UNIVERSITY OF CALIFORNIA
 Lawrence Radiation Laboratory Berkeley, California
 Contract No. W-7405-eng-48

DOWNFLOW FORCED-CONVECTION BOILING OF WATER IN UNIFORMLY HEATED TUBES

Roger Maurice Wright
(Ph.D. Thesis)
August 21, 1961

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DOWNFLOW FORCED-CONVECTION BOILING OF WATER IN UNIFORMLY HEATED TUBES

Contents

Abstract vi

1. Introduction 1
A. General 1
B. Forced-Convection Vaporization Phenomena 3
C. Thermal Entrance Regions 5
D. Previous Work in Forced-Convection Boiling 6
l. Dengler, and Dengler and Addoms 7
2. Mumm 9
3. Schrock and Grossman 10
4. Natural-Circulation Boiling in Vertical Tubes 11
5. Evaporation of Refrigerants 12
6. Sterman, Morozov, and Kovalev 13
E. Pressure Drop in Forced-Convection Boiling 14
l. Two-Phase-Flow Frictional Pressure Loss 14
7. Holdup Data 15
8. Total Pressure-Gradient Correlations 16
II. Experimental Equipment 18
A. General Flow System 18
B. Flow-System Equipment 26
C. Boiling Test Sections 32
D. Electric Power Supply 40
E. Instrumentation 40
l. Temperature Measurement 40
9. Pressure Measurement 48
10. Electric Power Measurement 53
III. Experimental Procedure 55
IV. Data Reduction 61
A. Evaluation of the Inside-Wall Temperature 61
B. Pressure Measurement, Heat Flux, and Heat- Transfer Coefficient 68
C. The Energy Balance 70
D. Reduction of the Raw Data and Digital Computation 72
E. Estimate of Experimental Error 82
V. Discussion 87
A. Nonboiling Heat Transfer 87
B. Boiling Heat Transfer 90
C. Boiling Pressure Drop 110
11. Correlation of Total Pressure Gradient 110
12. Prediction and Correlation of Individual Pressure Losses 113
D. Flow Pattern and Vaporization Mechanism 117
E. Application to Design 119
l. Design Computations 120
13. Comparison of the Calculated and Observed Pressure Profiles 122
VI. Conclusions and Recommendations 128
Acknowledgments 132
Bibliography 134
Nomenclature 137
Appendices 141
A. Solution of the Conduction Equation for the Inside-Wall Temperature 141
B. Pressure Measurement Using the Pressure Transducer 143
C. Derivation of the Energy Balance 144
D. Force-Momentum Balance Used to Calculate Acceleration Pressure Losses 146
E. Data-Reduction Program 149
F. Forced-Convection Boiling Data 154

DOWNFLOW FORCED-CONVECTION BOILING OF WATER IN UNIFORMLY HEATED TUBES
 Roger M. Wright
 (Thesis)
 Lawrence Radiation Laboratory and Department of Chemical Engineering University of California, Berkeley

August 21, 1961

ABSTRACI

Local heat-transfer coefficients and local, total two-phase pressure drops have been measured in the downflow forced-convection (net) boiling of water in electrically heated tubes. The tubes used were 0.719 and 0.472 in. i.d., with lengths of 5.67 and 4.69 ft , respectively. The flow variables cover the following ranges:

Variable	Symbol	Range
Mass flux	G	110 to $7001 \mathrm{bm} / \mathrm{sec} \mathrm{ft}^{2}$
Heat flux	q	13,800 to $88,000 \mathrm{BTU} / \mathrm{hr} \mathrm{ft}^{2}$
Quality (mass fraction vapor)	X	0 to 19%
Boiling number $\left(=\frac{q}{h_{\mathrm{fg}^{G}}}\right.$)	Bo	$0.24 \cdot 10^{-4}$ to $1.9 \cdot 10^{-4}$
Pressures		15.8 to 68.2 psia

Boiling heat transfer results are compared to the correlations of Dengler, Mumm, and Schrock and Grossman. New boiling heat-transfer correlations are derived, the skeleton of these being the following general dependence:

$$
h_{B} \sim G^{0.6} q^{0.3} x^{0.4}
$$

Large effects due to two-phase thermal entrance phenomena were observed. These effects are discussed with reference to previous experi-
ments in forced-convection boiling.
Local, total two-phase pressure gradients are correlated by the method of Schrock and Grossman. Individual pressure gradients are also predicted by several methods.

On the basis of heat-transfer and pressure-drop observations, the flow and vaporization mechanisms are discussed.

A design procedure is derived, and typical results are discussed.

I. INIRODUCTION

A. General Introduction

The interest in boiling, or more completely, heat transfer With change of phase, has increased greatly over the past several years. The main reason for this increased interest is the ability of boiling systems to attain large heat fluxes while employing relatively small temperature differences. For instance, in some boiling systems the heat flux is proportional to the fourth power of the temperature difference. In contrast, the heat flux obm tained with forced-convection heat transfer without change of phase is essentially proportional to the first power of ΔT. The increased heat flux of the boiling system has, however, been accompanied by great, if not insolvable, analytical difficulties. These difficulties stem from the complex fluid-dynamic phenomena associated with the boiling process, and the fact that the fluid dynamic problem cannot be treated separately from the heat transfer problem. For example, the large heat fluxes observed with nucleate pool boiling are considered to be a result of disturbances in the thermal boundary layer caused by the formation, growth, and detachment of vapor bubbles. The same reasoring has been advanced for the large heat fluxes observed with subcooled.
boiling. *
It is well known that heat-transfer coefficients for one-phase systems vary almost linearly with mass velocities in the region of the heat-transfer surface. It is natural, therefore, that in the search for higher performance heat transfer systems, attempts would be made to combine the mechanisms of boiling and high-speed forced convection. This report deals with the net vaporization phenomena associated with the forced flow of a saturated liquid down through a uniformly heated tube.

The main objectives of this work are to experimentally measure heat-transfer coefficients and pressure drops, correlate them with flow variables, and present design procedures. Then, from this work it was hoped that an insight might also be gained into the actual mechanisms involved.

Practical applications for such a heat-transfer system include cooling nuclear reactors and rocket motors, conversion of sea water

[^0]to fresh water, and concentration of fruit juices and other food products. ${ }^{1}$ Although an upflow system could be used in any of the proposed applications, there is one consideration which may favor the downflow system. Because of hydrostatic head, in an upflow system employing relatively long tubes, boiling might be prevented in the inlet region of the tubes. In some cases this inefficient use of heat-transfer surface may be intolerable.
B. Forced-Convection Vaporization Phenomena

When a liquid is introduced into a heated tube, it first experiences warming by forced convection. Then when the bulk fluid temperature reaches a level somewhat below the saturation temperature, subcooled boiling may occur at the tube wall. (The effect of the subcooled boiling may be very small if the tube wall temperature is not appreciably above the bulk fluid temperature.) Finally when the bulk temperature reaches the saturation temperature, net boiling cormences and vapor appears in the flow stream. From this point to the exit of the tube, or to the point where all liquid has been converted to vapor, the two-phase bulk fluid temperature continuously decreases. This temperature drop is due to hydrodynamic pressure losses and the fact that thermal equilibrium between phases is wholly or partially maintained. That is, the bulk twophase fluid temperature is dependent on the pressure existing in the tube.

Within the boiling region of the tube several complex interacting processes occur simultaneously:

1. Heat is transferred from the tube wall into the two-phase
mixture, the net effect of this heat transfer being the formation of vapor. It is not known whether the vaporization mechanism resembles that of nucleate boiling or if there is some other mechanism, e.g. evaporization, at existing vaporliquid interfaces. The mechanism is surely not that of film boiling as temperature differences are not large enough.
2. Vapor is also formed by flashing. Because of the flow system pressure drop and the criteria of thermal equilibrium between phases, a considerable amount of vapor is formed by flashing of saturated liquid. The mechanism for this vaporization process is not known either.
3. There are large two-phase-filow friction losses. From many experimental studies, it is well known that frictional pressure losses for two-phase flows are usually very large in comparison with those obtained in ordinary one-phase turbulent flow.
4. The generation of vapor also leads to large pressure losses. With the generation of vapor, the overall specific volume of the two-phase mixture increases, and there is a corresponding acceleration of some part of the flow field. Because of: momentum considerations, this acceleration causes an additional pressure loss. The magnitude of the pressure loss depends on the relative accelerations imparted to the vapor and liquid. Hydrostatic head must also be considered in pressure loss descriptions.
5. The acceleration due to vapor formation has the added effect of increasing flow velocities and turbulent mixing. Both of these situations tend to increase pressure losses and heat-
transfer coefficients.
These effects will be greatest when the difference between vapor and liquid densities is large; i.e. for low pressures. For this reason, the pressure range below 100 psia to atmospheric was chosen for this investigation.

From velocity considerations it is expected that heat-transfer coefficients would increase with increasing mass velocity G and increasing vapor fraction x. Additionally, from pool boiling studies it seems reasonable that there would also be some dependence on ΔT or, in the case of a uniformly heated tube, the heat flux q. For an experiment where G and q are fixed, but x increases along the tube length, it is expected that local heat-transfer coefficients would increase with length.
C. Thermal Entrance Regions

Before proceeding to a review of previous work in heat transfer in forced-convection boiling, some discussion of thermal entrance regions is warranted. It is not the purpose of this report to study in detail two-phase thermal entrance regions, but to at least recognize the existence and effects of such phenomena. Consider the fully-developed turbulent flow of a liquid in a tube . Let the liquid first flow through an unheated portion of the tube and then into a heated region. Assuming the thermal contribution of fluid friction to be small, the liquid everywhere in the unheated portion of the tube will be isothermal. As the liquid enters the heated section of the tube, at first only the layer of fluid at the heated wall is warmed, while the bulk of the liquid is still isothermal. As the liquid proceeds downstream and the warming
process continues, the thickness of the warmed layer increases and the radius of the isothermal region becomes smaller. At some point downstream, the warmed layer -- called the thermal boundary layer-has grown to the extent that it fills the entire tube and there no longer is an isothermal region of fluid. The length of tube from the entrance of the heated section to the point where the thermal boundary layer completely fills the tube is called the thermal entrance length. Any point downstream from the thermal entrance region is said to have full-developed heat-transfer conditions. From the physical description of the entrance phenomenom, it should be evident that heat transfer in the entrance region is not typical of the fully-developed region. Heat transfer coefficients in the entrance region vary from very large (approaching ∞) down to the fully-developed value. 2,3 This is due to the large thermal gradients existing in the fluid adjacent to the tube wall; theoretically the gradient at the entrance to the heated region is infinite.

If the flow at the entrance to the heated section of the tube is a two-phase mixture or a saturated liquid (or a nearly saturated liquid), the entrance phenomena will occur in conjunction with twophase vaporization processes. Neither the effect of this superposition of mechanisms nor the length of the entrance region are accurately known. However, there will surely be some entrance phenomena that will not be typical of fully developed conditions.

D. Previous Work in Forced-Convection Boiling

There has been very little work published on the subject of forced-convection boiling; especially all of the work that has appeared has been experimental. This work is summarized below.

There have also been attempts to extend pool boiling and one-phase forced-convection correlations to this subject. In view of the radical departure of the physical picture of forced-convection boiling from either of these two regimes, it is difficult to find merit in this latter approach. This view is also held by Staley and Baker. ${ }^{4}$

1. Dengler ${ }^{5}$ and Dengler and Addoms ${ }^{6}$

Dengler used water in an upflow system consisting of a l-in.i.d., 20-ft.-long, vertical copper tube. Five 3-ft.-long steam jackets were spaced along the tube and 21 thermocouples were embedded in the tube wall. Local heat fluxes were determined by collecting steam condensate from the specially designed steam jackets. Local pressures were obtained at stations between the steam jackets by a manometer system. Saturated liquid was introduced to the test section with outlet pressures ranging from 7.2 to 29 psia. Mass fluxes were varied from 12.2 to $280 \mathrm{lbm} / \mathrm{sec} \mathrm{ft}^{2}$. The mass vapor fraction (quality), x, varied from 0 to 100%. Local volumetric vapor fractions were determined by a radio-active-tracer technique.

Dengler and Addoms postulated that the local heat-transfer coefficients at low flow rates and qualities are governed by the combined influence of boiling and forced convection. As the linear velocity of the vapor-liquid mixture increases, it was proposed that that nucleate boiling mechanism is suppressed, and a forced-convection heat transfer mechanism is the dominant factor. Their correlation for the region of suppressed nucleate boiling was

$$
\begin{equation*}
\frac{h_{B}}{h_{0}}=3.5 x_{t t}^{-0.5} \tag{I-I}
\end{equation*}
$$

where h_{0} is the heat-transfer coefficient that would be obtained if the flow were all liquid; it is calculated from the Dittus-Boelter equation ${ }^{7}$

$$
\begin{equation*}
\mathrm{h}_{0}=0.023 \frac{\mathrm{k}_{\boldsymbol{\ell}}}{\mathrm{D}_{\mathrm{i}}} \quad \operatorname{Re}_{\mathrm{T}}^{0.8} \operatorname{Pr}_{\boldsymbol{\ell}}^{0.4} \tag{I-2}
\end{equation*}
$$

The physical properties are those of the liquid evaluated at the local saturation temperature, and the Reynolds number, $D G / \mu_{\boldsymbol{\ell}}$, is based on the total mass flow rate. The Lockhart-Martinelli parameter $X_{t t}$ is defined by ${ }^{8}$

$$
\begin{equation*}
X_{t t}=\left(\frac{\rho_{g}}{\rho_{f}}\right)^{0.5}\left(\frac{\mu_{f}}{\mu_{g}}\right)^{0.1}\left(\frac{1-x}{x}\right)^{0.9} \tag{I-3}
\end{equation*}
$$

This was originally developed for the correlation of pressure drop in two-phase, two-component isothermal flow. . Its possibility as a correlating parameter for heat transfer in two-phase flow was suggested by Lockhart and Martinelli.

In the entrance regions of the test section, heat-transfer coefficients were significantly larger than those predicted by Eq. (I-1). Dengler postulated that this was the region in which the nucleate boiling mechanism was predominant, whereas downstream,

[^1]with higher linear velocities, boiling was suppressed. A temperature difference to initiate nucleate boiling, ΔT_{i}, was defined by
\[

$$
\begin{equation*}
\Delta T_{i}=10\left(V_{\text {avg }}\right)^{0.3} \tag{I-4}
\end{equation*}
$$

\]

and was applied as a criteria for nucleate boiling. The average stream velocity $V_{a v g}$ was defined by material balance relations and measured volumetric vapor fractions. Dengler obtained no correlation between the liquid velocity and Δw_{i} when both liquid and vapor velocities were assumed equal. Then ΔT_{i} was nondimensionalized in an arbitrary manner, and the data were correlated by multiplying h_{B} / h_{0} by the factor

$$
\begin{equation*}
0.673\left[\left(T_{w}-T_{b}-\Delta T_{i}\right)\left(\frac{\partial P}{d T}\right)_{\text {sat. }} \frac{D}{\sigma}\right]^{0.1} \tag{I-5}
\end{equation*}
$$

when the factor was greater than one. Although this factor was used to reduce the scatter of the data, its physical significance is not immediately apparent. Thermal entrance effects were not mentioned. From the results of Siegel and Sparrow, ${ }^{2}$ the first boiling section of about 36 in . (which contributed one of the five data points for each run) contained a thermal entrance region of some 24 in. In view of the relationship of data points in the first heated region to the correlation, it is suggested that thermal entrance effects form a more plausible explanation than the proposed mechanism. It should also be mentioned, that since each one of the 36-in. boiling sections was used to obtain one value of the heattransfer coefficient, these values are not true local coefficients. 2. Mumm ${ }^{9}$

Mumm used water in an electrically heated, horizontal, stainless steel tube; it was 0.465 in i.d. and 7 ft . long. Local
heat-transfer coefficients were obtained for exit qualities up to 60% and for pressures from 45 to 200 psia. Heat fluxes ranged from $5 \cdot 10^{4}$ to $2.5 \cdot 10^{5} \mathrm{BIU} / \mathrm{hr}$. $\mathrm{ft.}^{2}$, and mass fluxes ranged from 70 to $280 \mathrm{lbm} / \mathrm{sec} \mathrm{ft}^{2}$. Local heat-transfer coefficients for qualities less than 40% were correlated by

$$
N u_{B}=\left[4.3+5.10^{-4}\left(\frac{v_{\mathrm{fg}}}{\mathrm{~V}_{\mathrm{f}}}\right)^{1.64} \mathrm{x}\right]\left(\frac{\mathrm{q}}{G h_{\mathrm{fg}}}\right)^{0.464}\left(\mathrm{Re}_{\ell}\right)^{0.808},(\mathrm{I}-6)
$$

with a standard deviation of $\pm 10 \%$. Here the V's are specified volumes. The quantity ($q / \mathrm{Gh}_{\mathrm{fg}}$) was first introduced by Davidson ${ }^{10}$ and has been called the boiling number, Bo.
3. Schrock and Grossman ${ }^{\text {11, } 12}$

Schrock and Grossman used water in an upflow system. They used electrically heated test sections of 0.1162-in., 0.2370-in., and 0.4317 -in. i.d. Length varied from 15 to 40 in . Mass fluxes for the small tubes varied from 197 to $911 \mathrm{lbm} / \mathrm{sec} . \mathrm{ft.}^{2}$; and for the largest tube, 49 to 69. Heat fluxes for the small tubes were $6 \cdot 10^{4}$ to $1.45 \cdot 10^{6} \mathrm{BTU} / \mathrm{hr}$ 。ft. ${ }^{2}$, and for the large tubes $0.65 \cdot 10^{5}$ to $2.46 \cdot 10^{5}$. Pressures ranged from 42 to 505 psia, and exit qualities up to 59%. During the initial stages of the project, heat transfer data were correlated in two flow regimes. For very low vapor qualities where nucleate boiling was considered predominant, the correlation was

$$
\begin{equation*}
\frac{h_{B}}{h_{\ell}}=1.15 \cdot 10^{-5} \mathrm{q} \tag{I-7}
\end{equation*}
$$

The scatter of the data was large in this region. The authors believed that the relatively high coefficients obtained with the low qualities were not due to entrance effects. When the inception of
net boiling occurred well within the heated test section ($\ell / D \sim 60$), the same effects were still observed. At higher qualities a vapor core-liquid annulus type of flow was postulated. These data were correlated with the Martinelli parameter

$$
\begin{equation*}
\frac{h_{B}}{h_{\ell}}=2.5 x_{t t}^{-0.75} \tag{I-8}
\end{equation*}
$$

Here h_{ℓ} is the local, nonboiling heat-transfer coefficient that would be obtained if the liquid in the two-phase mixture were actually flowing alone and filling the tube. It was also calculated by the Dittus-Boelter equation.

In the final stages of their work, the correlation was modified. It was postulated that heat transfer is dependent on both boiling and forced-convection regimes. The boiling number and the Martinelli parameter, respectively, were used to express these contributions:

$$
\begin{equation*}
\frac{N u_{B}}{\operatorname{Re}_{\boldsymbol{\ell}}^{0.8} \mathrm{Pr}_{\boldsymbol{\ell}}^{1 / 3}}=1.7 \cdot 10^{2}\left[\left(\frac{\mathrm{q}}{\mathrm{Gh}}\right)+1.5 \cdot 10_{\mathrm{Pg}}^{-4} \mathrm{X}_{t t}^{-2 / 3}\right] . \tag{I-9}
\end{equation*}
$$

The standard deviation was $\pm 35 \%$.
4. Natural-Circulation Boiling in Vertical Tubes

Guerrieri and Talty presented data for the boiling of several organic liquids in natural-circulation vertical-tube evaporators. ${ }^{13}$ Tube diameters were 0.75 in . and $1.0 \mathrm{in}$. ; tube lengths were about 6 ft . Heat fluxes were low (up to $17,400 \mathrm{BIV} / \mathrm{hr} . \mathrm{ft}^{2}$). Outlet qualities varied from 2.8 to 11.6%. Heat-transfer coefficients were correlated in a manner similar to that of Dengler:

$$
\begin{equation*}
\frac{h_{B}}{h_{\ell}}=3.4 x_{t t}^{-0.45} \tag{I-10}
\end{equation*}
$$

A correction factor for nucleate boiling was also introduced. The physical significance of this correction is somewhat more apparent than that of the one used by Dengler:

Correction Factor $=0.187\left(r^{*} / \delta\right)^{-5 / 9}$
where r^{*} is the calculated radius of the minimum size of thermodynamically stable bubble for a given degree of superheat, and δ is the thickness of the laminar layer of liquid along the wall. When (r^{*} / δ) was greater than 0.049 , it was physically interpreted to mean that flow velocities near the wall were large enough to prevent nucleation of vapor bubbles.

5. Evaporation of Refrigerants

Some work on the evaporation of refrigerants in forced flow through tubes has appeared in the literature. The data presented are usually for relatively low mass fluxes (less than $150 \mathrm{lbm} / \mathrm{sec}$ $\mathrm{ft} .{ }^{2}$) and low heat fluxes ($20,000 \mathrm{BIU} / \mathrm{hr} \mathrm{ft}^{2}{ }^{2}$). However, vapor fractions (x) up to and over 90% are common. One recent paper summarizes previous work and presents new data. ${ }^{14}$ In the experiments, the difference between inlet and outlet vapor fractions was usually about 15\%. Average heat-transfer coefficients were correlated by:

$$
\begin{equation*}
\frac{\mathrm{h}_{B} D_{i}}{\mathrm{k}_{\ell}}=0.0225\left(\frac{\mathrm{GD}_{i}}{\mu_{\ell}}\right)^{0.75}\left(\frac{J \Delta x \lambda}{L}\right)^{0.375} \tag{I-12}
\end{equation*}
$$

where Δx is the change of vapor fraction x over the test section length L, λ is the latent heat of vaporization, and J is the mechanical equivalent of heat. As pointed out in the Discussion
section of the paper, the measured coefficients were not true local coefficients, but average values. Also it was pointed out that true local coefficients would depend on the value of x rather than Δx.

6. Sterman, Morozov, and Kovalev

Sterman describes forced-convection boiling work carried on in the U.S.S.R. ${ }^{15}$ Data are presented for both the boiling of water up to 90 atmos.and the boiling of 95% ethyl alcohol at 2 atmos. The boiling tubes used were 120 to 140 mm (4.7 in ,) in length and 16 mm ($0.63 \mathrm{in}$.) in diameter. They were electrically heated by using the tube itself as a resistance element. To insure an adiabatic condition at the outer tube wall, the tubes were insulated and then completely surrounded by adjustable guard heaters. Heat fluxes up to $179,000 \mathrm{BTU} / \mathrm{hr} \mathrm{ft}^{2}{ }^{2}$ were employed. Superficial velocities were about 6 to $10 \mathrm{ft} / \mathrm{sec}$, and volumetric vapor fractions were varied from 0 to 26.9%. It was stated that there was no effect due to increasing vapor fraction. However, there was no statement made as to the magnitude of the mass vapor fraction; at low pressures this could easily be less than 1%. Heat-transfer coefficients were correlated according to the following relation

$$
\begin{equation*}
\frac{N u_{B}}{N u_{\ell}}=6150\left[\left(\frac{q}{h_{f_{g}{ }^{V}{ }_{0} \rho_{g}}}\right)\left(\frac{\rho_{g}}{\rho_{f}}\right)^{1.45}\left(\frac{h_{f g}}{C_{p}{ }^{T}{ }_{s}}\right)^{1 / 3}\right]_{0.7}^{0.7} \tag{I-13}
\end{equation*}
$$

where the Nusselt numbers are for boiling and nonboiling (liquid only), v_{o} is the superficial velocity, and T_{s} is the saturation temperature. All of the above bracketed quantities are dimen-
sionless.
E. Pressure Drop in Forced-Convection Boiling

The total pressure gradient ${ }^{*}-\infty(d p / d \ell)_{\text {tpt }}$ the pressure $d r o p$ per unit length of flow channel--in forced-convection boiling is the sum of three contributions: friction losses, acceleration losses due to momentum changes, and losses (or gains) due to the hydrostatic head of the contents of the flow channel. Friction losses may be considered independently of the other two contributions; i.e. it was believed that local friction losses in the boiling system could be estimated from studies dealing with adiabatic two-phase flow. Acceleration and hydrostatic head losses are both dependent on holdup; i.e. they are dependent on the velocities of the two phases and the fraction of the flow channel occupied by each phase. The holdup can be expressed in terms of the volumetric vapor fraction α or the slip ratio ψ (the ratio of the average vapor velocity to the average liquid velocity). Because holdup values were not measured in this experiment, it was hoped published correlations could be used.

1. Two-Phase-Flow Frictional Pressure Loss

Recently much work on adiabatic two-phase-filow friction losses has appeared in the literature. Most of the work has been experimental, resulting in empirical correlations As only total pressure-gradient values were obtained in the work reported here,
*
Unless otherwise specified the pressure gradient is a local or a point value.
and there was no accurate means of testing friction-loss correlations, a full discussion of these papers here is not worthwhile. In conjunction with nuclear-reactor design work, Marchterre reviews some of these papers. ${ }^{16}$ One of the earliest, and still one of the most quoted papers is that of Lockhart and Martinelli. 8 They obtained two-phase friction losses in pipes, using dissimilar liquids and gases. They correlated their results with two parameters, ${ }_{\ell}$ and $X_{t t}$. Here ${ }_{\ell}$ is defined by

$$
\Phi_{\ell}=\left[\begin{array}{ll}
\left(\frac{d p}{d \ell}\right)_{\operatorname{tpf}} \tag{I-14}\\
\left(\frac{d p}{d \ell}\right)_{\ell}
\end{array}\right] \quad \begin{aligned}
& 1 / 2 \\
& .
\end{aligned}
$$

It is the square root of the ratio of the two-phase frictional pressure gradient: to the pressure gradient that would be obtained if the liquid phase filled the pipe and were flowing alone. Parameter $X_{t t}$ was defined by Eq. (I-3) in the previous section. The square of ϕ_{ℓ} can be considered a friction factor multiplier. Some of the friction-loss papers have been theoretical, but each has had as its basis some idealized flow model. Calculations based on two of these models are discussed in Chapter V. 2. Holdup Data

Very little applicable two-phase holdup data have been published; of those published there are no papers dealing with a downflow system. Lockhart and Martinelli in their pressure drop work obtained holdup data for dissimilar gases and liquids in horizontal pipes. Dengler obtained steam-water holdup data for his upflow boiling system. Marchaterre and Petrick review steam-water holdup data used in nuclear-reactor design. ${ }^{16}$ As
most of the latter set of data are for high (2000 psia) or moderate pressures and not for a downflow system, they would not apply directly to this report. However, the authors do summarize the holdup data in terms of the slip ratio. Briefly, slip ratios at 150 psig are all above 2.0 , approaching it as a limit; they decrease with increasing superficial liquid velocity and increase with increasing quality. Even though these curves for upflow or horizontal systems cannot be applied directly to a downflow system, it seems reasonable that the observed trends would be obtained in all systems. The results of calculations in which the slip ratio was arbitrarily specified are discussed in Chapter V.

3. Total-Pressure-Gradient Correlations

Martinelli and Nelson extended the work of Lockhart and Martinelli to the boiling system. ${ }^{17}$ This extension consisted of empirically modifying friction factor multiplier values and vapor-fraction values to be more consistent at higher pressures. Then frictional and accelerational pressure gradients were added and integrated over the length of the boiling tube. In this graphical integration, the heat flux and the vapor fraction were arbitrarily specified. The resulting pressure drop values (the pressure drop over the entire tube) were plotted against average pressure level and exit quality. In order to set limits on pressure-drop values, the procedure was carried out twice; once for the so-called homogeneous or fog-flow model where liquid and vapor velocities are assumed equal, and the second time for the modified volumetric vapor fraction data obtained by Lockhart
and Martinelli. This latter case is sometimes referred to as the slip or stratified flow model. The first case would supposedly set the upper limit on pressure drop. Comparing boiling pressure drop results from work at Argonne National Laboratory, ${ }^{18,19}$ the Martinelli-Nelson method for the homogeneous flow model does set an upper limit, while the predictions of pressure drop from the slip model are only fair. For design work at Argonne, modifications of the method have been suggested. ${ }^{16}$

Schrock and Grossman correlated total pressure gradient values ${ }^{11,12,20}$ in the manner of Lockhart and Martinelli (the total pressure gradient replaced the frictional gradient in the definition of $\left(_{\ell}\right.$), and presented a simplified design procedure. Ninety-five percent of their data were correlated to $\pm 15 \%$. Using Dengler's holdup correlation, they also obtained frictional pressure gradients. The correlation of this data was not nearly as good as that for the total pressure gradient; probably due to the inapplicability of the holdup data.
R. Sani, this author's coworker, correlated the total pressure gradient values taken in the early stages of this experiment. 21 The best straight line through the data gave the relation,

$$
\begin{equation*}
\frac{\left(\frac{\partial p}{\partial \ell}\right)_{\mathrm{tpt}}}{\left(\frac{d p}{d \ell}\right)_{\ell}}=30 \mathrm{x}_{\mathrm{tt}}^{-1.39} \tag{I-15}
\end{equation*}
$$

Agreement with the upflow correlation of Schrock and Grossman is satisfactory.
II. EXPERIMENTAL EQUIPMENT
A. General Flow System

The flow system consisted of a semi-closed loop. Distilled water was pumped from storage tanks through a rotameter system and then through two steam-fed heaters in series. At the outlet of the second heater, the temperature and pressure were controlled so that the flowing water was always subcooled, i.e., below its boiling point at the existing pressure. This location, called station 1, was the reference point for energy balances used to determine conditions downstream in the boiling test section. The stream pressure was then reduced by adjustment of a globe valve in the flow line, and consequently a certain amount of liquid flashed into vapor.* Immediately down-stream from this "flashing" valve was a length of glass pipe which was used to observe the two-phase flow pattern. The two-phase mixture was conducted down into the boiling test section, which was made from a thin-walled stainless steel tube. The test section was heated by using it as an electrical resistance heating element. It was fitted with pressure

* In a few runs the temperature at station 1 was not high enough to allow flashing. In such runs, only liquid phase entered the test section, and the vapor phase was initiated somewhere in the heated region of the tube
taps at frequent intervals along its length and thermocouples were soldered to it to obtain outside tube-wall temperatures; the test section, its connecting piping, and electrical cables were thermally insulated with woven asbestos tape and glass wool. The high-speed, two-phase mixture from the test section outlet was then conducted horizontally into a vapor-liquid cyclone separator. The separated vapor product was condensed and cooled, and returned to storage tanks; simultaneously the liquid product from the separator was cooled in two heat exchangers and also returned to storage.

Figure 1 shows the schematic flow diagram in which the pieces of equipment are displayed similarly to their actual appearance and location. Figures 2 through 6 are photographs of the equipment.

$M U-23900$

Fig. l. Schematic diagram of the flow system.

ZN-2935

Fig. 2. Flow-system control panel and data-collection instru-
ments.

ZN-2929

Fig. 3. Flow-system equipment. Right to left: the two steam-fed heaters, the insulated test section, the vapor-liquid separator, the condenser, and the liquid-product cooler.

ZN-2930

Fig. 4. The insulated test section No. 2 showing pressure-tap connecting tubes.

ZN-2932

Fig. 5. Pumping machinery; the feed pump is in the left foreground.

ZN-2931

Fig. 6. Storage barrels and the induction regulator.

B. Flow-System Equipment

The storage system consisted of four 55-gallon stainless steel barrels. Three of these barrels were mounted on platform scales, while the fourth was mounted on a fixed stand. The auxiliary feed weight tank was mounted on a 1000-1bm Toledo dial scale which had a guaranteed accuracy to within 0.5 lbm . It was used for rotameter calibration, for checks on the other two scales, and optionally, for feed-rate determination. The vapor product weight tank and the liquid-product weight tank were each mounted on 1000-1bm Detecto beam balances. The main feed tank was mounted on the stationary platform.

Each barrel was connected to the feed-pump manifold system by silver soldering a $3 / 4 \mathrm{in}$. stainless steel pipe coupling to the barrel side just above its lower rim. A hole was cut through the barrel side and a $3 / 4 \mathrm{in}$. globe valve attached to the coupling. Each globe valve was then attached to the feed manifold by about a 4 -in. length of $1-1 / 4$-in. $-0 . d$. tygon tubing. This type of flexible coupling disturbed the scale readings by less than the stated accuracy of the scale. The feed manifold and all other piping were constructed with $3 / 4$-in. 304 stainless steel pipe and fittings.

By means of a two-way solenoid valve mounted on the piping system above the vapor-product weigh tank, the condensed vapor product (pumped from the condenser) was directed either into the vapor-product barrel or into the main feed tank. Both connections were made through the barrel tops; the connection to the
vapor-product weigh tank was made with a length of tygon tubing to permit accurate weighing, while the connection to the main feed barrel was with rigid stainless steel piping. By a similar arrangement, the cooled liquid product could be directed into the liquid-product weigh tank or the main feed tank.

A filler was connected between the feed-pump inlet and the feed manifold. The filtering element consisted of a 3-1/4 in.diam,piece of fine-mesh stainless steel screen held tightly in place within the filter body. The feed pump was a Waukesha 10 DO stainless steel sanitary impeller pump. At 700 rpm it was rated at $3750 \mathrm{lbm} / \mathrm{hr}$ of water at a discharge pressure of 60 psig and $5000 \mathrm{lbm} / \mathrm{hr}$ at zero discharge pressure. It was driven by a 1 hp Reeves Vari-Speed Motodrive (No. 3201-C-18)--a variablespeed pulley drive with a range of 148 to 885 rpm . In order to smooth out small fluctuations in the flow rate, a surge tank was connected to the outlet line of the pump. This surge tank was constructed of brass tubing 6 in. in diameter and 10 in. high; in operation, trapped air occupied approximately one-half of the tank volume. Two Fischer and Porter Flowrators (rotameters) were mounted on the control panel for flow-rate measurement. They were connected so that either one could be used, or both could be used in parallel. Each was rated at 5.7 gal/min of water, and were previously calibrated by use of the auxiliary feed-weigh tank and the Toledo scale.

Feed water, normally at or slightly above room temperature, was heated by pumping it through two steam-fed heaters in series. The steam shells of these vertically mounted heaters were made
from 5-in.-diam.brass tubes, each about 11 ft. high. The warming feed water was contained in tube bundles within each shell. The bundles were composed of four 1/2-in., 16-gauge, copper tubes, 10 ft. long. The steam entered the top of the shells and was controlled by $3 / 4$-in., 150 psig, Spence reducing valves with remotecontrol pilot valves which were mounted on the control panel. Crane $1 / 2-i n$. inverted-bucket steam traps were connected to the bottom of the shells. The feed temperature at the outlet of the second heater was controlled by means of a Taylor indicating temperature-controller (Model 162 RM 123) with proportional and reset modes. This controller actuated a Taylor pneumatic diaphragm valve (Model 4VQ255) located in the heater steam line, downstream from the Spence reducing valve. The outlet temperature sensing was accomplished by a mercury-bulb thermometer (in a stainless steel case) which was entirely immersed in the flow stream. The controlled range of this instrument was 150 to $350^{\circ} \mathrm{F}$.

The flashing valve, whose function was described in the first paragraph of this chapter, was mounted in the vertical piping above the second heater (about 18 in. below the laboratory ceiling). The valve itself was a standard 3/4-in. needle-type globe valve. Immediately above the flashing valve, in a specially constructed support, a 3-in. length of Pyrex high-pressure glass tubing served as a sight glass. The tube was 1 in. in diameter, and had a wall thickness of 1/8-in. A U-tube, made from 7/8-in。 copper tubing, was connected to the sight glass outlet and served to direct the flow stream downward into the boiling test section.

The test section and the method of connection to it are described in the next section of this chapter.

The connecting piping at the bottom of the test section introduced the high-speed, two-phase flow mixture into a 3-in. Pyrex glass pipe elbow. The elbow functioned as a sight glass besides its main purpose of conducting the flow horizontally into the vapor-liquid cyclone separator. In addition, by means of an outlet at the bottom of the elbow (which actually made the elbow into a glass pipe T), the test section could be cleaned with a long brush or inspected with a borescope. In operation, this opening was closed and served as support for a thermocouple probe. The separator was made entirely of stainless steel. It was approximately 12 in. in diameter and its over-all length was about 27 in. Figure 7 schematically shows the test section connecting piping and the vapor-liquid separator. From published investigations using cyclones for vapor-liquid separation, it was noticed there is one drawback to this design which is not experienced in gas-solid (dust) separations. $22,23,24,25$ This drawback is due to inward radial velocity components near the top of the separator body. Since liquid droplets adhere to the separator top, the inward velocity components tend to move liquid to the center of the cyclone. Such droplets creeping inwardly along the top of the separator meet the tube that forms the vapor-outlet duct. Then under the influence of gravity, they run down the side of this duct, and at its lower lip (where the vapor velocity is rather large) the drops are easily entrained in the vapor and removed from the separator. In order to prevent this phenomena, a water-tight trough was constructed around the

MU-23896

Fig. 7. Schematic diagram of the lower connecting piping to the test section and the vapor-liquid separator.
outside and near the lower end of the vapor-outlet tube. A 3/8-in. stainless steel tube removed liquid collecting in this trough and discharged it at the cyclone liquid outlet. In order to test the cyclone, a soluble salt was dissolved in the feed water, and a portion of the liquid vaporized in the test section. Tests for the salt in the condensed vapor product were negative. Additionally, another 3-in. Pyrex pipe elbow was connected to the vapor-outlet tube. No entrainment during any of the runs was noticed. However, a small amount of liquid which condensed in the glass elbow was infrequently noticed dripping back into the separator body.

The vapor product from the separator was condensed in a vertical shell-and-tube condenser-subcooler. The shell was made from 6-in. brass tubing and contained twelve 1-in. 16-gauge copper tubes, each 6 ft . long. The tubes were arranged to provide two tube passes for cooling water--down through six tubes, up through the other six. Since it was desired to cool the condensate as much as possible, the liquid level was maintained about 12 in. above the condenser outlet by using a sight glass outside the condenser shell. At the top of the condenser were connections for venting to the atmosphere or to a steam ejector. The liquid product from the separator flowed -
by gravity into a 12-in. length of 2-in. Pyrex glass. pipe. In order to prevent vapor removal at this point, a visible liquid level in the glass pipe was necessary. This was most easily maintained by adjustment of a globe valve immediately below the glass pipe.

The liquid was then cooled in a small shell-and-tube pre-
cooler (in order to prevent cavitation in the pump) and pumped through the main cooler. Cooling was accomplished in the latter cooler in a coiled $50-\mathrm{ft}$. length of l-in. copper tubing. Cooling water flowed outside this coil and within a 7 -in. brass shell. Both product streams were then pumped to their respective solenoidvalve systems and to storage tanks.

Both liquid- and condensed-vapor-product pumps were Jabsco rubber-impeller pumps driven at 1750 rpm . The liquid-product pump was a l-in. bronze model (No. 777), and the vapor-product pump was a. 1/2-in. bronze model (No. 1673). Each pump was connected with a valved outlet-to-inlet' bypass line which was used for gross flowrate adjustment, and secondly, a needle globe valve on the outlet piping for fine flow-rate adjustment.
C. Boiling Test Sections

Each of the two test sections used in this experiment were made from thin-walled stainless steel tubing. Test section No. 1 was made from type-304 stainless tubing, nominally 0.75 -in. o.d. and 0.016 in. wall thickness. Its heated length was 68 in. Test section No. 2 was made from type 321 stainless tubing, nominally 0.50-in. 0.d. and with 0.016-in.-thick-wall. Its heated length was 56-5/16 in. Figure 8 schematically shows the test sections with their actual measurements. Each test section (about 6 ft . long) was cut from the middle of a lo-ft. piece of tubing. Small samples, from the unused portions at each end of the tubing, were mounted in bakelite and lucite in the same manner that metallurgical specimens are mounted for microscopic analysis. Each sample was carefully sanded and polished, and thex, by means of a microscope with a

Test section No. 1

Test section No. 2

$$
M U-23895
$$

FIG. 8 TEST SECTION DIMENSIONS AND PRESSURE TAP LOCATIONS

Outside diameter (in.)	Test Section No. 1 0.7502	Test Sec 0.5036
Inside diameter (in.)	0.7194	0.4716
Wall Thickness (in.)	0.0154	0.0160
Heat Transfer Area ($f t^{2}$)	1.07	0.58
Distance in feet from the entrance of the heated section to the pre		
No. 1	- 0.17	0.0
No. 2	1.97	0.58
No. 3	3.19	1.17
No. 4	4.10	1.75
No. 5	4.77	2.33
No. 6	5.28	2.91
No. 7	5.62	3.49
No. 8	5.78	4.08
No. 9	5.84	4.44
No. 10	-..--	4.69

calibrated eye piece, the wall thickness was measured. These measurements were made at some eight to twelve equally spaced points around the circumference of the sample. The arithmetic average of all measurements was accepted as the value for the wall thickness. From one sample to another, a deviation of as much as 14% was noticed. The deviation in any one sample was always less than 10%. The outside diameter of a test section was determined by direct measurement (with micrometers) about every two inches along the heated section length. The arithmetic average of such measurements was accepted as the value for the outside diameter. The maximum deviation in these measurements was less than 1%. The inside diameter was measured indirectly by subtraction using the wall thickness and the outside diameter. Figure 9 shows test section No. 1 and two specimens, mounted in bakelite, for wall-thickness measurement.

