DS=D(1,NSHK)/((GE=1.)/(GE+1.)+2./(GE+1.)/SEL**2) US=DS#(U(1,NS+K)/D(1,NS+K)+SQFT(CE*P(1,NS+K)/C(1,NS+K))*2. */(GE+1.)*SSL*(1.-1./SSL**2)) IF((NSHK.EQ.1).AND.(NUBC.EC.3H NC))LS=US-2.4U(1.NSHK)/C(1.NSHK)+DS E 5=(PS/DS/(GE-1.)+LS**2/CS**2/2.)*CS EPS=(R2(NSHK+1)-RS)/DELR C1=2.+(2.+EPS)/(1.+EPS) C2=2.*EPS-3. \$ C3=(1.-EPS)*(2.*EPS-1.)/(1.+EPS) D(2,M)=DPC(2,3)=0.5*(D(1,M)+DFC(1,3)+DTDX*(C1*US+C2*UPC(1,3)+C3* #UPC(1,4))+AT#CTDX#(C1#DS+C2#DFC(1,3)+C3#CPC(1,4))) U(2,M)=UPC(2,3)=0.5*(U(1,W)+UFC(1,3)+DTDX*(C1*(US*US/DS+PS*RS**J)+ #C?#CM(3)+C3#CM(4))+AT#DTDX#(C1#LS+C2#UPC(1,3)+C3#UPC(1,4})) E(2,M)=FPC(2,3)=0.5*(E(1,N)+EFC(1,3)+CTCX*(C1+US/CS*(ES+PS+RS+#J)+ *C2*CE(3)+C3*CE(4))+AT*DTDX*(C1*ES+C2*EFC(1,3)+C3*EFC(1,4))) P(2,N)=PPC(2,3)=PC(3,CE) C----CALC NEW SHK SPD SSL=SCFT((P(2,NSFK+1-NSFKSGN)/P(2,NSFK+NSFK\$GN)+(GE-1.)/(GE+1.))* 7 *(GE+1.)/2./GE) * SSL/ABS(SSL) SSE=SSL*SQRT(CE*P(2,NSHK+NSHKSGN)/C(2,NSHK+NSHKSGN))+U(2,NSHK+ *NSHKSGN)/D(2,NSFK+NSHKSGN) IF((NSHK.EQ.1).AND.(NSHKSGN.EG.0).AND.(NUBC.EG.3H NC)) SSE=SSE-#2.#U(2,NSHK+NSHKSGN)/D(2,NSHK+NSHKSGN) IF(RS.LT.0.0) GC TC 20 C RETURN С C с

-105-

```
C----FESITIVE SHK CROSSES MESH FT ASHK+1
C
C----PREDICTOR FOR NSHK+1 = 3
     P(2,NSHK+1)=P(1,NSHK+1)*(2.*GE/(GE+1.)*SSL**2-(GE-1.)/(GE+1.))
5
C----PREDICTOR FOR NSHK+3 = 5
      MENSHK+3
      DPC(1,5)=DP(N,0) $ UPC(1,5)=UP(*,0)
      EPC(1,5)=EP(W,0) $ PPC(1,5)=PP(5,GE)
C----PREDICTOR FOR NSHK+2 = 4
      M=NSHK+2
      DFC(1,4)=DF(N,0) \leq UPC(1,4)=UP(N,0)
      EPC(1,4)=EP(M,3) $ PPC(1,4)=PP(4,CE)
C----CURRECTOR FOR NSHK+2 = 4
      D(2,N)=DFC(2,4)=CC(4,M,1) $ U(2,M)=UPC(2,4)=UC(4,M,1)
      E(2,M)=EPC(2,4)=EC(4,M,1) $ P(2,M)=PPC(2,4)=FC(4,GE)
C----CALC NEW SHK FOSITION
      SSLSAV=SORT((P(2,NSHK+1)/PFC(1,4)+(CE-1.)/(CE+1.))*(GE+1.)/2./GE)
      PS=(SSLSAV*SQRT(GE*PPC(1,4)/DFC(1,4))+UPC(1,4)/DPC(1,4)+SSE)/2.*DT
     4+65
      IF(RS+LT+R2(NSHK+1)) RS=R2(NSHK+1)
C----SET D.U.E.P FOR NSHK+1
      SELSAV=(ESL+SELSAV)/2.0
      D(2,NSHK+1)=D(1,NSHK+1)/((GE+1.)/(GE+1.)/2./(GE+1.)/SSLSAV**2)
      U(2,NSHK+1)=D(2,NSHK+1)*(U(1,NSFK+1)/C(1,NSFK+1)+SQRT(GF*P(1,NSHK+
     +1)/D(1,NSHK+1))+(2./(GE+1.)+SSLSAV+(1.-1./SSLSAV++2)))
      P(2, NSHK+1)=P(1, NSHK+1)+(2.+4GE/(GE+1.)+SSLSAV++2-(GE-1.)/(GE+1.))
     E(2,NSHK+1)=D(2,NSHK+1)*(P(2,NSHK+1)/D(2,NSHK+1)/(GE-1.)+
     #U(2,NSHK+1)##2/D(2,NSHK+1)##2/2.0)
C----CALC NEW SHK SPD
      SSL=SCPT((P(2,NSHK+1)/P(2,NSHK+2)+(GE-1.)/(CE+1.))*(GE+1.)/2./GE)
      SSE=SSL*SCFT(CF*P(2,NSHK+2)/D(2,NSHK+2))+U(2,NSHK+2)/D(2,NSHK+2)
c
      IF(NSHK .NE .1) GC TO 8
C ---- SET C_{+}U_{+}E_{+}P FCR NSFK(=1) = 2
      D(2,1)=D(2,2) $ L(2,1)=-L(2,2) $ E(2,1)=E(2,2) $ P(2,1)=P(2,2)
      IF (NUBC.FG.3FYES) U(2,1)=U(1,1)
С
C---- ADVANCE SHK INDEX
 8
      NSHK=NSHK+1
C
      RETURN
C
C
c
C----NEGATIVE SHK CRESSES EVER MESH FT ASHK
С
    IF(NSHK.FC.2) GC TC 11
10
C----PREDICTOR FOR NSHK-2 = 1
      M=NSHK-2
      DPC(1,1)=DP(N,0) $ LPC(1,1)=UP(N,0)
      EPC(1,1)=EP(M,0) $ PPC(1,1)=PP(1,CE)
C----PREDICTOR FOR NSHK-1 = ?
      M=NSHK-1
      DPC(1,2)=DP(N,0) $ UPC(1,2)=UP(N,C)
      EPC(1,2)=EP(M,0) $ PPC(1,2)=PP(2,CE)
C----CORRECTOR FOR NSHK-1 = 2
```

-106-

D(2, M)=DPC(2,2)=DC(2, M,0) \$ U(2,M)=UFC(2,2)=UC(2,M,0) E(2, N)=EPC(2,2)=FC(2,M,C) \$ P(2,N)=PPC(2,2)=PC(2,GE) с 1F(NSHK.NE.3) GD TO 12 C----SET C,U,E,P FCF NSHK(=3)-2 = 1 ***J=0 DNI Y*** D(2,1)=D(2,2) \$ U(2,1)=-U(2,2) \$ E(2,1)=E(2,2) \$ P(2,1)=P(2,2) IF(NUBC.EQ.3HYES) U(2,1)=U(1,1) GC TC 12 C C-----SET D, U, E, P FCR NSHK (=2)-1 = 2 D(2,1)=DPC(1,2)=DPC(2,2)=D(1,1) \$ U(2,1)=UFC(1,2)=UPC(2,2)=U(1,1) 11 E(2,1)=FPC(1,2)=FPC(2,2)=E(1,1) \$ P(2,1)=PPC(1,2)=PPC(2,2)=P(1,1) С C----PREDICTOR FOR NSHK = 3 NF=1-2*NSHKSGN 12 PPC(1,3)=P(1,NSHK)*(2.*GE/(CE+1.)*SSL**2-(CE-1.)/(GE+1.))**NP DPC(1,3)=0(1.NSHK)/((GE-1.)/(GE+1.)+2./(GE+1.)/SSL**2)**NP UFC(1,3)=DPC(1,3)+(U(1,NSFK)/C(1,NSFK)+FLGAT(NP)+SQRT(GE+P(1,NSHK) #/D(],NSHK)#(PPC(1,3)/P(1,NSHK)/CFC(1,3)#D(1,NSHK))##NSHKSGN) **(2./(GE+1.)*SSL*(1.-1./SSL*#2))) EPC(1,3)=CPC(1,3)*(PPC(1,3)/CFC(1,3)/(CE-1,)+UPC(1,3)**2/DPC(1,3) ***2/2.1 C----PREDICTOR FOR NSHK+1 = 4 M=NSHK+1 DPC(1,4)=DP(N,0) \$ UPC(1,4)=UP(N,C) EPC(1,4)=EP(M,0) \$ PPC(1,4)=PP(4,GE) C----CORRECTOR FOR NSHK+1 = 4 D(2,M)=DPC(2,4)=DC(4,M,0) \$ U(2,M)=UPC(2,4)=UC(4,M,0) E(2, N)=EPC(2, 4)=EC(4, N, 0) \$ P(2, N)=PFC(2, 4)=PC(4, CE) C-----CALC SHK FOSITION SSLSAV=SORT((FPC(1.3-NS+KSGN)/FFC(1.2+NS+KSGN)+(GE-1.)/(GE+1.))+(*GE+1.)/2./GE)*SEL/ABS(SSL) RS=(SSLSAV#SORT(CE#PPC(1,2+NSFKSGN)/CPC(1,2+NSFKSGN))+UPC(1,2+ *NSHKSGN)/DPC(1,2+NSHKSGN)+SSE)/2.*CT+RS IF((NSHK+EQ.2)+AND+(NUBC+EG.3H ND)+AND+(NSHKSGN+EG.0)) RS=RS+2++ *UFC(1,2)/DPC(1,2)/2.*DT IF(RS.GT.R?(NSHK)) RS=R2(NSHK) C----SFT C, U, P, E, FCF NSHK SSLSAV=(SSL+SSLSAV)/2.0 D(2,NSHK)=D(1,NSHK)/((CE-1.)/(GF+1.)+2./(GE+1.)/SSLSAV**?)**NP U(2,NSHK)=D(2,NSHK)+(U(1,NSHK)/D(1,NSHK)+FLCAT(NP)+SQRT(GE* *P(1,NSHK)/D(1,NSHK)*(PPC(1,3)/P(1,NSHK)/DPC(1,3)*D(1,NSHK))** *NSHKSGN) + (2./(CF+1.)*SSLSAV*(1.-1./SSLSAV**2))) P(2,NSHK)=P(1,NSHK)*(2.*GE/(GE+1.)*SSLSAV**2-(GE-1.)/(GE+1.))**NP E(2,NSHK)=D(2,NSHK)+(F(2,NSHK)/C(2,NSHK)/(CE-1.)+ *U(2,NSHK)**2/D(2,NSHK)**2/2.0) C----CALC NEW SHK SPD SSL=SGRT((P(2,NSFK-NSFKSGN)/P(2,NSFK-1+NSFKSGN)+(GE-1+)/(GE+1+))* #(GE+1.)/2./GE)#SSL/ABS(SSL) SSE=SSL#SQRT(GE#P(2,NSHK-1+NSHKSGN)/D(2,NSHK-1+NSHKSGN))+U(2,NSHK +-1+NSHKSGN)/D(2,NSHK-1+NSHKSGN) IF((NSHK.E0.2).AND.(NURC.E0.3H NC).AND.(NSHKSGN.EC.0)) SSE=SSE-#2.#U(2.NSHK-1)/D(2.NSHK-1) C----ADVANCE SHK INDEX NSHK=NSHK-1 IF(RS.LT.0.0) GO TO 20

-107-

```
С
      RETURN
с
С
С
C-----SHK REFLECTION CEF OF THE PT OF SYMMETRY
20
     U(2,1)=0.0
      x1=(U(2,1)/D(2,1)-U(2,2)/D(2,2))/SGRT(GF +P(2,2)/D(2,2))*(GF+1.)/2.
      SSL=(X1+SORT(X1++2+4.))/2.
      P(2,1)=P(2,2)*(2.*GF/(GF+1.)*SSL**2-(CF-1.)/(GF+1.))
      D(2,1)=D(2,2)/((GF-1.)/(GF+1.)+2./(GF+1.)/SEL**2)
      E(2,1)=D(2,1)*(P(2,1)/D(2,1)/(CF-1.)+U(2,1)**2/D(2,1)**2/2.)
      TREFLCT=RS/SSE
      SSE=SSL*SQRT(CF*P(2,2)/D(2,2))+U(2,2)/D(2,2)
      RS=SSE*TREFLCT
      IF(PS.GT.R2(2)) RS=R2(2)
      NUBC=3H NC
C
```

-108-

SUBROUTINE CD(RCD, SECD, NCD, NAME) CCMMCN/PARAM/N, J, AJ, G, GF, DELR, NFLM COMMON/TIME/T, DT, DTL, TWRITE, DELT, DTDX, AT COMMEN/PREDCCF/DPC(2,13), UFC(2,13), FPC(2,13), PPC(2,13) COMMCN/ARRAYS/R(501),U(2,501),F(2,501),D(2,501),E(2,501),R2(501) C С RCDSAV=RCD \$ RCD=RCD+SECD*DT NCRDSS=0 IF(RCD.GT.P2(NCD+2)) NCROSS=1 \$ IF(RCD.LT.R2(NCD-1)) NCROSS=-1 С GE=GF \$ IF(NCD.GT.NFLM) GE=G C----PREDICTOR AND CORRECTOR FOR L AND R CF CD = 4,5 N=NCD+2 \$ IF(NAME.EG.5FCCTRC) M=NCC+1 CALL GLIM(NCD-1, M, 4, NCD, SECD) С RCD=RCDSAV+SECD#DT IF(((RCD.GT.R2(NCD+2)).AND.(NCRCSS.E0.C)).CF.((RCD.LT.R2(NCD+2)). *AND.(NCRESS.EC.1))) FCD=F2(NCD+2) 1F(((RCD+LT+R2(NCD+1))+AND+(NCRCSS+EG+Q))+CF+((RCD+GT+F2(NCD+1))+ #ANC.(NCRCSS.EC.-1))) RCD=R2(NCD-1) R2(NCD)=R2(NCD+1)=RCDc IF(NCRESS.EQ.0) GE TE 10 C----PREDICTOR AND CORRECTOR FOR NOC+(3*NOFOSS+1)/2 = 6+(NOFOSS-1)/2*3 MM=5-(NCF055+1)/2 \$ M=6+(NCR055-1)/2+3 \$ MMM=NCD+(3+NCF055+1)/2 U(2,NMM)=UPC(1,N)=UPC(2,N)=UPC(1,+N) D(2,MMM)=DPC(1,M)=DPC(2,N)=DPC(1,MM) P(2,MMM)=FPC(1,W)=PFC(2,W)=FFC(1,NM) E(2, MMM)=EPC(1, N)=EFC(2, N)=EFC(1, NN) IF(NCECSS.EC.-1) GD TC 11 C----PREDICTOR FOR NCE-2 = 2 10 IF(NAME.EQ.EFFLRCD) GD TO S M=NCD-2 DPC(1,2)=DP(N,0) \$ UPC(1,2)=UP(N,C) FPC(1,2)=EP(N,0) \$ PPC(1,2)=PP(2,(E) C----PREDICTOF FOF NCC+3 = 7 9 M=NCD+3 DPC(1,7)=DP(M,0) \$ UPC(1,7)=UP(M,C) EPC(1,7)=EP(N,0) \$ PPC(1,7)=FP(7,CE) IF (NCRESS+EG+0) CO TO 11 C----PREDICTOR FOR NCC+4 = 8 M=NCD+4 DPC(1,8)=DP(M,0) \$ UPC(1,8)=UP(M,C) EPC(1,8)=EP(M,0) \$ PPC(1,8)=PP(E,CE) GO TO 12 C----PREDICTOR FOR NCC+2 = 6 M=NCD+2 11 DPC(1,6)=DP(N,0) \$ UPC(1,6)=UP(N,C) EPC(1,6)=EP(N,0) \$ PPC(1,6)=PP(6,CE) TF(NCROSS.EQ.-1) GO TO 13 IF (NAME .FC.SHELFCD) GC TC 17 12 C----PREDICTOR FOR NCD-1 = 3 EFS=(RCDEAV-R(NCD-1))/DELR C1=2.*(2.-EPS)/(1.+EPS) C2=2.#EP5-3. # C3=(1.-EPS)#(2.#EPS-1.)/(1.+EPS)

-109-

```
DPC(1,3)=D(1,NCD-1)-DTDx*(C1*L(1,NCD)+C2*U(1,NCD-1)+C3*U(1,NCD-2))
     *-AT*DTDX*(C1*C(1,NCD)+C2*D(1,NCD-1)+C3*D(1,NCD-2))
      UPC(1,3)=U(1,NCD-1)-DTDX*(C1*F#(NCC)+C2*P#(NCC-1)+C3*P#(NCD-2))
     *-AT*DTDX*(C1*U(1,NCD)*C2*U(1,NCD-1)*C2*U(1,NCD-2))
      EPC(1,3)=E(1,NCD-1)-DTDX*(C1*FE(NCC)+C2*PF(NCD-1)+C3*PE(NCD-2);
     #-AT#DTDX#(C1#E(1,NCD)+C2#E(1,NCD-1)+C3#E(1,NCD-2))
      PPC(1,3)=PP(3,CF)
C----COFRECTOR FOR NCD-1 = 3
      M=NCD-1
      D(2, M)=DPC(2,3)=DC(3, M,0) $ U(2, M)=UPC(2,3)=UC(3, M,0)
      E(2, W)=EPC(2,3)=EC(3, W,C) $ P(2, W)=PPC(2,3)=PC(3,GE)
C----CORRECTOR FOR NCC+2+NCROSS = C+NCROSS
 17 M=NCD+NCFOSS+2 $ #MM=6+NCRESS
      FPS=(R2(M)-RCC)/DELR
      C1=2.*(2.-EPS)/(1.+EPS)
      C2=2.*EPS-3. $ C3=(1.-EPS)*(2.*EPS-1.)/(1.*EPS)
      D(2, M)=DFC(2, MMN)=(D(1, M)+DPC(1, MMN)+DTDX*(C1+UPC(1, 5)+
     *C2+UPC(1, NMM)+C3+UPC(1, NNN+1))+AT+CTDX+(C1+CPC(1, 5)+C2+DPC(1, MMM)
     *+C3*DPC(1,MMM+1)))/2.
      U(2,M)=UPC(2, WNN)=(U(1,N)+UPC(1,WNN)+DTDX*(C1+CM(E)+C2+CH(MMN)+
     *C3*CN(MMN+1))+AT+DTDX*(C1*UPC(1.5)+C2*UPC(1.***)+C3*UPC(1.***)+C3*UPC(1.****)))
     $/2.
     E(2,W)=EFC(2, WW)=(E(1,W)+EPC(1,WW)+CTCX+(C1+CE(5)+C2+CE(MMM)+
     *C3*CE(MMM+1))+AT#DTDX#(C1#EPC(1,E)+C2#EPC(1,MMM)+C3#EPC(1,MMM+1)))
     */2.
      P(2,N) = PPC(2,NNN) = FC(NNN,GE)
      GC TC 14
C \rightarrow - - - C C F F C T C F F C F A C C + 2 = 6
     IF J .NE. O FIX UP AREA TERM
С
 13
      ₩=NCD+2
      D(2, N)=DPC(2, 6)=DC(6, N, 0) $ U(2, N)=UFC(2, 6)=UC(6, N, 0)
      E(2, M)=EPC(2, 6)=EC(6, M, 0) $ P(2, M)=PPC(2, 6)=PC(6, GE)
C
C----ADVANCE CD CELL POSITION IF NECCESSARY
      IF(NCROSS.EC.0) GC TO 16
 14
      M=NCD+2+3*(NCFCSS-1)/2
      PS=P(2,M) $ D5=D(2,M) $ LS=U(2,M) $ ES=E(2,M) $ RS=R2(M)
      IF(NCROSS.EG.-1) GC TC 15
      P(2,NCD+2)=P(2,NCD+1) $ P(2,NCD+1)=P(2,NCD) $ F(2,NCD)=PS
      U(2,NCD+2)=U(2,NCD+1) $ U(2,NCD+1)=U(2,NCD) $ U(2,NCD)=US
      E(2,NCD+2)=E(2,NCD+1) $ E(2,NCD+1)=E(2,NCD) $ E(2,NCD)=ES
      D(2+NCD+2)=D(2+NCD+1) $ D(2+NCD+1)=D(2+NCD) $ D(2+NCD)=DS
      R2(NCD+2)=R2(NCD+1) $ F2(NCD+1)=R2(NCD) $ F2(NCD)=RS
      GO TC 16
 15
      IF (NAME.EG.SHFLECD) RETURN
      P(2,NCD-1)=P(2,NCD) $ P(2,NCD)=F(2,NCC+1) $ F(2,NCD+1)=PS
      U(2,NCD-1)=U(2,NCD) $ U(2,NCD)=U(2,NCD+1) $ U(2,NCD+1)=US
      D(2,NCD-1)=D(2,NCD) $ C(2,NCD)=C(2,NCC+1) $ C(2,NCD+1)=DS
      E(2,NCD-1)=E(2,NCD) $ E(2,NCD)=E(2,NCD+1) $ E(2,NCD+1)=ES
      R2(NCD-1)=R2(NCD) $ R2(NCD)=R2(NCD+1) $ R2(NCD+1)=R5
С
      NCC=NCD+NCROSS
 16
С
      IF(NAME.NF.SHRARCD) GC TC 20
      #=NCD-1
      IF (NCRESS-NF.1) GC TC 20
```

-110-

20 D(2, VCD)=D(2, W) D(2, WCD)=D(2, WCD)=

 $\begin{array}{l} D(2,N)=D(2,N-1) & \\ SU(2,M)=U(2,M-1) & \\ SE(2,N)=E(2,N-1) & \\ D(2,NCD)=D(2,N) & \\ SU(2,NCD)=U(2,N) & \\ SU(2,NCD)=U(2,N) & \\ SE(2,NCD)=E(2,N) & \\ SE(2,NCD)=E(2,NCD) & \\ SE(2,NCD)=E(2,NCD) & \\ SE(2,NCD)=E(2,NCD) &$

-111-

```
SUBROUTINE GLIM(ML, MR, MPC, NCD, SECC)
      CCMMCN/PARAM/N,J,AJ,G,GF,DELR,NFLM
      COMMEN/FIRFETC/INDEX, NEYCLE, NA, NAN, NSTERE, NS, NITRETA
      CCMMCN/PREDCCF/CPC(2,13),UPC(2,13),EPC(2,13),PPC(2,13)
      COMMEN/ARRAYS/R(501),U(2,501),F(2,E01),C(2,E01),E(2,501),R2(501)
С
C
      ML, MR=NODE NC REPRSNTING LEFT AND FIGHT STTES SATSED BY THE CD
c-
      NFC=FREDCCR NC FR THE STTES TO THE LEFT AND RIGHT OF THE CD
c-
      NCD=CELL NO OF THE CD
C-
Ç--
      AML, AMR=MACH NO OF THE LEFT AND RIGHT DISTREANCE (1.0 . RARE)
С
      PL=P(1,ML) $ PR=F(1,MR) $ RL=C(1,ML) $ FR=C(1,MR)
      UL=U(1,ML)/RL $ UF=U(1,MF)/RR
С
      GE=GF $ IF(NCD.GT.NFLM) GE=G
С
      A=C+0 $ AM=1+C
C----SETTING UP THE RIEMANN PROBLEM
     EPS=1.E-14 $ ITER=0 $ ITMM=38 $ GG=(GE-1.)/2./GE
     PST= (PL+PR)/2.
      CF=SCRT(PR*RR) $ CL=SORT(PL*RL)
     FL=FR=100.0
C----BEGINNING OF THE ITERAICN
      ITER=ITER+1
1
      IF(PST+LT+EPS) PST=EPS
      X=FST/FR $ DX=1.-X
      1F(X+LT+0+9999) FPT=CR*GG*SCRT(GE)*CX/(1+-X**GG)
     IF((X.LT.).).AND.(X.GT.0.9999)) FRT=CR*GG*SCRT(GE)/GG/(1.+(GG-1.)
     */2.*DX*(-1.+(CG-2.)/3.*EX*(1.+(GC-2.)/4.*EX*(-1.+(GG-4.)/5.*DX)}))
      IF(X.GE.1.0) FRT=CR*SQRT((GE+1.)/2.*X+(GE-1.)/2.)
      X=FST/PL $ DX=1 -X
      IF(X.LT.0.9999) FLT=CL*GG*SCRT(GE)*DX/(1.-X**GG)
      IF((X+LT+1+)+AND+(X+GT+0+9999)) FLT=CL#GG*SCRT(GE)/GG/(1++(GG-1+)
     */2.*DX*(-1.+(GG-2.)/3.*CX*(1.+(GC-3.)/4.*DX*(-1.+(GG-4.)/5.*DX)))
     IF(X.GE.1.0) FLT=CL*SGRT((GE+1.)/2.**+(GE-1.)/2.)
      DFF=ABS(FR-FRT) $ FR=FRT
     DFL=ABS(FL-FL1) $ FL=FLT
      PS=PST
      PST=(UL-UR+PR/FR+PL/FL)/(1./FR+1./FL)
     PST=AM*PST+A*PS
С
      IF(ITER.LT.ITMM) GC TC 2
      IF (ARS(PS-PST).LT.EPS) GC TO 3
      A=A+0.5*(1.-A) $ AM=1.-A $ ITER=0
     PRINT 1000, A, AN, FL, FR, PS
1000 FERMAT(1H ,1X, *CENVERGENCE FACTER*, 5815.7)
      IF (AM.GT.1./33.) GC TC 2
     PRINT 1001
1001 FERMAT(1P ,/, * CENVER(FNCE FACTER STOP*)
     DELR=-ABS(DELR) $ RETURN
С
2
      IF((DFL.CT.FPS).CR.(DFR.CT.EPS)) CO TO 1
C----END OF THE ITERATION
     SECD=US=(FL-PF+FR#UR+FL#UL)/(FL+FF)
3
      M=MPC $ #V=MPC+1
```

ં ના પ્

NCY=5000 IF (NCYCLE/NCY#NCY.EG.NCYCLE) #PRINT 1002, ITER, PST, PR, PL, DPC(1, M), DFC(1, MM), UL, UR, US, ANL, ANR 1002 FORMAT(1H ,15,5E20.12,/,5X,5E20.12) с

ANL=-1.0 \$ AME=1.0 IF(FST/PL+GE+1+0)AML=-SCRT((GE+1+)/2+/GE+(FST/PL+(GE+1+)/(GE+1+))) 1F(PST/PR.GE.1.0) AMR=SCRT((GE+1.)/2./CE*(FST/PR+(GE-1.)/(GE+1.))) C----PRINT RIEMANN SCLUTICN AT EVERY NCY-TH CYCLE

(CE-1.)+US#2/2.)

*US**2/2.1 E(2,NCD+1)=EPC(1,MM)=EPC(2,MM)=DFC(2,MM)+(FFC(2,MM)/DPC(2,MM)/

U(2,NCD)=UPC(1,W)=UFC(2,W)=US*EPC(1,W) U(2,NCD+1)=UPC(1,**)=UFC(2,**)=US*CPC(1,**) E(2,NCD)=EPC(1,N)=EPC(2,N)=DPC(2,N)*(PFC(2,N)/DPC(2,N)/(GE-1-)+

1F(PST/PR+LT+1+0) D(2+NCC+1)=DFC(1+N+)=DFC(2+N+)=FF+((2++ALPHA)/ *ALPHA/CE*(PST/PR-1.)+1.)**(ALFFA/(2.+ALPHA))

IF(PST/PR+GE+1+0) D(2,NCD+1)=DFC(1,NN)=CFC(2,NN)=RR*(PST/PR+BETA)/ *(1.+FST/PF*EETA)

GE(PST/PL-1.)+1.)**(ALFFA/(2.+/LPFA))

*(1.+PST/PL#BETA) IF (PST/PL+LT+1+C) D(2+NCD)=DPC(1+N)=DFC(2+N)=FL+((2++ALF+A)/ALPHA/

BETA=(GE-1.)/(GE+1.) \$ ALPHA=2./(CE-1.) IF (PST/PL.GE.1.0) C(2,NCC)=DPC(1,*)=CFC(2,*)=FL*(PST/PL+BETA)/

P(2,NCD)=P(2,NCD+1)=FF((1,W)=FF((2,W)=FFC(1,WW)=PPC(2,WW)=PST

```
SUPROUTINE FLMSHK(NAME, NEIRST.NI)
      COMMEN/PARAM/N, J, AJ, G, GF, DELR, NFLM
      COMMON/TIME/T,DT,DTL,TWRITE,DELT,DTDX,AT
      COMMEN/PREDCOF/CPC(2,13),UPC(2,13),EFC(2,13),PPC(2,13)
      CCMMEN/ARRAYS/R(501), U(2,501), F(2,501), E(2,501), E(2,501), P2(501)
      COMMON/DISCS/NTDISC,NDISCNO(51),NTYPE(E1),NDISCL(51),SF(51),SL(51)
     *, FD(51), NTDISCT, NTDISCS
C
      PRINT 1001, NAME
 1001 FORMAT(1H +1X+A4,315)
      SSL=SL(N1) $ SSE=SE(N1) $ RS=RD(N1) $ NSHK=NDISCL(N1)
      SFE=SE(NFIRST) $ SFL=SL(NFIRST) $ FF=RC(NFIRST)
C
c
      IF((NAME.EQ.4+CFS2).CF.(NAME.EG.4+SCFK)) GC TC 9
      NSHKSGN=0 $ IF(SSL.GT.0.0) NSHKSGN=1
      RSSAV=RS $ RS=RS+SSE*CT
      NCROSS=0
      IF(RS.GT.R2(NSHK+1)) NCFCSS=1 $ IF(RS.LT.R2(NSHK)) ACFCSS=1
      NSC=100#(NSHK-NFLM)+NCFCSS
      PRINT 1001, NAME, NEHKSGN, NCRCES, NSC
      IF(PS.GT.R2(NFLM)) GC TC 1
      PRINT 1000, RSSAV, DT, RS, R(NFLM), R2(NFLM), SSL, SSE, SFL, SFE, NFLM, NSHK
 1000 FCFMAT(1H ,1X,9E13.6,215,/,* SUBRCLTINE FLWSHK *)
      DELR=-ABS(DELE) $ RETURN
C
C----PREDICTOR FOR NSHK+NCRCSS*(NCRCSS+1)/2+1 = 10
      M=NSHK+NCRCSS#(NCRCSS+1)/2+1
 1
      DFC(1,10)=DP(N,C) $ UPC(1,10)=LP(N,0)
      EPC(1,10)=EP(N,C) $ PFC(1,10)=PP(10,G)
      IF(NCROSS.EQ.-1) GO TO 10
C----PREDICTOR FOR NSHK+NCROSS*(NCROSS+1)/2+2 = 11
      M = M + 1
      DPC(1,11)=DP(W,0) $ UPC(1,11)=UP(W,C)
     EPC(1,11)=EP(N,0) $ PFC(1,11)=PF(11,G)
      IF(NCROSS.EQ.C) GO TO 2
C----PREDICTOR FOR NSHK+(NCEOSS41)/2 = 5
 10
     M=NSHK+(NCRCSS+1)/2
      DPC(1,9)=D(1,N)/((C-1.)/(G+1.)+2./(G+1.)/SEL**2)
      UPC(1,9)=>PC(1,9)*(U(1,M)/D(1,N)+SGRT(C*P(1,M)/D(1,M))*
     *? •/(G+1•) *SSL *(1•-1•/SSL**2))
      PFC(1,9)=P(1,*)*(2.*G/(G+1.)*SSL**2-(G-1.)/(G+1.))
     EPC(1,9)=DPC(1,9)*(PPC(1,9)/DPC(1,9)/(C-1.)+UPC(1,9)**2/
     *DPC(1,9)**2/2.)
     IF((NCHOSS.EC.O).ANC.(NSHKSGN.EC.O)) CC TO 3
2
C----CORRECTOR FOR NSHK+NCRDSS#(NCRDSS+1)/2+1 = 10
      W=NSHK+NCFCSS#(NCFCSS+1)/2+1
      MF=NCROSS*(NCROSS+1)/2-(NCROSS+1)*(NCROSS+1)
      D(2,M)=DPC(2,10)=DC(10,M,MM) $ U(2,M)=UPC(2,10)=UC(10,M,MM)
      E(2,N)=EFC(2,10)=EC(10,M,NN) $ F(2,N)=UFC(2,10)=PC(10,G)
     GO TC 4
C----CCFRECTCF FCF NSFK+1 = 10
     M=NSHK+1
3
      SSLSAV=(SSL+SORT((PPC(1,10)/P(1,NS+K)+(C-1.)/(G+1.))*(C+1.)/2./G)
     **SSL/ABS(SSL))/2.
     PPC(1,9)=P(1,NSHK)*(2.*G/(G+1.)*SSLSAV**2-(G-1.)/(G+1.))
```

DFC(1,9)=D(1,NSHK)/((G-1.)/(G+1.)+2./(C+1.)/5SLSAV++2) UPC(1,9)=DPC(1,5)*(U(1,NSHK)/D(1,NSHK)+SGRT(G*F(1,NSHK)/D(1,NSHK)) **2./(G+1.)*SSLSAV*(1.-1./SSLSAV**2)) EPC(1,9)=DPC(1,9)*(PPC(1,9)/DFC(1,9)/(0-1.)+UFC(1,9)**2 */DPC(1,9)**2/2.) RS=RSSAV+((SSLSAV+2.-SSL)+SGRT(F(1,NS+K)/D(1,NS+K)+G)+U(1,NSHK)/ *D(1,NSHK)+SSE)/2.*DT IF(RS.LT.R2(NFLW)) RS=R2(NFLM) C1=2.*(2.-EPS)/(1.+EPS) C2=2.*EPS-3. \$ C3=(1.-EPS)*(2.*EPS-1.)/(1.+EPS) D(2,N)=DFC(2,10)=(C(1,N)+CFC(1,10)+CTCX*(C1*UPC(1,9)+C2*UPC(1,10) ++C3+UPC(1,11))-AT+DTDX+(C1+DPC(1,9)+C2+DPC(1,10)+C3+DPC(1,11)))/2. U(2,N)=UPC(2,10)=(U(1,N)+UPC(1,10)+DTDX*(C1*CM(5)+C2*CM(10)+ *C3*CM(11))-AT*DTDX*(C1*UPC(1,5)+C2*UPC(1,1C)+C3*UPC(1,11)))/2. E(2, N)=EPC(2,10)=(E(1,N)+EPC(1,1C)+DTDX*(C1*CE(9)+C2*CE(10)+ *C3*CE(11))-AT*DTDX*(C1*EFC(1,9)+C2*EPC(1,10)+C3*EPC(1,11)))/2. P(2, M) = PPC(2, 10) = PC(10, G)IF(NCECSS.NE.-1) GC TC 5 C----PREDICTOR FOR NFLM+1 = 8 M=NELM+1 DPC(1,8)=DF(M,0) & UFC(1,8)=UF(M,0) EPC(1,8)=EP(M,0) \$ PPC(1,8)=PP(E,G) C----PREDICTOR FOR NELM = 7 CALL SFVDPD(G,GF,PPC(1,8),DPC(1,8),SFL,VD,FD,DELR) DPC(1,7)=DPC(1,8)/VD \$ PPC(1,7)=PPC(1,E)*PD UPC(1,7)=(SFL*(1,-VC)+UFC(1,8)/CFC(1,8))+CFC(1,7) EPC(1,7)=DPC(1,7)*(PPC(1,7)/DPC(1,7)/(GF-1.)+UPC(1,7)**2/DPC(1,7)* **2/? .) GC TC 6 C----PREDICTOR FOR NELM+1.NELM = 8.7 5 M=NFLM+1 DPC(1,8)=D(1,M) \$UPC(1,8)=U(1,N) \$EPC(1,8)=E(1,N) \$PPC(1,8)=P(1,N) M=NFLW DPC(1,7)=D(1,N) \$UPC(1,7)=U(1,N) \$EPC(1,7)=E(1,N) \$PPC(1,7)=P(1,N) C----CORRECTOR FOR NELM+NELM+1 = 7+8 MENFLM 6 D(2,M)=DPC(2,7)=DPC(1,7) \$ L(2,M)=UPC(2,7)=UPC(1,7) F(2, W)=EPC(2,7)=FPC(1,7) \$ P(2,W)=FPC(2,7)=PPC(1,7) M=NFL M+1 D(2, M)=DPC(2, 8)=DPC(1,8) \$ U(2, M)=UPC(2,8)=UPC(1,8) E(2,N)=EFC(2,8)=EFC(1,8) \$ P(2,N)=FFC(2,8)=FPC(1,8) IF(NAME.EQ.4HSCFS) GO TO 7 RD(NFIFST)=RF=R2(NFLM)=R2(NFLM+1)=FF+(SFL+UPC(1+8)/DPC(1+8))+DT IF(NAME.EQ.4HCFS1) GC TC 7 C----PREDICTOR FOR NELM-1 = 6 M=NFLM-1 DPC(1,6)=DP(N,0) \$ UPC(1,6)=UP(P,C) EPC(1,6)=EP(M,0) \$ PPC(1,6)=PP(6,GF) C----CORRECTOR FOR NELM = 7 D(2,NFLM)=DPC(2,7)=DC(7,NFLM,C) \$ L(2,NFLM)=UPC(2,7)=UC(7,NFLM,0) E(2,NFLM)=EPC(2,7)=EC(7,NFLM,0) \$ F(2,NFLM)=PPC(2,7)=PC(7,GF) C----CORRECTOR FOR NFLM+1 = 8 VC=CPC(1,8)/CPC(1,7) CALL FLM43(7, VD, SFL) M=NFLM+1 D(2,N)=DPC(2,8) \$ U(2,N)=UFC(2,8) \$E(2,N)=EFC(2,8)\$P(2,N)=PPC(2,8)

-115-


```
SUBROUTINE FLRCD(NFIRST,NI,NXCD)
      CCHMCN/TIME/T, DT, CTL, TWR ITE, DELT, CTDX, AT
      COMMCN/PREDCCF/DPC(2,13), UPC(2,13), EFC(2,13), PPC(2,13)
      COMMCN/POWER/VCAPF, R4R1, PDPOWER, PPGWER, CND, CCAPF, SFEDLD, SFE, NCJ
      CCMMCN/AFFAYS/R(501),U(2,501),F(2,501),C(2,501),E(2,501),RP(501)
      COMMON/DISCS/NTDISC, NDISCNO(51), NTYPE(51), NDISCL(51), SE(51), SL(51)
     +,FC(51),NTDISCT,NTDISCS
С
C
      RCDSAv=RC(N1) $ SFESAV=SE(NFIFST) $ FFSAV=FC(NFIRST)
С
      NSC=100*(NDISCL(N1)-NDISCL(NFIRST)-1)*NXCD
      PRINT 1000,NSC
1000 FORMAT(1H ,15)
С
C----PREDICTOR FOR NOD(0,1,2,3+NXCD) = 4,5,6,7+NXCD
      CALL CD(FD(N1), SE(N1), NDISCL(N1), EFFERCD)
C----PREDICTOR FOR NFLM,1 = 2,3
      NFLM=NDISCL(NFIRST)
      DPC(1,2)=D(1,NFLM) $ DFC(1,3)=D(1,NFLM+1)
      UPC(1,2)=U(1,NFLW) $ UPC(1,3)=U(1,NFLW+1)
      EFC(1,2)=E(1,NFLM) & EPC(1,3)=E(1,NFLM+1)
     PPC(1,2)=P(1,NFLW) $ PPC(1,3)=P(1,NFLW+1)
C----PREDICTOR FOR NFLM-1 = 1 CORRECTOR FOR NFLM+(C,1) = 2,3
      CALL FLM(RC(NFIRST), SE(NFIRST), SL(NFIRST), 6F FLRCD)
C
      W=NDISCL(N1)-NX(C*(NX(C+1)/2)
      D(2,4)=D(2,4-1) $U(2,4)=U(2,4-1) $E(2,4)=E(2,4-1) $P(2,4)=P(2,4-1)
      IF(NXCD) 1,2,3
      D(2,M+1)=C(2,N) $U(2,M+1)=U(2,N) $E(2,M+1)=E(2,N) $P(2,M+1)=P(2,N)
З
      RETURN
 1
      TRFLCT=(RCDSAV-FFSAV)/(SFESAV-SE(N1))
      IF(TRFLCT.GT.DT*(1.-1.E-8)) TRFLCT=DT*(1.-1.E-8)
      RD(NFIRST)=RD(N1)=RCDSAV+TRFLCT#SE(N1)
      IF(NCJ.EG.3HYES) CALL FCJFCDA(NFIFST,N1,TRFLCT)
      IF(NCJ.EQ.3H NO) CALL FRCDA(NFIRST,N1,TRFLCT)
C
```

2

RETURN \$ END

-117-

-118-

```
IF((DELUSAV.LT.I.E-12).AND.(DELL.LT.I.E-12)) GC TC 100
 5
      PRINT 1001, NCJ, NITER, DELL, CELLSAV, CELUI, DELU2, DELU3, DELU4, DELUS
 1001 FORMAT(1H +5/+2X+#ITER HAS RCHD NAX IN FLN-RCD-A NCJ= #+A3+/+
     *1X,15,7E17.9)
      IF(NCJ.FQ.3HYES) GC TC 2
 6
      NCJ=3HYES $ DELP40=P10/7.5 $ GC TC 1
      DELR=-ABS(DELR) $ RETURN
 2
C----GUESS P40
 11
      P40= F40+ DEL P40
      P41=P40/P10
      SL41=SQRT((P41+BETI)/(1.+BETI))
      SE40=SL41#A10+U10
      D41=1./(BET1+(1.-BET1)/SL41**?)
      C40=C41#C10
      A41=SQRT((1,-BETI)/(1,+BETI)*(1,+EETI+BETI*(F41-1,))/(P41+BETI)*G*
     *P41)
      A4C= A41 + A10
      U410=(1.-BFT1)*(1.-1./SL41**2)*SL41*A1C
      U40=U410+U10
с
      PG4=1.+(PG0-1.)/A40*+2+GF+(1.-1./A4C*+2)+(G/GF+E-R4R1)
      IF (NCJ.FC.3FYES) GC TC 3
C----FLAME BURNING SPC BELCW CJ VALLE
      SL54=CND#(P40/D40)##PDPDWER#P4C##PFDWEF/SGFT(G)/A40
      x1=(1.-BETA)*SL54**2*G
      PE4=(1.-PETA+XI+SORT((PETA-1.-XI)*#2+4.*(PETA-PG4*XI)))/2.
      GC TC 4
С
C----CJ FLANE BURNING SPC
 З
      PE4=PG4-SGRT(PG4*#2-(1.~EETA)#FG4-EETA)
      SLE4=SCRT((2. +PE4-(1.-BETA))/(1.-BETA)/G)
С
 4
      SE50=SL54*A40+U40
      DE4=1./(1.-(1.-BETA)*(PE4-PG4)/(PE4+BETA))
      PEC=P54*P40
      DE0=DE4#D40
      A54=SGRT { (PG4+BETA+PFTA+(P54-PG4))/(PE4+BETA)+GF/G+PE4)
      AE0=A54*A4C
      U540=-SQRT((1.-PETA)/G*(PE4-PG4)*(PE4-1.)/(PE4+BETA))*A40
      U50=U540+U40
      P60=P50
      P63=F60/P30
      SLE3=-SQRT((PE3+BETA)/(1.+BETA))
      SE60=SL63#A30+U30
      D63=1./(PETA+(1.-PETA)/SL63+#2)
      DE0=DE3+D30
      A6 3= SCRT ((1.-BETA)/(1.+BETA)*(1.+RETA+BETA*(P63-1.))/(P63+BETA)*GF
     **P(3)
      A6C=A63*A30
      U630=(1:-EETA)*(1.-1./SL63**2)*SL63**3C
      UE0=UE30+U30
С
      DELU=APS(U50-U60)
с
      PRINT 1002, NITER, P41, P40, D41, C40, A41, A40, U41C, U40, SL41, SE40,
     *DFLU, PE4, PE0, DE4, D50, AE4, A50, LE40, L50, EL54, EF50,
```

