

PREPARED FOR THE U. S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION UNDER CONTRACT W-7405-eng-82

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

AN ITERATIVE METHOD FOR FREDHOLM
 EQUATIONS OF THE FIRST KIND

William C. Peterson, Glenn R. Luecke and Robert J. Lambert

Based on Ph.D. Thesis Submitted to Iowa State University

Ames Laboratory, ERDA
Iowa State University
Ames, Iowa 50010

Date Transmitted: July 1975

PREPARED FOR THE USS. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION UNDER CONTRACT NO. W-7405-eng-82

This ropirt was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Kesearen and Development Administration, nor any of
their employees, nor any of their contractors, their employees, nor any of their contractors.
subcontractors, or their employees, makes any warranty, express or implied, of assumes any legal liability or responsibility for the ace tracy, completeness
or usefulness of any information, apparatus, product or
of usefulness of any information, apparatus, product or
process disclosed, or represents that it use would not process iscioted, or represents,
infringe privately owned rights.

NOTICE

> This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Available from: | National Terhnical Information Service |
| :--- |
| |
| U. S. Department of Commerce |
| P. O. Box 1553 |
| |
| Springfield, VA 22161 |
| |
| |
| Price: Microfiche $\$ 2.25$ |
| |
| |
| Paper Copy $\$ 5.25$ |.

TABLE OF CONTENTS
Page
ABSTRACT v

1. INTRODUCTION AND REVIEW OF THE LITERATURE 1
1.1. Statement of the problem 1
1.2. Iterative Methods 5
2. DEVELOPMENT OF AN ITERATIVE METHOD FOR CONVERGENCE TO THE LEAST SQUARES SOLUTION OF MINIMUM NORM 7
2.1. Introduction 7
2.2. An Iterative Method 7
2.3. Perturbations of g 21
2.4. Some Error Bounds and Properties of λ 24
3. IMPLEMENTING THE ALGORITHM 40
3.1. Calculation of a Starting Element 40
3.2. The Sequence $\left\{f_{j, n}\right\}_{n=0}^{\infty}$ 45
3.3. A Flow Diagram of the Basic Algorithm 47
4. EXAMPLES 54
4.1. Matrix Examples 54
4.2. An Inner Product Space 60
4.3. Discretizing Integral Equations 62
4.4. Error Bounds 67
4.5. Perturbations of g 72
Page
4.6. Integral Equation Examples 75
5. SUMMARY AND FUTURE RESEARCH 85
5.1. Summary 85
5.2. Future Research 86
6. BIBLIOGRAPHY 87
7. ACKNOWLEDGMENTS 90
8. APPENDIX 91
8.1. Appendix A, Linear System 91
8.2. Appendix B, Subroutine BITER 101

ABSTRACT

An iterative method is developed to find an approximation to the least squares solution of minimum norm, f_{o}, of an operator equation, $K f=g$, of the first kind. In applications to integral equations, the superfluous oscillations in the final solution of methods in the literature are not an apparent problem. Let $\mathrm{K}: \mathrm{H}_{1} \rightarrow \mathrm{H}_{2}$ be a completely continuous operator from a real separable Hilbert space H_{1} to a real Hilbert space H_{2}. Let $g \in R(K)+N\left(K^{*}\right)$. A sequence $\left\{f_{\lambda_{j}}\right\}_{j=1}^{\infty} \sigma_{-} N(K)^{\perp}$ converging to f_{0} is constructed. $f_{\lambda_{j}}$ minimizes the functional $Q_{\lambda_{j}}(f)=||K f-g||+\lambda_{j}| | f| |, \lambda_{j}>0 . \quad$ Stability and error bounds are obtained.
Distribution List
Chicago Patent Office 1
Oak Ridge 27
Ames Laboratory Library 5
William C. Peterson 6
Glenn R. Luecke 5
Robert J, Lambert 16
Total 60

1. INTRODUCTION AND REVIEW OF THE LITERATURE

1.1. Statement of the problem

Throughout this paper we will assume that H_{1} is a real separable (or finite dimensional) Hilbert space, H_{2} is a real Hilbert space and K is a compact (or completely continuous) operator from H_{1} to H_{2}. The basic definitions used above can be found in Bachman and Narici [3, Chapter 6 and l7].

We will use the notation:

$$
\begin{aligned}
& \mathrm{R}(\mathrm{~K})=\text { range of } K, \\
& \mathrm{~N}(\mathrm{~K})=\left\{\mathrm{f} \in \mathrm{H}_{1}: \mathrm{Kf}=0\right\}
\end{aligned}
$$

and

$$
M^{\perp}=\left\{f \in H_{1}:\langle f, h\rangle=0 \text { for all } h \in M \subset H_{1}\right\}
$$

where 〈, 〉 denotes inner product in the Hilbert space. From Strand [20, page 22] we have that for an operator K

$$
\begin{aligned}
& H_{2}=N\left(K^{*}\right) \oplus \overline{R(K)} \text { where } \overline{R(K)} \text { is the closure of } R(K), \\
& H_{1}=N(K) \oplus(N(K))^{\perp},
\end{aligned}
$$

and

$$
\overline{R\left(K^{*}\right)}=[N(K)]^{\perp} .
$$

We are interested in finding an approximation to the least squares solution of minimum norm, f_{0}, of the operator equation $K f=g$ where $g \in H_{2}$, when such a solution exists. Kammerer and Nashed [1l] give the following definitions.

Definition 1.l.l For $f \in H_{1}, g \in H_{2}$, an element $\bar{f} \in H_{1}$ is a least squares solution of $K f=g$ if and only if
(1.1.2)

$$
\|K \bar{f}-g\|=\inf \left\{\|K f-g\| \mid f \in H_{l}\right\}
$$

Definition 1.1.2 For $f \in H_{1}, g \in H_{2}$, an element $f_{0} \in H_{l}$ is a least squares solution of minimum norm of $\mathrm{Kf}=\mathrm{g}$ if and only if it is a least squares solution of $K f=g$ and $\left\|\mathrm{f}_{\mathrm{o}}\right\| \leq\|\overline{\mathrm{f}}\|$ for all least squares solutions $\overline{\mathrm{f}}$ of $\mathrm{Kf}=\mathrm{g}$.

Strand [20, pages 23-24] notes that the least squares solution of minimum norm to $K f=g$ exists (is unique and in $N(K)^{\perp}$) if and only if. $g \in H_{2}$ can be written in the form

$$
\begin{equation*}
g=g_{1}+g_{2} \tag{1.1.3}
\end{equation*}
$$

where $g_{1} \in R(K)$ and $g_{2} \in N\left(K^{*}\right)$. For this paper we will assume g is always in the form $g=g_{1}+g_{2}$, with $g_{1} \in R(K)$. From Strand [20] and Diazo and Metcalf [5], f is a solution of $\|K f-g\|=\inf \left\{\|K h-g\| \mid h \in H_{l}\right\}$ if and only if f is a solution to $K f=g_{1}$. They also note that the least square solutions to $K * K f=K^{*} g$ and $K f=g_{1}$ are the same, this will become important later on in this paper.