Electrical connection to the test section was by two copper bus bars which were machined to fit tightly around the test section and then silver-soldered to it. The bus bars were large enough to insure a uniform current density at the two ends of the heated portion of the tube. Tri-Clover conical fittings were used to connect the test section to the inlet and outlet piping, while keeping the tube electrically isolated from this piping. Figures 10 and 11 show the conical end connections and bus-bar installation.

Pressure taps were constructed by first boring a 0.040-in. hole (No. 60 drill size) in the test section tube, and then care-

Fig. 9. Test section No. l with two specimens mounted in Bakelite for microscopic wall-thickness measurement.

MU-23897

Fig. 10. Test-section end-connection and pressure-tap connection.

ZN-2933

Fig. 11. Lower end of test section No. 2 showing the conical end fitting, bus-bar installation, and oressure-tap installation.
fully silver-soldering a short length of $1 / 4$-in. stainless steel tubing to the wall. By means of Fischer and Porter 1/4-in. glass pipe and fittings, pressure taps were connected to the $1 / 4$-in. copper tubing from the pressure measuring system. The glass pipes served as sight glasses to insure that pressure-tap lines contained no entrapped air, and also served to electrically isolate the test section. Figure 10 schematically shows the pressure-tap construction and connection. Before a test section was mounted, it was carefully cleaned, and inspected with a borescope. If any of the pressure-tap holes were burred or plugged, they were carefully sanded with fine grit emergy paper or steel wool. At some of the pressure taps, it was noticed that a very small ridge had formed at the rim of the hole. The height of such ridges was estimated to be less than l/20th of the hole diameter. The probable cause of these ridges is that during the drilling operation the last portion of the metal to be cut by the drill bit was, instead, actually bent inward. In such cases, sanding was continued until the tube wall was satisfactorily smooth.

It was necessary to obtain fully-developed fluid dynamic conditions at the entrance of the heated portion of the test section. A length of unobstructed straight pipe equal to 20 pipe diameters was assumed sufficient for this purpose. With test section No. l, the fluid-dynamic entrance section was formed by reaming out the connecting piping above the test-section inlet. However, since test section No. 2 was of smaller diameter, the upper bus bar was located some 15 in . below the tube inlet. The
entrance length was then formed by the test section itself.
TWelve to 18 copper-constantan thermocouples were soft-soldered to the outside wall of the test section. The thermocouple junctions were formed by tightly twisting the cleaned ends of the 24-gauge duplex wires, then cutting away any unneeded wire, and finally soldering to the tube. Care was taken to obtain good contact with the stainless tube and to keep the twisted-wire junction and the bulb of solder as small as possible. To diminish longitudinal heat conduction from the thermocouple junction, the thermocouple wires were wrapped around the tube three or four times before leading them to the measuring circuit. These wrappings were then taped to the tube wall with Scotch-brand, pressuresensitive, high-temperature, glass tape. Near the entrance to the heated portion of the tube, the thermocouples were closely spaced in order to gather data on the thermal entrance conditions associated with forced-convection boiling. Down the rest of the tube length, thermocouples were evenly spaced about 6-in. apart, except where the proximity of a pressure tap might give spurious values. In all cases the thermocouple was positioned on the opposite side of the tube from the pressure taps.

The test section, its connecting piping (especially the inlet piping upstream to the flashing valve), and the electrical cables attached to the bus bars were thermally insulated. The insulation consisted of two or three wrappings of 2-in. Johns-Mansville asbestos woven tape and several layers of glass wool. The total thickness of insulation varied from 4 to 7 in. The vapor-liquid separator was also insulated with glass wool.

In order to prevent sagging or buckling during operation, the test section was maintained in tension. The connecting piping below the test-section outlet was firmly anchored to the equipment framework, while the upper connecting piping was relatively free to move. A vertical upward force was maintained on this upper piping by a wire-rope, pulley, and winch arrangement.

D. Electrical Power Supply

Electrical current was supplied to the test section from an air-cooled stepdown transformer. With a primary voltage of 230 v at 150 amp , its rated output was 40 v and 875 amp . The primary voltage was regulated by a motor-driven General Electric induction regulator operating on 60-cycle, 220-v current. It was rated at 25 kva. However, the power factor of each of the two transformers was about 0.80 , and thus the maximum power at the test section was only about 15 kw . With test section No. l, the maximum observed readings were 29.45 v and 506.4 amp . The resistance of the test section was approximately 0.058 ohm. With test section No. 2, the maximum readings were 33.3 v and 453.9 amp ; and approximate resistance of 0.073 ohm. One side of the transformer secondary was grounded by connecting a metal strap from the bottom of the test section to the equipment framework. Figure 12 schematically shows the test-section power supply.

E. Instrumentation

1. Temperature Measurement

Two thermocouple systems were used in the experiment. Ironconstantan thermocouples were used in the operation of the equip-

Fig. 12. Power-measuring circuit and the test-section power supply.
ment, while copper-constantan thermocouples were employed for the collection of data. The first set of couples were silversoldered into stainless steel wells at several points in the flow system. To reduce the effect of heat conduction from the thermocouple junctions, each well was immersed at least 3 in. in the flow stream. The leads from these thermocouples were connected to terminal strips in an insulated junction box. In order to eliminate temperature gradients across the terminal strips, the junction box was fitted with a copper door and back. From the terminal strips, the thermocouple leads were connected to an 18-point Minneapolis-Honeywell-Brown temperature indicator (Model 156-X-G2-P18). The capacity of the in strument was extended by connecting a pair of Leeds and Northrup rotary 12-point thermocouple switches to two of the 18 points. Six key thermocouples were continuously monitored by a 6-point Minneapolis-Honeywell-Brown temperature recorder (Model 156-X-G2-PG-X-23). These six thermocouple readings were used in the determination of steady-state conditions and for the detection of any operational upset. The range of both the Brown instruments was 0 to $400^{\circ} \mathrm{F}$; the stated accuracy was 0.2% of full span.

The second set of thermocouples (copper-constantan) consisted of up to 18 couples soldered to the test section and four couples immersed in the flow stream. The couples in the flow stream were installed in stainless steel wells similar to those used for the iron-constantan couples. One thermocouple
was in the flow stream before the flashing valve (at station 1), another was in the inlet piping above the test section, and the final two were located in the outlet piping below the test section. All couples were made from 24-gauge Leeds and Northrup thermocouple wire, insulated with an enamel-glass combination. The thermocouple leads were connected to terminal strips located in a heavy-gauge copper chassis box. This copper chassis, which was located in a relay rack near the control panel, contained most electrical circuitry used in data collection. It contained two independent information channels, each having two inputs. There were three inputs for thermocouple signals and one input for the signal voltage of a pressure transducer. These inputs were controlled by a main selector switch. By use of Leeds and Northrup rotary thermocouple switches, each of the three thermocouple inputs could accommodate 12 pairs of leads. Each input signal could be bucked with a DC voltage (bias voltage) or attenuated by a known percentage (span adjustment). The span was adjusted by use of a 100 k Helipot potentiometer (0.1%). Voltage drop across this large resistance was equivalent to a loss of less than $0.1^{\circ} \mathrm{F}$ at a measured temperature of $350^{\circ} \mathrm{F}$ (thermocouple voltage of 8.064 mv). A means was provided to switch any bias voltage to channel 1 for measurement; this was also controlled by the main selector switch. Circuitry for the control of the pressure-transducer supply voltage was also contained in the chassis. The chassis box itself was mounted to the relay rack by its nonconducting, fiberboard, front panel. It was thermally insulated with glass wool. The data collection instru-
mentation and circuit are shown in Figs. 13 and 14.
Each copper-constantan thermocouple was connected to its own cold-junction thermocouple. The cold-junction apparatus consisted of a large Dewar flask for an ice bath, the wooden Dewar top, and several 1/8-in. stainless steel tubes protruding through the top, down into the ice bath. Cold junctions were soldered into the closed stainless tubes and electrically isolated from each other by application of several coats of red Glyptal insulating enamel.

Two types of instruments were used to measure the output thermocouple, pressure transducer, or bias voltages. A 0 to l-mv, Leeds and Northrup, Speedomax-G recorder (guaranteed accuracy $\pm 0.5 \%$ of full scale) was used where a continuous trace of the signal was desired, or, for greater accuracy, a precision, Rubicon, laboratory type B potentiometer (with a suitable null detector) was employed. However, when heating current was flowing in the test section, it was impossible with the millivolt recorder to measure the output voltages from the copper-constantan couples actually soldered to the heated tube. The following explanation is given. It is known that excessive ac voltages across the input terminals of a dc chopper amplifier can completely desensitize it. Secondly, in practice it is quite difficult to satisfactorily isolate such electronic equipment from ground. Therefore, since the thermocouples were in direct contact with an ac voltage at the test section, alternating current flowing down the lead wires apparently desensitized the dc amplifier in the millivolt recorder. However, these thermocouples were satisfactorily read with the Rubicon potentiometer by using a light-beam galvanometer as a

ZN-2934

Fig. 13. Data-collection instrumentation.

Fig. 14. Data-collection circuit. This circuit was enclosed in a heavy copper chassis box.
null detector. For the first series of runs (up to Run 67.0) this method of measurement was used for thermocouples, while the millivolt recorder (ungrounded) was used for pressure measurements.

The disadvantages of a light-beam galvanometer are well known. For the second set of runs it was decided that a faster, more accurate, null detection device had to be used. A MinneapolisHoneywell electronic null indicator was chosen (Model 104W1-G)。 Even though this instrument contained a seemingly adequate filter for ac, its sensitivity, when heating current was flowing in the test section, was no better than $4^{\circ} \mathrm{F}$. After consultation with an electrical engineer, a satisfactory external filter was devised. It consisted of a $500-\mu f$ low-leakage capacitor across the input terminals of the Rubicon potentiometer, and a $7-\mu f$ capacitor from the negative potentiometer input terminal to the ground terminal of the null indicator. The null indicator was operated ungrounded. The 500- $\mu \mathrm{f}$ capacitor served as a short circuit to ac across the potentiometer input terminals. Consequently, the ac voltage difference across these terminals was very small. The function of the other capacitor is more obscure and deals with the internal filter of the null indicator. This arrangement gave a normal sensitivity of about $0.1^{\sigma} F$ (the rated sensitivity of the null indicator was $\left.0.001 \mu_{a m p} / \mathrm{mm}\right)$. Thermocouple readings made with the null indicator were compared with those made using the light-beam galvanometer. The comparison was quite good whether heating current was on or not.

The copper-constantan thermocouples were calibrated in place with the heating current off by conducting live steam from one of
the heater shells into the closed-off test section. The valve at the bottom of the test section was opened slightly to permit removal of condensate and inerts, with negligible pressure drop down the tube length. After a suitable warm-up period, thermocouple readings were compared with values obtained from pressure measurements (assuming saturated conditions). The agreement was satisfactory (within $0.2^{\circ} \mathrm{F}$), and no corrections were made to the published calibration tables. This calibration also helped to establish the adequacy of the test-section thermal insulation. Unfortunately, no workable method was known for thermocouple calibration with heating current on.

Over a period of days as data collection progressed, it was noticed that three or four thermocouples on the test section gave consistently lower readings than the other couples. That is, when thermocouple readings were plotted versus tube length, a smooth line could be drawn through the rest of the thermocouples while these three or four in question fell 2 to $4^{\circ} \mathrm{F}$ below the curve. These thermocouples were removed from the tube, inspected, and resoldered to the tube in approximately the same location. They still gave lower readings. As no explanation was apparent, in later runs their readings were either not taken or they were ignored.

2. Pressure measurement

A 5/8-in. diaphragm Consolidated Electrodynamics Corporation pressure transducer (Type 4-313A) formed the heart of the pressuremeasuring system. The range of the transducer was 0 to 150 psi absolute, and its guaranteed linearity was 0.75% of full scale。

Its rated output was 20 mv with a dc excitation of 5 v . Electric current was supplied by a battery of eight $1-1 / 2-\mathrm{v}$ dry cells delivering approximately 6 v . This $6-\mathrm{v}$ supply was reduced to the required 5 v by a lo-turn 500-ohm Helipot potentiometer. The transducer current was about 14 ma .

Mounted in its adaptor, the transducer was connected to the center of a specially constructed manifold. This manifold was made from a l-in. brass tube about 30 in . long, and was mounted vertically behind an open window in the control panel. At even intervals, fifteen $1 / 8$-in. Hoke needle valves were silver soldered into the tube wall. The tube ends were sealed, tapped, and also fitted with Hoke valves. The lower valve was connected by smalldiameter copper tubing to the feed-pump outlet; the upper valve was connected to the drain. The rest of the manifold valves were connected by $1 / 4$-in. copper tubing directly to pressure taps in the flow system, or to the $1 / 4-i n$. glass pipes attached to the test section pressure taps. Two drain tubes were connected to the transducer adaptor. By opening the three drain valves and allowing feed water to flow through the bottom valve, air could be purged from the manifold. In a similar manner, by opening the other manifold valves, the pressure tap lines could also be purged (the purged air and water flowed into the test section). Because the pressure transducer was sensitive to temperature gradients across its case, the transducer, its adaptor, and connecting piping were thermally insulated with glass wool. Cooling coils were soldered to the manifold, and an iron-constantan thermocouple was installed
near the transducer connection.* Figure 15 is a schematic diagram of the pressure-measuring system; Figure 16 is a photograph of the transducer manifold.

The transducer was calibrated by a dead-weight gauge tester over the pressure range 14.7 to 94.7 psia. It was mounted permanently in the same adaptor that was to be connected to the manifold. This was done to eliminate changes in the calibration due to different conditions of mounting; the transducer was slightly sensitive to nonuniform stresses over its case. During calibration, the supply voltage was checked many times and adjusted when necessary. The voltage was measured with the precision Rubicon potentiometer. The calibration was made with the same measuring circuitry and equipment used in data collection. Therefore, any small voltage loss occurring in such circuitry would be incorporated in the calibration. The results of three calibration runs were fitted to a straight line by a least-squares technique. The standard deviation was 0.108 psi, which is considerably lower than the guaranteed linearity. It is believed this value could be improved with a more stable transducer power supply.

During actual operation of the equipment, the power supply was standardized in the following manner. The atmospheric pressure was determined from a barometer located behind the control panel.

[^2]
$M U-23898$

Fig. 15. Schematic diagram of the pressure tap connecting lines and the pressure transducer manifold. Cooling coils around the manifold are not shown.

ZN-2928

Fig. 16. Pressure-transducer manifold.

This value was converted to pounds per square inch absolute and entered into the calibration equation (as psia), and the transducer output (mv) was obtained. Then with the transducer manifold drained and open to the atmosphere, the supply voltage was adjusted until the transducer output was equal to the above calculated value of (mv). The Rubicon potentiometer was used for this purpose.

Contributions to the pressure readings due to the hydrostatic head of liquid in the connecting tubing to the transducer manifold are discussed in Chapter IV, Data Reduction.
3. Electric. Power Measurement

Two voltmeters, two ammeters, and a wattmeter were used to measure the electrical quantities necessary to evaluate heat generation in the test section. The meters and individual scales of the meters were controlled by a small switch panel located in the data-collection relay rack.

Voltage tap wires were connected along the length of the test section. The end taps were placed outside the bus bars while the other taps were equally spaced along the heated portion of the tube. Low resistance lead wire connected the taps to a switching arrangement which allowed measurement between any tap and the bottom (grounded) tap. Two Weston precision ac voltmeters were used. One (Model 341) had voltage scales of 0 to 7.5 v and 0 to 15 v with a calibrated accuracy of 0.25%; the other (Model 433) had scales of 0 to 30 v and 0 to 60 v with 0.75% accuracy

Two Weston precision ac ameters were used for current measurement. One (Model 433) had two scales: 0 to 2.5 and 0 to 5 amp; the other (Model 155) had a 0 to 10 amp range. Both had a
calibrated accuracy of 0.5% of full scale. They were connected to a. Westinghouse current transformer (Type CT- 2.5 with a current ratio of $800 / 5$) mounted on top of the main power transformer.

The same taps used for voltage measurement were connected through the switch panel to a Weston precision wattmeter (Model 432). This instrument had 0 to 250 - and 0 to 500 -watt scales with a calibrated accuracy of 0.5% of full scale. The copper cables to the lower test section bus bar were conducted through the core opening of a Weston current transformer (Model 327). The secondary of this transformer was connected to the current terminals of the wattmeter; the current ratio of the transformer with this hookup was $600 / 5$. With 60 -cycle current, the transformer-ratio correction (0.9998) and the phase-angle correction (leading $0^{\circ} 1^{\prime}$) were negligible. The dissipation in the wattmaker was less than 1% of the power in the watmeter circuit. The power factor over the test section calculated from these measurements ranged from 0.957 to 0.996 . Figure 12 shows schematically the power supply and electrical measuring systems.

III. EXPERIMENTAL PROCEDURE

For each experimental run there were three independent quantities to be specified: the flow rate, the heat flux, and the thermal conditions at the test-section entrance. This third condition was usually stated in terms of weight fraction of vapor, but, when liquid alone entered the test section, it could be specified in terms of the amount of subcooling. The three conditions were related to experimentally measured quantities: the flow rate to a rotameter reading, the heat flux to a wattmeter reading, and the thermal condition to a specific liquid-outlet temperature at heater No. 2. The last specification was computed by a simplified energy balance and was entered as the set point of the temperature controller. These three conditions essentially set the operating conditions for the run.

The equipment was started and allowed to warm up for a period of 45 min . to an hour. In this time it was necessary to attain the preset operating conditions and then stabilize the operation at this point. Before data could be taken, it was necessary to adequately define this stabilized condition; i.e. steady state. Several criteria were observed. Among these, the following three were of prime importance: First, it was necessary that the feed water be satisfactorily degassed. To accomplish this it was arbitrarily decided that the entire contents of the main feed tank should be circulated through the equipment at least twice (released air was vented at the vapor condenser). Second, the temperatures of the entering feed water and the returned products
should be about equal; and third, all monitored temperatures, especially at the outlet of heater No. 2 (station 1), should be steady. Other criteria included the stability of the flow rate, the stability of the liquid levels below the vapor separator and in the condenser, and the constancy of the electrical measurements. Also, it was necessary that the flashing valve be so adjusted that the pressure at station 1 was 5 to 10 psi over the saturation pressure. It should be noted that, once grossly adjusted, the feed rate was more easily controlled with a needle globe valve (located just downstream from the rotameters) than by adjustment of the variable-speed drive.

Data were taken in the following general pattern, Rotameter and electrical readings were recorded, and the time of day noted. The Rubicon potentiometer was balanced against the standard cell, and the first 12 copper-constantan thermocouples were read. After rotameter and electrical readings were again recorded, the last $12 \mathrm{Cu}-\mathrm{Co}$ thermocouples were read. This procedure was repeated until all couples had been read twice, a span of about 30 to 40 \min. In most runs, the two sets of temperature readings agreed within $0.25^{\circ} \mathrm{F}$. While temperatures were being recorded, the flow system and the six monitored iron-constantan thermocouples were occasionally checked, and when needed, adjustments were made. Of these adjustments, the flow rate was of primary importance.

After the first two sets of thermocouple readings were taken, the pressure transducer and manifold were readied. The pressuretransducer supply voltage was first standardized (by the procedure
explained in Section E-2, Chapter II), and the manifold temperature recorded. This was done with the transducer manifold open to the atmosphere. Air was then purged from the manifold by allowing water, from the feed pump, to flow up through the manifold and out the drain lines. In a similar manner, air was purged from each pressure-tap line; each line was flushed with water until air bubbles were no longer visible in the $1 / 4-i n$. glass pipe connection to the pressure tap. Then all manifold valves were closed and the operation was allowed to restabilize (the introduction of relatively cool water into the test section during the flushing operating caused a mild operational upset). During this time-about 10 minutes-- the transducer manifold was cooled to its original temperature.

With all the criteria for steady state again satisfied, pressure measurements were made using the 0 to $1-m v$ recorder. In order to impress a certain pressure signal on the transducer, it was only necessary to open the needle valve in the line that connected the pressure tap and the transducer manifold. Then, to display the transducer output voltage on the 0 to $1-m v$ recorder, it was necessary to buck this signal with a suitable dc voltage. In practice, pressures were close enough in magnitude so that one bucking voltage could be used to display several pressure signals. After each set of pressures were recorded, the bucking voltage was read on the Rubicon potentiometer. Occasionally, as a check on the precision of the measurements, one pressure signal was recorded twice with two different bucking voltages. If these measurements were made at two widely spaced time, they also served
as a check on the operational stability of the equipment. In most cases, the two results were in good agreement. Figure 19 is a reproduction of a strip chart used for pressure readings. Immediately following the pressure measurements, the copperconstantan thermocouples were read for the third time (following the procedure used for the first two readings). As a rule, this completed a run. However, if a check of the flow rate was desired, weight rates of the condensed vapor product and of the liquid product were then taken.

The operational stability of the equipment was generally such that it was common for thermocouple readings from the three sets of data to agree within $1 / 2^{\circ} \mathrm{F}$ over a $2-\mathrm{hr}$ period. This was certainly true when the vapor fraction entering the test section was large. In such cases the temperature before the flashing valve (station 1) could vary by as much as $2^{\circ} \mathrm{F}$ without appreciably affecting downstream conditions. This is due to the large ratio of latent heat to sensible heat. In runs where the flow entered the test section subcooled, the stability was not as good; the point where vapor first formed in the test section was very sensitive to the temperature at station 1 and to the flow rate. These runs were usually characterized by scattered thermocouple readings in this region.

The copper-constantan thermocouples immersed in the flow stream were very steady and were easily read on the Rubicon potentiometer. However, the thermocouples soldered directly to the heated tube wall were often more difficult to read. As is natural in boiling or turbulent processes, the temperatures and
pressures fluctuated. Although the mean value of such quantities is of prime importance, it would be instructive to have some knowledge about the magnitude and frequency of the oscillations. The light-beam galvanometer used in the first set of runs gave no hint as to the magnitude of the temperature oscillations. But, in the second set of runs, the Minneapolis-Honeywell null indicator was fast enough to give a good reproduction, at least in a relative manner. The Leeds and Northrup millivolt recorder was also fast enough (1-sec pen travel across the full scale) that pressure fluctuations could be qualitatively examined. Generally there was a high degree of correlation between temperature and pressure fluctuations. The temperature fluctuations varied from very small to as large as $\pm 4^{\circ} \mathrm{F}$, with a frequency of many cycles per second. The largest fluctuations were usually associated with lower flow rates; even larger fluctuations were observed with flow rates so low that "slugging" occurred. In reading the thermocouples, the mean value was obtained by visually determining when the pointer was oscillating evenly about the null position. In most instances, a sensitivity of $0.25^{\circ} \mathrm{F}$ was obtained, even though oscillations were as large as 2 to $3^{\circ} \mathrm{F}$. In some cases, however, the oscillations were so large that adequate sensitivity was not obtained, and the validity of these data is questioned.

[^3]About every five or six runs the test section was cleaned with a long-handle bristle brush and ordinary household cleanser. It was then thoroughly rinsed with distilled water. After each cleaning the feed was changed; the new feed material was composed of fresh distilled water and any condensed vapor product that had been collected in the vapor-product weigh tank. On the basis of conductivity measurements, the condensed vapor product contained less contaminants than the distilled water. No precise conductivity measurements were made (the conductivity probe was uncalibrated), but relative conductivity measurements were often used to compare the feed water to the house distilled water as the minimum standard. Occasionally, hot trisodium phosphate solution was circulated through the test section and the two steam-fed heaters. This was done to clean the inside tube surfaces of the heaters as well as the test section.
IV. DATA REDUCTION
A. Evaluation of the Inside-Wall Temperature

In order to calculate local heat-transfer coefficients from a solid surface to a fluid, one must evaluate both local heat fluxes and local surface temperatures. In this respect, electrical resistance heating has a distinct advantage: with proper procedures both of these quantities can be determined by relatively accurate but simple measurements. Thermal insulation of the heated area (as the insulation of the test sections in this experiment) is necessary for two reasons. First, the insulation provides that essentially all of the heat generated in the test section will be transferred into the fluid stream. Second, by insuring an adiabatic condition at the outer tube wall, the insulation gives an excellent situation for temperature measurement. A thermocouple probe inserted in this region would not appreciably disturb heat flow, nor would there be a great uncertainty about its location in a nonuniform temperature field. By proper specification of the heat generation, with the measured outside-wall temperature, and an adiabatic condition, the appropriate heat conduction equation can be solved, yielding the inside-wall
temperature.*
The differential equation governing heat generation and conduction in the test section is

$$
\begin{equation*}
\frac{l}{r} \frac{d}{d r}\left[r \cdot k(T) \frac{d T}{d r}\right]=-\frac{3.41304}{V_{m}} \cdot P w=-\omega . \tag{IV-1}
\end{equation*}
$$

Boundary conditions are:

$$
\begin{array}{ll}
r=r_{0} ; & \left(\frac{d T}{d r}\right)=0, \text { adiabatic outer wall (IV-2) } \\
r=r_{0} ; & T=T_{0}, \text { the outside-wall (IV-3) } \\
& \text { temperature is constant. }
\end{array}
$$

Here T is the temperature in ${ }^{\circ} F ; r$ is the radius in feet; $k(T)$ is the thermal conductivity as a function of temperature, BTU/hr ft ${ }^{\circ} \mathrm{F}$; Pw is the power in watts expended in the test section; and
*
This experiment was originally set up to use a steam-jacketed, copper, finned tube as a test section. Pressure measurements were to be made by several pressure taps as in the present experiment, while tube-wall temperatures were to be obtained by imbedding thermocouples in the tube wall. It was hoped that thermal resistances of the dropwise-condensing steam and the copper finned tube would be negligible, and maan well temperatures would closely approximate the inner-wall temperatures. However, the local heat flux along the tube varied so greatly that satisfactory limits could not be placed on the heat-transfer coefficient values nor the inner-wall temperatures. This experimental test section was abandoned for the present elec-trical-resistance-heated test sections.
V_{m} is the volume of heated metal in the test section. The conversion factor from watts to BTU/hr is 3.41304.

Assumption made in the derivation and solution of Eq. (1) are:

1. Steady-state conditions
2. Circular symmetry
3. Negligible longitudinal heat conduction
4. Adiabatic outer wall (boundary condition 1)
5. Uniform heat generation throughout the heated volume of metal, as expressed by the term on the right side of Eq. (IV-I)
6. Negligible electrical capacitance and inductance effects Another assumption as to the form of $k(T)$ is needed before a solution can be obtained. If a linear form for $k(T)$ is used in Eq. (IV-1),

$$
\text { 7. } k(T)=k_{0}(1+\alpha T)
$$

the differential equation is non linear. However, a solution is known (derived in Appendix A):

$$
T_{0}-T_{i}=\frac{\omega}{2 k_{0}}\left[r_{0}^{2} \ln \frac{r_{0}}{r_{i}}-\frac{1}{2}\left(r_{0}^{2}-r_{i}^{2}\right)\right]-\frac{\alpha}{2}\left(T_{0}^{2}-T_{i}^{2}\right) .(I V-4)
$$

Equation (IV-4) is not explicit for the unknown T_{i}. Noting that the average thermal conductivity is (from assumption 7)

$$
\begin{equation*}
k_{a v g}=k_{o}\left[1+\alpha \frac{T_{0}+T_{i}}{2}\right] \tag{IV-5}
\end{equation*}
$$

we can rearrange Eq. (IV-4):

$$
\begin{equation*}
T_{0}-T_{i}=\frac{\omega}{2}\left[r_{0}^{2} \ln \frac{r_{0}}{r_{i}}-\frac{1}{2}\left(r_{0}^{2}-r_{i}^{2}\right)\right] \frac{1}{k_{0}\left[1+\frac{\alpha}{2}\left(T_{0}+T_{i}\right)\right]} \tag{IV-6}
\end{equation*}
$$

Equation (IV-6) is simply the solution that would be obtained if $k(T)$ were originally assumed constant at $k_{\text {avg }}$; i.e., it is the constant-properties solution for the thermal conductivity evaluated at the average wall temperature.

Before proceeding to the iterative procedure used in the numerical determination of T_{i} from Eq. (IV-6), some discussion of the assumptions is warranted. Although tube-wall temperatures fluctuated around a mean value, it is believed that the steady-state equation (assumption No. 1) would give an accurate value for the mean inside-wall temperature. Certainly as far as mean values are concerned, steady-state conditions were adequately maintained. In view of the 15% (maximum) deviation in tube-wall thickness, the second assumption (circular symmetry) is difficult to totally justify. It will be discussed further in the section in this chapter on experimental error. The third assumption of negligible longitudinal heat flow is easily and convincingly documented. By using temperature vs length curves from actual runs, values of the longitudinal heat flow in the thin-walled tube were calculated. A typical value was $0.006 \mathrm{BIU} / \mathrm{hr}$, or about $1 \times 10^{-5} \%$ of the radial heat flux. The adiabatic outer-wall condition (assumption No. 4) is substantiated by heat balances and insulation-loss calculations which show heat losses from the test section to be less than 1% of the total heat input.

It is believed the assumption of uniform heat generation throughout the volume of heated metal is valid in spite of the
variation in wall thickness. This is based on two conditions. First, power dissipation, determined by voltage measurements, was always linear with test-section length (see Figure 17). Second, both the thermal conductivity and the electrical resistivity of the stainless steels used in test sections had very weak temperature dependences [the thermal conductivity $: k=k_{o}(1+5.32$. $\left.10^{-4} \mathrm{~T}\right)$; the electrical resistivity: $\rho=\rho_{0}\left(1+5.6 \cdot 10 .^{-4} \mathrm{~T}\right) \mathrm{J}$, and in all runs the temperature drop through the wall was less than $10^{\circ} \mathrm{F}$ 。

The assumption of negligible electrical capacitance and inductance is substantiated by power-factor measurements, the lowest being 0.957 .

The thermal conductivity of type-304 stainless steel was obtained as a function of temperature from three sources. Figure 18 shows the temperature dependence and the relation of the three sets of data. A least-squares straight line was drawn through these data:

$$
\begin{equation*}
\mathrm{k}=8.44\left(1+5.32 \cdot 10^{-4}\right) \frac{\mathrm{BIU}}{\mathrm{hr} \mathrm{ft} \mathrm{O}_{\mathrm{F}}} \tag{IV-7}
\end{equation*}
$$

Very little data was found for the conductivity of type-321 or type-347 stainless steel (type 321 is a titanium-stabilized variation of type 347). 27 However, in the course of heat-transfer work at UCLA, the available data was compared to experimental results. 26 The conclusion from this work was that the thermal conductivities of types 304, 321, and 347 are nearly the same. Their working equation was

$$
\begin{equation*}
k=8.50\left(1+5.17 \cdot 10^{-4} \mathrm{~T}\right) \tag{IV-8}
\end{equation*}
$$

Fig. 17. Power dissipation along the tube length.

Fig. 18. Thermal conductivity of type-304 stainless steel:
\triangle National Bureau of Standards
\square Dickerson and Welsh, Trans. Am. Soc.
Mech. Engrs. 80, 746 (1958).
o Metals Handbook, Section 20, 20 (1939).

For type 347 Schrock and Grossman ${ }^{11}$ use $k=8.30\left(1+5.79 \cdot 10^{-4} \mathrm{~T}\right)$ Equation (IV-7) was used for both test section No. I (type 304) and test section No. 2 (type 321). For preliminary work, the electrical resistivity of type-304 stainless steel was evaluated: ${ }^{27}$

$$
\begin{equation*}
\rho=69.4\left(1+5.6 \cdot 10^{-4} \mathrm{~T}\right) \mu \mathrm{ohm} \mathrm{~cm} . \tag{IV-9}
\end{equation*}
$$

For computation of the inside-wall temperature, the geometric quantities and other constants in Eq. (IV-6) were grouped together:

$$
\begin{equation*}
T_{0}-T_{i}=C_{1} \frac{P_{w}}{\left[1+\frac{5.32 \cdot 10^{-4}\left(T_{0}+T_{i}\right)}{2}\right]} \tag{IV-10}
\end{equation*}
$$

Here Pw was obtained directly from the wattmeter reading. An iterative procedure was used to obtain T_{i}. First, with the known value of T_{o} used in place of T_{i} on the right side of the equation, an initial value of T_{i} was obtained. Then, this value was used in the right side, and a new T_{i} was obtained. This procedure was repeated until the absolute value of the difference of two succeeding trials was less than $0.0001^{\circ} \mathrm{F}$. This calculation was actually performed by digital computers, but hand solutions showed very rapid convergence, three iterations usually being sufficient.
B. Pressure Measurement, Heat Flux, and Heat-Transfer Coefficient

The pressure-transducer calibration equation is

$$
\begin{equation*}
\text { psia }=a(m v)+b, \tag{IV-II}
\end{equation*}
$$

where $a=7.422$ and $b=3.657$. The standard deviation is 0.108 psi. For pressure measurement at run conditions, the equation was modified to include the hydrostatic head of liquid in the lines connecting the pressure taps to the transducer manifold:

$$
\begin{equation*}
\text { psia }=a\left[m v_{R}-\left(m v_{o}-m v_{a}\right)\right]+b \tag{IV-12}
\end{equation*}
$$

where $m v_{R}$ is the total transducer output at run conditions. The quantity ($\mathrm{mv}_{\mathrm{o}}-\mathrm{mv} \mathrm{a}_{\mathrm{a}}$) is a constant for each pressure tap. It depends upon the difference in elevation between the pressure tap and the transducer, and the conditions that the connecting tubing was filled with liquid and that the transducer was operating according to its calibration. The derivation of Eq. (IV-12) and the methods of measurement of (mv $v_{0}-m v_{a}$) are presented in Appendix B.

Evaluation of the bulk-fluid temperature at a point in the test section followed from the pressure calculation for this point and was based on the assumption of thermodynamic equilibrium. That is, it was assumed that, at any point in the test section where vapor and liquid were both present, the two phases were in equilibrium. Therefore, the measured pressure would be the saturation pressure and by use of an equation of state (or steam tables) the saturation temperature T_{B} could be obtained.*

[^4]The heat flux was obtained from the power measurement

$$
\begin{equation*}
q=\frac{3.41304 \cdot P_{w}}{A_{h}} \tag{IV-13}
\end{equation*}
$$

where A_{h} is the heat transfer area in ft. ${ }^{2}$ The heat transfer coefficient was then obtained from

$$
\begin{equation*}
h_{B}=\frac{q}{\left(T_{i}-T_{B}\right)} \tag{IV-14}
\end{equation*}
$$

C. The Energy Balance

The mass vapor fraction or quality, x, (x is the fraction of the total flow at a certain point that is vapor) at some location in the boiling test section was obtained by an energy balance. The reference point for this balance was station 1 , before the flashing valve, where the flow was subcooled liquid. The terminal point of the energy balance was at the point in question in the boiling test section. The energy balances, conveniently grouped for an iterative solution for x, is

$$
\begin{align*}
x & =\left[\frac{h_{1}-h_{f}+\frac{v_{I}^{2}}{2 g_{c}^{J}}+\frac{Q}{W} \frac{\ell}{L}+\frac{1}{J} \frac{g}{g_{c}}\left(\ell+z_{1}\right)}{h_{g}-h_{f}}\right] \\
& -\left[\begin{array}{cc}
x \frac{v_{g}^{2}}{2 g_{c}^{J}}+(1-x) & \frac{v_{f}^{2}}{2 g_{c}^{J}} \\
\frac{h_{g}-h_{f}}{}
\end{array}\right] \tag{IV-15}
\end{align*}
$$

where h 's are enthalpies (BTU/lbm), v's are velocities (ft/sec), Q is the total heat transfer ($B T U / \mathrm{hr}$), W is the flow rate ($\mathrm{lbm} / \mathrm{hr}$), $\boldsymbol{\ell} / \mathrm{L}$ is the fraction of the total test-section length from the entrance to the point in question, and z_{1} is the difference in
elevation between station 1 and the test-section entrance ($f t$.). Subscripts g and f stand for saturated vapor and liquid, respectively, and subscript 1 refers to station 1.

Equation (IV-15) is not explicit for x, as x appears in two terms on the right side. These terms represent the kinetic energies of liquid and vapor in the test section. Their numerical evaluation requires knowledge of the velocities v_{g} and v_{f}. These velocities cannot be calculated directly as they require holdup data not obtained in the experiment. However, they may be satisfactorily estimated by introducing the "slip ratio", $\psi=v_{g} / v_{f}$, into material balance relations, and then specifying a suitable value for it (usually $\psi=1.0$ or 2.0). For any conceivable value of ψ, the magnitude of the kinetic terms was small compared to other terms in the energy balance. Therefore, in the determination of x, the specification of ψ was not of great importance.

The value of x was obtained by an iterative procedure. This procedure was initiated by ignoring the kinetic-energy terms and obtaining a value of x directly. Then this value, along with values of v_{g} and v_{f}, from the material-balance relations was substituted into the right-side of Eq. (IV-15), yielding a second value of x. This value could then be resubstituted (along with new values of v_{g} and v_{f}) into Eq. (IV-15) to obtain still another value of x. Any number of repetitions of this step could then follow. Convergence of this procedure was rapid; the desired agreement between succeeding values of x was usually obtained by the third iteration. Since this calculation was actually per-
formed by an IBM-709 data-processing system, five iterations were made before the final value of x was accepted. The derivations of the energy balance and the material balance relations are given in Appendix C.

Thermodynamic and physical properties of the liquid and vapor were evaluated by use of steam tables and the knowledge of the saturation temperatures T_{B} and $T_{1}\left(T_{1}\right.$ was actually a few degrees below the saturation temperature but pressure corrections to these properties were negligible).

D. Reduction of the Raw Data and Digital Computation

Most of the data reduction calculations were performed by an IBM-709 data-processing system. However, the raw experimental data and the first steps of data reduction were processed by hand. Rotameter readings and electrical measurements were converted to flow rate and power values, respectively. Thermocouple millivolt readings were edited, averaged (over the two-hour period of data collection), and converted to temperature values. These values were plotted against ℓ, the length from the entrance of the heated portion of the test section, and a smooth curve was drawn through the points. The recorded pressure signals were evaluated by graphically determining the mean values of the recorded traces. (Figure 19 is a reproduction of the recorder traces of Run 172.0). To these values were added the appropriate bias (bucking) voltages to obtain the full pressure-transducer output voltages (mv_{R}). Pressures were then obtained using Eq. (IV-12) of this chapter. These pressures were also plotted

Fig. 19. Reproduction of the pressure recordings for Run 172.0. The $0-1 \mathrm{mv}$ scale width is $9-1 / 2 \mathrm{in}$. and amounts to 7.42 psi . The recorder chart speed was $2 \mathrm{in} . / \mathrm{min}$.
versus \&, and a smooth curve was drawn. Total pressure-gradient values $\left[-(d p / d \ell)_{t p t}\right]$ were then obtained by graphically differentiating this curve.* The pressure gradient values were also plotted versus ℓ. Figures 20 through 25 show experimental temperatures and pressures for several runs.

There were two tests on the reliability of the experimental data. The first test involved the constancy of temperature and electrical measurements over the data-collection period. Usually this test was made as data was taken; if the data was not constant over a sufficient period of time, run conditions were altered slightly, and data collection deferred to a leter time. The second test consisted of a comparison of pressure values derived from temperature measurements of the two-phase flow and of pressures derived from the transducer. This also served as a test of the assumption of thermal equilibrium between liquid and vapor in the two-phase flow mixture. For test section No. I there was only one temperature measurement which could be used for this comparison; one thermocouple was inserted in the flow stream just above the test-section entrance. For test section No. 2, in addition to this one thermocouple, two thermocouples were soldered to the unheated portion of the test section (the fluid dynamic entrance region). These latter two couples give bulk fluid

[^5]

MU-24003

Fig. 20. Outside tube wall temperatures for Run 102.0 with test section No. 1. The flow rate was 1675 $\mathrm{lbm} / \mathrm{hr}$. The quality varied from 1.3 to 3.6%. Fig. 24 shows the pressures obtained for this run. Thermocouple readings marked • were ignored.
-76-

Fig. 21. Outside-tube-wall temperatures for Run 172.0.

Fig. 22. Outside tube-wall and bulk-fluid temperatures for Run 150.0 with test section No. 2. The flow rate was 1055 $\mathrm{lbm} / \mathrm{hr}$. The quality varied from 0.2 to 3.5%. This run shows a rather large entrance effect.

$M U-24007$

Fig. 23. Outside tube-wall and bulk-fluid temperatures for Run 165.0 with test section No. 2. In this run, net vaporization was initiated in the test section. The flow rate was $2755 \mathrm{lbm} / \mathrm{hr}$. The exit quality was 2.5%. Temperature readings marked were ignored.

Fig. 24. Measured pressures for Run 102.0 with test section No. 1. The point marked - was obtained from a thermocouple reading.

Fig. 25. Measured pressures for Run 172.0 with test section No. 2. Points designated - were obtained from thermocouple readings and constitute the pressure-temperature check.
temperatures, since the test section was well insulated. The temperatures were converted to saturated pressures by steam tables, and these values were plotted on the pressure vs length curve. If agreement was not good, the run was rejected. Of all the runs for test section No. 2, only one run was rejected, while three were barely acceptable. (Run 151.0 was rejected. It was repeated and denoted as Run 151.1. The pressure-temperature check for this run was good.) Figures 24 and 25 show the pressure-temperature tests.

Data corresponding to several points along the test-section length were read from the plotted graphs and entered on IBM cards. Data to completely specify the conditions at one test-section location were placed on one card. This included the run identification, power, flow rate, temperature T_{1} before the flashing valve, the position ℓ, the outside-wall temperature, the saturation pressure, and the total pressure gradient. Data points were selected about every 3 in. near the heated-section entrance and about every 6 in. down the rest of the tube.