-119-

\$DELP40,F63,F60,C63,D60,A63,A60,U63C,U60,SL62,SE60
1002 FORMAT(1H ,1X,15,5X,10F12.0,/2(1X,E11.4,10F12.0,/))
C C
IF(DELL.E.EPS) GC TC 100
DELU1=DELU2 \$ DELU?=DELU3 \$ DELU3=DFLU4 \$ DELU4=DELU5 \$ DELU5=DEL
CF((DELU5.GT.DELU4).AND.(DELU4.GT.DELU3).AND.(DELU3.GT.DELU2).AND
* DELU2+GT+DELU1)) GO TO 5
c c
IF((U60.LT.U5C).AND.(NSIGN.LE.0)) DELF40=-AES(DELP40)
IF((UGn+LT+U50)+AND+(NEIGN+FQ++1)) NEIGN=0
IF((U50.LT.U50).ANC.(NSICN.EG.1)) CELF40=-AES(CELP40)/2.
IF((USO+LT+U6C)+AND+(NSIGN+EG+-1)) DELF40=AES(DELP40)
IF((USO+LT+U6O)+AND+(NSJCN+GE+O)) DELP4C=ABS(DELP4O)/2+
IF((USO+LT+UGO)+AND+(NSIGN+EG+O)) NSIGN=1
GO TO 10
c
c
CADD AND TERMINATE DISCS IN THE FLOB FIFLD
100 TARFLCT=DT-TRFLCT \$ IF(TARFLCT+LT+1+E-9) TAFFLCT=1+E-9
NT=NTDISCT
NDISCND(NT+1)=NTDISC+1 \$ NDISCND(NT+2)=NTDISC+2
NTYPE(NT+1)=2 \$ NTYPE(NT+2)=2 \$ NTYPE(NI)=3
5L(NT+1)=5L67 \$ SL(NT+2)=SL41 \$ SL(11)=SL54#SG#A40
SF(NT+1)=SE60#SG \$ SE(NT+2)=SE40#SG \$ SE(NI)=U50#SG
SFEOLD=SFE=SE(11)=SE50*SG
<pre>PD(II)=P2(NFLN) \$ FC(NT+1)=FC(NI)+SE(NT+1)#TARFLCT</pre>
RD(NT+2)=RD(NI)+SE(NT+2)+TARFLCT \$ RD(NI)=RD(NI)+SE(NI)+TARFLCT
IF(F)(NT+1)+LT+R2(NFLV-1)) RC(NT+1)=R2(NFLV-1)
IF(RD(NT+2).GT.R2(NFL#+4))
IF(RC(NI)+LT+RD(NT+1)) RD(NI)=(RD(NT+1)+RD(II))/2+
C
NDISCL(IT)=NFLM=NFLM+2
$R^{2}(NFLM-2) = R^{2}(NFLM-1) = R^{2}(NI)$
NDISCL(NI)=NFLM-2 \$ NEISCL(NT+1)=NFLM-3 \$ NEISCL(NT+2)=NFLM+1
CSET THERMO AND CAS PARAMETERS IN CELLS NFLW-2,-1,C,+1
D(2,NFLM-2)=D60 \$ U(2,NFLM-2)=U(C*D60*SG \$ F(2,NFLM-2)=P60
D(2,NFLM-1)=D50 \$ U(2,NFLM-1)=UEC*E50*8G \$ F(2,NFLM-1)=P50
D(2,NFLM)=D50 \$ U(2,NFLM)=U5C*C6C*EG \$ P(2,NFLM)=P50
D[2,NFLM+1]=D49 \$ U(2,NFLM+1)=U40%E40%SC \$ F(2,NFLM+1)=P40
E(2,NFLM-2)=(P6C/D60/(GF-1.)+L60#92#G/2.)#D60
E(2, NFLM-1)=E(2, NFLM)=(PE0/D50/(GF-1.)4UE07424G/2.)4D5C
E[2,NFLM+1]=[P40/D40/[G-1.]+U40##2#G/2.]#D40
NIDISCT=NTDISCT+2 \$ NTDISC=NTDISC+2
C
C
NCLDE=10FFHCDA & CALL PRNTFF(NCODE)
NI INCIN=3HYES

-120-

SUBROLTINE FOURCOALNS, NI, TRFLCT) COMMEN/PARAM/N, J, AJ, G, GF, DELR, NFLM CCHMCN/TIME/T, DT, DTL, TWRITE, DELT, DTDX, AT COMMEN/TRD1/PLTR, DLTR, ULTR, ELTR, EVERENM, NEVEREN COMMON/FIRFETC/INDEX, NOYCLE, NA, NAN, ASTORE, AS, AITROTA CCMMCN/DISCSKF/RDSAV(51),NLHS(E1),NRHS(E1),NCRDES(E1) CCMMCN/POWER/VCAPF, R4R1, FDFDWEF, FFCWEF, CND, GCAPF, SFEOLD, SFE, NCJ CCMMEN/AFFAYS/R(501),U(2,501),P(2,501),D(2,501),E(2,501),R2(501) COMMEN/DISCS/NTDISC,NDISCNC(51),NTYPE(51),NCISCL(51),SE(51),SL(51) *,RD(51),NTDISCT,NTDISCS CCMMCN/PPCHR/NPFTH,NUMA,NUMAFST,NUFA,FFPTH(24),RUMA(150),RUPA(150) *,NCLPFTH(24),NCLUMA(150),NCLUFA(15C),FTHNEXT,FUMANXT,TUPANXT, *DELPFTH, DELUMA, DELUPA С C----DET SS FLWFLD-STTES 5,6,7 DLETC FLN(CJ)-RARE-CD INTRCTN BY PLRMTHD SCLN REQUIRES FINAL FLM SPD OF CJ FLM CF CJ DET С с SET STATE D AS THE REF STATE FOR FOLCE AND OVERALL SOLN C VEL REF WRT SCRT(G*PO/CO) с PESETC BE REAC AS PRESS IN STATES FEL TO AND NONCIM BY STATE 5 US40=READ AS PRICLE VEL IN STATES FEL IC STATE4, NONDIN WRT STATED c С C -STATEc С C -3---FLM--2--CD---1---С с C----SET STATES 1,2 AND 3 M3=NDISCL(N3) \$ M1=NDISCL(N1)+1 \$ SG=SCFT(C) P10=P(2,M1) \$ D10=D(2,M1) \$ L10=L(2,M1)/D10/SG P20=P(2,M3+1) \$ C20=D(2,M3+1) \$ U2C=U(2,M3+1)/D20/SG P30=P(2,M3) \$ D30=D(2,M3) \$ U30=U(2,M3)/D30/SG A10=SQRT(P10/D10) \$ A20=SQRT(P2C/D20) \$ A3C=SQRT(F30/D30+GF/G) C C----SET SUBPOLTINE CONSTANTS BETA=(CF-1.)/(GF+1.) \$ B=(CF-1.)/(G-1.) \$ ALPHA=2./(GF-1.) PGD=(1++EFTA)*(VCAPF-BETA)/(1+-EETA)-EETA r C----DET STATE 5 DUE TO A CJ CETCNATION PG1=1.+(PG0-1.)/A1C##2+GF#(1.-1./A10##2)#(C/CF#P-R4R1) SL51=SCRT((2.*PG1-(1.-RETA)+2.*SORT(PG1**2-(1.-RETA)*PG1-BETA))/ *(1.-BETA)/G) SE50=SL51*A1C+U10 P51=(1.-BETA)/2.*(1.+G*SL51**2) \$ F50=P51*P10 D51=1./(1.-(1.-BETA)*(P51-FG1)/(P51+EETA)) \$ C50=C51*D10 US10=SCRT((1.-BETA)+(PE1-PG1)+(PE1-1.)/G/(PE1+BETA))+A1C UE0=U510+U10 A51=SQRT((PG1+BETA+BETA+(P51-FC1))/(F51+PETA)+GF/G+P51) A50=A51*A10 С U50PA50=U50+A50 PRINT 1000,NCJ, USOFA50, SE50, FCO, FG1, *P10, D10, A10, U10, SL(N1), SE(N1), *P20,020,A20,U20, P30,C30,A30,U30,SL(N2),SE(N2), *P51,P50,D51,D50,A51,A50,L510,L50,SL51,SE50

1000 FORMAT(1H1,2/,24X,*FLAME(*,A3,*)-RARE-CO INTERACTION + DETONATION(

-121-

```
*DEY)*,2/,40X,*UEC + A50 = SEEC *,
     */,37X,2F10.6,4/,1X,2F13.5,/,1×,4(13X,F13.5),2F13.5,/,
     *1X,4(13X,F13,5),/,1X,4(13X,F13,9),2F13,9,/,1X,10F12,9,3/)
C
C
C----SET UP ITER COUNTER AND PRESSURE GLESS
      NSIGN=-1 $ NITER=0 $ DELP60=(PEC-P3C)/15. $ EPS=1.F-14
      PEO=F30-DELF6C
C----PERFORM ITERATION OF THE POLCE SCLN
      NITER=NITER+1
 1
      IF(NITER.LT.51) GC TC 2
      IF(NITER.EQ.51) DELUSAV=DELU
      IF (NITER.LT.75) GD TC 2
      IF((DELUSAV.LT.1.E-12).AND.(DELU.LT.1.E-12)) GO TE 100
      PRINT 1001,NCJ, DELUSAV, DELU
 1001 FORMAT(1H .5/.10X,*NC. CF ITFFATIONS HAS REACHED MAX OF 75 IN FOUR
     *CDA(*,A3,*)*,5X,2E15.7)
      IF (DELU.LT.1.F-10) GC TC 100
      DELR=-ABS(DELR) $ FETURN
C----GUESS P60
      P60=P60+DELP6C
 2
      P65=P60/P50
      D65=((2.+ALPHA)/ALF+A/CF+(F65-1.)+1.)**(ALF+A/(2.+ALPHA))
      D60=D65*D50
      AF5=065##(1./ALPHA) $ A60=A65#A50
      U650=ALPH##(A65-1.)#A50 $ L60=L65C+U50
      SLH=SLT=1. $ SEH50=SLH#A50+USC $ SETEC=SLT#A60+U60
С
      P70=P60 $ P73=P70/P30
      SL73=-SCRT((P73+RETA)/(1.+EETA)) $ SE7C=SL72#A30+U30
      D73=1./(PETA+(1.-BETA)/SL73##2) $ C70=C73*C30
      A73=SCRT((1.-BETA)/(1.+BETA)*(1.+BETA+BETA+BETA*(P73-1.))/(P73+BETA)*GF
     **F73)
      A7C=A72*A33
      U730=(1.-EFTA)*(1.-1./SL734#2)#SL72#A2C $ L7C=L72C+U30
      U70=U730+U30
¢
      DELU=ABS(U60-U70)
с
      PRINT 1002, NITER, DELU, DELPEC,
     *SUH, SEH50;
     *P65,960,065,060,A65,A60,L650,L60,511,SFT60,
     *F73, P70, C73, D70, A73, A70, U730, U7C, SL72, SE7C.
 1002 FORMAT(IH ,1X,15,1X,2E15.7,60X,2F12.8,/,2(1X,10F12.8,/))
C
      IF(DELU+LE+EPS) GC TO 100
      IF((U70.LT.UGC).AND.(NSIGN.LE.C)) DELFEO=-AES(CELFEO)
      IF((U70.LT.U60).AND.(NSIGN.EC.-1)) NSIGN=C
      IF((U70.LT.U60).AND.(NSIGN.EG.1)) CELFEO=-AES(CELFEO)/2.
      IF((U60+LT+U7C)+AND+(NSIGN+EG+-1)), DELFEC=APS(DELFE0)
      IF((L60.LT.U70).AND.(NSI(N.CF.0)) CELP60=AES(CELP60)/2.
      IF((UEO.LT.UTC).AND.(NSIGN.EG.O)) NSIGN=1
С
      GO TO J
С
10C NT=NTDISCT
```

-122-

NDISCNE(NT+1)=NTDISC+1 \$ NDISCNE(NT+2)=NTDISC+2 NDISCNC(NT+3)=NTDISC+3 \$ NCISCNC(NT+4)=NTCISC+4 NTYPE(NT+1)=2 \$ NTYPE(NT+2)=6 \$ NTYPE(NT+3)=7 \$ NTYPE(NT+4)=5 SL(NT+1)=SL73 \$ SL(NT+2)=0.0 \$ SL(NT+3)=1. \$ SL(NT+4)=SL51 SE(NT+1)=SF70*SG \$ SE(NT+2)=U60*SC \$ SE(NT+3)=SE100*SG SE(NT+4)=SE50+SC RD(NT+1) = RD(N1) + SE(NT+1) * (DT-TRFLCT)RD(NT+2)=RD(N1)+SE(NT+2)*(DT-1RFLC1) RD(NT+3)=RD(N1)+SE(NT+3)*(CT-TEFLCT)RD(NT+4)=RD(N1)+SE(NT+4)+(DT-TRFLCT)IF(RD(NT+4).GT.P2(M1+1)) RD(NT+4)=R2(M1+1) IF(RD(NT+1)+LT+R2(M3-1)) RC(NT+1)=R2(W3-1) IF(RC(NT+1).LT.R?(M3)) GG TO: 103 PFINT 1003,NT,R2(M3),RD(NT+1),FD(N1),CT,TRFLCT,SE(NT+1),SL(NT+1) 1003 FORMAT(1H ,/,1X,*TRCUBLE IN FCJRCCA+,15,3F12.8,2E15.7,2F12.8) DELR=-APS(DELF) 103 IF (RD(NT+2) .LT. RC(NT+1)) RC(NT+2)=RC(NT+1)+CELR+1.E-0 IF(RC(NT+2).GT.RD(NT+4)) RD(NT+2)=FD(NT+4)-CELR*1.E-8 IF(RD(NT+3).LT.RC(NT+2)) RD(NT+3)=RD(NT+2)+CELR+5.E-9 IF(RC(NT+3).GT.RD(NT+4)) RC(N1+3)=RC(NT+4)-CELR#5.E-9 N=N-1 DD 101 1=M1.N I = 1 + 1D(2,I)=D(2,IP1) \$U(2,I)=U(2,IF1) \$E(2,I)=E(2,IF1) \$P(2,I)=P(2,IP1) D(1,I)=D(1,IP1) \$U(1,I)=U(1,IP1) \$E(1,I)=E(1,IP1) \$P(1,I)=P(1,IP1) R(I) = R(IPI)101 R2(I)=R2(IP1) DC 102 I=1.NTDISCT IF(NDISCL(I).GT.M1) NDISCL(I)=NDISCL(I)-1 102 CENTINUE IF(N1+1.LE.NTCISCS) NFHS(N1+1)=NFHS(N1+1)-1 IF(N1+1.LE.NTDISCS) NLFS(N1+1)=NLFS(N1+1)-1 NDISCL(N3)=NDISCL(N1)=-1 NTDISCT=NTDISCT+4 \$ NTDISC=NTDISC+4 NCJ=3HDET \$ SFE=SFECLD=0.0 C----SET THERME AND CAS FAFAMETERS IN CELLS NEET-2,-1,0 NDISCL(NT+1)=M3-1 \$ NDISCL(NT+4)=M3+2 NDISCL(NT+3)=NCISCL(NT+4) \$ NFLM=NCISCL(NT+4) IF(RD(NT+3).LT.R2(M3)) NCISCL(NT+3)=NCISCL(NT+4)-1 D(2,M3)=D70 \$ U(2,M3)=L7C=U7C*EG*D7C \$ P(2,M3)=P7C F(2,#3)=D70#(F7C/C70/(GF-1)+U7C##2/D7C##2/2.) IF(RD(NT+2).LT.R2(M3)) GC TC 104 D(2,N3+1)=D70 \$ U(2,M3+1)=U70 \$ P(2,M3+1)=P7C \$ E(2,M3+1)=E(2,M3) D(2,M3+2)=D60 \$ U(2,M3+2)=U60=U60+SG*D60 \$ F(2,M3+2)=P60 D(2,M3+2)=D60*(P6C/D60/(GF-1.)+U6C**2/D6C**2/2.) R2(M3+1)=R2(M3+2)=RD(NT+2) NDISCL(NT+2)=NDISCL(NT+1)+2 GC TC 200 104 D(2,M3+1)=D60 \$ L(2,M3+1)=U60=U60*5G*C60 \$ F(2,N3+1)=P60 E(2,M3+1)=D60+(P60/D60/(GF+1.)+U6C++2/D6C++2/2.) IF(RD(NT+3).LT.R2(M3)) 6C TC 105 D(2,M3+2)=D60 \$ U(2,M3+2)=U60 \$ P(2,M3+2)=F60 \$E(2,M3+2)=E(2,M3+1) P2(M3+2)=R2("", \$ R2(M3)=R2(M3+1)=RD(N1+2) 106 NDISCL(NT+2) = NDISCL(NT+1)+1

GO TO 200

C

-123-

105	U(2,M3+2)=U50#5G-{U50#5G-L60/E60}#(RE(NT+4)-F2(M3))/(RE(NT+4)-
	*RD(NT+3))
	AI=SGRT(GF#P50/D50) \$ UI=(U(2,M342)-U50#SC)/AI \$ AI=UI/ALPhA+1.0
	DI=AI**ALPHA \$ D(2,M3+2)=DI+D50
	PI=ALPHA*GF/(2.+ALPHA)*(CI#*((2.+ALPHA)/ALPHA)-1.)*1.
	P(2,M3+2)=PI*P50 \$ U(2,N3+2)=U(2,N3+2)*C(2,N3+2)
	E(2,M3+2)=D(2,M3+2)*(P(2,M3+2)/D(2,M3+2)/(GF-1.)+U(2,M3+2)**2/
	*D(2, N3+2) * +2/2.)
	GC TO 106
c	
200	PLTR=P60 \$ DLTR=D60 \$ ULTF=U60
	ELTR=D60+(Pf0/D60/(GF-1)+Uf0++2/D6(++2/2+)
C .	
c	-ACCT FCR PRTCLE PTH AND NEG AND FCS CHRCT TRAJ CELL LECTNS CHANGES
	IF(NEPTH+LE+0) CC TO 110
	DC 111 J=1,NPPTH
	IF(NCLPPTH(I),GT.M1) NCLPPTH(I)=NCLPPTH(I)-1
111	CCNTINUE
110	IF (NUMA.LE.O) GC TC 112
	DC 113 I=NUMAFST.NUMA
	$IF(NCLUMA(I) \cdot CT \cdot MI) NCLUMA(I) = NCLUMA(I) - 1$
113	CENTINUE
112	IF (NUFA+LE+0) GC TC 114
	DC 115 I=1.NUPA
	IF (NCLUPA(I) . CT . MI) NCLUPA(I)=NCLUFA(I)-1
115	CENTINUE
c	
114	NCCDE=10FFCJFCDA \$ CALL FRNTFF(NCDDE)
	NITCINES
r	

-124-

SUBROUTINE SHKELM(11,NI) CCMMEN/PARAM/N,J,AJ,G,GF,DELF,NFLM COMMEN/TIME/T, DT, DTL, TWRITE, DELT, DTDX, AT COMMEN/DISCSKF/RDSAV(51),NLHS(51),NRHS(E1),NCRDSS(E1) COMMEN/PREDCER/DPC(2,13), UPC(2,13), FFC(2,13), PPC(2,13) CCMMCN/FOWFR/VCAPF, R4R1, PDPOWER, FFCWER, CND, CCAPF, SFECLD, SFE, NCJ COMMCN/AFRAYS/R(501),U(2,501),F(2,501),C 2,501),E(2,501),R2(501) COMMCN/DISCS/NTDISC,NDISCNO(51),NTYPE(E1),NDISCL(E1),SE(51),SL(51) *, RC(51), NTDISCT, NTDISCS С **c**-----SUB HNDLS INCHG SHK UFTC AND INCLOG INTERACTN WTH FLM PD, VD=PRESS, SPECIFIC VOL FATIC ACFCSS THE FLAME C C C C---- DET CLOSENESS OF THE INCOMING SHK TO THE FLM NSC=100*(NDISCL(NI)-NCISCL(II))+1C*NCFCSF(II) PFINT 1001, II, NI, NRHS(II), NFLM, NCFCSS(II), NSC 1001 FORMAT(1H +1X+615) c _ IF(NRES(II)+GT+NELM+1) GC TC 1C C----PREDCTR FR NFLM-1 = 1, PREDCTR AND CORPCTOR FR NFLM,NFLM+1 = 2,3 CALL FLM(RC(NI),SE(NI),SL(NI),6+SFKFLM) C----CORRECTOR FOR NFLM-1 = 1 N=NFLW-1 D(2,N)=DPC(2,1)=DC(1,N,1) \$ U(2,N)=UPC(2,1)=UC(1,N,1) E(2,4)=EPC(2,1)=EC(1,4,1) & P(2,4)=PPC(2,1)=PC(1,GF) C----PREDICTOR FOR NSHK-1 = 3 M=NDISCL(II)-1 DPC(1,3)=DP(M,0) \$ UPC(1,3)=UP(M,C) EPC(1,3)=EP(*,C) \$ PPC(1,3)=PP(3,GF) C----PREDICTOR FOR NSHK = 4 M=NDISCL(II) PS=P(1,M+1)*(2.*GF/(GF+1.)*SL(II)**?~(GF-1.)/(GF+1.)) DS=D(1, M+1)/((GF-1.)/(GF+1.)+2./(GF+1.)/SL(II)+*2) US=DS#(U(1,N+1)/D(1,N+1)+SCRT(GF#F(1,N+1)/C(1,N+1))#2./(GF+1.)# *SL(II)*(1.-1./SL(II)**2)) ES=DS*(PS/DS/(GF-1.)+US**2/DS**2/2.) EPS=(RD(II)-R(M))/DELR C1=2.*(2.-EPS)/(1.+EPS) C2=2.*EPS-3. \$ C3=(1.-EPS)*(2.*EPS-1.)/(1.+EFS) DPC(1,4)=D(1,M)-DTDX#(C1#US+C2#U(1,M)+C3#U(1,M~1)) +-AT+DTDX+(C1+CS+C2+C(1,W)+C3+C(1,M-1)) UPC(1,4)=U(1,*)-DTDX*(C1*(US*US/DS+PS*RD(II)**J)+C2*PM(M)+ #C3#PN(N-1))-AT#DTDX#(C1#LS+C2#U(1,N)+C3#U(1,N-1)) EPC(1,4)=E(1,W)-DTDX*(C1*LS/DS*(ES+PS*RD(11)**J)+C2*PE(N)+C3* *PE(M-1))-AT*DTDX*(C1*ES+C2*E(1,M)+C3*E(1,M-1)) PPC(1,4) = PP(4,GF)C----CORRECTOR FOR NSHK = 4 D(2, N)=DPC(2, 4)=DC(4, N, 0) \$ U(2, N)=UPC(2, 4)=UC(4, N, 0) E(2, N)=EPC(2,4)=EC(4, N,0) \$ P(2,N)=PPC(2,4)=PC(4,GF) С C----DET IF SHK CPOSSES & MESH PT CF NOT L = 0 IF (NCFCSS(11)) 2,3,4 2 PRINT 1000,11,NTYPE(11),SE(1.),SL(11),RC(11) 1300 FORMAT(1H ,/,1X, +NEG X/O OF DISC NC.+,13,+ CF TYFE+,12,+ WTH SE,SL

	* DF*,2F14.4,* AT PCSITICN*.E12.4)
	DELR=-ARS(DELR) \$ RETURN
3	SSL=SGRT((PPC(1,4)/PPC(1,1)+(CF-1,)/(CF+1,))+(GF+1,)/2,/GF)
	RD([1])=RD([1])+(SSL*SQ6T(PPC(1.1)/DFC(1.1)*GF)+UPC(1.1)/DPC(1.1)+
	*SE(11))/2 + 0 #DT
	TELLINDHSITTALE, NEI WA23, AND, (EDITTACT, E2(NEI W-14) 111, OB, (INDHS/)
	AT A CT NET MAD AND ADD ADD ADD ADD ADD ADD ADD ADD A
	+ 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0
	SL(11) + SGR((PP((2,4)) + PC((2,1)) + (PP((2,1)) + (PP((2,1))) + (PP((2,1)) + (PP((2,1))) + (PP((2,1)) + (PP((2,1))) + (PP((2,1)) + (PP((2,1))) + (PP((
	St(ff)=SL(ff)=SQRT(PPC(2,f)/DFC(2,f)+GF)+GPC(2,f)/DPC(2,f)
	IF(NRFS(II).GT.NFLM+2) GC TO 20
	RETURN
4	PPC(1,5)=P(1,NFLW-2+L)*(2.*GF/(GF+1.)*SL(II)**2~(GF-1.)/(GF+1.))
	SSL=SCFT((FPC(1,5)/FPC(1,1)+(CF-1+)/(CF+1+))#(CF+1+)/2+/GF)
	RD(II)=RD(II)+{\$\$L*\$QRT(PPC{1,1)/DPC(1,1)*GF}+UPC{1,1)/DPC(1,1)
	*+SE(11))/2.0*CT
	IF(RD(I[]+LT+R2(NFLN-2+L]) RD(II]=F2(NFLN-2+L)
	NDISCL(II)=NDISCL(II)+1
	SSL = (SSL + SL(11))/2 = 0
	D(2, NE M-2+)=D(1, NE N-2+)/((GE-1,)/(GE+1,)+2-/(GE+1,)/(SE +2))
	117. KEI MEZAL JERIZZ, NEL MEZAL JETRITI, KEI MEZAL JUTI, KEI MEZAL JERIZZ
	and set we all sole set and states and set and
	$ = P(1_1 \wedge r = L_1 + L_1 + L_1 + r = L_1 + L_2 + L_2$
	P(2, VPLM-24L)=P(1, VPLP-24L)+(2+0)/(Gr + (-) + 22L+22-(Gr - (-) + (Gr + (-)))))))))))))
	F(2,NFLM-2+L)=C(2,NFLM-2+L)*(F(2,NFLM-2+L)/((2,NFLM-2+L)/(GF-1*)+
	*U(2,NFLM-2+L)**2/D(2,NFLM-2+L)**2/2.0)
	SL(II)=SCRT((F(2,NFLV+2+L)/PPC(2,1)+(CF-1.)/(GF+1.))*(GF+1.)/2./GF
	*) A second s
	SE(11)=SL(11)*SQRT(PPC(2+1)*DFC(2+1)*GF)+UFC(2+1)*CPC(2+1)
	RETURN
С.	
10	IF(NFHS(II).GT.NFLM42) NCFDSS(II)=C
c	PREDICTOR AND CORFECTOR FOR NFLN+1 = 2
	M=NFLM+1
	D(2,M)=DFC(1,2)=DF(N,0) \$ U(2,M)=UFC(1,2)=UF(M,C)
	E(2,N)=EPC(1,2)=EP(N,C) \$ F(2,N)=FFC(1,2)=FF(2,G)
c	
	SFL=SL(NT)
	CALL SEVERC(G.GE.P(2.N)-D(2.N)-SEL VC.ED.DELE)
	PIC, NELWI-PPELI, II-PPELICII-PELICENTE
	(2, KPL) = 0 + (1, 1) = 0 + (2, 1) = (3 + (1 + 1) +
	$E(2, NFLW) = EF((1, 1) = EF((2, 1) = D(2, NFLW) = (F(2, NFLW)/D(2, NFLW)/(GF-1_a))$
_	*+U(2,NFLM)**2/D(2,NFLM)**2/2.)
C	CALC NEW FLM SPD AND FCSITION
	RD(NI)=RD(NI)+SE(NI)+DT \$ SL(NI)=SFL \$SFE=SE(NI)=SFL+U(2,M)/D(2,M)
C	PREDICTOR FOR NSHK-1 = 3
	₩=NDISCL (II)-1
	DP((1,3)=DP(M,C) \$ UP((1,3)=UP(N,C)
	EPC(1,3)=EP(M,0) \$ FPC(1,3)=PP(3,GF)
C	PREDICTOR FOR NSHK = 4
	N=NDISCL(!!)
	PS=P(1,M+1)+(2,+GF/(GF+1,)+SL(11)++2-(GF-1,)/(GF+1,))
	$D_{S=D}(1, M+1)/((G_{S-1}, 1)/(G_{S-1}, 1)$
	USEDS#11(1, MAI)/0(1, MAI)/0(0)/0(0)/0(0)/0(0)/0(0)/0(0)/0(0)/0(
	TOLILIY(10-10/OL(11)#*/)) ES-DS4/05/05/05/15/14/00/05445/5
	2540341437057161-1+14054427054427263
	EFS=(RU(11)-R(N))/DELR

-126-

	C1=2。#(?。-EPS)/(1。+FPS)	
	C2=2.*EPS-3. \$ C3=(1EPS)*(2.*EPS-1.)/(1.*EPS)	
	DPC{1,4}=D{1,N}-DTDX*{C1*LS+C2*L(1,N}+C3*U(1,N-1))	
	*-AT*CTDX*(C1*DS+C2*D(1,*)+C3*C(1,M-1))	
	UPC(1+4)=U(1+*)=DTDX*(C1*(LS*LS/DS+FS*FD(II)**J)+C2*PH(M)+	
	*C3*PN(M-1))-AT*DTDX*(C1*US+C2*U(1.+)+C3*U(1.+-1))	
	EPC(1,4)=E(1,N)-DTDX*(C1+U5/D5*(E5+P5*PE(II)++J)+C2*PE(M +C3	*
	*PE(M-1))-AT*DTDX*(C1*ES+C2*E(1.N)+C3*E(1.N-1))	
	PPC(1,4) = PP(4, GF)	
c	-CORRECTOR FOR NSHK = 4	
	D(2.W)=DPC(2.4)=CC(4.W.0) \$ U(2.W)=UPC(2.4)=UC(4.W.0)	
	E(2,M) = EPC(2,4) = EC(4,W,0) $E(2,W) = PPC(2,4) = PC(4,GE)$	
c		
	1 = 1	
	IF(NCR055(11)) 2.3.4	
c		
č		
<	-SHK AND FIM INTERACT	
20		
<u> </u>		

-127-

-128-

```
IF(NITER.EG.90) CELUSAV=CELU
      IF(NITER.LT.1CO) GD TC 11
      IF((CELUSAV.LT.1.E-12).AND.(DELU.LT.1.E-12)) GO TO 100
      PPINT 1001, NCJ, NITER, DELU, DELUSAV, DELU1, DELU2, DELU3, DELU4, DELU5
 1001 FORMAT(1H ,5/,2X, #ITER HAS RCHD MAX IN SHK-FLM-A NCJ= #,43,/,1X,
     #15,7E17.9)
      IF(NCJ.EQ. 3HYES) GD TO 2
      KCJ=3FYES $ DELP40=P30/7.5 $ GC TC 1
6
      DELR=-ABS(DELR) $ RETURN
2
C----GUESS P40
    P40=P40+DELF40
11
      P41=P40/P10
      SL41=SGRT((P41+BET1)/(1.+BET1))
      SE40=SL41*A10+U10
   D41=1./(BETI+(1.-BET1)/SL41**2)
      D40=D41*D10
      A41=SORT((1.-PETI)/(1.+PETI)*(1.+PETI+PETI*(P41-1.))/(P41+BETI)*G*
     *P41)
      A40=A41#A10
                                                          U410=(1.-BETI)*(1.-1./SL41**2)*SL41*A1C
      U40=U410+U10
С
      PG4=1.+(PG0-1.)/A40**2+CF*(1.-1./A40**2)*(G/GF*8-R4R1)
      IF (NCJ.FG. 3HYES) GC TC 3
C----FLAME BURNING SPD BELOW CJ VALLE
      SL54 = CND# (P40/D40) ##PDFOWEF#P40##FFOWEF/SCRT(G)/A40
      XI=(1.-BETA) * SLE4**2*G
      PE4=(1.-PETA+XI+SCFT((EFTA-1.-XI)**2+4.*(BETA-PG4*XI)))/2.
      GC TC 4
С
C----CJ FLAME BURNING SPE
     PE4=PG4-SQRT(PG4##2-(1.-EETA)#FG4-EETA)
3
      SL54=SCRT((2. #P54-(1.-EFTA))/(1.-EETA)/G)
с
 Å.
      SEE0=SLE4*A4C+U4C
      D54=1./(1.-(1.-EETA)*(P54-PG4)/(P54+EETA))
      PE0=P54*P40
      D50=054*040
      AE4=SCRT((PG4+BETA+EETA*(P54-FC4))/(FE4+EETA)*GF/G*P54)
      A E 0= A E 4* A 4 0
      U540=-SOFT ((1 .- EFT A)/G*(P54-PC4)*(F54-1.)/(P54+BETA))*A4C
      UE0=UE40+U40
      P60=P50
      F63=F60/P30
      SLE3=-SQRT((PE3+BETA)/(1.+BETA))
      SE60=SL63#A30+U30
      D63=1./(BETA+(1.-BETA)/SL63**2)
      D60=D63*D30
      A63=SCRT((1.-EETA)/(1.+EETA)*(1.+EETA+EETA*(P63-1.))/(P63+BETA)*GF
     **P63)
      A60=A634A30
      U630=(1.-BETA)*(1.-1./SL63**2)*SL63*#30
      U60≃U630+U30
С
      DELU=ABS(USO-U60)
                                 · . . .
с
```

-129-

PRINT 1002,NITEP,P41,P40,D41,D40,A41,A4C,U41C,U40,SL41,SE40, *DELU, PE4, P50, C54, D50, A54, A50, UE40, UE0, SL64, SE60, *DELP40,PE3,P60,D63,DE0,A63,A60,L630,U60,SL63,SE60 1002 FDRMAT(1H ,1X,15,5X,1CF12.0,/,2(1X,E11.4,1CF12.0,/)) C IF(DELU-LE-EPS) GD TO 100 DELU1=DELU2 \$ DELU2=DELU3 \$ DELU3=DELU4 \$ DELU4=DELU5 \$ DELU5=DELU IF ((DELUS.GT.DELU4) .AND. (DELU4.GT.DELU3) .AND. (DELU3.GT.DELU2) .AND. *(DELU2.GT.DELU1)) GC TC E c IF((U60+LT+U5C)+AND+(NSIGN+LE+0)) DELF4C=-AES(DELP40) IF((U60.LT.U50).AND.(NSIGN.E0.-1)) NSIGN=C IF((U60+LT+U50)+AND+(NSIGN+FC+1)) CELF40=-AES(CELP40)/2+ IF((U50.LT.U60).AND.(NSIGN.E0.-1)) DELP4C=AES(DELP40) IF((150.LT.U60).AND.(NSIGN.GE.0)) DELP40=AES(DELP40)/2. IF((U50+LT+U60)+AND+(NSIGN+EG+C)) NSIGN=1 GC TC 10 ¢ C C----ADD AND TERMINATE DISCS IN THE FLOW FIELD 100 TARFLCT=(RD(II)-RD(NI))/(SE(II)-SE(NI)) NT=NTCISCT NDISCNC(NT+1)=NTCISC+1 \$ NDISCNC(NT+2)=NTCISC+2 NDISCND(NT+3)=NTDISC+3 NTYPE(NT+1)=2 \$ NTYFE(NT+2)=2 \$ NTYFE(NT+3)=2 SL(NT+1)=SL63 \$ SL(NT+2)=0. \$ SL(NI)=SL54*SCRT(G)*A40 SL(NT+3)=SL41SE(NT+1)=SE60*SORT(C) \$ SE(NT+2)=UE0*SCRT(C) SE(NT+3) = SE40 + SORT(G)SFEDLD=SFE=SF(NI)=SE50*SCFT(G) RD(NI)=RD(II)-SE(II)*TARFLCT \$ IF(TAFFLCT+LT+1+E-10)TAFFLCT=1+E-10 FD(NT+1)=RD(II)+SE(NT+1)+TARFLCT PD(NT+2)=RC(II)+SE(NT+2)+TARFLCT \$FD(NT+3)=FC(II)+SE(NT+3)+TARFLCT IF(RD(NT+1).LT.R?(NFLM-1)) RD(NT+1)=R2(NFLM-1)+1.E-10 IF (RC(NT+2).LT.RD(NT+1)) RC(NT+2)=(RC(NT+1)+RD(11))/2. IF(RD(NT+3).GT.R2(NFL#+2)) RD(NT+3)=R2(NFL#+2)-1.E-10 С DC 101 I=NFLM,N M=N+2+NFL M-1 D(2,4)=D(2,M-2) \$ U(2,M)=U(2,M-2) \$E(2,M)=E(2,M-2)\$P(2,M)=P(2,M-2) D(1,M)=D(1,N-2) \$ U(1,M)=U(1,N-2) \$E(1,N-2)\$P(1,M)=P(1,N-2)\$ F(M)=R(M-2)101 R2(M) = F2(M-2)N=N+2 62(NEL M)=82(NEL M+1)=60(NT+2) DO 102 I=1,NTDISCT. IF(NDISCL(I).GE.NFLM) NDISCL(I)=NDISCL(I)+2 102 CENTINUE IF(NI+1.LE.NTDISCS) NRHS(NI+1)=NRHS(NI+1)+2 IF(NI+1.LE.NTDISCS) NLFS(NI+1)=NLFS(NI+1)+2 NFLM=NFLM+2 NDISCL(II)=-1 \$ NDISCL(NT+1)=NFLM-3 \$ NDISCL(NT+2)=NFLM-2 NDISCL(NT+3)=NFLM+1 C-----SET THERMO AND GAS PARAMETERS IN CELLS NELN-2.-1.0.+1 D(2,NFLM-2)=D60 \$ U(2,NFLM-2)=UE04CEC4SCRT(C) \$ P(2,NFLM-2)=P60

D(2+NFLM-1)=D50 \$ U(2+NFLV-1)=U50*D50*SGRT(C) \$ P(2+NFLM-1)=P50
D(2,NFLM)=D50 \$ U(2,NFLM)=U50*CE0*SCRT(C) \$ P(2,NFLM)=P50 D(2,NFLM+1)=D40 \$ U(2,NFLM+1)=L40*C40*SGRT(C) \$ F(2,NFLM+1)=P40 E(2,NFLM-2)=(P60/D60/(GF-1.)+L604#2#G/2.)#D6C E(2,NFLM-1)=E(2,NFL*)=(P50/D50/(CF-1.)+U50**2*G/2.)*D50 E(2,NFLM+1)=(P40/D40/(G-1.)+L40**2*G/2.)*D4C NIDISCT=NTDISCT+3 \$ NTDISC=NTDISC42 С C-----ACCT FOR PRICLE PTH AND NEG AND POS CHRCT TRAJ CELL LOCINS CHANGES IF(NPPTH.LE.O) GC TC 110 DO 111 I=1,NPPTH IF(NCLPPTH(I).GE.NFLM-2) NCLFFTH(I)=NCLPFTH(I)+2 111 CONTINUE 110 IF(NUMA+LE+0) GC TC 112 DO 113 I = NUMAFST, NUMA IF(NCLUMA(I).GE.NFLM-2) NCLUMA(I)=NCLUMA(I)+2 113. CENTINUE 112 IF(NUPA.LE.O) GC TC 114 DC 115 I=1, NUFA TE(NCLUPA(I).GE.NFLM-2) NCLUFA(I)=NCLUFA(I)+2 115 CONTINUE С 114 NCODE=10HSHKFLMA \$ CALL FRATFF(ACCCE) NITRCTN=3HYES с

RETURN \$ END

-131-

SUPROUTINE SKSKPP(11, NI, NJ, NAME) COMMON/PARAM/N, J, AJ, G, GF, DELR, NFLM CONMON/TIME/T, DT, DTL, TWR ITE, DELT, DTDX, AT COMMON/DISCSKF/RDSAV(51) NLHS(51) NRHS(51) NCRCSS(51) CCMMCN/PREDCCR/EPC(2,13),UPC(2,13),EPC(2,13),PPC(2,13) COMMCN/ARRAYS/R(501),U(2,501),F(2,501),C(2,501),E(2,501),R2(501) COMMON/DISCS/NTDISC,NDISCND(51),NTYFE(51),NCISCL(51),SE(51),SL(51) *, RD(51), NTDISCT, NTDISCS С C----SL(II) AND SL(NI) MUST BE GT C.C С C $D2N(SSL_{GE_{1}})=D(1,N)/((CE+1))/(GE+1)+2./(CE+1)/(SL+2)$ U2M(SSL,GE,M)=D(2,N)*(U(1,N)/D(1,N)+SORT(GE*F(1,N)/D(1,N))*(2+/ *(GE+1.)*SSL*(1.-1./SSL**2))) U2MM(SSL,GE,M)=C(2,M)+(U(1,M)/D(1,M)-SGFT(CE+P(1,M+1)/D(1,M+1))+(#2./(GE+1.)#SSL#(1.-1./SSL##?))) P2M(SSL,CE,M)=P(1,M)+(2.*CE/(CE+1.)*SSL**2-(GE-1.)/(GE+1.)) E2N(GE,M)=D(2,N)*(P(2,N)/C(2,N)/(GE-1.)+U(2,N)**2/D(2.N)**2/2.) C SSLS(FAHD, PDHD, (F)=SCFT((FFFC/FAHD+(GE-1.))/(CE+1.))+(GE+1.)/2./GE) SSFS(SSL,GF,K,L)=SSL*SGFT(GE*PPC(K,L)/DPC(K,L))+UPC(K,L)/DPC(K,L) C с GE=G \$ IF(NDISCL(NI)_LE_NELM) GE=GE NCRSII=NCRCSS(II) \$ MII=NCISCL(II)+1 \$ NFII=(NCRSII-1)/2 NCRSNI=NCROSS(NI) \$ #NI=NDISCL(NI)+1 \$ NPNI=(NCRSNI-1)/2 NSC=100#(NDISCL(NI)-NDISCL(II))+10#NCFSII+NCFSNI PRINT 2000, NAME, NCRSII, NCRSNI, HII, HNI, HI, NI, NSC 2000 FORMAT(1H ,1X,A7,1X,715) NEC=0 \$ SLNISAV=SL(NI) IF((MII.EQ.MNI).AND.(NCRSII.EQ.1).AND.(NCRSNI.EG.0)) GC TO 72 IF((WII.FG.MNI).AND.(NCRSII.EG.O).AND.(NCRSNI.EG.-1)) GO TO 73 IF((MII.EQ.NNI).AND.(NCFSNI.EG.-1).ANC.(NCFSII.EG.1)) GO TO 74 GO TO 71 NCFSII=NCFCSS(II)=0 \$ NF+S(II)=NF+S(II)-1 \$ CO TO 71 72 NCRSNI=NCROSS(NI)=NPNI=0 \$ NRHS(NI)=NRHS(NI)+1 \$ GC TO 71 73 74 NCFSNI=NCFCSS(NI)=NFNI=0 \$ NRFS(NI)=NFFS(NI)+1 NCRSII=NCFOSS(II)=> \$ NR+S(II)=NR+S(II)-1 71 IF((NRHS(II).NE.MNI).OR.(NCRSII.EG.-1).OR.(NCRSNI.EG.-1)) GC TO 1 C C-----SHKNI(NCRS=0) PRDTR FR NSHK-1,0,1,2=1,2,3,4 - CRRCTR FR NSHK,1=2,3 C-----SHKNI(NCFS=1) PRCTR FR NSHK-1,0,1,2,3 AND CRRCTR FR NSHK,1,2=2,3,4 IF (NAME.FQ. 7HSKSKSKO) GC TC 2 IF((NAME.EQ.7FSPECIAL).AND.(NCISCL(NI)-NDISCL(II).EG.3)) GC TC 2 IF((NAME.EG.7+SPECIAL).ANC.(NCISCL(NI)-NDISCL(II).EG.2).AND. *(NCRSII.EQ.0)) GC TC 2 CALL SHK(FC(NI), SF(NI), SL(NI), NCISCL(NI)) GO TC 2 C----SHKNI PREDICTOR FOR NSH#+2+NCRSNI = 4 IF ((NAME.EQ.7+SKSKSKM).DF. (NANF.EQ.7+SKSKSKC).DP. (NAME.EQ.7HSPECIA 1 *L)) GG TC 2 M=NDISCL (NI)+24NCRSNI DPC(1+4)=DP(M+0) \$ UPC(1+4)=UP(M+0) EPC(1,4)=EP(M,0) \$ PPC(1,4)=PP(4,CE) IF(NCRSNI.EG.-1) GD TC 2