The least squares solution of minimum norm of $K f=g$ can be written as a series in terms of g and the eigenvalues and eigenvectors of $K K^{*}$ and $K^{*} K$, so is known exactly ([20, page 25], [24, page 143]). However, finding each eigenvector of KK* is as difficult a problem, numerically, as the original problem. Twomey [25], Phillips [18], Tikhonov [23] and Strand [20] consider various generalizations of the method of regularization for compact operators K. Strand [20] considers the functional
(1.1.4)

$$
Q(f)=\|K f-g\|^{2}+\lambda\|f-p\|^{2}, \lambda>0
$$

where $p \in H_{1}$ is an estimate for the least squares solution of minimum norm of $\mathrm{Kf}=\mathrm{g}$. He proves that (1.1.4) is minimized by

$$
\begin{equation*}
f_{\lambda}=\left(K^{*} K+\lambda I\right)^{-1}\left(K^{*} g+\lambda p\right) \tag{1.1.5}
\end{equation*}
$$

Strand [20] gives a proof for the following theorem.

Theorem 1.1.1. $\overline{\mathbf{f}}=\lim _{\lambda \rightarrow 0^{+}} f_{\lambda}$ exists and \bar{f} is the unique solution of $K^{*} K f=K * g$ for which $\|f-p\|^{2}$ is a minimum. We will use this theorem in Chapter 2 for the case where $\mathrm{p} \equiv 0$, to obtain an approximation to the least squares solution of minimum norm of $K f=g$. In general a method for determining a good choice for λ in actual applications and construction of an inverse to represent $(K * K+\lambda I)^{-1}$ is difficult since $\left(K^{*} K+\lambda I\right)^{-1}$ is generally ill-conditioned for a useful choice for λ. In this dissertation, the problem of a choice for λ will be considered and finding $\left(K^{*} K+\lambda I\right)^{-1}$ will be avoided.

1.2. Iterative Methods

Landweber [13], Diaz and Metcalf [5], Kammerer and Nashed $[10,11,12]$ and Nashed $[14,15]$ study iterative methods for finding the least squares solution of minimum norm of $K f=g$, by constructing a sequence $\left\{f_{i}\right\}_{i=1}^{\infty}$ which converges to the least squares solution of minimum norm. The sequence $\left\{f_{i}\right\}_{i=1}^{\infty}$ is defined by

$$
\begin{equation*}
f_{n+1}=f_{n}+\alpha_{n} W_{n} \tag{1.2.1}
\end{equation*}
$$

where α_{n} and w_{n} are chosen to give the method of steepest descent, conjugate gradient or weak steepest descent method. These methods converge to the least squares solution of minimum norm of $\mathrm{Kf}=\mathrm{g}$ for various choices for a starting vector and restrictions on $g \in H_{2}$. For perturbations of g by a function ϵ in H_{2} we have the operator equation $K f=g+\epsilon$ which, since $g+\epsilon$ might not be an element of $R(K)+N\left(K^{*}\right)$, may fail to have a least squares solution of minimum norm. Strand [20, page 47] shows that these methods are sensitive to small perturbations of g and may fail to converge to a function near
the actual solution. This is a serious problem for a numerical method, since discretization error and roundoff error act like a perturbation of g.

The iterative method considered in this dissertation will depend on operators of the form $(\lambda I+K * K): H_{1} \rightarrow H_{1}, \lambda>0$. Since $\lambda I+K^{*} K$ is bounded and positive definite the inverse $\left(\lambda I+K^{*} K\right)^{-1}$ exists and is defined on all of H_{1} for each $\lambda>0$. For λ not too small the solutions of $(K * K+\lambda I) f=K * g$ will not be as sensitive to perturbation of g as the equation $K^{*} K f=K^{*} g$ (see section 2.3), but has a solution close to the least squares solution of minimum norm of $K * K f=K * g$ (or $K f=g$).

Some examples will be given, together with a discussion of some of the problems of discretization, of finding approximations to least square solutions of minimum norm of integral equations of the first kind.
2. DEVELOPMENT OF AN ITERATIVE METHOD FOR CONVERGENCE TO THE LEAST SQUARES SOLUTION OF MINIMUS NORM
2.1. Introduction

First. An iterative method is obtained for an approximate solution to the least squares solution of minimum norm of $K f=g$, when such a solution exists.

Second. Several theorems will be given which study the properties of changes in the solution to $K f=g$ when g is replaced with $g+\epsilon, \epsilon$ an element of H_{2}, to. give an indication of stability.

Third. Theorems relating $\lambda>0$ and $f_{\lambda} \in H_{1}$, where f_{λ} is a solution to $(K * K+\lambda I) f=K * g$ will be given, as well as some theorems on error bounds.
2.2. An Iterative Method

The least squares solution of minimum norm, f_{0}, is an element of $[N(K)]^{\perp}$. For any element $f \in N(K)$ we have $K\left(f_{0}+f\right)=K f_{0}+K f=K f_{0}$, so since $f_{0}+f$ and f_{0} are mapped to the same element in the range of K it is important for an iterative procedure to stay on $[N(K)]^{\perp}$. The goal is to construct a sequence of f_{λ} 's.
which satisfy the theorem below, converge to f_{0} and stays in $N(K)^{\perp}$.

Theorem 2.2.1. If $f_{\lambda} \in H_{1}$ is the solution to $\left(K^{*} K+\lambda I\right) f=K^{*} g, \lambda>0$, then $f_{\lambda} \in R\left(K^{*}\right) \subset N(K)^{\perp}$.

Proof: Since $(K * K+\lambda I) f_{\lambda}=K * g$ we have
$\lambda f_{\lambda}=K * g-K * K f_{\lambda}$ which in turn implies that $f_{\lambda}=\frac{K^{*}\left(g-K f_{\lambda}\right)}{\lambda}$, thus $f_{\lambda} \in R\left(K^{*}\right) \subset[N(K)]^{\perp}$.

Now we develop an iterative method related to a steepest descent method for Tikhonov-Twomey regularization, which converges to the least squares solution of minimum norm, when such a solution exists. The method developed allows one to find a solution of $(K * K+\lambda I) f=K * g$ for a $\lambda>0$. When the convergence fails or becomes slow then the advantage of this method is that a new starting vector can be obtained.

We really wish to implement the procedure in Step 1 and 2 following and in doing so the main result we use is given in the corollary on page 20 for Theorem 2.2.2 which follows.

Step 1: Choose a sequence of positive real numbers $\left\{\lambda_{i}\right\}_{i=1}^{\infty}$ such that $\lambda_{i} \rightarrow 0$ as $i \rightarrow \infty$, a starting element $\dot{f}_{1,0} \in H_{1}$ for the sequence $\left\{f_{1, n}\right\}_{n=0}^{\infty}$ converging to the solution; f_{1}, of $\left(K * K+\lambda_{1} I\right) f=K * g$, as required by Theorem 2.2.2.

Step 2: we now proceed inductively. For $j=2,3,4, \ldots$ using $f_{j, 0}=f_{j-1}$ as a starting vector, obtain the sequence $\left\{f_{j, n}\right\}_{n=0}^{\infty}$ converging to f_{j}, where f_{j} is the solution to $\left(K * K+\lambda_{j} I\right) f=K * g$. Continue until λ_{j} is less than some preassigned value.

Theorem 2.2.2. Let $f_{1, n+1}=f_{1, n}+\alpha_{1, n} W_{1, n}, a_{1, n} \in$ reals, for each integer $n \geq 0$ and $f_{1,0} \in H_{1}$ then the sequence $\left\{f_{1, n}\right\}_{n=0}^{\infty}$ converges to the function $f=f_{1} \in R\left(K^{*}\right) \quad$ that minimizes $Q_{\lambda_{1}}(f)=\|K f-g\|^{2}+\lambda_{1}\|f\|^{2}$ where

$$
\begin{gathered}
W_{1, n}=K * K f_{1, n}+\lambda_{1} f_{1, n}-K * g, \\
\alpha_{1, n}=-\frac{\left\langle W_{1, n}, W_{1, n}\right\rangle}{\left\langle K W_{1, n}, K W_{1, n}\right\rangle+\lambda_{1}\left\langle W_{1, n}, W_{1, n}\right\rangle} \text { for } W_{1, n} \neq 0,
\end{gathered}
$$

and
if n_{l} is the first n such that $W_{1, n}=0$ take $\alpha_{1, n}=0$ and $f_{1}=f_{n, 1}$ for all $n \geq n_{1}$.