A complete set of thermodynamic and physical-property data of water was also entered on punched cards. This data was in tabular form; entries were made at 4° intervals for the temperature range 160° to $348^{\circ} \mathrm{F}$. Saturated temperatures, pressures, enthalpies of vapor and liquid, and densities of vapor and liquid were taken from Keenan and Keyes. ${ }^{28}$ The thermal conductivity, viscosity, and Prandtl number for saturated liquid water were taken from the AEC Reactor Handbook. 29,16 The thermal conductivity and viscosity of saturated steam were
calculated from equations given by the National Bureau of Standards. ${ }^{30}$ The heat capacity of saturated steam was calculated from an equation given in the Japanese Steam Tables. ${ }^{31}$ To complete the input-data package for the computer program, testsection measurements and properties were entered on IBM cards.

The data-reduction program was an IBM-709 Fortran program; the program is listed in Appendix E. The program first assigns test-section constants and then assigns thermodynamic and physical properties according to the value of the saturation pressure (PSIA). The inside-wall temperature is calculated from Eq. (IV-10) using the procedure outlined in Section A of this chapter. The heat flux and boiling heat-transfer coefficient are obtained from Eqs. (IV-13) and (IV-14). The energy balance Eq. (IV-15) is then solved for the quality x by the procedure outlined in Section C. The rest of the program deals with quantities useful for correlation purposes. These calculations are discussed in the next chapter. Appendix F contains the tabulated output of the data-reduction program for all boiling runs.

E. Estimate of Experimental Error

The estimate of the possible error of the heat-transfer coefficient h_{B} was obtained in the following manner. The equation used to calculate h_{B} was rearranged by substituting Eqs. (IV-10) and (IV-13) into Eq. (IV-14):

$$
\begin{equation*}
h_{B}=\frac{3.41304 \mathrm{Pw}}{A_{h}\left[T_{0}-\frac{C_{1} P_{w}}{\left(1+5.32 \cdot 10^{-4} T_{0}\right)}-T_{B}\right]} \tag{IV-16}
\end{equation*}
$$

Several sets of representative data were substituted into Eq. (IV-16) to obtain a set of values for h_{B}. For each quantity appearing in Eq. (IV-16), a reasonable or, if possible, a maximum limit of error was assumed. Then, in a variety of patterns, these error increments were combined with the original values of the selected data, and new values of h_{B} were obtained. The two sets of heat-transfer-coefficient values were compared, and percentage differences calculated.

The limit of error in the power measurement was obtained from the stated accuracy of the wattmeter (0.5% of the 250 -watt full scale). If we assume negligible error in the current transformer and negligible loss of power in the wattmeter circuit, the limit of error in the power measurement would be 150 watts. The largest percentage error would occur in low power readings; therefore to be conservative, the lowest power used in the experiment was chosen, i.e. $\mathrm{Pw}=5000$ watts. As discussed earlier, the wall thickness of test section No. 2 measurements had a $\pm 7.5 \%$ maximum deviation from the mean value (the standard deviation was $\pm 3.9 \%$). Since the maximum deviation in the outside-diameter measurements was less than 1%, the outside radius r_{0} was assumed to have negligible error. Using the accepted value of r_{0} and the extreme values of r_{i} (from the extremes of wall thickness), both A_{h} and C_{1} were recomputed.

The value of T_{B} was obtained directly from pressure measurements by use of steam tables; its error is entirely dependent on those measurements. The standard deviation in the pressure-
transducer calibrations was 0.108 psi. The calibration procedure was believed to be comparable to the procedure used for pressure measurements during run conditions, and therefore a limit of error of 0.4 psi should be conservative. (The error in the evaluation of the pressure contribution due to liquid in the lines connecting pressure taps and the transducer manifold is believed to be small.) The largest error in T_{B} would occur at lower pressures, where the slope of the T-P curve is large.

The outside-wall temperature T_{o} is the least certain of all measured quantities. The tube-wall thermocouples had been calibrated against steam pressures with no ac current flowing in the test section. Even though in this calibration the agreement was good ($0.2^{\circ} \mathrm{F}$), under run conditions there are several phenomena associated with the heating current which make the thermocouple performance uncertain. The problem of ac current in the thermocouple leads and how it affects measurements was discussed in Chapter II, Section E-I. There is the question of the temperature gradient at the outside wall and the related question of the location of the thermocouple junction in this gradient. The test sections were well insulated and, even though it is known that an adiabatic condition was not established at the outside wall, it is believed the temperature gradient was negligibly small. As the thermocouples were soft-soldered to the tube, there was no problem of penetration of the thermocouple junction into the tube wall. There is also the question of electrical-current flow through the thermocouple junction. Certainly there would be some electrical current flowing through the junction as it is in
direct electrical contact with the tube, and it is of lower electrical resistance. Just how much the current density in the test section is disturbed, and how much electrical heating of the thermocouple junction there is, is not known. * In view of these questions, an uncertainty of $\pm 1.0^{\circ} \mathrm{F}$ was chosen for T_{0} in these calculations.

The error calculations showed that the variation in wall thickness made up only a small portion of the uncertainty of h_{B}. Even when the extreme values of r_{i} were used, the deviation in the temperature drop through the tube wall, ΔT_{w}, was only $\pm 8 \%$. Since at maximum power, ΔT_{W} is less than $7^{\circ} F$, this amounts to a maximum uncertainty of $\pm 0.6^{\circ} \mathrm{F}$. The possible error in the power measurement was also only a small contribution to the over-all uncertainty of h_{B}. The largest uncertainty in the experiment is in the calculation of ΔT_{B}, the temperature difference between the inside wall and the bulk fluid:

$$
\Delta T_{B}=T_{0}-\Delta T_{W}-T_{B}
$$

[^6]If we discount any error in $\Delta T_{w}, ~ \Delta T_{B}$ is obtained from two independent measurements. The errors in the determination of T_{0} and T_{B} are such that they could possibly cancel each other or be additive. Here then lies the largest uncertainty of the experiment. The results of the error calculations may be summarized: With a ΔT_{B} of $3^{\circ} F$, the error in h_{B} could be over 100% if the errors in T_{0} and T_{B} are of opposite sign (case 1). However, if these errors are in the same direction, the error in h_{B} (including errors in Pw and r_{i}) may range from 1 to 50% (cases 2). For ΔT_{B} of $6^{\circ} \mathrm{F}$, case 1 gives percentage errors of 50%, while cases 2 give errors of 1 to 20%. For ΔT_{B} of $10^{\circ} F$, the maximum deviation (case 1) reduces to 30%, and for ΔT_{B} of $17^{\circ} \mathrm{F}$, the maximum deviation is 19%. It is hoped that these limits of error are conservative, since the error increments and the quantities themselves were chosen to give as large a percentage error as feasible. There is reason to believe that the uncertainty of h_{B} is represented more reliably by calculations where errors in T_{0} and T_{B} tended to cancel (cases 2). This reason is the very good pressure-temperature checks obtained with the raw data of most runs.

V. DISCUSSION

A. Nonboiling Heat Transfer

A series of nonboiling heat-transfer runs were made in the early stages of the experiment. The purpose for these runs was two-fold. First, it was desired to establish the validity of the expressions for one-phase heat-transfer coefficients used by other authors; some boiling heat-transfer correlations are actually based on the nonboiling correlations. Second, it was desired to characterize the one-phase, turbulent, thermal-entrance region.

The average heat-transfer coefficients were correlation by the Dittus-Boelter ${ }^{7}$ and Sieder-Tate ${ }^{32}$ correlations to $\pm 8.7 \%$ and $\pm 3.7 \%$, respectively. Data with large wall-to-fluid temperature differences could be better correlated by use of the SiederTate equation because of the viscosity correction factor. Figures 26 and 27 show the comparison of data for test section No. 1 and the two correlations. No nonboiling runs were made with test section No. 2. However, in the boiling runs where the feed to the test section was subcooled, it was possible to obtain nonboiling coefficients. The Dittus-Boelter equation predicted these values well, although it was felt that a coefficient of 0.022 in the correlation was more appropriate than 0.023 . For test section No. 2, the value 0.022 in the Dittus-Boelter equation was subsequently used. In these runs there seemed to be no subcooled boiling.

In the thermal-entrance region, nonboiling heat-transfer coefficients and measured wall-to-fluid temperature differences
-88-

Fig. 26. Comparison of nonboiling heat-transfer data with the correlation of Dittus and Boelter.

MU-18763

Fig. 27. Comparison of non-boiling heat-transfer data with the correlation of Sieder and Tate.
were compared with the theoretical predictions of Siegel and Sparrow ${ }^{2}$ and Diessler. ${ }^{3}$ Under conditions where axial and radial variations of fluid properties with temperature were negligible, the comparison with the theory of Siegel and Sparrow was good. The condition of constant fluid properties was obtained by using high flow rates, low heat fluxes, and bulk-fluid temperatures over $150^{\circ} \mathrm{F}$. Above $150^{\circ} \mathrm{F}$, the temperature dependency of the liquid viscosity is much less than at room temperature. Figure 28 shows the comparison between measured temperature differences and those predicted by Siegel and Sparrow. The run conditions were $\operatorname{Pr}=1.86$ and $\operatorname{Re}-98,000$. In runs where the condition of constant fluid properties was not met, the comparison with the theory of Diessler was more favorable. In such runs there was more Reynolds-number dependence than predicted by the former theory.

Thus the relatively high heat-transfer coefficients and low temperature differences that were observed near the entrance to the heated test section were due to thermal entrance effects, and other processes such as axial heat flow were negligible.

Table I gives the data from the nonboiling runs with test section No. 1.
B. Boiling Heat Transfer

Boiling heat-transfer runs were made at several levels of flowrate, heat flux, and vapor fraction, with both the 0.72-in.

MU-18775

Fig. 28. Comparison of thermal-entrance effects for test section No. l with the theory of Siegel and Sparrow. The ordinate is the ratio of the observed temperature difference to the fully developed temperature difference.

Table I. Data from the nonboiling runs with test section No. 1 (3/4-in. diam). Quantities in the table are averaged over the fully-developed heat transfer region.

Run No.	$\begin{gathered} \mathrm{T}_{\mathrm{i}} \\ \left.\mathrm{o}_{\mathrm{F}}\right) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{b}} \\ \left({ }_{\mathrm{F}}^{\mathrm{F}}\right) \end{gathered}$	$\begin{gathered} \triangle \mathrm{T} \\ \left({ }^{\mathrm{O}} \mathrm{~F}\right) \end{gathered}$	$\binom{G}{1 b m}$	$\binom{q}{\frac{B T U}{h r ~} \mathrm{ft}^{2}}$	$\left(\frac{h_{\ell_{B I U}}}{n r \mathrm{ft}^{2}{ }_{\mathrm{OF}}}\right)$	${ }^{\text {i }} \mathrm{Nu}$	Re	Pr	$\left(\frac{u_{b}}{\mu_{w}}\right)^{14}$	$\binom{\mathrm{k}_{\mathrm{b}}}{\mathrm{BTH} \mathrm{ft}^{\mathrm{O}_{\mathrm{F}}}}$	cop。 ${ }_{\text {\% }}$	Heat loss (\%)	
1	92.0	85.4	6.6	165	4,590	700	118	18,300	5.40	1.011	0.355	0.746	1.8	
1-b	86.8	82.9	3.9	301	4,430	1140	192	32,200	5.69	1.006	0.354	0.793	0.4	
2	89.5	84.4	5.1	218	4,760	930	158	23,800	5.47	1.001	0.355	0.768	0.7	
2-b	90.7	83.5	7.2	301	9,000	1250	212	32,600	5.65	1.002	0.354	0.758	1.1	
3	93.6	84.1	9.5	113	5,040	530	89.5	12,300	5.49	1.016	0.355	0.733	2.2	
3-b	89.9	82.1	7.8	275	8,880	1140	194	29,200	5.66	1.013	0.353	0.765	1.2	
4	103.1	85.8	17.3	56.1	5,120	300	49.9	6,240	5.34	1.027	0.356	0.663	$3 \cdot 3$	-
5	96.5	84.3	12.2	83.1	4,980	410	68.9	9,080	5.47	1.020	0.355	0.710	3.7	\%
6	85.2	80.9	4.3	294	4,740	1100	187	30,700	5.74	1.008	0.353	0.807	1.1	
7	89.5	81.6	7.9	138	4,850	610	104	14,600	5.68	1.013	0.353	0.768	1.2	
8	87.6	81.2	6.4	191	4,900	770	130	20,100	5.72	1.015	0.353	0.786	2.3	
9	97.4	82.6	14.8	69.3	5,080	340	58.1	7,420	5.59	1.024	0.354	0.703	3.0	
10	86.7	79.7	7.0	167	4,920	700	120	17,200	5.83	1.012	0.353	0.793	2.5	
11	90.4	83.8	6.6	164	4,690	710	120	17,700	5.54	1.012	0.354	0.759	2.1	
12	103.3	83.7	19.6	164	14,540	740	126	17,700	5.54	1.031	0.354	0.663	1.7	
13	107.8	85.0	22.8	136	14,210	620	105	15,000	5.43	1.036	0.355	0.630	2.0	
14	101.4	83.6	17.8	192	14,790	830	141	20,800	5.53	1.028	0.354	0.674	1.2	
15	99.1	83.5	15.6	220	13,840	890	150	23,600	5.56	1.027	0.354	0.684	5.5	
16	122.2	95.1	27.4	113	15,210	560	92.4	13,900	4.78	1.040	0.360	0.548	3.0	
17	95.1	81.5	13.6	205	12,270	900	153	21,600	5.66	1.023	0.353	0.721	3.1	
18	187.9	179.7	8.2	206	10,570	1290	200	52,700	2.57	1.008	0.388	0.329	1.8	
19	187.6	183.5	4.1	269	6,650	1620	250	70,900	2.09	1.003	0.389	0.330	1.4	

and 0.47-in.-i.d. test sections. ${ }^{*}$. It was desired to cover as large a range of vapor fraction as possible, but the available electrical power was limited and did not allow the generation of large quantities of vapor within the test section itself. Therefore by use of the steam-fed heaters and the flashing valve arrangement, vapor fractions at the test-section entrance of up to 10% could be obtained. The entering vapor fraction, flow rate, and heat flux were the externally controlled variables in each run.

The reduced data for all runs is tabulated in Appendix F. Almost every run shows the same general behavior: local heattransfer coefficients at the heated section inlet are large, decrease to a minimum, and finally rise steadily to the outlet of the tube. Since the entering vapor fraction was varied over a large range, it is quite certain that the large coefficients at the entrance and their subsequent decrease down the tube are due to thermal entrance effects. ${ }^{\dagger}$ From physical reasoning it seems plausible that, in any boiling run, heat-transfer coefficients in

[^7]the fully-developed region would increase down the length of the tube; i.e. they would increase with increasing vapor fraction and linear velocity. Therefore one might define the thermal-entrance region as the portion of the heated tube from the entrance to the point where the minimum coefficient is observed. In some cases this definition will include almost the entire tube length. However, in most cases this results in thermal-entrance lengths on the order of those observed for nonboiling heat transfer (an arbitrary rule specifies the length be equal to about 24 pipe diameters). It is not known whether the rather large lengths are due to experimental error or to inaccurate specification of the actual two-phase entrance criteria, or whether the two-phase entrance lengths are actually as variable as evidenced by these runs. Entrance lengths can also be determined by inspection of the inside-wall-temperature curves. Without the entrance phenomena and with continually decreasing bulk temperatures but increasing coefficients, one would expect continually decreasing inside-wall temperatures. However, in most runs a maximum is observed in these curves. Figure 29 shows several inside-wall temperature profiles for differing ranges of vapor fraction. The maximum temperatures do not always occur at or near the point of minimum heat-transfer coefficient.

Using either method to characterize thermal-entrance regions, the same general conclusions can be drawn:

1. There is only a slight increase in magnitude of thermal-

Fig. 29. Inside-wall temperature profiles for runs with several ranges of vapor fraction x, showing various thermal-entrance lengths, with $G=110 \mathrm{lbm} / \mathrm{sec} \mathrm{ft}{ }^{2}$ and $\mathrm{q}=31,470 \mathrm{BTU} / \mathrm{hr} \mathrm{ft}^{2}$.

Run	x(\%)
34	7.1-11.4
36	4.5-8.6
64	3.6-7.5
61	0.4-3.6

entrance effects with increasing heat flux.*
2. There is an inverse dependence of entrance length with heat flux.
3. There is a decrease in the magnitude of effects but little change in length with increasing flow rate.
4. Both the magnitude of effects and length seem to vary inversely with vapor fraction.

It must be stressed that these conclusions are based only on the inspection of the data presented in Appendix F.

In many runs it was noticed that heat-transfer coefficients increased pronouncedly near the tube outlet. It is not known whether these extreme increases are due to some special phenomena, or if these large coefficients result purely from the same processes that occur throughout the tube. Where these large coefficients are observed, large total-pressure gradients are also observed. For heat-transfer-coefficient comparison and correlation in this report, all values obtained in the thermal-entrance regions are neglected. Coefficients at the tube outlet that were considered abnormally high were also deleted. At present, the only justification for this latter deletion is that these data points did not correlate with the majority of points.

Some attempts were made to correlate the observed data by combining the Dittus-Boelter equation with pool-boiling correla-

[^8]tions. In all cases, the observed trends were not correctly predicted, and this method of correlation was discontinued.

Net-boiling data were compared to the correlation of Mumm (Figure 30). For each run there was a definite trend in the data, but the over-all scatter was very large. It seems that the basic character of the Mumm correlation is well founded, but the final grouping of variables and their exponents is inappropriate.

Denglex's correlation [Eq. (I-I)] was compared with the present data. In most cases the Dengler correlation was about 40% high. This might be attributed to the inaccuracy of Dengler's local heat fluxes, which were obtained by collection and measurement of condensate from steam jackets. However, the correlation did indicate the importance of the Martinelli parameter X_{tt}.

The present data compared quite variably with the initial Schrock and Grossman correlation. Figure 31 shows this comparison. Basing their correlation on data points in the lower $X_{t t}$ range (higher x, neglecting those points of low vapor fraction) they obtained the equation

$$
\begin{equation*}
\frac{h_{B}}{h_{\ell}}=2.5 x_{t t}^{-0.75} \tag{v-1}
\end{equation*}
$$

For the range $X_{t t}$ less than 1.5, agreement is excellent. The least-squares line for the data of Runs 100.0 to 172.0 of this report is

$$
\begin{equation*}
\frac{h_{B}}{h_{L}}=2.72 x_{t t}^{-0.581} \tag{v-2}
\end{equation*}
$$

For comparison, Dengler obtained

$$
\begin{equation*}
\frac{h_{B}}{h_{0}}=3.5 x_{t t}^{-0.5} \tag{v-3}
\end{equation*}
$$

Fig. 30. Comparison of the present boiling data with Mumn's correlation.

Fig. 31. Correlation of boiling heat-transfer coefficients using the Martinelli
parameter $X_{t t}$. The data of Runs 100.0
to 172.0 are presented.

When plotting the data for Fig. 3l, it was consistently observed that within one run, or a set of runs with the same heat flux, there was indeed a good correlation. However, with runs of differing heat flux, it was evident that q was a significant parameter. The curves for runs of higher heat flux were displaced vertically above those of lower heat flux. Simple calculations showed a dependence of $q^{0.3}$. Schrock and Grossman using a much larger range of heat fluxes also observed this trend of the data. Actually the trend was so strong (with boiling numbers as large as 16×10^{-4}) that the plot resembled a friction-factor plot, Bo being the parameter. They postulated that the Martinelli parameter $X_{t t}$ correctly represented forced-convection contributions and that the heat flux or some group including it was necessary to represent boiling contributions. Using the boiling number, Bo, they modified their correlation [Eq. (I-9)].

This latter correlation provided a definite correlation for the data of this report, but as seen in Fig. 32, the data are approximately 200% above the correlation line. The equation for the data of Runs 100.0 to 172.0 is

$$
\begin{equation*}
{ }_{\operatorname{Re}_{\ell} \overline{\mathrm{Nu}}_{\mathrm{B}}^{\mathrm{P}}}^{\mathrm{Pr}}{ }_{\boldsymbol{\ell}}=320\left[\mathrm{Bo}+1.5 \cdot 10^{-4} \mathrm{x}_{\mathrm{tt}}^{2 / 3}\right] \tag{v-4}
\end{equation*}
$$

whereas Schrock and Grossman obtained a coefficient of 170. Besides the differences of upflow and downflow and the difference in size of boiling tubes, the main difference in the two experiments is the pressure range used. Schrock and Grossman employed pressures up to 505 psia, where the volume change on vaporization

Fig. 32. Comparison of the present boiling heat-transfer coefficients with the second correlation of Schrock and Grossman.
is $1 / 2$ to $1 / 4$ that obtained at low pressures in this study. It is possible that [Eq. (V-4)] above does not adequately display this pressure dependence.

The boiling number, $q / h_{f g} G$, can be considered as the ratio of perpendicular mass flux away from the wall due to boiling ($q / h_{f g}$) to the total mass flux (G). If this ratio were stated in volumetric terms, a modified boiling number would result which would indeed display a large pressure dependence:

$$
\begin{equation*}
\mathrm{Bo}_{\mathrm{m}}=\frac{q}{h_{f g} \rho_{g}} / \frac{\mathrm{G}}{\rho_{f}}=\mathrm{Bo} \frac{\rho_{f}}{\rho_{g}} \tag{v-5}
\end{equation*}
$$

The boiling number can also be interpreted as a measure of the suppression of nucleate boiling; nucleate boiling would be more likely at high boiling numbers. It should be noted that the significance of the boiling number does not depend upon nucleate boiling, but only on any vaporization process due to the transfer of heat. Neither of the boiling numbers takes into account the flashing of saturated liquid.

After comparison of the heat-transfer data with correlations devised by other experimentors, a project was initiated to study the various dependences on flow variables and to construct and compare new correlations. All computations were performed by an IBM-709 data-processing system, using a least-squares, stepwise, multiple-regression subroutine. The data used were edited to exclude points in the thermal entrance region, points near the tube outlet when coefficients seemed anomolously large, and points from runs whose P-T checks were not good. The initial stages of
correlation involved the use of the raw dimensional quantities, $e_{.} g_{0}, q, G, x, D_{i}$ and the physical properties of water. For q, G, and x the exponents were generally consistent:

Variable
q G x

Exponent
0.3
$0.45-0.70$
0.4
(It is interesting to note that Murm in his early correlation work obtained $q^{0.464}$ and $G^{0.344}$.) The dependence on the diameter D_{i} was not as consistent as desired, so that for later correlations it was decided to include it in the Reynolds number or the Nusselt number.

The multipleøregression routine was written so that when a variable was not significant at a specified level, it was deleted from the computation. This was usually the case when physical and thermodynamic properties of water were entered. This is not to say that such properties are not significant, but that their magnitudes varied so little throughout these experiments that no dependence could be defined. When the properties were included in the final correlation by the subroutine, the standard deviations of the coefficients (or exponents) were generally of the same order of magnitude. That is, the uncertainties of the coefficients were as large as the coefficients themselves.

The liquid-phase, Prandtl number exponents were large (1.0 to 3.0) but there is a natural bias included in these values. As the bulk-fluid temperatures decreased down the tube length, the Pranditl number rose slightly (at $212^{\circ} \mathrm{F}, \mathrm{Pr}_{\ell}=1.75$; at $350^{\circ} \mathrm{F}$, $\mathrm{Pr}_{\boldsymbol{\ell}}=1.02$). With the heat-transfer coefficients also increasing
with length, the Prandtl-number dependence was obscure. As there was no reproducible value for the Prandtl exponent, the value 0.4 was adopted. The various physical properties were used only as they appeared in arbitrarily selected dimensionless groups.

Table II summarizes the better correlations. The error referred to in the table is the difference between the observed heat-transfer coefficient h_{B} and the one calculated by the correlation. The average heat-transfer coefficient was $5039 \mathrm{BTU} / \mathrm{hr}$ $\mathrm{ft}^{2}{ }^{o_{F}}$. The notation and units are the same as that used throughout this report. Figures 33 through 36 graphically show the comparison of data points with correlations 1, 3, 4, and 8.

Correlations $8,9,10$, and 12 are of the form of the final Schrock and Grossman correlation; in fact, correlation 10, uses the same groups. It is interesting to note the comparison of the coefficients; for the first coefficient, 154, Schrock and Grossman obtained 170; for the second coefficient, 0.0542 , they obtained 0.0255 . This result agrees with that discussed previously (see Fig. 32). These coefficients show that for most of the data of this report, the boiling-number term is not nearly as important as the term involving $X_{t t}$.

The dependence of G, q, and x has been determined adequately for the range of variables employed in this experiment. However, it is felt that the ranges of these three variables are still limited as far as advancing a general correlation for design. (The heat flux is particularly limited in this experiment, the upper limit being $88,000 \mathrm{BIU} / \mathrm{hr} \mathrm{ft}^{2}$.) Also there has been no

Table IT. Boiliag heat-transfer-coefficient correlations ${ }^{a}$

$\begin{aligned} & \text { Correla- } \\ & \text { tion No. } \end{aligned}$		Correlation	$\begin{aligned} & \text { Average } \\ & \text { error } \end{aligned}$	Standard deviation of error	$\begin{gathered} \text { Average } \\ \text { percentage } \\ \text { error } \\ \hline \end{gathered}$
1	Stanton No. $=0.003377$	$\left(\mathrm{Re}_{\ell}^{0.106} \mathrm{BO}_{\mathrm{m}}^{0.296} \mathrm{X}_{\mathrm{tt}}^{-0.457} \mathrm{Pr}_{\ell}^{0.4}\right)$	519	455	10.8
2	$h_{B}=4.192$	$\left(R e_{\ell}^{0.455} q^{0.289} \mathrm{x}^{0.379} \operatorname{Pr}_{\ell}^{0.4}\right)$	564	617	10.8
3	Stanton No. $=0.0608$	$\left(\mathrm{Re}_{\ell}^{-0.035} \mathrm{Bo}_{\mathrm{m}}^{0.282} \mathrm{x}^{0.391} \mathrm{Pr}_{\ell}^{0.4}\right)$	575	469	11.8
4	$N u_{B}=0.0340$	$\left(\mathrm{Re}_{\ell}^{0.934} \mathrm{Bo}_{\mathrm{m}}^{0.281} \mathrm{X}_{\mathrm{tt}}^{-0.459} \mathrm{Pr}_{2}^{0.4}\right)$	607	479	12.3
5	$h_{B}=7.661$	$\left(\operatorname{Re}_{2}^{0.842} \mathrm{Bo}^{0.318} \mathrm{X}_{\mathrm{tt}}^{-0.444} \mathrm{Pr}_{2}^{0.4}\right)$	638	658	12.7
6	Stanton No. $=1.7310$	$\left(\mathrm{Re}_{\ell}^{-0.258} \mathrm{Bo}^{0.186} \mathrm{x}^{0.362} \mathrm{Pr}_{\ell}^{0.4}\right)$	671	532	13.4
7	$N u_{B}=0.6630$	$\left(\operatorname{Re}_{\ell}^{0.783} \mathrm{Bo}_{\mathrm{m}}^{0.268} \mathrm{x}^{0.382} \mathrm{Pr}_{\ell}^{0.4}\right)$	698	527	14.1
8	$\frac{\mathrm{Nu}_{\mathrm{B}}}{\mathrm{Re}_{\ell}^{0.8} \mathrm{Pr}_{\ell}^{1 / 3}}=0.1935$	$\left(\mathrm{Bo}_{\mathrm{m}}+0.05539 \mathrm{X}_{\mathrm{tt}}^{-0.581}\right)$	706	625	14.2
9	$\frac{N u_{B}}{\operatorname{Re}_{\ell}^{0.8} \operatorname{Pr}_{\boldsymbol{\ell}}^{1 / 3}}=0.1706$	$\left(\mathrm{Bo}_{\mathrm{m}}+0.05299 \mathrm{X}_{\mathrm{tt}}^{-2 / 3}\right)$	736	624	14.4
10	$\frac{N u_{B}}{\operatorname{Re}_{\ell}^{0.8} \mathrm{Pr}_{\ell}^{1 / 3}}=153.8$	$\left(\right.$ Bo $\left.+0.05419 X_{t t}^{-2 / 3}\right)$	755	650	14.9
11	$h_{B} / h_{\ell} \quad=2.721$	$\left(x_{t t}^{-0.581}\right)$	785	732	15.7
12	$\frac{\mathrm{Nu}_{B}}{\mathrm{Re}_{\ell}^{0.8_{P x_{l}}^{1 / 3}}}=167.10$	$\left(\mathrm{Bo}+0.05722 \mathrm{x}_{t t}^{-0.581}\right)$	806	713	16.1

a The Reynolds number Re_{2} is based on liquid properties and the local liquid flow rate.

Fig. 33. Graphical presentation of boiling-heat transfer correlation No. l with $\mathrm{St}=0.003377 \mathrm{Re}_{\ell}^{0.1} \mathrm{Bo}_{\mathrm{m}}^{0.3} \mathrm{X}_{\mathrm{tt}}{ }^{-0.46} \mathrm{Pr}_{\ell}{ }_{\ell}^{0.4}$.

Fig. 34. Graphical presentation of boiling heattransfer correlation No. 3, with $\mathrm{St}=0.0608 \mathrm{Re}_{\ell}^{-0.04} \mathrm{Bo}_{\mathrm{m}}^{0.3} \mathrm{x}^{0.39} \mathrm{Pr}_{\ell}^{0.4}$.

Fig. 35. Graphical presentation of boiling heat-
transfer correlation No. 4, with

$$
\mathrm{Nu}_{\mathrm{B}}=0.0340 \mathrm{Re}_{\ell}^{0.93} \mathrm{Bo}_{\mathrm{m}}^{0.3} \mathrm{X}_{\mathrm{tt}}^{-0.46} \mathrm{Pr}_{\ell}^{0.4} .
$$

Fig. 36. Graphical presentation of boiling heattransfer correlation No. 8, with

$$
\frac{\mathrm{Nu}_{\mathrm{B}}}{\operatorname{Re}_{\ell}^{0.8} \mathrm{Pr}_{\ell}^{1 / 3}}=0.1935 \mathrm{Bo}_{\mathrm{m}}+0.05539 \mathrm{X}_{\mathrm{tt}}^{-.581}
$$

determination of the dependence of physical properties, especially as the modified boiling number is concerned. * Future work should include a comparison of medium-pressure data (such as that of Schrock and Grossman) and low-pressure data. Certainly the effect of pressure is an important one for both heat transfer and pressure drop. In addition, to increase the generality of correlations and adequately define physical property dependences, other fluids should be used.

C. Boiling Pressure Drop

1. Correlation of total pressure gradients

Point values of total pressure gradients were obtained by graphically differentiating the pressure vs length curves. As in the work of Schrock and Grossman these total gradients were correlated with the Martinelli parameter $X_{t t}$. Figure 37 shows this correlation. The pressure gradient was put in dimensionless form by dividing it by the frictional pressure gradient that would be expected if the liquid phase were flowing alone and filling the tube. The liquid-phase gradient obtained by use of the Blausius frictionfactor formula,

$$
\begin{equation*}
f=0.3164 \mathrm{Re}_{\ell}^{-1 / 4} \tag{v-6}
\end{equation*}
$$

[^9]

Fig. 37. Correlation of forced-convection-boiling total pressure drop using the Martinelli parameter $X_{t t}$. The data presented are from Runs 100.0 to 172.0 .
is

$$
\begin{equation*}
\left(\frac{d p}{d \ell}\right)_{\ell}=\frac{0.3164[(1-x) G]^{2}}{2.144 g_{c} D_{i} \rho_{\ell} \operatorname{Re}_{\boldsymbol{\ell}}^{1 / 4}} \tag{v-7}
\end{equation*}
$$

The least-squares straight line for the data presented in Fig. 37 is

$$
\begin{equation*}
\left[\left(\frac{\partial p}{\partial \ell}\right)_{\mathrm{tpt}} /\left(\frac{\partial p}{\partial \ell}\right)_{\ell}\right]^{2}=40.12 \mathrm{x}_{\mathrm{tt}}^{-1.16} \tag{V-8}
\end{equation*}
$$

although the best curve through the data is not a.straight line. The largest scatter occurs for large values of $X_{t t}$ (low vapor fractions). Lockhart and Martinelli also observed this effect. This could possibly be attributed to changes in the hydrodynamic flow pattern. Equation (V-8) is generally above the upflow data of Schrock and Grossman. A possible explanation lies in the fact that undoubtedly liquid holdup in the two systems would be different; the gravity field in the downflow system tends to accelerate the liquid phase (rather than decelerate it) causing substantially larger momentum losses. Hydrostatic-head contributions in the two systems are of opposite sign, but of such small magnitude as to be negligible. Figure 37 does not employ the conventional LockhartMartinelli coordinants but uses the square of these quantities. In view of this test of the data and the success of the SchrockGrossman correlation, the validity of the total-pressure-drop correlation over a wider range of conditions seems justifiable. It is surprising that the Martinelli method should provide a correlation for total-boiling-pressure gradients, as there is no provision in this method for varying heat fluxes, for momentum changes, or hydrostatic-head contributions. However, the correlation has
been tested over a moderate range of conditions and seems to provide good agreement.

2. Prediction and Correlation of Individual Pressure Losses

As discussed in the Introduction, the total pressure loss in forced-convection boiling is made up from three contributions: friction losses, acceleration losses (momentum changes), and hydrostatic head. A series of calculations were made to predict these individual loss terms by various methods, to combine them to obtain total pressure gradients, and to compare these values with the observed quantities. In these calculations, the pressure actually observed in the experiment was used to define the vapor fraction x and the physical properties of water.

Acceleration losses and hydrostatic-head contributions are dependent on the evaluation of the volumetric vapor fraction α. In these calculations, α was obtained by several methods:
a. The "bubble" flow theory of Bankofff 33 and the "momentum exchange" theory of Levy ${ }^{34}$ were used.
b. The published correlations of α with $X_{t t}$ by Lockhart and Martinelli and by Dengler were used. Nejther of these correlations is based on a downflow system.
c. The volumetric vapor fraction α was also obtained by specification of the slip ratio ψ. If it is assumed that an average velocity can be assigned to each phase, the volumetric vapor fraction and the slip ratio are related by

$$
\alpha=\frac{x}{\left[\psi \frac{\rho_{g}}{\rho_{f}}(1-x)+x\right]}
$$

Values of ψ used were 1.0 and 2.0. The value 1.0 was chosen because this represents the "homogeneous" flow model. If we assume the vapor phase can never have a smaller velocity than the liquid phase, the homogeneous flow model sets the upper limit on acceleration losses. The value 2.0 was chosen as a more probable value for the slip ratio. The compilation of slip-ratio data at Argonne National Laboratory shows that for a large range of vapor fraction and at high superficial liquid velocities (6 to $10 \mathrm{ft} / \mathrm{sec}$), the value 2.0 is a good approximation. Many runs in this report are for superficial velocities in this range.

Once α is determined, the pressure gradients due to acceleration losses and hydrostatic head are obtained from

$$
\begin{equation*}
-\left(\frac{d p}{d \ell}\right)_{a}=\frac{G^{2}}{144 g_{c}} \frac{d}{d \ell}\left[\frac{x^{2}}{\rho_{g} \alpha}+\frac{(1-x)^{2}}{\rho_{f}(1-\alpha)}\right] \tag{v-10}
\end{equation*}
$$

and

$$
\begin{equation*}
-\left(\frac{d p}{d \ell}\right)_{h}=-\frac{g}{144 g_{c}} \quad\left[\rho_{f}(1-\alpha)+p_{g} \alpha\right] \tag{V-11}
\end{equation*}
$$

Equations (V-10) and V-11) are derived from elementary force and momentum balances. [Equation (V-10) is derived in Appendix D.]

Frictional pressure gradients were calculated by several methods: the theories of Bankoff and Levy, ${ }^{35}$ the original correlation of Lockhart and Martinelli, and finally a modified friction factor method. For the Lockhart-Martinelli method, the frictionfactor multiplier ϕ_{l}^{2} was obtained from

$$
\begin{equation*}
\ln _{\ell}=1.46664-0.51346\left(\ell n X_{t t}\right)+0.04879\left(\ln X_{t t}\right)^{2} \tag{v-12}
\end{equation*}
$$

This equation was obtained from a least-squares fit of the original Lockhart-Martinelli data。

The modified friction-factor method consisted essentially of computing mean or effective density and viscosity values

$$
\begin{equation*}
\rho_{m}=\alpha \rho_{g}+(1-\alpha) \rho_{f} \tag{V-13}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{m}=\frac{1}{\frac{x}{\mu_{g}}+\frac{(1-x)}{\mu_{f}}} \tag{V-14}
\end{equation*}
$$

Values of α were obtained by the methods described above. These mean quantities were then used in Eqs. (v-6) and (v-7).

The total pressure gradients calculated by combining the individual gradients were compared with the observed values obtained in both the first and second experimental stages of this report. The theories of Bankoff and Levy were reliable only for very low qualities (under 1\%), and this reliability was not consistent. Admittedly, the theory of Bankoff had as its basis the bubble-flow model, where the liquid phase is continuous over the pipe cross section with vapor bubbles being dispersed throughout the flow channel. Bubble flow is stable only for relatively low flow rates and for a limited range of volumetric vapor fraction (less than 90%). In the present experiments, bubble flow, if obtained at all, was probably limited to the entrance regions of the test section and then only for lower flow rates. In the original papers of both Bankoff and Levy, the theories are compared favorably to experimental data. Most of the data used were for
high pressures; the low pressures used in this experiment form a more stringent test of these theories.

The acceleration and hydrostatic-head gradients obtained with the correlations of Lockhart and Martinelli and of Dengler were combined with frictional gradients obtained by all of the above friction methods. In few cases was the comparison with the observed total gradients satisfactory; usually acceleration losses seemed to be too small. Slip ratios calculated from these correlations are usually much larger than 2.0.

With the specification $\psi=1.0$ (the homogeneous-flow model), in many cases the accelerational gradient was larger than the totalpressure gradient. With the specification of $\psi=2.0$ for the determination of acceleration and hydrostatic-head gradients, and with the use of the Lockhart-Martinelli friction correlation or the modified-friction-factor method, at least fair agreement with the observed gradients was usually obtained. In general, the two methods gave usually similar results, the Lockhart-Martinelli correlation being slightly more reliable. The methods were usually unreliable for qualities under 3%, where the observed gradients were less than $1.0 \mathrm{psi} / \mathrm{ft}$. In these cases both methods gave gradients much larger than those observed.

Because of the unreliability of these methods at low qualities, the total-pressure-gradient correlation, Eq. (V-8) and Fig. 37, is recommended. It is interesting to note that above 3% quality, the two methods have slightly less scatter than the correlation. In this range of quality it seems reasonable to conclude that
a. The slip ratio is in the neighborhood of 2.0 for most of the runs in this report, and
b. For downflow forced-convection boiling there is a good degree of correlation of the frictional pressure gradient with the Martinelli parameter $X_{t t}$, i。e. the original Lockhart-Martinelli correlation.

D. Flow Pattern and Vaporization Mechanism

The flow pattern within the boiling test section could not be observed but there were sight glasses in both the inlet and outlet connecting piping. For low flow rates and low vapor fractions (1%), the flow pattern observed in the inlet sight glass is best described by the bubble-flow model. Bubbles were usually large and wellseparated from each other. At higher velocities and qualities, a definite liquid-annulus-vapor-core flow pattern was noticed. The liquid vapor interface was usually wavy. At even higher velocities, the core was usually quite turbulent and consisted of a mixture of both liquid and vapor. The flow pattern observed at the outlet of connecting piping below the test section can best be described as a very turbulent mixture of liquid and vapor. Little variation from one run to another was observed. Illumination by a Strobe light provided little additional information. It should be noted that, in this experiment, flow rates that were so low that "slugging" occurred were usually avoided.

It is believed that the flow pattern within the boiling test sections was generally like that observed at the outlet sight glass. Liquid would certainly be continuous at the heat-transfer surface,
or heat-transfer coefficients would not be as large as those observed. The inner core, including most of the cross-sectional area of the tube, was probably a very turbulent mixture of liquid and vapor. From the work predicting pressure gradients, it seems that the homogeneous flow pattern did not exist in the majority of runs, if at all. Instead it seems slip ratios were on the order of $\psi=2.0$. This is not to say that there was actual physical slip between the two phases; rather, it is believed there was no slip at any vapor-liquid interface. As pointed out by Bankoff, there will be a velocity gradient across the tube (the velocity at the tube wall is zero), and if the vapor phase is more concentrated in the center of the tube, the slip ratios based on average velocities will be greater than 1.0. Large slip ratios (up to 5 and 6) as obtained in many upflow experiments probably would not occur in a downflow system because of the gravity acceleration of the liquid phase.

Along with this proposed flow pattern, it seems plausible that most of the vaporization occurred at existing vapor-liquid interfaces, not at the wall, the mechanism resembling evaporation or flashing rather than nucleate boiling. This proposed mechanism is in line with that given by Sachs and Long. 36 These authors visually observed forced-convection boiling in an annulus. An inner rod acted as the heat-transfer surface while the outer tube was transparent. They observed that nucleate boiling occurred only in a small zone near the tube entrance. This zone seemed to be independent of flow rate and heat flux. Downstream, no nucleation was observed, although vaporization continued. Since filow rates in
their work were relatively small, but boiling numbers large, ${ }^{*}$ it seems quite possible that the supression of nucleate boiling is a good deal easier than postulated by Dengler and others. If this is true, it is probable that very little nucleate boiling actually occurred in the present experiments. If nucleation did occur, it was most certainly limited to the region near the tube entrance, where the interaction with thermal entrance effects complicated the recognition of the nucleate boiling phenomena.