-132-

C----SHKNI PREDICTOR FOR NSHK+1+NCRSNI = 3 M=NDISCL(N1)+1+NCFSN1 DPC(1,3)=DP(M,C) \$ UPC(1,3)=UP(A,C) EPC(1,3)=EP(M,0) \$ PPC(1,3)=PP(3,(F) C----SHKNI CORRECTOR FOR ASHK+1+ACESNI = 3 D(2,M)=DPC(2,3)=DC(3,M,1) \$ U(2,M)=UPC(2,3)=UC(3,N,1) E(2,M)=EPC(2,3)=EC(3,M,1) \$ F(2,M)=FFC(2,3)=FC(3,GE) C----SHKII PREDICTOR FOR NSHK-1 = E IF (NAME .FQ. 7+ SKSKSK) GO TO 7 2 M=NDISCL(II)-1 DPC(1,6)=DP(M,0) \$ UPC(1,6)=UP(M,C) EPC(1,6)=EP(N,0) \$ PPC(1,6)=PP(6,6E) IF(NCRSII.NE.-1) GO TO 8 C----SHKII FFEDICTOR FOR NSFK-2 = 5 M=NI1-3 DPC(1,5)=DP(M,0) \$ UPC(1,5)=UF(N,C) EPC(1,5)=EP(M,0) \$ FPC(1,5)=PP(5,(E) C----SHKII COPRECTOR FOR NSHK-2 = 6 N=NII-2 D(2,N)=DFC(2,6)=DC(6,N,0) \$ U(2,N)=UFC(2,6)=UC(6,N,0) E(2,N)=EPC(2,6)=EC(6,M,0) \$ P(2,N)=PFC(2,6)=PC(6,0E) GC TC 7 C----SHKII PREDICTCR FCR NSHK = 7 8 M=NDISCL(II) IF(NDISCL(II).EG.NDISCL(NI)) GC TC 5 PS=P2M(SL(II),GE,MII) \$ DS=D2M(SL(II),GE,MII) LS=U24(SL(II), (E, MII)/C(2, MII) #CS GO TO 6 5 IF ((NAME . EG. 7 + SKSKSKO) . AND . (NCISCL (NJ) + 1 . EC . MNI) GO TC 56 IF((NAME.EG.7HSPFCIAL).ANC.(NCISCL(NJ)41.EC.*NI)) GC TO 102 PS=P2M(SL(NI), GE, MNI) \$ DS=D2M(SL(NI), GE, MNI) US=U2M(SL(NI), CE, MNI)/C(2, MNI) *CS GC TC S7 102 .PS=PFC(1,1) \$ DS=DPC(1,1) \$ US=UPC(1,1) GC TC S7 PS=P2M(SL(NJ),GE,MNI) \$ DS=D2M(SL(NJ),GE,MNI) 96 US=U2M(SL(NJ),CE,MNI)/C(2,MNI)+DS US=L5/DS+SQRT(GE*P5/D5)*2./(GE+1.)*SL(NI)*(1.-1./SL(NI)**2) DS1=DS=D2M(SL(NI),GE,MNI)/C(1,MNI)4DS US1=US=US*DS \$ FS1=FS=F2#(SL(N1),(E,MN1)/P(1,MN1)*PS US=US/DS+SQRT(GF#PS/DS)#2+/(GE+1+)#SL(II)#(1--1+/SL(II)##2) 97 DS=D2M(SL(II), CE, MNI)/C(1, MNI)*DS LS=US*DS PS=P2#(SL(II),GE,MNI)/P(1,MNI)*PS ES=(PS/DS/(GE-1.)+US##2/CS##2/2.)#CS 6 EPS=(RD(II)-R(M))/DELR C1=2.*(2.-FPS)/(1.+EPS) C2=2.#EPS-3. \$ C3=(1.-EPS)*(2.*EPS-1.)/(1.+EPS) DPC(1,7)=D(1,*)-DTDX*(C1*US+C2*U(1,*)+C3*U(1,*-1)) *-AT*DTDX*(C1*CS+C2*D(1, W)+C3*C(1, W-1)) UPC(1,7)=U(1,M)-DTD x*(C1*(L5*L5/D5+P5*RD([1])**J)+C2*FN(N)* *C3*PM(M-1))-AT*DTDX*(C1*US+C2*U(1,M)+C3*U(1,M-1)) EPC(1,7)=E(1,N)-DTDX*(C1*LS/DS*(ES+PS*FC(11)**J)+C2*PE(N)+C3* *PF(M-1))-AT*DTDX*(C1*ES+C2*E(1,W)+C3*E(1,W-1)) PFC(1,7)=PP(7,CE) C----SHKII CORRECTOR FOR NSHK = 7

-133-

```
D(2,M)=DFC(2,7)=DC(7,N,0) $ U(2,N)=UFC(2,7)=UC(7,N,0)
      E(2,M)=FPC(2,7)=EC(7,M,0) $ P(2,M)=PFC(2,7)=FC(7,GE)
      IF (NCROSS(II) ##2 .NE.1) GE TE 3
 7
      IF((NAMF.EQ.7H SKSKSK).AND.(NCRSII.EC.-1)) CC TC 3
C----SHKII PREDICTOR FOR NSHK#14NPII = E
      P(2,MII+NPII)=PF((1,8)=(F2W(SL(II),CE,WII)*(F(1,WII)*P(1,MII-1))
     ***NPII)**NCRSII
      IF (NCRSII.NE.1) GC TO 3
      DPC(1.8)=D2M(SL(II).GE.WII)
      UPC(1,8)=U2M(SL(11), (E, MII)/D(2, MII)*DPC(1,8)
      EPC(1,8)=DPC(1,8)*(FFC(1,8)/CFC(1,8)/(GE-1.)+UPC(1,8)**2/DPC(1,9)
     ***2/2.)
 3
      IF (NCECSS (NI )**2 .NE .1) GC TC 4
      IF((NAME.EQ.7HSKSKSKO).CF.(NAME.EQ.7HSPECIAL)) GC TC 4
      IF((NRHS(II).EQ.MNI).AND.(NCRSII.NE.-I).AND.(NCRSNI.NE.-1))GD TC 4
C-+---SHKNI FREDICTOR FOR NSHK+14NENI = 2+NPN1##2
      P(2, MNI+NFNI)=PPC(1,2-NPNI)=(F2M(SL(NI),GE,MNI)*(P(1,MNI)*
     *P(1, #NI-1))**NFNI)**NCRSNI
      IF(NCRSNI.NE.-1) GC TC 4
C----SHKNI COMPLETE PREDICTOR FOR NSEK = 2+NENI**2
     D(2, WNI-1)=DPC(1,3)=D2W(SL(NI),CE,WNI)**NCRSNI/(D(1,WNI)*D(1,MNI-1
     4)) ##NPN1
      U(2, WNI-1)=UP((1,3)=U2MM(SL(NI),GE,MNI-1)
      IF((NAME.EQ.THSKSKSKN).AND. (NCISCL(NJ)+1.EG.MNI)) GC TC 82
      GO TO 83
      U(2,MNI-1)=UPC(1,3)=DFC(1,3)+(U(1,NNI-1)/C(1,NNI-1)+SORT(GE+
 82
     *PPC(1,3)/DPC(1,3))*2./(GE+1.)*SL(N1)*(1.-1./SL(N1)**2))
      EPC(1,3)=E2W(CE,WNI-1)
 83
      IF (NAME . EQ. 7HSKSKSKW) GC TC 4
C----SHKNI CORRECTOR FOR NSHK+1 = 4
      D(2,MNI)=DPC(2,4)=DC(4,MNI,0) $ U(2,MNI)=UPC(2,4)=UC(4,MNI,0)
      E(2, MNI)=EPC(2,4)=EC(4, MNI,0) $ P(2, MNI)=PPC(2,4)=PC(4,GE)
с
С
C
 ۵
      IF((NCRSII.FG.-1).CF.(NCFSNI.EG.-1)) CC TO EC
      IF(NRHS(II).EQ.MNI) GC TO 10
      IF (NEFS(II).EC.MNI+1) GC TC 20
      IF (NRHS(II).EG.MNI+2) GC TC 30
      IF (NRHS(II).EG.MNI+3) GC TC 24
C
 10
      LE(NAME-NE-7HSKSKSK0) GD TO 80
      GC TC 22
C----SHKNI PREDICTOR FOR NSHK = 2(=1)
 81
      DPC(1,2)=DPC(1,1) $ UPC(1,2)=UPC(1,1)
      EPC(1,2)=EPC(1,1) $ FFC(1,2)=FPC(1,1)
C----SHKNI PREDICTOR FOR NSHK+1 = 1
      W=NDISCL(NI)-1
      DPC(1,1)=CF(N,0) $ UPC(1,1)=UF(N,0)
      EPC(1,1)=EP(M,0) $ PPC(1,1)=PP(1,GE)
C----SHKNI CORRECTOR FOR NSHK = 2
      M=NDISCL(NI)
      D(2, W)=DPC(2, 2)=CC(2, M, C) $ U(2, M)=UPC(2, 2)=UC(2, W, 0)
      E(2, N)=EPC(2,2)=FC(2, N,0) $ P(2, N)=PPC(2,2)=PC(2, CE)
C----SHKII CORRECTOR FOR NSHK+1+NCESII # 1
```

80 D(2,MII+NCRSII)=DPC(2,1)=CC(1,MII+NCFSII,1)

-134-

U(2, MII+NCRSII)=UPC(2,1)=UC(1, WII+NCRSII,1) E(2, MII+NCRSII)=FPC(2,1)=EC(1, MII+NCRSII,1) P(2,MII+NCRSII)=PPC(2,1)=PC(1,CE) IF((NAME.EC.7+ SKSKSK).AND.(NCPSII.EC.-1)) GO TO 75 12 ML=1+7#NCRSII*(NCRSII-1)/2 SSL=SSLS(PPC(1,ML),PPC(1,7+NCFSII),GE) \$ SSE=SSFS(SSL,GE,1,WL) IF(NCRSII##2.NE.1) GC TO 11 C----SHKII CORRECTOR FOR NSHK+1+NPII = E NDISCL(II)=NDISCL(II)+NCESTI $SSL = (SSL + SL(II))/2 \cdot 0$ D(2,MII+NPII)=DPC(2,P)=D2M(SSL,GE,WII)++NCRSII/(D(1,WII)+D(1,WII *-1))**NPII IF(NCRSII.EQ.1) U(2,MII+NPII)=UPC(2,E)=U2M(\$SL,GE,MII) IF (NCFSII.EQ.-1) U(2, MII+NPII)=UPC(2, E)=U2MM(SSL, GE, MII-1) IF((NSC.EQ.-9).OR.(NSC.EG.-10).CF.(NSC.EQ.-11)) U(2,WII+NPII)= *UPC(2.8)=DPC(2.8)*(U(1.MII-1)/D(1.WII-1)-SCRY(GE*FPC(1.8)/DPC(1.8) *)*(2./(GE+1.)*SSL*(1.-1./SSL**2))) P(2, MII+NPII)=FPC(2,8)=(P2M(5SL,GE,MII)*(P(1,MII)*F(1,MII-1)) ***NPII) **NCESII E(2, MII+NPII)=EPC(2,8)=E2M(GE, #II+NPII) 11 RD(II)=RC(II)+(SSE+SE(II))/2.*DT SL(11)=SSLS(FFC(2,ML),FPC(2,7+NCFSII),CE) SF(11)=SSES(SL(11), CE+2+NL) IF((FC(II).GT.R2(MII)).AND.(NCRSII.EC.C)) RD(II)=F2(MII)-DELR* *1.E-10 IF((RD(II).LT.R?(MII)).AND.(NCRSII.EG.I)) RC(II)=R2(WII)+DELR* *1.E-10 IF((RD(11)+GT+R2(M11-1))+ANC+(NCFS11+EG+-1)) RD(11)=R2(M11-1) *-DELR*1.E-10 IF((RD(11).LT.R2(MII-1)).ANC.(NCFS11.EG.0)) RD(11)=R2(WII-1) *+DELR#1.E-10 75 IF(NSC.EQ.-11) GC TC 61 IF((RD(II).GT.RD(NI)).ANC.(NAME.EG.7F CISCES)) GC TO 100 Q RETURN С 20 IF((NCRSII.EQ.0).AND.(NCHSNI.EC.0)) CC TC 21 IF((NCFSII.EQ.1).AND.(NCFSNI.EC.0)) GD TD 22 C----HERE NORSLIFT AND NORSNITT OF NORSLITC AND NORSNITT C----SHKNI COMPLETE PREDICTOR FOR NSHK+1 = 2 IF (NAME.EG. 7HSPECIAL) CC 1C 27 D(2, MNI)=CPC(1,2)=D2M(SL(NI), GE, MNI) U(2,MNI)=UPC(1,2)=U2M(SL(NI),CE,MNI) \$ EPC(1,2)=E2M(GE,MNI) 27 IF((NCRSII.E0.0).AND.(NCFSNI.EC.1)) CC TC 21 **c** - - --SHKNI PREDICTOR FOR NSHK = 1 IF ((NAME.EG.7+SFECIAL).AND.(MNI-MII.EG.2).AND.(NCRSII.EQ.1)) 22 *GC TO 76 IF((NAME.EG.7FSKSKSK0).ANC.(NCISCL(NJ)+1.EG.MNI)) GD TD 77 GC TC 78 77 PS=P2M(SL(NJ), GF, MNI) \$ DS=D2M(SL(NJ), GE, MNI) US=U2M(SL(NJ),CE,MNI)/C(2,MNI)#CS US=US/DS+SQRT(GE+PS/DS)+2./(GE+1.)+SL(NI)+(1.-1./SL(NI)++2) DS=D2M(SL(NI), (F, MNI)/C(1, MNI)#CS US≠US*DS PS=P2M(SL(NI),CE,MNI)/P(1,MNI)*FS GC TC 79 78 PS=P2M(SL(NI),GF,MNI) \$ CS=D2M(SL(NI),GE,MNI)

-135-

LS=U2N(SL(NI),GF,MNI)/C(2,MNI)#CS 79 E S=(PS/DS/(GE-1.)+LS##2/DS##2/2.)*DS W=NDISCL (NI) EPS=(RD(NI)-P(N))/DELR C1=2.*(2.-EPS)/(1.+EPS) C2=2.*EPS-3. \$ C3=(1.-EFS)*(2.*EFS-1.)/(1.*EPS) D(2,M)=DPC(1,1)=DPC(2,1)=D(1,N)-DTDX*(C1*US+C2*U(1,N)+C3*U(1,N-1)) *-AT*DTDX*(C1*C5+C2*D(1,N)+C3*C(1,M-1)) U(2,W)=UPC(1,1)=UPC(2,1)=U(1,W)-CTCX#(C1#(LS#US/CS+PS#RC(11)##J)+ *C2*PM(M)+C3*PN(M-1))-AT*CTDX*(C1*LS+C2*U(1+)+C3*U(1+N-1)) ·E(2,M)=EPC(1,1)=EPC(2,1)=E(1,N)=CTCX+(C1+UE/CS+(ES+PS+PD(II)++J)+ #C2#PE(M)+C3#PE(M-1))-AT#DTDX#(C1#ES+C2#E(1,#)+C3#E(1,M-1)) P(2,*)=PFC(1,1)=PPC(2,1)=PP(1,6E) IF((NAME.EQ.7HSKSKSKO).AND.(NFHS(II).EC.NNI)) GC TC 81 76 IF((NCRSII.E0.1).AND.(NCRSNI.EC.0)) GC TC 24 C----SHKNI CORRECTOR FOR NSHK = 1 23 M=NDISCL(NI) D(2, W)=DPC(2,1)=CC(1, W,1) 1 U(2, W)=UFC(2,1)=UC(1, W,1) F(2, W)=EPC(2,1)=FC(1, W,1) \$ P(2, W)=PFC(2,1)=FC(1, CE) GO TO 24 C-----SHKII FREDICTOR AND CORRECTOR FOR NSHK = 1 D(2,MII)=DPC(1,1)=DPC(2,1)=D(1,WII) 21 U(2,WII)=UPC(1,1)=UPC(2,1)=U(1,WII) E(2,MII)=EPC(1,1)=FPC(2,1)=E(1,WII) P(2,4II)=PPC(1,1)=PPC(2,1)=P(1,#II) IF((NCFSII.EG.0).AND.(NCFSNI.EG.0)) (C TO 24 GO TO 23 C----CALC SHKNI(HERE) AND SHKII(AT 12) SPDS AND FUSITION IF(NAME.EQ.7HSKSKSKD) GC TC 12 24 IF (NAME . EQ. 7 HSPECIAL) GC TC 26 MH=1+NCRSNI+NCRSNI#(NCRSNI-1)/2 SSL=SSLS(PPC(1,3),FPC(1,MF),GE) SSE=SSFS(SSL;(F,1,3) IF(NCRSNI*#2.NE.1) GD TC 25 C----SHKNI CORRECTOR FOR NSHK+1+NFNI = 2+NFNI**2 NDISCL(NI)=NDISCL(NI)+NCFSNI SEL=(SEL+EL(NI))/2. D(2, WNI+NFNI)=DPC(2, 2-NPNI)=D2W(SSL, CE, WNI) ##NCRSNI/(D(1, WNI))*D(1,MNI-1))**NFNI P(2, VNI+NPNI)=PPC(2,2-NPNI)=(F2M(SSL,CE,WNI)*(P(1,WNI)*F(1, *MNI-1))**NENI)**NCESNI IF (NCRSNI+EG+1) U(2, #NI+NFNI)=UFC(2,2-NFNI)=U2M(SSL+GE+MNI) IF (NCRSNI.EG.1) CO TO P5 U(2, WNI+NFNI) = UF((2,2-NFNI)=U2WW(SSL,(E,WNI-1) IF((NAME.EQ,7FSKSKSKM).AND.(NCISCL(NJ)+1.EC.WNI)) GO TC 84 GC TC 85 84 U(2, MNI-1)=UPC(2,3)=DPC(2,3)*(U(1, NNI-1)/D(1, MNI-1)-SGRT(GE* #PPC(1,3)/DPC(1,3))#2./(CE+1.)#55L#(1.-1./55L##2)) 85. E(2, NNI+NFNI) = EPC(2, 2-NFNI) = E2N(CE, NNI+NFNI)25 RD(NI)=RC(NI)+(SSE+SE(NI))/2.4DT SL(KI)=SSLS(PPC(2,3), PPC(2,MF), CE) SE(NI)=SSES(SL(NI),CE,2,3) IF((RD(NI).GT.R2(MNI)).AND.(NCRSNI.EC.C)) RD(NI)=R2(MNI)-DELR* *1.E-10 IF((RD(NI)+LT+R2(MNI))+AND+(NCRSNI+EG+1)) RC(NI)+R2(MNI)+DELR# *1.F-10

-136-

IF((RD(NI).GT.R2(MNI-1)).AND.(NCFSNI.EC.-1)) RD(NI)=R2(MNI-1) *-DELR#1.E-10 IF((RD(NI)+LT+R2(MNI+1))+AND+(NCRSNI+EG+0)) RC(NI)=R2(MNI+1) *+DELR*1.E-10 26 IF(NSC.EC.-11) GC TC 9 IF(NRHS(II).EG.MNI+3) GG TC 4C GC TC 12 C C 30 IF((NCRSII.EQ.)).AND.(NCRSNI.EC.0)) CC TC 31 IF((NCRSII.EQ.1).AND.(NCRSNI.EC.0)) GC TC 32 C-----HERE NORSII=1 AND NORSNI=1 OF NORSII=0 AND NORSNI=1 C----PROCTR AND CRRCTR FCR FCTTCUS NEE =1 IF(NAME.EQ.7HSPECIAL) GC TO 24 D(2,MN1)=DPC(1,1)=D2M(SL(N1),(E,MN1) UPC(1,1)=UPM(SL(NI),GE,MNI) \$ FFC(1,1)=PFC(1,2) SSL= (SSLS(PPC(1,3), PPC(1,2), GE)+SL(NI))/2. DPC(2,1)=D2M(SSL,GE,MNI) \$ PPC(2,1)=P2W(SSL,GE,MNI) UPC(2,1)=U2M(SSL,GE,MNI)/C(2,MNI)*CPC(2,1) GC TC 24 C----SHKII PROCTE AND CRECTE FOR FOTTOLS NDE =1 31 DPC(2,1)=CPC(1,1)=D2M(SL(N1),CE,MN1) PPC(2,1)=PPC(1,1)=P2*(SL(NI),CE,*NI) UPC(2,1)=UPC(1,1)=U2M(SL(NI),CE,WNI)/D(2,WNI)*DPC(1,1) IF ((NAME.EG.7 + SKSKSKO). ANC. (NCISCL (NJ)+1.EG.MNI)) GC TO 101 GC TO 24 101 DPC(2,1)=CPC(1,1)=DS1 \$ UPC(2,1)=UFC(1,1)=US1 PPC(2,1)=PPC(1,1)=PS1 GO TO 24 C----SHKII PPEDICTOR AND CORRECTOR FOR NSHK41 = 1 32 DPC(2,1)=DPC(1,1)=D(1,MII) \$ UPC(2,1)=UPC(1,1)=U(1,MII) PPC(2,1)=PPC(1,1)=P(1,MI1) GO TC 24 C C----SHKII FREDICTCF FOR NSHK+1 = 8 IF(NAME.EQ.7HSPECIAL) GO TO 41 40 FPC(1,1)=PPC(1,2) \$ C(2,MNI)=DPC(1,1)=D2W(SLNISAV,GE,MNI) UPC(1,1)=U?W(SLNISAV,GE,WNI)/C(2,WNI)*CPC(1,1) PPC(1,8)=P2M(SL(II),GE,MII)/P(1,MII)*PFC(1,1) 41 DFC(1,8)=D2M(SL(11),CE,MII)/C(1,MI1)*CPC(1,1) UPC(1,8)=DPC(1,8)*(UPC(1,1)/DPC(1,1)+SGRT(GE*PPC(1,1)/DPC(1,1))* #(?./(GE+1.)#SL(II)#(1.-1./SL(II)##2))) EPC(1,8)=DPC(1,8)*(FPC(1,8)/DFC(1,8)/(GE-1.)+UPC(1,8)**2/DPC(1,8) ***2/2.) SSL=SSLS(FPC(1,1),FPC(1,8),(E) 1 SSF=SSES(SSL,GE,1,1) NDISCL(II)=NDISCL(II)+NCRSII SSL=(SSL+SL(II))/2. D(2,MII)=CPC(2,8)=D2M(SSL,GE,WII)/C(1,WII)*CFC(1,1) P(2,MII)=PPC(2,8)=P2M(SSL,GE,MII)/F(1,MII)#FPC(1,1) U(2,MII)=UPC(2,8)=CPC(2,8)*(UFC(1,1)/CFC(1,1)+SGRT(GE*PPC(1,1)/ *DPC(1,1))*(2./(CE+1.)*SSL*(1.-1./SSL**2))) E(2, MII) = EPC(2, 8) = E2M(CE, MII)DPC(2,1)=DPC(2,2) \$ UPC(2,1)=UPC(2,2) EPC(2,1)=EPC(2,2) \$ PPC(2,1)=FPC(2,2) ML =1 60 10 11

-137-

С 50 NSC=100*(MNI-MII)+10*NCREII+NCRENI PRINT 2002,NSC, MNI, MII, NCRSII, NCFSNI 2002 FORMAT(1H ,1X,515) IF(NSC.EQ.-9) GD TO 60 IF((NSC.NE.90).AND.(NSC.NE.91)) OF TO 51 C----SHKII PREDICTCR FOR NSHK+1 = 5,1 DPC(1,9)=DPC(1,1)=C(1,MII) \$ UPC(1,9)=UPC(1,1)=U(1,MII) FPC(1,5)=FPC(1,1)=E(1,WII) \$ FFC(1,9)=FFC(1,1)=P(1,WII) GO TO 60 IF ((NSC.NE.199) . AND. (NSC.NE.3CS). AND. (NSC.NE.189)) GO TC 57 51 C----SHKNI PREDICTOR AND CORRECTOR FOR NSHK-1 = 5,1 D(2, MNI-2)=DPC(1,9)=DPC(1,1)=CPC(2,1)=DP(WNI-2,0) U(2, NNI-2)=UPC(1,9)=UPC(1,1)=UFC(2,1)=UP(*NI-2,0) E(2,MNI-2)=EPC(1,9)=EPC(1,1)=EFC(2,1)=EF(WNI-2,0) P(2, MNI-2)=PP((1,9)=FF((1,1)=FF((2,1)=FF(1,(F) IF(NSC.NE.189) GC TC 24 C----SHKII COMPLETE COFRECTOR FOR NSHK = E 60 IF ((NAME.EG.7+ SKSKSK) AND (NCRSII .EG.-1)) CC TC 53 D(2,MII+1)=DPC(1,0)=D2W(SL(II),GE,MII)**NCRSII/(D(1,MII)*D(1,MII-1 *))**NF[] U(2,MII-1)=UPC(1,8)=U2MM(SL(II),GE,MII-1) IF((NSC+EG+-11)+CR+(NSC+E0+-10)+CR+(NSC+EQ+-5)) GC TC 52 GC TC 85 U(2,MNI-1)=UPC(1,8)=DPC(1,8)*(U(1,NNI-1)/D(1,NNI-1)-SQRT(GE* 93 *PPC(1,8)/DPC(1,8))*2./(CE+1.)*SL(11)*(1.-1/SL(11)**2)) 88 EPC(1,8)=E2W(GE,WII-1) IF((NSC+FC+9)+CF+(NSC+EC+10)+CF+(NSC+EC+ES)) GC TC 24 53 IF(NSC.EG.-11) GC TC 12 C----SEKII CORRECTOR FOR NSEK+1 = 1 D(2,MII)=DFC(2,1)=DC(9,MII,0) 4 U(2,MII)=UPC(2,1)=UC(9,MII,0) E(2,WII)=EPC(2,1)=EC(9,WII,0) \$ F(2,WII)=PPC(2,1)=FC(1,GE) GC TC 24 57 IF((NSC.NE.-13).AND.(NSC.NE.899)) GE TE 54 C----SHKII PREDICTOR AND CORRECTOR FOR ASHK = 1 PPC(1,1) = PPC(1,8)SSL1=SSLS(PPC(1,0),PPC(1,6),GE) \$ \$\$L1=(\$\$L14\$L(11))/2. PFC(2,1)=(P2M(SSL1,CE,MII)*(P(1,MII)*P(1,MII-1))**NPII)**NCRSII IF((NAMF.EG.7F SKSKSK).AND.(NCFSII.EQ.-1)) PPC(2,1)=PPC(2,8) GO TO 60 IF(NSC.NE.209) GC TO 55 54 C----SHKII PREDICTOR AND CORRECTOR FOR ASHKAI = 1 DPC(1,1)=DPC(2,1)=(C(1,MII)+D(1,WII+1))/2. UPC(1,1)=UPC(2,1)=(U(1,WII)/C(1,WII)+U(1,WII+1)/D(1,MII+1))* *CPC(1,1)/2. PPC(1,1)=PPC(2,1)=(P(1,M]I)+P(1,MII+1))/2. GD TC 24 55 IF(NSC.NE.99) GD TD 56 C----SHKII FREDICTCR AND COFFECTOR FOR NSFK41 = 1 DPC(1,1)=DPC(2,1)=D(1,MII) \$ FPC(1,1)=PPC(2,1)=F(1,MII) 63 UPC(1,1)=UPC(2,1)=U(1,MII) GC TC 24 IF(NSC.NE .- 11) GC TO 58 56 GC TC 60 C----SHKNI PREDICTOR FOR NSHK = 3 P(2, MNI-1)=PPC(1,3)=(P2*(SL(NI),GE,MNI)*(P(1,MNI)*PPC(1,E))**NPNI) 61

***NCRSNI D(2,MNI-1)=DPC(1,3)=D2M(SL(NI),GE,MNI)++NCFSNI/(D(1,MNI)+DPC(1,8) *)**NPNI U(2, WNI-1)=UPC(1,3)=DPC(1,2)*(UFC(1;E)/DPC(1+8)-SCRY(GE*F(1, WNI)/ #D(1,MNI))#(2./(GF+1.)#SL(NI)#(1.-1./SL(NI)##2))) IF ((NAME.EQ.7FSKSKSKN).AND.(NCISCL(NJ)+1.EC.NNI)) GC TC 89 GC TC 90 U(2,MNI-1)=UPC(1,3)=DPC(1,3)*(UFC(1,8)/DFC(1,8)-SGRT(GE*PPC(1,3)/ 89 *DPC(1,3))*2./(GF+1)*SL(NI)*(1.-1/SL(NI)**2)) EPC(1,3)=E2M(GE, NNI-1) 90 SSL=SSLS(PPC(1,3),PPC(1,8),GE) \$ SSE=SSES(SSL,GE,1,3) NDISCL(NI)=NDISCL(NI)+NCFSNI C----SHKNI COPRECTOR FOR NSHK = 3 SSL=(SSL+SL(NI))/2. D(2,MNI-1)=DPC(2,3)=D2N(SSL,GE,MNI)**NCFSNI/(D(1,MNI)*DPC(1,8)) **NPNI P(2,MNI-1)=PPC(2,3)=(P2M(SSL,CE,MNI)*(P(1,MNI)*PPC(1,E))**NPNI) ***NCRSNI U(2, NNI-1)=UPC(2,3)=DPC(2,3)*(UPC(1,E)/DPC(1,E)-SCRT(GE*P(1, NNI) */D(1,MNI))*(2./(CF+1.)*SSL*(1.-1./SSL**2))) IF ((NAME.EQ. 7 + SKSKSKM) . AND . (NCISCL (NJ)+1.EC.MNI) JGC TO 91 GC TC 92 U(2, MNI-1)=UPC(2,3)=DPC(2,3)*(UFC(1,8)/DFC(1,8)-SCRT(GE*PPC(1,3) 91 */DPC(1,3))*2./(GE+1.)*SSL*(1.-1./55L**2)) E(2+MNI-1)=EPC(2+3)=E2N(CE+MNI-1) 92 C----SHKNI CORRECTOR FOR NSHK+1 = 4 IF (NAME .EQ. 7 ESKSKSKM) GC TO 59 D(2,MNI)=DPC(2,4)=DC(4,NNI,0) \$ U(2,NNI)=UFC(2,4)=UC(4,NNI,0) E(2, MNI)=FPC(2,4)=EC(4, MNI,0) \$ P(2, MNI)=PFC(2,4)=PC(4,GE) 59 MH=9 GD TC 25 IF(NSC.NE.109) GC TC 62 58 TRFLCT=(RD(NI)-RD(11))/(SE(II)-SE(NI)) MM=NCD+1 \$ IF(NSHK-NCD-1.GE.1) MM=NCD+2 IF(RD(NI)+TRFLCT#SE(NI).CT.F2(#II)) GC TO 64 NPII=NCRCSS(11)=NCRSII=0 \$ NR+S(11)=NR+S(11)-1 \$ GC TO 63 F4 NCFCSS(NI)=NCFSNI=NFNI=0 \$ NFFS(NI)=NFFS(NI)+1 \$ GC TO 71 62 PRINT 1000+NSC 1000 FCFMAT(1H +3/+* TROUBLE IN SKSKPF+ NS(= *+15) DELR=-AES(DELR) \$ FETUEN С 100 TAFFLCT = (RD(11) - FD(N1))/(SE(11) - SE(N1))RD(NI)=RD(II)=RD(NI)-SE(NI)#TARFLCT CALL SKSKPPA(II,NI,6HSKSKPF,TAFFLCT) С

RETURN \$ END

and a straight and the second se

-140-

C C----SET SUB CONSTS AND ITERATION COUNTER BETA=(GE+1.)/(CE+1.) \$ ALPHA=2./(GE+1.) NSIGN=-1 \$ EPS=1.E-14 \$ NITER=0 \$ CELF541=1.0 C----GUESS P51=P41 AS AVG OF P31 AND P FOR L=U31 AT A=A11 XI=(U31-0.)**2/A11**2*CE/(1.-EET#) P41=(2+*XI+SQRT(XI**2+4**XI*(1**EETA)))/2* P51=F41=(P41+F31)/2.0-1.0 С C----PERFORM ITER OF THE PLR SOLN PRINT 1002, NAME, II, NI, SL(II), SL(NI) 1002 FCRMAT(1H1, 5X, *SHK-SHK INTERACTICN (+, AC, +)+, 5X, 213, 10X, +MACH NDS *= *,2F12.8) NITER=NITER+1 1 IF(NITER.LT.51) GO TO 2 IF (NITER.EG.51) CELUSAV=CELU IF(NITER+LT+7C) GC TO 2 IF((CELUSAV.LT.1.F-12).ANC.(DELU.LT.1.E-11)) GO TO 1C PRINT 1000, DELUSAV, DELU 1000 FORMAT(IH ,5/,5X, #ITERATIONS HAVE FEACHD WAY IN SHK-SHK (*,A6, **)*,5X,2E11.4,5/) DELR=-ABS(DELR) \$ RETURN P51=F41=P41+DELF541 2 SL41=SORT((P41+BETA)/(1.+BETA)) \$ SE41=SL41#A11+U11 D41=1./(9FTA+(1.-BETA)/SL41##2) U41=(1.-BETA)*(1.-1./SL4]**2)*SL41*A11 A41=SQRT((1.-BETA)/(1.+BETA)*(1.+BETA+BETA+CETA*(P41-1.))/(P41+BETA)*GE **P41) PE3=PE1/P31 D53=((2.+ALPHA)/CE/ALPHA*(P53-1.)+1.)**(ALFHA/(2.+ALPHA)) D51=053*031 AE3=D53++(1./ALFHA) \$ AE1=A53+A21 U531=-ALFFA*(A53-1.)*A31 \$ U51=U531+U31 SLH31=SLT51=-1.0 \$ SFF31=SLF31#A31+U31 \$ SET51=SLT51#A51+U51 С DELU=ABS(U41-U51) с PRINT 1001,NITER, DELP541, DFLU, P1C, C1C, A1C, L10, SL21, *P31,D31,A31,U31,SL32, *P41, D41, A41, U41, SL41, SE41, *PE3,P51,D53,D51,A53,A51,U531,L51,SLH31,SEH31, SL151,SET51 1001 FCFMAT(1H ,1X, IE, 2E13.5, EF12.E,/,1x,4(12x,F12.e),F12.e,/,1x, *4(12X,F12.E),2F12.B,/,1X,10F12.E,/,97X,2F12.E,/) С IF (OFLU.LE.EPS) GC TO 10 С IF((US1+LT+U41)+AND+(NSICN+LE+C)) DELPE41=-ABS(DELF541) IF((U51+LT+U41)+ANC+(NSIGN+EC+-1)) NSIGN=0 IF((UE1+LT+U41)+AND+(NEIGA+EG+1)) CELFE41=-AES(CELF541)/2.0 IF((U41.LT.U51).AND.(NSICN.FC.-1)) CELF541=ABS(DELP541) IF((U41.LT.U51).AND.(NSIGN.GE.0)) CELP541=AES(CELP541)/2.0 IF((U41+LT+U51)+ANC/(NSICN+EC+C)) NSIGN=1 GC TO 1 С C

10	NT=NTDISCT
	ND[SCNC(NT+1)=NTDISC+1 \$ NDISCNE(NT+2)=NTDISC+2
	NTYPE(NT+1)=4 \$ NTYPE(NT+2)=2
	SL(NT+1)=0.0 \$ SL(NT+2)=SL41
	SE(NT+1)=U41#A10#SGRT(G)+L10
	1F(RD(11).GT.R2(M11)) GO TO 11
	DTRFLCT=((RD(II)+SE(II)+TAFFLCT+F2(M)I))/2+RD(II))/SE(II)
	RD([])=RD(N])=RD([])+SE([])*DTRFLCT
	[F(NAME + FQ + 6F + KSKSK) + FC(11 + 1) = FC(11)
	TARFLET=TARFLET-DTRFLET
11	RD(NT+1) = RD(1T) + SE(NT+1) = TARFLCT = SFD(NT+2) = FD(TT) + SE(NT+2) = TARFLCT
	$IF(RO(NT+2) \circ GI \circ R2(MNI)) = KO(NT+2) = KC(MNI)$
	$\frac{1}{1} \left[\left(\frac{1}{1} \right) \left($
~	1 + (R)(R) + 1 + 0 = RU(R) + 2 + 1 + RU(R) + 1 + - (RU(L)) + RU(R) + 2 + 1 +
C	DO 12 I-MNIT N
	O(1, M) = O(1, M-2) $O(1, M) = O(1, M) = O(1, M) = O(1, M) = O(1, M-2)$ $O(1, M-2)$ $O(1, M-2)$
	$R(\mathbf{y}) = R(\mathbf{x} - 2)$
12	R2(M)=R2(M-2)
• •	N=N+2
	R2(M11+1)=R2(N11+2)=RD(N1+1)
	DO 13 I=1,NTDISCT
	IF(NDISCL(I).GE.MNI) NDISCL(I)=NCISCL(I)+2
13	CONTINUE
	IF(NI+1) = CONTRISCS NR + S(NI+1) = NR + S(NI+1) + 2
	IF(NI+1+LE+NTDISCS) NLHS(NI+1)=NLHS(NI+1)+2
	NDISCL(II)=NDISCL(NI)=-1
	IF (NAME . E C. AFSKSKSK) ND IS (L (II+1)=-1
	NDISCL(NT+1)=MII+1 \$ NDISCL(NT+2)=MII+2
C~~~~	-SET GAS AND THERMC PARAMETERS IN CELLS MII+1,2
	D(2,MII+1)=D(2,MII) \$ U(2,MII+1)=U(2,MII) \$ E(2,MII+1)=E(2,MII)
	P(2,MII+1)=P(2,MII)
	D(2,MII+2) = D(1+E10) $U(2,MII+2) = (U(1+A1C+SCFT(G)+U(0)+C(2,MII+2))$
	P(2,MII+2)=P41*P10
	E(2, WI1+2)=C(2, WI1+2)*(P(2, WI1+2)/C(2, MI1+2)/(GE+1.)*(C2, MII+2)**2
	*/D(2;M1(+2)**2/2)
۰ ۲	
c	-ACCT ECD DETCI E OTH AND NEG AND DOS CHECT TEAT CELL LOCTNS CHANGES
	IF (NERTHALF A) OF TO 110
	DC 111 JEL NPETH
	IF (NCL PRT+(I), GF .MNI) NCL PFT+(I)=NCL FFT+(I)+2
111	CENTINUE
110	IF(NUMA.LE.O) GC TC 112
	DC 113 I=NUMAFST,NUMA
	IF(NCLUMA(I).GE.WNI) NCLUMA(I)=NCLUMA(I)42
113	CONTINUE
112	IF(NUPA+LE+0) GC TO 114
	DD 115 I=1+NUPA
	IF(NCLUPA(I).CE.MNI) NCLUPA(I)=NCLUPA(I)+2
115	CCNTINUE
c	
114	NCCDE=10FSKSKEPA \$ CALL PENTEF(NCOCE)
	NITRCTN=2HYES

RETURN \$ END

c

```
SUEFCUTINE SKSKFN(N1+N2)
      CCMMCN/PARAM/N, J, AJ, G, GF, DELR, NFLM
      COMMEN/TIME/T, DT, DTL, TWRITE, DELT, DTDX, AT
      CCMMCN/DISCSKF/RCSAV(51),NLFS(51),NRFS(51),NCRDSS(E1)
      CCMMCN/PREDCCF/DPC(2,13), UPC(2,13), EFC(2,13), PPC(2,13)
      CCMMCN/AFRAYS/R(501),U(2,501),P(2,501),D(2,501),E(2,501),P2(501)
      CCMMCN/DISCS/NTDISC,NDISCNC(51),NTYPE(51),NCISCL(51),SE(51),SL(51)
     *, RD(51), NIDISCT, NTDISCS
C
C-----SL1.GT.0.0 , SL2.LT.C.C
C
с
      D2M(SSL,GE,M)=D(1,M)/((GE+1.)/(GE+1.)+2./(CE+1.)/SSL**2)
      U2M(SSL,CE,M)=U(1,M)/D(1,N)+SCRT(GE#P(1,M)/D(1,M))#(2./
     *(CF+1.)*SSL*(1.-1./SSL**2))
      F2N(SSL,CE,M)=P(1,N)*(2.*CE/(CE+1.)*SSL**2-(CE-1.)/(GE+1.))
      E2M(GE,M,L)=DPC(N,L)*(PPC(N,L)/DPC(N,L)/(GE-1.)+UPC(N,L)**2/
     *OPC(*,L)**2/2.)
С
      $$L$(PHGH,PLON,GE)=$QRT((FHGH/FLCN+(GE+1+)/(CE+1+))*(GE+1+)/2+/GE)
      SSES(SSL,CE,K,L)=SSL*SCRT(GF*PPC(K,L)/CPC(K,L))+UFC(K,L)/DPC(K,L)
С
C
      CE=G $ IF(NDISCL(N2).LE.NFLM) CE=CF
      NSHK1=NDISCE(N1) $ NSHK2=NDISCE(N2)
      NXSI=NCRCSS(N1) $ NXS2=NCROSS(N2)
      NSKSKX=3H NO & IF(RCSAV(N1).CT.FCSAV(N2)) NSKSKX=3HYES
      NSC=100#(NSHK2-NSHK1)+10#NX51+NX52
      PRINT 1000,N1,N2,NXS1,NXS2,NSFK1,NSFK2,NSC,NSKSKX
 1000 FORMAT(1H ,1X,*SKSKPN*,715,43)
      TRFLCT=(FD(N2)+RD(N1))/(SE(N1)-SE(N2))
      RRFLCT=PC(NI)+SE(NI)+TFFLCT
      IF ((NSC+NE+10)+AND+(NSC+NE+1)+AND+(NSC+NE+5)) GC TC 7
      NXS1=NXS2=0 $ NSC=0 $ GC TC 9
 7
      1E(NSC+NE+109) GE TC 9
      IF(RRFLCT.GT.F2(NSHK2)) GD TC 14
      NXS1=0 $ NSC=99 $ GC TC 9
      NX52=0 $ NSC=11C
 14
С
 9
      IF(NSC.NE.0) GC TC 4
C----PREDICTOR AND CORRECTOR FOR NODES 4,5
      DPC(1,4)=DPC(2,4)=DFC(1,5)=CFC(2,5)=C(1,NSFK1)**2/D2M(SL(N1),GE,
     #NSHK11
      PPC(1,4)=PPC(2,4)=FFC(1,5)=PPC(2,5)=F(1,NSFK1)##2/P2M(SL(N1),GE,
     #NSHK1)
      UPC(1+4)=JPC(2+4)=UPC(1+5)=UPC(2+5)=(U(1+NSHK1)/D(1+NSHK1)-SORT(
     $6F*PPC(1,4)/CFC(1,4))$2*/(CE+1*)$$L(N1)$(1*-1*/SL(N1)$$2))$DPC(1,4
    *)
C----PREDICTCR FCR NSHK2+1 = 6
      M=NSHK2+1
      DPC(1,6)=DP(M,0) $ UPC(1,6)=UP(M,C)
      EPC(1,6)=EP(N,0) $ FFC(1,6)=PF(6,0E)
      IF (NX52.E0.-1) GC TO 1
C----FREDICICE FOR NSHK2+2 = 7
      M=NSHK2+2
      DPC(1,7)=DP(M,0) $ UPC(1,7)=UF(N,C)
```

-144-

```
EPC(1,7)=EP(M,0) $ FPC(1,7)=FF(7,CE)
      GO TO 2
C----PREDICTOR FOR NSHK2 = 5
      DPC(1,5)=D2M(SL(N2),GF,NSHK2) $ FFC(1,5)=F2N(SL(N2),GE,NSHK2)
 1
      UPC(1,5)=U2M(SL(N2),CE,NSHK2)*CPC(1,5) $ EFC(1,5)=E2M(GE,1,5)
C --- - CORRECTOR FOR NSHK2+1 = 6
      M=NSHK2+1
      D(2, N)=DFC(2, 6)=CC(6, N, 0) $ U(2, N)=UFC(2, 6)=UC(6, N, 0)
      E(2,M)=EPC(2,E)=EC(6,M,C) $ P(2,M)=PPC(2,E)=FC(6,CF)
C----PREDICTOR FOR NSHKI-1 = 1
      ¥=NSHK1-1
      DPC(1,1)=DP(M,0) $ UPC(1,1)=UP(M,C)
      EPC(1,1)=EP(N,0) $ FFC(1,1)=FF(1,(E)
C----PREDICTOR FCR NSHK1 = 2
      M=NSHK1+1
      DPC(1,13)=D2M(SL(N1),GE,W) $ PFC(1,13)=P2M(SL(N1),GE,W)
      UPC(1,13)=U2M(SE(N1),GE,N)*CPC(1,12) $ EPC(1,13)=E2M(GF,1,13)
      IF(NSC.NE.0) GC TC 18
      DPC(1,13)=DPC(1,13)/D(1,*)*CFC(1,4)
      FPC(1,13)=PPC(1,13)/P(1,*)*PPC(1,4)
      UPC(1,13)=DPC(1,13)*(UPC(1,4)/DFC(1,4)+SGRT(GE*PFC(1,4)/DPC(1,4))
     ##2 ./(GE+1)#SL(N1)#(1.~1./SL(N1)##2))
      EPC(1,13)=EPM(CE,1,13)
 18
      EFS=(RD(N1)-R(NSHK1))/DELF
      C1=2.*(2.-EFS)/(1.+EFS)
      C2=2.*EPS-3. + C3=(1.-EPS)*(2.*EPS-1.)/(1.+EFS)
      DPC(1,2)=D(1,NSHK1)-DTDX#(C1#LPC(1,13)+C2#L(1,NSHK1)+C3#U(1,NSHK1-
     *1))-AT#DTCX#(C1#CPC(1,13)+C2#C(1,NSHK1)+C3#C(1,NSHK1-1))
      UPC(1,2)=U(1,NSHK1)-DIDX*(C1*(N(12)+C2*FN(NSHK1)+C2*FM(NSHK1-1))
     #-AT#DTDX#(C1#UPC(1,13)+C2#U(1,NSHK1)+C2#U(1,NSHK1-1))
     EPC(1,2)=F(1,NSHK1)-CTDX*(C1*CE(13)+C2*FE(NSHK1)+C3*PE(NSHK1-1))
     #-AT#DTDX#{C1#EPC(1,13)+C2#E(1,NSHK1)+C3#E(1,NSHK1-1))
     PPC(1,2)=PP(2,6F)
C----CORRECTOR FOR NSHK1 = 2
      N=NSHK1
      D(2, N)=DPC(2,2)=DC(2, N,0) $ U(2, N)=UFC(2,2)=UC(2, N,0)
      E(2, M)=EPC(2,2)=EC(2, M, 0) $ P(2, M)=FFC(2,2)=FC(2,GE)
      IF(NSC.EC.0) GD TD 11
     IF(NXS1.NE.1) GC TC 3
C----PREDICTOR FOR NSHK1+1 = 3
      M=NSHK1+1
      DPC(1,3)=D2M(SL(N1),GE,M) $ PFC(1,3)=F2M(SL(N1),GE,M)
      UPC(1,3)=U2M(SL(N1),CE,W)*DFC(1,3) $ EPC(1,2)=E2M(GE,1,2)
      IF((NSC+NE+110)+AND+(NSC+NE+100)+#+D+(NSC+NE+99)) GC TC (
 з
      IF(NSC.EC.99) GC TO 5
C----PREDICTOR AND COFRECTOR FOR NSHK2 = 5
      D(2,NSHK2)=DPC(2,5)=DPC(1,5)=C(1,NSHK2)
      U(2, NSHK2)=UPC(2,5)=UPC(1,5)=U(1,NSHK2)
      E(2,NSHK2)=EPC(2,E)=EPC(1,E)=E(1,NSHK2)
     P(2+NSHK2)=PPC(2+5)=PPC(1+E)=P(1+NSHK2)
C----PREDICTOR AND CORRECTOR FOR NODE 4
 5
      DPC(2,4)=DPC(1,4)=D(1,NSFK2) $ UFC(1,4)=UPC(2,4)=U(1,NSFK2)
      EPC(2,4)=FPC(1,4)=E(1,NSFK2) $ FPC(1,4)=PPC(2,4)=P(1,NSHK2)
      GC TC 11
6
      IF(NSC.E0.209) GD TO 10
      1F((NSC+NE+210)+ANC+(NSC+NE+230)+ANC+(NSC+NE+310)) GC TC @
```