Proof: From Theorem 2.2.1 we have $f_{l} \in R\left(K^{*}\right)$. To choose

$$
\begin{aligned}
& \alpha_{1, n} \text { consider } f_{1, n+1}=f_{1, n}+\alpha W_{1, n} \text { and } \\
& Q_{\lambda_{1}}\left(f_{1, n+1}\right)=\left\|K f_{1, n+1}-g\right\|^{2}+\lambda_{1}\left\|f_{1, n+1}\right\|^{2} \\
& =
\end{aligned}
$$

(2.2.1)

$$
\begin{aligned}
& +\langle g, g\rangle+\lambda_{1}\left\langle f_{1, n+1}, f_{1, n+1}\right\rangle \\
& =\left\langle K * K f_{1, n}+\alpha K K_{1, n}, f_{1, n}+\alpha W_{1, n}\right\rangle \\
& -2\left\langle K_{1}^{*} g, f_{1, n}+\alpha W_{1, n}\right\rangle+\langle g, g\rangle \\
& +\lambda_{1}\left\langle f_{1, n}+\alpha W_{1, n}, f_{1, n}+\alpha W_{1, n}\right\rangle \\
& =\left\langle K * K f_{1, n}, f_{1, n}\right\rangle+2 \alpha\left\langle K * K f_{1, n}, W_{1, n}\right\rangle
\end{aligned}
$$

(2.2.2)

$$
+\alpha^{2}\left\langle K * K W_{1, n}, W_{1, n}\right\rangle-2\left\langle K * g, E_{1, n}\right\rangle
$$

$$
\begin{aligned}
& -2 \alpha\left\langle K^{*} g, W_{1, n}\right\rangle+\langle g, g\rangle+\lambda_{1}\left\langle f_{1, n}, f_{1, n}\right\rangle \\
& +2 \lambda_{1} \alpha\left\langle f_{1, n}, W_{1, n}\right\rangle+\lambda_{1} \alpha^{2}\left\langle W_{1, n}, W_{1, n}\right\rangle
\end{aligned}
$$

We now take the derivative of $Q_{\lambda_{1}}\left(f_{1, n+1}\right)$ with respect to α and set the derivative equal to zero:

$$
\begin{aligned}
\frac{d}{d \alpha} Q_{\lambda_{1}}\left(f_{1, n+1}\right) & =2\left\langle K * K f_{1, n}, W_{1, n}\right\rangle+2 \alpha\left\langle K^{*} K W_{1, n}, W_{1, n}\right\rangle \\
& -2\left\langle K^{*} g, W_{1, n}\right\rangle+2 \lambda_{1}\left\langle f_{1, n}, W_{1, n}\right\rangle \\
& +2 \lambda_{1} \alpha\left\langle W_{1, n}, W_{1, n}\right\rangle=0 .
\end{aligned}
$$

Note also
$\left.\frac{d^{2}}{d \alpha^{2}} Q_{\lambda_{1}}\left(f_{1, n+1}\right)=2\left(\left\langle K K_{1, n}, W_{1, n}\right\rangle+\lambda_{1}\left\langle W_{1, n}, W_{1, n}\right\rangle\right)\right\rangle 0$
for $W_{1, n} \neq 0$. Solving $\frac{d}{d \alpha} Q_{\lambda_{1}}\left(f_{1, n+1}\right)=0$ for a gives

$$
\begin{aligned}
& \alpha\left(\left\langle K * K W_{1, n}, W_{1, n}\right\rangle+\lambda_{1}\left\langle W_{1, n}, W_{1, n}\right\rangle\right. \\
& \quad=\left\langle K * g, W_{1, n}\right\rangle-\left\langle K * K f_{1, n}, W_{1, n}\right\rangle-\lambda_{1}\left\langle f_{1, n}, W_{1, n}\right\rangle \\
& \quad=-\left\langle K * K f_{1, n}+\lambda_{1} f_{1, n}-K^{*} g, W_{1, n}\right\rangle
\end{aligned}
$$

where $W_{1, n} \neq 0$, yielding the result:
(2.2.3) $\alpha_{1, n}=\alpha=-\frac{\left\langle K^{*} K f_{1, n}+\lambda_{1} f_{1, n}-K^{*} g_{,} W_{1, n}\right\rangle}{\left\langle K^{*} K W_{1, n}, W_{1, n}\right\rangle+\lambda_{1}\left\langle W_{1, n}, W_{1, n}\right\rangle}$.

Now we write $f_{1, n+1}$ as

$$
f_{1, n+1}=f_{1, n}-\frac{\left\langle K * K f_{1, n}+\lambda_{1} f_{1, n}-K * g, W_{1, n}\right\rangle}{\left\langle K * K W_{1, n}, W_{1, n}\right\rangle+\lambda_{1}\left\langle W_{1, n}, W_{1, n}\right\rangle} W_{1, n}
$$

for $W_{1, n} \neq 0$.
Now we show that $\left\{Q_{\lambda_{1}}\left(f_{1, n}\right)\right\}_{n=0}^{\infty}$ is a decreasing
sequence of positive real numbers. From the expression (2.2.2), replacing $n+1$ with n in (2.2.1) and α with $\alpha_{1, n}$ in both (2.2.2) and (2.2.1) we get the following expression.

$$
\begin{aligned}
& Q_{\lambda_{1}}\left(f_{1, n+1}\right)-Q_{\lambda_{1}}\left(f_{1, n}\right)=\left\langle K \kappa_{1, n}, f_{1, n}\right\rangle \\
& +2 \cdot \alpha_{1, n}\left\langle K * K f_{1, n}, W_{1, n}\right\rangle+\alpha_{1, n}^{2}\left\langle K * K W_{1, n}, W_{1, n}\right\rangle \\
& -2\left\langle K^{*} g, f_{1, n}\right\rangle-2 \alpha_{1, n}\left\langle K^{*} g, w_{1,} n\right\rangle+\langle g, g\rangle+\lambda_{1}\left\langle f_{1, n}, f_{1, n}\right\rangle \\
& +2 \lambda_{1} \alpha_{1, n}\left\langle f_{1, n}, W_{1, n}\right\rangle+\lambda_{1} \alpha_{1, n}^{2}\left\langle W_{1, n}, W_{1, n}\right\rangle \\
& -\left\langle K^{*} \mathrm{Kf}_{1, \mathrm{n}}, \mathrm{f}_{1, \mathrm{n}}\right\rangle+2\left\langle\mathrm{~K}^{*} \mathrm{~g}, \mathrm{f}_{1, \mathrm{n}}\right\rangle \\
& -\langle g, g\rangle-\lambda_{1}\left\langle f_{1, n}, f_{1, n}\right\rangle \\
& =2 \alpha_{1, n}\left\langle K * K f_{1, n}, W_{1, n}\right\rangle+\alpha_{1, n}^{2}\left\langle K * K W_{1, n}, W_{1, n}\right\rangle \\
& -2 \alpha_{1, n}\left\langle K^{*} g, W_{1, n}\right\rangle+2 \lambda_{1} \alpha_{1, n}\left\langle f_{1, n}, W_{1, n}\right\rangle \\
& +\lambda_{1} \alpha_{1, n}^{2}\left\langle W_{1, n}, W_{1, n}\right\rangle \\
& =2 \alpha_{1, n}\left(\left\langle K^{*} K_{1, n}-K * g, W_{1, n}\right\rangle+\lambda_{1}\left\langle \pm_{1, n}, W_{1, n}\right\rangle\right) \\
& +\alpha_{1, n}^{2}\left(\left\langle K^{*} K W_{1, n}, W_{1, n}\right\rangle+\lambda_{1}\left\langle W_{1, n}, W_{1, n}\right\rangle\right) .
\end{aligned}
$$