E. Application to Design

In the general case of forced-convection boiling in tubes (or conduits), design procedures must include both heat-transfer and pressure-drop calculations. Since these calculations are interdependent, a double trial-and-error, stepwise computation necessarily results. In the special case of a uniformly heated tube, where the heat flux is uniquely specified, the performance can be predicted by the pressure-drop calculation alone. ${ }^{\dagger}$ This involves a single trial-and-error computation involving the stepwise determination and integration of local pressure gradients.

[^10]Once this computation has been performed, the results may be used with heat-transfer correlations to predict tube-wall temperatures.

Noyes, Bergonzoli, and Gingrich have written a program to predict heat transfer, pressure drop, and volumetric vapor fraction for flow in a pipe. ${ }^{37}$ One-phase forced convection, subcooled boiling, and two-phase forced-convection boiling were included in what the authors hoped was a general method of calculation. However, it is felt that the basic relations used in some cases were unsatisfactory and could be improved significantly. For instance, a correlation advanced by S. Levy for nucleate pool boiling was superimposed on the Dittus-Boelter relation for calculation of the heat-transfer coefficient. Also, a correlation for air-water flow by Chrisholm and Laird was used for the volumetric vapor fraction. Neither of these two methods seem to be satisfactory for the forced-convection net boiling of water The comparison of the results from a sample calculation and the pressure-drop data of Jens and Lottes shows reasonable agreement for engineering purposes -- about $\pm 20 \%$ 。
I. Design Computations

Using the two satisfactory pressure-drop methods discussed in Section C-2 (with the specification of $\psi=2.0$) and the total pressure-drop correlation [Eq. (V-8)], an IBM 709 Fortran program was written to predict the performance of the uniformly heated test sections used in this report.

Basically, the computation scheme is as follows. The length of the boiling tube is divided into a number of equal length seg-
ments, $\Delta \boldsymbol{l}$ 。Consider one of these small segments whose upstream location is ℓ. It is assumed that the pressure p_{i} and the quality x_{1} are known at the upstream end of the segment (denoted by i)。 The flow rate and heat flux are also known. At the downstream end of the segment (denoted by ii), a pressure $p_{i i}$ is assumed. Using $p_{i i}$ (a saturation pressure), the thermodynamic and physical properties of the working fluid are obtained at the location $\boldsymbol{\ell}+\Delta \boldsymbol{l}$. Then with the knowledge of the wall heat transfer, an energy balance [Eq. (TV-15)] is used to obtain the quality $x_{i i}$. With the use of $x_{i}, x_{i i}, p_{i}, p_{1 i}$ and the properties at each end of the segment, the pressure-loss calculations are performed. For example, the pressure loss due to acceleration is obtained from rearragement of Eq. $(V-10):$

$$
\begin{equation*}
\Delta p_{a}=\frac{G^{2}}{144 g_{c}} \Delta\left[\frac{x^{2}}{\rho_{g}^{\alpha}}+\frac{(1-x)^{2}}{\rho_{f}(1-\alpha)}\right], \tag{V-15}
\end{equation*}
$$

where the difference Δ is obtained by using x_{i} and $x_{i i}$, etc. The pressure losses due to hydrostatic head and friction are determined by

$$
\begin{equation*}
\Delta p_{h}=\frac{g}{144 g_{c}}\left[\rho_{f}(1-\alpha)+\rho_{g} \alpha\right] \Delta \ell \tag{v-16}
\end{equation*}
$$

and.

$$
\begin{equation*}
\Delta p_{t p f}=\left[\left(\frac{d p}{d \ell}\right)_{\operatorname{tpf}}\right] \Delta l \tag{v-17}
\end{equation*}
$$

with the square-bracketed quantities being evaluated at the midpoint of the segment, and with the use of mean properties $x_{m}=\frac{x_{i}+x_{i i}}{2}$, etc. With the total-pressure-gradient correlation, Δp_{T} is also evaluated at the segment midpoint. After the pressure drop is evaluated, it is used in the relation

$$
\begin{equation*}
p_{i i}=p_{i}-\Delta \mathrm{p}_{\mathrm{T}} \tag{v-18}
\end{equation*}
$$

This new value of $p_{i i}$ is compared to the initially assumed value. If the agreement is not satisfactory, another value of $p_{i i}$ is assumed and the calculation repeated. When the agreement does become satisfactory, the value of $p_{i i}$ is then accepted for the pressure p_{i} of the next segment and the computation continues. The computation can be started at either end of the tube, but usually the conditions are more easily specified at the inlet.

In the actual computation, the pressure $p_{i i}$ assumed at the start of the computation (for each segment) was that obtained from friction loss alone. The frictional gradient was evaluated at the point i. If the calculated value of $p_{i i}$ was not satisfactorily close to the assumed value, it was then adopted as the assumed $p_{i i}$ for the next iteration, etc. In this manner, starting at a low value of Δp, the "marching" computation was continued until agreement was obtained. Agreement within 0.001 psi, with a Δb of 0.125 ft, was usually obtained within 20 iterations. Design calculations for six representative runs required some 15 to 20 min on the IBM 709.

2. Comparison of the Calculated and Observed Pressure Profiles

The marching-type iterative calculation described above is a relatively unsophisticated procedure which is extremely dependent upon the accuracy of the calculated gradients. As errors are cumulative in this procedure, even small inaccuracies in the gradients can cause large deviations from the observed results. In fact, the deviations may become so large that the results are completely unrealistic or the iterative procedure diverges. The stability of the calculation is also somewhat dependent on the increment size,
Δl, and the agreement that is desired between successive trials. The comparisons of the calculated and observed pressure profiles were essentially in line with the comparisons of the calculated and observed total-pressure gradients (as discussed in Section C). The total-pressure-gradient correlation seems to be much more reliable than the two methods that predict individual losses. In fact these two latter methods gave diverging results in four of the six runs. In these calculations the two methods gave reasonable results for about 60% of the tube length, and then rapidly diverged and were terminated. The correlation calculation never gave unrealistic results or diverged, and it was considerably faster than either of the other two methods. The profiles obtained from the correlation were always within 17% of the observed profiles. Figures 38 and 39 show comparison of pressure profiles for two runs; Figures 40 and 41 show comparisons of calculated and observed inside-wall temperatures. These temperatures were obtained from the calculated pressure profiles using heattransfer correlation No. 1. The large differences in the temperature profiles near the tube entrance are due to thermal-entrance effects; the divergence of these curves can serve as a definition for the thermal-entrance length.
-124-

Fig. 38. Comparison of the calculated and observed pressure profiles for Run 161.0. The total-pressure-gradient correlation, Eq. (V-8), was used in this calculation.

Fig. 39. Comparison of the calculated and observed pressure profiles for Run 159.0. The total pressure gradient correlation, Eq. (V-8) was used in this calculation.

Fig. 40. Comparison of the calculated and observed inside-wall temperature profiles for Run 159.0. Pressures were obtained by use of the total-pressure-gradient correlation Eq. (V-8); temperatures were obtained by use of heat-transfer correlation No. 1. At $\ell=0.50$, the quality is 0.14%. The in-side-wall temperature of 3090 F would give essentially the same coefficient as the DittusBoelter equation if it were not for the large thermal-entrance effects.

Fig. 41. Comparison of the calculated and observed inside-wall-temperature profiles for Run 172.0. Pressures were obtained by use of the total-pressure-gradient correlation Eq. (V-8); temperatures were obtained by use of heat-transfer correlation No. 1. The entrance quality was 4.64%.

VI. CONCLUSIONS AND RECOMMENDATIONS

Local heat-transfer coefficients and local total-pressure gradients have been measured in the downflow forced-convection boiling of water in electrically heated tubes. The two test sections used were 0.719 and 0.472 in. i.d., with lengths of 5.67 and 4.69 ft , respectively. The range of variables covered in this work include:

Heat flux, q	13,800-88,000	$\mathrm{BTU} / \mathrm{hr} \mathrm{ft}{ }^{2}$
Mass flux, G	110-700	$\mathrm{lbm} / \mathrm{sec} \mathrm{ft}^{2}$
Quality, x	0-19\%	
Boiling No., Bo	0.24×10^{-4}	-1.9×10^{-4}
Pressure	15.8-68.2	

It has been observed that thermal-entrance regions associated with two-phase-boiling heat transfer are very important in both design and analytical work. Thermal-entrance regions were observed with both one-phase and two-phase heat transfer; in both cases, heat-transfer coefficients in these regions were very large.

New boiling heat-transfer correlations have been derived using a least-squares, multiple-regression subroutine on an IBM-709 dataprocessing system. These correlations have the skeleton

$$
h_{B} \sim G^{0.6} q^{0.3} x^{0.4} .
$$

The variations of the physical properties of water were not sufficient to accurately define their significance in the correlations. Consequently, these properties were used only in dimensionless groups which were arbitrarily selected. In order to improve and introduce some pressure dependence in correlations, a modified
boiling number has been introduced:

$$
B O_{\mathrm{m}}=\mathrm{Bo} \cdot \frac{\rho_{f}}{\rho_{\mathrm{g}}} .
$$

Local, total, two-phase-boiling pressure gradients have been correlated with the Martinelli parameter, $X_{t t}$:

$$
\frac{\left(\frac{d p}{d \ell}\right)_{\mathrm{tpt}}}{\left(\frac{d p}{d \ell}\right)_{\ell}}=40.12 \mathrm{X}_{\mathrm{tt}}^{-1.16} .
$$

This correlation has proved to be more reliable than several methods of calculation which predict individual pressure losses. These latter methods, however, have shown that homogeneous flow conditions (equal velocities) existed in very few experimental runs, if at all. Rather, slip ratios were on the order of 2.0. By use of the above correlation, a numerical procedure has been devised which gives reasonable design predictions.

Ori the basis of observations at the outlet of the test section, a general flow pattern and a heat-transfer mechanism are proposed. It is felt that liquid is continuous at the heattransfer surface, while the bulk of the tube volume is occupied by a very turbulent mixture of vapor and liquid. It is believed that very little nucleate boiling occurs at the heat-transfer surface; rather, the vaporization mechanism is one of evaporation at existing vapor-liquid interfaces. This necessarily demands that the liquid at the tube wall be supersaturated, and that heat is transferred at the wall by a forced-convection mechanism.

To increase the generality of the correlations, several recommendations are made:
a. The ranges of flow rate, vapor fraction, and heat flux should be increased. Heat fluxes used in this experiment are quite low and should be increased by an order of magnitude. Flow rates have covered a reasonable range, but should be increased by at least a factor of two.
b. In order to determine the significance of the various physical properties of the working fluid, it is recomended that fluids other than water also be included in the experimental program. If the range of operating conditions for each fluid is sufficiently large, it is felt that results from the present digital-correlation program would be greatly improved.
c. In order to test the pressure dependence of the correlations, it is suggested that moderate-to high-pressure data from the literature also be included in the correlation program.
4. Both larger and smaller diameter tubes should be employed to ascertain the diameter dependence.

With the application to design, it is recommended that more reliable numerical procedures be devised. Even if correlations are improved, design calculations may not be entirely satisfactory if the numerical procedure is inaccurate or unstable. Also, it would be interesting to develop general calculation procedures for systems where the heat flux is not specified; e.g. a steamheated test section.

It might be possible to gain an insight on flow pattern and
heat-transfer mechanisms by an extended analysis of pressure fluctuations (or possibly temperature fluctuations). This would require cancellation of the fluctuations introduced by the feed pump.

ACKNONLEDGMENIS

The encouragement, advice, and many helpful suggestions of Professor L.A. Bromley throughout the course of this work are gratefully acknowledged.

I wish to thank Professors Bromley, D.N. Lyon, and V.E. Schrock for reviewing the rough draft of this report and for their helpful suggestions. Thanks are also due to Dr. Arthur Morgan and his staff at the Western Regional Laboratory of the United States Department of Agriculture.

The construction of the experimental equipment was expertly handled by the Main Shops and the Accelerator Technicians of the Lawrence Radiation Laboratory. Particular thanks go to Mr. G.G. Young and his staff for the many very helpful suggestions on equipment design and construction. The helpful suggestions about experimental equipment given by Mr. Robert Waite are also acknowledged.

Mr. Fred Vogelsberg gave invaluable assistance with electrical and electronic systems, especially the thermocouple circuitry.

Mr. Doug Brainard of the Laboratory's Computer Group gave invaluable aid in all of the various stages of machine calculations.

Mr. Robert L. Sani was my co-worker for two years; his help and advice were of considerable value.

I would like to thank Mrs. Pat Cookson who typed the rough draft and the final masters of this report. I would also like to thank the late Mrs. Robert Waite for her valuable secretarial help during the early stages of this project.

For her help and patience during these years, I wish to thank
my wife, Virginia.
This work was performed under the auspices of the U.S. Atomic Energy Commission.

BIBLIOGRAPHY

1. A.H. Brown, M.E. Lazaar, T. Wasserman, and W.D. Ramage, Flash Heat, Food Packer, 32, 20(Jan. 1951).
2. R. Siegel and E.M. Sparrow, Turbulent Flow in a Circular Tube with Arbitrary Internal Heat Sources and Wall Heat Transfer Trans. Am. Soc. Mech. Engrs,, Series C, J. Heat Transfer 81,280 (1959).
3. Robert G. Deisslex, Analysis of Turbulent Heat Transfer and Flow in Entrance Regions of Smooth Passages, National Advisory Committee for Aeronautics Rept. NACA 1210, 1955.
4. C.F.Staley and Merle Baker, Heat-Transfer Rate Between Heated Tubes and Boiling Refrigerant, J. Am. Soc. Heating, Refrigerating, and Air Conditioning Engrs. 1, 83(1959).
5. C.E. Dengler, Heat Transfer and Pressure Drop for Evaporation of Water in a Vertical Tube, Sc. D. Thesis, Massachusetts Institute of Technology, 1952.
6. C.E. Dengler and J.N. Addoms, Heat Transfer Mechanism for Vaporization of Water in Vertical Tubes, Chem. Engr. Progr. Symposium Ser. 52, No. 18, 95(1956).
7. F.W. Dittus and L.M.K. Boelter, Heat Transfer in Automobile Radiators of the Tubular Type, University of California Publication in Engineering 2, 443(1930).
8. R.W. Lockhart and R.C. Martinelli, Proposed Correlation of Data for Isothermal Two-Phase, Iwo-Component Flow in Pipes, Chem. Engr. Progr. 45, 39(1949).
9. J.F. Mumm, Heat Transfer to Boiling Water Forced Through a Uniformily Heated Tube, Argonne National Laboratory Rept. ANL-5276, November 1954.
10. W.F. Davidson, P.H. Hardie, C.G.R. Humphreys, A.A. Markson, and T. Ravese, Studies of Heat Transmission Through Boiler Tubing at Pressures from 500 to 3300 Pounds, Trans. Am. Soc. Mech. Engrs. 65, 553(1943).
11. V.E. Schrock and L.M. Grossman, Local Heat Transfer Coefficients and Pressure Drop in Forced Convection Boiling, University of California Institute of Engineering Research (Berkeley), Series No. 73308-UCX, Issue No. 1, September 30, 1957.
12. V.E. Schrock and L.M. Grossman, Forced Convection Boiling Studies, University of California Institute of Engineering Research (Berkeley), Series No. 73308-UCX 2182, Issue No. 2, November 1, 1959。
13. S.A. Guerrieri and R.D. Talty, A Study of Heat Transfer to Organic Liquids in Single-Tube, Natural Circulation, VerticalTube Boilers, Chem.Engr. Progr. Symposium Ser. 52, No. 18, 69 (1956).
14. M. Altman, R.H. Norris, and F.W. Staub, Local and Average Heat Transfer and Pressure Drop for Refrigerants Evaporating in Horizontal Tubes, Trans.Am.Soc. Mech.Engrs., Ser. C, J. Heat Transfer 82, 189(1960).
15. I.S.Sterman, V.G. Morozov, and S.A. Kovalev, Study of Heat Exchange During Boiling of Water and Ethyl Alcohol in Pipes, J. Eng. Phys. 2, 40(Oct. 1959); UCLRL Translation 694.
16. P.A. Lottes, M. Petrick, and J.F. Marchaterre, Lecture Notes on Heat Extraction from Boiling Water Power Reactors, Argonne National Laboratory Rept. ANL-6063, Oct. 1959.
17. R.C.Martinelli and D.B. Nelson, Prediction of Pressure Drop During Forced Circulation Boiling of Water, Trans. Am. Soc. Mech.Engrs. 70, 695(1948).
18.W.H. Jens and P.A. Lottes, Two-Phase Pressure Drop and Burnout Using Water Flowing in Round and Rectangular Channels, Argonne National Laboratory Rept. ANL-4915, Oct. 1, 1952.
18. D.H. Weiss, Pressure Drop in Two-Phase Flow, Argonne National Laboratory, Rept. ANL-4916, October 20, 1952.
19. V.E. Schrock and L.M. Grossman, Local Pressure Gradients in Forced-Convection Vaporization, Nuclear Sci。 and Eng. 6, 245 (1959).
20. Robert L. Sani, Downflow Boiling and Nonboiling Heat Transfer in a Uniformly Heated Tube, Lawrence Radiation Laboratory Rept. UCRL-9023, Jan. 4, 1960.
21. A.J. Ter Linden, Der Zyklon als Tropfen Abscheider, (The Cyclone as a Drop Separator), Chem. Ing. Technik, 25, 328(1953).
22. D.I.J. Roderick and C.E. Hierons, The Development of a Gas Liquid Separator, British Chemical Engineering 2, (4), 180(1957).
23. Arthur Pollack and L.T.Work, The Separation of Liquid from Vapor Using Cyclones, Trans.Am.Soc. Mech。Engrs. 64, 31(1942).
24. C.J. Stairmand, The Design and Performance of Cyclone Separators, Trans. Inst. of Chem. Engrs. (London) 29, 356(1951).
25. H. Buchberg etal., Final Report on Studies in Boiling Heat Transfer, University of California at Los Angeles, COO-24, March 1951, P. I-F-21 and p. III-A-15.
26. Stainless Steel Handbook (Allegheny Ludlum Steel Corporation, Pittsburgh, Pa., 1959.)
27. J.H. Keenan and F.G. Keyes, Thermodynamic Properties of Steam (John Wiley and Sons, Inc., New York, 1954).
28. P.A. Lottes, The Reactor Handbook, Volume 2, Section 1, Chapter 1.3, Physical and Thermodynamic Properties of Light and Heavy Water, AECD 3646, (U.S. Atomic Energy Commission, Washington, D.C. May 1955) 。
29. Tables of Thermal Properties of Gases, Circular 564, (U.S. Department of Commerce, National Bureau of Standards, Nov. 1,1955).
30. Revised Steam Tables and Diagrams of the Japan Society of Mechanical Engineers, 2nd. Edition (1955):
31. E.N. Sieder and G.E. Pate, Heat Transfer and Pressure Drop of Liquids in Tubes, Ind. Eng. Chem. 28, 1429(1936).
32. S.G. Bankoff, A Variable Density Single-Fluid Model for TwoPhase Flow with Particular Reference to Steam-Water Flow, Trans. Am. Soc. Mech. Engrs., Series C, J. Heat Transfer 82, 265(1960).
33. S. Levy, Steam Slip--Theoretical Prediction From Momentum Model, Trans. Am. Soc. Mech. Engrs., Series C, J. Heat Transfer 82, 113(1960).
34. S. Levy, Theory of Pressure Drop and Heat Transfer for Annular Steady-State Two-Phase Two-Component Flow in Pipes, Proc. Second Midwestern Conference on Fluid Mechanics, 1952.
35. P. Sachs and R.A.K. Long, A Correlation for Heat Transfer in Stratified Two-Phase Flow with Vaporization, Intern. J. Heat and Mass Transfer 2, 222(1961).
36. R.C. Noyes, F. Bergonzoli, and J.E. Gingrich, Fugue-A Nondimensional Method for Digital Computer Calculation of Steady State Temperature, Pressure, and Void Fraction in Pipe Flow With or Without Boiling, Atomics International Rept. NAA-SR5958, Aug. 1, 1959.

NOMENCLATURE

General

A_{B}	Cross-sectional flow area of the boiling tube	$f t^{2}$
A_{h}	Heat transfer area of the boiling tube	$f t^{2}$
A_{1}	Cross-sectional flow area of the pipe at station 1	$\mathrm{f}^{2}{ }^{2}$
Bo	$\text { Boiling number } \quad=\frac{q}{h_{f g}{ }^{G} \cdot 3600}$	dimensionless
Bo_{m}	Modified boiling number $=\mathrm{Bo} \frac{\rho_{f}}{\rho_{g}}$	dimensionless
c_{p}	Specific heat at constant pressure	$\mathrm{BIU} / \mathrm{Ibm}{ }^{\circ} \mathrm{F}$
C_{1}	Constant defined in Eqs. (IV-6) and (IV-10).	
D	Diameter	$f t$
E	Voltage drop	volts
f	$\text { Blasius friction factor }=0.3164 \mathrm{Re}_{\boldsymbol{\ell}}^{-1 / 4}$	dimensionless
g	Acceleration of gravity $=32.153$	$\mathrm{ft} / \mathrm{sec}^{2}$
g_{c}	Conversion factor in Newton's Law: $\quad=32.1739$ Ib force $=\frac{\mathrm{g}}{\mathrm{g}_{\mathrm{C}}}$ lb mass	$f t \cdot 1 \mathrm{bm} / \sec ^{2} \mathrm{lbf}$
G	Mass flux	Ibm/sec ft^{2}
h	Enthalpy, or	BTU/Ibm
	Heat-transfer coefficient, or	$\mathrm{BIU} / \mathrm{hr} \cdot \mathrm{ft}^{2} \mathrm{O}_{\mathrm{F}}$
	Contribution to pressure loss due to hydrostatic head	psia
J	Joule's constant $\quad=778.26$	$f t \cdot 1 \mathrm{bf} / \mathrm{BIU}$
k	Thermal conductivity	$\mathrm{BTU} / \mathrm{hr} \mathrm{ft}{ }^{\circ} \mathrm{F}$
2	Distance from entrance of heated test section	ft

L	Total length of test section	$f t$
mv	Output voltage from the pressure transducer	mv
Nu	Nusselt number $\quad=\frac{h_{B} D_{i}}{k_{\ell}}$	dimensionless
p	Pressure	psia
Pr	Prandtl number $\quad=\frac{C_{p} \mu \cdot 3600}{k}$	dimensionless
Pw	Electric power expended in the heated test section	watts
q	Heat flux	$\mathrm{BIV} / \mathrm{hr} \mathrm{ft}{ }^{2}$
Q	Total heat input	$\mathrm{BTU} / \mathrm{hr}$
r	Radius	ft
R	Electrical resistance	ohm
Re	Reynolds number: $R e_{T}=\frac{D_{i} G}{\mu} \quad \operatorname{Re} e_{\ell}=\frac{D_{i}(1-x) G}{\mu_{\boldsymbol{\ell}}}$	dimensionless
St	$\text { Stanton number } \quad=\frac{h_{B}}{C_{p} G \cdot 3600}$	dimensionless
T	Temperature	${ }^{\circ} \mathrm{F}$
ΔT	Temperature difference $\Delta T_{B}=T_{i}-T_{B}$	${ }^{\circ} \mathrm{F}$
	$\Delta T_{W}=T_{0}-T_{i}$	
v	Velocity	$\mathrm{ft} / \mathrm{sec}$
V	Volume	$f t^{3}$
W	Flow rate	$\mathrm{Ibm} / \mathrm{hr}$
x	Mass fraction vapor, quality	dimensionless
$\mathrm{x}_{\text {tt }}$	$\text { Martinelli parameter }=\left(\frac{\rho_{g}}{\rho_{f}}\right)^{0.5}\left(\frac{\mu_{f}}{\mu_{g}}\right)^{0.1}\left(\frac{1-x}{x}\right)^{0.9}$	dimensionless
z_{1}	Elevation difference between station 1 and the test-section inlet	ft

α	Volumetric vapor fraction, or dimensionless Linear temperature coefficient of ${ }^{\circ} F^{-1}$ thermal conductivity
r	Linear temperature coefficient of electrical resistance
\bigcirc	Density $\quad \mathrm{lbm} / \mathrm{ft}^{3}$
μ	Viscosity $\mathrm{lbm} / \mathrm{sec} \mathrm{ft}$
ω	```Power generation per unit volume in BTU/hr ft }\mp@subsup{}{}{3 the test section```
ψ	Slip ratio $\quad=\frac{\mathrm{v}_{\mathrm{g}}}{\mathrm{v}_{\mathrm{f}}} \quad$ dimensionless
Φ_{ℓ}	Lockhart-Martinelli friction-factor dimensionless multiplier
	Subscripts
a	Acceleration
avg	Average
b	Evaluation at bulk fluid properties
B	Boiling
f	Properties of saturated liquid
$f \mathrm{~g}$	Difference in a property between saturated vapor and saturated liquid
6	Properties of saturated vapor
h	Hydrostatic head
1	Inner wall, or inside
ℓ	Liquid property or
	Evaluation on the basis of local liquid flow rate
m	Mean, or
	Metal property
0	Outer wall, or
	Evaluation on the basis of the total flow rate, or Evaluation of a property at some base

T Total

tpf Two-phase friction-pressure loss
tpt Two-phase total-pressure loss
w Wall, or
Evaluation at the inner-wall temperature
1 Evaluation at station 1 before the flashing valve
A. Solution of the Conduction Equation for the Inside-Wall Temperature

Equation (V-I) can be rewritten

$$
\begin{equation*}
\frac{I}{r} \frac{d}{d r}\left[r k(T) \frac{d T}{d r}\right]=-\omega \tag{A-1a}
\end{equation*}
$$

Boundary condition 1 (B.C.1.) is

$$
\begin{equation*}
r=r_{0},\left(\frac{d T}{d r}\right)=0 \tag{A-1b}
\end{equation*}
$$

and boundary condition 2 (B.C.2) is

$$
\begin{equation*}
r=r_{0} \text { and } T=T_{0} \text {, a constant. } \tag{A-1c}
\end{equation*}
$$

We can define a new variable $\xi(T)$ by

$$
\begin{align*}
\xi(T) & \equiv \int_{0}^{T} k(T) d T \tag{A-2}\\
\frac{d \xi}{d T} & =k
\end{align*}
$$

and $\quad \frac{d \xi}{d r}=\frac{d \xi}{d T} \cdot \frac{d T}{d r}=k \frac{d T}{d r}$.
Substituting Eq. (A-3) into Eq. (A-1a), we have

$$
\begin{equation*}
\frac{1}{r} \frac{d}{d r}\left[r \frac{d \xi}{d r}\right]=-\omega \tag{A-4}
\end{equation*}
$$

Integrating Eq. (A-4), we obtain

$$
\begin{equation*}
\frac{r d \xi}{d r}=-\frac{\omega r^{2}}{2}+c_{1} . \tag{A-5}
\end{equation*}
$$

Using B.C.I in Eq. (A-3) and noting that k is finite, we have at $r=r_{0}$

$$
\begin{equation*}
\frac{d \xi}{d r}=0 \tag{A-6}
\end{equation*}
$$

Substituting Eq. (A-6) in Eq. (A-5) we have

$$
\begin{equation*}
c_{I}=\frac{\omega r_{0}^{2}}{2} \tag{A-7}
\end{equation*}
$$

and Eq. (A-5) becomes

$$
\begin{equation*}
r \frac{d \xi}{d r}=+\frac{\omega}{2}\left(r_{0}^{2}-r^{2}\right) . \tag{A-8}
\end{equation*}
$$

Integrating again, we obtain

$$
\begin{equation*}
\xi=\frac{\omega}{2}\left(r_{0}^{2} \ln r-\frac{r^{2}}{2}\right)+c_{2} \tag{A-9}
\end{equation*}
$$

Now by assigning the functional dependence of ξ, we may return to the original dependent variable. For the linear relation

$$
k=k_{o}(1+\alpha T),
$$

Eq. (A-2) gives

$$
\xi=k_{0}\left(T+\frac{\alpha T^{2}}{2}\right),
$$

and Eq. (A-9) becomes

$$
\begin{equation*}
k_{0}\left(T+\frac{\alpha T^{2}}{2}\right)=\frac{\omega}{2}\left(r_{0}^{2} \ln r-\frac{r^{2}}{2}\right)+c_{2} \tag{A-10}
\end{equation*}
$$

Finally using B.C.2, we have

$$
\begin{equation*}
c_{2}=k_{0}\left(T_{0}+\frac{\alpha T_{0}^{2}}{2}\right)-\frac{\omega}{2}\left(r_{0}^{2} \ln r_{0}-\frac{r_{0}^{2}}{2}\right) \tag{A-11}
\end{equation*}
$$

For the inner-wall temperature, substituting Eq. (A-11) into Eq.

$$
\begin{align*}
\text { (A-10) gives } \\
\begin{aligned}
k_{0}\left(T_{i}+\frac{\alpha T_{i}^{2}}{2}\right) & =\frac{\omega}{2}\left(r_{0}^{2} \ln r_{i}-\frac{r_{i}^{2}}{2}\right)+k_{0}\left(T_{0}+\frac{\alpha T_{0}^{2}}{2}\right) \\
& -\frac{\omega}{2}\left(r_{0}^{2} \ln r_{0}-\frac{r_{0}^{2}}{2}\right)
\end{aligned} \tag{A-12}
\end{align*}
$$

which readily reduces to

$$
T_{0}-T_{i}=\frac{\omega}{2 k_{0}}\left[r_{0}^{2} \ln \frac{r_{0}}{r_{i}}-\frac{1}{2}\left(r_{0}^{2}-r_{i}^{2}\right)\right]-\frac{\alpha}{2}\left(T_{0}^{2}-T_{i}^{2}\right)
$$

and

$$
T_{0}-T_{i}=\frac{\omega}{2}\left[r_{0}^{2} \ln \frac{r_{0}}{r_{i}}-\frac{1}{2}\left(r_{o}^{2}-r_{i}^{2}\right) \frac{1}{k_{0}\left[1+\frac{\alpha}{2}\left(T_{0}+T_{i}\right)\right]}\right.
$$

If $k(T)$ is assumed constant at $k_{a v g}$ in Eq. (A-la), the solution is readily obtained by integration:

$$
T_{0}-T_{i}=\frac{\omega}{2}\left[r_{0}^{2} \ln \frac{r_{0}}{r_{i}}-\frac{1}{2}\left(r_{0}^{2}-r_{i}^{2}\right)\right] \frac{1}{k_{\text {avg }}} .
$$

B. Pressure Measurement Using the Pressure Transducer

The pressure transducer calibration equation is in general

$$
\begin{equation*}
\mathrm{psia}=a(\mathrm{mv})+b \tag{B-1}
\end{equation*}
$$

Consider the situation where the transducer diaphragm is in contact with the atmosphere. It "sees" the pressure (psia) atm and its output voltage is $\left(\mathrm{mv}_{\mathrm{a}}\right)$:

$$
\begin{equation*}
(\text { psia })_{a t m}-a\left(\operatorname{mv}_{a}\right)+b \tag{B-2}
\end{equation*}
$$

Now, consider the case where the transducer is mounted at its manifold and one line is open to a pressure tap at the test section. This connecting line is completely filled with liquid, but the test section is empty and is open to the atmosphere. The pressure at the test section is (psia) atm but the transducer "sees" the pressure (psia) 0_{0}. The transducer output is (mvo ${ }_{0}$:

$$
\begin{equation*}
(\text { psia })_{0}=(\text { psia })_{a t m}+h=a\left(\operatorname{mr}_{0}\right)+b, \tag{B-3}
\end{equation*}
$$

where h is the contribution of the hydrostatic head of liquid in the connecting line. Thirdly, consider the situation during a boiling run with the connecting line still filled. The pressure in the test section is (psia) ${ }_{R}$, but the transducer sees (psia) t. The total transducer output is $\left(\operatorname{mv}_{R}^{\prime}\right)$:

$$
\begin{equation*}
(\text { psia })_{t}=(p s i a)_{R}+h=a\left(\operatorname{mv}_{R}\right)+b \tag{B-4}
\end{equation*}
$$

Here h can be obtained from Eqs. (B-2) and (B-3),

$$
\begin{equation*}
h=a\left(m v_{0}-m v_{a}\right), \tag{B-5}
\end{equation*}
$$

and should be a constant if the transducer operates in accord with its calibration and if the connecting tubing is always filled (this also assumes constant liquid density). Thus the quantity (mvo mv_{a}) should be constant for all runs. Substituting Eq. (B-5) in Eq. (B-4), we have

$$
\begin{equation*}
(p s i a)_{R}=a\left[m v_{R}-\left(m v_{o}-m v_{a}\right)\right]+b . \tag{B-6}
\end{equation*}
$$

Values of ($\mathrm{mv} \mathrm{o}_{\mathrm{o}}-\mathrm{mv} \mathrm{a}_{\mathrm{a}}$) can be obtained in two ways. First, they may be measured directly, as in the second case above, Eq.(B-3). However, when this was actually done it was difficult to keep liquid in the connecting lines from draining into the test section. Also there was always the possibility of drift of the transducer supply voltage. The second and more reliable method was to measure the elevation difference (Δl) between a pressure tap and the transducer. ($m v_{o}-m v_{a}$) was then calculated from

$$
\begin{equation*}
\left(m v_{0}-m v_{a}\right)=\frac{\Delta \ell \cdot \rho}{144 \cdot a}, \tag{B-7}
\end{equation*}
$$

where $\Delta \ell$ is in feet, ρ is the density of water in $1 \mathrm{bm} / \mathrm{ft}^{3}$, and a comes from the calibration equation in psia/mv.

Where drainage from the connecting line was not appreciable, results of the two methods were in good agreement.

C. Derivation of the Energy Balance

If we write input terms on the left and output terms on the right, the steady-state energy balance is (the units of each quantity are BIU per pound-mass of flowing fluid)

$$
\begin{aligned}
h_{1}+\frac{v_{1}^{2}}{2 g_{c} J}+\frac{Q}{W} \frac{\ell}{L} & =x h_{g}+(1-x) h_{f}+x \frac{v_{g}^{2}}{2 g_{c} J}+(1-x) \frac{v_{g}^{2}}{2 g_{c} J} \\
& -\frac{\left(\ell+z_{1}\right)}{J} \frac{g}{g_{c}}
\end{aligned}
$$

The reference point is at station 1 , the flashing valve, and z_{1} is the elevation difference between station 1 and the test-section entrance (the test section is below station 1). Simple rearrangement gives the form of Eq. (V-15).

The velocity at station 1 is easily obtained from

$$
v_{1}=\frac{W}{3600 \rho_{1} \mathrm{~A}_{1}},
$$

where A_{1} is the cross-section area of the piping at station 1 (in ft^{2}) and ρ_{1} is the liquid density (in lbm/ft ${ }^{3}$). Similar equations may be written for the saturated vapor and liquid velocities in the test section:

$$
\begin{aligned}
& v_{g}=\frac{x W}{3600 \rho_{g} A_{g}} \\
& v_{f}=\frac{(1-x) W}{3600 \rho_{f} A_{g}}
\end{aligned}
$$

where A_{g} and A_{f} are the areas of the tube filled with vapor and liquid, respectively. Noting $A_{g}+A_{f}=A_{B}$ or $A_{g}=A_{B}-A_{f}$, where A_{B} is the total cross-sectional area of the boiling test section, and introducing the "slip ratio", we have

$$
\begin{aligned}
& \psi \equiv \frac{v_{g}}{v_{f}}, \\
& \left.\psi v_{f}=v_{g}=\frac{x W}{3600 \rho_{g}\left(A_{B}-A_{f}\right.}\right), \text { or } \\
& v_{f}=\frac{x W}{\psi 3600 \rho_{g}\left(A_{B}-A_{f}\right)}
\end{aligned}
$$

Now equating the two expressions for v_{f} and solving for A_{f}, we obtain

$$
A_{f}=\frac{(1-x) \Psi \rho_{g} A_{B}}{\left[(1-x) \Psi \rho_{g}+\rho_{f}\right]}
$$

Substituting this into the original velocity expressions, we have

$$
\begin{gathered}
v_{g}=\frac{W\left[(1-x) \psi \rho_{g}+x \rho_{f}\right]}{3600 A_{B} \rho_{g} \rho_{f}} \\
v_{f}=\frac{v_{g}}{\psi} .
\end{gathered}
$$

and

With ψ arbitarily prescribed, these velocity expressions along with the energy balance equation form a complete system of algebraic equations.
D. Force-Momentum Balance Used to Calculate AccelerationPressure Losses

Consider the fluid element:

If we neglect friction and body forces, the net force in the positive x direction is

$$
F_{x}=p A-\left(p+\frac{d p}{d \ell} d \boldsymbol{\ell}\right)\left(A+\frac{d A}{d \ell} \alpha \ell\right)+\left(p+\frac{1}{2} \frac{d p}{d \ell} d \boldsymbol{\ell}\right)(d \boldsymbol{l} \cos \theta)(\sin \theta) .
$$

For small angles

$$
\theta=\sin \theta=\tan \theta=\frac{d A}{d \ell} \quad \text { and } \quad \cos \theta=1
$$

we can write

$$
\begin{aligned}
F_{x} & =p A-p A-p \frac{d A}{d \ell} d \ell-\frac{d p}{d \ell} d \boldsymbol{\ell} A-\frac{d p}{d \ell} \frac{d A}{d \ell}(d \ell)^{2}+p d \ell \frac{d A}{d \ell} \\
& +\frac{1}{2} \frac{d p}{d \ell} \frac{d A}{d \ell}(d \ell)^{2}
\end{aligned}
$$

Dropping second-order terms and cancelling, we have

$$
F_{x}=-A \frac{d p}{d \ell} d \ell
$$

This pressure gradient is that due to acceleration, and the area is that of the boiling tube:

$$
F_{x}=-A_{B}\left(\frac{d p}{d \boldsymbol{\ell}}\right)_{a} \quad d \boldsymbol{L}
$$

The change in the momentum rate for the liquid phase may be calculated as follows. It is assumed that the ${ }^{d w_{\boldsymbol{\ell}}}$ ($\mathrm{Ibm} / \mathrm{sec}$) are vaporized within the element. Thus the momentum connected with $\mathrm{dw}_{\boldsymbol{\ell}}$ is lost from the liquid phase. We have

$\underset{\boldsymbol{C h}}{\text { Change intum } \mathrm{rate}_{\boldsymbol{\ell}}}=\frac{1}{\boldsymbol{g}_{\mathrm{C}}}\left[\left(\mathrm{w}_{\boldsymbol{\ell}}+\mathrm{dw}_{\boldsymbol{\ell}}\right)\left(\mathrm{v}_{\boldsymbol{\ell}}+\mathrm{dv} \boldsymbol{\ell}\right)-\mathrm{w}_{\boldsymbol{\ell}} \mathrm{v}_{\boldsymbol{\ell}}-\mathrm{dw}_{\boldsymbol{\ell}}\left(\mathrm{v}_{\boldsymbol{\ell}}+\frac{1}{2} \mathrm{dv}_{\boldsymbol{\ell}}\right)\right]$

$$
=\frac{1}{g_{c}} w_{\ell}{ }^{d v} \ell_{\ell}
$$

Similarly for the gas phase, we have

$$
=\frac{1}{g_{c}}\left[d\left(w_{g}{ }_{g}\right)+v_{\boldsymbol{\ell}}{ }^{d w_{\ell}}\right]
$$

Equating F_{x} with the sum of the momentum rate changes (Newton's Law), we have

$$
-A_{B}\left(\frac{d p}{d \boldsymbol{\ell}}\right)_{a} d \boldsymbol{\ell}=\frac{1}{g_{c}}\left[w_{\boldsymbol{\ell}}{ }_{\boldsymbol{d} v}^{\ell}+d\left(w_{g} v_{\ell}\right)+v_{\boldsymbol{\ell}}{ }^{d w} \boldsymbol{\ell}\right]=\frac{1}{g_{c}} d\left[v_{g}{ }_{g}+v_{\boldsymbol{v}}{ }^{W} \boldsymbol{\ell}\right]
$$

which for ${ }_{W}{ }_{\ell}=\rho_{\ell}{ }^{V}{ }_{\ell}{ }^{A} \ell$ and $W_{g}=\rho_{g}{ }^{v}{ }_{g} A_{g}$ becomes

$$
-A_{B}\left(\frac{d p}{d \ell}\right)_{a} \quad d \ell=\frac{1}{g_{c}} d\left[A_{g} \rho_{g} v^{2}+A_{\ell} \rho_{\ell} v^{2} \ell\right] .
$$

Noting that A_{B} is a constant so that it may be included within the differential operator, and that the volumetric vapor fraction is defined by

$$
\alpha=\frac{A_{g}}{A_{B}} \quad \text { and }(1-\alpha)=\frac{A_{\ell}}{A_{B}},
$$

and, from material balances using the total mass flux, G (a constant),

$$
v_{g}=\frac{G x}{\rho_{g} \alpha} \quad \text { and } v_{\ell}=\frac{G(1-x)}{\rho_{\ell}(1-\alpha)}
$$

we can write

$$
\left(\frac{d p}{d \boldsymbol{\ell}}\right)_{a}=\frac{G^{2}}{144 g_{c}} \frac{d}{d \boldsymbol{\ell}}\left[\frac{x^{2}}{\rho_{g} \alpha}+\frac{(1-x)^{2}}{\rho_{\ell}(1-\alpha)}\right]
$$

where 144 is the conversion factor to psia/ft.