-145-

C----PREDICTOR AND CORRECTOR FOR NEHK2 = 4.5 D(2, NSHK2) = DPC(2, 4) = DPC(1, 4) = DPC(2, 5) = DPC(1, 5) = DP(NSHK2, -1)U(2,NSHK2)=UPC(2,4)=UPC(1,4)=UPC(2,5)=UFC(1,5)=UF(NSHK2,-1) E(2,NSHK2)=FPC(2,4)=EPC(1,4)=EPC(2,5)=EPC(1,5)=EP(NSHK2,-1) P(2,NSHK2)=PPC(2,4)=FPC(1,4)=FFC(2,5)=FPC(1,5)=FP(4,GE) IF(NSC.EG.210) GD TD 11 C----PREDICTOR AND CORRECTOR FOR NSHK2-1 = 4 8 M=NSHK2-1 D(2,N) = CPC(2,4) = CPC(1,4) = DF(N,0)U(2,N)=UPC(2,4)=LPC(1,4)=LP(N,0) E(2, N)=EPC(2,4)=FPC(1,4)=EP(M,C) P(2,N) = PFC(2,4) = PFC(1,4) = PP(4,6E)IF((NSC.NE.20C).AND.(NSC.NE.310)) GC TC 11 C----CORRECTOR FOR NSEK2-1 = 4 M=NSHK2-1 D(2, W)=DPC(2,4)=CC(4, N,1) \$ U(2, M)=UPC(2,4)=UC(4, N,1) E(2,N)=EPC(2,4)=EC(4,N,1) \$ P(2,N)=PFC(2,4)=PC(4,CE) C----CORRECTOR FOR NSHK2 = 5 M=NSHK2 D(2, W)=DPC(2,5)=DC(5, W,C) \$ U(2, W)=UFC(2,5)=UC(5, W,0) E(2, N)=FFC(2, E)=EC(5, N, C) \$ P(2, N)=PPC(2, E)=PC(5, GE) GC TC 11 C----PREDICTOR AND CORRECTOR FOR NODE 4 10 DFC(1,4)=DPC(2,4)=(D(1,NSFK1+1)+D(1+NSFK2))/2. UPC(1,4)=UPC(2,4)=(U(1,NEHK1+1)/C(1,NEFK1+1)+ #U(1,NSHK2)/D(1,NSHK2))/2.#DPC(1,4) PPC(1,4)=FPC(2,4)=(F(1,NSFK1+1)+F(1,NSFK2))/2. C----CALCULATE SHK VEL AND POSITION WH1=2+NXS1 \$ WL1=4 \$ WH2=6+NXS2 \$ WL2=5+NXS2 11 SSL1=SSLS(PPC(1,MH1),PPC(1,ML1),GE) SSL2=-SSLS(PPC(1,MH2),PPC(1,ML2),CE) SSE1=SSES(SSL1,GF,1,ML1) \$ SSE2=SSES(SSL2,CE,1,ML2) RD(N1)=RD(N1)+(SE(N1)+SSE1)/2.4DT RD(N2)=RD(N2)+(SE(N2)+SSE2)/2.*CT IF(((RD(N1).GT.R2(NSHK1+1)).AND.(NXS1.EC.0)).CF.((RD(N1).LT. #R2(NSHK1+1)).AND.(NXS1.EC.1))) RC(N1)=R2(NSHK1+1) IF((((PD(N2)+LT+FP(NSHK2))+ANC+(NXS2+EG+0))+CF+((RC(N2)+GT+R2(NSHK2))+ANC+(NSHK2)+CF+((RC(N2)+GT+R2(NSHK2))+ANC+(NSHK2)+CF+((RC(N2)+GT+R2(NSHK2))+ANC+(NSS2+EG+0))+CF+((RC(N2)+GT+R2(NSHK2))+CF+((RC(N2)+GT+R2(NSHK2))+ANC+(NSS2+EG+0))+CF+((RC(N2)+GT+R2(NSHK2))+ANC+(NSS2+EG+0))+CF+((RC(N2)+GT+R2(NSHK2))+ANC+(NSS2+EG+0))+CF+((RC(N2)+GT+R2(NSHK2))+ANC+((RC(N2)+GT+R2(NSHK2))+ANC+(NSS2+EG+0))+CF+((RC(N2)+GT+R2(NSHK2))+ANC+(NSS2+EG+0))+ANC+(NSS2+EG+0))+ANC+((RC(N2)+GT+R2(NSHK2))+ANC+(NSS2+R2(NSHK2))+ANC+((RC(N2)+R2(NSHK2))+ANC+(NSS2+R2(NSHK2))+ANC+((RC(N2)+R2(NSHK2))+ANC+(NSS2+R2(NSHK2))+ANC+((RC(N2)+R2(NSHK2))+ANC+((RC(N2)+R2(NSHK2))+ANC+((RC(N2)+R2(NSHK2))+ANC+((RC(N2)+R2(NSHK2))+ANC+((RC(N2)+R2(NSHK2))+ANC+((RC(N2)+R2(NSHK2))+ANC+((RC(N2)+R2(NSHK2))+ANC+((RC(N2)+R2(NSHK2))+ANC+((RC(N2)+R2(NSHK2))+ANC+((RC(N2)+R2(NSHK2))+ANC+((RC(N2)+R2(NS+R2(NSHK2))+ANC+((RC(N2)+R2(NS+R2(NSHK2))+ANC+((RC(N2)+R2(NS+R2(NS+R2(NSHK2))+ANC+((RC(N2)+R2(NS+R *)) • AND • (NXS2• EQ+-1))) RD(N2) = R2(NSHK2) IF(NXS1.NE.1) GC TO 12 C----CORRECTOR FOR NSHK1+1 = 3 M=NSHK1+1 \$ SSL=(SL(N1)+SSL1)/2. D(2,N)=DFC(2,3)=C2N(SSL,(E,N) \$ P(2,N)=FFC(2,3)=P2N(SSL,GE,M) U(2,M)=UPC(2,3)=U2M(SSL,GE,M)+DFC(2,3) \$ E(2,M)=E2M(GE,2.3) 12 IF(NXS2.NF.-1) GC TO 13 C----CORRECTOR FOR NSHK2 = 5 M=NSHK2 \$ SSL=(SL(N2)+SSL2)/2. D(2,N)=DPC(2,5)=C2N(SSL,(E,N) \$ P(2,N)=PFC(2,5)=P2N(SSL,GE,N) U(2,M)=UPC(2,E)=U2M(SSL,GE,M)*DFC(2,E) \$ E(2,M)=E2M(GE,2,5) GC TC 20 C----CORRECTOR FOR NSHK2+1 # 6 13 M=NSHK2+1 \$ \$\$L=(SL(N2)+SSL2)/2. DPC(1,9)=C2W(SSL,GE,NSFK2) 1 FFC(1,9)=F2W(SSL,GE,NSFK2) UPC(1,9)=U2M(SSL,GE,NSHK2)+DPC(1,9) \$ EPC(1,9)=E2M(GE,1,9) IF(NSC+NE+0) 60 TO 16

UPC(1,9)=DPC(1,9)*(UPC(1,4)/0PC(1,4)+SCRT(CE*PPC(1,4)/DPC(1,4))*

DPC(1,5)=DPC(1,9)/C(1,NSFK2)*CPC(1,4)

-146-

SUBROUTINE SKSKPNA(N2,N3, TRFLCT, FRFLCT) CCHMEN/PARAM/N, J, AJ, G, CF, DFLR, NFLM CCMMCN/TIME/T,DT,DTL,TWRITE,DELT,CTCX,AT COMMEN/FIRFETC/INDEX, NEVELE, NA, ANN, ASTERE, AS, AITRETA COMMEN/DISCSKE/RDSAV(51), NLHS(51), NRHS(51), NCRESS(51) COMMCN/ARRAYS/R(501),U(2,501),P(2,501),D(2,501),E(2,501),R2(501) CCMMCN/DISCS/NTDISC,NDISCNC(51),NTYPF(E1),NCISCL(E1),SE(51),SL(51) *,RD(51),NTDISCT,NTDISCS COMMON/PPCHR/NPPTH, NUMA, NUMAEST, NUFA, REPTH (24), RUPA(150), RUPA(150) * NCLPFTH(24) NCLUMA(150) NCLUFA(150) FTHNEXT, RUMANXT, TUPANXT, *DELPPTH, DELUMA, DELUPA C C----SET STATE D AS FOLAR AND OVERALL REFERENCE STATE C----VEL REF WRT SORT(G*P0/DC) c C --- 2- SHK--- 5- CD-4--- SHK-- 3---С C С С GE=G \$ IF(NDISCL(N3).LE.NFLM) GE=GF C----SET STATES 2 AND 3 NS2=NDISCL(N2) \$ NS3=NDISCL(N3)+1 \$ SG=SGRT(G) P2)=P(2,NS2) \$ D20=D(2,NS2) \$ L2C=L(2,NS2)/D2C/SG P30=F(2,NS3) & D30=D(2,NS3) & U30=U(2,NS3)/D30/SG A20=S0PT(P20/D2C#GE/G) \$ A30=SCFT(F3C/D30*CE/G) C-----GUESS P50=P40 AS AVE OF P50 AND P40 AT A30 FCF L=(L20+L30)/2 BETA=(GE-1.)/(GE+1.) X1=((U30-U20)/2./SG)**?/A3C**2*GE/(1.-EETA) P43=(2.+XI+SQFT(XI*+2+4.+XI*(1.+EFTA)))/2. XI=((U20-U30)/2./SG)++2/A20++2+CE/(1.-EETA) P5?=(?.+X1+SQRT(XI**2+4.*XI*(1.+BETA)))/2. P50=P40=(P43*F30+P52+P20)/2. C----SET SUBROLTINE CONSIS AND ITER COUNTER NSIGN=-1 \$ EPS=1.E-14 \$ NITER=0 DELP540=P50/5.0 \$ P50=P50-DELP540 С C----PERFORM ITER OF THE POLAR SOLM PRINT 1002, SL(N2), SL(N3), N2, N3, NDISCL(N2), NCISCL(N3) 1002 FCFMAT(1H1,2/,5X,*S+K(F)-S+K(N) INTERATION MACH NOS.= *.2F11.7, *5X,415,2/) 1 NITER=NITER+1 IF (NITER.LT.50) GC TC 2 IF(NITER.EQ.5C) DELUSAV=DELU IF (NITER-LT-75) CC TC 2 IF((DELUSAV.LT.1.F-12).AND.(DELL.LT.1.E-12)) GO TC 10 PRINT 1000, DELUSAV, DELU 1000 FORMAT(1H ,5/,5x,+ITERINS HAS FCHC #x IN SHK(P)-SHK(N)-A+,2E10.10) IF(DELU.LT.1.E-10) GO TC 10 DELR=-AES(CELR) \$ RETURN 2 P50=P40=P40+DELP540 P43=F40/P30 SL43=SCRT((P43+EETA)/(1.+EETA)) \$ SE40=SL4344204U30 D43=1./(BETA+(1.-PETA)/SL43**2) \$ C40=C43*C3C U430=(1.-EFTA)*(1.-1./SL434+2)*SL42*A3C \$ U4C=L42C+U30 A43=SQRT((1.-BETA)/(1.+BETA)#(1.+BETA+EETA+(P43-1.))/(P43+BETA)#GE

 $\langle \cdot \rangle_{i}$

```
**F431
      A40=A43*A30
      F52=F50/P20
      SLE2=-SQRT((P52+BFTA)/(1.+BETA)) $ SE50=SL52#A20+U20
      D52=1./(BFTA+(1.-BETA)/SLE2##2) $ DE0=D52#C20
      U520=(1.-BETA)*(1.-1./SL52**2)*SL52*#2C $ U5C=U52C+U20
      A52=SQRT((1.-BETA)/(1.+BFTA)*(1.+EETA+EETA+(P52-1.))/(P52+BETA)*GE
     **P52)
      A50= #52* A20
с
      DELU=ARS(U40-U50)
с
      PRINT 1001, NITER, DELPE40, DELU,
     #P20,020,A20,U20,SL(N2),SE(N2),
     #P30,030,A30,U30,SL(N2),SE(N3),
     *F43,P40,C43,D40,A43,440,U420,L4C,SL42,SE4C,
     *P52,P50,D52,D50,A52,A50,L520,L50,SL52,SE50
 1001 FCFMAT(1+ ,1X,15,2E15.6,2(/,1X,4(12X,F12.5),2F12.5),2(/,1X,10F12.9
     *),/)
С
      IF (DELU.LE.EPS) GC TC 10
С
      IF((US0.LT.U40).AND.(NSIGN.LF.C)) CELFEAC=-AES(CELF540)
      IF((U50.LT.U40).AND.(NSIGN.EC.-1)) NSICN=0
      IF((US0+LT+U4C)+AND+(NSIGN+EC+I)) DELFE4C=-#ES(CELF540)/2+0
      IF((U40+LT+U50)+AND+(NSIGN+FQ+-1)) DELFE4C=AES(DELPE40)
      IF((U40.LT.USC).AND.(NSIGN.GE.0)) DELPE4C=AES(DELP540)/2.0
      IF([J40.LT.U50).AND.(NSIGN.EQ.C)) NSIGN=1
      GC TC 1
С
с
 10
      NT=NTDISCT
      NDISCND(NT+1)=NTDISC+1 $ NTYPE(NT+1)=2
      SL(N2)=SL43 $ SL(NT+1)=0.0 $ SL(N3)=SL52
      SE(N2)=SE40#SG $ SE(N1+1)=U40#SG $ SE(N3)=SE50#SG
      RD(N2)=RHFLCT+SE(N2)*(DT-TRFLCT)
      RD(N3)=RRFLCT+SE(N3)=(DT-TRFLCT)
      PD(NT+1)=RRFLCT+SE(NT+1)*(DT-1RFLC1)
      IF(PD(N3).LT.F2(NS2)) RD(N3)=F2(NS2)
      IF(RD(N2).GT.R2(NS3)) RD(N2)=R2(NS3)
      IF(RD(NT+1)+LF+P2(NS2)) FD(NT+1)=R2(NS2)+1+E-E*DELR
      IF(RD(NT+1).GE.R2(NS3)) RD(NT+1)=F2(NS3)-1.E-0+DELR
      DD 11 1=N53+N
      M=N+2+NS3-1
      D(2,N)=D(2,N-2) $ U(2,N)=U(2,N-2) $E(2,N)=E(2,N-2)$F(2,N)=P(2,N-2)
      D(1, M) = D(1, M-2) + U(1, M) = U(1, M+2) + E(1, M) = E(1, M-2) + P(1, M) = P(1, M-2)
      R(M) = R(M-2)
 11
      R2(M)=R2(M-2)
      N=N+2
      R2(NS3)=R2(NS3+1)=RD(NT+1)
      DC 12 I=1.NTDISCT
      IF(NDISCL(I).GE.NS3) NCISCL(I)=NCISCL(I)+2
 12
      CONTINUE
      IF (NFLM.CE.NS3) NFLM=NFLM+2
      IF(NS3.LF.NTDISCS) NRHS(NS3)=NRHS(NS3)+2
      IF (NS3.LE.NTDISCS) NLFS(NS3)=NLFS(NS3)+2
```

-149-

NDISCL(N3)=NS2 \$ NDISCL(NT+1)=NS2+1 \$ NCISCL(N2)=NS2+2 C-----SET THERMC AND GAS PARAMETERS IN CELLS NS2+1,2 P(2,NS2+1)=P(2,NS2+2)=P5C \$ D(2,NS2+1)=C50 \$ C(2,NS2+2)=D40 U(2,NS2+1)=U50=U50*SG*D50 \$ U(2,NS2+2)=U4C=L40*SG*D40 E(2,NS2+1)=D50*(P50/D50/(GE-1.)+U50**2/C50**2/2.) E(2,N52+2)=D40*(P40/D40/(GE-1.)+U4C**2/D4C**2/2.) NTDISCT=NTDISCT+1 \$ NTDISC=NTDISC+1 С C-----ACCT FOR PRICLE PTH AND NEG AND PDS CHRCT TRAJ CELL LECINS CHANGES IF(NPPTH.LE.0) GO TO 110 DO 111 I=1,NPPTH IF(NCLPPTH(I).GE.NS3) NCLPPTH(I)=NCLPFTH(I)+2 111 CONTINUE 110 IF(NUMA.LE.0) GD TD 112 DD 113 I=NUMAFST,NUMA IF(NCLUMA(I).GE.NS3) NCLUMA(I)=NCLUMA(I)+2 113 CENTINUE 112 IF(NUPA+LE+0) GC TD 114 DC 115 I=1,NUPA IF(NCLUPA(I).GE.NS3) NCLUFA(I)=NCLUFA(I)+2 115 CONTINUE С \$ CALL PRATEF(ACCDE) 114 NCODE=10HSKSKENA NITRCTN=3HYES c

RETURN \$ END

-150-

SUBROUTINE SKSKSK(N1,N2,N3) COMMEN/PARAM/N, J, AJ, G, GF, DELR, NFLM COMMON/DISCSKF/RDSAV(51),NLHS(51),NRFS(51),NCRC55(51) CCMMCN/PPEDCCR/CPC(2,13), UPC(2,13), FFC(2,13), PPC(2,13) COMMCN/ARRAYS/R(E01), U(2,E01), F(2,E01), D(2,E01), E(2,501), R2(501)CCMMCN/DISCS/NTCISC,NDISCNC(51),NTYPE(51),NCISCL(51),SE(51),SL(51) *,RD(51),NTDISCT,NTDISCS C PRINT 1000,N1,N2,N3,FC(N1),FC(N2),FC(N3),NCISCL(N1),NDISCL(N2), *NDTSCL(N3),NCROSS(N1),NCROSS(N2),NCROSS(N3),NRHS(N1),NRHS(N2), *NEHS(N3) IF(NCFCSS(N2)) 1,2,3 C 2 NADD=0 IF ((NDISCL(N2)-NDISCL(N1).EQ.2).CF.((NDISCL(N2)-NDISCL(N1).EQ.2) *.AND.(NCFCSS(N1).F0.0))) NADD=1 CALL SKSKPP(N1,N2,N3,7HSKSKSK0) C----PREDICTOR AND CODRECTOR FOR NODE 7 = (1) DPC(1,7)=DFC(1,1+NADD) \$ UFC(1,7)=UPC(1,1+NADD) EPC(1,7)=EPC(1,1+NADD) \$ PPC(1,7)=FFC(1,1+NADD) DPC(2,7)=DPC(2,1+NADD) \$ UPC(2,7)=UPC(2,1+NADD) EPC(2,7)=EPC(2,1+NADD) \$ PFC(2,7)=FPC(2,1+NADD) CALL SKSKPP(N2,N3,N1,7H SKSKSK) GC 1C 20 С IF((NDISCL(N1).FG.NCISCL(N2)).ANC.(NCFCSS(N1).NF.-1)) CO TO 2 1 IF((NDISCL(N1).EG.NDISCL(N2)-1).ANC.(NCRCSS(N1).EG.1)) GP TO 11 GO TO 13 TRFLCT=(FD(N2)-FD(N1))/(SE(N1)-SE(N2)) 11 M=NDISCL(N2) IF (PD(N2)+SF(N2)+TRFLCT+LT+R2(M)) CC TC 12 NCROSS(N2)=0 \$ NRHS(N2)=NRHS(N2)+1 \$ GE TE 2 12 NCROSS(N1)=0 \$ NFH5(N1)=NRH5(N1)-1 13 CALL SKSKFF(N1,N2,N3,7+SKSKSKN) C----PREDICTOR AND CORRECTOR FOR NODE 8 = (3) CPC(1,8)=CFC(1,3) \$ UPC(1,E)=UPC(1,3) EPC(1,8)=EPC(1,3) \$ PPC(1,8)=FPC(1,3) DPC(2,8)=DPC(2,3) \$ UPC(2,8)=UFC(2,3) FPC(2,8)=EPC(2,3) \$ FFC(2,8)=FPC(2,3) NDISCL(N2)=NDISCL(N2)-NCFCSS(N2) CALL SKSKPP(N2,N3,N1,7F SKEKSK) NDISCL(N2)=NDISCL(N2)+NCFOSS(N2) GO TO 20 С з IF((NDISCL(N2).EG.NDISCL(N3)).AND.(NCFESS(N3).NE.1)) GC TD 2 IF((NDISCL(N2).EC.NDISCL(N3)-1).AND.(NCFCSS(N3).EC.-1)) GC TO 5 GC TC 6 5 TRFLCT=(RC(N3)-RC(N2))/(SE(N2)-SE(N2)) M=NDISCL(N3) IF(RD(N3)+TRFLCT#SE(N3).GT.R2(W)) CC TC 4 NCROSS(N2)=0 \$ NFHS(N2)=NRFS(N2)-1 \$ CC TC 2 NCFC55(N3)=0 \$ NFH5(N3)=NFF5(N3)+1 CALL SKSKPP(N2,N3,N1,7HSKSKSKF) 6 NDISCL(N2)=NDISCL(N2)-NCFOSS(N2) INDISCL(N3)=NDISCL(N3)-NCROSS(N3) IF((NDISCL(N2)-NDISCL(N1).EG.3).CF.((NDISCL(N2)-NDISCL(N1).EG.2) *.AND.(NCHOSS(N1).EC.0))) GC TC 7

-151-

```
GO TO P
C----PREDICTOR FOF NODE 1 = (6)
 7
      DPC(1,1)=DPC(1,6) $ UFC(1,1)=UPC(1,6)
      EPC(1,1)=EPC(1,6) $ PPC(1,1)=PPC(1,6)
C----PREDICTOR FOR NODE 2 = (7)
      DPC(1,2)=DPC(1,7) $ UPC(1,2)=LPC(1,7)
      EPC(1,2)=EPC(1,7) $ PPC(1,2)=PPC(1,7)
      GC TC 10
C----PREDICTOR AND CORRECTOR FCR NCDES 2+1 = (8)
      DPC(1,1)=DPC(1,2)=DPC(1,8) $ UPC(1,1)=UPC(1,2)=UPC(1,8)
      EPC(1,1)=EPC(1,2)=EPC(1,8) $ FPC(1,1)=FPC(1,2)=PPC(1,8)
      DFC(2,1)=DPC(2,2)=DPC(2,E) $ UPC(2,1)=UPC(2,2)=UPC(2,8)
      FPC(2,1)=EPC(2,2)=EPC(2,8) $ FPC(2,1)=PPC(2,2)=PPC(2,8)
      IF((NDISCL(N2)-NDISCL(N1).E0.2).AND.(NCFCSS(N1).EC.1)) GD TD 9
      GC TC 10
C----PREDICTOF FOR NODE 1 = (7)
      DPC(1,1)=DPC(1,7) $ UFC(1,1)=UPC(1,7)
      EPC(1,1)=EPC(1,7) $ FFC(1,1)=FFC(1,7)
      CALL SKSKPP(N1,N2,N3,7HSFECIAL)
 10
      NDISCL(N2)=NDISCL(N2)+NCFCSS(N2) $NDISCL(N3)=NDISCL(N3)+NCRDSS(N3)
С
¢
 20
      CENTINUE
      PRINT 1000+N1,N2,N3,RD(N1),RD(N2),FD(N3),NDISCL(N1),NDISCL(N2),
     #NDISCL(N3),NCF0SS(N1),NCF0SS(N2),NCRCSS(N3),NRHS(N1),NRHS(N2),
     *NRHS(N3)
 1000 FORMAT(1H +1X, 315, 3F12+E, 515)
      IF((RD(N1).LT.RC(N2)).ANC.(RC(N2).LT.RC(N3)))GO TO 21
      IF((RD(N1).GT.RD(N2)).AND.(RD(N2).GT.FC(N3)))GC TC 31
      IF((RD(N1).LT.RC(N3)).ANC.(RC(N2).GT.RD(N3)))GO TO 32
      IF((RD(N1).GT.RD(N2)).ANC.(RD(N1).GT.FC(N3)))GC TC 31
      IF((RD(N1).GT.RD(N2)).AND.(RD(N1).LT.RD(N3)))GC TC 34
      IF((RD(N1).GT.RC(N3)).ANC.(RD(N1).LT.FC(N2)))GO TO 35
      GO TO 21
 31
      NXS=N3
      IF((RD(N1)-RD(N2))/(SE(N1)-SE(N2)).LT.(FC(N1)-RC(N3))/(SE(N1)-
     *SE(N3))) NXS=N2
      TARFLCT=(FC(N1)-FC(NXS))/(SE(N1)-SE(NXS))
      RD(N1)=RD(N2)=RD(N3)=RD(N1)-TARFLCT*SE(N1) $ GC TC 22
 32
      RD(N3)=RD(N2)+DELR*.5E-10 $ GC TC 21
      RD(N2)=RD(N1)+DELR++5E-10 $ GC TC 21
 34
 35
      RD(N3)=RD(N2)+DELR+.5E-10 $ GC TO 21
с
 22
      PRINT 1001, N1, N2, N3, NDISCL(N1), NDISCL(N2), NCISCL(N3), NCROSS(N1),
     *ACFOSS(N2), ACFOSS(N3), ARES(N1), ARES(A2), ARES(A3), AD(A1), AD(A2),
     #RD(N3),SL(N1),SL(N2),SL(N3),SE(N1),SE(N2),SE(N3)
 1001 FORMAT(1H ,5/,* SHK-SHK +SHK INTERACTION*,/,1X,1215,/,1X,9F12.8)
      CALL SKSKPFA(N1,N3,6HSKSKSK,TAFFLCT)
С
C
 21
      RETURN S'END
```

-152-

SUBROUTINE DISKSK(N1,N2,N3) COMMON/PARAM/N, J, AJ, G, GF, DELR, NFLM COMMEN/DISCSKF/RCSAV(51),NLHS(51),NRHS(E1),NCROSS(E1) CGMMCN/PREDCCF/CPC(2,13),UPC(2,13),EFC(2,13),PPC(2,13) CCMMCN/AFRAYS/R(501),U(2,501),P(2,501),D(2,501),E(2,501),R2(501) CCMMCN/DISCS/NTDISC,NDISCNC(51),NTYPE(51),NDISCL(51),SF(51),SL(51) *,RD(51),NTDISCT,NTDISCS С C PRINT 1000,N1,N2,N3,RC(N1),RD(N2),RD(N3),NCISCL(N1),NDISCL(N2), *NDISCL(N3),NCFCSS(N1),NCFCSS(N2),NCFCSS(N3),NRHS(N1),NRHS(N2), *NRFS(N3),NTYPE(N1),NTYPE(N2),NTYPE(N3) IF(NTYPE(N3).EC.5) GC TC 36 IF(NTYPE(N2).EQ.5) GC TC 37 IF ((ND ISCL (N2) . NE . ND ISCL (N3)) . CF . (FDSAV(N2) . LT . RDSAV(N3)) . CF . *(RDSAV(N1).GT.RDSAV(N2)).CR.(NCFESS(N2).EG.C).CR.(NCFESS(N3).EQ. #1)) GO TO 36 IF(N3.FC.NTDISCT) GC TO 38 IF (NRHS(N2) .GT.NDISCL(N3+1)) GC TC 36 IF((NRHS(N2).EC.NDIS(L(N3+1)).ANC.(NTYFE(N3+1).NF.2)) GC TC 36 NCFDSS(N3)=NCFDSS(N2) \$ NFF5(N3)=NFFS(N2) 38 GO TO BE 37 IF(((RDSAV(N1).CT.FDSAV(N3)).ANC.(RDSAV(N2).GT.RDSAV(N3))).DR. *(NCRDSS(N2).EG.1).CF.(NCFCSS(N1).EG.0).CF.(FDSAV(N1).LT.FDSAV(N2)) ** CE. (NOISCI (N1) *NE*NDISCL(N2))) OF TO 36 NCFOSS(N2)=NCFOSS(N1) \$ NFHS(N2)=NFHS(N1) С 36 IF (NCFCSS(N2).EC.1) GC TC 3 С 2 CALL DSORSD(N1,N2,N7, 7HD1SKSKC) C----PREDICTOR AND COCRECTOR FOR NODE 7 = (1) M= 1 IF((NCISCL(N2)-NCISCL(N1))EQ.2)OF((NCISCL(N2)-NDISCL(N1)EQ.2)*.AND.(NCFOSS(N1).EQ.0))) #=2 DPC(1,7)=DPC(1,M) \$ UPC(1,7)=UPC(1,M) EPC(1,7)=EPC(1,N) \$ FPC(1,7)=FPC(1,M) DPC(2,7)=DPC(2,M) \$ UPC(2,7)=UPC(2,M) EPC(2,7)=EPC(2,N) \$ PPC(2,7)=PPC(2,N) CALL DSDRSD(N2,N3,N1,7H CTSKSK) GO TO 20 С 3 IF((NDISCL(N2).EQ.NDISCL(N3)).AND.(NCECSS(N3).NE.1)) GC TO 2 CALL DSCRSD(N2+N3+N1+7HDTSKSKP) NDISCL(N2)=NDISCL(N2)-NCFCSS(N2) \$NCISCL(N3)=NCISCL(N3)-NCROSS(N3) IF(NTYPE(N2).EQ.5) NFLM=NDISCL(N2) IF(NTYPE(N3).EC.5) NFLM=NCISCL(N3) IF((NDISCL(N2)-NDISCL(N1).EQ.3).CF.((NDISCL(N2)-NDISCL(N1).EQ.2) *.AND.(NCFCSS(N1).E0.0))) GC TC 7 GO TO 8 C----PREDICTOR FCR NODE 1 = (6) DPC(1,1)=DPC(1,6) \$ UFC(1,1)=UPC(1,6) EPC(1,1)=EPC(1,6) \$ PPC(1,1)=PPC(1,6) C----PREDICTOR FOP NODE 2 = (7) DPC(1,2)=DPC(1,7) \$ UPC(1,2)=UPC(1,7) EPC(1,2)=EPC(1,7) \$ PPC(1,2)=FFC(1,7) GC TC 10

-154-

```
C----PREDICTOR AND CORRECTOR FOR NODES 2,1 = (8)
      DPC(1,1)=DPC(1,2)=DPC(1,8) $ UFC(1,1)=UPC(1,2)=UPC(1,8)
8
      EPC(1,1)=EPC(1,2)=EPC(1,8) $ FFC(1,1)=FPC(1,2)=FFC(1,8)
      DFC(2,1)=DPC(2,2)=DPC(2,8) $ UFC(2,1)=UPC(2,2)=UPC(2,8)
      EPC(2,1)=EPC(2,2)=EPC(2,8) $ FPC(2,1)=FPC(2,2)=PPC(2,8)
      IF((NDISCL(N2)-NDISCL(N1).EQ.2).ANG.(NCRCSS(N1).FQ.1)) GC TC 9
      GG TC 10
C----PREDICTOR FOR NODE 1 = (7)
      DFC(1,1)=DPC(1,7) $ UPC(1,1)=UPC(1,7)
9
      EPC(1,1)=EPC(1,7) $ FFC(1,1)=PFC(1,7)
      CALL DSORSD(N1,N2,N3, 7HSFECIAL)
 10
      NDISCL(N2)=NDISCL(N2)+NCFESS(N2) $NDISCL(N3)=NDISCL(N3)+NCROSS(N3)
      IF(NTYPE(N2).EQ.5) NFLM=NDISCL(N2)
      IF (NTYPE (N3).E0.5) NFLM=NDISCL (N2)
с
С
20
      PFINT 1000,N1,N2,N3,FC(N1),FC(N2),FC(N3),NCISCL(N1),NDISCL(N2),
     *NDISCL(N2),NCROSS(N1),NCFQSS(N2),NCFCSS(N3),NRHS(N1),NFHS(N2),
     *NRHS(N3),NTYPE(N1),NTYPE(N2),NTYPE(N3)
 1000 FORMAT(1H ,1×,315,3F12+8,1215)
      IF((RD(N1).LT.RD(N2)).AND.(RD(N2).LT.RD(N3)))GC TC 21
      IF((RD(N1).GT.PC(N2)).ANC.(RC(N2).CT.FC(N3)))CO TO 21
      IF((RD(N1).LT.RD(N3)).ANC.(RD(N2).GT.RD(N3)))GC TC 32
      IF((RD(N1).CT.RD(N2)).ANC.(RD(N1).GT.FD(N3)))GC TO 31
      IF((RD(N1).GT.RD(N2)).ANC.(RD(N1).LT.FC(N3)))GC TC 34
      IF ((RD(N1).GT .RD(N3)) .AND. (RD(N1).LT.FC(N2)))GC TC 35
      GC TC 21
 31
      NXS=N3
      IF((RC(N1)-RC(N2))/(SE(N1)-SE(N2)).LT.(RD(N1)-RO(N2))/(SE(N1)-
     *SE(N3))) NXS=N2
      TARFLCT=(RD(N1)-RD(NXS))/(SE(N1)-SE(NXS))
      RD(N1)=FD(N2)=FD(N3)=FD(N1)-TAFFL(T*SE(N1) $ GO TC 22
      RD(N3)=RD(N2)+DELP*.5E-10 $ GC TG 21
32
.34
      FD(N2)=FD(N1)+CELR#.5F-10 $ GC TC 21
35
      RD(N3)=RD(N2)+DELR#+5E-10 $ GC TC 21
C
22
      PRINT 1001,N1,N2,N3,NCISCL(N1),NCISCL(N2),NCISCL(N3),NCROSS(N1),
     *NCRDSS(N2),NCHOSS(N3),NFHS(N1),NFHS(N2),NFHS(N3),RD(N1),RD(N2),
     *RD(N3),SL(N1),SL(N2),SL(N3),SE(N1),SE(N2),SE(N2),NTYPF(N1),
     #NTYPE(N2) +NTYPE(N3)
 1001 FORMAT(1H .5/.* DET-SHK-SHK INTERACTICN*./.1X.1216./.1X.9F12.8.315
     *)
      CALL DISKSKA(N1,N3,6HDTSKSK,TAFFLCT)
c
С
21
      RETURN $ END
```

SUBROUTINE DISKSKA(II,NI,NANE,TARFLCT) COMMCN/FARAM/N,J,AJ,G,GF,DELR,NFLM DELR=-AES(DELF) FRINT 1000 1000 FORMAT(1H ,2X, +DISKSKA STCP+) C

PETURN \$ END

с

SUBROUTINE SHKCD(NFIRST .NI .NAME) CCMMCN/UEDCND/NUBC COMMEN/SES/SECOSES, PEDSES, NXCDSES COMMON/PARAM/N, J, AJ, G, GF, DELR, NFLM COMMEN/TIME/T, DT, DTL, TWF ITE, DELT, CTDX, AT COMMON/DISCSKF/RDSAV(51),NLHS(E1), NRHS(51), NCRCSS(51) CCMMCN/PREDCCR/CPC(2,13),UPC(2,13),EPC(2,13),PPC(2,13) COMMEN/POWER/VCAPF, R4R1, FDFCWEF, FFCWEF, CND, GCAPF, SFEOLD, SFE, NCJ CDMMON/ARRAYS/R(501),U(2,501),F(2,501),D(2,501),E(2,501),P2(501) COMMCN/DISCS/NTDISC,NDISCNC(51),NTYPE(51),NDISCL(51),SE(51),SL(51) *,RD(51),NTDISCT,NTDISCS CCMMCN/PPCHR/NPPTH, NUMA, NUMAEST, NUFA, REPTH(24), RUMA(150), RUPA(150) \$,NCLPFTH(24),NCLUMA(150),NCLUFA(150),FTHNEXT,RUMANXT,TUPANXT, +DELPPTH, DELUMA, DELUPA С С RS=RD(NFIRST) \$ SSL=SL(NFIRST) \$ SSE=SE(NFIRST) NSHK=NDISCL(NFIFST) \$ FCC=FD(NI) \$ SECC=SE(N1) \$ NCD=NDISCL(NI) С CE=G \$ IF (NCC.LE.NFLM) GE=GF \$ GG=CE \$ IF (NTYFE(NFIRST).E0.5) GG=GF NSHKSGN=0 \$ IF(SSL.GT.0.0) NSHKSGN=1 SECDSAV=SECD & SSESAV=SSE RSSAV=RS \$ RS=RS+SSE*DT \$ RCDSAV=RCD \$ RCD=FCD+SECD+DT NXSS=NXSCD=0 \$ MSC=0 \$ IF(NSHK+1.EG.NCD) MSC=2 IF(PS.GT.F2(NSHK+1+MSC)) NXSS=1 1 IF(FS.LT.F2(NSHK)) NXSS=+1 IF(RCD.GT.R2(NCD+2)) NXSCD=1 \$ IF(RCD.LT.R2(NCD-1)) NXSCD=-1 IF (NAME . EQ . BESHKCOSEK) NXSCD=NXCOSCS NSHKCDX=0 \$ IF(RS.GT.RCC) NSHKCCX#1 NSC=100+(NCD-1-NSHK)+10*N×SS+N×SCD PRINT 9999, NAME, NXSS, NXSCD, NSFKCDX, NSC 9999 FORMAT(1H ,1X,A8,415) С IF(NSC+NF+10) GC TC 40 NSC=NXSS=0 С ZERC).CR.(NAME.EG.RESEKCCRAR).CR.(NAME.EQ. IF ((INAME . EQ. BH 40 *8HRARCD)).AND.(NSHKCDX.EQ.1).ANC.(NFIRST.FC.1).AND. *(SL(NFIRST).LT.1.001)) GC TO 100 IF(NAME.EQ.8HSHKCDSHK) SECD=SECDSCS IF (NAME.EC.PHSHKCDSHK) RCD=RCDSCS C----PREDICTOR FOR NSHK-1-NXSS#(NXSS-1)/2 = 1 M=NSHK-1-NXSS*(NXSS-1)/2 DPC(1,1)=DP(M,0) \$ UPC(1,1)=UP(M,0) EPC(1,1)=EP(M,0) \$ PPC(1,1)=PP(1,GC) IF(NXSS.NE.-1) GC TC 1 C----PREDICTOR FOR NSHK-1 = 2 M=NSHK-1 DFC(1,2)=DF(N,0) \$ UFC(1,2)=UF(N,C) EPC(1,2)=EP(M,0) \$ PPC(1,2)=PP(2,CE) GC TC 2 IF (NSHKSGN.EQ.1) GC TC 3 ł. C----PREDICTOR FOR NSHK = 2 DPC(1,2)=DP(NSHK,+1) \$ UFC(1,2)=UF(NSFK,-1) EPC(1,2)=EP(NSHK,-1) \$ PPC(1,2)=PP(2,GE) GC TC 2 C----PREDICTOR FOR NEHK = 2

-156-

З	IF(NTYPE(NEIRST).EC.5) GC TC 200
	₽₽C(1,13)=P(1,\NSHK+1)*(2,*GE/(CE+1,)*S\$L**2-(GE-1,)/(GE+1,))
	DPC(1,13)=D(1,NSHK+1)/((GE-1.)/(GE+1.)+2./(GE+1.)/SSL##2)
	UPC(1,13)=CPC(1,13)*(U(1,NSHK+1)/C(1,NSFK+1)+SORT(GE#P(1,NSHK+1)/
	#D(1,NSHK+1))#2,/(GF+1,)#ESL#(1,−1,/SSL##2))
	EPC(1,13)=CPC(1,13)*(PPC(1,13)/CPC(1,13)/(CE-1,)+UPC(1,13)**2/
	*DPC(1,13)**2/2.)
	GO TO 201
200	BETA=(GF-1,)/(GF+1,) \$ $B=(GF-1,)/(C-1,)$
	PGO=(1 + RETA) * (VCAPF - BETA) / (1 - BETA) - BETA)
	A = SOFT (P(1, NSFK+1)/D(1, NSFK+1))
	PG=1.+(PG0-1.)/A*#2+GF*(11.)/A*#2)#(C/CF*E-h4N1)
	$PSI = \{1, -PEIA \}/2 * (1, +G * S * L * * 2) \}$
	DPC(1,13) = U(1,NSFK+1)/(1,-(1,-(1,-(1,-(1,-(1,-(1,-(1,-(1,-(1,-
	UPC(1, 13) = (SORT(G) + A + SORT((1, -PE1A) + (PS1 - PG) + (PS1 - 1.))G
	*(PS1+B(1A))+U(1,NSFK+1)/U(1,NSFK+1)+UPC(1,12)
201	
	$C_{2,2} = C_{2,2} = C_{2$
	$C_{2=2}$, r_{1} $P_{5=3}$, r_{1} $C_{3=1}$, r_{1} r_{2} , r_{1} r_{1} , r_{1} , r_{2} , r_{2} , r_{1} , r_{2} , r_{2} , r_{1} , r_{2} , r_{2} , r_{1} , r_{2} ,
	DP((1,7)=U(1,8SHK)-U(DA+(U+U)(1,1))+U(1+NSFK)+U(1+NSFK-1))
	+- AI+UTDX+(CI+UPC(I; C3)+C2+U(I; NSPN)+C3+U(I; NSPN-17)
	GP([1,7]=U(1,5SHK)-U(1A,(1,4K)(1A,(2,7FK)(1A,1K),(1A,1K)))
	+ A 1 + 0 10 X + () + 0 + 0 () + 1 3 / + (2 + 0 () + N = N + (- 1 + 0 + 0 + () + N = N + (- 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +
	$ = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum$
	+-AITOIDAT(CITEPC(I)I3/*C2+L(I)N3CK/*C3+L(I)N3CK-I//
(= -creterror = re + sek = sek = s + s + s + s + s + s + s + s + s + s
2	M = N C M E - N Y C C + 1 X Y C - 1 X Y C +
č	D(2,N) = DEC(2,2) = DC(2,N,0) + U(2,N) = UEC(2,2) = UC(2,N,0)
	F(2,N) = FPC(2,2) = FC(2,N,0) + F(2,N) = PFC(2,2) = FC(2,G)
	IF (NAME - FO - RESHKCDELM) GE TE 4
	IF (NAME - FG - 8 + SHKCCS+K) GC TO 10
c	PREDICTOR FOR NOD+2+NXSCD*(NXSCD+1)/2 = 8
	M=NCD+2+NXSCD+(NXSCD+1)/2
	DPC(1,8)=DP(M,3) \$ UPC(1,8)=UF(+,0)
	EPC(1,8)=EP(M,0) \$ PPC(1,8)=FF(8,CE)
	IF(NXSCD.EC1) GC TC 4
c	PREDICTOR FOR NOD+3+NXSCD = 9
	N=NCD+3+NXSCD
	DPC(1,9)=CP(M,0) \$ UPC(1,9)=UP(0,0)
	EPC(1,9)=EP(M,0) \$ PPC(1,9)=PP(5,6E)
4	M=NCD \$ IF(NCD-NS+K-1.NE.0) M=NCD-1
	M3=NCD+2 \$IF((NAME.EG.8HSKCD EET).CF.(NAME.EG.8HSKCDDT))M3=NCD+1
	CALL GLIM(M,M3,6,NCC,SECC)
	IF((NAME+NE+BHF#FCC)+#NC+(NAME+NE+BHDETF#FCD)) GC TC 5
	$D(2, NCD) = DPC(1, \epsilon) = DPC(2, \epsilon) = D(1, NCD)$
	U(2,NCD)=UPC(1,6)=UPC(2,6)=U(1,NCC)
	E(2+NCD)=EPC(1+6)=EPC(2+6)=E(1+NCD)
	P(2, \CD)=PPC(1, 6)=PPC(2, 6)=P(1, \CD)
	GC TC E
5	IF (NAME .NE .BHSHKCDRAR) GC TO C
	D(2, NCD+1)=DPC(1,7)=DPC(2,7)=C(1,NCD+1)
	U(2,NCD+1)=UPC(1,7)=UPC(2,7)=U(1,NCD+1)
	E(2, NCD+1) = EQC(1, 7) = EQC(2, 7) = E(1, NCD+1)

```
P(2,NCD+1)=PPC(1,7)=PPC(2,7)=P(1,NCD+1)
      RCD=RCCSAV+SECD*DT
 6
      IF(((RCD.GT.R2(NCD+2)).AND.(NXSCD.EG.0)).CF.((RCD.LT.R2(NCD+2)).
     #AND.(NXSCD.EQ.1))) RCD=R2(NCD+2)
      IF(((RCD \circ LT \circ R2(NCD - 1)) \circ ANC \circ (NXS(C \circ EG \circ C)) \circ OF \circ ((RCD \circ GT \circ R2(NCD - 1))))
     #AND.(NXSCD.E0.-1))) RCD=R2(NCC-1)
С
      IF(NXSCD.NE.-1) GC TC 7
C----PREDICTOR AND CORRECTOR FOR NCD-1 = 5
      M=NCD-1
      D(2, N)=DPC(2, 5)=DPC(1, 5)=DFC(1,7)
      U(2, N)=UPC(2, 5)=UPC(1,5)=UPC(1,7)
      E(2, N)=EPC(2,5)=EPC(1,5)=EPC(1,7)
      P(2, M)=PPC(2, E)=PPC(1, 5)=PPC(1,7)
      IF (NAME . EG. 8HSHKCDFLM) CC TC 10
C----CORRECTOR FOR NOD+2 = E
      M=NCC+2
      D(2,N)=DFC(2,8)=CC(8,N+0) $ L(2,N)=UPC(2,8)=UC(8,N+0)
      E(2,M)=EPC(2,8)=EC(8,M,0) $ P(2,M)=PFC(2,8)=FC(8,GE)
      GC TC 10
      IF(NXSCD.EQ.0) GC TC 8
 7
C----PREDICTOR AND CORRECTOR FOR NOD+2 = 10(=6)
      M=NCD+2
      D(2, 4) = DPC(2, 13) = DPC(1, 1C) = DPC(1, 6)
      U(2,M)=UFC(2,10)=UPC(1,10)=UPC(1,6)
      E(2, M)=EPC(2,10)=EPC(1,10)=EPC(1,6)
      P(2, W)=PPC(2, 10)=PPC(1,1C)=PPC(1,6)
C----CORRECTOR FOR NCC+2+NXSCC = 8
      IF (NAME.EQ. PHSHKCDFLM) GC TO 10
 8
      M=NCD+2+NXSCD
      EPS=(R2(NCD+2)-RCD)/DELF
      C1=2.*(2.-EPS)/(1.+EPS)
      C2=2.*EPS-3. $ C3=(1.-EPS)*(2.*EPS-1.)/(1.*EPS)
      D(2,M)=DPC(2,E)=(D(1,M)+DPC(1,E)+CTDX+(C1+UFC(1,7)+C2+UPC(1,B)
     *+C3#UPC(1,9))+AT#DTDX*(C1#DPC(1,7)+C2#DPC(1,0)+C3#DPC(1,9)))/2.
      U(2,M)=UPC(2,P)=(U(1,N)+LFC(1,P)+CTCX*(C1*(*(7)+C2*CM(8)+C3*CM(9))
     *+AT*DTDX*(C1*UPC(1,7)+C2*UPC(1,8)+C3*UPC(1,5)))/2.
      E(2,N)=EPC(2,2)=(E(1,N)+EFC(1,8)+CTCX*(C1*CE(7)+C2*CE(2)+C3*CE(5))
     *+AT#DTDX*(C1*EPC(1,7)+C2*EPC(1,8)+C3*EPC(1,9)))/2.
      F(2, W)=PPC(2,8)=PC(8,6F)
С
С
     IF((NSC+NE+200)+ANC+(NSC+NE+310)+ANC+(NSC+NE+201)+AND+(NSC+NE+311)
 10
     *.AND.(NSC.NF.199).AND.(NSC.NE.309)) GC TO 20
C----PREDICTOR AND COFRECTOR FOR NSEK+14NXSS = 4
      M=NSHK+1+NXSS
      D(2,M)=DPC(2,4)=DPC(1,4)=DP(M,0) $L(2,M)=UPC(2,4)=UPC(1,4)=UP(M,0)
      E(2,N)=EPC(2,4)=EPC(1,4)=EF(M,0)$P(2,N)=PPC(2,4)=FPC(1,4)=PP(4,GE)
      IF((NSC.EQ.199).OR.(NSC.EQ.309)) GC TC 11
C----PREDICTOR FOR NSHK+2+NXSS = 5
      M=NSHK+2+NXSS
      EPS=(RCDSAV-R(M))/DELR
      C1=2.*(?.-EPS)/(1.+EPS)
      C2=2.*FPS-3. $ C3=(1.-EPS)*(2.*EPS-1.)/(1.*EPS)
      DFC(1,5)=D(1,N)+CTDX#(C1#U(1,NCC)+C2#U(1,N)+C3#U(1,H-1))
     #-AT#DTDX#(C1#D(1,NCD)+C2#D(1,#)+C3#D(1,#-1))
```

