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Abstract

QCD sum rules are used to obtain the isovector and "isoscalar" axial
vector coupling constants, gA and gAs. We find gA = 1.26 =t=0.08, gAs =
0.13-t-0.08 with sum rules for gA-- 1 and gA +gSA. These sum rules also show
that in the limit of chiral symmetry restoration, gA ""* 1 and gSA ---+-1.

I. Introduction

Let me first say that it is a pleasure to be here to help celebrate this happy
occasion of a colleague and friend. Although my talk is not directly in the field tb t
has been of primary concern to Abe Klein, I hope he will accept it as the tribute it
is intended to convey.

One of the major questions for nuclear physics remains how to incorporate the
basic hadronic theory QCD into its framework. To overcome the nonperturbative
aspects of the theory, numerous methods have been proposed and used: lattice QCD,
light-cone techniques, bag models, solitons, string and related flux-tube models,
Nambu-Jona-Lasinio model, Q('D sum rules, and many others. Each of them has
been found useful in a limited realm, but none of them has so far been found to
be widely applicable and successful without requiring added features. But many of
the methods are still being developed, and their applicability continues to be tested
and extended.

The method of QCD sum rules is, I believe, particularly useful for describing
hadcuic structures. It has been applied to both mesons and baryons and found to
be remarkably successful. The met ho,i is to replace the non-perturbative long-range
aspects by several (hopefully) universal vacuum expectation values (VEV's). The
short-range aspects on the other hand, are calculated perturbatively. The method



was developed by physicists in the USSR 1, who also extended it to computing

hadronic properties in the presence of an external (e.g., electromagnetic) field. 2,a

In this talk I want to discuss the calculation of gvA = gA and gS, the isovector
and "isoscalar" axial vector coupling constants of the nucleon by means of QCD

sum rules, a,4 I will also show that gA _ 1 and gS _ -1 in the limit of chiral
symmetry restoration at high nuclear densities or temperatures.

We are particularly interested in the response of nucleons to electroweak fields.

These responses have been considered in the past. 3,4 One of the critical tests of a

model of nucleons is its ability to generate the correct axial vector coupling constant,

gA = 1.254 :k .006. Non-relativistic quark models predict 5/3 and relativistic ones

predict 0.75 < gA _ 1.5. QCD sum rules have been shown 3 to give gA = 1.25,

but this result has been obtained with non-standard values of the condensate. By
including terms consistently up to dimension d = 8, we use a QCD sum rule for

gA-- 1 to show that gA = 1.26 with accepted values of these condensates. In addition

we calculate gS and compare it to recent EMC measurements.

II. Method

The method begins with a correlation operator Tr(q) in an external axial field

ZtL

Tr(q)= i J d4x e < 01T(q(x)fi(0))10>, (1)

where the current 7/ has the quantum number of the hadron in question. For a
nucleon a useful form has been found to be 2-4

rl(x ) = e_bc {u,,(x)T C %, ub(x)} ")'_")'SdC(x) , (2)

where C is the charge conjugation operator and a...c are color indices. If vN(p) is a

nucleon spinor (normalized so that 9v = 2MN, with MN the nucleon mass) we can
write

< Olq(O)lN(p) >= ,kg vN(p), (3)

where _N is a constant.

The correlator can be written in an operator product expansion

=c, + Z °", (4)
72

where I is the unit operator, the Cz, C, are Wilson coefficients and O, is an oper-

ator; the On's can be ordered by dimension and the Wilson coefficients fall off by

corresponding powers of Iq21. _r is calculated in a region of Iq21 --_ 1 GeV 2, where
the VEV's take into account nonperturbative QCD aspects, not included in the

perturbative part.