Appendix E. Data-Reduction Program

The IBM-709 Fortran data-reduction program is listed in the following pages. Variables are given names to symbolize the actual mathematical notation. The final " A " on the thermodynamic properties denotes the array name; i.e. the method of storing the tabled quantities. A partial list of variable names follows; the mathematical symbols are those given in the Nomenclature.

Variable Name	Definition
T, TB	saturation boiling temperature (${ }^{\circ} \mathrm{F}$)
P, PSIA	saturation pressure (psia)
HF, HG	h_{f}, h_{g}
RHOF, RHOG	ρ_{f}, ρ_{g}
FMUF, FMUG	μ_{f}, μ_{g}
FKL, FKG	$\mathrm{k}_{\ell}, \mathrm{k}_{\mathrm{g}}$
PRL, PRNOLQ, PRNOGS	$\mathrm{Pr}_{\ell}, \mathrm{Pr}_{\mathrm{g}}$
MATTRRL	designation of the working substance
NOTUBE	test section number
POS	ℓ
AHL	$\mathrm{A}_{\mathrm{h}} / \mathrm{L}$

Variable Name	Definition
TOTI, TITB	$\begin{aligned} & T_{i}-T_{i}, \\ & T_{i}^{O}-T_{b}^{i} \end{aligned}$
VF, VG	$\mathrm{v}_{\mathrm{f}}, \mathrm{v}_{\mathrm{g}}$
HB, HL, HO	h_{B}, h_{l}, h_{0}
RENOL	Re_{ℓ}
FNUB	Nu_{B}
FNUBRE	$\begin{gathered} N u_{B} / \\ \left(\mathrm{Re}_{\ell} \cdot 8_{\mathrm{Pr}_{\ell}} \cdot 33\right) \end{gathered}$
STINTNO	St
BONO, BONOM	$\mathrm{Bo}, \mathrm{Bo}_{\mathrm{m}}$
DPDLL	$(\mathrm{dp} / \mathrm{d} \ell)_{\ell}$
DPDLITP	(dp/dl) ${ }_{\text {tpt }}$
ALPHA2	α, volumetric vapor fraction
PSI	ψ, slip ratio

DRIII

CONSTI=TCONST $(1 P+3)$
$A H L=T C O N S T(I P+4)$
A1 $=$ TCONST $(I P+5)$
$Z 1=$ TCONST $(I P+6)$
ALPHA $=$ TCONST $(I P+7)$
DI $=T C O N S T(I P+8)$
40 DO $41 \quad 1=1: 48$
IF (PSIA-P(I)) $42,42,41$
41 CONTINUE
$42 T B=T(I-1)+(1 T(1)-T(I-1)) *(P S I A-P(I-1))) /(P(I)-P(I-1))$
$H F=H F A(I-2)+((H F A(I)-H F A(I-1)) *(T B-T(I-1))) /(T(I)-T(I-1))$
$H G=H G A(I-1)+((H G A(I)-H G A(I-1)) *(T B-T(I-1))) /(T(I)-T(I-1))$
RHOF $=$ RHOFA(I-1) $+($ RHOFA(I)-RHOFA(I-1) $) *(T B-T(I-1))) /(T(I)-T(I-1))$
RHOG=RHOGA(I-1)+((RHOGA(I)-RHOGA(I-1))*(TB-T(I-1)))/(T(I)-T(I-1))
FMUF=FMUFA(I-1)+((FMUFA(I)-FMUFA(I-1))*(TB-T(I-1)))/(T(I)-T(I-1))
FMUG=FMUGA(I-1)+((FMUGA(1)-FMUGA(I-1))*(TB-T(I-1)))/(T(I)-T(I-1))
FKL=FKLA(I-1)+((FKLA(I)-FKLA(I-1))*(TB-T(I-1)))/(T(I)-T(I-1))
FKG=FKGA(I-1)+((FKGA(I)-FKGA(I-1))*(TB-T(I-1)))/(T(I)-T(I-1))
PRNOLQ=PRLA(I-1)+((PRLA(1)-PRLA(I-1))*(TB-T(I-1)))/fT(I)-T(I-1))
PRNOGS=PRGA(I-I)+((PRGA(I)-PRGA(I-1))*(TB-T(I-I)))/(T(I)-T(I-1))
CPL = PRNOLQ * FKL / (FMUF*3600.)
INSIDE WALL TEMPERATURE, CONSTANT PROPERTIES EVALUATED AT AVERAGE
WALL TEMP. BY ITERATION PROCEDURE
TOTI $=$ CONST $1 * P W /(10+A L P H A * T O)$
50 TEFF=TO-TOT1/2.
TOTIO=TOTI
TOTI $=$ CONST $1 * P W /(1 .+A L P H A * T E F F)$
IF (ABSF (TOTI-TOT:O)-0.0001) 51,51,50
$51 \mathrm{TI}=\mathrm{TO}-\mathrm{TOTI}$
$T I T B=T I-T B$
heat flux and heat transfer coefficient
$Q=(3.41304 / A H) * P W$
HB=Q/TITB
$\mathrm{G}=\mathrm{W} /(3600$ 。*AB)
C ENERGY BALANCE
C TABLE SEARCH FOR H1 AND RHO1
52 DO 53 Ix1:48
IF (T1-T(1)) $54,54,53$
53 CONTINUE
54 HI=HFA(I-1)+((HFA(I)-HFA(I-1))*(T1-T(I-1)))/(T(I)-T(I-1))
RHOI=RHOFA(I-1)+((RHOFA(I)-RHOFA(I-1))*(T1-T(I-1))/(T(1)-T(I*1))
$V_{1}=W /(3600 * * A I * R H O 1)$
CALC1 $=\left(H_{1}-H F+\left(V_{1} * V_{1} * 1.996832 E-5\right)+(Q * A H L * P O S / W)\right.$
$1+(($ POS +21$) * 1.2840939 \mathrm{E}-3)) /(\mathrm{HG}-\mathrm{HF})$
$X=C A L C I$
PSI $=2.0$
DO $55 \quad I=1.5$
$V G=(W *((1)-X) * P S I * R H O G)+(X * R H O F)) /(3600 * * A B * R H O G * R H O F)$
$V F=V G / P S I$
CALC2 $=(X * V G * V G * 1.996832 E-5+(1,-X) * V F * V F * 1.996832 E-5) /(H G-H F)$
$\mathrm{X}=\mathrm{CALC1}-\mathrm{CALC} 2$
55 CONTINUE
$V G=(W *((1 .-X) * P S[* R H O G)+(X * R H O F)) /(3600 * * A B * R H O G * R H O F)$
$V F=V G / P S I$
$X T T=(($ RHOG $/$ RHOF $) * * 0.5) *(($ FMUF $/ F M U G) * * 0.1) *((11 .-X) / X) * * 0.9)$

```
    XTTSQ=XTT*XTT
    RENOL=(1,-X)*G*D1/FMUF
    56 IF (NOTUBE - 1) 60,60,61
    60 HL = (0.023*FKL/DI) * (RENOL**0.8) * (PRNOLQ**0.4)
    GO TO }6
    5 1 ~ H L ~ = ( 0 . 0 2 2 * F K L / D I ) ~ * ~ ( R E N O L * * 0 . 8 ) ~ * ~ ( P R N O L Q * * 0 . 4 ) ~
    62 HBHL = HB/HL
        HBHO}=((1.0-x)**0.8)*HBH
        FNUB=HB*DI/FKL
        FNUBRE=FNUB/({RENOL**O.8)*(PRNOLQ**0.333333))
        STNTNO = HB / (CPL * G * 3600.)
    BONO= Q/((HG-HF)*G*3600.)
    BONOM= BONO*RHOF/RHOG
    OPDLL= (.34146E-4*(()(1.0-X)*G)**2.))/(DI*RHOF*(RENOL**0.25))
    DPDLQ= DPDLTP/DPDLL
    DPDL2R = SQRTF(DPDLQ)
    ALPHA2 = X/((PSI * (1.-X) /(RHOF/RHOG)) + X)
    PW = PW/1000.
    QT1 = (RENOL**.106)*(BONOM**.296)*(PRNOLQ***4) / (XTT***457)
    QT2 = (RENOL**.455)*(Q **.289)*(PRNOLQ**.4)*(X***379)
    QT3 = (BONOM**.282)*(X ***391)*(PRNOLQ***4) /(RENOL***035)
    QT4 = (RENOL**.934)*(BONOM**.281)*(PRNOLQ**.4) / (XTT***459)
    QT5 = (BONO ***186)*(X ***362)*(PRNOLQ**.4) / (RENOL**.258)
    QT6 = (RENOL**.783)*(BONOM**.268)*(PRNOLQ**.4)*(X**.382)
    QT7 = (BONOM + 0.28625/(XTT***581))
    QT8 = (BONO + 3.524E-4/(XTT**.667))
    QT9 = (BONO + 3.424E-4/(XTT**.581))
    QT10 = (BONO + 1.5 E-4/(XTT**.667))
    IF (RUNNO-RUNNOO) 70,79:70
    70 IF (RUNNOO) 80.71:80
C
    71 WRITE OUTPUT TAPE 3, 72
    72 FORMAT (1HI,46X: 25HFORCED CONVECTION BOILING )
        IF (MATERL-1) 75, 73,75
    73 WRITE OUTPUT TAPE 3, 74, RUNNO, NOTUBE
    74 FORMAT (1HO,7HRUN NO.,F5.1:4X,5HWATER,9X,16HTEST SECTION NO.,12)
    GO TO 77
    75 WRITE OUTPUT TAPE 3, 76, RUNNO, NOTUBE
    76 FORMAT (1HO;7HRUN NO.,F5.1:4X,9HN-BUTANOL,5X, 16HTEST SECTION NO.:
        1121
        GO TO }7
    77 WRITE OUTPUT TAPE 3, 78, W, G, PW, Q. RENOL, T1: V1
    78 FORMAT (1HO,12HFLOW RATE,W=,F5,0,1X,6HLBS/HR,2X,16HMASS VELOCITY,G
        1=FG.1,1X,20HLBS/SEC.SQFT POWER=,F6.2,1X,23HKILOWATTS HEAT FLUX,Q
        2=F7.0,1X,11HBTU/HR.SQFT/1HO,13HREYNOLDS NO^ = &F8.0,5X,25HTEMPERATUR
        3E BEFORE FLASH=,F6.1,IX,1HF,4X,22HVELCCITY BEFORE FLASH=,F5,1,1X,
        46HFT/SEC/
        5120HOL,FT PSIA TO TI TO-TI TB TI-TB HBOIL HLIQ HS/HL
    GHB/HO X XTT NUB STANTN BO E4 BOMOC NUB/RE PRNOL,
        RUNNOO = RUNNO
C SET UP RESULTS IN ARRAYI FOR IST PAGE PRINTOUT
79 ARRAY1 ( }k+2)=PO
    ARRAY1 (K+2) = PSIA
    ARRAY1 (K+3) = TO
    ARRAY1 (K+4) = TI
    ARRAYI (K+5) = TOTI
```

DRIII

```
    ARRAY1 (K+6) = TB
    ARRAY1 (K+7) = T1TB
    ARRAY1 (K+8) = HB
    ARRAY1 (K+9)=HL
    ARRAY1 }(K+10)=H8H
    ARRAY1 (K+11)= HBHO
    ARRAY1 (K+12)= X
    ARRAY1 (K+13)= XTT
    ARRAY1 (K+14)= FNUB
    ARRAY I (K+15)= STNTNO
    ARRAY1 (K+16)= BONO * 10000.
    ARRAY1 (K+17)= BONOM
    ARRAY1 (K+18)= FNUBRE
    ARRAY1 (K+19)= PRNOLQ
C SET UP RESULTS IN ARRAY2 FOR 2ND PAGE PRINTOUT
    ARRAY2 (L+I) = POS
    ARRAY2 (L+2) = DPDLL
    ARRAY2 (L+3) = DPDLTP
    ARRAY2 (L+4) = DPDLQ
    ARRAY2 (L+5) = VF
    ARRAY2 (L+6) = ALPHAZ
    ARRAY2 (L+7) = QTI
    ARRAY2 (L+8)= QT2
    ARRAY2 (L+9)= QT3
    ARRAY2 (L+10)= QT4
    ARRAY2 (L+1I)= QT5
    ARRAY2 (L+12)= QTG
    ARRAY2 (L+13)= QT7
    ARRAY2 (L+14)= QT8 * 10000.
    ARRAY2 (L+15)= QT9 * 10000.
    ARRAY2 (L+16)= QT10 * 10000.
    ARRAY2 (L+17)= XTTSQ
    ARRAY2 (L+18)= DPDL2R
    K = K + 19
    L = L + 18
    GO TO 20
80 N1 = K
    N2 = L
    WRITE OUTPUT TAPE 3, 81, (ARRAY1(K):K=1;N1)
    81 FORMAT (1HO,F4,2,F6,2,1X,F5,1,1X,F5,1,1X,F5,2,1X,F5.1,1X,F5,2,1X,
    1 FG.0,1X,F6,0,1X,F5,2,1X,F5,2,1X,F5,4,1X,F6,3,F6,0,1X,F6,5,
    WRITE OUTPUT TAPE 3, 82, RUNNOO, (ARRAY2(L),L=1,N2)
82 FORMAT (1HI/1HO,7HRUN NO.,F5.1/1HO/1HO/12OHOL,FT DP/DLL DP/DLTP TP
    1/LIQ VELOC ALPHA Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q
    28 E4 Q9 E4 Q10E4 XTTSQ TPLQRT /
    3(1H0,F4.2,F7.4,F7.3,1X,F7.2,1X,F5,1,1X,F5,4,F7,3,F6.0,F7.4,F7.0,
    4 1X,F6.5,F7.0,F6.3,F7.3,F7.3,F7.3,F6.2,F7.2 )|
        K=0
        IF (RUNNO - 990.) 71.71.1000
    1000 CALL EXIT
C THE LAST DATA CARD MUST BE A DUMMY CARD PUNGHED WITH VALID DATA:
C BUT WITH A FICTICIOUS RUN NUMBER=999.9101
    END(0,1,0,1:0,0,1:1:0,0:0,0:0,0:0)
```


Appendix F. Forced-Convection Boiling Data

The following pages are the tabulated reduced data of all boiling runs. All units are those used in the Nomenclature. The Reynolds number given in the table heading is $\mathrm{Re}_{\boldsymbol{\ell}}$ for the first data point. Symbols not self-explanatory are:

Symbol
BO E4
BOMOD
NUB/RE
$\frac{\mathrm{Nu}_{\mathrm{B}}}{\mathrm{Re}_{\boldsymbol{\ell}}^{0.8} \mathrm{Pr}_{\boldsymbol{\ell}}^{1 / 3}}$
DPDLL

DPDLIP

TP/LIQ

VELOC

ALPHA
Definition
Bo $\cdot 10^{+4}$
Bo_{m}
$\left(\frac{d p}{d \ell}\right)_{\ell} \quad(\mathrm{psia} / \mathrm{ft})$
$\left(\frac{d p}{d \ell}\right)_{\operatorname{tpt}}(\mathrm{psia} / \mathrm{ft})$
$\left(\frac{d p}{d \ell}\right)_{\operatorname{tpt}} /\left(\frac{d p}{d \ell}\right)_{\ell}$
Liquid velocity calculated on the basis of the slip ratio, $\psi=2.0$ ($f t / \mathrm{sec}$)
α, the volumetric vapor fraction based on $\psi=2.0$

forced convection boiling

RUN NO. 3.0 WATER
test section no. 1
FLOW RATE, W=1658. L8S/HR MASS VELOCITY,G= 163.2 LBS/SEC.SQFT POWER= 4.32 KILOWATTS HEAT FLUX,O= 13815. BTU/HR.SQFT REYNOLDS Mi. = 52452. TEMPERATURE bEFORE FLASH= 223.8 F VELOCITY before fLASH= 2.1 ft/SEC

18.6 .85440 .920440 .0 .0500 7799. . 00182 20.6.8682 0.965 459. 0.0523 8160. . 00190 22.5 . 8797 1.007 476. 0.0545 8509. . 00197 24.5 .8896 1.049 4930 0.0566 88460.00204 26.5 . 8980 1.088 5090 0.0585 9165. .00210 28.6 . 9055 1.127 524 * 0.0505 9482. . 00216 30.8 . 9125 1.167 540. 0.0625 9802•. 00223 $33.2 .9189 \quad 1.20955500 .0545$ 10130. . 00229 $\begin{array}{lllll}36.0 .9253 & 1.256 & 572 & 0.066810491,00237\end{array}$
0. 38.4 .9301 1.294 586. 0.0686 10792. . 00242
396. $0.195 \quad 2.050 \quad 2.157 \quad 1.012$ $\begin{array}{lllll}\text { 414. } 0.205 & 2.178 & 2.274 & 1.067\end{array}$ $\begin{array}{lllll}\text { 430. } 0.214 & 2.301 & 2.387 & 2.119\end{array}$ 445. $0.224 \quad 2.423 \quad 2.496 \quad 1.171$ 459. $0.233 \quad 2.540 \quad 2.601 \quad 1.221$ $\begin{array}{lllll}\text { 474. } & 0.242 & 2.658 & 2.707 & 1.271\end{array}$ $\begin{array}{llllll}488 . & 0.251 & 2.779 & 2.814 & 1.323\end{array}$ $\begin{array}{lllll}502 . & 0.260 & 2.905 & 2.925 & 1.376\end{array}$ $\begin{array}{llllll}518 . & 0.271 & 3.044 & 3.047 & 1.435\end{array}$ $\begin{array}{llllll}531 . & 0.279 & 3.164 & 3.151 & 1.485\end{array}$

FORCED CONVECTION BOILING

RUN NO. 4.0 WATER
test section no. 1

REYNOLDS MO. = 54077. TEMPERATURE BEFORE FLASH= 233.1 F VELOCITY aEFORE FLASH= $2.1 \mathrm{Ft} / \mathrm{SEC}$

 $\begin{array}{llllll}588 . & 0.313 & 3.663 & 3.579 & 1.698\end{array}$
 476. $0.237 \quad 2.640 \quad 2.691 \quad 1.262$ $\begin{array}{lllll}\text { 492. } 0.0 .247 & 2.771 & 2.807 & 1.318\end{array}$ 507. $0.257 \quad 2.901 \quad 2.921 \quad 1.373$ $\begin{array}{llllll}521 . & 0.266 & 3.028 & 3.032 & 1.427\end{array}$ $\begin{array}{lllll}\text { 535. } & 0.276 & 3.154 & 3.141 & 1.481\end{array}$ $\begin{array}{lllll}548 . & 0.285 & 3.277 & 3.248 & 1.53\end{array}$ $562.0 .294 \quad 3.401 \quad 3.355 \quad 1.586$ $\begin{array}{llllll}575 . & 0.303 & 3.530 & 3.465 & 1.641\end{array}$

RUN NO. 5.0 WATER

forced convection boliling
test section no.
LOW RATE,W=1670. LBS/HR MASS VELOCITY,G= 164.3 LOS/SEC.SQFT POWER= 4.32 KILOWAITS HEAT FLUX, $Q=13815$. BTU/HR.SQFT
REYNOLDS NO. = 54561. TEmPERATURE bEFORE FLASH= 238.0 F VELOCITY before flash $=2.1$ FT/SEC

 $\begin{array}{llllllllll}17.28 & 32.3 & .9172 & 1.168 & 584 . & 0.0637 & 10193 . & .00233 \\ 18.84 & 32.3 & .9233 & 1.210 & 600 . & 0.0658 & 10525 . & .00239\end{array}$ 20.77 37.9.9286 1.251 615.0.0678 10847. . 00246 22.7240 .6 . 9334 1.292 630, 0.0698 11168. . 00252
 27.86 46.7 .9423 1.381 560.0 .074112839 . . 00266 $32.12 \quad 50.1$.9464 1.429 676. 0.0763 12198. . 00273 $39.31 \quad 54.2 .9505 \quad 1.484 \quad 092.0 .0789$ 12594. .00280 $51.19 \quad 58.3 .9541$ 1.536 707. 0.0813 12966. . 00287

UN NO. S. 1 WATER TEST SECTION NC.

FLOW RATE,W-1661, LBS/HR MASS VELOCITY,G= 163.5 LBS/SEC.SGFT POWER= 4.32 KILOWATTS HEAT FLUX,Q= 13815 . BTU/HR.SOFT REYNOLDS NO. $=$ 54185. TEMPERATURE BEFORE FLASH= 238.9 F VELOCJTY before flash= 2.1Ft/SEC

Q6 $\quad 07 \quad$ Q8 E4 29 E4 QLOE4 484. $0.241 \quad 2.716 \quad 2.758 \quad 10296$ $\begin{array}{lllll}\text { 496. } & 0.249 & 2.822 & 2.852 & 1.341\end{array}$ $\begin{array}{lllll}511 . & 0.258 & 2.949 & 2.963 & 1.395\end{array}$ $\begin{array}{lllllll}5240 & 0.267 & 3.070 & 3.069 & 1.447\end{array}$ $\begin{array}{lllll}539 . & 0.277 & 3.203 & 3.184 & 1.503\end{array}$ $\begin{array}{lllll}553 . & 0.287 & 3.334 & 3.298 & 1.559\end{array}$ $\begin{array}{llllll}567 . & 0.297 & 3.471 & 3.415 & 1.618\end{array}$ $\begin{array}{llllll}5820 & 0.308 & 3.616 & 3.539 & 1.679\end{array}$ $\begin{array}{llllll}598 . & 0.320 & 3.773 & 3.672 & 1.746\end{array}$ $\begin{array}{llllll}612 . & 0.330 & 3.921 & 3.797 & 1.809\end{array}$ $\begin{array}{llllll}528 . & 0.343 & 4.087 & 3.937 & 1.880\end{array}$ 641. $0.353 \quad 4.229 \quad 4.055 \quad 1.940$

Run no. 8.0 WATER TEST SECtIon NO. 1

FLON RLTE,WE1676. LBS/HR MASS VELOCITY,G= 164.9 LBS/SEC.SQFT POWER $=4.32$ KILOWATTS HEAT FLUX, $=13815$. BTU/hR.SOFT
REYNOLDS HO. $=$ 54925. TEMPERATURE BEFORE FLASH $=244.4 \mathrm{~F}$ VELOCITY BEFORE FLASH= 2.1 FT/SEC

RUN No. 9.0 HATER TEST SECTION NO. 1
FLOW RATE,W=1664, LES/hR MASS VELOCITY,G= 163.8 LGS/SEC.SQFT POWER= 4.26 KILOWATTS hEAT FLUX,Q $=13623$. atu/hr.SQFI REYNOLDS NO. = 55197. TEMPERATURE BEFORE FLASH= 249.3 F VELOCITY BEFORE FLASH= 2.1 fi/SEC

Run no. 10.0 water test section no.

FLOW RATE, W=1670. LES/AR MASS VELOCITY.G= 164.3 LOS/SEC.SOFT POWER= 4.30 KILOWATTS MEAT FLUX, $=13751$. BTU/HR.SQFT
reynolos no. = 56101. TEmperature before flash 258.0 F VELUCity befort flash $=2.1$ ft/SEC

 $\begin{array}{lllllllllllllllllllllllllllll}1.00 & 21.50 & 236.0 & 235.1 & 0.92 & 231.8 & 3.24 & 4245 & 1140 . & 3.72 & 3.64 .0293 & 0.944 & 643.00711 & 0.243 & 0.0270 & 0.0883 & 1.58 & 0.0159 & 0.502\end{array}$

 $\begin{array}{lllllllllllllllllllllllllllll}4.00 & 19.51 & 230.9 & 230.0 & 0.92 & 226.6 & 3.40 & 4040 . & 1118 & 3.61 & 3.50 & .0394 & 0.585 & 6120.00676 & 0.242 & 0.0296 & 0.0859 & 1.62 & 0.0157 & 0.0 .071\end{array}$

$\begin{array}{llllll}292 . & 0.306 & 3.060 & 3.583 & 1.701\end{array}$ 797. $0.310 \quad 3.725 \quad 3.631 \quad 1.725$ $\begin{array}{lllll}503 . & 0.314 & 3.785 & 3.682 & 1.750\end{array}$ $\begin{array}{llllll}615 . & 0.323 & 3.904 & 3.783 & 1.801\end{array}$ $\begin{array}{lllll}627 & 0.332 & 4.034 & 3.892 & 1.856\end{array}$ $\begin{array}{llllll}039.0 .342 & 4.166 & 4.003 & 1.913\end{array}$ 652. $0.3524 .309 \quad 4.122 \quad 1.973$ 666. $0.363 \quad 4.459 \quad 4.246 \quad$. 0.037 $\begin{array}{lllllll}679 . & 0.374 & 4.612 & 4.372 & 2.102\end{array}$ $\begin{array}{llllll}693 . & 0.386 & 4.778 & 4.508 & 2.173\end{array}$ 707. $0.399 \quad 4.953 \quad 4.051 \quad 1.0247$ 723. $0.413 \quad 5.144 \begin{array}{llll}4.806 & 2.328\end{array}$ $\begin{array}{lllll}740 . & 0.428 & 5.358 & 4.979 & 2.419\end{array}$

forced convection boiling

RUN No. 11.0 WATER TEST SECTION NO. 1

 $44.30 \quad 59.6$. 9553 1.478 7890.0 .0815 13289. .00304 $47.62 \quad 63.0 .9577 \quad 1.518 \quad 801$. 0.0834 13582. .00310 51.53 66.5 .9601 1.559 813. 0.0853 13883. . 00315 $56.12 \quad 70.6$. 9625 1.606 826. 0.0874 14210. . 00322 $61.25 \quad 75.3 .9649 \quad 1.658 \quad 8390.0 .0898$ 14565. . 00328 66.87 80.3 . 9672 1.712 852. 0.0922 14931. . 00335

651. $0.3464 .265 \quad 4.085 \quad 1.956$ 662. $0.356 \quad 4.393 \quad 4.191 \quad 2.010$ $\begin{array}{llllll}674 \cdot & 0.365 & 4.527 & 4.302 & 2.067\end{array}$ 686. $0.3754 .663 \quad 4.414 \quad 2.125$ $\begin{array}{llllll}698 & 0.365 & 4.804 & 4.530 & 2.185\end{array}$ $\begin{array}{lllll}710 & 0.396 & 4.958 & 4.656 & 2.251\end{array}$ $\begin{array}{lllllll}7240 & 0.408 & 5.127 & 4.793 & 2.322\end{array}$ 737. $0.421 \begin{array}{lllll}5.301 & 4.934 & 2.396\end{array}$ $\begin{array}{llllll}752 & 0.434 & 5.485 & 5.082 & 2.474\end{array}$ 767. $0.0448 \quad 5.690 \quad 5.246 \quad 2.561$ 783. $0.464 \quad 5.910 \quad 5.422 \quad 2.655$

forced convection boiling

```
RUN NO. 12.0 WATER TEST SECTION NO. 1 LBS/SEC.SQFT POWER= 4.38 KILOWATIS HEAT FLUX,Q= 14007. BTU/HR.SOFT
REYNOLOS NO.= 56816. TEMPERATURE beFORE FLASH= 284.8 F VELOCITY before flash= 2.2 FT/SEC
```


$46.40 \quad 67.4 .9609 \quad 1.546 \quad 862.0 .0863$ 14082. . 00327 $50.68 \quad 70.5$. 9627 1.580 872. 0.0879 14332. . 00332 $55.18 \quad 74.0 .9645 \quad 1.619$ 882. 0.0897 14602. .00337 60.11 77.8.9663 1.059 893. 0.0915 14881. . 00343 $65.14 \begin{array}{llllllll} & 82.0 & .9681 & 1.704 & 9040 & 0.0935 & 15183 . & 00349\end{array}$ $70.47 \quad 86.6 .9699$ 1.751 915. 0.0956 15503. . 00355 75.84 91.7.9717 1.803 926. 0.0979 15844. .00361 $81.39 \quad 97.3 .9734 \quad 1.858$ 938. 0.1002 16203. . 00367 87.11 103.8.9751 1.920 950. 0.1029 16592. . 00375 93.07110 .9 . 9768 1.987 962. 0.1057 17001. .00382 $99.29118 .9 .9785 \quad 2.062$ 975. 0.1089 17446. . 00391
721. $0.0 .399 \quad 5.050 \quad 4.731 \quad 2.293$ 731. $0.0 .407 \quad 5.1744 .832 \quad 2.346$ $\begin{array}{llllll}71 \cdot & 0.417 & 5.309 & 4.941 & 2.403\end{array}$ 752. $0.427 \quad 5.448 \quad 5.053 \quad 2.462$ 763. $0.437 \quad 5.598 \quad 5.174 \quad 2.526$ $\begin{array}{llllll}775 . & 0.449 & 5.758 & 5.302 & 2.594\end{array}$ 787. $0.461 \quad 5.930 \quad 5.439 \quad 2.66$ 800. $0.473 \quad 6.109 \quad 5.581 \quad 2.74$ $\begin{array}{llllll}813 . & 0.487 & 6.306 & 5.737 & 2.827\end{array}$ 827. $0.502 \quad 6.515 \quad 5.901 \quad 2.915$ 842. $0.517 \quad 6.741 \quad 6.079 \quad 3.012$

forcto convection boiling

run no. 23.0 Water test section no. 1

FLOW RATE, W=1655. LBS/HR MASS VELOCITY,G 162.9 LBS/SEC.SOFT POWER= 4.32 KILOWATTS HEAT FLUX,Q $=13815$. BTU/HR.SQFI REY IOLDS NO. $=56969$. TEMPERATURE BEFORE FLASH= 295.9 F VELOCITY BEFORE FLASH= 2.2 FT/SEC

 $69.55 \quad 74.2 .9649$ 1.598 907. 0.0897 14583. . 00344 70.91 78.0. 9667 1.638 918. 0.0916 14865. . 00350 72.4282 .0 .9684 1.681 928. 0.0935 15156. .00355 74.15 86.2.9701 1.724 938. 0.0954 15449. .00361 76.2290 .8 .9716 1.770 948. 0.0975 15749. . 00367 78.71 95.6.9731 1.817 958. 0.0995 16052. . 00373 81.85 100.7 .9746 1.866 968. 0.1016 16366. . 00378 85.98106 .4 . 9760 1.919 979. 0.1039 16700. . 00385 92.65112 .8 . 9774 1.978 989.0 .1064 17063. . 0039
 44. 0.421 5. 401 50. 2010 $\begin{array}{lllll}750 . & 0.426 & 5.474 & 5.074 & 2.472\end{array}$ 760. $0.436 \quad 5.517 \quad 5.189 \quad 2.533$ 771. $0.4465 .765 \quad 5.307 \quad 2.596$ 782. $0.4 .457 \quad 5.914 \begin{array}{lllll} & 5.426 & 2.659\end{array}$ 793. $0.468 \quad 6.071 \quad 5.551 \quad 2.726$ 803. $0.479 \quad 6.230 \quad 5.677 \quad 2.794$ $\begin{array}{llllll}814 . & 0.490 & 6.395 & 5.807 & 2.864\end{array}$ 826. $0.502 \quad 6.571 \quad 5.946 \quad 2.939$ $\begin{array}{lllll}838 . & 0.516 & 0.762 & 6.095 & 3.020\end{array}$ $\begin{array}{lllll}451 & 0.530 & 0.971 & 6.258 & 3.108\end{array}$ 866. $0.547 \quad 7.212 \quad 6.445 \quad 3.211$
forced comection bolling
run no. 14.0 water test section no. 1
 REYNOLOS NO. $=$ 53093. TEMPERATURE BEFORE FLASH= 226.6 = VELOCITY BEFORE FLASH= 2.1 FT/SEC

 $7.91 \quad 18.3 .8510 \quad 0.904$ 442. 0.0434 7752. .00181 $6022 \quad 19.3$. $8589 \quad 0.929$ 4920 0.0507 7956. .00185 0.77 21.4.0725 0.975 471, 0.0550 8339. .00193 9.39 23.5.8840 1.029 490.0.0553 8705. .00200 $10.01 \quad 25.5 .8938 \quad 1.063$ 507. 0.0574 9058. .00207 \begin{tabular}{lllllll}
10.75 \& 27.9 \& 9025 \& 1.106 \& 524. \& 0.0596 \& 9406.

\hline

 11.56 30.c. 9101 1.148 541 . 0.0617 9745. .00221

12.49 \& 32.6 \& 9169 \& 1.190 \& 557.

\hline
\end{tabular} $\begin{array}{lllllllllll}13.66 & 35.1 & 9229 & 1.232 & 572.0 .0658 & 10408 . & .00234\end{array}$ 15.27 37.7.9284 1.274 587. 0.0678 10738. .00241

 | 367. | 0.187 | 1.965 | 2.078 |
| :--- | :--- | :--- | :--- | $390.0 .190 \quad 2.035 \quad 2.142 \quad 1.005$ $\begin{array}{lllll}\text { 405. } 0.198 & 2.104 & 2.206 & 1.035\end{array}$ 423. $0.208 \quad 2.238 \quad<.326 \quad 2.091$ 440. $0.218 \quad 2.368 \quad 2.446 \quad 1.147$ $\begin{array}{lllll}456 & 0.228 & 2.496 & 2.562 & 1.201\end{array}$ $\begin{array}{lllll}472 . & 0.238 & 2.624 & 2.677 & 1.256\end{array}$ 487. $0.248 \quad 2.752 \quad 2.790 \quad 1.310$ $\begin{array}{lllll}502 . & 0.257 & 2.880 & 2.902 & 1.365\end{array}$ $\begin{array}{llllll}516 . & 0.267 & 3.007 & 3.014 & 1.419\end{array}$ $\begin{array}{llllll}530 . & 0.277 & 3.136 & 3.126 & 1.474\end{array}$ $\begin{array}{lllll}545 . & 0.286 & 3.269 & 3.241 & 1.530\end{array}$ $\begin{array}{lllll}559 . & 0.297 & 3.406 & 3.359 & 1.589\end{array}$

forced convection botling

RUN No. 15.0 WATER TEST SECTION NO.

FLOW RATE, $W=1722$. LBS/HR MASS VELOCITY,G $=169.5$ LES/SEC.SQFT POWER= 4.32 KILOWATTS HEAT FLUX, Q $=13815$. BTU/HR.SQFT
reynolds no. = 5be19. temperature before flashe 277.6 F velocity defore flash= 2.2 firsec

 695. $0.369 \quad 4.615 \quad 4.374 \quad 2.101$ $\begin{array}{lllll}700 & 0.374 & 4.683 & 4.429 & 2.130\end{array}$ 712. $0.384 \begin{array}{lllll}4.822 & 4.543 & 1.189\end{array}$ $\begin{array}{llllll}7240 & 0.394 & 4.963 & 4.659 & 2.249\end{array}$ $\begin{array}{lllllll}736 & 0.404 & 5.108 & 4.777 & 2.311\end{array}$ 748. 0.415 b.261 $4.900 \quad 2.375$ $\begin{array}{lllll}760 & 0.426 & 5.413 & 5.023 & 2.440\end{array}$ $\begin{array}{lllll}171 . & 0.437 & 5.567 & 5.146 & 2.505\end{array}$ $\begin{array}{lllll}7840 & 0.449 & 5.741 & 5.286 & 2.579\end{array}$ $\begin{array}{llllll}798 . & 0.462 & 5.927 & 5.434 & 2.659\end{array}$ 311. $0.4756 .113 \quad 5.582 \quad 2.737$ $\begin{array}{llllllllllll}826 . & 0.490 & 6.327 & 5.751 & 2.828\end{array}$
forced convection boiling test section no. 1
FLOW RATE, WE 1657. LES/HR MASS VELOCITY,G= 163.1 LBS/SEC.SGFT POWER= 15.60 KILOWATTS HEAT FLUX,Q= 4988B. BTU/HR.SGFT REYNOLDS NO. $=$ 59201. TEMPERATURE GEFORE FLASH= 300.1 F VELOCITY BEFORE FLASH= 2.2 FT/SEC

run no. 17.0 water test section no. 1
 REYNOLDS NO. $=$ 56413. TEMPERATURE BEFORE FLASH= 232.3 F VELOCITY BEFORE FLASH= 2.1 fT/SEC

 4.63 16.1.0304 1.199 650.0.0667 10585. .00224 8.14 21.0.8705 1. 366 731. 0.0754 12027. . 00251 12.31 26.2.8953 1.515 800.0.0831 13300. . 00275 $17.64 \quad 31.5$. 9141 1.652 862 . 0.0900 14439. . 00296 $23.97 \quad 37.3$.9278 1.787 920. 0.0967 15544. . 00316 $31.31 \quad 43.5 \quad .9382 \quad 1.918$ 973. 0.1032 16592. . 00336 3906950.1 . 9466 2.048 1023. 0.1095 17504. . 00354 48.82 57.5 .9537 2.183 1072.0.1160 186250.00373 57.73 65.7.9596 2.325 1119. 0.1226 19653. . 00391 343. $0.181 \quad 1.698 \quad 1.839 \quad 1.230$ $\begin{array}{lllllll} & 412 . & 0.204 & 1.970 & 2.112 & 1.346\end{array}$ $\begin{array}{lllll}466 & 0.224 & 2.208 & 2.343 & 1.447\end{array}$ $\begin{array}{lllll}550 . & 0.256 & 2.614 & 2.726 & 1.620\end{array}$ 619. $0.284 \quad 2.975 \quad 3.057 \quad 1.773$ $\begin{array}{llllll}678 & 0.309 & 3.313 & 3.360 & 1.917\end{array}$ $\begin{array}{llllll}730 & 0.333 & 3.631 & 3.640 & 2.052\end{array}$ $\begin{array}{lllll}780 & 0.358 & 3.951 & 3.918 & 2.189\end{array}$ $\begin{array}{llllll}826 . & 0.381 & 4.266 & 4.187 & 2.322\end{array}$ $\begin{array}{llllll}870 . & 0.405 & 4.580 & 4.453 & 2.456\end{array}$ 913. $0.429 \quad 4.906 \quad 4.725 \quad 2.594$ 955. $0.455 \quad 5.242 \quad 5.003 \quad 2.737$

forced convection boilin

RUN NO. 18.0 WATER
TEST SECTION NO. 1
FLOW RATE,W=1562. LBS/HR MASS VELOCITY,G= 163.6 LBS/SEC.SQFT POWER $=15.50 \mathrm{kILOWATIS}$ hEAT FLUX,Q= 49569. bTU/HR.SQFT

 20.4 .0604 1.326 742• 0.0.6742 11893. .00252 14.11 25.2. 8919 1.465 810. 0.0814 13097. . 00274 $18.36 \quad 30.1$.9100 2.593 870. 0.0881 14194. . 00295 $\begin{array}{llllllllllll}23.16 & 35.2 & .9234 & 1.714 & 925 & 0.0942 & 15206 & .00314\end{array}$ 28.34 40.7 . 9339 1.831 976. 0.1001 16171. . 00332
 42.1952 .7 . $9494 \quad 2.065$ 1070. 0.1115 18028. . 00366 51.5059 .6 . 9554 2.186 1115, 0.1173 18943. . 00382 $\begin{array}{lllll}588 . & 0.263 & 2.804 & 2.902 & 1.700\end{array}$ 620. $0.276 \quad 2.976 \quad 3.058 \quad 1.773$ $\begin{array}{lllll}677 . & 0.300 & 3.300 & 3.348 & 1.910\end{array}$ $\begin{array}{llllll}728 . & 0.324 & 3.609 & 3.621 & 2.042\end{array}$ $\begin{array}{lllll}774 & 0.346 & 3.906 & 3.879 & 2.168\end{array}$ $\begin{array}{lllll}\text { 817. } & 0.368 & 4.200 & 4.130 & 2.293\end{array}$ 858. $0.390 \quad 4.493 \quad 4.379 \quad 2.418$ 898. $0.412 \quad 4.790 \quad 4.628 \quad 2.544$ 937. $0.434 \quad 5.093 \quad 4.880 \quad 2.672$ 976. $0.458 \quad 5.412 \quad 5.142 \quad 2.80$

forced convection boiling

RUN NO, 20.0 WATER
test section no. 1

forced convection boiling

RUN NO. 21.0 WATER test section no. 1

REYNOLDS NO. $=54665$. TEMPERATURE BEFORE FLASH= 252.8 F VELOCITY BEFORE FLASHE 2.1 FT/SEC

 $3.5018 .13224 .6224 .5 \quad 0.10222 .81 .75$ 857. 1113. 0.77

 . 47.0 . $9429 \quad 0.705$ 363. 0.0397 6411. . 00180 $48.8 .94510 .718 \quad 367.0 .0403$ 6508. .00182 $\begin{array}{llllllll}50.8 & 0.9473 & 0.733 & 371 & 0.0410 & 6612 \cdot & 00185\end{array}$ $\begin{array}{llllll}53.0 & .9495 & 0.748 & 375 & 0.0417 & 67240.00187\end{array}$ $55.3 .9517 \quad 0.765 \quad 379.0 .0425 \quad 6841.00190$ $57.9 .9539 \quad 0.783$ 384.0.0433 6965. . 00193 60.7 .9561 0.802 388. 0.0442 7095. . 00196 63.5 .9581 0.821 393. 0.0451 7225. . 00199 $66.6 .96010 .841 \quad 397.0 .0460$ 7360. . 00202 70.0.9621 0.862 402. 0.0469 7503. . 00205 $0.73 .5 .9640 \quad 0.884 \quad 40600.0479$ 7647. .00208
329. $0.286 \quad 3.504 \begin{array}{llll}3.411 & 1.507\end{array}$ 330. $0.288 \quad 3.535 \quad 3.438 \quad 1.520$ $\begin{array}{llllll}332 . & 0.291 & 3.571 & 3.468 & 1.535\end{array}$ $\begin{array}{llllll}336 . & 0.296 & 3.647 & 3.532 & 1.567\end{array}$ $\begin{array}{llllll}341 . & 0.302 & 3.727 & 3.600 & 1.602\end{array}$ $\begin{array}{lllll}345 . & 0.308 & 3.814 & 3.672 & 1.639\end{array}$ $\begin{array}{llllll}350 . & 0.315 & 3.905 & 3.748 & 1.677\end{array}$ 354. $0.321 \quad 4.002 \quad 3.829 \quad 1.718$ $\begin{array}{lllllll}360 . & 0.329 & 4.204 & 3.915 & 1.762\end{array}$ $\begin{array}{lllll}365 . & 0.336 & 4.208 & 4.000 & 1.806\end{array}$ $\begin{array}{llllll}370 . & 0.343 & 4.314 & 4.088 & 1.851\end{array}$ 375. $0.351 \begin{array}{lllll} & 4.428 & 4.182 & 1.900\end{array}$ 380. $0.359 \quad 4.545 \quad 4.279 \quad 1.950$