-158-

```
UPC(1,5)=U(1,N)-DTDX*(C1*FM(NCD)*(2*PM(M)*(2*PM(M-1))
     *-AT*DTDX*(C1*U(1,NCD)+C2*U(1,#)+C3#U(1,#-1))
      EPC(1,5)=E(1, W)-DTDX#(C1#PE(NCD)+C2#PE(W)+C2#FE(W-1))
     *-AT*DTDX*(C1*F(1,NCD)+C2*E(1,M)+C3*E(1,H-1))
      PPC(1, 5) = PP(5, GE)
 11
      IF(NTYPF(NFIRST).EQ.5) GC TC 202
      IF(NXSS.EC.O) GC TC 12
C----PREDICTOR FOR NSHK+(NXSS+1)/2 = 3
      N=NSHK+(NXSS+1)/2
      PPC(1,3)=P(1,M)*(2.*GE/(GE+1.)*SSL**2-(GE-1.)/(CE+1.))
      DPC(1,3)=D(1,M)/((CE+1.)/(CE+1.)+2./(CE+1.)/SSL**2)
     UPC(1,3)=DPC(1,3)*(U(1,N)/D(1,N)+SGRT(CE*F(1,N)/D(1,N))*2*/(GE+1*)
     **SSL*(1.-1./SSL**2))
     EPC(1,3)=DPC(1,3)*(FFC(1,3)/DFC(1,3)/(GE-1.)+UPC(1,3)**2/DPC(1,3)
     ***?/2.)
C-----PREDICTOR FOR SHK VEL AND POS
 12 MH=4-2#NSHKSGN+NXSS $ ML=2+2#NSHKSCN
     SSLSAV=SORT((PPC(1,MH)/PPC(1,ML)+(GE-1.)/(CE+1.))*(GE+1.)/2./GE)*
     *SSL/ABS(SSL)
     RS=RSSAV+(SSLSAV*SQRT(GE*PPC(1,NL)/DFC(1,NL))+UFC(1,NL)/DPC(1,NL)+
     *SSE)/2.*DT
      GD TC 203
    IF(NXSS.NE.0) GD TD 204
 202
      A=SORT(PPC(1,4)/DPC(1,4))
      PC=1++(PG3-1+)/A*+2+GF*(1+-1+/A**2)*(G/GF*E-R4R1)
     SSLSAV=SCRT((2.*PG+(1.-EETA)+2.*SCRT(PC**2-(1.-BETA)*PG-BETA))/
     *(1.~EETA)/G)
     RS=RSSAV+(SSE+SSLSAV*SORT(G)*A+UPC(1.4)/DPC(1.4))*OT/2.
      GC TC 203
 204 RS=RSSAV+(2.+SSE)+DT/2.
     IF (((FS.GT.R2(NSHK+1+MSC)).AND.(NXSS.EC.C)).CR.((RS.LT.R2(NSHK+1
 203
     #+MSC)).AND.(NXES.EQ.1))) RS=R2(NSHK+1+NSC)
      1F(((RS.LT.R?(NSHK)).AND.(NX55.EC.C)).CR.((RS.GT.F2(NSHK)).
     #AND.(NXSS.EC.-1))) RS=R2(NSHK)
С
     IF(((FS+GT+PCC)+ANC+(NS+KCDX+EG+0))+CF+((RS+LT+PCC)+ANC+(NS+KCD)
     *.FG.1))) RS=FCD
     IF((NSC+NE+200)+AND+(NSC+NE+31C)+AND+(NSC+NE+2C1)+AND+(NSC+NE+311)
     *.AND.(NSC.NF.211).AND.(NSC.NE.101).AND.(NSC.NF.91).AND.(NSC.NE.90)
     *) GO TC 13
С
     IF((NXSS.EC.0).AND.(NSHKSGN.EC.0)) GC TC 14
C----CORRECTOR FOR NSHK+14NX55#(NX55+1)/2 = 4
      M=NSHK+1+NX55*(NXSS+1)/2
      MM=NXSS#(NXSS+1)/2-(NXSS+1)#(NXSS+1)
      D(2,N)=DPC(2,4)=CC(4,M,MN) $ U(2,N)=UPC(2,4)=UC(4,N,MN)
     E(2,N)=FPC(2,4)=EC(4,N,NN) $ F(2,N)=PPC(2,4)=PC(4,GE)
     GO TO 13
C----CCRRECTOR FOR NSHK+1+NXSS*(NXSS+1)/2 = 4
     M=NSHK+1+NXSS*(NXSS+1)/2 $ 5L1=(55L455L5AV)/2.
 14
      PS=P(1,NSHK)*(2.*(E/(CE+1.)*SL1**2-(GE+1.)/(GE+1.))
      DS=D(1,NSHK)/((GE-1.)/(GE+1.)+2./((E+1.)/SL1+*2)
     US=DS+(U(1,NSHK)/D(1,NSHK)+SQRT(GE*F(1,NSHK)/D(1,NSHK))+2+/(GE+1+)
     **SL1*(1.-1./SL1**2))
     ES=DS*(PS/DS/(GE-1.)+LS**2/DS**2/2.)
      EFS=(R2(NSHK+1)-RS)/CELR
```

C1=2.*(2.-EPS)/(1.+EPS) C2=2.*FPS-3. & C3=(1.-FPS)*(2.*EPS-1.)/(1.*EFS) $D(2,N) = DPC(2,A) = (D(1,N) \diamond CFC(1,A) + CTCX \diamond (CT \diamond US \diamond C2 \diamond UPC(1,A) \diamond$ #C3#UPC(1,5))+AT#DTDX#(C1#DS+C2#DFC(1,4)+C3#CPC(1,5))/2. U(2,M) = UPC(2,4) = (U(1,N) + UPC(1,4) + CTC + 4(C1+(LS+2)) + CS+PS) + C2+CM(4) + CC(2,4) = (U(1,N) + UPC(1,4) + CTC + 4(C1+(LS+2)) + CS+PS) + C2+CM(4) + CC(2,4) = (U(1,N) + UPC(1,4) + CTC + 4(C1+(LS+2)) + CS+PS) + C2+CM(4) + CC(2,4) + CC(2,4) = (U(1,2)) + (U(1,#C 3*CM(5))+AT*DYDX*(C1*LS+C2*UPC(1.4)+C3#UPC(1.5)))/2. E(2,N)=FPC(2,4)=(E(1,N)+EPC(1,4)+DTDX#(C1#US/DS#(ES+PS)+C2#CE(4)+ *C3*CE(5))+AT+DTDX*(C1*ES+C2*EFC(1,4)+C3*EPC(1,5)))/2. P(2, M) = PPC(2, A) = PC(A, GE)13 IF ((NSCONE 0200) OAN EO (NSCONE 0310) OAN EO (NSCONE 0201) OAN CO (NSCONE 0311) *) GO TO 15 C-----CCARECTCA FOR NSHK#24NX55 = 5 M=NSHK+2+NXSS D(2,M)=DPC(2,5)=DC(5,N,0) \$ U(2,N)=UFC(2,E)=UC(5,N,0) E(2,N)=EPC(2,5)=EC(5,N,0) \$ F(2,N)=PPC(2,5)=PC(5,GE) 15 IF(NTYPE(NFIRST).EQ.5) GC TO 205 IF(NXSS.EC.0) GC TC 16 C----CORRECTOR FOR NSHK+(NXSS41)/2 = 3 M=NS+K+(NXSS+1)/2 SSLSAV=(SSL+SSLSAV)/2. DPC(2,3)=D(1,*)/((GE-1.)/(GE+1.)+2./(CE+1.)/SSLSAV**2) UPC(2,3)=DPC(2,3)*(U(1,*)/D(1,*)*SCRT(CE*P(1,*)/D(1,*))*2./(*GE+1.)*SSLSAV*(1.-1./SSLSAV**2)) PPC(2,3)=P(1,M)*(2.*GE/(CE+1.)*SSLSAV**2-((E-1.)/(GE+1.)) EPC(2,3)=DPC(2,3)*(FFC(2,3)/DFC(2,3)/(GE-1.)+UPC(2,3)**2 */DPC(2,3)**2/2.) IF((NAMF.EG.RESEKCCSEK).AND.(NSC.EC.-11)) GC TC 16 D(2,N)=DFC(2,3) \$U(2,N)=LPC(2,3) \$E(2,N)=EFC(2,3) \$P(2,N)=PPC(2,3) C----CORRECTOR FOR SHK VEL MH=4-2*NSHKSGN+NXSS \$ ML=2+2*NSHKSCN 16 SSL=SQRT((PPC(2,WH)/PPC(2,WL)+(GE-1.)/(GE+1.))+(*SSL/ARS(SSL) SSE=SSL*SCRT(GE*FPC(2,ML)/DPC(2,ML))+UPC(2,ML)/DPC(2,ML) GO TO 206 205 IF(NXSS.FG.0) GC TC 207 D(2,NSHK+1)=DPC(1,3)=DPC(2,3)=CFC(1,13) U(2, NSHK+1)=UPC(1, 3)=UPC(2, 3)=UPC(1, 13)F(2,NSHK+1)=EFC(1,3)=EPC(2,3)=EFC(1,13) P(2,NSHK+1)=PPC(1,3)=PPC(2,3)=PFC(1,13) 207 A=SORT(PPC(2,4)/CPC(2,4)) PG=1.04(PG0-1.0)/A**2+GF*(1.0-1.0/A**2)*(C/CF*E-R4R1) SSL=SQRT((2.*PG-(1.-BETA)+2.*SQRT(PG**2-(1.-BETA)*PG-BETA))/ *(1.-EEYA)/G) SSE=SSL*SQRT(G)*A+UPC(2,4)/CPC(2,4) IF(NSC.NE.-11) GC TC 17 206 IF (NAME.EQ.BHSHKCDSHK) GC TC 25 C----CORRECTOR FOR NCD(=6) = COPRECTOR 3 D(2,NCD)=CPC(2,3) \$ U(2,NCC)=UPC(2,3) E(2,NCD)=EPC(2,3) \$ P(2,NCD)=PPC(2,3) C----CCRRECTCE FOR NSHK(=3) = CCRRECTCE 7 D(2,NSHK)=DPC(2,7) \$ L(2,NSHK)=LFC(2,7) E(2,NSHK)=EPC(2,7) \$ P(2,NSHK)=PPC(2,7) 17 IF(NSC.NE.11) GC TC 35 C----CORRECTOR FOR NCD(=6) = CORRECTOF 6 D(2+NCD)=CPC(2,6) \$ U(2+NCD)=UPC(2,6) E(2,NCD)=EPC(2,6) \$ P(2,NCD)=FPC(2,6)

-160-

C----CCFRECTOF FOR NCC+2 = COFFECTOF 3 D(2,NCD+2)=DPC(2,3) \$ U(2,NCD+2)=LFC(2,3) E(2,NCD+2)=EP((2,3) \$ P(2,NCD+2)=PPC(2,3) C----ADVANCE SHK AND CD CELL FOSITION IF NECCESSARY 35 NSHK=NSHK+NXSS \$ IF(NTYPE(NFIRST).EC.5) NFLP=NSHK IF((NXSCD.EQ.0).DF.(NAME.EC.8FSHKCCSFK)) GC TO 15 M=NCD+2+3*(NX SCD-1)/2 PS=P(2,M) \$ DS=D(2,M) \$ US=U(2,M) \$ ES=E(2,M) \$ R25=R2(M) IF(NXSCD.FO.-1) GC TC 18 P(2,NCD+2)=P(2,NCD+1) \$ F(2,NCD+1)=F(2,NCD) \$ F(2,NCD)=PS U(2,NCD+2)=U(2,NCD+1) \$ U(2,NCD+1)=U(2,NCD) \$ U(2,NCD)=LS E(2,NCD+2)=E(2,NCD+1) \$ E(2,NCD+1)=E(2,NCD) \$ E(2,NCD)=ES D(2,NCD+2)=D(2,NCD+1) \$ C(2,NCC+1)=D(2,NCD) \$ D(2,NCD)=D5 F2(NCD)=P2S GD TO 19 F(2, NCD-1)=P(2, NCD) \$ P(2, NCD)=F(2, NCD+1) \$ P(2, NCD+1)=PS 18 U(2,NCD-1)=U(2,NCD) \$ L(2,NCD)=L(2,NCC+1) \$ U(2,NCC+1)=US E(2,NCD-1)=E(2,NCD) \$ E(2,NCD)=E(2,NCD+1) \$ E(2,NCD+1)=E5 D(2,NCD-1)=D(2,NCD) \$ C(2,NCD)=C(2,NCC+1) \$ C(2,NCD+1)=DS R2(NCD+1)=R2SС 19 NDISCL(N1)=NCD=NCD+NXSCD \$ RD(N1)=R2(NCC+1)=RCC SF(N1)=SECD \$ NDISCL(NFIRST)=NSHK \$ SL(NFIRST)=SSL \$SE(NFIRST)=SSF FD(NFIFST)=RS C IF(NSHKCDX.EG.0) RETURN С С IF((NSC+FQ+0)+OR+(NSC+EC+110)+CF+(NSC+EC+1C9)+DR+(NSC+EC+99)+DR+ *(NSC.EQ.209).OR.(NSC.EQ.11)) GC TC 27 RETURN c 20 IF((NSC.NE.210).AND.(NSC.NE.211)) GD TC 21 C----PREDICTOR AND CORRECTOR FOR NSHK+2 = 4 M=NSHK+2 EFS=(R(M+1)-R(W))/DELR C1=2.*(2.-EPS)/(1.+EPS) C2=2.*EPS-3. \$ C3=(1.-EPS)*(2.*EPS-1.)/(1.*EPS) D(2, M)=DPC(2,4)=CPC(1,4)=C(1,M)-CTCX*(C1*U(1,M+1)+C2*U(1,M)+ +C3+U(1,M-1))-AT+DTDX+(C1+D(1,N+1)+C2+C(1,M)+C3+D(1,M-1)) U(2+W)=UPC(2+4)=UPC(1+4)=U(1+W)-DTDX4(C1+PW(W+1)+C2+PW(W)+ *C3*PN(N-1))-AT*CTDX*(C1*U(1,N+1)+C2*U(1,N)+C3*U(1,N-1)) E(2,M)=EPC(2,4)=EPC(1,4)=E(1,#)-DTDX#(C1#FE(#+1)+C2#PE(#)+ *C3*PE(M-1))-AT#CTCX*(C1#E(1,M+1)+C2#E(1,M)+C3#E(1,M-1)) P(2,N)=PPC(2,4)=PPC(1,4)=PP(4,CE) C IF(NSC.EG.210) GC TC 22 C----PREDICTOR FOR NSHK+2 = 5(=10) DPC(1,5)=DPC(1,10) \$ UFC(1,5)=UFC(1,1C) EPC(1,5)=EPC(1,10) \$ PPC(1,5)=FFC(1,10) 22 GC TC 11 С 21 IF ((NSC+NE+101)+AND+(NSC+NE+91)+AND+(NSC+NE+100)+AND+(NSC+NE+90)) *GC TC 23 C----PREDICTOR AND CORRECTOR FOR NSHK+1 = 4 M=NSHK+1

```
D(2,M)=DPC(2,4)=DPC(1,4)=D(1,M) $ L(2,M)=UFC(2,4)=UPC(1,4)=U(1,M)
       F(2, N)=FPC(2,4)=FPC(1,4)=E(1,N) $ F(2,4)=PFC(2,4)=PPC(1,4)=P(1,M)
С
       IF(NSC.NE.101) GO TO 11
       IF (NAME.EQ.8HSHKCDSHK) GE TO 33
C----PREDICTOR FOR NCD+2 = 5(=10)
       DFC(1,5)=CPC(1,10) $ UPC(1,5)=UPC(1,10)
       EPC(1,5)=EPC(1,10) $ PPC(1,5)=PPC(1,10)
       GO TO 11
C----PREDICTOF FOR NSHK+1 = 5
      DPC(1,5)=D(2,W) $ UPC(1,5)=L(2,W)
 33
       FPC(1,5)=F(2,N) $ PPC(1,5)=P(2,N)
       GC TC 11
С
      IF((NSC+NE+111)+ANC+(NSC+NE+-S)+ANC+(NSC+NE+1)) GC TC 24
 23
C----PREDICTOR AND CORRECTOR FOR NOD+2 = 4(=10)
       IF (NAME.EQ.8+SHKCDSHK) GC TO 26
       M=NCD+2
       D(2, M) = DPC(2, 4) = DPC(1, 4) = DPC(1, 10)
       U(2,M)=UFC(2,4)=UFC(1,4)=UFC(1,10)
       E(2, N)=EPC(2,4)=EPC(1,4)=EFC(1,10)
       F(2, N) = PFC(2, 4) = PPC(1, 4) = PPC(1, 1C)
      GC TC 11
 36
       DPC(2,4)=DPC(1,4)=DPC(1,6) $ LFC(2,4)=LFC(1,4)=LFC(1,6)
       EPC(2,4)=EPC(1,4)=FPC(1,6) $ FFC(2,4)=FPC(1,4)=PPC(1,6)
       GO TO 11
С
٢
 24
       IF((NSC.EQ.-10 ).CR.(NSC.EC.89)) CC TC 11
      `IF ((NSC.NE.0) .AND.(NSC.NE.110) .AND.(NSC.NE.105).AND.(NSC.NE.99).
     *AND.(NSC.NE.209).AND.(NSC.NE.-11).ANC.(NSC.NE.11)) GD TO 25
C----PREDICTOR AND CORRECTOR FOR NSHK41 = 4(=6)
       DPC(2,4)=DPC(1,4)=DPC(1,6) $ UPC(2,4)=UPC(1,4)=UPC(1,6)
       EPC(2,4)=EPC(1,4)=EFC(1,6) $ FFC(2,4)=FFC(1,4)=PPC(1,6)
       IF (NSHKCDX.EQ.1) GD TC 26
       GC TC 11
с
 25
      PRINT 1001, NSC, NSHKSGN, NSHKCDX
 1001 FORMAT(IH .5/.* NSC=*.315.10X.*TRELELE IN SHK-CD*)
      DELR=-APS(DELR) $ RETURN
С
 26
      IF(((NSC.EQ.-11).CR.(NSC.EQ.99).CF.(NSC.EQ.0)).ANC.(NSHKSGN.EQ.0))
      *GO TO 25
с
       TRFLCT=(RCDSAV-RSSAV)/(SEESAV-SECDSAV)
       RS=RCC=RCCSAV+TPFLCT+SECCSAV
       GO TC 11
С
 27
       IF(NSC.NE.11) GC TC 28
       IF(RCD.LT.R2(NSHK)) RCD=FS=R2(NCD)=R2(NCD+1)=RD(NFIRST)=RD(N1)=
      *F2(NSHK)
       TRFLCT=(RS-RSSAV)/SSESAV
С
 28
       IF(NSC.NE.109) GC TC 29
       IF(RCD.GT.R2(NSHK+2)) GC TC 30
       NDISCL (NF IRST )=NSHK=NSHK-1
C-----COFFECTOR FCP NCC+2 = CCFRECTCF FCF NCC41
```

-162-

```
M=NCD+1
      D(2, M+1) = D(2, N)  U(2, N+1) = U(2, N)
      F(2, M+1)=E(2, N) $ P(2, M+1)=P(2, N)
      GC TC 29
     M=NCD
30
      PS=P(2+N) $ DS=C(2+N) $ US=U(2+N) $ ES=E(2+N) $ R25=R2(N+2)
      U(2,NCD)=U(2,NCD+2) $ U(2,NCD+2)=U(2,NCC+1) $ U(2,NCD+1)=US
      E(2,NCD)=E(2,NCD+2) $ E(2,NCD+2)=E(2,NCD+1) $ E(2,NCD+1)=ES
      P(2,NCD)=P(2,NCD+2) $ P(2,NCD+2)=F(2,NCD+1) $ P(2,NCD+1)=PS
      D(2,NCD)=D(2,NCD+2) $ D(2,NCD+2)=D(2,NCD+1) $ D(2,NCD+1)=DS
      NDISCL(N1)=NDISCL(N1)+1
      R2(NCD)=R2S $ RC(NFIRST)=R2(NCC+2)=R2(NCC+1)=RCD
C
С
29
     RD(NFIRST)=RD(N1)
      IF(NTYPE(NFIRST).EC.2) CALL SFKCDA(NFIRST,N1,TRFLCT)
      IF(NTYPE(NFIRST).E0.5) CALL DETCDA(NFIRST, NI, TRFLCT)
      RETURN
С
C
C----SPCL FLW FLD ADJSTMNT FR NSHKCD>=1
 100 DC 110 M=1,N
      IF(M.GT.NCD+1) GD TD 102
      IF(M.LT.NCD) GO TO 101
      GO TO 110
     D(2, N) = D(1, N) = D(1, NCO+1)  U(2, N) = U(1, N) = U(1, NCO+1)
101
      E(2,M)=E(1,M)=E(1,NCD+1) $ P(2,M)=P(1,M)=P(1,NCD+1)
      GO TO 110
     D(1, M-2)=C(1, N) $ U(1, M-2)=U(1, N) $ E(1, M-2)=E(1, M)
102
     D(2,M-2)=D(2,N) $ U(2,N-2)=U(2,N) $ E(2,N-2)=E(2,N)
      P(1,N-2)=P(1,N) $ P(2,N-2)=P(2,N) $ F(N-2)=F(N) $ F2(M-2)=R2(N)
 110 CONTINUE
      DD 120 M=1+NTDISCT
      IF(NDISCL(W).LT.NCD+1) NDISCL(W)=+1
      IF(NDISCL(W).GE.NCD+1) NDISCL(W)=NDISCL(W)-2
 120 CENTINUE
      NFLM=NFLM-2 $ N=N-2
      IF(N1+1.LE.NTDISCS) NRHS(N1+1)=NRHS(N1+1)-2
      IF(N1+1+LF+NTCISCS) NL+S(N1+1)=NL+S(N1+1)-2
C
C-----ACCT FOR PRTCLE PTH AND NEG AND PCS CHRCT IFAJ CELL LCCINS CHANGES
      IF (NPPTH.LE.0) GC TC 126
      DO 111 [=1,NPPTH
      IF(NCLPPTH(I).GE.NCD+1) NCLPPTH(I)=NCLPPTH(I)-2
 111
     CONTINUE
     IFINUMA.LE.0) GO TO 112
 126
      DD 113 I=NUMAEST,NUMA
      IF(NCLUMA(I).GE.NCO+1) NCLUMA(I)=NCLUMA(I)-2
 113
     CENTINUE
     IF(NUPA.LE.O) GC TC 114
 112
      DD 115 I=1,NUPA
      IF(NCLUPA(I).GE.NCD+1) NCLUFA(I)=NCLUPA(I)-2
115
     CONTINUE
C
114 NUBC=3HYES
```

C

-163-

NCODE=10HSHKCD \$ CALL FRNTFF(ACCCE)

RETURN \$ END

c

```
SUBPOUTINE SHKCCA(NEIEST,N1,TEELCT)
      CEWWEN/PARAM/N, J, AJ, G, GF, DELR, NFLW
      COMMEN/TIME/T,DT,CTL,TWRITE,DELT,CTCX,AT
      COMMON/FIRFETC/INDEX, NOYCLE, NA, NAN, NATORE, NS, NITROTN
      CCWWCN/AFRAYS/P(501),U(2,501),F(2,501),C(2,501),E(2,501),R2(501)
      COMMON/DISCS/NTDISC,NDISCNC(51),NTYPE(51),NDISCL(51),SE(51),SL(61)
     *,RD(51),NTDISCT,NTDISCS
С
C----DET STATES 4 AND 5 DUE TO SHK-CD INTERACTION
      SET STATE1,0 AS REF STATE FOR POLAR SOLN, AS OVERALL REF STATE
c
      STD CONDITS ASSUMED TO HED ACROSS CD F=CONST . U=CONST
C
C
      VEL REF WRT SCRT(GE*P1/C1)
c
      P21=TC BE PEAC AS PRESS IN STATE2 REL TO AND NONCH BY STATE1
      U410=READ AS PRICLE VEL IN STIE4 REL TO STIEL AND NONDIM BY STIED
С
      U41=READ AS PRICLE VEL IN STATE4 REL TO AND NONDIM BY STATE1
С
C
C
C-----TWC POSSIBLE INTEFACTIONS - DEFENDING ON THE SPD OF SND RATIO
c
С
     A2.GT.A1
с
C
      - STATE -
                  - ---- S--- 5--- CD-- 4-- 5---- 1-
                  -3---S--2--CC--1--
с
С
С
С
      A2.LT.A1
c
С
                  -3---H+RARE+1--5--CC--4--5---1-
      - STATE -
c
                         -3---S--2--CC--1--
С
С
      GE=GF $ IF(NDISCL(NFIRST).GT.NFLM) GE=G
C----SET STATES 1,2 AND 3
      M=NDISCL(NFIRST) $ IS=0 $ IF(NTYFE(NFIFST).NE.2) IS=-1
      F10=F(2, M+2+2+IS) $ C1C=C(2, M+2+2+IS) $ U1C=U(2, M+2+2+IS)
      P20=P(2,M+1) $ C20=D(2,M+1) $ U20=L(2,M+1)
      P30=P(2,M-2+15) $ D30=D(2,M-2+15) $ U3(=U(2,M-2+15)
      U10=U10/D10/SCRT(G) $ U2C=U20/C20/SCRT(C) $ U3C=U30/D30/SORT(G)
      A10=SQRT(P10/D1C*GE/G) $ A20=SCRT(F2C/C2C*(E/G)
      A30=SCRT (P30/C30*GE/G)
      SL32=SL(NFIFST-IS) $ SE30=SE(NFIRST-IS)
      SIGN=1.0 $ IF(SL22.LT.0.C) SIGN=-1.C
С
      P11=D11=A11=1+0 $ U11=C+C
      F21=F20/P10 $ C21=C2C/D1C $ A21=A2C/A1C
      U210=U20-U10 $ U211=U210/A10
      SE31=SL32#A21+U211
      P32=P30/P20 $ P31=P32*P21
      U221=(U30-U20)/A10 $ U31=U321+U211
      D32=D30/D20 $ D31=C32*D21
      A32=A30/A20 $ A31=A32#A21
С
SL53=SL533=SL535=SE51=SEF1=SET1=$$$$$$.95.959
      BETA=(GE-1.)/(GE+1.) $ ALPFA=2./(GE-1.)
      NSIGN=-1 $ DFLP541=0.5 $ EFS=1.F-14 $ NITER=0
```

-165-

```
C
C----GUESS P51=P41 AS AVG BET F31 AND F FCF U31 AT A11
      U41=U31
      X]=(L41-U11)**2/A11**2*CE/(1.-EETA)
      P41=(2.+XI+SORT(XI**2+4.*XI*(1.+EETA)))/2.
      P51=P41=(P41+P31)/2.-0.3333330ELP541
С
C----PERFORM ITER OF THE PLR SCLN
      PEINT 1003,5132,421
 1003 FORMAT(1H1,5X,*SHK-CD INTERACTN - SHK WACH NC+, A21=+,2F8+4)
      NITER=NITER+1
 1
      IF(NITER.LT.75) GC TC 2
      IF (NITER .EQ .75) DELUSAV=DELU
      IF(NITFR.LT.86) GD TO 2
     IF((DELUSAV.LT.2.E-12).ANC. (DELL.LT.2.E-12)) CC TC 100
      PRINT 1000, DELU, DELUSAV
 1000 FCFMAT(1H ,5/,5X,*NC. CF ITERATIONS HAS REACHED WAX OF 854,2820.10
    *)
      IF (DELU.LT.9.E-10) GC TC 100
      DELR=-ABS(DELR) $ FFTUEN
      P51=F41=P41+DELP541
2
      SL41=SCRT((P41+EETA)/(I.+EETA))#SI(N
      SE41=SL41#A11+U11
      U41=(1.-EETA)*(1.-1./SL41**2)*$L41*A11
      D41=1./(BETA+(1.-BETA)/SL41**2)
      A41=SORT((1.-BETA)**2*(SL41**2-BETA/(1.+BETA))*(1./SL41**2+
     *BETA/(1.-EETA))*CE)
С
C----CHECK IF A2.CT.A1
      IF(A21.LT.1.0) GC TC 10
C
C----HERE A2.GT.A1 SC SHK-SHK
      P53=P51/P31
      SL53=-SCFT((PE3+EETA)/(1.+PETA))4SIGN
      SFE1=SL53#A31+U31
      U531=(1.-BETA)*(1.-1./SL53442)*SL53*A31
      051=0531+031
      D53=1./(BETA+(1.-BETA)/SLE3##2)
      D51=053*D31
      A53=SORT((1.-BETA)++2+(SL53++2-EET#/(1.+BETA))+(1./SL53++2+
     *RETA/(1.-RETA))*GF)
      A51=A53*A31
      GC TC 3
C
с
C----HERE A2.LT.A1 SO RARE-SHK
C----ASSUME A LEFT PUNNING RAFE
    P53=P51/P31
 10
      D53=((2.+ALPHA)/ALPHA/(E*(PE3-1.)+1.)**(ALFHA/(2.+ALPHA))
      D51=D53*D31
      A53=052**(1./ALPHA)
      A51=A53*A31
      UE21 =- ALPHA* ( AE2-1.) * A31* SIGN
      U51=U531+U31
      SL533=SL535=-1.*5IGA
      SEF1=SL523#A31+U31 $ SET1=SL535#A61+U61
```

-166-
С З DELU=ABS(U41-U51)*(ABS(1./U41)*ABS(1./U51))/2.0 C PRINT 1001, NITER, DELP541, DELU, A21, F21, C21, U211, U11, *F32,P31,C32,D31,A32,A31,U321,U31,SL32,SE31, *P41,D41,A41,U41,SL41,SE41,SL533,SL535,SEF1,SET1, *PE3.PE1.CE3.DE1.AE3.A51.LE31.LE1.ELE3.SEE1 1001 FCRMAT(1F , 15, 2E12.5, EF12.7, /, 10F13.5, /, 10F13.5, /) С IF(DELU.LE.FPS) GG TC 1CC с IF((U51*SIGN.LT.U41*SIGN).AND.(NSIGN.LE.C)) CELF541=-AES(DELP541) IF((L51*SICN.LT.U41*SIGN).AND.(NSICN.EC.-1)) NSICN=C IF((U51*SIGN+LT+U41*SIGN)+AND+(NSICN+EC+1)) CELP541=-ABS(DELP541)/ *****2 • IF((U41*SIGN.LT.U51*SIGN).AND.(NSICN.EC.-1)) DELPE41=ABS(DELPE41) IF((U41*SIGN.LT.U51*SIGN).AND.(NSIGN.GF.C))CELF541=APS(DELP541)/2. IF((U41#SIGN.LT.U51#SIGN).AND.(NSIGN.EC.C)) NSIGN=1 GC TC 1 С C C---- ACD DISCS TO THE FLOW FIELD 100 NT=NTDISCT \$ L10=U10#SCRT(G) NDISCNC(NT+1)=NTDISC+1 \$ NDISCNC(NT+2)=NTDISC+2 NDISCNC(NT+3)=NTOISC+3 NTYPE(NT+1)=NTYPE(NT+3)=2 \$ NTYFE(NT+2)=3 SL(NT+3)=SL53 \$ SL(NT+1)=SL41 \$ SL(NT+2)=0.0 SF(NT+3)=SE514A10*S0PT(G)+U10 \$ SF(NT+1)=SE41#A10*S0RT(G)+U10 SE(NT+2)=U41#A10#SCRT(G)+U10 NCD=NDISCL(N1+IS) R2(NCD)=R2(NCD+1)=RD(NT+2)=RD(NF IRST)+(U414+10+S2RT(G)+U10)+ *(DT-TRFLCT) FD(NT+3)=FD(NFIFST)+SE(NT+3)*(CT-TRFLCT) RD(NT+1)=RD(NFIRST)+SE(NT+1)+(ET-TFFLCT) IF(RD(NT+3+2*IS)+LT+R2(NCD-1)) RD(NT+3+2*IS)=R2(NCD-1) IF(RD(NT+1-2*IS).GT.F2(NCC+2)) FD(NT+1-2*IS)=R2(NCC+2) NDISCL(N1)=NDISCL(NFIRST)=-1 \$ NDISCL(NT+3+2+15)=NCD-1 NDISCL(NT+1-2+IS)=NCD+1 1 NDISCL(NT+2)=NCD C----SET THERE AND GAS PARAMETERS IN CELLS NCC, NCD+1 U50=U51+A10+SCRT(G)+U10 \$ U4C=U41+A1C+SCRT(G)+U10 M=NCD-IS D50=7(2,M)=D51+D10 \$ U(2,M)=UEC+DEC \$ FE0=F(2,M)=P51+P10 E(2, N)=D50*(P50/C50/(CE-1.)+U5C4#2/2.) M=NCD+1+15 D40=D(2,M)=D41*D10 \$ U(2,M)=U4C*D4C \$ F4C=F(2,W)=F41*P10 E(2.M)=D40*(P40/D40/(GE-1.)+U40**2/2.) NTDISCT=NTDISCT+3 \$ NTDISC=NTDISC+3 IF (A21.GT.1.0) GC TO 101 NTDISCT=NTDISCT-1 \$ NTDISC=NTEISC-1 NTYPE(NT+2)=4-4*IS M=NCD-IS \$ MM=NCD-1-3*IS D(2,M)=D(2,NM) \$ U(2,M)=U(2,MM) \$ E(2,M)=E(2,MM) \$ P(2,M)=P(2,MM) С С 101 NCODE=10F5HKCDA \$ IF(IS.EC.-1) NCCDE=1CFCDSFKA CALL PENTER(NCODE)

-167-

NITRCTN=3HYES RETURN \$ END

с

SUBROUTINE DETCDA(N1,N2,TRFLCT) COMMEN/PARAM/N, J, AJ, G, GF, DELR, NFLM COMMEN/TIME/T,DT,DTL,TWRITE,DELT,DTDX,AT COMMEN/FIRFET C/INDEX, NCY CLE, NA, NAN, NSTORE, NS, NITRCTN CCMMEN/DISCSKF/RDSAV(51),NLHS(51),NRHS(E1),NCRESS(E1) CCMMCN/POWER/VCAPF, R4R1, PDPDWEF, PPCWER, CND, CCAPF, SFECLD, SFE, NCJ COMMEN/ARRAYS/R(501),U(2,501),F(2,501),D(2,501),E(2,501),R2(501) COMMCN/DISCS/NTDISC,NDISCND(E1),NTYPE(E1),NDISCL(E1),SE(51),SL(51) *,RD(51),NTDISCT,NTDISCS -STATE------ 1---- 4-DETCNATION-3----STATE-----1-DE TONATION--2-CD-3---NCD=NDISCL(N2) \$ #I=NCD+2 DC 1 N=MI+N P(1, N-2)=P(1, N) \$D(1, N-2)=D(1, N) \$U(1, N-2)=U(1, N) \$E(1, N-2)=E(1, M) P(2,M-2)=P(2,M) \$D(2,M-2)=D(2,M) \$L(2,M-2)=L(2,M) \$E(2,M-2)=E(2,M) R(M-2)=R(M)\$ R2(M-2)=R2(M)CENTINUE DC 2 M=N2+NTDISCT IF(NDISCL(M).GT.MI) NDISCL(M)=NDISCL(M)-2 CONT INUE N=N-2 \$ NDISCL(N2)=-1 IF(N2+1.LE.NTDISCS) NRHS(N2+1)=NRHS(N2+1)-2 IF(N2+1.LE.NTCISCS) NLFS(N2+1)=NLFS(N2+1)-2 BETA=(GF-1.)/(GF+1.) \$ B=(GF-1.)/(C-1.) PGO=(1++BETA)*(VCAPF-BETA)/(1++BETA)-EETA A=SORT(P(2,NCD)/D(2,NCD)) PC=1.+(PG0-1.)/A++2+GF+(1.-1./A++2)+(C/GF+8-R4R1) SL(N1)=SGRT((2.*PG-(1.-EETA)+2.*SGRT(PG+#2-(1.-BETA)*PG-BETA))/ *(1.-BETA)/G) SE(N1)=SL(N1)#SORT(C)#A+U(2,N(C)/C(2,N(D)) RD(N1)=RD(N1)+SE(N1)+(DT-TRFLCT) IF(RD(N1)+LT+R2(NCD)) GC TC 3 IF(RD(N1).GT.R2(NCD+1)) RD(N1)=R2(NCD+1) PS1=(1.-ECTA)/2.*(1.+G*SL(N1)**2) 1 F(2.NCD)=FS1*P(2.NCD) LS=SORT(G)*A*SORT((1.-PETA)*(PS1-FC)*(FS1-1.)/G/ *(PS1+BETA))+U(2+NCD)/D(2+NCD) D(2,NCC)=D(2,NCC)/(1.-(1.-EET#)*(FS1-FC)/(FS1+BETA)) U(2,NCD)=US*D(2,NCD) E(2, NCD)=D(2, NCD)+(P(2, NCD)/C(2, NCD)/(GF-1,)+LS++2/2,) NFLM=NDISCL(N1)=NDISCL(N1)+1 A=SORT (P(2,NFLM+1)/D(2,NFLM+1)) PG=1++(PG0-1+)/A*+2+GF+(1+-1+/A++2)+(C/CF+E-R4R1) SL(N1)=SORT((2.*PG-(1.-BETA)+2.*SCRT(PG**2-(1.-BETA)*PG-PETA))/ *(1.-EETA)/G) SE(N1)=SL(N1)+SORT(G)+A+L(2,NFL++1)/C(2,NFL++1) NCCDE=10+DETCD \$ CALL FRATFF(ACCCE) NITRCTN= 3HYES RETURN \$ END

-169-

с с

c c

C

1

2

С

С

с З

С

COMMON/PARAM/N.J.AJ.G.GF.DELR.NFLM CCMMCN/TIME/T, CT, DTL, TWR ITE, DELT, DIDX, AT CCMMCN/PRFDCCR/DPC(2,13),UFC(2,13),EFC(2,13),PPC(2,13) COMMCN/ARRAYS/R(501).U(2,501).F(2.501).D(2.501).E(2.501).R2(501) CCMMCN/DISCS/NTDISC,NDIS(NC(51),NTYPE(51),NDISCL(51),SE(51),SL(51) *, RD(51), NTDISCT, NTDISCS С С PRINT 1001, NAME 1001 FEFMAT(1H ,1X,A4) RS=RD(NFIRST) \$ SSL=SL(NFIRST) \$ SSE=SE(NFIFST) ASHK=ADISCL(AFIPST) \$ PCD=PD(ASECCAD) \$ SECD=SE(ASECOND) NCD=NDISCL(NSECCND) \$ RF=RD(NTHIFC) \$ SFE=SE(NTHIFC) SFL=SL(NTHIRD) RCDIEST=RCD+SECC+PT NXSCD=0 IF (RCDTEST.GT.R2 (NCC+2))NXSCD=1 4 IF (FCDTEST.LT.F2(NCD-1))NXSCD=-1 SFESAV=SFE IF (PCD1EST.LE.RF+SFE*DT) GC TC 1 PFINT 1000,NCC,RCD,SECC, ACDTEST, AF, SFE, CT 6 1000 FORMAT(1H ,5/,1X,15,6E14.5,/,+ TRCLELE SHK-CD FLM, CD-FLM MERGE*) RETURN 1 NSCDF=10#(NFL#-NCC-1) +NXSCC CALL SHKCD(NFIRST, NSECOND, CHSHKCDFLM) IF(RCC.GT.RF+SFE*CT) GO TC 6 IF (NAME.EQ. 4HSCES) GC TC 2 C----PREDICTOR AND CORRECTOR FOR NELVAL = 10 M=NFLM+1 D(2,M)=DPC(2,10)=DPC(1,10)=DF(M,C) U(2, N)=UFC(2,10)=UPC(1,10)=UF(N,0) E(2, N) = EPC(2, 10) = EPC(1, 10) = EF(N, 0)P(2, V)=PPC(2, 10)=PPC(1, 10)=PP(10, 0) C----PREDICTOR AND CORRECTOR FOR NELV = 9 CALL SFVDPD(G,GF,PPC(1,10),DPC(1,1C),SFL,VC,FD,DELR) D(2,NFLM)=CFC(2,9)=DFC(1,9)=CFC(1,10)/VC P(2,NFLM)=PPC(2,S)=FPC(1,9)=FFC(1,10)*FC U(2,NFLM)=UPC(2,9)=UPC(1,9)=DPC(1,9)*(5FL*(1.-VD)+UPC(1,10)/ *DPC(1,10)) E(2, N)=EPC(2, S)=EPC(1, S)=DPC(1, S)*(PFC(1, S)/DFC(1, S)/(GF-1*)* *UPC(1,9)*#2/DPC(1,9)##2/2.) IF((NSCDF.E0.10).CR.(NSCCF.EG.21)) GC TC 5 IF(NSCDF.FC.9) GC TO 3 C----PREDICTOR FOR NFLM-1 = 8 M=NFLM-1 DPC(1,8)=DP(M,0) \$ UPC(1,8)=UP(M,0) EPC(1,8)=EP(+,0) \$ FPC(1,8)=PP(8,6F) C----CORRECTOR FOR NELM-1 = 0 M=NFLM-1 EPS=(R2(M)-RCC)/DELR C1=2.*(2.-EPS)/(1.+EPS) C2=2.*EPS-3. \$ C3=(1.-EPS)*(2.*EFS-1.)/(1.*EPS) D(2,M)=DPC(2,8)=(D(1,M)+DPC(1,E)+D1DX*(C1*UFC(1,7)+C2*UPC(1,8)+ *C3*UPC(1,9))+AT*CTDX*(C1*CPC(1,7)+C2*CFC(1,6)+C3*CPC(1,5)))/2. U(2,4)=UPC(2,2)=(U(1,N)+LPC(1,2)+D1DX+(C1+CN(7)+C2+CM(8)+C3+CM(9)) *+AT*CTDX*(CI#UPC(1,7)*C2#UPC(1,8)+C3#UPC(1,5)))/2.