The correlator rr has various structure functions (labeled by j), each of which
satisfies a dispersion relation

1 _0_ ImrrJ(:_)ds
- + subtraction constants (5)

rrj(q2) _ rr s -- q2

The subtraction terms are eliminated by assuring convergence via a Borel trans-
form

B[F(q_)]- lira 7i.( -g_ F(q_)--, - d_r._ _.(_)_-_/M___,-__ rr
q2/n-.M_ ,finite

(6)
The correlator rr in the presence of Z, is evaluated first for the quarks in the

nucleon', it is equated to the nucleon-based dispersion calculation,

1 1
rr(p) = -[AN[ 2 gA_75 + excited states and continuum. (7)

13- MN 1_- :X.IN

By comparing coefficients, several sum rules can be obtained for the coefficients of
P' Z/iT 5, _: 7_, and ia"v Z,p,@. Only the first of these is used to obtain gA because
(i) it contains gA alone, and (ii) the excited and continuum state contributions
are less important than for the other terms, because they would cancel for parity
doublets, a

We begin with the quark propagator in configuration space in the presence of
the external constant axial-vector field Z,. If we keep terms up to second order in
an expansion of < 01q(x)_(0)[0>, we obtain

S ab __ _ab i(2rr)4x4(i_-gx" Zi_7_) + 32_:2x 2 gc G_v(¢ a"" +a"V¢)

{ 1 ( 1 x2m02)+ 1 1+ _b < _q> -_ 1+ _ _ gx_75+ 3-6gx_Z_C'_'y5

+_i-_ g_ _ _-*' ""'

The various terms of this propagator are shown in Fig. 1. The constants g are
the coupling of the quarks to the external field. In the standard model they are

gu = --gd = 1 (9a)

for the up and down quarks; these are the coupling constants for the isovector gA.
The "isoscalar" coupling gS is defined by

gu = gd = 1. (95)



a b c

d e

X

f g h

Quark propagator diagrams.

lt should be noted that this is not truly the weak isoscalar axial coupling constant.
The latter is given by the sum of gA for the proton and neutron, and vanishes in
the absence of"strange quarks. 5

The susceptibilities h: and X and the mass m_ in Eq. (8) are defined by

< 01_g_. aqlO>= -m_o< _q>,

< 014g_G,_'Y_ql0> = gxZ_,< Ftq>,

<0 q'YuT_q0>= gxZ_, < Clq> . (10)

The sum rule for gA is then obtained from the coefficients of p. Z/rTs in Tr(p).
After the application of a Borel transformation, we obtain

M_E2 M_ 2G 2 M_ 5 a2L4/9
8L4/9 f 32L4/9 '_ gc > Eo - 18L68/sl _a E0 +

1 2G 2
-_ 288L4/9 xa < g_ >

/J_(gA + AMg)exp(- 2 2=: 3,4N/Ms) , (11)



Where a = -(21r) 2 < qq >, the length L is L = 0.6211n(10MB) corresponding to
AQCD = 0.1 GeV, with the Borel mass Mu given in GeV; the quantity _v -=
(27r)4,\_v/4. In Eq. (11) we have kept anomalous dimensions. The functions E0, El,
and E2 are given by

E0= 1-e -x

Bi = 1-(l+x)e -x

E2 = 1 -(1 + x + lx2)e-" , (12)

with x = W 2/M_. These functions account for contributions of excited states up
to a mass W. We choose W 2 _ 2.3 GeV 2. The constant A represents residual
contributions of excited and continuum states. The terms which contribute to the

left-hand side of Eq. (11) are shown in Fig. 2.
Similarly, for the "isoscalar" gAs we find

i Mi
M_E2 M_ < g2G2 > Eo + xaM_E1 - 18_-S--/si _aZo8L4/9 + 32L4/9 6L4/9

1 L4/9 1 Xa < g2G 2 >- 1--_a_ + 288L4/9

2 s 'AS 7_,I_ exp(-JPf_/M_ ,=/3N(g A + ) ) (13)

In order to obtain a sum rule for gA -- 1, we use the Belyaev-Ioffe 6 sum rule for the
mass MN