RUN NO. 22.0 WATER TEST SECTION NO.
FLO'N RATE,W=1664. LBS/HR MASS VELOCITY, $=163.8$ LBS/SEC.SQFT POWER $=0.47$ KILOWATTS HEAT FLUX.Q $=1503$. BTU/HR.SOFT REYNOLOS NO. = 55976. TEMPERATURE BEFORE FLASH= 277.6 F VELOCITY BEFORE FLASH= 2.2 FT/SEC

LPFT PSIA TO TI TO-TI TB TI-TB HBOIL HLIQ HB/HL HB/HO X XTT NUB STANTN BO E4 BOMOD NUB/RE PRNOL DP/OLL DP/DLTP TP/LIQ VELOC ALPHA O1 Q2 Q3 O4 O5

$\begin{array}{lllllll}96 & 07 & 08 & \text { E4 } & 09 & \text { E4 } & \text { O10E4 }\end{array}$ $\begin{array}{llllllll}384, & 0.360 & 4.571 & 4.300 & 1.961\end{array}$ $\begin{array}{lllll}386 . & 0.363 & 4.613 & 4.334 & 1.979\end{array}$ $\begin{array}{llllll}388 . & 0.366 & 4.658 & 4.371 & 1.998\end{array}$ 392. $0.372 \quad 4.748 \quad 4.444 \quad 2.036$ $\begin{array}{llllll}396 & 0.379 & 4.845 & 4.524 & 2.078\end{array}$ $\begin{array}{lllll}401 . & 0.386 & 4.948 & 4.607 & 2.122\end{array}$ 405. $0.393 \quad 5.057 \quad 4.695 \quad 2.168$ $\begin{array}{llllll}410 & 0.401 & 5.178 & 4.792 & 2.219\end{array}$ 416. $0.410 \quad 5.305 \quad 4.895 \quad 2.273$ 421. $0.419 \quad 5.443 \quad 5.005 \quad 2.332$ $\begin{array}{llllll}428 . & 0.430 & 5.604 & 5.135 & 2.401\end{array}$ 435. $0.442 \quad 5.785 \quad 5.278 \quad 2.478$ 443. $0.457 \quad 6.001 \quad 5.450 \quad 2.570$
orced convection boiling
RUN No. 23.0 water
TESt SECTION No. 1
FLOW RATE,WE1600. LBS/HR MASS VELOCITY,G= 163.4 LES/SEC.SQFT POWER $=9.72$ KILOWATTS HEAT FLUX,Q $=31084$, BTU/HR.SQFT REYNOLDS NO. $=57842$. TEMPERATURE beFORE FLASH= 279.4 F VELOCITY before flash $=2.1$ fi/SEG

 $\begin{array}{llllll}8350 & 0.389 & 4.819 & 4.597 & 2.371\end{array}$ $\begin{array}{lllll}856 . & 0.403 & 5.009 & 4.754 & 2.451\end{array}$ $\begin{array}{llllllllll}877 . & 0.417 & 5.211 & 4.919 & 2.557\end{array}$ 898. $0.432 \quad 5.417 \quad 5.087 \quad 2.625$ 91900. $0.449 \quad 5.640 \quad 5.267 \quad 2.719$ 940. $0.465 \quad 5.864 \quad 5.448 \quad 2.814$ $\begin{array}{llllll}902 . & 0.482 & 6.101 & 5.638 & 2.915\end{array}$ $\begin{array}{lllll}0.500 & 6.352 & 5.837 & 3.021\end{array}$
 $\begin{array}{lllllllllll}1.60 & 0.0146 & 1.596 & 109.67 & 120.5 & .978\end{array}$ \qquad
1052. $0.561 \quad 7.184 \quad 0.491 \quad 3.574$

forced convection boiling

run no. 24.0 water
test section no. 1
FLOW RATE,W=2664. LBS/HR MASS VELOCITY,G= 263.8 LBS/SEC.SOFT POWER= 9.84 KILOWATTS HEAT FLUX.O $=31466$. BTU/HR.SQFT REYNOLDS NO. $=58299$. TEMPERATURE bEFORE FLASH= 296.5 F VELOCITY BEFORE FLASH: 2.2 FT/SEC

Abstract

run no. 25.0 water test section no. 1 FLOW RATE,W=1668. LBS/HR MASS VELOCITY,G= 164.1 LBS/SEC.SQFT POWER= 9.90 KILOWATTS HEAT FLUX, $4=31660$. DTU/TR. SWFT REY:SOLDS 100 . $=$ 56633. TEMPERATURE BEFORE FLASH= 249.5 F VELOCITY OEFORE FLASM= $2.1 \mathrm{Ft} / \mathrm{SEC}$

 $\begin{array}{llllllll}17.19 & 30.6 & .9111 & 1.405 & 766 & 0.0779 & 12600 . & .00271 \\ 19.02 & 32.3 & .9160 & 1.442 & 782 & 0.0798 & 12913 . & .00277 \\ 22.82 & 35.9 & .9246 & 1.514 & 814 . & 0.0035 & 13519 . & .00289\end{array}$ $22.82 \quad 35.9 .9246 \quad 1.514 \quad 814 \cdot 0.003513519$. 00289 $26.96 \quad 39.7$.9319 1.586 845.0.0870 14107. . 00300 31.45 45.8 .9385 1.661 875. 0.0908 14709. .00312
 $41.38 \quad 53.5 \quad .95001 .824 \quad 936 \cdot 0.098715972 \cdot 00335$ $\begin{array}{lllllll}46.89 & 58.9 .9547 & 1.910 & 965 & 0.1027 & \text { 26613. .00347 }\end{array}$ 52.64 64.7.9589 1.997 993. 0.1068 17249. . 00359 58.57 71.1 . 9627 2.090 1021. 0.1110 17904. . 00371 64.63 78.3 . 9663 2.190 1049. 0.1156 18590. . 00384 71.06 85.8.9694 2.291 1075.0.1201 19269..00396 648. $0.291 \quad 3.300 \quad 3.310 \quad 1.726$ 66c. $0.295 \quad 3.40<\quad 3.399 \quad 1.770$ $\begin{array}{llllll}690 . & 0.314 & 3.604 & 3.574 & 1.855\end{array}$ $\begin{array}{lllll}716 & 0.323 & 3.304 & 3.745 & 1.940\end{array}$ 742. $0.344 \quad 4.013 \quad 3.923 \quad 1.029$ $\begin{array}{llllll}770 . & 0.361 & 4.237 & 4.113 & 2.125\end{array}$ $\begin{array}{llllll}796.0 .377 & 4.462 & 4.302 & 2.220\end{array}$ 823. $0.395 \quad 4.096 \quad 4.496 \quad<.319$ 849. $0.412 \quad 4.931 \quad 4.690<.419$ $\begin{array}{lllll}875 & 0.400 & 5.178 & 4.893 & 2.524\end{array}$ $\begin{array}{llllll}902 . & 0.450 & 5.439 & 5.105 & 2.035\end{array}$ $\begin{array}{llllll}928 . & 0.469 & 5.700 & 5.316 & 2.746\end{array}$
 REYNOLDS NO. $=$ 54786. TEMPERATURE before flash $=226.5 \mathrm{~F}$ VELOCIty before flashe 2.1 ft/sec

$3.05 \quad 11.8 .7653$ 0.905 468. 0.0499 7865. . 00173 $\begin{array}{llllllll}3.95 & 13.6 & .7950 & 0.974 & 500 . & 0.0535 & 8461 . & 00185\end{array}$ 5.73 17.1. 8388 1.097 557. 0.0599 9512. .00205 7.8320 .8 .8677 1.207 606. 0.0655 10442, . 00223 9.94 24.6.0885 1.308 650. 0.0707 11291, . 00239 $12.42 \quad 28.7$. 9043 1.404 691. 0.0755 12087. . 00254 $15.22 \quad 32.9$. 91681.497 729. 0.0801 12845. .00268 $18.23 \quad 37.4$. 9269 1.588 765 . 0.0846 13578. . 00281 21.55 42.1 .9353 1.679 800. 0.0390 14292. . 00295 25.15 47.1.9423 1.768 833. 0.0933 14986. . 00307 $28.96 \quad 52.5$. $9484 \begin{array}{llllllll} & 1.859 & 8640 & 0.0976 & 15676.00320\end{array}$ $33.05 \quad 58.3$. 9537 1.952 895. 0.1019 16371. . 00332
$408.0 .192 \quad 1.852 \quad 1.988 \quad 1.103$ 4370 $0.204 \quad 2.000 \quad 2.129 \quad 1.166$ $\begin{array}{lllll}486 & 0.226 & 2.273 & 2.386 & 1.282\end{array}$ $\begin{array}{lllll}529 . & 0.246 & 2.528 & 2.620 & 1.390\end{array}$ $\begin{array}{lllll}568 . & 0.264 & 2.771 & 2.840 & 1.494\end{array}$ 605. $0.2823 .0073 .051 \quad 1.584$ 638. $0.3003 .239 \quad 3.255 \quad 1.693$ $\begin{array}{lllllllllllllll}671 & 0.317 & 3.471 & 3.457 & 1.791\end{array}$ 702. $0.335 \quad 3.701 \quad 3.656 \quad 1.889$ 732. $0.352 \quad 3.931 \quad 3.852 \quad 1.987$ 761. $0.369 \quad 4.165 \quad 4.051 \quad 2.087$ $\begin{array}{llllll}789 . & 0.387 & 4.406 & 4.253 & 2.189\end{array}$
forced convection bohting
RUN No. 27.0 water
test section no. 1

REYMOLDS NO. $=57571$. TEMPERATURE BEFORE FLASH= 264.4 F VELOCITY bEFORE FLASH= 2.1 FT/SEC

 784.0.361 4.343 4.201 $\quad 2.167$ $\begin{array}{llllll}807 & 0.375 & 4.542 & 4.368 & 2.251\end{array}$ $8<9.0 .390 \quad 4.743 \quad 4.534 \quad 2.027$ 85'2. $0.406 \quad 4.955 \quad 4.709 \quad 2.427$ 876. 0.422 2.260 4.094 2.544 $\begin{array}{llllllll}899 & 0.439 & 5.410 & 2.081 & 2.620\end{array}$ 922. $0.456 \quad 5.646 \quad 5.272 \quad 2.720$ $946 \cdot 0.475 \quad 5.899=0.475 \quad 2.828$ $\begin{array}{lllll}971 & 0.495 & 6.164 & 5.687 & 2.940\end{array}$ $\begin{array}{llllll}996 & 0.516 & 6.458 & 5.920 & 3.009\end{array}$

forced convection bolling

RUN NO. 29.0 WATER test section no. 1
FLOM RATE,W=1676. LBS/HR MASS VELOCITY,G: 164.9 LUS/SEG.SGFT POWER $=9.90$ KILOWATTS HEAT FLUX,Q $=31600$. UTUMR.SQFT reymoldos mo. $=$ 58727. temperature before flashe 297.2 F velocity uefore flash $=2.2$ ft/SEC

FLOW RATE,W=1673. LES/HR MASS VELOCITY,G= 154.6 LBS/SEC.SQFT POWER= 9.84 KILOWATTS HEAT FLUX,Q $=31468$. BTU/HR.SGFT REYNOLDS NO. $=56074$. TEMPERÄTURE BEFORE FLASH= 240.8 F VELOCITY 日EFORE FLASH= 2.1 FT/SEC

$11.92 \quad 25.2 .8914$ 1.294 688. 0.0714 11485. . 00247 | 14.96 | 28.7 | .9050 | 1.376 | 726. | 0.0756 | 12185. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllll}18.50 & 32.5 & .9162 & 1.458 & 761\end{array}$. 0.0797 128640. . 00273 $22.32 \quad 36.5 \quad .9256 \quad 1.539$ 795.0.0836 13530. .00286 26.67 40.8 .9336 1.621828 .0 .0878 14190. .00298 $\begin{array}{llllllll}31.48 & 45.4 & .9405 & 1.705 & 860.0 .0919 & 14845 & .00311\end{array}$ 36.7750 .5 . 9467 1.792 992.0 .0961 15512. .00323 $42.60 \quad 56.0 .9521$ 1.883 923. 0.1004 16193. . 00336 $49012 \quad 61.9 .9568 \quad 1.974$ 953. 0.1047 16861. . 00348 0. 68.4 .9611 2.071 982. 0.1091 17550. . 00361 0. $75.4 .9648 \quad 2.170101100 .1136$ 18237. .00373

Q6 07 Q8 E4 Q9 E4 Q10E4 $\begin{array}{lllll}555 & 0.249 & 2.689 & 2.767 & 1.463\end{array}$ $\begin{array}{llllll}572 . & 0.257 & 2.797 & 2.864 & 1.509\end{array}$ $\begin{array}{lllll}589 . & 0.266 & 2.906 & 2.961 & 1.555\end{array}$ $621.0 .282 \quad 3.122 \quad 3.15311 .647$ $\begin{array}{lllll}652 . & 0.298 & 3.338 & 3.343 & 1.739\end{array}$ $\begin{array}{llllll}682 & 0.315 & 3.555 & 3.531 & 1.831\end{array}$ 711. $0.331 \quad 3.776 \quad 3.720 \quad 1.925$ $\begin{array}{llllll}740 & 0.348 & 3.999 & 3.911 & 2.020\end{array}$
 797. $0.383 \quad 4.472 \quad 4.309 \quad 2.220$ $\begin{array}{lllllll}824 & 0.401 & 4.712 & 4.500 & 2.323\end{array}$ $\begin{array}{lllll}852 . & 0.420 & 4.964 & 4.716 & 2.430\end{array}$ $\begin{array}{llllll}879 & 0.439 & 5.219 & 4.925 & 2.538\end{array}$

forced convection boiling

run no. 31.0 mater TEST SECTION NO. 1
 REYNOLOS NU. $=$ 73944. TEMPERATURE BEFORE FLASH=243.9 F VELOCITY bEFORE FLASH= 2.7 FT/SEC

 $\begin{array}{lllllllllllllllllllllllllllll}0.50 & 22.40 & 244.4 & 242.4 & 2.07 & 234.0 & 8.32 & 3720 . & 1422 . & 2.61 & 2.59 & .0119 & 2.205 & 563 . & 00483 & 0.425 & 0.0455 & 0.0620 & 1.56 & 0.0255 & 0.244\end{array}$

 $7.35 \quad 22.9 .8455 \quad 1.025 \quad 68400.0561$ 11518. . 00193 8.41 24.5.8559 1.060 705.0.0579 11903. . 00199 9.56 26.2.8652 1.095 724. 0.0596 12277. . 00205 10.67 27.9 . $8735 \quad 1.129$ 7440 0.0613 12643. . 00210 $\begin{array}{llllll}11.87 & 29.7 & .8813 & 1.163 & 7630\end{array} 0.0631$ 130120.00216 14.31 33.4 . 8948 1.231 799. 0.0665 13728. . 00226 $16.92 \quad 37.4$. 9063 1.299 835. 0.0698 14442. .00236 19.67 41.7.9162 1.368 669. 0.0732 15150. . 00246 22.6046 .3 . 9247 1.438 903. 0.0765 15848. .00256 25.8351 .4 .9322 1.510 936. 0.0800 16555. .00266 $29.64 \quad 50.9$. 9390 1.585 968.0 .0835 17281. . 00277 33.93 63.0.9450 1.663 1001.0.0871 18018. . 00287
 $45.48 \quad 77.8$. 9558 1.843 1067. 0.0952 19624. .00309
$\begin{array}{lllll}586 . & 0.212 & 2.318 & 2.417 & 1.231\end{array}$ $\begin{array}{lllll}6040 & 0.219 & 2.412 & 2.503 & 1.271\end{array}$ $\begin{array}{lllll}621 . & 0.226 & 2.505 & 2.588 & 1.310\end{array}$ $\begin{array}{llllll}638 & 0.233 & 2.597 & 2.671 & 1.349\end{array}$ $\begin{array}{lllll}655 & 0.241 & 2.691 & 2.756 & 1.389\end{array}$ $\begin{array}{lllll}687 . & 0.255 & 2.878 & 2.922 & 1.469\end{array}$ $\begin{array}{lllll}18 . & 0.269 & 3.067 & 3.090 & 1.550\end{array}$ 749. $0.284 \quad 3.260 \quad 3.258 \quad 1.631$ $\begin{array}{lllll}779 . & 0.298 & 3.454 & 3.426 & 1.714\end{array}$ $\begin{array}{llllll}809 . & 0.314 & 3.655 & 3.599 & 1.799\end{array}$ 839. $0.329 \begin{array}{lllll}3.865 & 3.778 & 1.888\end{array}$ 869. $0.345 \quad 4.081 \quad 3.960 \quad 1.980$ 899. $0.362 \quad 4.308 \quad 4.151 \quad 2.077$ 932. $0.381 \quad 4.562 \quad 4.362 \quad 2.185$
forced convection boiling
RUN NO. 32.0 WATER TEST SECTION NO. 1

```
FLOW RATE,WE2142. LES/HR MASS VELOCITY,G= 210.8 LUS/SEC.SQFT POWLR= 9.90 KILOWATTS HEAT FLUX,Q= 31063. OTU/HK.SGFT
```

REYNOLOS NO. $=$ 76625. TEMPERATURE BEFORE FLASHY $=267.7 \mathrm{~F}$ VELOCITY BEFORE FLASH= $2.8 \mathrm{Ft} / \mathrm{SEC}$

forced convection boiling

run no. 33.0 water test section no. 1

reynolds no. = 36738. TEmperature before flasha 268.1 F velocity before flash $=1.4$ ft/sec

forced convection boiling

test section no. l
 reymolos no. = 37007. TEmperature before flashe 288.5 F VELOCity before flash= 1.5 ft/sec

forced convection boiling

RUN NO. 36.0 WATER TEST SECTION NO. 1
FLO' RATE, W=1124. LeS/hr MASS VELOCITY,G= 110.6 LBS/SEG.SQFT POWER= 9.84 KILOWATTS HEAT FLUX,Q $=31468$. ETU/HR.SGFT
REYNOLOS NO. = 36862. TEMPERATURE BEFORE FLASH= 274.4 F VELOCITY BEFORE FLASH= 1.5 fT/SEC

 767. $0.5006 .087 \quad 5.680 \quad 3.065$ 785. $0.50 .57 \quad 6.326 \quad 5.872 \quad 3.160$ $\begin{array}{lllll}803 . & 0.534 & 6.572 & 6.068 & 3.271\end{array}$ $\begin{array}{llllll}821 . & 0.552 & 6.821 & 6.265 & 3.376\end{array}$ $\begin{array}{lllllll}838 & 0.571 & 7.078 & 6.467 & 3.485\end{array}$ $\begin{array}{llllll}856 & 0.590 & 7.341 & 6.673 & 3.59\end{array}$ 874. $0.610 \quad 7.617 \quad 6.605 \quad 3.724$ $\begin{array}{llllll}892 & 0.631 & 7.900 & 7.107 & 3.834\end{array}$ $\begin{array}{lllll}910.0 .653 & 8.206 & 7.343 & 3.964\end{array}$ 929. $0.677 \quad 8.530 \quad 7.591 \quad 4.101$

forced convection boiling

RUN No. 37.0 Water test section no. 1
FLOW RATE,WE1129. LBS/HR MASS VELOCITY,G= 212.1 LBS/SEC.SQFT POWER= 9.83 KILOWATTS HEAT FLUX, Q $=31439$. BTU/HR.SQFT reynolds no. = 36792. TEMPERATURE before flash= 257.5 F VELOCITY before flash= 1.4 fi/SEC

 $62.40 \quad 57.2$. 9689 2.435 901. 0.1347 14827. . 00469 $69.97 \quad 61.9 .97142 .528$ 923. 0.1391 15295. . 00483 $78.53 \quad 66.9$. 9736 2.623 945. 0.1437 15766. .00497

$\begin{array}{lllll}72 . & 0.428 & 4.958 & 4.758 & 2.581\end{array}$ $\begin{array}{llllll}683 . & 0.437 & 5.081 & 4.860 & 2.033\end{array}$ 694. $0.446 \quad 5.206 \quad 4.962 \quad 2.686$ $\begin{array}{llllll}715 . & 0.463 & 5.451 & 5.164 & 2.790\end{array}$ $736 \cdot 0.481 \quad 5.697 \quad 5.364 \quad 2.895$ $756.0 .499 \quad 5.946 \quad 5.565 \quad 3.000$ $\begin{array}{llllll}776 . & 0.517 & 5.196 & 5.766 & 3.107\end{array}$ $\begin{array}{lllll}\text { 795. } 0.536 & 6.452 & 5.970 & 3.215\end{array}$ $\begin{array}{lllll}15 . & 0.555 & 6.719 & 6.183 & 3.329\end{array}$ 835. $0.576 \quad 7.000 \quad 6.404 \quad 3.448$

RUN No. 38.0 WATER test section no. 1
FLOW RATE,W=1140. LES/hR MASS VELOCITY,G $\mathbf{1 1 2 . 2}$ LBS/SEC.SOFT POWER $=9.83$ KILOWATTS HEAT FLUX, $Q=31439$. bTU/HR.SOFT REYNOLDS NO. $=$ 36836. TEMPERATURE BEFORE FLASH $=245.5 \mathrm{~F}$ VELOCITY BEFORE FLASH= 1.5 FT/SEC

 . 00360 $21.87 \quad 31.6$. 9417 1.367 715.0.1048 11618. . 00369
 $24.40 \quad 35.3$.9480 1.953 746. 0.1098 12173. . 00385
 $\begin{array}{lllllllll}34.84 & 43.0 & 9577 & 2.148 & 8010 & 0.1192 & 132160.00415\end{array}$ $44.40 \quad 47.2$. 9616 2.242 $827,0.1239$ 23728. .00430 55.43 51.8 . 96512.340 853. 0.1287 14250. .00445 $62.6056 .7 .96832 .441 \quad 87800.133614769 .00459$ $68.59 \quad 61.9 .9710 \quad 2.542 \quad 903.0 .138415283 .00474$ 73.9067 .4 .9735 2.647 926. 0.143315800 .00488 78.53 73.3 .9757 2.753 949. 0.1483 16317. .00503 0. 79.4 . 9777 2.859 970.0. 0.2531 16828. .00517 $\begin{array}{lllll}578 . & 0.364 & 3.990 & 3.941 & 2.163\end{array}$ $\begin{array}{lllllll}592 & 0.374 & 4.122 & 4.054 & 2.219\end{array}$ $\begin{array}{llllll}506 . & 0.383 & 4.252 & 4.164 & 2.274\end{array}$ 619. $0.393 \quad 4.3794 .272 \quad 2.329$ 631. $0.402 \quad 4.505 \quad 4.378 \quad 2.382$ $\begin{array}{lllllll}656 . & 0.420 & 4.754 & 4.586 & 2.488\end{array}$ 679. $0.438 \quad 5.001 \quad 4.792 \quad 2.593$ 701. $0.4565 .253 \quad 4.999 \quad 2.700$ $\begin{array}{llllll}7240 & 0.475 & 5.513 & 5.212 & 2.810\end{array}$ $\begin{array}{llllll}746 & 0.494 & 5.777 & 5.426 & 2.923\end{array}$ 768. $0.513 \quad 6.042 \quad 5.640 \quad 3.035$ $\begin{array}{lllll}789 . & 0.533 & 6.313 & 5.857 & 3.150\end{array}$ $\begin{array}{llllll}810 & 0.554 & 6.590 & 6.078 & 3.268\end{array}$ 829. $0.574 \begin{array}{lllll} & 6.865 & 6.295 & 3.385\end{array}$

forced convection bolling

RUN NO. 39.0 WATER
TEST SECTION NO. 1
 REY:0LDS HO. $=$ 36229. TEMPERATURE BEFORE FLASH= 236.1 F VELOCIIY BEFORE FLASH= 1.4 FT/SEC

 $3.50 \quad 27.25 \quad 232.5 \quad 230.3 \quad 2.11220 .210 .16$ 3097.
 5.0016 .57 227.8 $225.7 \quad 2.12218 .17 .604140$.
 $8.43 \quad 19.9$. 9077 1.539 586. 0.0870 94650. .00308 $9.78 \quad 21.7 .9154$ 1.600 606. 0.0903 9831, . 00318 $11.25 \quad 23.5$. 9220 1.659 626. 0.0934 20179. . 00328 $13.10 \quad 25.3$. 9277 1.716 644. 0.0964 10513. .00338 $\begin{array}{llllllll} & 25.08 & 27.1 & .9326 & 1.771 & 662 . & 0.0992 & 10835\end{array} .00348$ 19.55 36.8 . 9409 1.877 696. 0.1047 11445. . 00365 24.69 34.7.9477 1.980 727.0.1100 12029. .00382 $30.50 \quad 38.7$. 9533 2.081 757 . 0.1152 12595. . 00399 $36.87 \quad 43.0 .95812,182 \quad 786 \cdot 0.1202$ 13148. . 00415 $43.80 \quad 47.5$. $9621 \quad 2.283$ 813. 0.1252 13690. .00430 $51.44 \quad 51.6 .9653 \quad 2.372$ 837. 0.1296 14163. .00444 $59.57 \quad 57.4 .9689 \quad 2.492 \quad 865.0 .135314767 .000461$ $67.40 \quad 62.9 .9717 \quad 2.598$ 889. $0.140415301, .00476$ $75.33 \quad 68.6 .9742 \quad 2.706913 .0 .145415828 .00490$
$\begin{array}{lllllll}26 & 07 & 08 & E_{4} & 09 & E_{4} & \text { O10E4 }\end{array}$ $\begin{array}{llllll}500 . & 0.322 & 3.341 & 3.377 & 1.891\end{array}$ 517. $0.333 \quad 3.488 \quad 3.507 \quad 1.954$ $\begin{array}{llllll}534 . & 0.344 & 3.632 & 3.633 & 2.015\end{array}$ $\begin{array}{llllll}550 . & 0.354 & 3.773 & 3.755 & 2.075\end{array}$ $\begin{array}{llllll}565 . & 0.364 & 3.910 & 3.873 & 2.133\end{array}$ $\begin{array}{llllll}594 . & 0.384 & 4.178 & 4.103 & 2.247\end{array}$ $\begin{array}{lllll}621 . & 0.403 & 4.442 & 4.326 & 2.359\end{array}$ 646. $0.4222 .4 .705 \quad 4.547 \quad 2.471$ $\begin{array}{lllll}671 . & 0.441 & 4.968 & 4.765 & 2.583\end{array}$ 595. $0.461 \begin{array}{lllll}5.231 & 4.983 & 2.695\end{array}$ 716. $0.478 \quad 5.470 \quad 5.178 \quad 2.796$ 741. $0.500 \quad 5.773 \quad 5.425 \quad 2.925$ 763. $0.5206 .049 \quad 5.647 \quad 3.042$ $\begin{array}{llllll}784 & 0.541 & 6.327 & 5.870 & 3.160\end{array}$
forced convection bolling
Run no. 40.0 WATER
TEST SECTION NO. 1
 REYNOLDS NO. $=$ 37538. TEMPERATURE BEFORE FLASH= 295.7 F VELOCITY BEFORE FLASH= 1.5 FT/SEC

forced convection boiling

RUN HO. A1.0 WATER
test section no. 1
FLOW RATE,W=1125. LES/HR MASS VELOCITY,G= 170.7 LBS/SEC.SOFT POWER $=14.40 \mathrm{KILOWATTS}$ hEAT FLUX, $Q=46051$. bTU/HR.SQFT REYMOLDS NO.: 37552. TEMPERATURE before FLASH* 279.1 F VELOCITY before fLASH= 1.5 Ft/SEC

 858. $0.54006 .569 \quad 6.143 \quad 3.491$ $\begin{array}{llllll}8840 & 0.562 & 6.876 & 6.388 & 3.621\end{array}$ $\begin{array}{llllll}909 & 0.585 & 7.190 & 6.637 & 3.754\end{array}$ 933. $0.608 \quad 7.509 \quad 6.888 \quad 3.890$ 957. $0.0 .632 \quad 7.8417 .148 \quad 4.031$ $981.0 .657 \quad 8.183 \quad 7.414 \quad 40175$

Abstract

forced convection boiling RUN NO. 42.0 WATER TEST SECTION NO. REYMOLDS NO. $=$ 37626. TEMPERATURE before FLASH= 270.8 F VELOCITY before FLASH= 2.5 FT/SEC $1020.0 .713 \quad 8.642 \quad 7.919 \quad 4.451$ $\begin{array}{lllll}781 . & 0.483 & 5.694 & 5.432 & 3.115 \\ 796 . & 0.495 & 5.856 & 5.565 & 3.184\end{array}$ $\begin{array}{llllll}825 & 0.517 & 6.170 & 5.820 & 3.317\end{array}$ 853. $0.540 .50 .485 \quad 6.074 \quad 3.451$ $\begin{array}{lllll}\text { 879. } & 0.562 & 6.797 & 6.323 & 3.583\end{array}$ $\begin{array}{lllll}904 . & 0.585 & 7.113 & 6.575 & 3.716\end{array}$ $\begin{array}{lllll}929 . & 0.609 & 7.435 & 6.828 & 3.854\end{array}$ $953.0 .632 \quad 7.761 \quad 7.084 \quad 3.993$ $\begin{array}{llllll}978 . & 0.658 & 8.105 & 7.352 & 4.139\end{array}$ 4.451

forcto convection bolling

run no. 43.0 Water test section no.

FLOW RATE,N=2137. LES/HR MASS VELOCITY.G= 111.9 LBS/SEC.SQFT POWER= 14.40 KILOWATTS HEAT FLUX,Q $=46051$. BTU/KR.SQFT
REYNOLDS NO. $=$ 37736. TEMPERATURE before FLASH= 252.5 F VELOCITY before FLASH= 1.5 FT/SEC

forced convection boiling

RUN No. 44.0 WATER TEST SECTION No. 1
FLOW RATE, W=1127. LBS/HR MASS VELOCITY,G $=110.9$ LBS/SEC.SQFT POWER= 14.40 KILOWATTS hEAT FLUX,0 $=46051$. BTU/HR.SOFT REYNOLOS NO. = 37027. TEMPERATURE BEFORE FLASH= 238.4 F VELOCITY bEFORE FLASH= 1.4 FT/SEC

 $\begin{array}{llllll}553 . & 0.361 & 3.709 & 3.747 & 2.268\end{array}$ $\begin{array}{llllll}579 . & 0.376 & 3.914 & 3.928 & 2.35\end{array}$ 605. $0.391 \quad 4.113 \quad 4.101 \quad 2.440$ 628. $0.405 \quad 4.305 \quad 4.267 \quad 2.52$ 671. $0.4324 .677 \quad 4.584 \quad 2.68$ 711. $0.4595 .036 \quad 4.887 \quad 2.833$ $\begin{array}{llllll}748 & 0.484 & 5.388 & 5.180 & 2.982\end{array}$ 782. $0.5095 .7365 .466 \quad 3.130$ 815. $0.535 \quad 6.084 \quad 5.749 \quad 3.278$ B46. $0.560 \quad 6.433 \quad 6.031 \quad 3.426$ $\begin{array}{lllllll}878 & 0.586 & 6.784 & 0.312 & 3.575\end{array}$ 905. $0.613 \quad 7.145 \quad 6.599 \quad 3.728$ 935. $0.642 \quad 7.527 \quad 6.900 \quad 3.890$

forced convection boiling

RUN No. 45.0 WATER TEST SECTION NO. 1
FLOW RATE,W=1125. LBS/hr MASS VELOCity,G=110.7 LBS/SEC.SQFI POWER= 4.32 kILOWATTS hEAT FLUX, $=13815$. BTU/hr.SQFT REYNOLLS MO. = 36125. TEMPERATURE EEFORE FLASH= 302.5 F VELOCITY BEFORE FLASH= $1.5 \mathrm{ft} / \mathrm{SEC}$

forced convection boiling

RUN NO. 46.0 WATER
test section no. 1
FLOW RATE,WF1122. LBS/HR MASS VELOCITY,G= 110.4 LBS/SEC.SQFT POWER $=4.32$ kILOWATTS hEAT FLUX,Q $=13615$. BTU/HR,SQFT REYNOLOS - $0 .=36125$. TEMPERATURE BEFORE FLASH= 280.3 F VELOCITY uEFORE FLASH $=1.5 \mathrm{FT} / \mathrm{SEC}$

FORCED CONVECTION BOILING

RUN NO. 47.0 WATER
test section no. 1
FLOW RATE,W=120. LBS/hr MASS VELOCITY,G= 210.2 LBS/SEC.SQFT POWER= 4.32 KILOWATTS hEAT FLUX,Q $=13815$. bTU/HR.SQFT REYMOLDS : $0 .=35902$. TEMPERATURE BEFORE FLASH= 265.2 F VELOCITY BEFORE FLASH $=1.4$ FT/SEC

$\begin{array}{llllll}\text { Q6 } & 07 & \text { Q8 } & \mathrm{E}_{4} & 09 & \mathrm{E}_{4}\end{array} 010 \mathrm{E}_{4}$

 $\begin{array}{llllll}579 . & 0.416 & 5.110 & 4.601 & 2.383\end{array}$ $588.0 .425 \quad 5.248 \quad 4.913 \quad 2.442$ $\begin{array}{llllll}598 . & 0.436 & 5.393 & 5.031 & 2.503\end{array}$ $\begin{array}{lllll}607 . & 0.447 & 5.543 & 5.152 & 2.567\end{array}$ $\begin{array}{llllll}617 . & 0.458 & 5.697 & 5.275 & 2.633\end{array}$ 627. $0.469 \quad 5.858 \quad 5.404 \quad 2.701$ $\begin{array}{lllll}637 . & 0.481 & 6.024 & 5.537 & 2.772\end{array}$ 647. $0.493 \quad 6.192 \quad 5.671 \quad 2.843$ 657. $0.505 \quad 6.363 \quad 5.806 \quad 2.916$ 666. $0.518 \quad 6.543 \quad 5.948 \quad 2.992$

forced convection boiling
RUN NO. 58.0 WATER
test section no. 1
LOW RATE, $W=1121$. LES/AR MASS VELOCITY,G $=110.3$ LBS/SEC.SOFT POWER $=24.40$ KILOWATIS HEAT FLUX,0 $=46051$. BTU/HR.SOFT
reynolds no. = 37314. TEmPerature before flash= 302.3 F VELOCity before flashe $1.5 \mathrm{Ff} / \mathrm{SEC}$

FORCEd CONVECTION BOILING

RUN NO. 49.0 WATER
test section no. 1
 reynolos no. 5 59442. temperature before flashe 290.3 F Velocity before flashz 2.2 ft/sec

run no. 50.0 water test section no. 1 forced convection boiling

FLOW RATE, $K=1666$. LBS/HR MASS VELOCITY,G $=163.9$ LBS/SEC.SQFT POWER $=4.32$ KILOWATTS HEAT FLUX, D $=13815$. BTU/HR,5OFT
REYNOLDS NO. $=57235$. TEMPERATURE bEFORE FLASH= 295.6 F VELOCITY BEFORE FLASH $=2.2$ FT/SEC

$65.05 \quad 75.0 .9652$ 1.600 910 . 0.0897 14670. .00344 $69.94 \quad 78.8 .9668 \quad 1.640 \quad 920.0 .0915$ 14949. . 00349 $73.19 \quad 82.9 .9686 \quad 1.683$ 931.0.0935 15242. . 00355 $76.59 \quad 87.3$. 9702 1.728 941 . 0.0955 15549. . 00360 79.73 92.2.5719 1.777 9520.0.0976 15854. . 00366 $82.97 \quad 97.5$. 97351.828 962.0.0998 16199. . 00373 $86.02103 .1 .9750 \quad 1.881$ y73.0.1021 16536. .00379 89.11 109.1.9765 1.937 983. 0.1045 16889. 00385

748. $0.0426 \quad 5.414 \begin{array}{llll}5.026 & 2.446\end{array}$ 753. $0.426 \quad 5.479 \quad 5.078 \quad 10474$ $163.0 .436 \quad 5.020 \quad 5.191 \quad 2.534$ 774. 0.447 5.768 $5.310 \quad 2.597$ 785. $0.4558 .924 \begin{array}{lllll} & 5.434 & 2.663\end{array}$ 797. $0.4696 .088 \quad 5.564 \quad 2.732$ 808. $0.481 \quad 0.262 \quad 5.701 \quad 2.806$ $\begin{array}{lllllll}820 & 0.493 & 6.437 & 5.834 & 2.881\end{array}$ $832.0 .506 \quad 6.622 \quad 5.984 \quad 2.959$ $844.0 .520 \quad 6.816 \quad 6.136 \quad 3.041$ 857. $0.534 \quad 7.020 \quad 6.300 \quad 3.131$ 872. $0.550 \quad 7.259 \quad 6.481 \quad 3.230$

forced convection boiling

RUN No. S1.0 Water test section no. 1

FLOW RATE,W=1129. LBS/HR MASS VELOCITY,G= 111.1 LBS/SEC.SQFT POWER= 9.84 KILOWATTS HEAT FLUX. $Q=31468$. BTU/HR.SQFT

forced convection boiling

RUN NO. 52.0 WATER TEST SECTION NO. 1
FLOW RATE,W= 519. LES/HR MASS VELOCITY,G= 51.1 LES/SEC.SQFT POWER= 9.83 KILOWATTS HEAT FLUX,QE 31436. BTU/HR.SQFT REY:COLOS iiO. = 15635. TEMPERATURE before FLaSH= 297.6 F VELOCITY before flash 0.7 ft/SEC

 11. $0.779 \quad 9.169 \quad 8.304 \quad 4.922$ $\begin{array}{lllll}619 . & 0.792 & 9.363 & 8.453 & 5.004\end{array}$ $\begin{array}{lllll}633 . & 0.818 & 9.746 & 8.746 & 5.167\end{array}$ 647. $0.0 .84510 .131 \quad 9.038 \quad 5.331$ $660.0 .872 \quad 10.520 \quad 9.331 \quad 5.496$ 673. $0.899 \quad 10.909 \quad 9.624 \quad 5.661$ 685. $0.926 \quad 11.305 \quad 9.919 \quad 5.829$ 697. $0.954 \quad 11.706 \quad 10.216 \quad 5.999$ 708. $0.983 \quad 12.112 \quad 10.516 \quad 6.172$ 719. $1.01112 .52110 .817 \quad 60345$ 729. $1.041 \quad 12.93811 .121 \quad 6.522$ 739. $1.071 \quad 13.357 \quad 11.425 \quad 6.700$

forced convection boiling

RUN No. 54.0 WATER
test section no. 1
FLOW RATE,W=1656. LBS/HR MASS VELOCITY,Gx 163.0 LBS/SEC.SQFT POWERz 9.84 KILOWATTS hEAT FLUX,Q= 31468 . bTM/HR,SQFT REynolds no. = 53845 . TEmPtRATURE befort flashe 227.1 F VELOCity before flashe 2.1 ft/sec
LPFT PSIA TO TI TO-TI TB TI-TB HBOIL HLIO HB/HL HB/HO X XTT NUB STANTN BO E4 BOMOD NUB/RE PRNOL DP/OLL DP/DLTP TP/LIQ VELOC ALPHA OL Q2 Q3 O4 OS

 $1.6311 .0 .7524 \quad 0.882 \quad 452.0 .0488$ 7559. . 00170 $\begin{array}{lllllll}1.94 & 12.7 & \text {. } 7860 & 0.953 & 485 \cdot 0.0526 & 8166, ~ .00182\end{array}$ $\begin{array}{lllllll}2037 & 14.4 & .8117 & 1.018 & 515 & 0.0560 & 8715\end{array} .00193$ $3.60 \quad 17.9 .8485 \quad 1.134 \quad 568.0 .0620$ 9693. . 00212 $5.32 \quad 21.4 .87381 .237 \quad 614.0 .067310558$. .00229 $7.55 \quad 25.1 .6924 \quad 1.333 \quad 65640.072111352$. .00244 $10.40 \quad 28.9$. 9068 1.424 694. 0.0767 12102. . 00258 $\begin{array}{lllllllll}13.96 & 33.0 & 9184 & 1.513 & 7310 & 0.0812 & 12820.00272\end{array}$
 23.03 41.9.9361 1.690 800.0.0899 14212. .00298 28.11 46.1 0.9421 1.766 829.0.0936 14806. .00310 $32.06 \quad 52.4 \quad .9492 \quad 1.875$ 865. 0.0987 15608. . 00324
FORCED CONVECTION BOLLING
run no. 55.0 water
test section no.
FLOW RATE,W=1651, LES/HR MASS VELOCITY,G= 162.5 LBS/SEC.SQFT POWER= 9.84 KILOWATTS HEAT FLUX,Q $=31468$. BTU/HR.SQFT
REYHOLDS NO. $=55906$. TEMPERATURE before FLASH= 250.4 F VELOCity before flash= 2.1 FT/SEC