So we have from the expression for $\alpha_{1, n}$

$$
\begin{aligned}
& Q_{\lambda_{1}}\left(f_{1, n+1}\right)-Q_{\lambda_{1}}\left(f_{1, n}\right)=-\frac{2\left\langle K * K f_{1, n}+\lambda_{1} f_{1, n}-K * g_{, ~} W_{1, n}\right\rangle^{2}}{\left\langle K * K W_{1, n}, W_{1, n}\right\rangle+\lambda_{1}\left\langle W_{1, n}, W_{1, n}\right\rangle} \\
& +\frac{\left\langle K^{*} K f_{1, n}+\lambda_{1} f_{1, n}-K^{*} g, W_{1, n}\right\rangle^{2}}{\left\langle K^{*} K W_{1, n}, W_{1, n}\right\rangle+\lambda_{1}\left\langle W_{1, n}, W_{1, n}\right\rangle} \\
& =-\frac{\left\langle K^{*} \mathrm{Kf}_{1, n}+\lambda_{1} f_{1, n}-K{ }^{*},_{, W_{1, n}}\right\rangle^{2}}{\left\langle K * K W_{1, n}, W_{1, n}\right\rangle+\lambda_{1}\left\langle W_{1, n}, W_{1, n}\right\rangle} .
\end{aligned}
$$

Therefore, we have $Q_{\lambda_{1}}\left(f_{1, n+1}\right) \leq Q_{\lambda_{1}}\left(f_{1, n}\right)$ and equality occurs when $\left\langle K^{*} K_{f_{1, n}}+\lambda_{1} f_{1, n}-K^{*} g, W_{1, n}\right\rangle=0$ for some n. Note that if $K^{*} K_{1, n}+\lambda_{1} f_{1, n}-K * g=0$ for some n, say n_{1}, then $f_{1, n_{1}}=\left(K^{*} K+\lambda_{1} I^{-1} K^{*} g\right.$ from (1.1.5), where $p \equiv 0$, is the minimizing value for $Q_{\lambda_{1}}$ (f). Thus if $K^{*} \mathrm{Kf}_{1, \mathrm{n}}+\lambda_{1} \mathrm{f}_{1, \mathrm{n}}-\mathrm{K}^{\star} \mathrm{g} \neq 0$ fur $\mathrm{n}>\mathrm{n}_{1}$ and $K{ }^{*} \mathrm{Kf}_{1, \mathrm{n}_{1}}+\lambda_{1} \mathrm{f}_{1, \mathrm{n}_{1}}-\mathrm{K} \mathrm{K}_{\mathrm{g}}=0$ for $\mathrm{n}=\mathrm{n}_{1}$ take $\alpha_{1, \mathrm{n}}=0$ for $n \geq n_{1}$ and $f_{1, n}=f_{1}$ for $n \geq n_{1}$. In general take $W_{1, n}=K^{*} K_{1, n}+\lambda_{1} f_{1, n}-K^{*} g$. We have discussed the
case $W_{1, n} \neq 0$ for all n, then (2.2.1) becomes

$$
\alpha_{1, n}=-\frac{\left\langle W_{1, n}, W_{1, n}\right\rangle}{\left\langle K * K W_{1, n}, W_{1, n}\right\rangle+\lambda_{1}\left\langle W_{1, n}, W_{1, n}\right\rangle}
$$

and

$$
Q_{\lambda_{1}}\left(f_{1, n+1}\right)-Q_{\lambda_{1}}\left(f_{1, n}\right)=-\frac{\left\langle W_{1, n}, W_{1, n}\right\rangle^{2}}{\left\langle K * K W_{1, n}, W_{1, n}\right\rangle+\lambda_{1}\left\langle W_{1, n}, W_{1, n}\right\rangle}
$$

So $Q_{\lambda_{1}}\left(f_{1, n+1}\right)<Q_{\lambda_{1}}\left(f_{1, n}\right)$ for all n. We now have

$$
Q_{\lambda_{1}}\left(f_{1, n+1}\right)=Q_{\lambda_{1}}\left(f_{1, n}\right)-\frac{\left\langle W_{1, n}, W_{1, n}\right\rangle^{2}}{\left\langle K^{*} K W_{1, n}, W_{1, n}\right\rangle+\lambda_{1}\left\langle W_{1, n}, W_{1, n}\right\rangle}
$$

$$
=Q_{\lambda_{1}}\left(f_{1,0}\right)-\sum_{k=0}^{n} \frac{\left\langle W_{1, k}, W_{1, k}\right\rangle^{2}}{\left\langle K W_{1, k}, W_{1, k}\right\rangle+\lambda_{1}\left\langle W_{1, k} ; W_{1, k}\right\rangle}
$$

So $\left\{\sum_{k=0}^{n} \frac{\left\langle W_{1, k}, W_{1, k}\right\rangle^{2}}{\left\langle K^{*} K W_{1, k}, W_{1, k}\right\rangle+\lambda_{1}\left\langle W_{1, k}, W_{1, k}\right\rangle}\right\}_{n=0}^{\infty} \quad$ is an increasing
sequence of positive real numbers bounded above by $Q_{\lambda_{1}}\left(f_{1,0}\right)$ and so converges. Now since

$$
\begin{aligned}
\left\langle\mathrm{K}^{* \mathrm{KW}}{ }_{1, \mathrm{k}}, \mathrm{w}_{1, \mathrm{k}}\right\rangle & =\left\langle\mathrm{K} \mathrm{w}_{1, k}, \mathrm{KW}_{1, k}\right\rangle \\
& \leq\|\mathrm{K}\|^{2}\left\langle\mathrm{w}_{1, k}, \mathrm{w}_{1, k}\right\rangle
\end{aligned}
$$

we have

$$
\left\langle K{ }^{*} K W_{1, k}, w_{1, k}\right\rangle+\lambda_{1}\left\langle w_{1, k}, w_{1, k}\right\rangle \leq\left(\|K\|^{2}+\lambda_{1}\right)\left\langle w_{1, k}, w_{1, k}\right\rangle
$$

and
(2.2.5)

$$
\frac{1}{\left(\|K\|^{2}+\lambda_{1}\right)\left\langle w_{1, k}, W_{1, k}\right\rangle} \leq \frac{1}{\left\langle K^{*} K W_{1, k}, W_{1, k}\right\rangle+\lambda_{1}\left\langle W_{1, k}, W_{1, k}\right\rangle}
$$

Multiply each side of $(2.2 .5)$ by $\left\langle W_{1, k}, W_{1, k}\right\rangle^{2}$ and sum over k, yielding

$$
\begin{aligned}
& \frac{1}{\left(\|K\|^{2}+\lambda_{1}\right)} \sum_{k=0}^{\infty}\left\langle w_{1, k}, w_{1, k}\right\rangle \\
& \quad \leq \sum_{k=0}^{\infty} \frac{\left\langle w_{1, k}, w_{1, k}\right\rangle^{2}}{\left\langle K^{*} K W_{1, k}, W_{1, k}\right\rangle+\lambda_{1}\left\langle w_{1, k}, W_{1, k}\right\rangle}<\infty
\end{aligned}
$$