-170--

SLEROUTINE SCOFLM(NFIRST, NSECCNE, NTHIRC, NAME)

	E(2,M)=EPC(2,F)=(F(1,N)+EPC(1,E)+D1DX+(C1+CF(7)+C2+CF(F)+C3+CF(9))
	*+AT*DTDX*(C1*EFC(1,7)+C2*EFC(1,E)+C3*EFC(1,S)))/2.
	P(2,N) = PPC(2,e) = PC(e,GF)
	GC TC 4
c	PREDICTOR FOR NELM-2 = 8(=C5)
3	DPC(1,8)=DPC(2,5) \$ UPC(1,8)=LFC(2,5)
	EPC(1+8)=EPC(2,5) \$ FFC(1+8)=FPC(2,5)
C	CORRECTOR FOR NELM = 9
4	D(2+NFLM)=CPC(2+9)=CC(5+NFLM+C) \$ L(2+NFLM)=UFC(2+9)=UC(5+NFLM+C)
	E(2+NFLM)=EPC(2+9)=EC(9+NFLM+0) \$ F(2+NFLM)=PPC(2+9)=PC(9+GF)
c	CORRECTOR FOR NFLM+1 = 10
	VD=DFC(1,10)/CPC(1,9) \$ CALL FLM42(5,VE,SFL)
	M=NFL #+1
	D(2,N) = DFC(2,10) $U(2,N) = UPC(2,10)$
	E(2,N)=EPC(2,10) \$ P(2,N)=PFC(2,10)
5	RD(NTHIRD)=R2(NFLM+1)=R2(NFLM)=RF=RF+SFESAV#DT
	SF(NTHIRD)=SFL+U(2,NFLM+1)/D(2,NFLM+1) & SL(NTHIRD)=SFL
C .	

RETURN \$ END

SUPROUTINE SCOPLMS(NFIRST, NSECCND, NTHIRD, N1) CCMMCN/FARAM/N, J, AJ, C, CF, DELR, NFLM COMMON/PREDCCF/DPC(2,13), UPC(2,13), EFC(2,13), PPC(2,13) CCMMCN/AFRAYS/R(501),U(2,501),F(2,501),D(2,501),E(2,501),R2(501) с **C** 2 CALL FLMSFK(4FSCFS,NTHIRE,NI) C----PREDICTOR AND CORRECTOR FOR NELM = 9(=7) C(2+NFLM)=CPC(2,9)=CPC(1,9)=CPC(1,7) U(2+NFLM)=UFC(2,9)=UPC(1,9)=UFC(1,7) E(7,NFLM)=FPC(2,9)=EPC(1,5)=EFC(1,7) P(2,NFLM)=PFC(2,9)=FFC(1,9)=FFC(1,7) C----PREDICTOR AND CORRECTOR FOR NELH+1 = 10(=8) D(2,NFLW+1)=CFC(2,10)=CPC(1,1C)=CPC(1,E) U(2,NFLM+1)=UFC(2,10)=UFC(1,10)=UFC(1,8) E(2,NFLM+1)=EPC(2,10)=EPC(1,10)=EPC(1,E) P(2,NFLM+1)=FPC(2,10)=FFC(1,10)=PFC(1,E) CALL SCOFLMINFIRST, NSECCND, NTHIRD, 445(FS) CALL FLMSHK (4+SCFK, NTHIRD, N1). с

RETURN \$ END

-172--

SUBROUTINE SKCDSHK(NFIRST,NSE(CNC,N1) COMMON/SCS/SECOSCS+RCDSCS+NXCDSCS COMMEN/DISCSKF/RDSAV(51),NLHS(51),NEHS(51),NCFCSS(E1) CCMMCN/DISCS/NTDISC,NDISCNC(51),NTYPE(51),NCISCL(E1),SE(51),SL(51) *, RD(51), NTDISCT, NTDISCS С PRINT 1000 1000 FORMAT(1H ,1X, #SHK-CD-SHK CALLED EY DISC#) с NCD=NDISCL(NSECCND) \$ SECC=SE(NSECCND) \$ RCD=RD(NSECOND) NAME=6HSCDGTI \$ IF (NCD-NDISCL (NFIRST).EG.1) NAME=6HSCDED1 CALL COSFK(NSECOND,N1,NAME) с PCDSCS=RD(NSECOND) \$ RD(NSECCND)=RCD NCDSCS=NDISCL (NSECOND) \$ NDISCL (NSECOND)=NCD SECDSCS=SE(NSECCND) \$ SE(NSECCND)=SECC \$ NXCESCS=NCRCSS(NSECOND) c CALL SHKCD(NFIRST,NSFCCNC,8FSFKCCSFK) с RETURN \$ END

-173--

	SUPROUTINE DOORSP(II.NI.N.A.NANE)
	CCMMCN/FARAM/N,J.AJ.G.CF.CELR.NFLM
	COMMENZIAMEZTADIADIA THRITEADELIADITXAA
	$C \cap M \cap A \cap S \cap S$
	COMMENTATE AVE AVERATING FOR A REPERT AND A COPPENSION AND A COMMENTATE AVERATING FOR A REPERT AND A COMMENTATE AVERATING AVERATING A COMMENTATE AVERATING AVERATING AVERATING AVERATING
	CCMMLN/AFFAT3/R(301);0(2;301);9(2;501);L(2;501);L(2;501);R2(501)
	CUMMENDISCSANDISC, NDISCNEISIJ, NIVPE(SIJ, NEISCE(SIJ, SE(51), SE(51)
	*,FC(51),NTCISCY,NTCISCS
c	
	D2M(SSL,GE,M)=D(1,M)/((GE-1,)/(GE+1,)+2,/(GE+1,)/SSL##2)
	U2M(SSL,GF,M)=D(2,H)+(U(1,M)/D(1,M)+SQFT(GE+P(1,M)/D(1,M))+(2,/
:	*(GE+1。)*SSL*(1。-1。/SSL**2)))
	P2M(SSL+GE+M)=P(1+M)*(2+*CE/(CE+1+)**SL**2-(CE-1+)/(GE+1+))
	E2H(GE,M)=D(2,N)*(F(2,N)/C(2,N)/(CE-1.)+U(2,N)**2/D(2,M)**2/2.)
c	
	SSLS(FAHD, PEHC, (F)=SCFT((FE+D/FA+C+(GE+1+)/(CE+1+))*(GE+1+)/2+/GE)
	SSES(SSL.GE.K.L)=SSL#SCR7(GE#FPC(K.L)/DFC(K.L))+UPC(K.L)/DPC(K.L)
c	
-	PG1(A)=1,+(PG0-1,)/A++2+(F+(1,-1,/#++2)+(C/(F+P-PAP1)
	$PETA=(GF=1, 1)/(GF=1, 1) \in R=(GF=1, 1)/(G=1, 1)$
~	POU- (I + VEETA) V (VCAPF- EETA) / (IO-EETA) / TEETA
C -	
C	
	GI=G \$ IF(NDISCL(NI)+1.LE.NFLN) GI=CF
	G2=G \$ IF(NDISCL(II)+1+LE+NFL#) G2=GF
	G3=C \$ IF(NDISCL(II)+LE+NFLM) C3=CF
	NCRSII=NCFCSS(II) \$ MII=NDISCL(II)+1
	NCRSNT=NCROSS(NI) \$ MNT=NDISCL(NI)+1
	NSC=100*(NCIS(L(NI)-NCIS(L(II))+10*NCFSII+NCFSNI
	PRINT 2000,NAME,NCRSII,NCRSNI,NII,NI,NI,NI,NSC
2000	FCFNAT(1H _1X,A7,1X,715)
	IF((MII.EG.MNI).AND.(NCRSII.EG.1).AND.(NCRSNI.EG.0)) GC TO 72
	GO TO 71
72	A = A = A = A = A = A = A = A = A = A =
71	TECNDHS(TI), NE-MNT) GO TO 1
<i>,</i>	
C	
<u></u>	= 2 - M - M - M - M - M - M - M - M - M -
(-SERVICENCES I PROTE PRINT PRINT PROFESSION OF THE SERVICE PRINT PROFESSION OF THE
	IF (NAME & EG. / PUISKSKO) GE IU 2
	IF((NAME.EG.THSPECIAL).OR.(NAME.EG.THSFECIAL)) GC TO 2
	IF(NTYPE(NI).EQ.2) CALL SFK(FC(NI),SE(NI),SL(NI),NDISCL(NI))
	IF(NTYPE(NI)+E0+5) CALL DET(FD(NI)+SE(NI)+SL(NI)+NDISCL(NI)+NCRSNI
1	*,7H DSORSD,NI)
	GC TC 2
C	-SHKNI PREDICTOR FOR NSHK+2+NORSNI = 4
1	IF((NAME.EQ.7HDTSKSKO).CR.(NAME.EC.7HSFECIAL)) GC TC 2
	GE=G1
	M=NDISCL(NI)+2+NCRSNI
	DPC(1,4) = DP(N,0) $UFC(1,4) = UF(N,0)$
	FPC(1,4) = FP(K,0) + PPC(1,4) = FP(4,6F)
(SEAN CORPORTED CONCERNIALIST
~	JERRE FREGERER, FUR REFRYLYNCHERE * 2 Newriter (fer twitter ar fer fer fer fer fer fer fer fer fer fe
	M-NUIDELNI/TITALADAL
	0/(1,3)-0/(M,0) & 0/(1,3)40/(M,0)
_	EPC(1,5]=EP(M,0) \$ FFC(1,3]=FF(2,CF)
C	-SHKNI CURRECTCR FCR NSHK414NCRSNI = 3

	D(2+N)=DPC(2+3)=CC(3+N+1) \$ U(2+N)=UFC(2+3)=UC(3+N+1)
	E(2,M)=EPC(2,3)=EC(3,M,1) \$ P(2,M)=PFC(2,3)=PC(3,GE)
c	SHKII PREDICTOR FOR NSFK-1 = ϵ
2	IF(NAME.EQ.7H DISKSK) GC IC 7
	M=NDISCL(II)-1
	DPC(1.6) = DP(N.0) UFC(1.6) = UF(N.C)
	FPC(1,6) = FP(M,0) \$ $PPC(1,6) = PP(f,G3)$
6	$= c_1 c_1 c_2 c_1 c_1 c_1 c_2 c_2 c_2 c_2 c_2 c_2 c_2 c_2 c_2 c_2$
C · · -	
	M-RUISLAII) Teanaisea (111) eo Naisca (NIN) gê tê s
	P = P Z M (SL (11), 62, M11) + L S - L Z M (SL (11), 62, M11)
	US=U2#(SL(II),G2,MII)/////sLS
	IF (NTYPE(II) - EQ - 2) GC IC 6
	A=SQRT(P(1,MIT)/D(1,MIT)) \$ PG=FGI(A)
	PS1=(1+-EETA)/2+*(1++ G*SL(II)**2) \$ FCT=PS=FS1*P(1+MII)
	DDT=DS=D(1,MII)/(1,-(1,-EETA)*(FS1-PC)/(PS1+EETA))
	UDT=US=DS#(SORT(G_)#A#SGRT((1EET#) #(PS1-PG)#(PS1-1.)/G
	* /(PS1+BETA))+U(1, MII)/D(1, MII))
	EDT=DS*{PS/DS/{CF-1.}+LS**2/DS**2/2.}
	GC TO E
5	IF((NAMF.EG.7HDTSKSKO).ANC.(NCISCL(NJ)+1.EG.*NT)) GO TO 96
	IF((NAME.EQ.7HSPECIAL).ANC.(NEISCL(NJ)+1.EC.NNI)) GC TC 102
	PS=P2N(SI(NI), GI, MNI) $S=D2N(SI(NI), GI, MNI)$
	A = Corr(0,1) + (1,1
	A = 3GH (P(1) MNI// L(1) MNI// 3 PC=PC(1) P/
	PSI=(1+ete(A)/2+t(1+t) + Cts(t(1+t+2)) + t(1+ete(A)/2+t(1+ete(A)/2+t(1+t+2)))
	UDT=US=DS*(SGFT(G)*A*SGFT((1-EETA))*(FS1-FG)*(FS1-1)/G
	* /(PS1+BETA))+U(1,MNI)/D(1,MNI))
	FDT=ns+(Ps/Ds/((F-1.)+Ls++2/D5++2/2.)
	GC TC S7
102	$PS=PPC(1,1) \ S \ DS=DPC(1,1) \ S \ US=UPC(1,1)$
	GC TC \$7
SE	PS=P2M(SL(NJ),G ,MNI) \$ DS=D2M(SL(NJ),G ,MNI)
	LS=U2M(SL(NJ),G ,MNI)/C(2,MNI)#CS
	IF(NTYPF(NJ).EQ.2) GC TC 82
	A=SGFT(P(1,MNI)/C(1,MNI)) \$ PC=PG1(A)
	PS1=(1EFTA)/2.*(1.+ C*SL(NJ)**2) 1 FCT=PS=FSI*P(1.NNI)
	DDT=DS=D(1.MNI)/(1(1EETA)*(PS1-PG)/(PS1+EETA))
	LDT=LS=DS+(SORT(G_)+A+SCRT((1_++FFT4) +(PS1-PG)+(PS1-1_)/G
	\pm 2(DS1+RFTA))+U(1,NKT)/D(1,NKT))
63	
62	
	US=(SORT(G) * A*SOPT((I) - EETA) * (FSI - FG)*(FSI - I) G
	* /(PS1+RETA))+US/CS)
	DDT=DS=DS/(1 - (1 - EETA) + (FSI - FC)/(FSI + EETA))
	UD T=US=US+DS
	ECT=CS+(PS/CS/(CF-1.)+US++2/DS++2/2.)
	DSI=DS \$ PSI=PS \$ LSI=LS
	GO TO 97
83	GE=G \$ IF(NTYFE(NJ).EC.5) GE=CF
	US=US/DS+SQRT(GE#PS/DS)#2•/(GE+1•)#SL(NI)#(1•-1•/SL(NI)##2)
	CS1=DS=D2N(SL(NI), CF, NNI)/C(1, NNI) + DS

Ĺ

```
USI=US=US*DS $ PSI=PS=P2M(SL(NI), CE, MNI)/F(1, MNI)*PS
 97
      IF(NTYPE(II)+EQ.5) GC TC C3
      GE = G3
      US=UE/DS+SORT (GE*PS/CS)*2*/(GE+1*)*SL(11)*(1*-1*/SL(11)**2)
      DS=D2M(SL(II),GE,MNI)/C(1,MNI)*CS
      US=US#DS
      PS=P2M(SL(II), CF, MNI)/F(1, MNI)*FS
      GC TC 6
 63
      A=SORT(PS/DS) $ PC=PGI(A)
                               G*SL(11)##2)
      PS1=(1.-BETA)/2.*(1.+
                                              1 FCT=PS=PS1*PS
      US=(SORT(G )*A*SORT((1.-PETA)
                                      *(FS1-FC)*(FS1-1.)/G
     * /(PS1+PETA))+US/DS)
      DDT=DS=DS/(1.-(1.-BETA)*(FS1-FC)/(FS1+EETA))
      LDT=US=US*DS
      ED1=D5*(P5/D5/(CF-1.)+U5**2/D5**2/2.)
      ES=(PS/DS/(G3-1.)+US##2/DS##2/2.)*DS
 6
      EFS=(RC(II)-R(M))/DELR
      C1=2.*(2.-EPS)/(1.+EPS)
      C2=2.*EPS-3. 1 C3=(1.-EPS)*(2.*EPS-1.)/(1.+EPS)
      DPC(1,7)=D(1,N)-DTDX*(C1*LS+C2*L(1,M)+C3*U(1,N-1))
      UPC(1,7)=U(1,4)-DTD x4(C14(LS*LS/DS+PS#RD(II)**J)+C2*PM(N)+
     *C3*FN(M-1))
      EPC(1,7)=E(1,N)-DTDX+(C1+LS/CS+(ES+PS+FC(II)++J)+(2+PE(N)+C3+
     *PE(M-1))
      PFC(1,7) = FF(7,G3)
C----SHKII CORRECTOR FOR NSHK = 7
      D(2, W)=DFC(2,7)=CC(7, N,0) $ U(2,M)=UPC(2,7)=UC(7,M,0)
      E(2, W)=EPC(2,7)=EC(7, W, C) $ P(2, W)=PFC(2,7)=FC(7, C3)
7
      IF(NCROSS(II).NE.1) GC TC 3
C----SHKII FREDICTCR FCF NSFK+1 = 8
      GE = G3
      DFC(1,8)=D2M(SL(11),CE,M11)
      UPC(1,8)=U2M(SL(11),GE,WII)/C(2,WII)*CFC(1,8)
      P(2,MII)=PPC(1,8)=P2M(SL(II),GE,MII)
      ERC(1,8)=DPC(1,8)+(FFC(1,8)/CFC(1,2)/(CE-1.)+UPC(1,2)++2/DPC(1,2)
     ***2/2。)
      IF(NTYFE(II).EC.2) CC TC 3
      P(2,MII)=PPC(1,8)=PDT $ CPC(1,8)=CCT $ EFC(1,8)=EDT $ UPC(1,8)=UDT
      IF((NCROSS(NI).NE.1).OR.(NRHS(II).EQ.MNI)) CC TC 4
3
      IF ( (NAME.EC. 7 HOTSKSKO) . CF. (NAME.EC. 7 HSFECIAL) GO TO 4
C----SHKNI PREDICTCR FOR NSHK+1 = 2
      P(2,MN1)=PPC(1,2)=P2M(SL(N1),C1,MN1)
с
C
A
      IF (NRES(II) .EC.MNI) GC TC 10
      IF(NRHS(II).EG.MAI+1) GC TC 20
      IF(NRHS(II).FC.MNI+2) CC TC 30
      IF(NRHS(II).EC.MNI+3) GC TC 24
C
10
      IF (NAME .NE .7HOTSKSKO) GC TO 80
      GC TC 22
C-----SHKNI PREDICTOR FOR NSHK = 2(=1)
81
      DPC(1,2)=DPC(1,1) $ UFC(1,2)=UPC(1,1)
      EPC(1,2)=EPC(1,1) $ PPC(1,2)=PPC(1,1)
C----SHKNI PREDICTOR FOR NSHK-1 = 1
      M=NDISCL(NI)-1
```

DPC(1,1)=DP(M,0) \$ UFC(1,1)=UF(M,C) FPC(1,1)=EP(M,0) \$ PPC(1,1)=PP(1,G2) C----SHKNI CORRECTOR FOR NSHK = 2 M=NDISCL(NI) D(2, M)=DPC(2,2)=DC(2, M, C) \$ U(2, M)=UFC(2,2)=UC(2, M, O) E(2,N)=EFC(2,2)=EC(2,N,0) \$ F(2,N)=PFC(2,2)=PC(2,G2) C----SHKII CORRECTOR FOR NSHK+1+NCRSII = 1 D(2, #11+NCRS11)=DP((2,1)=D((1,#11+NCRS11,1) 80 U(2, WII+NCRSII)=UPC(2,1)=UC(1,WII+NCFSII,1) E(2,MII+NCRSII)=EPC(2,1)=EC(1,MII+NCRSII,1) P(2, MII+NCESII)=FFC(2,1)=FC(1,62) 12 IF(NTYPE(11).EQ.5) GD TC 52 SSL=SSLS(PPC(1,1), PPC(1,7+NCREII), G2) \$ SSF=SES(SSL, G2, 1, 1) IF (NCRSII.NE.1) GC TC 11 C----SHKII CORRECTOR FOR NSHK+1 = E SSL=(SSL+SL(II))/2.0 \$ NCISCL(II)=NCISCL(II)+NCRSII IF(NTYPE(11).EQ.5) NFLM=NCISCL(11) GF = G2D(2,MII)=CPC(2,B)=C2M(SSL,CE,MII)U(2,MII)=UPC(2,8)=U2M(SSL,GE,WII) P(2,MII)=PPC(2,8)=P2M(SSL,CE,MII) \$ E(2,MII)=EPC(2,0)=E2M(GE,MII) GO TC 11 52 IF(NCRSII.EG.0) GD TO E3 D(2,MII)=DPC(2,8)=CDT \$ U(2,MII)=UFC(2,8)=UET F(2, M11)=FPC(2, 8)=EDT \$ F(2, M11)=FFC(2, 8)=FCT SSF=SE(11) \$ NCISCL(11)=NCISCL(11)+NCFSII IF(NTYPE(II).EG.E) NFLM=NDISCL(II) GC TC 11 53 A=SGRT(PPC(1,1)/CPC(1,1)) \$ PC=FG1(A) SSE= A # SOPT(G) # SORT((2. * PG-(1. - PETA) + 2. * SCRT(FG* 2-(1. - PETA) * PG #-BETA))/(1.-BETA)/G)+UFC(1.1)/CFC(1.1) 11 RD(II)=RD(II)+(SSE+SE(II))/2.+CT IF(NTYPE(II).EQ.5) GC TC 54 SL(11)=SSLS(PFC(2,1),FFC(2,7+NCFS11),C2) SE(II) = SSES(SL(II), G2, 2, 1)GC TC 55 64 A=SQRT(PPC(2,1)/CPC(2,1)) \$ PC=FG1(A) SL(11)=SCRT((2.*PG-(1.-EETA)+2.*SCRT(PG*#2-(1.-BETA)*PG-BFTA))/ #(1.-BETA)/G) SE(11)=SL(11)*SORT(G)*A+LPC(2,1)/DFC(2,1) IF ((RD(II).GT.R2(MII)).AND.(NCFSII.EC.C)) RC(II)=R2(MII)-DELR* 55 *1.E-10 IF((RD(II).LT.R2(MII)).AND.(NCRSII.EC.1)) FC(II)=R2(WII)+DELR* *1.E-10 IF((RD(II).LT.R2(MII-1)).AND.(NCFSII.EG.C)) RD(II)=R2(MII-1) *+DFLR#1.E-10 IF((RD(II).GT.RD(NI)).ANC.(NAHE.EG.7+ CISCES)) GC TC 100 9 IF((RD(II).GT.RD(NI)).AND.(NAME.EQ.7H CISCEC)) GC TO 100 **BETURN** С 20 IF((NCFSII.E0.0).AND.(NCFSNI.EC.0)) GO TO 21 IF((NCRSII.EQ.1).AND.(NCFSNI.EC.0)) GC TC 22 C----HERE NORSII=1 AND NORSNI=1 OR NORSHI=C AND NORSHI=1 C----SHKNI COMPLETE PREDICTOR FOR NSHK41 = 2 IF(NAME.EQ. THSPECIAL) GD TO 27 GE = GI

-177-

D(2, MNI)=DPC(1,2)=D2M(SL(NI),GE,MNI) U(2, MAI)=UPC(1,2)=U2M(SL(NI), (E, MAI) \$ EPC(1,2)=E2M(GE, MAI) IF(NTYPE(NI)+EG+2) GC TC 27 A=SOFT(P(1, MNI)/C(1, MNI)) \$ PG=PG1(A) C#SL(NI)#42) \$ FCT=PS=FS1*P(1,MNI) PS1=(1.-EETA)/2.+(1.+ DDT=DS=D(1,MNJ)/(1.-(1.-EETA)*(FS1-PG)/(FS1+EETA)) UDT=US=DS*(SQRT(G)*A*SCRT((1.-EET#) #(PS1-PG)#(PS1-1-)/G # /(PSI+BETA))+U(1,MNT)/D(1,MNT)) EDT=DS+(PS/DS/(CF+1.)+US++2/DS++2/2.) D(2,MNI)=DPC(1,2)=DCT \$ U(2,MNI)=UFC(1,2)=UCT E(2,MNI)=EPC(1,2)=EDT \$ P(2,MNI)=PFC(1,2)=FCT 27 IF((NCFSII.E0.0).AND.(NCRSNI.FG.1)) GC TO 21 C----SHKNI PREDICTOR FOR NSHK = 1 IF((NAME .EC.7+SPECIAL).AND.(MNI-WII.EC.2).AND.(NCRSII.EC.1)) 22 *GC TC 76 IF((NAME.EQ. 7HDTSKSKO).AND.(NDISCL(NJ)+1.EG.WAI)) GC TC 77 GC TC 78 77 PS=P2M(SL(NJ),G , MNI) \$ CS=D2M(SL(NJ),G , MNI) US=U2M(SL(NJ),G ,MNI)/D(2,MNI)*CS IF (NTYPE (NJ) . EG.2) GC TC 73 A=SORT(P(1,MNI)/D(1,MNI)) \$ PG=FG1(A) PS1=(1.-FETA)/2.+(1.+ C#SL(NJ)##2) \$ FDT=PS=PS1*P(1,MNI) CCT=0S=0(1.*N1)/(1.-(1.-EETA)+(FS1-PC)/(FS1+EETA)) UDT=US=DS*(SQRT(G)*A*SCRT((1.-BETA) *(FS1-FG)*(PS1-1.)/G # /(PS1+BETA))+U(1,MNI)/D(1,MNI)) EDT=DS#(PS/DS/(GF-1.)+LS##2/DS##2/2.) IF(NTYPE(NI).EQ.2) GC TC 74 73 A=SQRT(PS/DS) \$ PG=PG1(A) PS1=(1.-PETA)/2.*(1.+ G#SL(NI)##2) \$ FCT=PS=FS1*PS US=(SGPT(G)*A*SCFT((1.-EETA) *(FS1-FC)*(FS1+1.)/G * /(PS1+BETA))+US/DS) DDT=DS=DS/(1.-(1.-EFTA)*(PS1-PC)/(FS1+EETA)) UDT=US=US*DS EDT=DS#(PS/DS/(GF-1.)+US##2/DS##2/2.) GC TC 79 74 GE=G \$ IF(NTYFE(NJ).E0.5) GE=GF US=US/DS+SORT (GE #PS/DS)#2./(GE+1.)#SL(NI)#(1.-1./SL(NI)##2) DS=D2M(SL(NI),GE,MNI)/C(1,MNI)*CS US=US‡DS PS=P?M(SL(NI),CE,MNI)/F(1,MNI)#FS GO TC 79 78 IF(NTYPF(NI).E0.5) 60 TC 60 GE ≃G1 PS=P7M(SL(NI),GE,MNI) \$ DS=D2M(SL(NI),GE,MNI) US=U2M(SL(NI),CE,MNI)/C(2,MNI)#CS GC TC 79 60 A=SCFT(P(1,MNI)/C(1,MNI)) 1 PC=FC1(A) PS1=(1.-EETA)/2.*(1.+ f PCT=PS=PS1*P(1,MNI) G#SL(NI)##2) DDT=DS=D(1,MN1)/(1.-(1.+EETA)*(FS1-FG)/(PS1+EETA)) UDT=LS=DS#(SGRT(G)#A#SGFT((1.-EET#) \$ (PS1-PG) \$ (PS1-1.)/G * /(PS1+BETA))+U(1, MNI)/D(1, MNI)) EDT=DS#(PS/DS/(CF-1.)+US##2/D5##2/2.) 79 ES=(PS/DS/(G2-1.)+LS*#2/CS##2/2.)#CS M=NDISCL(NI) EFS=(RC(NI)-R(M))/CELR C1=2.*(2.-EPS)/(1.+EPS)

-178-

C2=2.*EPS-3. \$ C3=(1.-EPS)*(2.*EFS-1.)/(1.*EPS) D(2, M)=DPC(1,1)=DPC(2,1)=D(1,N)-DTCX*(C1*US+C2*U(1,M)+C3*U(1,N-1)) U(2,N)=UPC(1,1)=UPC(2,1)=U(1,N)-DTDX4(C1*(L5*US/DS+P5*RD(II)**J)+ *C2*PN(M)+C3*PN(N-1)) E(2, M)=EPC(1,1)=EPC(2,1)=E(1,M)~DTDX+(C1+U5/D5+(E5+P5+RD(11)++J)+ *C2*PE(M)+C3*PE(M-1)) P(2, W)=PFC(1,1)=PPC(2,1)=PP(1,G2) IF((NAME.EC.7HDTSKSK0).AND.(NRHS(II).EC.WNI)) GC TC 81 IF((NCRSII.E0.1).AND.(NCFSNI.EC.0)) CC TC 24 76 C----SHKNI CORRECTOR FOR NSHK = 1 23 M=NDISCL(NI) D(2,N)=DPC(2,1)=DC(1,N,1) \$ U(2,N)=UFC(2,1)=UC(1,N,1) E(2, W)=EPC(2, 1)=EC(1, W, 1) \$ P(2, W)=PPC(2, 1)=PC(1, G2) GC TC 24 C----SHKII PREDICTOR AND CORRECTOR FOR NSHK = 1 D(2,MII)=DPC(1,1)=DPC(2,1)=D(1,MII) 21 U(2, 411)=UPC(1,1)=UPC(2,1)=U(1,MI1) E(2, WII)=EPC(1,1)=EPC(2,1)=E(1,WII) P(2,MII)=FPC(1,1)=PPC(2,1)=P(1,WII) IF((NCRSII.EQ.0).AND.(NCRSNI.EC.C)) GC TC 24 GC TC 23 C----CALC SHKNI(HERE) AND SHKII(AT 12) SPCS AND FOSITION IF (NAME.EG. 7 HOTSKSKO) CC TO 12 24 IF(NAME.EG.7HSPECIAL) GC TC 26 IF(NTYPE(NI).EQ.5) GC TC 56 MH=1+NCRSNI SEL=SELS(PPC(1,3),PPC(1,++),G1) \$ \$5E=\$5ES(\$5L,G1,1,3) IF (NCRSNI.NE.1) GD TD 25 C----SHKNI CORRECTOR FOR NSHK411 = 2 SSL=(SSL+SL(NI))/2. \$ NDISCL(NI)=NCISCL(NI)+NCRSNI IF(NTYPE(NI).EG.5) NFLM=NDISCL(NI) GE = GID(2, WNI)=CPC(2,2)=C2M(SSL,CE,MNI) U(2,MNI)=UPC(2,2)=U2N(SSL,GE,MNI) P(2, MNI)=PPC(2,2)=P2M(SSL,GE,MNI) \$ E(2,MNI)=EPC(2,2)=E2M(GE,MNI) GC TC 25 IF(NCRSNI+EG+0) GD TC 57 56 D(2, MNI)=DPC(2,2)=DDT \$ U(2, MNI)=UPC(2,2)=UCT F(2,MNI)=EPC(2,2)=ECT \$ F(2,MNI)=FFC(2,2)=PCT SSE=SE(NI) \$ NDISCL(NI)=NDISCL(NI)+NCFSNI IF(NTYPE(NI).EC.5) NFLM=NDISCL(NI) GC TC 25 57 A=SQRT(PPC(1,3)/DPC(1,3)) \$ PD=PGI(A) SSF=A*SORT(G)*SCRT((2.*FG-(1.-EET#)+2.*SCRT(PG**2-(1.-EETA)*PG *-BETA))/(1.-RETA)/G)+UPC(1,3)/DFC(1,3) RD(NI)=RC(NI)+(SSF+SE(NI))/2.4CT 25 IF(NTYPE(NT).EQ.5) GC TC 58 GO TC 59 58 A=SORT(PPC(2,3)/DPC(2,3)) \$ PD=FG1(A) SL(NI)=SCRT((2.+PG-(1.-EETA)+2.+SCRT(PG++2-(1.-BETA)+PG-BETA))/ *(1.-BETA)/G) SE(NI)=SL(NI)#SORT(G)#A+UPC(2,3)/DPC(2,3) 59 IF((RD(NI).GT.R2(MNI)).AND.(NCFSN[.EC.0)) RC(NI)=R2(MNI)-DELR* #1.E-10 IF((FC(NI).LT.R2(MNI)).AND.(NCFSNI.EC.1)) FC(NI)=R2(MNI)+DELR*

```
*1.E-10
      IF((RD(NI) LT .R2(MNI-1)) AND.(NCFSNI.EC.C)) RD(NI)=R2(MNI-1)
     *+DELR*1.F-10
 26
      IF(NRES(II).EC.MNI+3) CC TC 4C
      GO TC 12
c
С
 30
      IF((NCRSII.E0.0).AND.(NCRSNI.EC.0)) GC TC 31
      IF((NCRSII.E0.1).AND.(NCFSNI.EC.0)) CC TC 32
C----HERE NCRSII=1 AND NCFSNI=1 DF NCFSII=0 AND NCRSNI=1
C----PRDCTR AND CRRCTR FOR FOITCUS NDE =1
      IF(NAME.EQ.7HSPECIAL) GO TO 24
      IF(NTYPE(NI).E0.5) GC TC 67
      GE = G1
      D(2, MNI)=DFC(1,1)=D2W(SL(NI),(E, WNI)
      UPC(1,1)=U2M(SL(NI),GE,MNI) $ FFC(1,1)=PPC(1,2)
      SSL= (SSLS(PPC(1,3), PPC(1,2), GE)+SL(NI))/2.
      DPC(2,1)=D2W(SSL,GE,WNI) $ PPC(2,1)=F2W(SSL,CE,WNI)
      UPC(2,1)=U2M(SSL,GE,MNI)/D(2,MNI)*CPC(2,1)
      GC TC 24
67
      A=SQRT(P(1,MNI)/D(1,MNI)) $ PG=FG1(A)
      PS1=(1.-PETA)/2.*(1.+
                              0#SL(N1)##2)
                                             $ PCT=PS=PS1*P(1,MNI)
      DDT=DS=D(1.MNI)/(1.-(1.-EETA)*(FS1-PC)/(FS1+EETA))
      UDT=US=DS*(SORT(G )*A*SORT((1.-PETA)
                                             *(PS1-PG)*(PS1-1.)/G
     * /(PS1+BETA))+U(1,MNI)/C(1,MNI))
     EDT=DS*(PS/DS/(GF-1.)+LS**2/DS**2/2.)
      DFC(2,1)=DPC(1,1)=DDT $ UPC(2,1)=UPC(1,1)=UDT
     EPC(2,1)=EPC(1,1)=EDT $ FPC(2,1)=FFC(1,1)=PCT
     GO TO 24
C----SHKII PROCTR AND CERCTE FOR FOTTOUS NOE =1
31
      GE=G1
      DPC(2,1)=DPC(1,1)=D2M(SL(NI),CE,NNI)
      PPC(2,1)=PPC(1,1)=P2V(SL(NI),CE,WNI)
     UPC(2,1)=UPC(1,1)=U2M(SL(NI),GE,MNI)/D(2,MNI)+DPC(1,1)
      IF(NTYPE(NI).EG.2) GC TC 66
      IF(NAME.NE.7H DTSKSK) GC TO 84
      A=SCRT(P(1, WNI)/C(1, WNI)) $ PC=PG1(A)
     PS1=(1.-EETA)/2.*(1.+
                               G#SL(N1)##2)
                                              $ FCT=PS=P51*P(1, MNI)
      DDT=DS=D(1,MNI)/(1.-(1.-EETA)*(FS1-FC)/(FS1+BETA))
      UDT=LS=DS*(SCFT(C )*A*SCFT((1.-EET#)
                                             #(FS1-PG)#(PS1-1.)/G
     # /(PS1+BETA))+U(1, WNI)/D(1, WNI))
     ECT=CS#(FS/DS/(CF-1.)+US##2/DS##2/2.)
84
      DPC(2,1)=DPC(1,1)=DDT $ UFC(2,1)=UPC(1,1)=UDT
      EPC(2,1)=EPC(1,1)=EDT $ UPC(2,1)=FFC(1,1)=FCT
      IF ((NAME.EC.7HDISKSKO).ANC.(NCISCL(NJ)+1.EC.MNI)) GO TO 101
66
      GG TO 24
     DPC(2,1)=DPC(1,1)=DS1 $ UPC(2,1)=UPC(1,1)=US1
101
      PPC(2,1)=PPC(1,1)=PS1
      GO TO 24
C----SFKII PREDICTOR AND COFRECTOR FOR NSFK41 = 1
     DPC(2,1)=DPC(1,1)=D(1,MII) $ LFC(2,1)=UFC(1,1)=U(1,MII)
32
      FFC(2,1)=PPC(1,1)=P(1,M11)
     GC TC 24
С
C-----SHKII PREDICTOR FOR NSHK+1 = 0
    IF(NTYPE(II).EQ.5) GC TC 68
40
```

-180-

	IF(NAME.EO.THSPECIAL) GC TC 41
	DPC(1,1)=DDT \$ UFC(1,1)=LDT \$ FFC(1,1)=FDT \$ EPC(1,1)=EDT
41	GF = G 3
	FFC(1,8)=P2M(SL(11),CE,W11)/P(1,W11)#FFC(1,1)
	DPC(1,8)=D2M(SL(11),GE,MII)/D(1,MII)*DFC(1,1)
	UPC(1,8)=DPC(1,8)*(UFC(1,1)/DFC(1,1)+SGFT(GE*PPC(1,1)/DPC(1,1))*
	*(2•/(GE+1•)*SL(II)*(1•-1•/SL(II)**2)))
	EPC(1,8)=CPC(1,8)*(PPC(1,8)/DPC(1,6)/(66-1.)+UPC(1,8)**2/DPC(1,8)
	***2/2•)
	SSL=SSLS(PPC(1,1),PPC(1,E),GE) \$ \$\$E=\$\$E\$(\$\$L,GE,1,1)
	SSL=(SSL+SL(II))/2.
	D(2,MII)=DPC(2,8)=D2W(SSL,GE,WII)/C(1,WII)*CPC(1,1)
	P(2,WII)=FPC(2,8)=P2M(SSL,6E,WII)/P(1,WII)*FPC(1,1)
	U(2,MII)=UPC(2,8)=DPC(2,8)*(UFC(1,1)/DFC(1,1)+SGRT(GE*PPC(1,1)/
	DPC(1,1))(2./(CE+1.)*S5L*(11./S5L**2)))
	E(2,MII)=FPC(2,8)=E2M(GE,MII)
	GC TC 65
68	D(2,WII)=CPC(2,E)=CPC(1,E)=DDT 1
	E(2,MII)=EPC(2,8)=FFC(1,8)=EDT \$ F(2,MII)=FFC(2,8)=PPC(1,8)=PDT
	SSE=SE(II)
69	DFC(2,1)=CPC(2,2) \$ UFC(2,1)=UFC(2,2)
	EPC(2,1)=EPC(2,2) \$ FFC(2,1)=FFC(2,2)
	NDISCL(II)=NDISCL(II)+NCFEII
	IF(NTYPE(II).EG.5) NFLM=NDISCL(II)
	GD TO 11
с	
с	
100	TARFLCT=(RC(II)-RD(NI))/(SE(II)-SE(NI))
	FD(NI)=FD(II)=FD(NI)-SE(NI)+TAFFLCT
	IF(NAME.EQ.7H DISCSD) CALL SHKDETA(II.NI.TAFFLCT)
	IF(NAME.EG.7H DISCDS) CALL DETSEKA(II.NI,TARFLCT)
с	

RETURN \$ END

-181-

RETURN \$ END

SLEFCUTINE SHKDETA(II,NI,TARFLCT) CCMMCN/PARAM/N,J,AJ,G,GF,DELR,NFLM DELR=-ABS(DELR) PRINT 1000 1000 FORMAT(1H ,2X,*SHKDFTA STOP*) C

-182-

```
SUBROUTINE DETSHKA(11,NI,TARFLCT)
      COMMCN/PARAM/N, J, AJ, G, GF, DELR, NFLM
      COMMEN/TRET/PLTF, CLTR, ULTR, ELTF, EVERENM, NOVERON
      CCMMCN/FIRFETC/INDEX, NCYCLE, NN, NNN, NSTCRE, NS, NITRCTN
      CCNNCN/FCWER/VCAPF, R4R1, PDPOWEF, FFCWER, CND, GCAPF, SFECLD, SFE, NCJ
      CDMMCN/AFRAYS/R(501),U(2,501),F(2,501),C(2,501),E(2,501),R2(501)
      COMMON/DISCS/NTDISC,NDISCNO(E1),NTYPE(E1),NCISCL(E1),SE(51),SL(51)
     +,RD(51),NTDISCT,NTDISCS
С
C
C----DVERDNH=DVERDRIVEN DETCNATION MACH NC.
C-----NOVERDN=ND. OF TIME STEPS DET HAS BEEN OVERDRIVEN
C
      PG1(A)=1++(PGC-1+)/A**2+CF*(1++1+/A**2)*(C/CF*8-R4R1)
      BETA=(GF-1.)/(GF+1.) $ E=(CF-1.)/(C-1.)
      PGO=(1.+EFTA) *(VCAFF-EET#)/(1.-EET#)-EET#
С
C-----ASSURE OVERCRIVEN DET INSTTSLY DECYS TO A DELAG PRESS EQUAL TO THE
      AVG CF (PREV CJ + DELAG FRESS CERS TO A RL FASSNG THEU PREV CJ)/2
С
      NDISCL(NI)=-1 $ NSHK=NDISCL(II)
      A=SQFT(P(2,NSHK+1)/D(2,NSHK+1)) $ FG=FG1(A)
      AM2=(P(2,NSHK)/P(2,NSHK+1)-1.)/(1.-D(2,NSHK+1)/D(2,NSHK))/G
      PDFLAG=(1.-BETA)/2.+(1.+C+AM2)
      PDFLAG=(PDFLAG+SGRT(PDFLAG*#2-G#(1.-EETA)#A#2#PG+EETA))#P(2.NSHK+1
     *)
      PAVG=(PDFLAG+F(2,NSFK))/2.
      PRATIO=PAVG/P(2,NSHK+1)
      SL(11)=OVERDN#=SCFT((PFATIC+BETA)*(PFATIO-1.)/(1.-BETA)/(PRATIO
     #-PG)/G)
      SE(II)=SL(II) #A#SCRT(G)+U(2,NSHK+1)/C(2,NSHK+1)
      NEVERDN=0
С
      RD(11)=PC(11)+SE(11)+TARFLCT
      IF(RD(II).LT.R2(NSHK+1)) GC TC 1
      IF(RD(II).CT.R2(NSHK+2)) RD(II)=R2(NSHK+2)
      P(2,NSHK+1)=PAVG
      U(2,NSHK+1)=SCRT(G)*A*SCRT((1.-EETA)*(PRATIC+PG)*(PRATID-1.)/
     #G/(PFATIC+EETA))+U(2,NS+K+1)/D(2,NSHK+1)
      D(2,NSHK+1)=D(2,NS+K+1)/(1.-(1.-EETA)+(PRATIC-PG)/(PRATIC+BETA))
      U(2,NSHK+1)=U(2,NSHK+1)+C(2,NSHK+1)
      E(2,NSFK+1)=D(2,NSHK+1)*(F(2,NSFK+1)/D(2,NSFK+1)/(GF-1.)+
     #U(2, NSHK+1) ##2/D(2, NSHK+1)##2/2.)
      NFLM=NDISCL(II)=NDISCL(II)+1
С
      NCODE=10HDETSHKA
                          $ CALL PRAIFF (ACCDE)
1
      NITRCTN=3HYES
С
      RETURN $ ENC
```

. . .