M_ E2 + M_ < g2G 2> Eo -t- la2Lt/9 1 a2m2°
8L4/9 32L4/9 6 24M_

/_ exp( 2 2= -MNMB). (14)

After subtraction of Eq. (14) from Eq. (11), we obtain

1 a2L4/9._ 1 a2m 2 1 _aM_ 1 2G 2
24 M_ 18 Z6S/sl E0-{ 288L4/9 xa <gc >

= /32N{(gA- 1)+AM_} exp(-M_/M_). (15)

One advantage of the sum rule, Eq. (15) for gA- 1 is that it has a smaller variation
in powers of M_ than that for gA. This occurs because the first two terms of
Eqs. (11) and (14) are equal to each other. From Eq. (15), we immediately see that
if a _ 0, the left hand side = 0 and gA -- 1 -" O.

The constants required for the evaluation of the sum rules are obtained from
other experiments. They are no_Atadjusted. These constants are

a _ 0.55 GeV a , b

aa ,_ 0.140 GeV 4 ,

_a _ 0.70 GeV 2 .

< g2cG2> _ 0.47 GeV 4 ,

m02_ 0.8 GeV 2 (16)
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Diagrams included in the evaluation of the sum rules for gA and gA'



Of these values, _ is the least well known; we estimate the error in the sum rule by
evaluating gA -- 1 for Ra = -0.140 GeV 4 as well as for the value given in Eq. (16).
The value of _ is obtained from the mass sum rule and the mass of the nucleon,
/3_v = 0.26 GeV 6.

A reduction in the range of powers in M_ can also be obtained for gas through
a sum rule for g_ + gA,
J

1
16L4/9 <gcG > Eo + 6L4/--------_ xa M_E1 9L68/s 1 _aEo

2 a2L4/9 1 2 2
+-_ + 144L4/gM _ xa < gcG >

=/32N(gA + gS + A'M_)exp(-M_/M_) . (17)

Again, we note that if a ---, 0 and < G 2 >--, 0, the left hand side vanishes and
gS = --gA - --1.

III. Results and Discussion

In the sum rule for gA -- 1, the quark condensate < _q > or a dominates the con-
tribution on the left-hand side of Eq. (14) and the susceptibility terms proportional
to n and X are relatively unimportant.

Solutions to the sum rules are found numerically; they axe stable for Ms >_1.8
GeV. Although this is a relatively large Borel mass, we find that the continuum con-
tributions from A and A s are very small. A smaller mass is desirable to emphasize
the contribution of the nucleon and deemphasize excited states. We find

gA -- 1.26 4- 0.08

gS __0.13 :t: 0.08. (18)

The central value of gA is clearly consistent with experiment. The value of gAs differs
from that found by Gupta, Murthy, and Pasupathy 4 who obtain g_ = 0.35 with a
value of < _q > smaller by 20% than the "standard" one we use. This result shows
the sensitivity of gAs to the susceptibilities and quark condensate.

From the EMC data and baryon decays, one obtains 7

gS _ Au + Ad _ 0.31 :i=0.08. (19)

Our value is not quite consistent with experiment if A_7- Ad = 0. If _ = X =
O, gA _ 1.3 and gAs = --0.56. This again shows the sensitivity to g_ to the
susceptibilities. If a = 0, we obtain gA = 1.00 :J=0.02 and g_ = -0.68; if < GG >
= 0 in addition, gS = -1.0. The latter result is, indeed, a strange one. Together
with gA "- 1, it implies Au = 0, Ad = -1 for the proton when chiral symmetry is
restored.



Can we use these results to predict what happens in nuclei? Although we expect
a partial restoration of chiral symmetry in nuclei, we cannot simply interpolate
between the free nucleon (gA = 1.26) and chiral restoration (gA = 1) limits. For
instance, other condensates such as the vector < qtq > can occur in nuclei. However,
it is likely that 1 <gA < 1.26.
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