So $\sum_{k=0}^{\infty}\left\langle w_{1, k}, w_{1, k}\right\rangle$ converges, thus
(2.2.6)

$$
\left\langle W_{1, k}, W_{1, k}\right\rangle \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

We now show $\left\{f_{1, n}\right\}_{n=0}^{\infty}$ converges to $f_{1}=\left(K^{*} K+\lambda I\right)^{-1} K^{*} g$. Once this is done the proof will be complete, since this f_{1} minimizes $Q_{\lambda_{1}}(\pm)$. Since ($K{ }^{\star} K+\lambda_{1} I$) is invertible, there exists a positive real number $M_{\lambda_{1}}=\left\|\left(K^{*} K+\lambda_{1} I\right)^{-1}\right\|^{-1}$ such that for all n

$$
\begin{aligned}
M_{\lambda_{1}}\left\|f_{1, n}-f_{1}\right\| & \leq\left\|\left(K^{*} K+\lambda_{1} I\right)\left(f_{1, n}-f_{1}\right)\right\| \\
& =\left\|K K_{1, n}+\lambda_{1} f_{1, n}-\left(K^{*} K f_{1}+\lambda_{1} f_{1}\right)\right\| \\
& =\left\|K f_{1, n}+\lambda_{1} f_{1, n}-K^{*} g\right\| \\
& =\left\|W_{1, n}\right\|
\end{aligned}
$$

Therefore 'we have
(2.2.7) $\quad\left\|f_{1, n}-f_{1}\right\| \leq \frac{\left\|w_{1, n}\right\|}{M_{\lambda_{1}}} \rightarrow 0 \quad$ as $n \rightarrow \infty$
from (2.2.6).
So we have shown that $f_{1, n}$ converges to f_{1} in norm as $n \rightarrow \infty$. This completes the proof of the theorem.

Now take λ_{2} from the sequence $\left\{\lambda_{j}\right\}_{j=1}^{\infty}$ and use $f_{1} \in R\left(K^{*}\right)$, from Theorem 2.2.1. as a starting element, i.e. take $f_{2,0}=f_{1}$, and as in the case for λ_{1} construct the sequence $\left\{f_{2, n}\right\}_{n=0}^{\infty}$ which converges to $f_{2} \in R\left(K^{*}\right)$ such that $f_{2, n+1}=f_{2, n}+\alpha_{1, n} W_{2, n}$ where

$$
\alpha_{2, n}=-\frac{\left\langle W_{2, n}, W_{2, n}\right\rangle}{\left\langle K * K W_{2, n}, W_{2, n}\right\rangle+\lambda_{2}\left\langle W_{2, n}, W_{2, n}\right\rangle},
$$

and

$$
\mathrm{w}_{2, \mathrm{n}}=\mathrm{K}^{*} \mathrm{Kf} 2, \mathrm{n}+\lambda_{2} \mathrm{f}_{2, \mathrm{n}}-\mathrm{K} * \mathrm{~g}
$$

for

$$
\mathrm{K}^{\star} \mathrm{Kf}_{2, \mathrm{n}}+\lambda_{2} \mathrm{f}_{2, \mathrm{n}}-\mathrm{K}^{\star} \mathrm{g} \neq 0
$$

and

$$
\alpha_{2, n}=0 \quad \text { whenever }
$$

$$
K * \mathrm{Kf}_{2, \mathrm{n}}+\lambda_{2} \mathrm{f}_{2, \mathrm{n}}-\dot{K}^{*} \mathrm{~g}=0
$$

In general, use f_{j-1} as a starting element in $R\left(K^{*}\right)$, take $f_{j, 0}=f_{j-1}, j=2,3,4, \ldots$ and construct the sequence
(2.2.8) $\quad\left\{\mathbf{f}_{j, n}\right\}_{n=0}^{\infty}$ which converges to f_{j}
such that $f_{j, n+1}=f_{j, n}+\alpha_{j, n} W_{j, n}$
where $\alpha_{j, n}=-\frac{\left\langle W_{j, n}, W_{j, n}\right\rangle}{\left\langle K * K W_{j, n}, W_{j, n}\right\rangle+\lambda_{j}\left\langle W_{j, n}, W_{j, n}\right\rangle}$,

$$
w_{j, n}=K * K f_{j, n}+\lambda_{j} f_{j, n}-K * g
$$

for

$$
K^{*} K f_{j, n}+\lambda_{j} f_{j, n}-K^{*} g \neq 0
$$

and $\alpha_{j, n}=0$ whenever $K^{\star} K f_{j, n}+\lambda_{j} f_{j, n}-K^{*} g=0$.
From the remarks at the beginning of section 2.2 , we need that the sequence defined by $(2.2 .8)$ stay in $[N(K)]^{\perp}$. Since for $j>1$ and $f_{j, 0}=f_{j-1} \in R\left(K^{*}\right)$, we have the following corollary to Theorem 2.2.2..

Corollary 2.2.3. If $j>1$ then the sequence defined by (2.2.8), $\left\{f_{j, n}\right\}_{n=0}^{\infty} \subset R\left(K^{*}\right) \subset[N(K)]^{\perp}$.

Theorem 2.2.4. Let f_{0} be the least squares solution of minimum norm of $K \dot{f}=g, f_{1,0} \in H_{1},\left\{\left\{f_{j, n}\right\}_{n=0}^{\infty}\right\}_{j=1}^{\infty}$. constructed as in $(2.2 .8)$ and let $\epsilon>0$, then there exists: positive integers, n and j such that
$\left\|f_{j, n}-f_{o}\right\|<\epsilon$.

Proof: Follows from $\left\|f_{j, n}-f_{0}\right\| \leq\left\|f_{j, n}-f_{j}\right\|+\left\|f_{j}-f_{o}\right\|$. 2.3. Perturbations of g We have that $R(K)+N\left(K^{*}\right) \subset H_{2}$ is dense in H_{2}. For a perturbation of g by an element ϵ. belonging to H_{2} it is possible that $g+\epsilon$ will fail to be an element of $R(K)+N\left(K^{*}\right)$, in which case the least squares solution of minimum norm if $K f=g+\epsilon$ would fail to exist: The goal is to determine relationships of the solutions of

$$
\begin{aligned}
& (K * K+\lambda I) f=K^{*} g \\
& (K * K+\lambda I) f=K *(g+\epsilon)
\end{aligned}
$$

and the least squares solution of minimum norm of $K f=g$. Then an approximate solution of minimum norm of $\mathrm{Kf}=\mathrm{g}$ can be found, provided the perturbation of g is not too large.

