We present a new scheme which evolves the perturbed part of the distribution function along a set of characteristics that solves the fully nonlinear gyrokinetic equations. This nonlinear characteristic method for particle simulation is an extension of the partially linear weighting scheme, and may be considered an improvement of existing {delta} f methods. Some of the features of this new method are: the ability to keep all of the nonlinearities, particularly those associated with parallel acceleration; the loading of the physical equilibrium distribution function f{sub o} (e.g., a Maxwellian), with or without the multiple spatial scale approximation; the use of …
continued below
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this report.
Follow the links below to find similar items on the Digital Library.
Description
We present a new scheme which evolves the perturbed part of the distribution function along a set of characteristics that solves the fully nonlinear gyrokinetic equations. This nonlinear characteristic method for particle simulation is an extension of the partially linear weighting scheme, and may be considered an improvement of existing {delta} f methods. Some of the features of this new method are: the ability to keep all of the nonlinearities, particularly those associated with parallel acceleration; the loading of the physical equilibrium distribution function f{sub o} (e.g., a Maxwellian), with or without the multiple spatial scale approximation; the use of a single of trajectories for the particles; and also, the retention of the conservation properties of the original gyrokinetic system in the numerically converged limit. Therefore, one can take advantage of the low noise property of the weighting scheme together with the quiet start techniques to simulate weak instabilities, with a substantially reduced number of particles than required for a conventional simulation. The new method is used to study a one dimensional drift wave model which isolates the parallel velocity nonlinearity. A mode coupling calculation of the saturation mechanism is given, which is in good agreement with the simulation results and predicts a considerably lower saturation level then the estimate of Sagdeev and Galeev. Finally, we extend the nonlinear characteristic method to the electromagnetic gyrokinetic equations in general geometry.
This report is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Parker, S. E. & Lee, W. W.A fully nonlinear characteristic method for gyrokinetic simulation,
report,
July 1, 1992;
New Jersey.
(https://digital.library.unt.edu/ark:/67531/metadc1052586/:
accessed March 26, 2025),
University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.