RETADDII: modeling long-range atmospheric transport of radionuclides

PDF Version Also Available for Download.

Description

A versatile model is described which estimates atmospheric dispersion based on plume trajectories calculated for the mixed layer. This model allows the treatment of the dispersal from a source at an arbitrary height while taking account of plume depletion by dry and wet deposition together with the decay of material to successor species. The plume depletion, decay and growth equations are solved in an efficient manner which can accommodate up to eight pollutants (i.e. a parent and seven serial decay products). The code is particularly suitable for applications involving radioactive chain decay or for cases involving chemical species with successor ... continued below

Physical Description

Pages: 29

Creation Information

Murphy, B.D. January 1, 1982.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A versatile model is described which estimates atmospheric dispersion based on plume trajectories calculated for the mixed layer. This model allows the treatment of the dispersal from a source at an arbitrary height while taking account of plume depletion by dry and wet deposition together with the decay of material to successor species. The plume depletion, decay and growth equations are solved in an efficient manner which can accommodate up to eight pollutants (i.e. a parent and seven serial decay products). The code is particularly suitable for applications involving radioactive chain decay or for cases involving chemical species with successor decay products. Arbitrary emission rates can be specified for the members of the chain or, as is commonly the case, a sole emission rate can be specified for the first member. The code, in its current configuration, uses readily available upper-air wind data for the North American continent.

Physical Description

Pages: 29

Notes

NTIS, PC A03/MF A01.

Source

  • American Nuclear Society annual meeting, Los Angeles, CA, USA, 6 Jun 1982

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE82017308
  • Report No.: CONF-820609-47
  • Grant Number: W-7405-ENG-26
  • Office of Scientific & Technical Information Report Number: 5180829
  • Archival Resource Key: ark:/67531/metadc1053100

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1982

Added to The UNT Digital Library

  • Jan. 22, 2018, 7:23 a.m.

Description Last Updated

  • Feb. 1, 2018, 3:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Murphy, B.D. RETADDII: modeling long-range atmospheric transport of radionuclides, article, January 1, 1982; Tennessee. (digital.library.unt.edu/ark:/67531/metadc1053100/: accessed June 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.