$\begin{array}{lllllllll}16.08 & 32.1 & .9163 & 1.444 & 778 & 0.0800 & 12818 & .00279\end{array}$ $\begin{array}{llllllll}17.75 & 33.8 & 9206 & 1.479 & 793 & 0.0818 & 13111\end{array} .00284$ $\begin{array}{llllll}19.56 & 35.6 & 9246 & 1.515 & 809 & 0.0836 \\ 134040.00290\end{array}$
 $25.65 \quad 41.2$.9353 1.623 854. 0.0890 14281. .00307 $30.23 \quad 45.4 .9413 \quad 1.697 \quad 883 \cdot 0.0927$ 14867. . 00318 $35.36 \quad 49.9 .9468 \quad 1.774$ 912.0.0964 15461. .00330 $40.79 \quad 54.8 .9517$ 1.554 941. 0.1002 16065. . 00341 $46.72 \quad 60.1 .9561$ 1.937 969. 0.1042 16678. .00352 53.11 66.0.0901 2.025 996. 0.2082 17310. . 00364
 66.51 79.7.9673 2.220 1052.0.1171 186450.00389 $\begin{array}{llllll}73.68 & 87.5 & .9703 & 2.325 & 1078 & 0.1218 \\ \text { 19333. . } 00402\end{array}$
$\begin{array}{llllll}671 & 0.306 & 3.506 & 3.490 & 1.815\end{array}$ $\begin{array}{llllll}683 & 0.314 & 3.605 & 3.575 & 1.857\end{array}$ $\begin{array}{llllll}6960 & 0.321 & 3.705 & 3.661 & 1.900\end{array}$ $\begin{array}{lllllll}724 . & 0.336 & 3.907 & 3.834 & 1.986\end{array}$ $\begin{array}{llllll}750 & 0.352 & 4.115 & 4.010 & 2.074\end{array}$ $\begin{array}{llllll}775 & 0.367 & 4.329 & 4.190 & 2.165\end{array}$ $\begin{array}{llllll}801 & 0.384 & 4.550 & 4.375 & 2.259\end{array}$ $\begin{array}{llllll}826 . & 0.400 & 4.777 & 4.564 & 2.355\end{array}$ $\begin{array}{llllll}852 & 0.418 & 5.014 & 4.759 & 2.450\end{array}$ $\begin{array}{llllll}878 . & 0.437 & 5.266 & 4.965 & 2.563\end{array}$ $\begin{array}{llllll}9040 & 0.456 & 5.526 & 5.177 & 2.674\end{array}$ $\begin{array}{llllll}930 & 0.476 & 5.795 & 5.393 & 2.787\end{array}$

forceo convection boiling

run no. 56.0 water test section no. 1

 REYNOLOS NO. = 56571. TEMPERATURE BEFORE FLASH=274.2 F VELOCITY BEFORE FLASH= 2.1 FT/SEC

 $\begin{array}{lllllllllllllllllllllllllllllll}3.50 & 22.52 & 243.6 & 241.5 & 2.10 & 234.3 & 7.19 & 4377 & 1104 . & 3.96 & 3.79 & .0555 & 0.529 & 663.00747 & 0.567 & 0.0604 & 0.0939 & 1.56 & 0.0147 & 1.128\end{array}$

$40.81 \quad 50.5 .9479 \quad 1.740$ 979. 0.097315652 .00345 $42.6952 .4 .9499 \quad 1.772$ 991.0.0988 15896. .00349 $46.75 \quad 56.6 .95371 .837101500 .1020$ 16397. . 00359 51.1160 .9 .95721 .903 1038. 0.1052 16890. .00369 $56.18 \quad 65.7$. 9604 1.973 2062, 0.1085 17399. .00379 $62.19 \quad 70.9 .9635 \quad 2.047$ 1085. 0.1120 17932. . 00389 69.07 76.7 . 9663 2.125 1108. 0.1156 18481. .00399 $76.9983 .0 .9690 \quad 2.2101131 \cdot 0.119419057 .00410$ 84.1190 .0 . 9715 2.298 1154, 0.1233 196510. . 00420 90.42 97.8. 9739 2.396 1177. 0.1276 20280. . 00432

$\begin{array}{lllllll}816 & 0.382 & 4.684 & 4.488 & 2.321\end{array}$ $\begin{array}{lllllll}837 . & 0.386 & 4.879 & 4.649 & 2.404\end{array}$ 858. $0.411 \quad 5.076 \quad 4.811 \quad 2.487$ $\begin{array}{llllll}879 . & 0.426 & 5.280 & 4.978 & 2.574\end{array}$ 900. $0.44 \begin{array}{lllll} & 5.496 & 5.153 & 2.666\end{array}$ $\begin{array}{llllll}922 . & 0.456 & 5.720 & 5.334 & 2.761\end{array}$ $\begin{array}{lllll}944 . & 0.475 & 5.958 & 5.525 & 2.861\end{array}$ 966. $0.493 \quad 6.204 \quad 5.722 \quad 2.966$ 989. $\begin{array}{llllll}0.512 & 6.468 & 5.931 & 3.078\end{array}$
forced convection boiling

```
RUN NO. 57.0 WATER TEST SECTION NO.
FLOW RATE,W=1672. LBS/HR MASS VELOCITY,G= 16405 LES/SEG.SQFT POWER= 9.84 KILOWATTS HEAT FLUX,Q= 32468. BTU/HR,SOFT
REYNOLDS NO.= 58451. TEMPERATURE bEFORE fLASH= 298.0 F vELOCITY oEFORE FLASH= 2.2 FT/SEC
```


RUN NO. 58.0 WATER TEST SECTION NO. 1

FLOW RATE, W=1122. LBS/HR MASS VELOCITY,GE 120.4 LBS/SEC.SQFT POWER $=9.84$ KILOWATTS HEAT FLUX,Q $=31468$, BTU/HR.SQFT reynolds no. = 35685. TEmperature before flashe 227.8 F Velocity before flashe 1.4 ft/sec

 .1. 1.284 4820 0.0728 7784• .00258 4.71 16.8.8908 1.440 535. 0.0812 8713. . 00286 $\begin{array}{llllllll}5.45 & 18.6 & .9016 & 1.510 & 558 . & 0.0849 & 9128 . & 00298\end{array}$ $6.31 \quad 20.4$.9105 $1.577 \quad 580.0 .0884$ 9519. . 00309 7.42 22.2.9180 1.639 600. 0.0917 9887. . 00320 8.66 24.1 . 9244 1.700 619. 0.0949 10239. .00330 12.75 27.8 .9348 1.815 656. 0. 1009 10903. .00350 $\begin{array}{llllllll}17.98 & 31.7 & .9429 & 1.924 & 6890 & 0.1065 & 115260.00368\end{array}$ $24.27 \quad 35.7 .9495 \quad 2.030$ 721. 0.1119 12118. . 00385 $30.99 \quad 39.9$. $9550 \quad 2.135 \quad 75100.1172$ 12694. . 00402 $\begin{array}{lllllllll}38.29 & 44.4 & .9597 & 2.240 & 780 & 0.1224 & 13259 . & 00418\end{array}$ 45.0449 .1 . 9636 2.344 807. 0.1275 13809. . 00434 $\begin{array}{lllllll}50.73 & 54.0 & .9671 & 2.448 & 833 & 0.1325 & 14349\end{array} .00449$ 439. $0.293 \quad 2.875 \quad 2.960 \quad 1.695$ $\begin{array}{lllll}460 . & 0.306 & 3.042 & 3.112 & 1.766\end{array}$ $\begin{array}{llllll}480 . & 0.318 & 3.202 & 3.254 & 1.834\end{array}$ 499. $0.0 .330 \quad 3.356 \quad 3.391 \quad 1.900$ $\begin{array}{llllll}516 . & 0.341 & 3.505 & 3.522 & 1.963\end{array}$ $\begin{array}{llllll}533 . & 0.351 & 3.650 & 3.649 & 2.025\end{array}$ $\begin{array}{llllll}5640 & 0.372 & 3.932 & 3.892 & 2.144\end{array}$ $\begin{array}{llllll}593 . & 0.392 & 4.206 & 4.126 & 2.261\end{array}$ $620.0 .4114 .47440354 \quad 2.375$ $\begin{array}{llllll}646 & 0.431 & 4.742 & 4.578 & 2.489\end{array}$ $671.0 .450 \quad 5.011 \quad 4.802 \quad 2.603$ 695. $0.470 .40 .279 \quad 5.023 \quad 2.717$ 718. $0.49050 .549 \begin{array}{lllll}5.243 & 2.832\end{array}$ $\begin{array}{lllll}741 \cdot & 0.510 & 5.821 & 5.464 & 2.948\end{array}$

```
RuN NO. Sl.0 WATER TEST SECTION NO. 1
FLOM RATE,W=1127. LBS/HR MASS vELOCITY,G= 110.9 LBS/SEC.SQFT POWER= 9.84 KILOWATTS hEAT FLUX,G= 31468. BTU/HR.SQFT
REYNOLLS in. = 35751. TEMPERATURE BEFORE FLASH= 221.9 F VELOCITY bEFORE FLASH= 1.4 FT/SEC
```


 $0.9 .1 .79701 .070404 \cdot 0.0610 \quad 6481$ • .00218 $1.42 \quad 10.9$. 8309 1.173 439. 0.0660 7102. . 00236 $\begin{array}{llllllll}2.98 & 14.6 & .8737 & 1.350 & 499 . & 0.0760 & 8156\end{array} .00267$ 4.91 18.3.0995 1.500 548. 0.0840 9049. . 00293 $7.35 \quad 22.0$.9169 1.635 592. 0.0910 9838. .00316 $10.53 \quad 25.8 .9294 \quad 1.758 \quad 531.0 .097510552$. . 00337 14.47 29.8. 9390 1.875 667. 0.1035 112210. .00356 $19.44 \quad 33.9$. 9466 1.968 760.0 .1092 11856. .00374 $25.44 \quad 38.3 .9528 \quad 2.098 \quad 732 \cdot 0.1147$ 12463. . 00392 32.4942 .7 . 9578 2.204 761. 0. 1201 130440. 00408 40.36 47.4 .9621 2.310 789. 0.1252 13607. . 00424 $48.20 \quad 52.4 .9659<.418$ 816. 0.1305 14173. .00440 $\begin{array}{llllll}349 . & 0.247 & 2.237 & 2.369 & 1.421\end{array}$ $380.0 .263 \quad 2.443 \quad 2.562 \quad 10.006$ $\begin{array}{lllll}431 . & 0.291 & 2.813 & 2.904 & 1.666\end{array}$ $\begin{array}{llllll}474 & 0.317 & 3.147 & 3.204 & 1.808\end{array}$ $\begin{array}{llllll}512 . & 0.340 & 3.457 & 3.479 & 1.940\end{array}$ $\begin{array}{llllll}545 & 0.361 & 3.750 & 3.735 & 2.065\end{array}$ $\begin{array}{lllll}2760 & 0.302 & 4.036 & 3.981 & 2.186\end{array}$ 605. $0.4034 .315 \quad 4.219 \quad 2.303$ 633. $0.423 \quad 4.591 \quad 4.451 \quad 2.422$ $\begin{array}{llllll}659 & 0.443 & 4.80< & 4.678 & 2.537\end{array}$ 683. $0.462 \quad 5.131$ 4.90ـ 2.65 L $708.0 .485 \quad 5.408 \quad 5.127 \quad 2.769$
run no. oz.o water test section no. 1
FLOW RATE, W=1123. LBS/HR MASS VELOCITY, $G=120.5$ LBS/SEC.SOFT POWER $=10.02$ KILOWATTS HEAT FLUX, $Q=32044$. BTY/HR.SQFT
REYNOLDS Y0. $=35840$. TEMPERATURE BEFORE FLASH= 230.2 F VELOCITY bEFORE FLASH= 1.4 FT/SEC

orced convection bolling
RUN MO. 63.0 MATER TEST SECTIOM MO. 1

REYHOLOS $\because 0 .=35986$. TEMPERATURE GEFORE FLASH= 246.0 F VELOCITY BEFORE FLASH= 1.4 FT/SEC

 $\begin{array}{lllll}618 . & 0.399 & 4.456 & 4.340 & 2.372\end{array}$ $\begin{array}{lllll}630 . & 0.409 & 4.582 & 4.446 & 2.426\end{array}$ $\begin{array}{llllll}6540 & 0.427 & 4.838 & 4.660 & 2.535\end{array}$ $678.0 .445 \quad 5.093 \quad 4.871 \quad 2.643$ 700. $0.464 \quad 5.349 \quad 5.082 \quad 2.752$ 723. $0.483 \quad 5.609 \quad 5.294 \quad 2.852$ $74400.502 \quad 5.873 \quad 5.508 \quad 2.97$ $\begin{array}{lllll}766 . & 0.522 & 6.144 & 5.726 & 3.090\end{array}$ 797. $0.542 \begin{array}{lllll} & 6.424 & 5.950 & 3.208\end{array}$ 808. $0.564 \quad 6.712 \quad 6.178 \quad 3.330$ 827. $0.5846 .991 \quad 6.399 \quad 3.449$

forced convectiom boiliag

RUM MO. St.0 mater
TEST SECTIOM no. 1
FLOW RATE,M=1110. LBS/HR MASS VELOCITY,G= 109.2 LBS/SEC.SCFT POWEP= 9.78 kILOWATIS HEAT FLUX, O= 31276. BTUARR.SOFT REYmolds no. $=36239$. TEMPERATURE before FLASH $=263.0 \mathrm{~F}$ VELOCITY BEFORE FLASHi= 1.4 FT/SEC

$06 \quad 07 \quad 08 \mathrm{E}_{4}$ O9 E4 OLOE4 671. $0.4331 \quad 5.034 \quad 4.823 \quad 2.619$ 681. $0.439 \quad 5.147 \quad 4.916 \quad 2.667$ $\begin{array}{lllll}692 & 0.447 & 5.264 & 5.012 & 2.717\end{array}$ $\begin{array}{lllll}712 . & 0.464 & 5.498 & 5.204 & 2.816\end{array}$ 732. $0.482 \quad 5.744 \begin{array}{llll}5.404 & 2.921\end{array}$ $\begin{array}{llllll}752 . & 0.500 & 5.998 & 5.609 & 3.029\end{array}$ 772. $0.5196 .256 \quad 5.816 \quad 3.138$ $\begin{array}{llllll}792 . & 0.538 & 6.517 & 6.024 & 3.249\end{array}$ $\begin{array}{llllllll}811 . & 0.557 & 6.781 & 6.234 & 3.36\end{array}$ 829. $0.5777 .053 \quad 6.448 \quad 3.477$ 848. $0.597 \quad 7.335 \quad 6.669 \quad 3.596$ $\begin{array}{llllll}867 & 0.619 & 7.625 & 6.895 & 3.719\end{array}$ $\begin{array}{lllll}886 . & 0.641 & 7.928 & 7.130 & 3.848\end{array}$

Abstract

RUN NO. $\mathbf{0 5 . 0}$ WATER TEST SECTION NO. 1 FLON RATE.W=1119. LES/HR MASS VELOCITY,G= 110.1 LBS/SEC.SOFT POWER= 9.84 KILOWATTS HEAT FLUX,Q= 31460 . BTU/HR.SUFT reynolus no. $=36660$. TEmperature utfore flashe 273.0 F Velocity before flashe 1.4 ft/SEC $\begin{array}{lllll}7590 & 0.496 & 6.024 & 5.630 & 3.040\end{array}$ $\begin{array}{llllll}778 . & 0.513 & 6.262 & 5.821 & 3.141\end{array}$ 796. $0.530 \quad 6.504 \quad 6.014 \quad 3.244$ $\begin{array}{llllll}814 & 0.549 & 6.755 & 6.213 & 3.350\end{array}$ 832. $0.567 \quad 7.015 \quad 6.418 \quad 3.460$ 850. $0.557 \quad 7.285 \quad 6.630 \quad 3.573$ 868. $0.607 \quad 7.564 \quad 6.848 \quad 3.694$ $\begin{array}{llllll}8860 & 0.629 & 7.853 & 7.072 & 3.816\end{array}$ $\begin{array}{llllll} & 9050 & 0.651 & 8.155 & 7.305 & 3.944\end{array}$ $\begin{array}{llllll}923 . & 0.674 & 8.468 & 7.545 & 4.077\end{array}$

forced convection boiling

RUN No. ós. 0 WATER test section no. 1
FLOW RATE,W=1228. LBS/HR MASS VELOCITY,G $=111.0$ LES/SEC.SQFT POWLR $=9.84$ KILOWATTS HEAT FLUX, $Q=31468$. ETU/HR.SQFT
REYNOLDS NO. = 37023. TEMPERATURE BEFORE FLASH= 279.6 F VELOCITY BEFORE FLASH= 1.5 FT/SEC

 $3.0020 .17 \quad 237.7 \quad 235.6 \quad 2.11228 .4 \quad 7.22 \quad 4361$.
 $4.0019 .24234 .9232 .8 \quad 2.11225 .9 \quad 6.934542$. $4.5016 .73233 .2231 .1 \quad 2.11234 .50 .59$

 $63.38 \quad 56.1 .9684 \quad 2.364$ 937. 0.1333 14802. . 00477 71.0950 .1 . 9706 2.443 957. 0.1372 15213. .00489 79.8264 .5 . 9727 2.525 977. 0.1412 15628. . 00501 89.8569 .2 . 9747 2.611 997. 0.145315053 . . 00514 769.0.0.497 $6.094 \quad 5.685 \quad 3.066$ 786. $0.51533 .323 \quad 5.869 \quad 3.164$ $804.0 .530 \quad 6.559 \quad 6.056 \quad 3.264$ $\begin{array}{llllll}821 & 0.548 & 6.802 & 6.249 & 3.367\end{array}$ $\begin{array}{lllll}839 & 0.566 & 7.054 & 6.448 & 3.474\end{array}$ $\begin{array}{lllllll}856 & 0.584 & 7.312 & 6.650 & 3.584\end{array}$ $\begin{array}{llllll}874 . & 0.604 & 7.586 & 6.864 & 3.700\end{array}$ $\begin{array}{llllll}892 . & 0.625 & 7.874 & 7.087 & 3.822\end{array}$ $\begin{array}{llllll}909 . & 0.647 & 8.169 & 7.314 & 3.947\end{array}$ $\begin{array}{lllllllllllll}0 . & 107.4 & .9841 & 3.248 & 1111 . & 0.1740 & 18882 . & .00596 & 928 . & 0.670 & 8.478 & 7.551 & 4.078 \\ 0 . & 115.8 & .9854 & 3.376 & 1128 . & 0.1795 & 19400 . & .00621 & 945 . & 0.693 & 8.794 & 7.793 & 4.212\end{array}$
forced convection bolling

```
RUN no. 67.0 water test section no. 1
FLOW RATE,W=1137. LBS/HR MASS VELOCITY,G= 111.9 LbS/SEC.SQFT POWER= 9.84 KILOWATTS hEAT FLUX,Q= 31468. bTU/HR.SQFI
REYNOLDS NO.= 37270. TEMPERATURE BEFORE FLASH= 294.5 F VELOCITY BEFORE FLASH= 1.5 FT/SEC
```


 819. $0.533 \quad 6.708 \quad 6.174 \quad 3.3$ 2े5 827. $0.541 \begin{array}{lllll} & 5.820 & 6.263 & 3.373\end{array}$ $\begin{array}{lllll}842 & 0.558 & 7.051 & 6.444 & 3.470\end{array}$ $\begin{array}{llllll}858, & 0.574 & 7.287 & 6.630 & 3.571\end{array}$ 874. $0.592 \quad 7.532 \quad 6.821 \quad 3.675$ $\begin{array}{llllll}890 & 0.610 & 7.788 & 7.020 & 3.783\end{array}$ $\begin{array}{lllll}906 . & 0.629 & 0.054 & 7.225 & 3.896\end{array}$ $\begin{array}{lllll}\text { 922. } & 0.649 & 8.331 & 7.438 & 4.014\end{array}$ 939. $0.670 \quad 8.619 \quad 7.659 \quad 4.156$ 955. $0.692 \quad 8.916$ 7.885 40262 $\begin{array}{llllll}972 . & 0.715 & 9.225 & 8.119 & 4.393\end{array}$ $\begin{array}{llllll}988 . & 0.738 & 9.542 & 8.357 & 4.527\end{array}$

RUN NO.100.0 WATER

 TEST SECTION NO. 1 REYHOLDS HO.: 55736. TEMPERATURE beFore FLaSh= 241.5 F VELOCITY defort flashe 2.1 fi/SEC

$\begin{array}{llllllllllllll}\text { Veloc alpha } & 01 & 02 & 03 & 04 & 05 & 06 & 07 & \text { Q8 } & \text { E4 } & \text { Q9 E4 } & \text { Q10E4 }\end{array}$ $\begin{array}{llllllllllll} & 23.9 .8864 & 1.175 & 626.0 .0652 & 10419 & .00232 & 538 & 0.246 & 2.717 & 2.779 & 1.404\end{array}$
 28.9 . 9065 1.288 675. 0.0710 11356. .00251 581 . 0.270 3.025 3.0531 .535
 0. 36.2 .9255 1.431 733. 0.0781 12511. .00273 $633.0 .300 \quad 3.423 \quad 3.400 \quad 1.704$

0. 44.2 .9393 1.572 786. 0.0850 13615. .00294 $681.0 .330 \quad 3.821 \quad 3.7411 .873$ $\begin{array}{llllllllllllllll}33.64 & 48.5 & .9448 & 1.543 & 8110 & 0.0884 & 141490.00305 & 703 . & 0.344 & 4.018 & 3.908 & 1.957\end{array}$
 $\begin{array}{lllllllllllllllllllll}45.58 & 58.2 & .9544 & 1.793 & 860.0 .0955 & 15253 . & .00326 & 749 . & 0.375 & 4.434 & 4.257 & 2.134\end{array}$

forced convection bolling

```
RUN NO.100.1 WATER TEST SEGTLON NO. 1
FLOW RATE,W=16B0. LBS/HR MASS VELOCITY,GE 165.3 LIOS/SLC.SGFT POWLR= 7.64 KILOWATTS HEAT FLUX,Q= 24429. dTU/HR.SUFT
```

REYNOLDS NO. $=$ 56206. TEMPERATURE before FLASH= 241.2 F VELOCITY GEFORE FLASH= $2.1 \mathrm{Ft} / \mathrm{SEG}$

$\begin{array}{lllll}536.0 .243 & 2.072 & 2.739 & 1.363\end{array}$

 0. $35.4 .92301 .412-2240.0760$ 12430. 00200 $\begin{array}{llllllll}0 . & 38.6 & .9294 & 1.469 & 7460 & 0.0797 & 12899 & .00277\end{array}$ 0. $42.6 \cdot 936312.540 \quad 77400.0531 \quad 13452$. .00287 0. 46.7 . 9420 1.608 799, 0.0865 13982. . 00297 627. $0.295 \quad 3.341 \quad 3.329 \quad 1.668$ $\begin{array}{llllll}646 & 0.207 & 3.507 & 3.472 & 1.738\end{array}$ $\begin{array}{llllll}672 . & 0.322 & 3.703 & 3.641 & 1.822\end{array}$ $\begin{array}{llllll}695 . & 0.336 & 3.695 & 3.004 & 1.903\end{array}$ $\begin{array}{lllll}717, & 0.350 & 4.089 & 3.967 & 1.965\end{array}$ $\begin{array}{llllll}738 . & 0.365 & 4.283 & 4.130 & 2.068\end{array}$ $\begin{array}{llllll}760 . & 0.330 & 4.486 & 4.299 & 2.154\end{array}$ 782. $0.0 .395 \quad 4.695 \quad 4.472 \quad 2.243$ $804.0 .411 \quad 4.913 \quad 4.652 \quad 2.336$

forced convection boiling

RUN NO.101.0 WATER	test section no. 1		
FLOW RATE, W=1675. LBS/HR	MASS VELOCITY,G $=164.6$ LBS/SEC.SAFT	POWER $=7.59$ KILOWATTS	HEAT FLUX,0 $=24269$. gTU/hr.SQFT
REYMOLDS NO. $=36822$.	TEMPERATURE BEFORE FLASH $=254.0$	velocity before flashe	2.1 ft/SE

 $\begin{array}{llllllllllllllllllllllllllllll}2.50 & 20.93 & 238.3 & 236.7 & 1.62 & 230.1 & 6.58 & 3690 & 1136 . & 3.25 & 3.16 & 0323 & 0.849 & 5590.00616 & 0.427 & 0.0490 & 0.0771 & 1.59 & 0.0159 & 0 .\end{array}$

 0. 36.2 .9250 1.397 762.0 .0775 12618. . 00276 647. 0.300 3.498 3.4641 .735 0. 38.0 .92861 .429 775.0.0791 12878. .00281 659.0 .307 3.592 $3.545 \quad 1.774$ 0. 41.6 .93491 .491 800. 0.0821 13382. . 00291 $681.0 .321 \quad 3.775$ 3.702 1.852 0. $45.5 .9406 \quad 1.556 \quad 82400.0853$ 13890. . 00300 0. 49.7 . 9458 2.623 8490.0.0885 14407. . 00310 0. 54.2 .9504 1.691 872. 0.0917 14922, .00320
 703. $0.335 \quad 3.964 \quad 3.362 \quad 1.932$ 725. $0.349 \quad 4.159 \quad 4.027 \quad 2.016$ $\begin{array}{llllll}746 . & 0.364 & 4.357 & 4.192 & 2.099\end{array}$
 49.4969 .6 .9617 1.908 939.0 .1018 164940.00349 810. 0.409 4.975 $4.703 \quad 2.362$ $\begin{array}{lllllllllllllll}55.59 & 75.5 & .9848 & 1.985 & 961 . & 0.1053 & 17027 . & .00359 & 830.0 .425 & 5.191 & 4.879 & 2.454\end{array}$ $62.19 \quad 81.8 .9677 \quad 2.065 \quad 982.0 .108917566$. .00369 851. $0.441 \quad 5.410 \quad 5.057 \quad 2.547$

forced convection boiling
RUN No.102.0 WATER
test section no. 1
FLOM RATE,WE1675. LBS/HR MASS VELOCITY,G= 164.8 LBS/SEC.SQFT PONER $=7.67$ KILOWATTS HEAT FLUX,Q $=245350$ bTU/HR.SGFT REYNOLDS NO. $=$ 55546. TEMPERATURE BEFORE FLASH=240.1 F VELOCITY bEFORE FLASH= $2.1+\mathrm{t} / \mathrm{SEC}$

 0.01050 .23414 .1825 .9 .8942 1.223 640.0.0673 10822. .00237

 $\begin{array}{lllll}554 & 0.255 & 2.803 & 2.856 & 1.440\end{array}$ $\begin{array}{lllll}567 . & 0.262 & 2.896 & 2.939 & 1.480\end{array}$ $\begin{array}{lllll}592 . & 0.276 & 3.081 & 3.102 & 1.559\end{array}$ $616.0 .289 \quad 3.265 \quad 3.6631 .637$ 640. $0.305 \quad 3.446 \quad 3.420 \quad 1.714$ 662. $0.317 \begin{array}{lllll}3.630 & 3.578 & 1.792\end{array}$ $\begin{array}{llllll}684 & 0.330 & 3.814 & 3.735 & 1.870\end{array}$ $\begin{array}{llllll}706 & 0.344 & 3.999 & 3.892 & 1.949\end{array}$ 727. $0.358 \quad 4.189 \quad 4.052 \quad 2.030$ $\begin{array}{lllll}750 . & 0.373 & 4.393 & 4.222 & 2.116\end{array}$ 772. $0.389 \quad 4.6074 .401 \quad 2.206$ $\begin{array}{llllll}797 & 0.407 & 4.844 & 4.595 & 2.308\end{array}$

forced convection boiling

run no.io3.0 hater test section no. 1
FLOW RATE,W=1670. LES/hR MASS VELOCITY,G= 164.3 LUS/SEC.SQFT POWER= 7.64 KILOWATTS hEAT FLUX, $0=24429$. BTU/HR.SQFT
REYNOLDS NO. $=$ 57970. TEMPERATURE BEFORE FLASM=274.9 + VELOCITY yEfore FLASH= 2.2 FT/SEC

forced convegtion boiling

RLi: No. 104 -0 WATER TESt SECTION NO. 1

REYNOLDS NO. $=$ 58005. TEMPERATURE BEFORE FLASH= 302.3 F VELOCITY before FLASH= 2.2 FT/SEC

RUN NO.105.0 WATER TEST SECTION NO. 1

FLOW RATE.W=1675. LES/HR MASS VELOCITY.G= 164.B LBS/SEC.SQFT POWER $=7.64$ KILOWATTS HEAT FLUX,Q $=24426$. BTU/HR.SQFT
REYNOLUS NO. $=$ 58c94. TEMPERATURE before flashe 320.9 F VELOCity before flashe 2.2 fi/SEC

forced convection boiling

RUN NO.106.0 WATER TEST SECTION NO. 1

FLOW RATE,W=2720. LBS/HR MASS VELOCITY,G $=267.7$ LBS/SEC.SQFT POWER $=14.00 \mathrm{KILOWATS}$ HEAT FLUX, Q $=44778$. bTU/HR.SQFT

$2.84 \quad 16.30 .7240 \quad 0.814632 .0 .043411007 .00142$ $4.52 \quad 20.8 .78500 .933$ 71400.0493 12593. . 00160 0.86 25.8 .8264 1.041 797. 0.0547 14022. .00176 $10.5231 .2 .8568 \quad 1.145$ 854. 0.0598 15368. . 00191 16.87 37.7.8819 1.257 923. 0.0651 16787. . 00206 8.92 45.8 . 9030 2.381 9930.0.0710 18313. . 0022 0. 55.5 .9204 1.517 1063. 0.0772 19916. . 20239
$\begin{array}{lllll}549 . & 0.166 & 1.686 & 1.825 & 0.996\end{array}$ $\begin{array}{lllll}621 . & 0.187 & 1.948 & 2.077 & 1.108\end{array}$ 685. $0.207 \quad 2.198 \quad 2.312 \quad 1.014$ 745. $0.227 \quad 2.445$ 2.535 $\quad 1.319$ $\begin{array}{llllll}806 . & 0.248 & 2.716 & 2.784 & 1.434\end{array}$ $\begin{array}{llllll}870 . & 0.271 & 3.017 & 3.052 & 1.562\end{array}$ $\begin{array}{llllll}935 & 0.297 & 3.344 & 3.338 & 1.701\end{array}$

forced convection boiling

RUN NO.107.0 WATER TEST SECTION NO. 1

reynolos no. = 99257. TEMPERATURE before flash= 247.3 F VELOCity before flash $=3.5 \mathrm{FT} / \mathrm{SEC}$

$7.07 \quad 14.5$. $6862 \quad 0.733$ 646. 0.0405 10485. .00138 $7.38 \quad 16.6 \quad .7255 \quad 0.793$ 693. 0.0436 11327. . 00148 $8.25 \quad 20.8 \quad .7815 \quad 0.898 \quad 775$. 0.0491 12806. . 00165 9.41 25.1 . 8194 0.991 844. 0.0538 14094. . 00179 10.9829 .2 .8449 1.069 902. 0.0578 15168. . 00191 12.96 34.4 . 8687 1.160 965. 0.0623 16391. . 00205 15.73 39.4.0859 1. 241 101900.0662 174610.00217 19.51 45.4.9013 1.329 1075.0.0705 18604, .00229 24.0352 .0 .9140 1.418 1129.0.0747 19736. . 00241 $\begin{array}{lllllll}958 . & 0.289 & 3.386 & 3.376 & 1.724\end{array}$ $\begin{array}{lllll} & 0.308 & 3.640 & 3.595 & 1.83\end{array}$

Run no. 198.0 mater

forced convection boiling

run no.198.0 water test section no. 1
FLOW RATE, W=2800. LBS/HR MASS VELOCITY,G=275.5 LDS/SEC.SQFT POWER= 14.10 KILOWATTS hEAT FLUX, $Q=45091$, BTU/HK. SUFT
REYNOLDS NO. $=109577$. TEMPERATURE betFORL FLASH= 280.7 F VELOCITY OEFORE FLASH= 3.6 fT/SEC

$26.70 \quad 37.4$. 8767 1.122 1141. 0.0634 17472. . 00222 909. 0.248 3.033 $3.067 \quad 1.570$

 65.85 97.3.9542 1.001 1540. 0.0956 26030. .00315 $1260.0 .398 \quad 5.0324 .775 \quad 2.426$ 73.86 109.5.9595 1.908 1582. 0.1002 27202. . 00326 1302. 0.421 b.357 $5.024 \quad 2.556$

RUN NO.109.0 WATER

 TEMPERATURE before flashe 309.0 F VELOCITY before flash $3.6 \mathrm{Ft} / \mathrm{SEC}$

forced convection botling

RUN No. 110.0 WATER TEST SECTION NO. 1

 REYNOLDS No. = 125527. TEMPERATURE BEFORE FLASH= 251.3 F VELOCITY BEFORE FLASH= 4.3 FT/SEC

 $\begin{array}{llll}3.100 & 3.116 & 1.553\end{array}$

forced convection boiling

RUN No.111.0 WATER TEST SECTION NO. 1
FLOW RATE, W=3270. LES/HR MASS VELOCITY,G= 321.8 LBS/SEG.SQFT POWER $=24.05$ KILOWATTS hEAT FLUX,Q $=$ '4944. BTU/HR.SQFT REYNOLDS NO. $=129609$, TEMPERATURE BEFORE FLASH= 273.7 F VELOCITY before fLaSh $=4.2$ ft/SEC

 $0.09 \quad 17.3 .0765 \quad 0.600667 .0 .033510688 .00120 \quad 555.0 .1311 .444$ 1.585 0.0 .772 $8.74 \quad 18.9 .7029 \quad 0.632$ 698. 0.035211236. . 00125 9.42 20.4.7255 0.662 726. 0.0367 11754. . 00130 10.10 21.9 . 7451 0.690 753. 0.0382 12242, .00135 $11.58 \quad 25.4$. 77980.748 806. 0.041113227 . 00144 13.17 29.0.0.8077 0.804 856. 0.0440 14165. . 00153 $14.92 \quad 33.0 .8316 \quad 0.861$ 903. 0.0468 15094. . 00162 $16.83 \quad 37.4 .85170 .917$ 950. 0.0496 16012. .00170 18.9242 .4 . 8693 0.976 995. 0.0524169440 .00179 21.26 47.7. . 8843 1.035 1039. 0.0552 17873. .00187 23.8353 .9 . 8978 1.099 1084.0.0583 18853. . 00196 $26.65 \quad 60.9$. 9098 1.168 1129. 0.0615 19881. . 00205
$\begin{array}{lllll}581 . & 0.138 & 1.333 & 1.671 & 0.810\end{array}$ 605. $0.145 \begin{array}{lllll}1.618 & 1.753 & 0.846\end{array}$ 628. 0.151 1.700 $1.831 \quad 0.881$ 673. 0.1651 .8701 .9810 .95 $\begin{array}{lllll}716 . & 0.178 & 2.037 & 2.147 & 1.024\end{array}$ 757. $0.192 \quad 2.210 \quad 2.306 \quad 1.097$ 798. $0.205 \quad 2.385 \quad 2.465 \quad 1.172$ $\begin{array}{lllll}838 . & 0.219 & 2.568 & 2.630 & 1.250\end{array}$ $\begin{array}{lllll}877 . & 0.234 & 2.755 & 2.796 & 1.329\end{array}$ 918. $0.249 \quad 2.955 \quad 2.972 \quad 1.414$ $\begin{array}{llllll}960 . & 0.265 & 3.166 & 3.157 & 1.504\end{array}$

RUN NO.113.0 WATER
TEST SECTION NO. 1
REYNOLDS NO. $=132588$. TEMPERATURE BEFORE FLASH=270.1 F VELOCITY BEFORE FLASH= 4.4 FT/SEC

$15.1426 .8 .7898 \quad 0.749874 .0 .0420 \quad 13778, .00151$ $15.53 \quad 28.6$. $8029 \quad 0.775$ 898. 0.0433 14225. . 00155 $\begin{array}{lllllllllllll}15.97 & 30.4 & 08148 & 0.801 & 9220.0 .0447 & 14664 * & 00159\end{array}$ $17.113402 .8358 \quad 0.852$ 967. 0.0472 155260.00167 18.63 38.2.8535 0.902 1011. 0.0498 16367. . 00175 20.53 42.6. $8687 \quad 0.953105300 .0523$ 17198. . 00183 22.9147 .3 . 8821 2.004 1094. 0.0548 18031. . 00190 $25.9052 .4 \quad .8939 \quad 1.058113400 .0573$ 18877. . 00198 29.4358 .5 .9052 1.118 1177.0.0602 19808. .00206 $33.58 \quad 65.3$. 9154 1.183 1220. 0.0632 20783. . 00215 38.33 73.7.9253 1.256 126400.0665 21841. . 00224

$\begin{array}{lllll}693 . & 0.166 & 1.917 & 2.036 & 0.974\end{array}$ 714. $0.1721 .998 \quad 2.121 \quad 1.008$ 734. $0.179 \begin{array}{lllll}2.080 & 2.187 & 1.043\end{array}$ 754. $0.185 \quad 2.163 \quad 2.26310078$ $\begin{array}{lllll}\text { 793. } 0.0 .198 & 2.327 & 2.412 & 1.148\end{array}$ $\begin{array}{lllll}\text { 831. } 0.210 & 2.491 & 2.560 & 1.218\end{array}$ $\begin{array}{lllll}\text { 867. } & 0.223 & 2.656 & 2.708 & 1.288\end{array}$ $\begin{array}{lllll}903 . & 0.236 & 2.825 & 2.858 & 1.360\end{array}$ 938. $0.249 \quad 2.999 \quad 3.011 \quad 1.434$ $\begin{array}{llllll}977 . & 0.264 & 3.192 & 3.179 & 1.516\end{array}$ 1017. 0.2793 .396
forced gonvection bolling
RUN NO.114.0 WATER
test section no. 1
FLOW RATE,W=3292. LBS/HR MASS VELOCITY,G= 324.0 LBS/SEC.SQFT POWER= 5.08 KLLOWATTS HEAT FLUX,Q $=16246$. ©TU/HR.SQFT REYMOLDS NO. = 121155. TEMPERATURE before fLASH= 254.0 F VELOCITY before fLASH= 4.2 Fi/SEC

$\begin{array}{lllllllll}11.77 & 21.7 & .7479 & 0.585 & 6000 & 0.0322 & 10057 & .00119\end{array}$ 11.89 23.1 $17640 \quad 0.607$ 619. 0.0333 10416. .00123 $12.03 \quad 2400.7778 \quad 0.627 \quad 636 \cdot 0.0343$ 10747. . 00126 $\begin{array}{lllllllllll}12.19 & 26.0 & 0.7907 & 0.647 & 553 . & 0.0354 & 11080 . & .00130\end{array}$ $\begin{array}{llllllllll}12.58 & 29.1 & .8131 & 0.687 & 685 & 0.0374 & 11723 . & 00136\end{array}$ $13.07 \quad 32.3$. $8319 \quad 0.726$ 715. 0.0393 12340. . 00142 $13.69 \quad 35.9 .8488 \quad 0.766 \quad 74600.041212967 .00148$ $14.45 \quad 39.3 .8620 \quad 0.802 \quad 172.0 .0430$ 13526. .00154 15.53 43.1. 87450.841 799.0.0448 14118. .00160 $17.17 \quad 47.3 .8859 \quad 0.881$ 827. $0.0468 \quad 14728.000165$ 20.37 52.3 . 8971 0.927 855. 0.0489 15404, . 00172 $25.93 \quad 58.3$. $9078 \quad 0.978 \quad 887 \cdot 0.0512$ 16146. . 00179 $33.16 \quad 56.2 \cdot 9191 \quad 1.042 \quad 923 \cdot 0.054117051 \cdot .00187$

Q6 $\quad 67$ QS E4 Q9 E4 Q10E4 $\begin{array}{lllll}\text { 497. } & 0.154 & 1.471 & 1.606 & 0.711\end{array}$ $\begin{array}{lllll}515: & 0.141 & 1.549 & 1.681 & 0.744\end{array}$ $\begin{array}{lllll}531.0 .147 & 1.622 & 1.720 & 0.775\end{array}$ $\begin{array}{lllll}546 & 0.152 & 1.691 & 1.815 & 0.804\end{array}$ $\begin{array}{lllll}561 . & 0.158 & 1.760 & 1.860 & 0.834\end{array}$ $\begin{array}{lllll}590 . & 0.168 & 1.897 & 2.008 & 0.892\end{array}$ $\begin{array}{lllll}617 . & 0.179 & 2.032 & 2.132 & 0.949\end{array}$ $\begin{array}{lllllllll}04.4 .0 .190 & <.171 & 2.259 & 1.008\end{array}$ 669. $0.199 \quad 2.298 \quad 2.374 \quad 1.062$ $\begin{array}{lllll}594 & 0.210 & 2.434 & 2.496 & 1.120\end{array}$ 19. $0.221 \quad 2.577 \quad 2.623$ 1.181 $\begin{array}{lllll}\text { 747. } & 0.233 & 2.736 & 2.765 & 1.249\end{array}$ 77. $0.246 \quad 2.915 \quad 2.921 \quad 1.325$ $\begin{array}{lllll}813 . & 0.263 & 3.137 & 3.114 & 1.419\end{array}$