Theorem 2.3.1. If $f_{\lambda} \in H_{1}$ is the solution to $\left(K^{*} K+\lambda I\right) f=K * g$ and $f_{\lambda, \epsilon} \in H_{1}$ is the solution to $(K * K+\lambda I) f=K *(g+\epsilon)$ where ϵ belongs to H_{2} then

$$
\left\|f_{\lambda, \epsilon}-f_{\lambda}\right\| \leq \frac{\|K\|}{\left\|(K * K+\lambda I)^{-1}\right\|^{-1}}\|\epsilon\|
$$

Proof: We have that

$$
\begin{aligned}
& \left(K^{\star} K+\lambda I\right) f_{\lambda}=K^{*} g, \\
& \left(K^{*} K+\lambda I\right) f_{\lambda, \epsilon}=K^{*}(g+\epsilon) .
\end{aligned}
$$

Subtracting the above equations, we get

$$
\left(K^{*} K+\lambda I\right) f_{\lambda, \epsilon}-\left(K^{*} K+\lambda I\right) f_{\lambda}=K^{*}(g+\epsilon)-K^{*} g,
$$

$$
(K * K+\lambda I)\left(f_{\lambda, \epsilon}-f_{\lambda}\right)=K * \epsilon
$$

Now since $K * K+\lambda I$ has a bounded inverse, there exists an $M_{\lambda}=\left\|\left(K^{*} K+\lambda I\right)^{-1}\right\|^{-1}$ such that

$$
\begin{aligned}
M_{\lambda}\left\|f_{\lambda, \epsilon}-f_{\lambda}\right\| & \leq\left\|\left(K^{*} K+\lambda I\right)\left(f_{\lambda, \epsilon}-f_{\lambda}\right)\right\| \\
& =\left\|K^{*} \in\right\| \\
& \leq\left\|K^{*}\right\|\|\epsilon\|
\end{aligned}
$$

$$
=\|\mathrm{k}\|\|\epsilon\|,
$$

so

$$
\left\|f_{\lambda, \epsilon}-f_{\lambda}\right\| \leq \frac{\|K\|}{M_{\lambda}}\|\epsilon\|
$$

Remark: With reference to Theorem 2.3.1, if we let μ be the minimum (or inf of the) nonnegative eigenvalues of $K^{*} K$ then

$$
\left\|\left(K^{*} K+\lambda I\right)^{-1}\right\|^{-1}=\mu+\lambda
$$

Theorem 2.3.2. If given $\delta>0$ and

1. f_{o} is the least squares solution of minimum norm of $K f=g$,
2. $f_{j, \epsilon}$ is the solution of $(K * K+\lambda I) f=K^{*}(g+\epsilon)$ for each. jj $j=1,2, \ldots$,
3. $f_{j, n, \epsilon}$ defined by (2.2.8),
4. ϵ is an element of H_{2} then

$$
\left\|f_{\bar{j}, \bar{n}, \epsilon}-f_{0}\right\| \leq \frac{\|K\|\|\epsilon\|}{\left\|\left(K^{*} K+\lambda \bar{j}^{I}\right)^{-1}\right\|^{-1}}+\delta \text { for some } \bar{j} \text { and } \bar{n}
$$

Proof: $\left\|f_{j, n, \epsilon}-f_{o}\right\|=\left\|f_{j, n, \epsilon}-f_{j, \epsilon}+f_{j, \epsilon}-f_{j}+f_{j}-f_{j}\right\|$

$$
\begin{aligned}
& \leq\left\|f_{j, n, \epsilon}-f_{j, \epsilon}\right\|+\left\|f_{j, \epsilon}-f_{j}\right\|+\left\|f_{j}-f_{0}\right\| \\
& \leq \frac{\|K\|\|\epsilon\|}{\left\|\left(K^{*} K+\lambda_{j} I\right)^{-1}\right\|^{-1}}+\left\|f_{j, n, \epsilon}-f_{j, \epsilon}\right\|+\left\|f_{j}-f_{0}\right\|
\end{aligned}
$$

Now there exists a j and n such that

$$
\begin{aligned}
& \left\|f_{j, n, \epsilon}-f_{j, \epsilon}\right\|<\frac{\delta}{2} \text { and }\left\|f_{j}-f_{o}\right\|<\frac{\delta}{2}, \text { say for } \bar{j}=j \\
& \bar{n}=n \text { we have }
\end{aligned}
$$

$$
\left\|\mathrm{f}_{\bar{j}, \bar{n}, \epsilon}-\mathrm{f}_{0}\right\| \leq \frac{\|K\|\|\epsilon\|}{\left\|\left(K^{*} K+\lambda_{\delta} I\right)^{-1}\right\|^{-1}}+\delta
$$

2.4. Some Error Bounds and Properties of λ

Now we will prove some theorems which will yield some bounds on $\left\|f_{\lambda}-f_{0}\right\|$ in terms of $\lambda>0$ where $f_{\lambda} \in H_{1}$ is a solution to $\left(K^{*} K+\lambda I\right) f=K^{*} g$ and f_{0} is the least squares solution of minimum norm of $K f=g$. The bound on $\left\|f_{\lambda}-f_{\Omega}\right\|$ will depend on knowledge of the singular system
($U_{n}, V_{n} ; \mu_{n}$) for the compact operator K which is described below. The notation and results follow that of Strand [20, page 19], [21] and Tricomi [24]. Define $\sigma_{0}\left(K^{*} K\right)=\sigma_{0}\left(K K^{*}\right)=\left\{\gamma_{n}: \gamma_{n}\right.$ is an eigenvalue of $\left.K * K, \gamma_{n}>0, n \in N_{k}\right\}$ where $N_{k}=\{1,2, \ldots, k\}$, (k may be \mathfrak{n}_{0}).

Let

$$
U=\left\{U_{n}: K K * U_{n}=\gamma_{n} U_{n} ; n \in N_{k}\right\}
$$

and

$$
V=\left\{V_{n}: K * K V_{n}=\gamma_{n} V_{n}, n \in N_{k}\right\}
$$

Since. $K^{\star} K$ is compact, symmetric and non-negative definite, assume that the γ_{n} are ordered such that $\gamma_{1} \geq \gamma_{2} \geq \cdots 2 \gamma_{n} \geq \cdots>0$. Define $\mu_{n}=\gamma_{n}^{-1 / 2}, n \in N_{k}$. Then we have $0<\mu_{1} \leq \mu_{2} \leq \ldots$,

$$
U_{n}=\mu_{n} K V_{n}
$$

and

$$
V_{n}=\mu_{n}{ }^{K *} U_{n}
$$

Now in this notation we can state Picard's Theorem, a proof of which is given in Strand [20, page 25].

Theorem 2.4.1. (Picard): Let $\left(U_{n}, V_{n} ; \mu_{n}\right)$ be a singular system for the compact operator $K: H_{1} \rightarrow H_{2}$ and $\overline{\mathrm{g}} \in \mathrm{H}_{2}$. Then the equation $K f=\bar{g}$ has a solution $f_{0} \in H_{1}$ if and only if $\sum_{n \in N_{m}} \mu_{n}^{2}\left|\left\langle\bar{g}, U_{n}\right\rangle\right|^{2}<\infty$ and $\bar{g} \in \overline{R(K)}$. Also for $\bar{g} \in R(K)$ we have $f_{0}=\sum_{n \in N_{m}}\left\langle\bar{g}, U_{n}\right\rangle \mu_{n} V_{n}$. Strand [20, page 26] notes that for $g=g_{1}+g_{2}, g_{1} \in R(K)$ and $g_{2} \in N\left(K^{*}\right)$ then $f_{0}=\sum_{n \in N_{m}}^{\vec{u}}<g, U_{n}>\mu_{n} v_{n}$ is the least squares solution of minimum norm of the equation $K f=g$.