12.11

	SUBREUTINE SCTRETR(N1.N2.N3.NTR)
	CCMMCN/DISCS/NTDISC,NDISCNC(51),NTYPE(51),NDISCL(51),SE(51),SL(51)
	*,RD(51),NTDISCT,NTDISCS
c	
	PRINT 1000
1000	FORMAT(1H .5/,5X,*TERVINATING TAIL OF PARE (ASSOC WITH CJ-DET) IN
,	#SUBROUTINE SCTRDTR#)
с	
	CALL SHKCD(N1,N2,8HSKCD DET)
	NTYPE(N2)=3
	PRINT 1001
1001	FORMAT(1H ,/,SX,*CD TYPE SET TC 3 IN SCYFDTF*)
~	

RETURN & END

-184-

```
SLOROUTINE SCOTDET(NI,NX5,N2,NXCC,N3,NXTF,N4,NXC,NAME)
      COMMON/PARAM/N, J, AJ, G, GF, DELR, NFLM
      CCHMCN/TIME/T,DT,DTL,TWRITE,DELT,CTCX,AT
      CCMMCN/PREDC6F/DPC(2,13),UPC(2,13),EFC(2,13),PPC(2,13)
      CCMMCN/AFRAYS/R(501),U(2,501),P(2,501),D(2,501),E(2,501),R2(501)
      COMMEN/DISCS/NTDISC,NDISCNC(51),NTYPE(51),NEISCL(51),SE(51),SL(51)
     *, RD(51), NTDISCT, NTDISCS
С
C
      NTF=NDISCL(N3) $ NCD=NDISCL(N2)
      NSC=100+(NTP-NCC-1)+10+NXCD+NXTF
     PRINT 1000,NAMF,NSC+(I,NDISCL(I),NYYFE(I),I=N1,N4),NX5,NXCD,NXTR,
     *NXD
 1000 FORMAT(1H ,1X,A4,1715)
      IF (NXTE-NE-1) GC TO 1
      PRINT 1001
 1001 FORMAT(1H ,5/,5×, #TROUBLE IN SCOTDET, NXTR=-1#,2/)
      DELR=-AES(DELF) $ FETURN
С
      IF (NAME.EG.442675) CALL SHKCD(N1,N2, EHSKCD DET)
1
      IF(NAME.EG.4H675C) CALL (D(FD(N2),SE(N2),NCISCL(N2),SHCDTRD)
      NAMES=PHSCTD YES $ IF (NSC .LT .200) NAMES=EMSCTD NO
      CALL TEDET (N3 ,NXTR, N4 , NXC, NAMES)
      IF((NSC+E0+0)+DR+(NSC+EG+-10)+CF+(NSC+EG+-5)+CF+(NSC+EG+1)+DR+
     #(NSC.EC.110).CR.(NSC.EQ.111)) RETURN
     IF(NSC.NE.11) GC TC 5
C----CORRECTOR FOR NDISCL(N2)-1
      M=NDISCL(N2)-1
      D(2,N)=D(2,N+1) $U(2,N)=U(2,N+1) $E(2,N)=E(2,N+1) $P(2,N)=P(2,M+1)
      RETURN
 5
      IF((NSC.NE.210).4NC.(NSC.NE.211)) (C TC 4
C \rightarrow --- CORRECTOR FOR NCD+3 = (P12)
      N=NCD+3
      D(2, N)=DPC(1,12) $ L(2, N)=LFC(1,12)
      E(2,M)=EPC(1,12) $ P(2,M)=PPC(1,12)
      RETURN
C----PREDICTOR FOR NDISCL(N2)+1+(NXCD-1)*NXCD/2 = 11
      W=NDISCL(N2)+1+(NXCD-1)*NXCD/2
 4
      DPC(1,11)=D(2,N) $ LPC(1,11)=L(2,N)
      EPC(1,11)=F(2,M) $ PPC(1,11)=P(2,W)
      IF((NSC+EG+200)+CF+(NSC+EG+201)+CF+(NSC+EG+210)+OR+(NSC+EG+311))
     #G0 T0 2
C----PREDICTOR AND COFFECTOR FOR NCC+2 = 12
      M=NCD+2
      D(2,M)=DPC(2,12)=DPC(1,12)=D(1,W)
      U(2,#)=UFC(2,12)=UFC(1,12)=U(1,#)
      E(2, N)=EPC(2,12)=EPC(1,12)=E(1,N)
      P(2, *)=PP((2,12)=PPC(1,12)=P(1,*)
      IF(NSC.E0.100) RETURN
      IF(NSC.EQ.101) GD TD 3
C----CCRRECTOR FOR NOISCL(N2)+2 = 12
      D(2,M)=DC(12,N,0) $ U(2,M)=UC(12,N,0)
      E(2, M)=FC(12, M, 0) $ P(2, M)=PC(12, CF)
      RETURN
C----PREDICTOR FOR NCD+3 = 13
З
      M=NCD+3
```

-185-

```
DPC(2,13)=D(2,M) $ UPC(2,13)=U(2,M)

FPC(2,13)=F(2,M) $ FFC(2,13)=F(2,M)

C-----CDRRECTDR FDR NCD+2+NXCD = 12

2 M=NCD+2+NXCD

EPS=(R2(M)-RD(N2))/DELP

C1=2.*(2.-EPS)/(1.+EPS)

C2=2.*EPS-3. $ C3=(1.-EFS)*(2.*EPS-1.)/(1.+EPS)

D(2,M)=(D(1,M)+DPC(1,12)+DTDX*(C1*LPC(1,11)+C2*UPC(1,12)+C3*UPC(1,

*13))/2.

U(2,M)=(U(1,M)+UPC(1,12)+DTDX*(C1*CF(11)+C2*CF(12)+C3*CH(13))/2.

E(2,M)=(F(1,M)+EPC(1,12)+DTDX*(C1*CE(11)+C2*CF(12)+C3*CF(13))/2.

DPC(2,12)=D(2,M) $ UPC(2,12)=U(2,M)

EPC(2,12)=F(2,M) $ P(2,M)=PC(12,GF)
```

RETURN \$ END

С

÷

-186-

```
SUBROUTINE COFL#(NAWE, NFIRST, N1)
      COMMON/PARAM/N, J, AJ, G, GF, DELR, NFLM
      COMMEN/TIME/T, DT, DTL, TWRITE, DELT, CTCX, AT
      CCMMCN/PREDCOR/CPC(2,13), UPC(2,13), EFC(2,13), PPC(2,13)
      CCNMCN/AFRAYS/R(501),U(2,501),P(2,501),D(2,501),E(2,501),R2(501)
      COMMEN/DISCS/NTDISC,NDISCNC(51),NTYPE(51),NCISCL(51),SE(51),SL(51)
     *,RD(51),NTDISCT,NTDISCS
С
С
      RCD=RD(NFIRST) $ NCD=NDISCL(NFIRST) $ SECD=SE(NFIRST)
      RF=RD(N1) $ SFE=SE(N1) $ SFL=SL(N1)
C
      RCDSAV=RCD $ RCD=FCD+SECD#DT
      NCROSS=0
      IF(RCD+GT+R2(NCD+2)) NCRCSS=1 $ IF(RCD+LT+R2(NCD-1)) NCFCSS=-1
      NELMODX=10+(NEL M-NCC)+NCECSS
      NSC=100+(NDISCL(N1)-NDISCL(NFIRST)+1)+10*NCFCSS
      PRINT 1001, NAME, NELNCOX, NCECSS, NSC
 1001 FCRMAT(1H ,1X,A4,315)
      IF (NELMODX .NE .21) CO TO 5
      FRINT 1000, RCCSAV, FCC, SECC, CT, F(NFLM), F2(NFLM), SFE, SFL, NCD, NFLM
 1000 FORMAT(1H ,8E14.7,215,/,* SUBROUTINE CD-FL**)
      RETURN
С
      IF (NAME.EQ.4H CFS) OD TO 2
o
C----PREDICTOR AND CORRECTOR FOR NFL#+1 = 8
      M=NFLM+1
      D(2,N)=DFC(2,E)=DFC(1,E)=DF(M,0) $L(2,M)=UFC(2,E)=UFC(1,E)=UF(M,C)
      E(2, N)=EPC(2, 8)=FPC(1, P)=EF(N, 0) $F(2, N)=PFC(2, 8)=PPC(1, 8)=PP(8, G)
C----PREDICTOR AND CORFECTOR FOR NELM = 7
      CALL SFVDPD(G,GF,FPC(1,9),CFC(1,B),SFL,VC,FC,CELR)
      D(2,NFLM)=DPC(?,7)=DPC(1,7)=DFC(1,8)/VC
      P(2,NFLW)=PPC(2,7)=PPC(1,7)=PFC(1,8)*PC
      U(2,NFLW)=UPC(2,7)=UPC(1,7)=DFC(1,7)*(SFL*(1.-VD)+UPC(1,8)/
     *DPC(1,8))
      E(2, NFLW)=EFC(2,7)=EFC(1,7)=EFC(1,7)+(FFC(1,7)/CFC(1,7)/(GF-1.)
     *+UPC(1,7) **2/DPC(1,7) **2/2.)
      RD(N1)=RF=R2(NFLW)=R2(NFLW+1)=RF+(SFL+UPC(1,E)/DPC(1,E))+DT
 2
      IF(NFLWCDX+EQ+19) GC TC 3
C----PREDICTOR FROM NCD-2 = 1
      M=NCD-2
      DPC(1,1)=DP(M,0) $ UPC(1,1)=UP(M,0)
      EPC(1,1)=EP(M,0) $ PPC(1,1)=PP(1,CF)
C----PREDICTCR FCR NCD-1 = 2
      M=NCD-1
      EFS=(R(NCD)-R(M))/DELR
      C1=2.*(2.-EPS)/(1.+EPS)
      C2=2.*EPS-3. $ C3=(1.+EPS)*(2.*EPS-1.)/(1.+EPS)
      DPC(1,2)=D(1,*)-DTDX*(C1*U(1;KCC)+C2*U(1,*)+C3*U(1,*-1))
     *-AT*DTDX*(C1*C(1,NCD)+C2*D(1,W)+C3*C(1,W-1))
      UPC(1,2)=U(1,N)-DTDX*(C1*FM(NCC)+C2*FM(N)+C3*FM(N-1))
     +-AT#01DX#(C1#U[1,NCD)+C2#U[1,N)+C3#U[1,N-1))
      FFC(1,2)=E(1, N)-CTDX+(C1+PE(NCC)+C2+FE(N)+C3+PE(N-1))
     *~A1*DTDX*(C1*E(1,NCD)+C2*E(1,N)+C3*E(1,N~1))
      PPC(1,2)=PP(2,GF)
C----CORRECTOR FOR NCC-1 = 2
```

-187-

```
D(2, M)=DPC(2,2)=CC(2, M,0) $ U(2, M)=UPC(2,2)=UC(2, M,0)
      E(2,N)=EPC(2,2)=EC(2,N,0) $ F(2,N)=PPC(2,2)=PC(2,GF)
C----PREDICTOR AND CORRECTOR FOR NCD,NCD+1 = 3,4
      CALL GLIM(NCD-1,NCD+2,3,NCD,SECD)
 3
      RCD=RCDSAV+SECD*DT
      IF(((RCD.GT.R2(NCD+2)).AND.(NCFC55.EC.C)).CF.((RCD.LT.R2(NCD+2)).
     *AND. (NCROSS.EG.1))) FCD=F2(NCC+2)
      IF(((RCD.LT.R2(NCD-1)).AND.(NCRESS.EG.C)).CF.((RCD.GT.F2(NCD-1)).
     *AND.(NCRCSS.FQ.-1))) PCD=R2(NCD-1)
      IF(NCRCSS) 4,5,6
C----PREDICTOR AND CORRECTOR FOR NCD-1 = 2+E(=4)
      M=NCD-1
 4
      D(2,M)=DPC(2,2)=DPC(1,2)=DPC(2,6)=CFC(1,6)=CFC(1,4)
      U(2, #)=UPC(2, 2)=UPC(1, 2)=UPC(2, 6)=UPC(1, 6)=UPC(1, 4)
      E(2, W)=EPC(2,2)=EPC(1,2)=EPC(2,6)=EPC(1,6)=EFC(1,4)
      P(2,M)=PPC(2,2)=PPC(1,2)=PPC(2,6)=PPC(1,6)=FPC(1,4)
      GC TC 8
C----PREDICTOR AND CORRECTOR FOR NCD+2 = 5(=3)
      M=NCD+2
 6
      D(2,N) = DPC(2,5) = DPC(1,5) = DPC(1,3)
      U(2,M) = UPC(2,E) = UPC(1,E) = UPC(1,2)
      E(2, W) = EPC(2, 5) = EPC(1, 5) = EFC(1, 3)
      P(2, W)=PPC(2, E)=PPC(1, E)=PPC(1, 2)
 5
      IF((NFLMCDX.EQ.20).CR.(NFLMCDX.EQ.31)) GC TC 10
C----PREDICTOR FOP NFLM-1 = 6
      M=NFLM-1
      DPC(1,6)=DP(M,0) $ UPC(1,6)=UP(M,C)
      EPC(1,6)=EP(M,0) $ PPC(1,6)=PP(6,CF)
C----CORRECTOR FOR NELM-1 = 6
      EPS=(R2(NCD+2)-RCD)/DELR
      C1=2.*(2.-EPS)/(1.+EPS)
      C2=2.*EPS-3. 1 C3=(1.-EPS)*(2.*EPS-1.)/(1.+EPS)
      D(2, N) = DPC(2, \epsilon) = \{D(1, N) + DPC(1, \epsilon) + DPC(1, \epsilon) + C(1, k) + C(1, k) + C(1, k) + C(1, k) \}
     *C3#UPC(1,7)}-AT*CTDX*(C1#DPC(1,4)+C2#DFC(1,6)+C3#DPC(1,7))}/2+
       U(2,N) = UFC(2, 6) = \{ U(1, N) + UFC(1, 6) + DTDX & (C1 + CN(4) + C2 + CM(6) + C3 + CM(7) \} 
     *-AT*DTDX*(C1*UPC(1+4)+C2*UPC(1+6)+C3*UFC(1+7)))/2+
      E(2,M)=EPC(2,6)=(E(1,M)+EFC(1,6)+CTCX*(C1*(E(4)+C2*CE(6)+C3*CE(7))
     #-A1*DTDX*(C1*EPC(1,4)+C2*EPC(1,6)+(3*EFC(1,7)))/2.
      P(2, V)=PP((2, 6)=PC(6, CF)
C----COFRECTOR FOR NELM = 7
      D(2,NFLM)=DPC(2,7)=DC(7,NFLM,C) $ U(2,NFLM)=UFC(2,7)=UC(7,NFLM,D)
 8
      E(2,NFLM)=EPC(2,7)=EC(7,NFLM,0) $ F(2,NFLM)=PPC(2,7)=PC(7,GF)
C----CORRECTOR FOR NFLM+1 = 8
 7
      VD=DPC(1,8)/DPC(1,7)
      CALL FLM43(7, VD, SFL)
      M=NFLM+1
      D(2+N)=DPC(2+8) $ U(2+M)=UFC(2+8)
      E(2,N)=EPC(2,8) $ P(2,N)=PPC(2,E)
      SL(N1)=SFL $ SE(N1)=SFL+U(2,M)/C(2,P)
C----ADVANCE CD CELL POSITION NUMBER IF NECCESSARY
     IF(NCROSS.FO.0) GO TO 16
 10
      M=NCD+2+3*(NCFDSS-1)/2
      PS=P(2,N) $ DS=D(2,N) $ US=U(2,N) $ ES=E(2,N) $ RS=R2(N)
      IF(NCRCSS.FO.-1) GC TO 15
      P(2,NCD+2)=P(2,NCC+1) $ F(2,N(C+1)=P(2,NCC) $ P(2,NCD)=PS
      U(2,NCD+2)=U(2,NCD+1) $ L(2,NCD+1)=U(2,NCD) $ U(2,NCD)=U$
```

-188-

E(2,NCD+2)=E(2,NCD+ D(2,NCD+2)=D(2,NCD+) \$ E(2,NCD+1)=E(2,NCD) \$ D(2,NCD+1)=D(2,NCD	C) { E{2+NCD}=ES) { D(2+NCD)=DS
F2(NCD)=FS		
GC TO 16	· · ·	
P(2+NCD-1)=P(2+NCD)	\$ P(2,NCD)=P(2,NCD+1)	\$ F(2+NCD+1)=PS
U(2.NCD-1)=U(2.NCD)	\$ U(2.NCD)=U(2.NCC+1)	1 U(2.KCD+1)=US

D(2,NCD-1)=D(2,NCD) \$ D(2,NCD)=D(2,NCD+1) \$ D(2,NCD+1)=DS E(2,NCD-1)=F(2,NCD) \$ E(2,NCD)=E(2,NCD+1) \$ E(2,NCD+1)=ES R2(NCD+1)=RS

16 NDISCL(NFIFST)=NCD=NCD+NCRCSS \$ FC(NF1FST)=F2(NCD+1)=RCD SE(NFIRST)=SECD

RETURN \$ END

15

с

SLBROUTINE COFLASK(NEIFST, NSECCNC, NI)

CALL FLMSHK(4+CFS1,NSECCNC,N1) CALL CDFLM(4H CFS,NFIRST,NSECCND) CALL FLMSHK(4+CFS2,NSECCND,N1)

RETURN \$ END

с

С

5

SUBROUTINE COSHK (NEIRST , NI , NAME) COMMENZUEDENDZNUEC CCMMCN/PARAM/N, J, AJ, G, GF, DELR, NFLM COMMEN/TIME/T, DT, DTL, TWRITE, DELT, DTDX, AT COMMCN/DISCSKF/RDSAV(51), NLHS(E1), NRHS(51), NCFCSS(E1) COMMCN/PREDCCR/DPC(2,13),UPC(2,13),EFC(2,13),PPC(2,13) COMMCN/AFRAYS/F(501),U(2,501),F(2,501),C(2,501),E(2,501),R2(501) COMMCN/DISCS/NTDISC,NDISCNC(51),NTYPE(51),NDISCL(51),SE(51),SL(51) *, FD(51), NTDISCT, NTDISCS COMMEN/PPCHR/NPFTH, NUMA, NUMAFET, NUFA, FFPTH (24), FUMA(150), RUPA(150) +,NCLPPTH(24),NCLUMA(150),NCLUFA(150),PTHNEXT,RUMANXT,TUFANXT, *DELPFTH.DELUMA.DELUFA С С RCD=RD(NFIRST) \$ SECD=SE(NFIRST) \$ NCC=NCIS(L(NFIFST) RS=RD(N1) \$ SSL=SL(N1) \$ SSE=SE(N1) \$ NSHK=NDISCL(N1) С GE=G \$ IF(NSHK.LE.NFLM) CE=GF NSHKSGN=0 \$ IF(SSL.GT.0.0) NSHKSGN=1 SECDSAV=SECD \$ SSESAV=SSE RSSAV=RS \$ RS=RS+SSE*DT \$ RCDSAV=RCD \$ RCD=FCD+SECD+DT NXSS=NXSCD=0 \$ NCS=0 \$ IF(NSHK.EC.NCC+1) MCS=-2 IF(RS.GT.R2(NSHK+1)) NXSS=1 \$ IF(RS.LT.R2(NSHK+NCS)) NXSS=-1 IF (RCD.GT.R2(NCD+2)) NXSCD=1 1 IF (RCD.LT.R2(NCD-1)) NXSCD=-1 NCDSHKX=0 \$ IF(RS+LT+RCD) NCDSHKX=1 NSC=100*(NSHK-1-NCD)+10*NXSCD+NXES PRINT 1001, NAME, NXSS, NXSCC, NCCSHKX, NSC 1001 FORMAT(1H ,1X,A6,415) IF((NSC.FC.-1).AND.(NCDS+KX.EC.0)) NXSS=C IF((NSC.EQ.-1).AND.(NCDSFKX.EG.0)) NSC=0 IF((SL(N1).LT.0.0).AND.(N1.EC.2).AND.(AES(SL(1)).LT.1.001)) GC TC *** 100** IF((SL(N1).LT.0.0).ANC.(N1.EG.4).ANC.(APS(SL(1)).LT.1.001)) GO TO * 100 С C IF((NAME+EG+6+SCDEG1)+DF+(NAME+EG+6+SCDCT1)+CR+(NXSCD+EG+1)) * GC TC 1 $C \rightarrow - - - P F F D I C T C F F C F N C C - 2 = 4$ M=NCD+2 DPC(1,4)=DP(M,0) \$ UPC(1,4)=UF(M,C) FPC(1,4)=EP(M,0) \$ FFC(1,4)=PP(4,(E) C----PREDICTOR FOR NCD-1 = 5 M=NCD-1 EPS=(RCDSAV-R(N))/DELR C1=2.*(2.-EPS)/(1.+EPS) C2=2.*EPS-3. \$ C3=(1.-EPS)*(2.*EPS-1.)/(1.*EPS) DPC(1,5)=D(1,N)-DTDX+(C1+L(1,NCC)+C2+L(1,N)+C3+U(1,N-1)) *-AT*DTDX*(C1*D(1,NCD)+C2*D(1,M)+C3*D(1,M-1)) UPC(1,5)=U(1,N)-DTDX*(C1*FM(NCC)+C2*FW(M)+C3*FW(M-1)) *-AT*DTDX*(C)*U(1,NCD)+C2*U(1,N)+C3*U(1,N-1)) EPC(1,5)=E(1,N)-DTDX*(C1*PE(NCD)+C2*FE(M)+C3*PE(M-1)) *-AT*DTDX*(C1*E(1,NCD)+C2*E(1,N)+C3*E(1,N-1)) PPC(1,5)=PP(5,GF) C----CORRECTOR FOR NCC-1 = 5 D(2,M)=DPC(2,E)=DC(5,M,C) \$ U(2,M)=UFC(2,E)=UC(5,M,C)

E(2, N)=EPC(2, 5)=FC(5, N, 0) & P(2, N)=PFC(2, 5)=FC(5, GE) C----PREDICTOR AND CORRECTOR FOR NCD, NCC+1 = 6,7 M=NCD-1 & IF(NAME.EG.6FS(DEC1) #=NCD 1 MM=NCD+1 \$ IF (NSHK-NCD-1.CE.1) PN=NCD+2 CALL GLIM(M, MM, C, NCC, SECC) IF(NAME-NE-6H RARCD) GC TC 27 D(2,NCD) = DPC(1, 6) = DPC(2, 6) = D(1, NCD)U(2,NCD) = UPC(1,6) = UPC(2,6) = U(1,NCC)E(2,NCD)=EPC(1,6)=EPC(2,6)=E(1,NCD) P(2, NCD) = PPC(1, 6) = PPC(2, 6) = P(1, NCD)GC TC 28 IF(NAME.NE.6+CDRS+K) GD 10 28 27 D(2, NCD+1) = CPC(1, 7) = CFC(2, 7) = C(1, NCD+1)U(2,NCD+1)=UPC(1,7)=UPC(2,7)=U(1,NCC+1) E(2, NCD+1)=EPC(1,7)=EPC(2,7)=E(1,NCD+1) P(2, NCD+1) = PPC(1,7) = PFC(2,7) = F(1, N(C+1))28 RCD=RCDSAV+SECD+DT IF(((RCD.GT.R?(NCD+2)).AND.(NXSCC.FG.C)).OF.((RCD.LT.R?(NCD+2)). *AND.(NXSCD.EQ.1))) RCD=R2(NCD+2) IF(((RCD.LT.R?(NCD-1)).AND.(NXSCD.E0.C)).CF.((RCD.GT.R?(NCD-1)). #AND.(NXSCD.EC.-1))) FCD=F2(NCC-1) С IF (NXSCD.EG.0) CO TC 2 C-----PDTR, CRTR FR. NCD+(3*NXSCD+1)/2=6+(3*NXSCD+1)/2=P(6-(NXSCD-1)/2) M=NCD+(3*NXSCD+1)/2 \$ WW=6+(3*NXSCC+1)/2 \$ WWW=6-(NXSCD-1)/2 D(2,N) = DFC(1,NN) = DFC(2,NN) = CFC(1,NNM)U(2,M)=UPC(1,NM)=UPC(2,NN)=UPC(1,NNN)F(2, M)=FFC(1, MN)=EFC(2, MN)=EPC(1, NNM) P(2,N)=PPC(1,NN)=PPC(2,NA)=PFC(1,NAN) IF(NXSS.EQ.0) GD TD 3 2 C----PREDICTOR FOR NSHK+(NXSS+1)/2 = 11 M=NSHK+(NXSS+1)/2 FFC(1,11)=P(1,M)#(2.*GE/(GE+1.)#SSL##2-(CE-1.)/(GE+1.)) DPC(1,11)=D(1,*)/((GE-1.)/(GE*1.)*2./(GE*1.)/SSL**2) IF (NXSS*NSHKSGN.E0.-1) GC TO 4C UPC(1,11)=DPC(1,11)*(U(1,N)/D(1,N)*SGFT(CE*F(1,M)/C(1,N))*20/ *(GE+1.)*SSL*(1.-1./SSL**2)) GC TC 41 PPC(1,11)=P(1,M)**2/PPC(1,11) \$ CFC(1,11)=C(1,M)**2/DPC(1,11) 40 UPC(1,11)=DPC(1,11)*(U(1,M)/D(1,M)-SQRT(GE*F(1,N*1)/D(1,V+1))*2*/ *(GE+1.)*SSL*(1.-1./SSL**2)) EPC(1,11)=DPC(1,11)*(PPC(1,11)/CPC(1,11)/(CE-1.)*UPC(1,11)**2/ 41 *DPC(1,11)**2/2.) C----PREDICTOR FOR NSHK+1+(NX55+1)*NX55/2 = 12 M=NSHK+1+(NXSS+1)*NX55/2 DPC(1,12)=DP(N,0) \$ UFC(1,12)=UF(N,0) EPC(1,12)=EP(*,0) \$ PPC(1,12)=PP(12,GE) IF (NXSS.EG.-1) CO TO 4 C----PREDICTOR FOP NSHK+2+NXSS = 13 M=NSHK+2+NXSS DPC(1,13)=DP(N,0) & UFC(1,13)=UF(M,0) EPC(1,13)=EP(*,0) \$ PPC(1,13)=FP(12,GE) IF((NXSS.EG.O).AND.(NSFKSGN.EC.C)) GC TC 5 C-----CCFRFCTOF FOR NSHK+1+NX55*(NX55+1)/2 = 12 ۵ M=NSHK+1+NXSS*(NXSS+1)/2 MM=NXSS#(NXSS+1)/2-(NXSS+1)#(NXSS-1)

-192-

D(2,4)=DPC(2,12)=DC(12,4,MM) \$ L(2,4)=LPC(2,12)=LC(12,4,M) E(2, M)=EPC(2,12)=EC(12, M, MM) 1 F(2, M)=FPC(2,12)=PC(12, GE) С С С 5 IF((NSC.NE.311).AND.(NSC.NE.31C).AND.(NSC.NE.211).AND.(NSC.NE.210) *.AND.(NSC.NE.200).ANC.(NSC.NE.309).ANC.(NSC.NE.189).AND.(NSC.NF. *199) . AND . (NSC . NE . 201)) GC TO 10 IF((NSFKSGN.EG.0).DR.(NSFKSGN#NXSS.EG.-1)) GC TD € C----PREDICTOR AND CORPECTOR FOR NSHK = 10 DS=D(1,NSHK+1)/((GE-1.)/(GE+1.)+2./(GE+1.)/SEL**2) PS=P(1,NSHK+1)*(2.*GE/(CE+1.)*SSL**2-(CE-1.)/(GE+1.)) US=DS#(U(1,NSHK+1)/D(1,NSHK+1)+SGRT(GE#P(1,NSHK+1)/ *D(1, \SHK+1)) #2./(CE+1.)#55L#(1.-1./SSL##2)) ES=DS#(PS/CS/(CE-1.)+US##2/DS##2/2.) EPS=(RSSAV-R(NSHK))/DELR C1=2.*(2.-EFS)/(1.+EPS) C2=2.*EPS-3. \$ C3=(1.-EPS)*(2.*EPS-1.)/(1.+EPS) D(2, NSHK)=DPC(2,10)=DPC(1,10)=D(1,NSHK)-DTC)*(C1*LS+C2*L(1,NSHK)+ *C3*U(1,NSHK-1))-AT*DTDX*(C1*DS+C2*C(1,NSHK)+C3*D(1,NSHK-1)) U(2,NSFK)=UPC(2,10)=UPC(1,10)=U(1,NSFK)-DTC)*(C1*(US**2/DS+PS)+C2 **PM(NSHK)+C3*FM(NSHK-1))-AT*CTCX*(C1*US+C2*U(1,NSHK)+C3*U(1,NSHK-1 *)) E(2, NSHK)=EPC(2, 10)=EFC(1, 10)=E(1, NSHK)-DTD>*(C1*LS/DS*(ES+PS)+C2 **PE(NSHK)+C3*PE(NSHK-1)}-AT*DTDX*(C1*ES+C2*E(1,NSHK)+C3*E(1,NSHK-1 *)) P(2,NSHK)=PFC(2,10)=PFC(1,10)=FF(1C,GE) GC TO 7 C-----PREDICTOR AND CORRECTOR FOR NSHK+N)SS = 10 M=NSHK+NXSS \$ ##=NXES+1 6 D(2, M) = DPC(2, 10) = DPC(1, 1C) = DP(N, NN)U(2,N)=UPC(2,10)=UPC(1,10)=UF(N,MN) E(2, W)=EPC(2,10)=EPC(1,10)=EP(W,WW) P(2, N)=PPC(2, 10)=PPC(1, 1C)=PP(1C, CE) C 7 IF((NSC.NE.210).AND.(NSC.NE.311).AND.(NSC.NE.200).ANC.(NSC.NE.201) *) GO TC 8 C----PREDICTOR FOR NSHK-1 = 9 M=NSHK-1 DPC(1,9)=DP(M,0) \$ UFC(1,9)=UE(M,0) EPC(1,9)=EP(M,0) \$ PPC(1,9)=PP(9,CE) C----CORRECTOR FOR NSEK = 10 M=NSHK D(2, NSHK)=DPC(2,10)=DC(10, M, 0) \$ L(2, NSHK)=LFC(2,10)=UC(10, M, 0) E(2, NSHK)=EFC(2,10)=EC(10, M, 2) \$ F(2, NSHK)=FFC(2,10)=PC(10, GE) GO TO 8 IF((NSC.NE.101).ANC.(NSC.NE.91).ANC.(NSC.NE.1CC).AND.(NSC.NE.50)) 10 *GO TO 15 C----PREDICTOR AND CORPECTOR FOR NSHK = 10(=(1,NSHK)) D(2,NSHK)=CPC(2,10)=CFC(1,10)=C(1,NS+K) U(2,NSHK)=UPC(2,10)=UPC(1,10)=U(1,NSHK) E(2, NSHK)=EPC(2,10)=EPC(1,10)=E(1,NSHK) P(2,NSHK)=PPC(2,10)=PPC(1,10)=F(1,NSFK) 8 IF((NSC.NE.189).AND.(NSC.NE.91).AND.(NSC.NE.SC)) GC TC II C----PREDICTOR(9) = PREDICTOR(7) DPC(1,9)=DPC(1,7) \$ UPC(1,9)=LPC(1,7)

-193-

```
EPC(1,9)=EPC(1,7) $ FFC(1,9)=PFC(1,7)
C----CORRECTOR FOR NSHK = 10
      D(2,NSHK)=DPC(2,10)=DC(10,NSHK,G)
      U(2,NSHK)=UPC(2,10)=UC(10,NSHK,C)
      E(2,NSHK)=FPC(2,10)=EC(10,NSHK,0)
      P(2,NSHK)=PPC(2,10)=PC(10,CE)
      GO TO 15
 11
      IF((NSC+NE+311)+ANC+(NSC+NE+310)+ANC+(NSC+NE+211)+AND+(NSC+NE+2CC)
     #.AND.(NSC.NE.101).AND.(NSC.NE.201))GC TC 15
C----CORRECTOR FOR NSHK-1+MD = SHMD
      MD=0 $ IF((NSC.EC.211).0F.(NSC.EC.101)) #C=1
      M=NSHK-1+MD $ L=9+MD
      FFS= (R2(M)-FCC)/CELR
      C1=2.*(2.-EPS)/(1.+EPS)
      C2=2.*EPS-3. $ C3=(1.-EPS)*(2.*EP5-1.)/(1.+EPS)
      D(2,N)=DPC(2,L)=(D(1,N)+CFC(1,L)+CTDX*(C1*UFC(1,7)*C2*UPC(1,L)
     *+C3*UPC(1,L+1))+AT*DTDX*(C1*DPC(1,7)+C2*DPC(1,L)+C3*DPC(1,L+1)))/2
     * .
      U(2,N)=UPC(2,L)=(L(1,N)+LFC(1,L)+DTDX*(C1*CN(7)+C2*CN(L)+C3*CN(L+1
     *))+AT*DTDX*(C1*UPC(1,7)+C2*UPC(1,L)+C3*UPC(1,L+1)))/2.
      E(2,N)=FFC(2,L)=(E(1,N)+EFC(1,L)+CTCX#(C1*CE(7)+C2*CE(L)+C3*CE(L+1
     *))+AT*DTDX*(C1*EPC(1,7)+C2*EPC(1,L)+C3*EPC(1,L+1)))/2.
      P(2, N)=PFC(2,L)=PC(L, GE)
C----PREDICTOR FOR SHK VEL AND FOS
С
С
 15
      MH=10+NXSS**2+(NXSS**2-1)*(NSFKSGN-1)*2
      IF(((NSC.EG.110).OP.(NSC.EG.-10).CF.(NSC.FC.C)).AND.(NSHKSGN.EQ.1)
     ≠) ₩H=7
      IF(((NSC.EQ.189).OR.(NSC.EQ.155)).AND.(NXSS#NSHKSGN.EC.-1)) #H=10
      IF((((NSC+EQ-89)+CF+(NSC+EG+99)+CF+(NSC+EC+-11))+ANC+(NXSS*NSHKSGN
     *•EQ--1)) MH=7
      WL=11+NXSS-(NXSS##2-1)#(-1+2#NSFKSCN)
      1F(((NSC.EQ.2C9).CR.(NSC.EG.109).CF.(NSC.EG.89).OR.(NSC.EQ.-11).OR
     * • (NSC • EQ • 99)) • DR • ( ( (NSC • EQ • - 10) • CR • (NSC • EQ • 110) • CR • (NSC • EQ • 0)) • AND
     *.(NSHKSGN.EC.0))) ML=7
      IF(((NSC.EQ.189).OR.(NSC.EQ.89).CF.(NSC.EG.199).CR.(NSC.FG.99).OR.
     *(NSC.EC.-11)).ANC.(NXSS#NS+KSGN.EC.-1)) #L=11
      SSLSAV=SORT((PPC(1, WH)/FFC(1, WL)+((E+1.))+((E+1.))+(GE+1.))/()
     *SSL/ABS(SSL)
      RS=RSSAV+(SSLSAV*SCRT(GE*FPC(1, WL)/CFC(1, ML))+UPC(1, ML)/DPC(1, ML)+
     *SSE)/2.*DT
      IF(((RS.GT.F2(NSHK+1)).AND.(NXSS.EC.C)).CF.((RS.LT.R2(NSHK+1)).
     *AND.(NXSS.EQ.1))) RS=R2(NSHK+1)
      IF(((RS+LT+R2(NS+K+MCS))+AND+(NXSS+EG+C))+CF+((RS+CT+R2(NS+K+PCS))
     *.AND.(NXSS.EC.-1))) RS=R2(NSHK+MCS)
С
      IF(((RSoltoPCC).ANCo(NCCSHKX.FG.00)).CF.o((RSoCT.RCD).ANDo(NCDSHKX
     *.EQ.1))) RS=RCD
С
C
      IF((NXSS#NXSS.EQ.1).CR.((NXSS.EC.0).ANC.(NSFKSCN.EC.1))) GO TO 29
C----CERRECTER FOR NSFK+1 = 12
      M=NSHK+1 $ SL1=(SSL+SSLSAV)/2.
      PS=P(1,NSHK)*(2.*GE/(GE+1.)*SL1**2-(GE-1.)/(GE+1.))
      DS=D(1,NSHK)/((CE-1.)/(GE+1.)+2./(CE+1.)/SL1**2)
```

-194-

US=DS*(U(1,NSHK)/D(1,NSHK)+SOFT(GE*P(1,NSHK)/D(1,NSHK))*2./(GF+1.) ** SL1*(1.-1./SL1**2)) ES=DS*(PS/DS/(GE-1.)+LS**2/DS**2/2.) EFS=(R2(NSHK+1)-RS)/DELR C1=2.*(2.-EPS)/(1.+EPS) C2=2.*EPS-3. \$ C3=(1.-EPS)*(2.*EP5-1.)/(1.+EFS) D(2,M)=DFC(2,12)=(C(1,M)+CFC(1,12)+CTCX*(C1*US+C2*UPC(1,12)+ *C3*UPC(1,12))+AT*DTDX*(C1*DS+C2*DFC(1,12)+C2*CFC(1,13)))/2. U(2,N)=UPC(2,12)=(U(1,N)+UPC(1,12)+DTCX*(C1*(US**2/DS+PS)+C2* *CM(12)+C3*CM(13))+AT*DTDX*(C1*LS+C2*UPC(1,12)+C3*UFC(1,13)})/2. E(2,M)=FPC(2,12)=(E(1,N)+EPC(1,12)+DTDX+(C1+LS/DS+(ES+FS)+C2 **CE(12)+C3*CE(13))+AT*DTCX*(C1*ES+C2*EPC(1,12)+C3*EPC(1,13)))/2. P(2, W)=PPC(2,12)=PC(12,GE) 29 IF(NXSS.EG.0) GO TO 16 C----CORRECTOR FOR NSHK+(NXSS+1)/2 = 11 M=NSHK+(NXSS+1)/2 SSLSAV=(SSL+SSLSAV)/2. D(2,N)=DPC(2,11)=D(1,M)/((GE-1.)/(CE+1.)+2./(GE+1.)/SSLSAV**2) P(2,N)=PFC(2,11)=P(1,N)*(2.*GE/(GE+1.)*SSLSAV**2-(GE-1.)/(GE+1.)) IF (NXSS#NSHKSGN.EQ.-1.) GC TC 42 U(2,M)=UPC(2,11)=D(2,N)*(U(1,N)/D(1,N)+SCG7(GE*P(1,N)/C(1,N))*2./(*GE+1.)*SSLSAV*(1.-1./SSLSAV**2)) GC TE 43 42 F(2, N)=FPC(2,11)=P(1,N)**2/PPC(2,11) D(2,N) = DFC(2,11) = D(1,N) + 2/DPC(2,11)U(2,M)=UPC(2,11)=D(2,M)*(U(1,N)/D(1,N)-SGFT(GE*F(1,N+1)/D(1,N+1)) **? ./ (GE+1)*SSLSAV*(1.-1./SSLSAV**2)) Δ3 E(2,N)=EPC(2,11)=DFC(2,11)*(FFC(2,11)/CPC(2,11)/(GE-1.)+UPC(2,11) ***2/CPC(2,11)**2/2.) C-----CORFECTOR FOR SHK VEL 16 SSL=SQRT((PPC(2,MH)/PPC(2,NL)+(GE-1.)/(GE+1.))*(GE+1.)/2./GE)* *SSL/ABS(SSL) SSE=SSL*SGRT(GE#FFC(2,ML)/CPC(2,ML))+UFC(2,ML)/CPC(2,ML) IF(NSC+NE+-11) GD TD 25 C----CCFRECTCF FOR NCC+1(=7) = CCFFECTCF 7 D(2,NCD+1)=DPC(2,7) \$ U(2,NCD+1)=LPC(2,7) E(2,NCD+1)=EPC(2,7) \$ F(2,NCD+1)=PPC(2,7) C----CCRRECTCF FCR NCC-1(=5) = 11 D(2,NCD-1)=CPC(2,11) \$ U(2,NCC-1)=UPC(2,11) E(2,NCD-1)=EP((2,11) \$ F(2,NCE-1)=FPC(2,11) GU TO 17 IF(NSC.NE.11) GD TO 17 25 C----CORRECTOR NSHK+1(=E) = CERRECTER E D(2,NSHK+1)=DFC(2,6) \$ U(2,NSFK+1)=UPC(2,6) E(2,NSHK+1)=EFC(2,6) \$ F(2,NS+K+1)=FPC(2,6) C C-----ADVANCE SHK AND CD CELL FOSITION IF NECCESSARY NSHK=NSHK+NXSS 17 IF(NSC.EC.109) GO TO 20 IF(NXSCD.EC.0) GC TC 19 M=NCD+2+3*(NXSCD-1)/2 PS=P(2, N) \$ CS=C(2, N) \$ US=U(2, N) \$ ES=E(2, N) \$ R2S=R2(N) IF(NXSCD.EQ.-1) GC TC 18 P(2,NCD+2)=P(2,NCD+1) \$ P(2,NCD+1)=P(2,NCD) \$ P(2,NCD)=P5 U(2,NCD+2)=U(2,NCD+1) \$ U(2,NCC+1)=U(2,NCD) \$ U(2,NCD)=US E(2,NCD+2)=E(2,NCD+1) \$ E(2,NCD+1)=E(2,NCD) \$ E(2,NCD)=ES

	D(2+NCD+2)=D(2+NCD+1) \$ C(2+NCC+1)=D(2+NCC) \$ D(2+NCC)=DS
	R2(NCD)=R2S
	GC TC 19
18	P(2,NCD-1)=P(2,NCD) \$ P(2,NCD)=F(2,NCC+1) \$ F(2,NCC+1)=PS
	U(2,NCD-1)=U(2,NCD) \$ U(2,NCD)=U(2,NCC+1) \$ U(2,NCD+1)=LS
	E(2,NCD-1)=E(2,NCC) \$ E(2,NCC)=E(2,NCC+1) \$ E(2,NCD+1)=ES
	$D(2 \cdot NCD - 1) = D(2 \cdot NCD) $ $S(2 \cdot NCD) = D(2 \cdot NCD + 1) $ $D(2 \cdot NCD + 1) = DS$
	R2(NCD+1)=R25
c	
10	NOISCH ANTERST MENOPENOPENSON & DOINE JEST MEDSINCOMERS
	Refactive in the process of a start in the set of the start of the sta
	SELVETREST - SELV S REISCELVET - SEVEL SELVET - SSE & SELVET - SSE
~	AD(NI)=K3
C	
26	IF (NCDSHKX+EG+1) GE TE 20
	RETURN
C ·	
C	
20	TRFLCT=(FCCSAV-FSSAV)/(SSESAV-SECCSAV)
	RD(N1)=RD(NFIRST)=RS=RCC=RCCSAV+TAFLCT#SECCEAV
	IF((NSC+E0+110)+CR+(NSC+E0+S9)+CR+(NSC+EG+C)+CR+((NSC+EG+-11)+AND
1	\$•(RCD+LT+R2(NSHK+1)))) GC TC 30
	IF((NSC+NE+105)+OR+(RCD+GT+R2(N5+K+1))) GC TC 21
	NDISCL(NFIFST)=NCD \$ R2(NCD)=F2(NCC+1)=RCD
23	NDISCL(NI)=NSHK \$ SE(NI)=SSE \$ SL(NI)=SSL
	GC TO 30
21	IF(NSC.NE.109) GC TC 22
	D(2,NCD+2)=D(2,NCD+1) \$ U(2,NCD+2)=U(2,NCD+1)
	E(2,NCD+2)=E(2,NCD+1) \$ F(2,NCD+2)=P(2,NCD+1)
	R2(NCD)=R2(NCD+2) \$ RD(NFIFST)=F2(NCC+1)=R2(NCD+2)=RCD
	ND ISCL (NF IRST)=NCD=NCD+1 \$ NSHK=NSHK-1
	GC TC 23
22	IF((NSC.EQ11),AND.(RCD.GI.R2(NSHK+1))) GC TC 24
	PEINT 1000-NSC-NSEK-NCD-NX55-NX5CC-NCDSEKX
1000	FERMAT(1) -12 + TREUBLE IN CO-SEK# (15)
24	D(2, N(D+2)) = D(2, N(D+1), S, U(2, N(D+2)) = U(2, N(D+1))
4 •	F(2,NCD+2)=F(2,NCD+1) + F(2,NCD+2)=F(2,NCD+1)
	$\mathbb{E}_{2} \left(\mathbb{E}_{2} \right) \right) \right) \right) \right)} \right) \right)} \right)} \right) \right) \right) \right) \right) $
	$R_2(R_{\rm L}) = R_2(R_{\rm L}) = 3 R_2(R_{\rm L}) = 1 - R_2(R_{\rm L}) = R_2(R_{\rm L}) = R_2(R_{\rm L}) = R_2(R_{\rm L}) = 1 - R_2(R_{\rm L$
~	NDISCELARIASI/-ADISCELARIASI/VI + ADISCELARI/-ADISCELAR/VI
30	
30	CALL SPREDAINT INSTANLAINTECTS
-	RE TURN
c	
(-SPLE FLW FLL AUSSIMNI FF NCUSFRATI
100	
	IF(M.GI.KCD+I) GE TO ICI
	IF (FLT-RCD) GU TU 102
	GD TO 110
1 02	D(1,M) = D(1,NSHK) $U(1,M) = U(1,NSHK) $ $E(1,M) = E(1,NSHK)$
	D(2, M) = D(1, NSHK) $U(2, M) = U(1, NSHK) $ $E(2, M) = E(1, NSHK)$
	P(1, M) = P(1, NSHK) $P(2, M) = P(1, NSHK)$
	IF((N1.EC.4).ANC.(M.GE.NCISCL(2))) R2(W)=R2(W+2)
	GO TO 110
101	NN=M-2 \$ IF(N1.EC.4) NN=N-4

D(1,MM)=D(1,M) \$ U(1,MM)=U(1,M) \$ F(1,MM)=F(1,M) \$ E(1,MM)=E(1,M) D(2,MM)=D(2,M) \$ U(2,MM)=U(2,M) \$ F(2,MM)=F(2,M) \$ F(2,MM)=E(2,M) R(MM)=R(M) \$ R2(MM)=R2(M) 110 CENTINUE MM=2 \$ IF(N1.EQ.4) ##=4 DO 120 M=1,NTDISCT IF(NDISCL(M).LT.NSHK) NEISCL(M)=+1 IF(NDISCL(#).GE.NSHK) NDISCL(#)=NDISCL(#)-MM 120 CENTINUE NELN-NELN-NE \$ N=N-ME IF(N1+1.LE.NTDISCS) NRHS(N1+1)=NRHS(N1+1)-MM IF(N1+1+LE+NTDISCS) NLHS(N1+1)=NLHS(N1+1)-MM С C----ACCT FOR PRICLE PIH AND NEG AND POS CHRCT TRAJ CELL LECTNS CHANGES IF(NPPTH+LE+0) GC TC 126 DO 111 I=1,NPPTH IF(NCLPPTH(I).GE.NSHK) NCLPFTH(I)=NCLFFTH(I)-NM 111 CONTINUE IF (NUMA+LE+0) GC TC 112 126 DO 113 I=NUMAEST, NUMA 113 CONTINUE IF(NUFA.LE.O) GC TC 114 112 DO 115 1=1,NUPA IF(NCLUPA(I).GE.NSHK) NCLUPA(I)=NCLUFA(I)-NM 115 CENTINUE С 114 NUPC=3FYES CALL SHK(RC(N1), SE(N1), SL(N1), NCISCL(N1)) C NCODE=10+CDSHK \$ CALL FRATFF(ACDDE) С