RUN NO.115.0 WATER

forced convection boiling

 TEST SECTION NO. 1 REYNOLOS MO. $=127448$, TEMPERATURE blFORL FLASHE 276.8 F VELOCLTY blfore fLASH= 4.2 ft/SES

RUN NO.116.0 WATER TEST SECTION NO. 1

REYNOLDS NO. = 95490. TEMPERATURE before flash= 242.2 F VELOCity before flashe 3.5 Ft/SEC

 4.0020 .75238 .1236 .9 1.12 230.5 6.43 2599. 1711. 1.52 1.50.0171 1.531 394. .00264 $0.1790 .02040 .03601 .590 .0390 \quad 0.710$

 $\begin{array}{lllll}502 . & 0.160 & 1.747 & 1.871 & 0.847\end{array}$ $\begin{array}{lllll}\text { 517. } & 0.166 & 1.823 & 1.942 & 0.879\end{array}$ 531. $0.172 \quad 1.897 \quad 2.010 \quad 0.911$ $11.98 \quad 27.1 .83290 .783 \quad 620 \cdot 0.042010952$. 00150 $\begin{array}{lllllllll}12.28 & 30.2 & .8504 & 0.828 & 648 & 0.0442 & 11543 & .00157\end{array}$ $12.79 \quad 33.4 \quad .8651 \quad 0.872 \quad 675 \cdot 0.0463121060 .00163$ $13.55 \quad 36.8$. $87760.914 \quad 700 \cdot 0.048412654 \cdot .00170$ $\begin{array}{lllllllll}14.02 & 40.4 & 08880 & 0.957 & 725 & 0.0504 & 13206 & .00176\end{array}$ 16.19 44.4.8989 1.003 750.0.0526 13769. .00182 18.2248 .9 . 90841.051 776. 0.0548 14363. . 00189 $20.44 \quad 53.9 .9171 \quad 1.102 \quad 80300.0572$ 14980. . 00196 $\begin{array}{llllllll}22.81 & 59.5 & .9251 & 1.157 & 829 & 0.0597 & 15625 & .00203\end{array}$ $\begin{array}{lllll}545 & 0.178 & 1.971 & 2.079 & 0.942\end{array}$ $\begin{array}{lllllll}571 . & 0.189 & 2.113 & 2.208 & 1.002\end{array}$ $\begin{array}{llllll}596 & 0.200 & 2.251 & 2.335 & 1.061\end{array}$ $\begin{array}{lllll}620 & 0.210 & 2.388 & 2.459 & 1.119\end{array}$ $\begin{array}{llllll}643 . & 0.221 & 2.528 & 2.584 & 1.179\end{array}$ $\begin{array}{lllll}667 . & 0.232 & 2.674 & 2.734 & 1.241\end{array}$ $\begin{array}{llllll}691 . & 0.244 & 2.831 & 2.852 & 1.308\end{array}$ $\begin{array}{lllll}716 . & 0.256 & 2.996 & 2.996 & 1.378\end{array}$ $\begin{array}{llllll}742 & 0.269 & 3.170 & 3.147 & 1.452\end{array}$ $\begin{array}{llllll}769 . & 0.283 & 3.357 & 3.308 & 1.531\end{array}$

forced convection botling

RUH NO.117.0 WATER test section no. 1
FLOW RATE, W=2763. LBS/HR MASS VELOCITY,G=271.9 LBS/SEG.SQFT POWER= 5.20 KILOWATS HEAT FLUX,Q= 26645. BTU/HR,SOFT REYNOLDS NO $=103338$. TEMPERATURE bEFORE FLASH= 270.3 F VELOCITY BEFORE FLASH= 3.6 FT/SEC

 $\begin{array}{llllll}693 & 0.233 & 2.769 & 2.797 & 1.282\end{array}$

 $\begin{array}{llllllllllllllllllllllllll}3.50 & 28.03 & 251.5 & 250.4 & 1.11 & 246.4 & 3.95 & 4214 . & 1755 & 2.40 & 2.34 & .0297 & 1.047 & 637 & .00425 & 0.179 & 0.0155 & 0.0567 & 1.47 & 0.0380 & 1.510\end{array}$

 $\begin{array}{lllll}7040 & 0.238 & 2.835 & 2.855 & 1.310\end{array}$ $\begin{array}{lllllllllllll}26.43 & 45.6 & .9007 & 0.956 & 865 & 0.0529 & 14234 . & 00196 & 724 . & 0.248 & 2.972 & 2.975 & 1.368\end{array}$ $28.4849 .4 \quad .90860 .994887 .0 .054814720 . .00202$ $31.19 \begin{array}{lllll}53.6 & 9160 & 1.034 & 910.0 .0567 & 15231 .\end{array} .00208$ $\begin{array}{lllll}745 & 0.259 & 3.113 & 3.098 & 1.428\end{array}$ $\begin{array}{lllll}766 & 0.270 & 3.264 & 3.228 & 1.492\end{array}$ $\begin{array}{llllll}35.44 & 58.2 & .9228 & 1.077 & 9320 & 0.0587 \\ \text { 15757. . } 00214\end{array}$ $39.75 \quad 63.7$.9297 1.127 957. 0.0610 16360. .00221 $43.70 \quad 70.0$. $93621.181 \quad 98300.0635$ 17007. . 00228 $.597 \quad 3.513$ 1.634 $\begin{array}{llllll}837 . & 0.308 & 3.788 & 3.675 & 1.715\end{array}$ 863. $0.323 \quad 3.992 \quad 3.846 \quad 1.802$ 890. $0.0 .339 \quad 4.213 \quad 4.030 \quad 1.896$ $\begin{array}{lllllllllll}919 & 0.356 & 4.450 & 4.227 & 1.997\end{array}$
RUN NO.113.0 WATER

forced convection boiling

FLOW RATE,W= 913. L8S/MR MASS VELOCITY,G= 89.8 LBS/SEC.SQFT POWER= S.11 KILOWATTS hEAT FLUX,Q= 16342 . bTU/HR.SGFT

$\begin{array}{lllllll}\text { Q6 } & \text { Q7 } & \text { Q8 } & \text { E4 } & \text { Q9 } & E 4 & \text { Q10E4 }\end{array}$ $422.0 .329 \quad 3.596 \quad 3.562 \quad 1.831$ 430. 0.330 3.081 $\quad 3.644 \quad 1.871$ $\begin{array}{lllll}437 & 0.343 & 3.785 & 3.725 & 1.911\end{array}$ $\begin{array}{llllll}445 & 0.350 & 3.879 & 3.804 & 1.951\end{array}$ 452. $0.0 .357 \quad 3.972 \quad 3.883 \quad 1.991$ $\begin{array}{lllllll}466 & 0.370 & 4.155 & 4.038 & 2.069\end{array}$ $\begin{array}{lllll}479 . & 0.383 & 4.337 & 4.191 & 2.146\end{array}$ $\begin{array}{llllll}492 & 0.396 & 4.517 & 4.341 & 2.222\end{array}$ 505. $0.409 \quad 4.696 \quad 4.490 \quad 2.299$ $\begin{array}{lllll}517 . & 0.422 & 4.874 & 4.637 & 2.375\end{array}$ $\begin{array}{llllll}529 . & 0.435 & 5.056 & 4.786 & 2.452\end{array}$ $\begin{array}{llllll}540 . & 0.448 & 5.233 & 4.931 & 2.527\end{array}$ $\begin{array}{llllll}552 . & 0.461 & 5.413 & 5.077 & 2.603\end{array}$ 563. $0.473 \quad 5.592 \quad 5.222 \quad 2.600$

forced convection bolling

RUN NO.119.0 WATER test section no. 1
FLOW RATE, W= 915. LBS/HR MASS VELOCITY,G $=90.0$ LBS/SEC.SOFT POWER= 5.21 KILOWATIS HEAT FLUX,Q $=16658$. BTU/HR.SQFT REYNOLDS NO. $=28829$. TEMPERATURE before flaSti= 284.4 F VELOCity before flash= 1.2 ft/sec

forced convection boiling

RUN NO.120.0 WATER TEST SECTION NO.

FLOW RATE, $=939$. LES/HR MASS VELOCITY,G $=92.4$ LGS/SEC. OQFT POWLR $=14.43$ KILOWATTS HEAT FLUX,Q $=46134$. BTU/HR.SQFT REYMOLUS 0.0 30430. TEMPLPATURE before flashe $240.6+$ VELOCity before flash= 1.2 ft/sec

$\begin{array}{llllll}582 & 0.447 & 4.639 & 4.588 & 2.80\end{array}$ $\begin{array}{llllll}605 . & 0.463 & 4.858 & 4.774 & 2.895\end{array}$ 626. $0.4785 .0694 .953 \quad 2.985$ $\begin{array}{llllll}666 . & 0.507 & 5.477 & 5.295 & 3.159\end{array}$ 703. $0.536 \quad 5.877 \quad 3.525 \quad 3.329$ 737. $0.564 \begin{array}{lllll}6.272 & 5.948 & 3.497\end{array}$ 769. $0.50 .5936 .662 \quad 6.263 \quad 3.662$ 800. $0.021 \quad 7.053 \quad 6.576 \quad 3.829$ $\begin{array}{llllll}829 . & 0.650 & 7.446 & 6.887 & 3.995\end{array}$ 857. $0.680 \quad 7.850 \quad 7.2034 .157$ $\begin{array}{lllll}8840 & 0.710 & 8.258 & 7.523 & 4.340\end{array}$ $\begin{array}{lllll}910 . & 0.742 & 8.676 & 7.847 & 4.517\end{array}$
run no.121.0 water test section no. 1
FLOW RATE,W= 904. LBS/HR MASS VELOCITY,G= 89.0 LBS/SEC.SQFT POWER= 14.39 KILOWATTS HEAT FLUX, $=46026$. BTU/HR.SQF:
REYNOLDS NO. = 29339. TEMPERATURE BEFORE FLASH=287.5 F VELOCITY BEFORE FLASH= 1.2 FT/SEC

 forced convection bohling
RUN NO. $2: 0.0$ WATER TEST SECTION NO. 2

REYNOLDS NO. = 56064 . TEMPERATURE BEFORE FLASH= 237.3 F VELOCITY BEFORE FLASH= 1.3 FI/SEC

 3.61 9.5.5733 0.565 377.0.0333 5036. .00127 3.6911 .2 .03590 .050 416. 0.0369 5007. .00140 $4.53 \quad 13.9 .7090 \quad 0.722470 .0 .0420 \quad 6424 \mathrm{C}$. 00158 $5.45 \quad 16.9 .7596 \quad 0.804518 .0 .0465$ 7142. . 00173 $6.37 \quad 19.8 .7955 \quad 0.876$ 559. 0.0504 1771. . 00186 | 7.63 | 22.8 | .8228 | 0.943 | 596.0 .0539 | 8347. |
| :--- | :--- | :--- | :--- | :--- | :--- | 9.02 26.0.8450 1.008 632. 0.0574 8903. . 00210 12.61 35.0.8781 1.132 696. 0.0639 9949. .00232 $\begin{array}{llllll}17.27 & 40.8 & .9018 & 1.254 & 756 & 0.0702 \\ 109540.00252\end{array}$ 23.8650 .0 .92021 .383 814.0.0767 11970. .00273 $\begin{array}{llllllll}33.63 & 61.5 & .9354 & 1.527 & 873 & 0.0837 & 13063 . & 00294\end{array}$ $45.6976 .1 .5482 \quad 1.694$ 933. 0.0916 14263. .00318 54.16 86.3. 9545 1.801 967. 0.0966 14997. .00332 68.21 98.9.9604 1.928 1003. 0. 1023 15829. . 00347 75.99 108.0.9639 2.016 1026.0.1061 16387. .00358 281. $0.127 \quad 1.2681 .409 \quad 0.797$ $310.0 .139 \quad 1.407 \quad 1.550 \quad 0.857$ $\begin{array}{lllll}351 . & 0.157 & 1.618 & 1.758 & 0.946\end{array}$ $\begin{array}{llllll}387 . & 0.173 & 1.814 & 1.948 & 1.030\end{array}$ $\begin{array}{lllll}418 . & 0.187 & 1.994 & 2.119 & 1.107\end{array}$ $\begin{array}{lllll}\text { 446. } & 0.201 & 2.165 & 2.279 & 1.179\end{array}$ $\begin{array}{lllll}473 . & 0.214 & 2.336 & 2.436 & 2.252\end{array}$ $\begin{array}{lllll}523 . & 0.240 & 2.671 & 2.740 & 1.394\end{array}$ $\begin{array}{lllllllll}569 . & 0.266 & 3.007 & 3.039 & 1.537\end{array}$ 615. $0.293 \quad 3.362 \quad 3.350 \quad 1.688$ 662. $0.323 \quad 3.756 \quad 3.688 \quad 1.856$ 712. $0.357 \quad 4.202 \quad 4.066 \quad 2.045$ 742. $0.378 \quad 4.480 \quad 4.297 \quad 2.163$ 774. $0.403 \quad 4.798 \quad 4.561 \quad 2.290$ 795. $0.419 \begin{array}{lllll} & 5.013 & 4.737 & 2.389\end{array}$

FORCED CONVECTION boiling

RUN No.151.1 WATER IEST SECTION NO. 2

REYNOLDS NO. $=$ 60032. TEMPERATURE BEFORE FLASH= 273.3 F VELOCITY BEFORE FLASH= 1.4 FT/SEC

$\begin{array}{llllll}506 . & 0.267 & 3.232 & 3.237 & 1.635\end{array}$ $\begin{array}{llllll}624 . & 0.278 & 3.370 & 3.357 & 1.69\end{array}$ $\begin{array}{llllll}642 & 0.288 & 3.506 & 3.474 & 1.752\end{array}$ $\begin{array}{lllll}557 . & 0.298 & 3.645 & 3.594 & 1.811\end{array}$ 690. $0.320 \quad 3.931 \quad 3.838 \quad 1.932$ 721. $0.342 \quad 4.229 \quad 4.089 \quad 2.059$ $\begin{array}{lllll}7540 & 0.365 & 4.551 & 4.358 & 2.195\end{array}$ 790. $0.392 \quad 4.911 \quad 4.654 \quad 2.348$ 828. $0.422 \quad 5.322 \quad 4.990 \quad 2.523$ 872. $0.459 \quad 5.830 \quad 5.399 \quad 2.730$ 899. $0.483 \quad 6.155 \quad 5.658 \quad 2.875$ 929. $0.512 \quad 6.538 \quad 5.962 \quad 3.039$ $\begin{array}{llllll}950 . & 0.532 & 6.814 & 6.179 & 2.156\end{array}$

forced convection boiling

RUN NO.153.0 WATER TEST SECTION NO. 2

FLOW RATE,W=2192. LGS/hR MASS VELOCITY,G= 502.0 LbS/SEC.SQFT POWER $=6.21$ kILOWATTS hEAT FLUX,Q $=36611$. BTU/HR.SQFT
REYNOLDS NO. $=127462$. TEMPERATURE BEFORE FLASH= 252.5 F VELOCITY BEFORE FLASHE 2.8 FT/SEC

 4.2530 .00263 .2260 .7 2.51 250.3 10.36 3535. 3057. 1.16 1.15 .0116 2.561 350. .00192 $0.2140 .01730 .0261 \quad 1.450 .19394 .300$

$0.18 \quad 12.6$. $3229 \quad 0.304$ 403. 0.0176 5417. .00067 $0.38 \quad 16.3 .4775 \quad 0.397 \quad 51500.0227$ 7079. .00085 $0.83 \quad 20.3 .58040 .471$ 601. 0.0266 8391. . 00099 $1.96 \quad 24.9 .6585 \quad 0.540 \quad 680.0 .0303$ 9609. .00111 $4.92 \quad 30.7$. 72310.613 759. 0.0341 10869. . 00124 $\begin{array}{lllllllll}13.27 & 40.7 & .7924 & 0.719 & 8650 & 0.0396 & 12658\end{array} .00141$ $22.17 \quad 48.4$. 8258 0.789 928. 0.0430 23775. . 0015 37.5362 .0 .86450 .896 1016. 0.0481 15440. . 00168 52.0181 .4 . 8975 1.030 1113. 0.0544 17443. .00186
297. $0.0 .067 \quad 0.698 \quad 0.822 \quad 0.421$ $\begin{array}{llllll}380 & 0.088 & 0.929 & 1.068 & 0.519\end{array}$ $\begin{array}{lllll}444 . & 0.105 & 1.131 & 1.273 & 0.605\end{array}$ $\begin{array}{lllll}503 . & 0.121 & 1.331 & 1.472 & 0.690\end{array}$ $\begin{array}{llllll}562 & 0.139 & 1.550 & 1.685 & 0.783\end{array}$ $\begin{array}{llllll}644 . & 0.166 & 1.878 & 1.995 & 0.923\end{array}$ $\begin{array}{lllll}6940 & 0.183 & 2.096 & 2.197 & 1.015\end{array}$ $\begin{array}{lllll}764 & 0.209 & 2.434 & 2.503 & 1.159\end{array}$ $\begin{array}{llllll}846 & 0.241 & 2.849 & 2.872 & 1.335\end{array}$
forceo convection boiling
RUN NO.154.0 WATER TEST SECTION NO. 2

REYMOLDS NO. $=143200$. TEMPERATURE BEFORE FLASH= 287.1 F VELOCITY dEFGRE FLASH= $2.0 \mathrm{rt} / \mathrm{SEC}$

$\begin{array}{llllllll} \\ 7.45 & 21.2 & .5965 & 0.452 & 734 & 0.0275 & 8949 & 0010\end{array}$ $\begin{array}{llllllll}7.72 & 22.6 & .6217 & 0.472 & 762 & 0.0286 & 9340 & .00114\end{array}$ $\begin{array}{llllllll}7.21 & 24.9 & .6575 & 0.504 & 806 & 0.0304 & 9942 & .00121\end{array}$ $8.75 \quad 27.4 .6890 \quad 0.535 \quad 847 \cdot 0.0321 \quad 10530.00127$ $9.35 \quad 30.0 \cdot 7159 \quad 0.365 \quad 886 \cdot 0.0338 \quad 11066 \cdot .00133$ 10.0132 .6 . $7411 \quad 0.596$ 925. 0.0355 11661. . 00139 $10.77 \quad 35.9 .7634 \quad 0.627 \quad 96000.037<122270.00143$ $12.4842 .6 .8013 \quad 0.690$ 1037. 0.040513352 . . 00156 $1+.6950 .4$. $8329 \quad 0.7561109$, 0.044014503 . . 00168 17.78 59.9.8601 0.829 1182. 0.0477 15731. . 00180 24.54 72.3. $8847 \quad 0.914$ +259. 0.0519 17115. . 00193 $30.10 \quad 89.5$. 9075 1.021 $1343 \cdot 0.0571$ 18737. 00230

RUN NO.155.0 WATER TEST SEction no. 2

REYNOLDS MO. $=144532$. TEMPERATURL BEFORE FLASH= 309.1 F VELOCITY BEFORE FLASH= 2.8 Fi/SEC

 $\begin{array}{lllllllllllllllllllllllllllllll}1.0058 .10 & 299.8 & 297.4 & 2.44 & 290.6 & 6.80 & 5338 . & 3168 . & 1.68 & 1.65 & .0231 & 1.834 & 530 . & 00300 & 0.227 & 0.0097 & 0.0376 & 1.22 & 0.1731 & 3.060\end{array}$

 4.0040 .6281 .5279 .02 .47272 .5 6.49 5589. 3005.1 .86

16.8346 .3 . 8228 0.706 1162. 0.0429 14004. . 00.173 $17.6745 .4 .8342 \quad 0.7311190 .0 .044314433$. . 00177 19.7356 .2 . $8549 \quad 0.7831246 \cdot 0.047015314$. . 00187 $22.39 \quad 64.4 .87390 .8411304 .0 .0500$ 16261. . 00197 $25.90 \quad 73.9 .8907 \quad 0.9041360 \cdot 0.053217250$. . 00207 $30.50 \quad 86.1$. $9068 \quad 0.979$ 1421. 0.0569 18386. . 00219 4.5992 .21

forced convection bolling

RUN NO.156.0 WATER test section no. 2
 REYNOLDS NO. $=$ 283318. TEMPERATURE BEFORE FLASH= 248.8 F VELOCITY GEFORE FLASH= $4.0 \mathrm{FT} / \mathrm{SEC}$

$0.15 \quad 16.1 .2305 \quad 0.215 \quad 396.0 .0131 \quad 5694 \cdot .00048$ 0.51 18.2. 3224 0.285 472. 0.0156 6890. .00057 1.27 20.9.4080 0.332 542. 0.0181 8024. .00065 $2.26 \quad 24.5 .4965 \quad 0.385 \quad 619.0 .0208$ 9295. .00074 $3043 \quad 28.9 .57370 .438 \quad 69400.0235105510 .00082$ $\begin{array}{llllllll}4088 & 34.6 & 06447 & 0.495 & 772 & 0.0264 & 11906 & .00092\end{array}$ $\begin{array}{llllll}6.17 & 40.6 & .6970 & 0.547 & 839 & 0.0289 \\ 13096 . & .00099\end{array}$
$\begin{array}{llllll}\text { a6 } & \text { O7 } & \text { Q8 } & \text { E4 } & \text { Q9 E4 OLOE4 }\end{array}$ 224. $0.0 .038 \quad 0.378 \quad 0.466 \quad 0.247$ 299. $0.051 \quad 0.512 \quad 0.621 \quad 0.303$ $\begin{array}{lllll}357 . & 0.062 & 0.628 & 0.751 & 0.353\end{array}$ $\begin{array}{lllll}\text { 411. } & 0.073 & 0.746 & 0.879 & 0.403\end{array}$ 470. $0.0850 .089 \quad 1.028 \quad 0.464$ $\begin{array}{lllll}528 . & 0.098 & 1.038 & 1.181 & 0.527\end{array}$ $\begin{array}{lllll}589 & 0.112 & 1.209 & 1.352 & 0.600\end{array}$ 641. $0.126 \quad 1.367 \quad 1.506 \quad 0.667$

RUN No.257.0 WATER
test section no.
FLOW RATE, WE 3158 . LBS/HR MASS VELOCITY,G= 723.2 LES/SEC. SOFT POWER $=6.10 \mathrm{KILOWATTS} \mathrm{MEAT} \mathrm{FLUX,Q}=35922$. BTU/HR.SQFT REYNOLDS NO. $=207440$. TEMPERATURE BEFORE FLASh $=279.1 \mathrm{~F}$ VELOCITY GEFORE FLASH= $4.1 \mathrm{Ft} / \mathrm{SEC}$

 $1.04 \quad 16.3$. $2358 \quad 0.220$ 473. 0.0131 5934. .00052 $1.08 \quad 17.9$. 3048 0.254 $540 \cdot 0.0151$ 6855. . 00060 $\begin{array}{llllllllll}1.13 & 19.6 & .3640 & 0.284 & 596 . & 0.0167 & 7648 . & .00065\end{array}$ $1.20 \quad 21.3$.4155 0.310 646. 0.0182 8359. .00071 1.49 24.7.4966 0.355 730.0.0207 9557. .00080 $2.28 \quad 28.5 \quad .5645 \quad 0.398$ 807. 0.0230 10682. . 00088 $\begin{array}{llllllll}5.36 & 34.3 & .5388 & 0.453 & 9020 & 0.0259 & 12113 . & 00098\end{array}$ $9.23 \quad 39.0 .68310 .492$ 965.0.0280 13113. . 00105 $17.8346 .9 .73710 .5511054 \cdot 0.031014561$. .00115 $28.55 \quad 55.1$. 77680.6051130 .0 .033715864 . . 00124

| Q6 | 07 | Q8 | E4 | Q9 | E4 |
| :--- | :--- | :--- | :--- | :--- | :--- | 273. $0.0420 .457 \quad 0.558 \quad 0.280$ 333. $0.052 \quad 0.570 \quad 0.587 \quad 0.328$ $\begin{array}{llllll}381 . & 0.061 & 0.668 & 0.795 & 0.370\end{array}$ $\begin{array}{llllll}\text { 421. } & 0.069 & 0.758 & 0.891 & 0.408\end{array}$ $\begin{array}{llllll}\text { 457. } & 0.077 & 0.842 & 0.980 & 0.444\end{array}$ $\begin{array}{lllll}517 & 0.090 & 0.992 & 1.133 & 0.508\end{array}$ $\begin{array}{lllll}572 . & 0.102 & 1.140 & 1.283 & 0.571\end{array}$ $\begin{array}{llllll}641 & 0.119 & 1.338 & 1.478 & 0.655\end{array}$ $\begin{array}{lllll}688 . & 0.131 & 1.482 & 1.617 & 0.716\end{array}$ 754. $0.1481 .698 \quad 1.822 \quad 0.808$ 812. $0.164 \quad 1.899 \quad 2.010 \quad 0.894$

fopced convection boiling
RUN No.153.0 WATER TEST SECTION NO.
FLOW RATE,W=2805. LBS/HR MASS VELOCITY,G=642.3 LGS/SEC.SGFT POWER= 6.31 KILOWATTS HEAT FLUX,Q= 37201 . 3TU/HR.SQFT
REYNOLUS AO. $=197798$, TEMPERATURE BEFORE FLASH= 299.9 F VELOCITY dEFORE FLASH= 3.7 FT/SLC

 $\begin{array}{llllllllllllllllll}3.84 & 19.7 & .4338 & 0.318 & 707 . & 0.0197 & 8279 . & .00081 & 476 . & 0.084 & 0.957 & 1.098 & 0.209\end{array}$ $4.29 \quad 21.4 .480000 .344 \quad 75600.0212 \quad 8930.00087 \quad 510.0 .092 \quad 1.048 \quad 1.191 \quad 0.547$ $\begin{array}{lllllllllllllllllllll}4.81 & 23.3 & .5218 & 0.369 & 804 & 0.0226 & 9556 & .00092 & 543.0 .099 & 1.139 & 2.282 & 0.586\end{array}$
 $\begin{array}{llllllllllllllllllll}6.09 & 27.5 & .5965 & 0.418 & 895 & 0.0254 & 107990.00102 & 606 & 0.115 & 1.327 & 1.468 & 0.666\end{array}$ $\begin{array}{llllllllllllllllllll}6.92 & 29.9 & 6296 & 0.443 & 940 . & 0.0268 & 11418 & .00108 & 637 & 0.123 & 1.425 & 1.563 & 0.708\end{array}$
 $\begin{array}{llllllllllllllllllllll}11.81 & 42.4 & .7402 & 0.551 & 1118 . & 0.0327 & 13997 . & .00128 & 763 & 0.158 & 1.857 & 1.973 & 0.891\end{array}$ $\begin{array}{llllllllllll}15.96 & 51.9 & .7890 & 0.620 & 12170 & 0.0363 & 15548 \text {. . } 00141 & 635.0 .179 & 2.134 & 2.226 & 1.009\end{array}$

forced convection bolling

REYNOLDS MO. $=60076$. TEMPERATURE BEFORE FLASH 243.0 F VELOCITY GEFORE FLASH= 1.3 FT/SEC

 $4.2523 .43254 .8 \quad 248.8 \quad 6.06236 .512 .28$ 7164. 1599.4 .48 $\begin{array}{lllllllllllllllll}5.28 & 6.5 & .3693 & 0.499 & 388 . & 0.0307 & 4642, & .00116 & 273 . & 0.143 & 1.603 & 1.731 & 1.297\end{array}$ $\begin{array}{lllllllllllll}7.41 & 11.4 & 0.6424 & 0.791 & 592 . & 0.6476 & 7353 & .00174 & 417 & 0.187 & 2.114 & 2.257 & 1.514\end{array}$
 $\begin{array}{lllllllllllll}12.47 & 21.6 & 0122 & 1.135 & 818 & 0.0669 & 10501 & .00238 & 578 & 0.246 & 2.835 & 2.945 & 1.821\end{array}$ $\begin{array}{llllllllllllllllllllll}18.86 & 32.7 & .8764 & 1.393 & 975 & 0.0809 & 12783 . & 00284 & 690 . & 0.292 & 3.435 & 3.489 & 2.076\end{array}$

 $48.95 \quad 76.4 .9485 \quad 2.089$ 1327. 0.1166 18443. .00393 $948.0 .424 \quad 3.152 \quad 4.961 \quad 2.805$ 71.63 99.1 •9607 2.369 1430. 0.1298 20463. .00430 1030. 0.476 88.99113 .7 .9660 2.535 1482. 0.1373 21579. .00450 1073. $0.507 \quad 6.202 \quad 5.818$ 3.24

Un mo.160.0 TATER test section no. 2 convection boiling

REYNOLDS NO. = 63862. TEMPERATURE BEFORE FLASH= 284.9 F VELOCITY BEFORE FLASH= 1.4 FT/SEC

RUN NO. 151.0 WATER TEST SECTION MO. 2

FLOW RATE,W=1055. LES/HR MASS VELOCITY,G= 241.6 LBS/SEC.SOFT POWER= 14.88 KILOWATTS HEAT FLUX,Q $=87632$. atu/hr.SOFT
REYNOLDS NO. $=66009$. TEMPERATURE BEFORE FLASH $=326.4 \mathrm{~F}$ VELOCITY EEFORE FLASH= 1.4 FT/SEC

forcto convection boiling

RUN NO.152.0 WATER
test section no. z
FLON RLTE,W=2177. L8S/HR MASS VELOCITY,G= 498.5 LBS/SEC.SQFT POWER= 14.83 KILOWATTS HEAT FLUX,Q= 87390 . BTU/HR.SQF REYNOLDS NO. $=136862$. TEMPERATURE BEFORE FLASH= 261.3 F VELOCITY BEFURE FLASH= 2.8 FT/SEC

 10.41 29.1. $70890.7401045 \cdot 0.0425$ 13740. .00149 731. 0.158 $1.099 \quad 2.034 \quad 1.108$ 19.0541 .3 .7955 0.901 1230. 0.0509 16552. .00175 864. 0.192 2.351 2.4571 .292 $31.35 \quad 64.2$. 86971.1371457 , 0.0628 20374. .00211 1033 , 0.243 2.971 3.0161 .563

forced convection boiling

RUN No. 163.0 WATER TEST SECTION NO. 2
FLOW RATE,W=2177. LBS/HR MASS VELOSITY,G=498.5 LBS/SEC.SQFT POWER= 14.74 KILOWATTS MEAT FLUX,Q $=$ BG831. BTU/HR SQFY
REYNOLDS NO. $=147024$. TEMPERATURE BEFORE FLASH= 287.5 F VELOCITY BEFORE FLASH= 2.8 FT/SEC

 0.1054 .6231 .6305 .8 5.82 286.619 .17 4529. 3280. 1.38 1.38 .0015 21.250 450. .00247 0.5260 .02380 .03031 .240 .19050 .420

run no. 154.0 water
forced convection boiling
FLOW RATE, W=2177. LES/HR MASS VELOCITY,G= 498.5 LBS/SEC.SQFT POWER= 14.88 KILOWATIS HEAT FLUX, $Q=37555$. BTU/HR.SQFT REYNOLDS NO. $=154552$. TEMPERATURE BEFORE FLASH= 312.9 F VELOCITY GEFORE FLASH= $2.9 \mathrm{FT} / \mathrm{SEC}$

 2.0061 .73315 .6309 .85 .87294 .515 .225759 .3251 . 1.77 1.73 .0316 1.410573 .003130 .5340 .02150 .03941 .200 .17984 .130

14.23 31.1. 72450.70813090 .0 .043914815 . . 00168 14.74 33.3 . 7424 0.736 1351•0.0455 15362. . 00174 $15.50 \quad 36.9 .76830 .7801416 .0 .0480 \quad 16230 \ldots 0182$ 16.49 40.8. .7909 0.825 1479. 0.0505 17079, .00191 $\begin{array}{llllll} & 0.594 & 2.679 & 1.412\end{array}$ $\begin{array}{llllllllllllll}19098 & 53.5 & .8422 & 0.955 & 1649 . & 0.0576 & 19469 & .00214 & 1074 & 0.233 & 3.036 & 3.075 & 1.600\end{array}$

 42.02106 .3 . 9228 1.359 2048. 0.0780 26079. .00277 1361. $0.335 \quad 4.397 \quad 4.242 \quad 2.176$ 54.36130 .0 . 9376 1.509 2151. 0.0850 28216. .00296 1443. 0.359 4.865 $4.691 \quad 2.374$ 62.31 146.1. 9448 1.605 2209. 0.0893 29542. .00308 $1492.0 .390 \quad 5.154 \quad 4.867$ 2.496 73.94167 .2 .9522 1.724 2273. 0.0946 31143. . 00321 1549. 0.416 5.498

RUN NO. 165.0 WATER
test section no. 2

FLOW RATE,W*27S5. LBS/HR MASS VELOCITY.GE 630.9 LBS/SEC.SQFT POWER= 14.87 KILOWATTS HEAT FLUX, Q $=876140$ BTU/HR,SOFT
REYHOLDS HO. $=184094$. TEMPERATURE BEFORE FLASH $=275.8$ F VELOCITY BEFORE FLASH= 3.6 FT/SEC

RUN NO. 160.0 WATER TEST SECTION NO. 2

REYNOLDS NO. $=191004$. TEMPERATURE BEFORE FLASH= 287.5 F VELOCITY BEFORE FLASH= 3.6 FT/SEC

 4.5045 .57289 .2283 .45 .85275 .2 8.17 10580. 3787. 2.792 .72 .0321 1.211 $1050.004570 .4100 .02210 .0625 \quad 1.300 .274111 .600$

 $\begin{array}{llllllllllllllll}5.33 & 21.3 & .4873 & 0.453 & 936 . & 0.0273 & 11220.00102 & 628 . & 0.102 & 1.282 & 1.424 & 0.784\end{array}$ $8.56 \quad 29.6 .6330 \quad 0.081 \quad 3160.0 .0344142740 .00120 \quad 781.0 .133 \quad 1.646 \quad 1.7860 .939$

 $\begin{array}{llllllllllllllll}24.03 & 62.7 & 0294 & 0.901 & 1635 & 0.0513 & 21417 . & 00179 & 1116 . & 0.212 & 2.646 & 2.714 & 1.363\end{array}$

 42.32 104.5 .8995 1.181 1939. 0.0648 26948. .00218 1347.0 .278

forced convection boiling

run no.157.0 water test section no. z

FLOW RATE,W=2727. LBS/HR MASS VELOCITY,G 624.5 LBS/SEC.SQFT POWER= 14.76 KILOWATTS hEAT FLUX, $0=86949$. bTU/HR.SOFT
REYYOLDS NO. = 195913. TEMPERATURE BLFORE FLASH=299.1 F VELOCLTY BEFURE FLASH= 3.6 rT/SEC

 0.2567 .14321 .2315 .45 .81300 .115 .24 5705. 4041. 1.411 .41 .0001 51.471

 1.5065 .57321 .7315 .95 .80298 .517 .34 5015. 4004. 1.25 1.25 .0071 5.662499 .002170 .4240 .01010 .02791 .190 .27791 .730

$\begin{array}{lllllllllllll}3.47 & 10.7 & 0.0238 & 0.078 & 198 . & 0.0052 & 19740.00023 & 129 . & 0.025 & 0.496 & 0.539 & 0.455\end{array}$

 $6.22 \quad 25.5 .57560 .518111600 .031513054$. 000119 735.0.121 1.533106750 .896

RUN NO.169.0 WATER
forced convection boiling
test section no. 2

REYNOLDS AO. $=$ 31965. TEMPERATURE BEFORE FLASH= 239.0 F VELOCITY BEFORE FLASH= 0.8 FT/SEC

 026. 0.872 10.455 9.297 5.501

forced convection boiling

RUM NO. 169.0 WATER

test section no. 2
FLOW RATE,W $\mathbf{~ S 9 5 . ~ L E S / H R ~ M A S S ~ V E L O C I T Y , G ~} 136.3$ LBS/SEC.SQFT POWER= 14.70 KILOWATTS HEAT FLUX, $Q=$ B6595. BTU/HR.SGFT

 776. $0.53336 .737 \quad 6.406 \quad 3.940$ 801. $0.555 \quad 7.050 \quad 6.658 \quad 4.072$ 849. $0.601 \quad 7.680 \quad 7.162 \quad 4.340$

forced convection bolling
RU: N:O.17U.0 WATER TEST SECTION NO. 2
 REYNOLDS NO. = 32901. TEMPERATURE BEFORE FLASH= 329.B F VELOCITY GEFORL FLASH= 0.8 FT/SEC

FORCED CONVECTIOM BOILING

RUN no.171.0 mater test section mo. 2

reynolds ho. = 30184. TEmperature before flashe 243.3 F VELOCITY before flashe 0.8 fi/SEC

Abstract

\section*{forced convection boiling}

\section*{RUN NO.172.0 Water test section no. 2}

FLOW RATE, W= 395. LBS/HR MASS VELOCITY,G= 136.3 LES/SEC.SOFT POWER= 6.39 KILOWATTS HEAT FLUX,Q $=37642$. BTU/MR.SOFT REYMOLDS MO.- 31102. TEMPERATURE BEFORE FLASH= 284.9 F VELOCITY BEFORE FLASH= 0.E FT/SEC 507. $0.4445 .51050210 \quad 2.809$ $615.0 .4525 .615 \quad 5.295 \quad 2.853$ 627. $0.465 \quad 5.797 \quad 5.443 \quad 2.931$ $639.0 .4785 .9745 .585 \quad 3.006$ $65000.0 .91 \quad 6.155 \quad 5.731 \quad 3.082$ 673. $0.517 \quad 6.526 \quad 6.027 \quad 3.240$ $696.0 .546 \quad 6.915 \quad 6.334 \quad 3.405$ 719. $0.575 \quad 7.324 \quad 6.656 \quad 3.579$ 743. $0.609 \quad 7.782 \quad 7.011 \quad 3.772$ 769. $0.6478 .301 \quad 7.412 \quad 3.993$ 783. $0.669 \quad 8.593 \quad 7.635 \quad 4.116$ 797. $0.692 \quad 8.889$ 7.860 4.242 812. $0.717 \quad 9.229 \quad 8.118 \quad 4.386$ $\begin{array}{lllll}829 . & 0.747 & 9.619 & 8.412 & 4.551\end{array}$ $\begin{array}{lllll}840 . & 0.768 & 9.890 & 8.615 & 4.666\end{array}$

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

[^0]: *

 Subcooled, surface, or local boiling are the names given to the phenomenon that takes place when a heat transfer surface is sufficiently above the saturation temperature while the bulk of the surrounding liquid is subcooled. Vapor bubbles are formed. at the heated surface, but as they leave this region and penetrate the cooler surroundings they collapse and condense. There is no net generation of vapor with subcooled boiling. The terms net or bulk boiling refer to vaporization processes where vapor is a net product, as distinguished from subcooled boiling.

[^1]: * The sub-tt refers to turbulent-turbulent in categorizing the types of flow of the vapor and liquid phases. Only for the very slow flows was any other regime observed.

[^2]: * In the first series of runs the cooling coils had not yet been installed. However, an equally effective, although more cumbersome, method of cooling was used. This is described by R. Sani. ${ }^{21}$

[^3]: * Buchberg et.al. ${ }^{26}$ present calculations which show that temperature fluctuations of the tube wall due to the 60 -cycle heating current would be about $0.5^{\circ} \mathrm{F}$.

[^4]: * This is a common assumption in two-phase flow work; however, this author has seen very little discussion or verification of it. In order to give some justification to this assumption, specially constructed thermocouple probes were inserted up into the boiling test section. Temperatures measured in this way agreed well with the pressure measurements. However, it was evident that flow conditions were significantly disturbed so that such thermocouple probes could not be used to gather heat-transfer data.

[^5]: * Several numerical methods for this differentiation were tested. However, no method was nearly as reliable as the graphical method.

[^6]: * From the results of the nonboiling runs made with test section No. 1 , it is believed that the effect of electrical heating in the thermocouple junction is small. The nonboiling results are discussed in Chapter V, Section A; the observed coefficients were in very good agreement with those predicted by the DittusBoelter ${ }^{7}$ and Sieder-Tate ${ }^{32}$ correlations.

[^7]: * Pressure was not an independent variable in this experiment. At the outlet of the test section's lower connecting piping, the pressure was always atmospheric.

 The entering vapor fraction of some runs was in many cases larger than outlet fractions of other runs which employed the same flow rate and heat flux.

[^8]: * Thermal entrance effects mean the departure of the heat-trans-
 fer coefficient or inside-wall temperature curves from the expected monotonically increasing or decreasing curves, respectively.

[^9]: * In similar correlation forms, the modified boiling number, Bo, usually was better than Bo (by comparison of the standard deviations of the correlated variable). Because of the limited pressure range used, this result cannot be considered general. Refer to Table II.

[^10]: *

 The mass fluxes used by Sachs and Long were 4 to $22 \mathrm{lbm} / \mathrm{sec}$ ft^{2}. Heat fluxes up to $23,359 \mathrm{BTU} / \mathrm{hr} \mathrm{ft}^{2}$ were used. Boiling numbers, Bo, would be about 36×10^{-4}.
 \dagger This is also true for the case where the quality x is given as a function of conduit length. Here heat flux is implicitly specified.