Theorem 2.4.2. Let

1. $\mathrm{K}^{*} \mathrm{~K}$ have finite non-zero spectrum $\sigma_{0}, \mathrm{~N}_{\mathrm{k}}=\mathrm{m}$,
2. $f_{\lambda} \dot{\epsilon} H_{1}$ be the least squares solution of minimum norm of $\mathbf{K f}=\mathbf{g}$ then

$$
\left\|f_{\lambda}-f_{0}\right\| \leq \frac{\lambda}{\lambda+\gamma_{m}} \sqrt{\sum_{i=1}^{m}\left|\left\langle g, u_{i}\right\rangle\right|^{2} \mu_{i}^{2}}
$$

Proof:

$$
\left\|f_{\lambda}-f_{0}\right\|^{2}=\left\|\left(K^{*} K+\lambda I\right)^{-1} K^{*} g-f_{0}\right\|^{2}
$$

$$
=\left\|(K * K+\lambda I)^{-1} K * K f_{0}-f_{0}\right\|^{2}
$$

$$
=\left\|\left(K^{*} K+\lambda I\right)^{-1}\left(K^{\star} K-\left(K^{\star} K+\lambda I\right)\right) f_{0}\right\|^{2}
$$

$$
=\lambda^{2}\left\|\left(K^{*} K+\lambda \cdot I\right)^{-1} f_{0}\right\|^{2}
$$

$$
=\lambda^{2}\left\|(K * K+\lambda I)^{-1} \sum_{n=1}^{m}\left\langle g, U_{n}\right\rangle \mu_{n} V_{n}\right\|^{2}
$$

$$
=\lambda^{2}\left\|\sum_{n=1}^{m}\left\langle g, U_{n}\right\rangle \mu_{n}(K * K+\lambda I)^{-1} v_{n}\right\|^{2}
$$

and since $\left(K^{*} K+\lambda I\right)^{-1} V_{n}=\frac{V_{n}}{\gamma_{n}+\lambda}$ we have

$$
\left\|f_{\lambda}-f_{o}\right\|^{2}=\lambda^{2}\left\|\sum_{n=1}^{m}\left\langle g, U_{n}\right\rangle \mu_{n} \frac{v_{n}}{Y_{n}+\lambda}\right\|^{2}
$$

$$
=\lambda^{2} \sum_{n=1}^{m} \frac{\left|\left\langle g, u_{n}\right\rangle\right|^{2} \mu_{n}^{2}}{\left(\gamma_{n}+\lambda\right)^{2}}
$$

$$
\leq\left(\frac{\lambda}{\gamma_{m}+\lambda}\right)^{2} \cdot \sum_{n=1}^{m}\left|\left\langle g, U_{n}\right\rangle\right|^{2} \mu_{n}^{2}
$$

Now we take the square root of each side of the above inequality, giving

$$
\left\|f_{\lambda}-f_{0}\right\| \leq \frac{\lambda}{\gamma_{m}+\lambda} \sqrt{\sum_{n=1}^{m} \mid\left\langle g, U_{n}\right\rangle^{2} \mu_{n}^{2}}
$$

This completes the proof of the theorem.

Theorem 2.4.2 can be extended to the case where $K * K$ does not have a finite non-zero spectrum.

Theorem 2.4.3. If under the same hypotheses as Theorem 2.4.2, except that $K * K$ has non-finite spectrum and an integer $\mathrm{N}>0$, a real number $\delta>0$ are known such that

$$
\sum_{n=N+1}^{\infty}\left|\left\langle g, u_{n}\right\rangle\right|^{2} \mu_{n}^{2} \leq \delta
$$

then

$$
\left\|f_{\lambda}-f_{o}\right\| \leq \sqrt{\left(\frac{\lambda}{\lambda+\gamma_{N}}\right)^{2} \sum_{n=1}^{N}\left|\left\langle g, U_{n}\right\rangle\right|^{2} \mu_{n}^{2}+\delta}
$$

Proof: Simular to the proof of Theorem 2.4 .2 we have

$$
\begin{aligned}
\left\|f_{\lambda}-f_{0}\right\|^{2} & =\lambda^{2}\left\|\sum_{n=1}^{\infty}\left\langle g, U_{n}\right\rangle \mu_{n} \frac{v_{n}}{\gamma_{n}+\lambda}\right\|^{2} \\
& =\lambda^{2} \sum_{n=1}^{\infty}\left|\left\langle g, U_{n}\right\rangle\right|^{2} \frac{\mu_{n}^{2}}{\left(\gamma_{n}+\lambda\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\lambda^{2} \sum_{n=1}^{N}\left|\left\langle g, U_{n}\right\rangle\right|^{2} \frac{\mu_{n}^{2}}{\left(\gamma_{n}+\lambda\right)^{2}} \\
& \quad+\sum_{n=N+1}^{\infty}\left|\left\langle g, U_{n}\right\rangle\right|^{2} \mu_{n}^{2}\left(\frac{\lambda}{Y_{n}+\lambda}\right)^{2}
\end{aligned}
$$

$$
\leq\left(\frac{\lambda}{\gamma_{N}+\lambda}\right)^{2} \sum_{n=1}^{N}\left|\left\langle g ; U_{n}\right\rangle\right|^{2} \mu_{n}^{2}+\sum_{n=N+1}^{\infty}\left|\left\langle g, U_{n}\right\rangle\right|^{2} \mu_{n}^{2}
$$

$$
\leq\left(\frac{\lambda}{\gamma_{N}+\lambda}\right)^{2} \sum_{n=1}^{N}\left|\left\langle g, U_{n}\right\rangle\right|^{2} \mu_{n}^{2}+\delta
$$

Now we take the square root of each side of the above inequality, giving

$$
\left\|f_{\lambda}-f_{o}\right\| \leq \sqrt{\left(\frac{\lambda}{\gamma_{N}+\lambda}\right)^{2} \sum_{n=1}^{N}\left|\left\langle g, U_{n}\right\rangle\right|^{2} \mu_{n}^{2}+\delta}
$$

Remark: Let

$$
A_{\lambda}=\left\{\begin{array}{l}
\frac{\lambda}{\gamma_{n}+\lambda} \sqrt{\sum_{n=1}^{m}\left|\left\langle g, U_{n}\right\rangle\right|^{2} \mu_{n}^{2}} \text { if } m<\infty \\
\sqrt{\left(\frac{\lambda}{\gamma_{n}+\lambda}\right)^{2} \sum_{n=1}^{N}\left|\left\langle g, U_{n}\right\rangle\right|^{2}+\delta} \quad \text { otherwise. }
\end{array}\right.
$$

From (2.2.7) and (2.2.8) we have
(2.4.1) $\quad\left\|f_{j, n}-f_{o}\right\| \leq\left\|f_{j, n}-f_{j}\right\|+\left\|f_{j}-f_{o}\right\|$

$$
\leq \frac{\left\|w_{j, n}\right\|}{\left\|\left(K^{\star} K+\lambda_{j} I\right)^{-1}\right\|^{-1}}+A_{\lambda_{j}}
$$

Remark: Since the eigenvectors of $K \star K$ associated with its non-zero eigenvalues span $N(K)^{\perp}$ and $f_{o}, f_{j}, f_{j, n}$ belong to $N(K)^{\perp}$ for $j>1$, we have

$$
\gamma\left\|f_{j}-f_{0}\right\| \leq\left\|K * K\left(f_{j}-f_{0}\right)\right\|
$$

$$
\begin{aligned}
& \text { and } \\
& \left(Y+\lambda_{j}\right)\left\|f_{j, n}-f_{j}\right\| \leq\left\|\left(K^{*} K+\lambda I\right)\left(f_{j, n}-f_{j}\right)\right\| \\
& \text { where } Y=\inf _{Y_{n} \in \sigma_{O}(K \star K)} Y_{n} \quad \text { (see Helmberg [7, page 225]). } \\
& \text { Since } K^{*} K\left(f_{j}-f_{0}\right)=\lambda_{j} f_{j} \text { and } \\
& (K * K+\lambda I)\left(f_{j, n}-f_{j}\right)=W_{j, n} \text { we have } \\
& \left\|f_{j}-f_{o}\right\| \leq \frac{\lambda_{j}\left\|f_{j}\right\|}{\gamma} \\
& \text { and } \\
& \left\|f_{j, n}-f_{j}\right\| \leq \frac{\left\|w_{j, n}\right\|}{\gamma+\lambda_{j}} .
\end{aligned}
$$

Thus (2.4.1) can be rewritten as

$$
(2.4 .2) \quad\left\|f_{j, n}-f_{o}\right\| \leq \frac{\left\|w_{j, n}\right\|}{Y+\lambda_{j}}+\frac{\lambda_{j}\left\|f_{j}\right\|}{\gamma}
$$

giving non- a prior error bounds when $\gamma \neq 0$.
Using the same techniques as in the above remark, we can replace $\left\|\left(K^{*} K+I \lambda\right)^{-1}\right\|^{-1}$ with $\gamma+\lambda$ in Theorems 2.3.1 and 2.3.2.