FETURN \$ END

-197-

FETURN \$ END

C

SLBROUTINE CDTRDTR(N1,N2,NTR) CCMMCN/DISCS/ATCISC,ADISCNO(51),ATYPE(51),ADISCL(51),SE(51),SL(51) *,RD(51),ATDISCT,ATDISCS C NTF=-1 PRINT 1000 1000 FCFMAT(1H ,5/,5X,*TERMINATING TAIL CF FAFE (ASSOC WITH CJ-DET) IN *SUBROUTINE CDTRDTR*) C C CALL CD(FC(N1),SE(N1),NCISCL(N1),SFCCTFC) NTYPE(N2)=3 FFINT 1001 1001 FOFMAT(1H ,/,5X,*CD TYPE SET TC 3 IN (CTFCTF*)

-198-

SUBROLTINE TRARE(NTR)

C NTR=-1 PRINT 1000 1000 FORMAT(1H ,5/,5×,*TERMINATING TAIL OF FARE (ASSOC WITH CJ-DET) IN *SUBROUTINE TRARE*) C

RETURN \$ END

```
SUBROUTINE TREET(NI,NXTE,N2,NXC,NAME)
      COMMCN/PARAM/N, J, AJ, G, GF, DELR, NFLW
      CCMMCN/TIME/T, DT, DTL, TWR ITE, DELT, DIDX, AT
      COMMEN/TRDT/PLTF, DLTR, LLTR, ELTF, CVERCAM, NEVERDA
      COMMCN/PREDCOR/DPC(2,13), UPC(2,13), EFC(2,13), PFC(2,13)
      CCMMCN/AFRAYS/R(501),U(2,501),F(2,501),C(2,501),E(2,501),R2(501)
      CCMMCN/PCWER/VCAPF,R4R1,FDPCWEF,FFCWEF,CND,GCAPF,SFEDLD,SFE,NCJ
      CD#MON/DISCS/NTDISC,NDISCNO(51),NTYPE(E1),NDISCL(E1),SE(51),SL(51)
     *,RD(51),NTDISCT,NTDISCS
С
C
      NSC=100*(NDISCL(N2)-NDISCL(N1))+10#NXTE+NXD
      PRINT 1000, NAME, (I, NDISCL(I), NTYPE(I), FC(I), I=N1, N2), NXTR, NXD, NSC
1000 FCFMAT(1H ,1X,A8,2(315,F14.7),315)
      NTR=NDISCL(N1)
      IF (NAME.EC.BESCTO NC) GC TO 3
C----PROCEDURE FOR INCOFFCRATING THE RARE ASSCC WITH CJ DET
      IF(NXTR.EQ.-1) GD TO 1
C----PREDICTCF FCF NTF-1 = 12
      M=NTR-1
      DPC(1,12)=DP(N,0) $ UFC(1,12)=UP(N,0)
      EPC(1,12)=EP(N,C) $ PFC(1,12)=PF(12,CF)
C----PREDICTOR FOR NTR = 13
      NSHK=NTR $ PS=FLTR $ CS=CLTR $ US=ULTR $ ES=ELTR
      EPS=(RD(N1)-R(NTR))/DELR
      C1=2.*(2.-EPS)/(1.+EPS)
      C2=2.*EPS-3. $ C3=(1.-EPS)*(2.*EPS-1.)/(1.+EFS)
      DPC(1,13)=D(1,NSHK)-DTDX#(C1#LS+C2#U(1,NSHK)+C3#U(1,NSHK-1))
      UPC(1,13)=U(1,NSFK)-DTDX*(C1*(LS*LE/CE+FE*FC(N1)**J)+C2*PM(NSHK)+
     *C3#PM(NSHK-1))
      EFC(1+13)=E(1+NSFK)-DTDX*(C1*LS/CS*(ES+FS*FD(N1)**J)+C2*PE(NSFK)+
     #C 3*PE(NSHK-1))
     PPC(1,13)=PP(13,GF)
C----CURRECTUR FUR NTE = 13
      D(2,NSHK)=DPC(2,13)=DC(13,NSHK,0)
      U(2,NSHK)=UF((2,13)=UC(13,NSHK,C)
      E(2,NSHK)=EPC(2,13)=EC(13,NSHK,0)
      P(2,NSHK)=PPC(2,13)=PC(13,GF)
з
      IF(NXTF.NE.1) GC TO 1
      D(2,NTR+1)=DLTR $ U(2,NTF+1)=LLTF
      E(2,NTF+1)=ELTR $ P(2,NTF+1)=PLTR
      RD(N1)=RD(N1)+SE(N1)+DT $ NDISCL(N1)=NTF=NDISCL(N1)+NXTR
 1
C
      CALL DET(RD(N2),SE(N2),SL(N2),NDIS(L(N2),NXC,7HTRDET
С
C----PREDICT 5 CONDITIONS
      NSHK=NDI SCL (N2)
      BETA=(GF-1.)/(GF+1.) $ B=(GF-1.)/(C-1.)
      PGO=(1.+EETA)*(VCAPF-BETA)/(1.-EETA)-EETA
      A=SQRT(P(1,NSHK+1)/D(1,NSHK+1))
      PG=1.+(PCO-1.)/A**2+GF*(1.-1./A**2)*(G/GF*B-R4R1)
      PS1=(1.-EETA)/2.*(1.+G*SL(N2)442) $ PS=FS1*F(1,NSHK+1)
      DS=D(1,NS+K+1)/(1.-(1.-PETA)*(FS1-FG)/(FS1+EETA))
      US=SCRT(G) *A*SOFT((1.-PETA)*(FS1-FG)*(FS1-1.)/G/
     *(PS1+BETA))+U(1,NSHK+1)/C(1,NSHK+1)
C
```

-200-

C----INPUT RAPEFACTION ALPHA=2./(GF-1.) \$ NTEP1=NTE+1 DC 2 I=NTFP1 ,NSHK U(2,1)=US-(LS-ULTR/DLTR)*(RD(N2)-R2(1))/(RC(N2)-RC(N1)) UX=(U(2,1)-US)/SCRT(GF#FS/ES) AX=UX/ALPHA+1. \$ DX=AX**ALPHA \$ C(2.1)=CX*CS PX=ALPHA*GF/(2.+ALPHA)*(CX**((2.+ALPHA)/ALFHA)-1.)*1. P(2,1)=PX*PS E(2,I)=D(2,I)*(P(2,I)/C(2,I)/(GF-1.)+U(2,I)**2/2.) U(2,I)=U(2,I)*D(2,I)2 c

RETURN \$ END

(

```
SUBROUTINE TSTEP
CCMMCN/PARAM/N,J,AJ,G,GF,DELR,NFLM
      COMMON/TIME/T, DT, DTL, TWRITE, DELT, DTDX, AT
      COMMEN/AFRAYS/R(501),U(2,E01),F(2,E01),D(2,E01),E(2,E01),R2(501)
С
C
      DTL=DT
C----STABILITY CRITERIA
      GE=GF $ DTMIN=1.E+300
      DO 5 #=1.N
      IF(M.GT.NFLM) GE=G
      C=SORT(GE*P(2,M)/D(2,M))
     _ IF(U(2+M)+LE+C+C) GC TC 1
      US=U(2,M)/C(2,M)+AT $ LSFC=LS+C $ LSMC=LS-C
      IF(ABS(US).LT.ABS(LSPC))LS=USFC $ IF(AES(US).LT.AES(USMC))US=USMC
      GC TC 2
 1
      US=U(2,M)/D(2,N)+AT-C
      DI=DELR/ABS(US)+C.7
 2
      IF (DT.LT.DTMIN) CTMIN=DT
      CENTINUE
 5
      DT=DTMIN
с
      T = T + DT
С
C----PEINITIAL PROPERTIES
      DO 10 M=1.N
      U(1,N) = U(2,N)  C(1,N) = C(2,N)  F(1,N) = P(2,N)  E(1,N) = E(2,M)
10
      R(W) = R2(M)
С
```

RETURN \$ END

-202-
```
SUBFOUTINE CHARCIR(NCYCLE)
      CCMMCN/PARAM/N, J, AJ, G, GF, DELR, NFLM
      COMMON/TIME/T, DT, DTL, TWRITE, DELT, DTDX, AT
      CCMMEN/ARRAYS/R(501),U(2,501),F(2,E01),D(2,E01),E(2,E01),R2(E01)
      CCMMCN/PPCHR/NPFTH,NUMA,NUMAFST,NUFA,FPPTH(24),RUMA(150),RUPA(150)
     *,NCLFFTH(24),NCLUMA(150),NCLUFA(150),FTHNE)T,RUMANXT,TUFANXT,
     *DELPPTH.DELUMA.DELUPA
C
      UAVG(11,R1)=U(1,11-1)/C(1,11-1)+(U(1,11)/C(1,11)-U(1,11-1)/
     *D(1,11-1))*(R1-R(11-1))/(F(11)-F(11-1))
      PAVG(I1,F1)=P(1,I1-1)+(P(1,I1)-F(1,I1-1))*(F1-F(I1-1))/(P(I1)-
     *R(I1-1))
      DAVG(I1,R1)=D(1,I1-1)+(D(1,I1)-D(1,I1-1))*(F1-R(I1-1))/(R(I1)-
     *R(11-1))
С
      NEFTHENC. OF INITIAL PARTICLE PATHS
C
      PTHNEXT=POSITION OF THE NEXT PARTICLE FATH
С
      DELPPTH=DST RET SCCSSVE PRICL FIFS(MST RE > C. TC FVE ACCTLN PTHS)
C
      NUMAFST=NC. OF THE FRST NEG CHAFACT TRJ WTH PSTN > 0.0
С
      NUMA=NC. OF INITIAL NEGATIVE CHARACTERISTIC TRAJECTORIES
C
С
      RUMANXT=FOSITION OF THE NEXT NEGATIVE CHARACTERISTIC TRAJECTORY
С
      DELUMA=DST BET SCCSSVE NG CHR TRJS(MST EE > 0. TC HVE ADDTLN TRJS)
С
      NUPA=NO. OF INITIAL POSITIVE CHARACTERISTIC TRAJECTORIES
      TUPANXT=POSITION OF THE NEXT POSITIVE CHARACTERISTIC TRAJECTORY
С
С
      DELUPA=DST BET SCCSSVE FS CHR TRJS(WST BE > 0. TC FVE ACCTLN TRJS)
      REFTH, RUMA, RUPA=PRTCLE, NECTVE CHRACT, RESTVE CHARCT PSTN
C
      NCLPSTH, NCLUMA, NCLUFA=CL NO OF FRICL PTH, NC CHRCT TRJ, PS CHRCT TRJ
с
C
С
      IF(NCYCLE.GT.C) GC TC 14
C
C----DET INITIAL PARTICLE FATH CELL FESITIENS
      IF (NPPTH.EQ.0) GO TO 5
      N1=1
      DC 1 I1=1,NPPTH
      DO 2 12=N1,N
      IF(R2(12).CT.FFFTH(11)) CC TC 1
      CENTINUE
2
      NCLPFTH(I1)=N1=12
 1
С
C
C----DET NEG INITIAL NEG AND FCS CHARACT TRAJ CELL POSITIONS
5
      IF (NUMA.EQ.0) GD TD 8
      N1 = 1
      DO 6 11=1, NUMA
      DO 7 12=N1,N
      IF(R2(12).GT.FUMA(11)) GE TO 6
7
      CENTINUE
6
      NCLUWA(II)=NI=I2
С
 8
      IF(NUPA.EQ.0) RETURN
      N1=1
      DC 9 II=1,NUPA
      DC 10 12=N1.N
      IF(R2(12).GT.RUP/(I1)) GC TC 9
 10
      CONTINUE
```

-203-

```
9
      NCLUPA(I1)=N1=I2
      RETURN
C
c
С
C----CALC PARTCLE PATH AND FINAL CELL LCCATION
     IF(NPPTH.EQ.0) GO TO 15
 14
      DD 11 I=1,NFPTH
      II=NCLPPTH(I) $ R1=RPPTH(I)
      FFPTH(I)=UAVG(II,P1)*DT+FPPTH(I)
      1F(REPTH(1).LT.0.0) RPETH(1)=0.0
 11
      CONT INUE
      DC 12 11=1,NFFTH
      N1=NCLPPTH(11)-3 $ IF(N1.LT.2) N1=2
      DC 13 12=N1,N
      IF(R2(12).GT.FFFTH(11)) (C TC 12
 13
      CONTINUE
      NCLPFTH(11)=12
 12
 15
      IF(DELPPTH+LE+0+0) GC TC 20
      IF(R2(N).LT.PTHNEXT) GC TD 20
      NPFTH=NPPTH+1 $ FPFTH(NFFTH)=FTHNEXT
      I=N-5
      DC 16 K=1,N
      IF(R2(I).GT.PTHNEXT) GC TC 17
 16
      CONT INUE
      NCLFFTH(NFPTH)=K
 17
      PTHNEXT=PTHNEXT+DFLPPTH
C
C----CALC NEG AND FOS CHARACT TRAJ AND FINAL CELL LCCATIONS
      IF (NUMA.EQ.0) GD TC 25
 20
      DC 21 I=NUMAEST, NUMA
      II=NCLUMA(I) $ R1=RUMA(I)
      GE=G $ IF(II.LF.NFLM) CE=GF
      RUMA(I) = (UAVG(II,RI) - SOFT(GE \neq FAVC(II,FI)) CAVC(II,FI)) \neq CT + RUMA(I)
 21
      DD 22 II=NUMAFST, NUMA
      IF (RUMA(II).LT.-CELR) NUMAFST=NUMAFST+1
      N1=NCLUPA([1])-3 $ IF(N1+LT+2) N1=2
      DC 23 12=N1+N
      IF(R2(12).GT.RUNA(11)) GC TC 22
 23
      CENTINUE
      NCLUMA(I1)=12
 22
 25
      IF(DELUMA.LE.0.0) GC TO 30
      IF (RP (N) .LT .RUMANXT ) GC TC 30
      NUMA=NUMA+1 $ RUMA(NUMA)=RUMANXT
      11=N-5
      DD 26 1=11.N
      IF(R2(I).GT.RUMANXT) GC TC 27
 26
      CENTINUE
      NCLUMA(NUMA) = I
 27
      RUMANXT=RUMANXT+DELUMA
C
 30
      IF (NUPA.EQ.0) GC TC 35
      DC 31 I=1,NUPA
      II=NCLUFA(I) $ R1=RUFA(I)
      GE=G $ IF(II.LE.NFLM) GE=GF
 31
      FUFA(I) = (UAVG(II,RI) + SCFT(CF + F + VC(II,FI)) - DAVG(II,RI)) + DT + RUPA(I)
```

IF(R2(12).CT.FUPA(11)) GC TO 32 33 CCNTINUE 32 NCLUPA(11)=12 35 IF(DELUPA.LE.0.0) FETUFN IF(T.LT.TUPANXT) RETUFN NUPA=NUPA+1 \$ RUPA(NUPA)=0.0 \$ NCLUFA(NUPA)=2 TUPANXT=TUPANXT+DELUFA

N1=NCLUMA(I1)-3 \$ IF(N1.LT.2) N1=2 DC 33 I2=N1,N

RETURN \$ END

c

DO 32 11=1,NUPA

-205-

	SUBFOUTINE PRATEF(ACCDE)
	COMMENTARAMINE JJAJJUJUT LUELENTE A
	COMMENT INFERTED IN THE OFFICE OF THE AND AND ANTREST
	COM(CN/ARRAYS/R(501), U(2,501), P(2,501), D(2,501), F(2,501), R2(501))
	CCHMCN/POWER/VCAPF.R4R1.FDFCWEF.FFCWEF.CND.GCAPF.SFEDLD.SFE.NCJ
	COMMON/DISCS/NTDISC, NDISCND(51), NTYPE(51), NEISCL(51), SE(51), SL(51)
	*, RD(51), NTDISCT, NTDISCS
	CCMMCN/PPCHP/NPFIH,NUMA,NUMAFSI,NUFA,FFFTF(24),RUMA(150),RUPA(15)
	*,NCLPPTH(24),NCLUMA(150),NCLUPA(150),PTHNEXT,RUMANXT,TUPANXT,
	#DELPPTH,DELUMA,CELUFA
c	
C	
	IF ((NCUDF - FU) IDFINITIAL JOUR (NCUDE - EGOTOFINITIALACUTOR)
	TELLADE LO AVEST OF TO THE TO THE AND THE TO THE AND THE TO THE AND THE TO THE AND THE
r	
~	DC 2 V=1.N
	U(2,M) = U(2,M) / D(2,N)
2	E(2,W)=E(2,W)/D(2,W)
c	
1	PRINT 2000, T, DT, INDEX, NCYCLE, NTDISCT, NCODE, (I, NDISCNC(I), NTYPE(I),
	*ND1SCL(1),FD(1),SE(1),SL(1),I=1,NTEISCT)
200	0 FORMAT(1H1,* T*,E12.E,3X,*DT*,E12.E,3X,*INCEX*,IE,3X,*NCYCLE*,IG,
	#7X,#NTDISCT#,I3,5X,#NCCCE #,A10,
	#2/,# 1=#,12,3x,#DISC NC ==#,13,3x,#NTYFE=#,11,5X,
	**CELL=*,14,3X,*FCS=*,E12.5,3X,*ELLERIAN VEL=*,E12.5,3X,*LAGFANGIAN
	▼ VEL==+;122.5;50(/,15;12×;13;9×;11;10×;14;/×;122.5;16×;12.5;
	* 1 C X = 1 C + C J /
200	I FORMAT() + ./. # Y. # CFI + . 3% # FC ST I C N# . 5% # PEFF SUBF# . # . # PEFF SUBF# . # . # PEFF SUBF# . # .
200	4 - 1 - 0
	$IF(IAFF_FG_3FNC) = 0$ TC 4
	NC1=9+NEGATIVE \$ NC2=7HCHARACT \$ NC3=5+ TRAJECTS
	NFC1=9HPCSITIVE \$ NC4=8HTRAJ F= \$ NFC4=8HTRAJ T=
	NP1=9HPARTICLE \$ NP2=7HFATHS \$ NP3=9H \$ NP4=8HPATH R=
	PFINT 2003
200	13 FCFMAT(1H1)
	IF(NPPTH.NE.O) PRINT 2002,NP1,NF2,NF3,NF4,FTHNEXT,(I,FFPT+(I),
	*NCLPPT+(1),I=1,NFFT+)
200	12 FCRMAT(1H ,2/,1CX,AS,A7,A9,10X,*NEXT *,A8,F8.4,24(/,5X,6(13,F8.4,
	*ID:5X)) IE(NINA NE A) DEINT 2002 NZI NZI NZI NZA DUNANYT ZI DUNAZINI
	IF (NUMAINERU) PRINT 2002 PREAMER PREAMER PREAMER AND PRAISE PREAMER II)
	IF (NIEASFED) PRINT 2002.NPC1.NC2.NC3.NPC4.TUPANXT.(I.FUPA(I).
	*NCLUPA(I),I=1,NLPA)
	RETURN
с	
4	DO 3 M=1,N
	U(2, M)=U(2, M)+C(2, M)
З	E(2,V)=E(2,V)+D(2,V)
C.	
	KEIURN D END

-206-

RETURN & END

PP=(EPC(1,L)/CPC(1,L)-UPC(1,L)**7/CPC(1,L)*42/2.0)*CPC(1,L) **(GE-1.0)

FUNCTION PP(L.GE) COMMON/PREDCOR/DPC(2,13),UPC(2,13),EFC(2,13),FPC(2,13)

RETURN \$ END

EP=E(1,M)-DTDX*(U(1,M+1+MM)/D(1,N+1+NM)*(E(1,N+1+NM)+P(1,M+NM+1))-*U(1,N+NM)/D(1,M+NM)*(E(1,M+NM)+F(1,N+NM)))-AT*DTDX*(E(1,M+MM+1) *-E(1,N+NM))

FUNCTION EP(M, MM) COMMON/TIME/T, DT, DTL, TWRITE, DELT, CTCX, AT COMMON/ARRAYS/R(501), U(2, 501), P(2, 501), D(2, 501), E(2, 501), R2(501)

RETURN \$ END

UF=U(1,M)-CTDX*(U(1,N+1+NM)*#2/C(1,N+1+NM)+F(1,M+1+MM)-U(1,M+NM)*# #2/D(1,N+NM)-P(1,N+NM))-AT#CTCX*(U(1,N+NN+1)-U(1,N+MN))

FUNCTION UP(N,NN) CCMMCN/TIME/T,DT,DTL,TWRITE,DELT,DTDX,AT COMMCN/AGRAYS/R(501),U(2,501),F(2,501),C(2,501),E(2,501),R2(501)

RETURN \$ END

С

С

С

c

С

C

с

С

DP=D(1,M)-DTDX*(U(1,M+MM+1)-U(1,N+MM))-AT*CTCX* *(D(1,V+MM+1)-C(1,M+MM))

FUNCTION DP(N,MM) CDMMCN/TIME/T,DT,DTL,TWRITE,DELT,DTDX,AT CDMMCN/ARRAYS/R(501),U(2,501),P(2,501),D(2,501),E(2,501),P2(501)

RETURN \$ END

PC=(EPC(2+L)/CPC(2+L)-UPC(2+L)++2/CPC(2+L)++2/2+0)+CPC(2+L) ++(CE-1+0)

FUNCTION FC(L,GE) COMMON/PREDCCR/DPC(2,13),UFC(2,13),EFC(2,13),FPC(2,13)

RETURN \$ END

EC=(E(1, M)+EPC(1,L)-DTD **(UPC(1,L+MM)/CPC(1,L+MM)*(EPC(1,L+MM)* *PPC(1,L+MM))-UPC(1,L+MM-1)/CFC(1,L+MM-1)*(EFC(1,L-1+MM)+ *PPC(1,L-1+MM)))-AT*DTD **(EPC(1,L+MM)-EFC(1,L+MM-1))/2.

FUNCTION EC(L,M,MM) CCMMCN/TIME/T,DT,DTL,TWRITE,CELT,CTCX,AT CCMMCN/PREDCOR/CPC(2,13),UPC(2,13),EFC(2,13),PPC(2,13) CCMMCN/AFRAYS/R(501),U(2,501),P(2,501),D(2,501),E(2,501),P2(501)

RETURN \$ END

UC=(U(1,+)+UPC(1,+)-DTD**(UFC(1,+++)**2/DFC(1,+++)+ *PPC(1,++++)-UFC(1,++++)**2/DFC(1,+-1++++)+ *-AT*DTDX*(UPC(1,+++++)-UFC(1,+-1++++)))/2+

FUNCTION UC(L,M,MM) CCMMCN/TIME/T,DT,DTL,TWRITE,DELT,DTDX,AT CCMMCN/PFEDCGF/CPC(2,13),UPC(2,13),EFC(2,13),PPC(2,13) COMMCN/ARRAYS/R(501),U(2,501),F(2,501),D(2,501),F(2,501),R2(501)

RETURN \$ END

С

С

C

¢

С

с

C

С

DC=(D(1,W)+DPC(1,L)-DTDX*(UPC(1,L+WW)-UFC(1,L-1+WW)) *-AT*DTDX*(DPC(1,L+WW)-DPC(1,L-1+WW)))/2.

FUNCTION DC(L,M,MM) COMMON/TIME/T,DT,DTL,TWRITE,DELT,DTDX,AT COMMON/PREDCCR/DPC(2,13),UFC(2,13),EFC(2,13),FPC(2,13) CDMMON/ARRAYS/R(501),U(2,501),F(2,501),D(2,501),E(2,501),R2(501)

RETURN \$ END

CE=UPC(1, M)/DPC(1, M)*(EPC(1, N)+FFC(1, N))

FUNCTION CE(*) COMMON/PFEDCOF/CPC(2,13),UPC(2,13),FFC(2,13),PPC(2,13)

RETURN \$ END

CM=UPC(1,M) + + 2/DPC(1,M) + PPC(1,M)

FUNCTION CH(H) COMMON/PREDCCF/CPC(2,13),UPC(2,13),EPC(2,13),PPC(2,13)

FUNCTION CH(H)

FETURN \$ END

PE=U(1, M)/D(1, N) *(F(1, N)+P(1, N))

FUNCTION PE(M) CDMMCN/ARRAYS/R(501),U(2,501),F(2,501),D(2,501),E(2,501),R2(501)

RETURN \$ END

С

C

с

С

С

с

С

C

PM=U(1,M)**2/C(1,N)+F(1,+)

FUNCTION PM(M) COMMEN/ARRAYS/R(501),U(2,501),F(2,501),D(2,501),E(2,501),R2(501)

ņ	0	0	0							
. 850 5	00	50	5 7	1 9999	500.0					
110	0 1.	3	1.?		0.01	7.0	1.0	2.3		0.5
1.230032	2			0.174	90552		0.0			
1.237391	3043			1.177	7401		0.199	27912381		
1.0			1.0			0.0				0.1772
99.0			0.08	620689	5					
· 2							•			
1	1	19 0.	028953	623		.177?				
2	21	02 1.	1			1.0				
3 1.	5	0.5		6	1.1	0.1	11	0.1	0.1	
0.3223	0.6	676	0.99	99						
0.5	0.6		3.7		9.8	0.9	1.0			
0.00001	0.1		0.2		0.3	0•4	0.5	0.6		0.7
08	0.9		1.0							
*******	** * * *	****	* * * * * *	*****	END OF	NATA******	******	*******	****	***

-210-

REFERENCES

- Berthelot, M., "Sur la Vitesse de Propagation des Phenomenes Explosifs dans les Gaz", <u>C.R. Acad. Sci.</u>, Paris, <u>93</u>, 18-22, Seance du 4 Juillet, 1881.
- Laderman, A.J. and Oppenheim, A.K., "Initial Flame Acceleration in an Explosive Gas", Proc. Roy. Soc. (London), A268, 153-180, 1962.
- 3. Laderman, A.J., Urtiew, P.A. and Oppenheim, A.K., "On the Generation of a Shock Wave by a Flame in an Explosive Gas", <u>Ninth Symposium</u> (International) on Combustion, Academic Press Inc., New York, 265-274, 1963.
- Urtview, P.A., Laderman, A.J. and Oppenheim, A.K., "Dynamics of the Generation of Pressure Waves by Accelerating Flames", <u>Tenth</u> <u>Symposium (International) on Combustion</u>, The Combustion Institute, Pittsburgh, PA., 797-804, 1965.
- Oppenheim, A.K., Kamel, M.M. and Varvatsoulis, C., "Experimental Study of the Dynamics of a Spherical Flame", <u>Seventh JANNAF Combustion</u> Meeting, CPIA Publication 204, 1, 1971.
- 6. Oppenheim, A.K. and Soloukhin, R.I., "Experiments in Gasdynamics of Explosions", Annual Review of Fluid Mechanics, 5, 31-58, 1973.
- 7. Schmidt, E., Steinicke, H. and Neubert, U., "Flame and Schlieren Photographs of the Combustion of Gas-Air Mixtures in Tubes", <u>VDI-</u> <u>Forsch Ungsheft 431, Ed. B.</u>, Deutscher Ingenieur-Verlag, Dusseldorf, <u>17</u>, 31, 1951.
- Schmidt, E. Steinicke, H. and Neubert, U., "Flame and Schlieren Photographs of Combustion Waves in Tubes", <u>Fourth Symposium (International)</u> on Combustion, Williams and Wilkins, Baltimore, MD., 658-666, 1953.

- 9. Urtiew, A.J. and Oppenheim, A.K., "Experimental Observations of the Transition to Detonation in an Explosive Gas", <u>Proc. Roy.</u> Soc. (London), A295, 13-28, 1966.
- 10. Urtiew, A.J. and Oppenheim, A.K., "Detonation Ignition Induced by Shock Merging", <u>Eleventh Symposium (International) on Combustion</u>, The Combustion Institute, Pittsburgh, PA., 665-670, 1967.
- 11. Urtiew, A.J. and Oppenheim, A.K., "Transverse Flame-Shock Interactions in an Explosive Gas", Proc. Roy. Soc. (London), A304, 379-385, 1968.
- 12. Strehlow, R.A., "Unconfined Vapor Cloud Explosions An Overview", <u>Fourteenth Symposium (International) on Combustion</u>, The Combustion Institute, Pittsburgh, PA., 1189-1200, 1973.
- Fay, J.A., "Unusual Fire Hazard of LNG Tanker Spills", <u>Combustion</u> Science and Technology, 7, 47-49, 1973.
- 14. Fay, J.A. and Lewis, D. H., Jr., "The Inflammability and Dispersion of LNG Vapor Clouds", Fourth International Symposium on Transportation of Hazardous Cargoes by Sea and Inland Waterways", 489-498, 1975.
- 15. Haverdings, W., Pasman, H. J. and Wiekema, B. J., "Blast by Non-Ideal Aerial Explosions", Acta Astranautica, 3, 1-2, 107-116, 1976.
- 16. Oppenheim, A.K., Kurylo, J., Cohen, L.M. and Kamel, M.M., "Blast Waves Generated by Exploding Clouds", <u>Eleventh International Symposium</u> <u>on Shock Tubes and Waves</u>", University of Washington, July 1977 (in press).
- 17. Dörge, K.J., Pangritz, D. and Wagner, H.Gg., "Experiments on Velocity Augmentation of Spherical Flames by Grids", <u>Acta Astronautica</u>,
 3, 11-12, 1067-1076, 1976.

- Oppenheim, A.K., Kuhl, A.L. and Kamel, M.M., "On Self-Similar Waves Headed by the Chapman-Jouguet Detonation", <u>J. Fluid Mechanics</u>, 55, 2, 257-270, 1972.
- 19. Oppenheim, A.K., Kuhl, A.L., Lundstrom, E.A. and Kamel, M.M., "A Parametric Study of Self-Similar Blast Waves", <u>J. Fluid Mechanics</u>, <u>52</u>, 4, 657-682, 1972.
- 20. Kuhl, A.L., Kamel, M.M. and Oppenheim, A.K., "Pressure Waves Generated by Steady Flames", Fourteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburg, PA., 1201-1215, 1973.
- 21. Shapiro, A.H. <u>"The Dynamics and Thermodynamics of Compressible Fluid Flow</u>", Vol. 1, The Ronald Press Co., New York, xiii+647 pp., 1953.
- Rudinger, G., "<u>Wave Diagrams for Non-Steady Flow in Ducts</u>", D.
 Van Nostrand Co., Inc., New York, xi+278 pp., 1955.
- Owczarek, J.A., "<u>Fundamentals of Gas Dynamics</u>", International Textbook Co., Scranton, PA., xxii+648 pp., 1964.
- 24. Cohen. L.M., Short, J.M. and Oppenheim, A.K., "A Computational Technique for the Evaluation of Dynamic Effects of Exothermic Reactions", Combustion and Flame, 24, 3, 319-334, 1975.
- 25. Tanaka, K., and Hikita, T., "A numerical Study of the Charge Diameter Effect on Unsteady Detonation", <u>Acta Astronautica</u>, <u>3</u>, 11-12, 1005-1013, 1976.
- Fishburn, B.D., "Some Aspects of Blast from Fuel-Air Explosives", Acta Astronautica, 3, 11-12, 1049-1065, 1976.

- 27. von Neumann, J. and Richtmyer, R.D., "A Method for the Numerical Calculation of Hydrodynamic Shocks", J. Apply. Phys., 21, 3, 232-237, 1950.
- 28. Wilkins, M.L., "Calculation of Elstic-Plastic Flow", <u>Lawrence</u> <u>Livermore Laboratory Report #UCRL - 7322</u>, Rev. 1, Livermore, CA., iv+101 pp., 1969.
- 29. Lax, P.D., "Weak Solutions of Nonlinear Hyperbolic Equations and their Numerical Computation", <u>Comm. Pure Appl. Math.</u>, <u>7</u>, 159-193, 1954.
- 30. Richtmyer, R.D. and Morton, K.W., "Difference Methods for Initial-Value Problems", Second Edition, Interscience Publishers, New York, xiv+405 pp., 1967.
- 31. Moretti, G., "Experiments in Multi-Dimensional Floating Shock-Fitting", Polytechnic Institute of Brooklyn, <u>PIBAL Rept. 73-18</u>, ii+38 pp., Aug. 1973.
- 32. Moretti, G., "Thoughts and Afterthoughts About Shock Computations", Polytechnic Institute of Brooklyn, <u>PIBAL Rept. 73-37</u>, iv+81 pp., Dec. 1972.
- 33. Moretti, G. and Abbett, M., "A Time-Dependent Computational Method for Blunt Body Flows", AIAA Journal, 4, 12, 2136-2141, 1966.
- 34. Oppenheim, A.K. and Stern, R.A., "On the Development of Gaseous Detonation - Analysis of Wave Phenomena", <u>Seventh Symposium (International)</u> <u>on Combustion</u>, Butterworths Scientific Publications, London, 837-850, 1959.

- 35. Chu, B.T., "On the Generation of Pressure Waves at a Plane Flame Front", <u>Fourth Symposium (International) on Combustion</u>", Williams and Wilkins, Baltimore, MD., 603-612, 1953.
- 36. Markstein, G.H. and Schwartz, D., "Interaction Between Pressure Waves and Flame Fronts", Jet Propulsion, 25, 173-174, 1955.
- 37. Markstein, G.H., "A Shock-Tube Study of Falme Front-Pressure Wave Interaction", <u>Sixth Symposium (International) on Combustion</u>, Reinhold Publishing Corp., New York, 387-398, 1957.
- 38. Salamandra, G.D. and Sevastyanova, I.K., "Formation of Weak Shock Waves Ahead of a Flame Front and Their Intensification During Passage Through the Flame", <u>Combustion and Flame</u>, <u>7</u>, 169-174, 1963.
- 39. Kamel, M.M. and Oppenheim, A.K., "Photographic Laboratory Studies of Explosion", <u>L'Aerotechnica Missili e Spazio</u>, <u>2</u>, Rivista dell'Associazione Italiana di Aeronautica e Astronautica, Tamburini Editore, Milano, 122-134, 1973.
- 40. Laderman, A.J., Urtview, P.A. and Oppenheim, A.K., "Gasdynamic Effects of Shock-Flame Interactions in an Explosive Gas", <u>AIAA</u> Journal, 3, 5, 876-883, 1965.
- 41. Gilbert, M., "The Influence of Pressure on Flame Speed", <u>Sixth</u> <u>Symposium (International) on Combustion</u>, Reinhold Publishing Corp., New York, 74-83, 1957.
- 42. Goldenberg, S.A. and Pelevin, V.S., "Influence of Pressure on Rate of Flame Propagation in Turbulent Flow", <u>Seventh Symposium</u> (International) on Combustion, Butterworths Scientific Publications, 590-594, 1959.

- 43. Bradley, D. and Hundy, G.F., "Burning Velocity of Methane-Air Mixtures Using Hot-Wire Anemometers in Closed-Vessel Explosions", <u>Thirteenth Symposium (International) on Combustion</u>, The Combustion Institute, Pittsburgh, PA, 575-583, 1971.
- 44. Andrews, G.E. and Bradley, D., "The Burning Velocity of Methane-Air Mixtures", Combustion and Flame, 19, 2, 275-288, 1972.
- 45. Andrews, G.E. and Bradley, D. "Determination of Burning Velocity by Double Ignition in a Closed Vessel", <u>Combustion and Flame</u>, <u>20</u>, 1, 77-89, 1973.
- Thompson, P.A., "<u>Compressible-Fluid Dynamics</u>", McGraw-Hill Book
 Co., New York, xvii+665 pp., 1972.
- 47. Dwyer, H., Allen, R., Ward, M., Karnopp, D. and Margolis, D.,
 "Shock Capturing Finite Difference Methods for Unsteady Gas Transfer".
 AIAA Paper #74-521, 1974.
- 48. Ames, W.F., "<u>Numerical Methods for Partial Differential Equations</u>", Barnes and Noble, Inc., x+291 pp., 1969.
- 49. MacCormack, R.W., "The Effect of Viscosity in Hypervelocity Impact Cratering", AIAA Paper #69-354, 1969.
- 50. Tyler, L., "Heuristic Analysis of Convective Finite Difference Techniques", Proc. of the Second International Conference on Numerical <u>Methods in Fluid Dynamics, Lecture Notes in Physics</u>, 8, Springer-Verlag, New York, 314-319, 1970.
- 51. Warming, R.F., Kulter, P. and Lomax, H., "Second- and Third-Order Non-Centered Difference Schemes for Nonlinear Hyperbolic Equations", AIAA Journal, 11, 2, 189-196, 1973.

- 52. Salas, M.D., "Shock Fitting Method for Complicated Two-Dimensional Supersonic Flows", AIAA Journal, 14, 5, 583-588, 1976.
- 53. Quarles, D., PhD. Thesis, New York University, 1964.
- 54. Salas, M.D., Private Communication, 1976.
- 55. D'Souza, N., Molder, S. and Moretti, G., "Numerical Method for Hypersonic Internal Flow Over Blunt Leading Edges and Two Blunt Bodies", AIAA Journal, 10, 5, 617-622, 1972.
- 56. Chorin, A.J., Private Communication, 1976.
- 57. Courant, R. and Friedrichs, K.O., "Supersonic Flow and Shock Waves", Interscience Publishers, Inc., New York, xvi+464 pp., 1948.
- Chorin, A.J., "Random Choice Solution of Hyperbolic System", J. Computational Physics, 22, 4, 517-533, 1976.
- 59. Oppenheim, A.K., "Introduction to Gasdynamics of Explosions", Springer-Verlag, Wien, New York, v+220 pp., 1972.
- 60. Dahlquist, G., Björck, A. and Anderson, N., "<u>Numerical Methods</u>", Prentice-Hall, Inc., Englewood, New Jersey, xviii+573 pp., 1974.

FIGURE CAPTIONS

- Fig. 2. Finite wave analysis of flame-shock interactions depicted in Fig. 1.
- Fig. 3. Comparison of the experimental and analytical pressure profiles at positions PGl and PG2, indicated in Figs. 1 and 2.
- Fig. 4. Pressure-space profiles of the flow fields corresponding to a flame burning speed of 25 m/sec. j = 0, 1, and 2 for plane-, line-, and point-symmetrical flow fields respectively; $\gamma_u = 1.3$; $\gamma_b = 1.2$; $v_F = 7$; M = 1.
- Fig. 5. Density-space profiles of the flow fields associated with Fig. 4.
- Fig. 6. Particle velocity-space profiles of the flow fields associated with Fig. 4.
- Fig. 7. Shock-shock collision in the hodograph and time-space planes.
- Fig. 8. Shock-shock merging in the hodograph and time-space planes.
- Fig. 9. Shock-contact discontinuity interaction corresponding to a speed of sound ratio (a_2/a_1) greater than one.
- Fig. 10. Shock-contact discontinuity interaction corresponding to a speed of sound ratio (a_2/a_1) less than one.
- Fig. 11. Shock reflection off of a plane of symmetry in the hodograph and time-space planes.

-218-

- Fig. 12. Steady wave solution corresponding to a finite increment in the burning speed.
- Fig. 13. (A) Shock-deflagration merging resulting in a burning speed less than the Chapman-Jouguet value. (B) Shock-deflagration merging resulting in a Chapman-Jouguet deflagration.
 (C) Solution breakdown for burning speeds less than the Chapman-Jouguet value.
- Fig. 14. (A) Deflagration-contact discontinuity interaction resulting in a burning speed less than the Chapman-Jouguet value.
 (B) Deflagration-contact discontinuity interaction resulting in a Chapman-Jouguet deflagration. (C) Solution breakdown for burning speeds less than the Chapman-Jouguet value.
 (D) Chapman-Jouguet deflagration-contact discontinuity
 - interaction resulting in a Chapman-Jouguet detonation.
- Fig. 15. Non-steady analysis of detonation-contact discontinuity interaction.
- Fig. 16. Non-steady analysis of detonation-shock merging.
- Fig. 17. Comparison of reflected shock pressure-space profiles: MacCormack (·); Cloud Code (+); Exact (-). Incident gasdynamic state: $P_1 = 2.430$; $V_1 = 0.514$; $U_1 = -0.833$; $M_n = 1.505$. Reflected gasdynamic state: $P_2 = 5.413$; $V_2 = 0.282$; $U_2 = 0.0$; $M_n = 1.444$.
- Fig. 18. (A) Computational mesh surrounding a right running shock front.
 (B) Computational mesh surrounding a left running shock front.
 Fig. 19. Difference schemes associated with the five possible relative motions of a shock wave and a translating grid.

- Fig. 20. Density-space profiles of a contact discontinuity after 40 cycles of MacCormack scheme. Conditions: $\rho_2 = 2.026$; $\rho_1 = 2.133$; P = 1.493; U = -0.456.
- Fig. 21. (A) Riemann's steady wave solution for the two possible pressure ratios corresponding to the independent states 1 and 2. Trajectories; solid line - shock; dashed line - contact discontinuity; chain dotted and chain double dotted lines-head and tail of rarefaction wave. (B) Computational plane surrounding a contact discontinuity.
- Fig. 22. Difference schemes associated with the four possible relative motions of a contact discontinuity and a translating grid.
- Fig. 23. Difference scheme associated with deflagration.
- Fig. 24. Chapman-Jouguet detonation on the pressure-specific volume plane.
- Fig. 25. Difference schemes associated with the two possible relative motions of a detonation and a stationary grid.
- Fig. 26. Pressure, density, and particle velocity-space profiles of a Chapman-Jouguet detonation wave in a closed end tube. Solid line - self-similar analysis, solid and dashed lines numerical calculations. Conditions: $\gamma_F = 7$; $\gamma_u = 1.3$; $\gamma_b = 1.2$; M = 1; $M_D = 5.12$.
- Fig. 27. Difference schemes associated with the relative motions of a shock-shock system within a translating grid.

- Fig. 28. Difference schemes associated with the relative motions of a shock-contact distontinuity system within a translating grid.
- Fig. 29. Difference schemes associated with the relative motions of a shock-deflagration system within a translating grid.
- Fig. 30. Difference schemes associated with the relative motions of a shock-detonation system within a stationary grid.
- Fig. 31. Difference schemes associated with the relative motions of a contact discontinuity-shock system within a translating grid.
- Fig. 32. Difference schemes associated with the relative motions of a contact discontinuity-deflagration system within a translating grid.
- Fig. 33. Difference schemes associated with the interface between a contact discontinuity and a rarefaction within a stationary grid.
- Fig. 34. Difference schemes associated with the relative motions of a deflagration-shock system within translating grid.
- Fig. 35. Difference schemes associated with the relative motions of a deflagration-contact discontinuity system within a translating grid.
- Fig. 36. Difference schemes associated with the relative motions of a detonation-shock system within a stationary grid.
- Fig. 37. Difference schemes associated with the relative motions of a detonation-contact discontinuity system within a stationary grid.

- Fig. 38. Difference schemes associated with the relative motions of a plane of symmetry-shock system within a translating grid.
- Fig. 39. Flow diagram of the executive instructions controlling the whole of the computational process.

Fig. 40. Flow diagram of FIDIF.

- Fig. 41. Solution for burning speed increments below the critical value.
- Fig. 42. Solution for burning speed increments above the critical value.
- Fig. 43. Details of the solution of Fig. 42 depicting onset of detonation.
- Fig. 44. Pressure-space profiles at various instants in time associated with Fig. 41.
- Fig. 45. Pressure-space profiles at various instants in time associated with Fig. 42.

Fig. 46. Pressure histories at various positions associated with Fig. 41.Fig. 47. Pressure histories at various positions associated with Fig. 42.Fig. 48. Limit line between steady and non-steady regimes of solution.

-222-

-223-

XBL 781-6787

-224-

-225-

Fig. 4

Fig. 5

-227-

.

Fig. 6

Fig. 9

-232-

Fig. 11

Fig. 12

XBL 781-6797

Fig. 13A

Fig. 14A

Fig. 14C

Fig. 14D

Fig. 15

-242-

Fig. 16

-243-

-244-

Fig. 17

Fig. 18B

Fig. 19

Fig. 20

Fig. 21B

-250-

Fig. 24

-252-XBL 781-6832 Fig. 25

Fig. 26

-254-

Fig. 27

201 M/M/M310 10^{1} 10^{1} 10^{1} 10^{1} 211 AAA D 10 + 0210

Fig. 27 Cont.

-255-

Fig. 27 Cont.

-256-

Fig. 28 Cont.

Fig. 28 Cont.

109-+99

XBL 781-6826

-261-

XBL 781-6824

Fig. 31

-264-

100

100

-9

-10

Fig. 34

Fig. 35

-268-

Fig. 36

Fig. 37 Cont.

100 ! /!

-273-

Fig. 41

Fig. 42

-276-

Fig. 44

-277-

Fig. 45

Fig. 46

-279-

Fig. 47

-281-

Fig. 48

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

١ L ,