Theorem 2.4.4. If f_{λ} is the solution to $\left(K^{*} K+\lambda I\right) f=K * g$ then $\left\|f_{\lambda}\right\|$ is strictly decreasing in $\lambda>0$.

Proof: Since $K^{*} K: H_{1} \rightarrow H_{1}$ is a symmetric, nonnegative definite and compact linear operator, there is an orthonormal bases $\left\{e_{i}\right\}$ for H_{1} such that $(K * K+\lambda I) e_{i}=\left(\gamma_{i}+\lambda\right) e_{i}$ for all i. Since $K * K$ is compact and nonnegative we may assume $\gamma_{i} \geq \gamma_{i+1} \geq 0$ for all i. So we have that $K \star K+\lambda I \propto \operatorname{diag}\left(\gamma_{1}+\lambda, \gamma_{2}+\lambda, \ldots\right)$ relative to $\left\{e_{i}\right\}$. Thus

$$
(K * K+\lambda I)^{-1} \approx \operatorname{diag}\left(\frac{1}{\gamma_{1}+\lambda}, \frac{1}{\gamma_{2}+\lambda}, \ldots\right)
$$

since ${\underset{\lambda}{f}}^{f^{\prime}}=\left(K^{*} K+\lambda I\right)^{-1}{ }_{K *} g$, it follows that

$$
f_{\lambda}=\sum_{i} \frac{\left\langle K^{*} g, e_{i}\right\rangle}{\gamma_{i}+\lambda} e_{i}
$$

and

$$
\left\|f_{\lambda}\right\|^{2}=\sum_{i} \frac{\left|\left\langle K^{*} g, e_{i}\right\rangle\right|^{2}}{\left(\gamma_{i}+\lambda\right)^{2}}
$$

The theorem follows immediately. We now prove that $\left\|\mathrm{Kf}_{\lambda}\right\|$ is increasing as $\lambda>0$ is decreasing. The theorem following is of interest, in its own right, when compared to Theorem 2.4.4.

Lemma 2.4.5. If $\alpha>0, \beta>0, f_{\alpha} \in R\left(K^{*}\right)$ is the solution to $\left(K^{*} K+\alpha I\right) f=K^{*} g$ and $f_{\beta} \in R\left(K^{*}\right)$ is the solution to $\left(K^{\star} K+\beta I\right) f=K^{*} g$ then

$$
\left\langle f_{\alpha}, f_{\beta}\right\rangle \geq \frac{\alpha\left\langle f_{\alpha}, f_{\alpha}\right\rangle+\beta\left\langle f_{\beta}, f_{\beta}\right\rangle}{\alpha+\beta}
$$

and

$$
\left\langle K f_{\alpha}, K f_{\beta}\right\rangle \geq \frac{\alpha\left\langle K f_{\alpha}, K f_{\alpha}\right\rangle+\beta\left\langle K f_{\beta}, K f_{\beta}\right\rangle}{\alpha+\beta}
$$

Proof: We have the result that

$$
K * K f_{\alpha}+\alpha f_{\alpha}=K * K f_{\beta}+\beta f_{\beta}
$$

which implies
(2.4.3)

$$
K^{*} K\left(f_{\alpha}-f_{\beta}\right)=\beta f_{\beta}-\alpha f_{\alpha} .
$$

Now taking the inner product of each side of (2.4.3) with $f_{\alpha}-f_{\beta}$ we obtain the following result.

$$
\begin{aligned}
0 & \leq\left\langle K * K\left(f_{\alpha}-f_{\beta}\right), f_{\alpha}-f_{\beta}\right\rangle \\
& =\left\langle\beta f_{\beta}-\alpha f_{\alpha}, f_{\alpha}-f_{\beta}\right\rangle \\
& =\beta\left\langle f_{\beta}, f_{\alpha}-f_{\beta}\right\rangle-\alpha\left\langle f_{\alpha}, f_{\alpha}-f_{\beta}\right\rangle \\
& =\beta\left\langle f_{\beta}, f_{\alpha}\right\rangle-\beta\left\langle f_{\beta}, f_{\beta}\right\rangle-\alpha\left\langle f_{\alpha}, f_{\alpha}\right\rangle+\alpha\left\langle f_{\alpha}, f_{\beta}\right\rangle \\
& =\langle\alpha+\beta)\left\langle f_{\alpha}, f_{\beta}\right\rangle-\left(\beta\left\langle f_{\beta}, f_{\beta}\right\rangle+\alpha\left\langle f_{\alpha}, f_{\alpha}\right\rangle\right) .
\end{aligned}
$$

$$
\frac{\beta\left\langle f_{\beta}, f_{\beta}\right\rangle+\alpha\left\langle f_{\alpha}, f_{\alpha}\right\rangle}{\alpha+\beta} \leq\left\langle f_{\beta}, f_{\alpha}\right\rangle
$$

The result

$$
\frac{\beta\left\langle K f_{\beta}, K f_{\beta}\right\rangle+\alpha\left\langle K f_{\alpha}, K f_{\alpha}\right\rangle}{\alpha+\beta} \leq\left\langle K f_{\alpha}, K f_{\beta}\right\rangle
$$

has a similar proof, starting with

$$
K^{*} K\left(K^{*} K\left(f_{\alpha}-f_{\beta}\right)\right)=K^{\star} K\left(\beta f_{\beta}-\alpha f_{\alpha}\right)
$$

and then taking the inner product of each side with $f_{\alpha}-f_{\beta}$.

Theorem 2.4.5. If $0<\beta<\alpha, f_{\alpha} \in R\left(K^{*}\right)$ is the solution to $\left(K^{*} K+\alpha I\right) f=K^{*} g$ and $f_{\beta} \in R\left(K^{*}\right)$ is the solution to $\left(K^{*} K+\beta I\right) f=K{ }^{*} g$ then $\left\|K f_{\beta}\right\| \geq\left\|K f_{\alpha}\right\|$.

Proof: Since we have

$$
(K * K+\alpha I) f_{\alpha}=(K * K+\beta I) f_{\beta}
$$

take the inner product of each side with f_{α} yielding the following result.

$$
\begin{aligned}
& \left\langle K^{*} K f_{\alpha}+\alpha f_{\alpha}, f_{\alpha}\right\rangle=\left\langle K K_{\beta}^{*} f_{\beta}+\beta f_{\beta}, f_{\alpha}\right\rangle, \\
& \left\langle K \star K f_{\alpha}, f_{\alpha}\right\rangle+\alpha\left\langle f_{\alpha}, f_{\alpha}\right\rangle=\left\langle K^{\star} K f_{\beta}, f_{\alpha}\right\rangle+\beta\left\langle f_{\beta}, f_{\alpha}\right\rangle, \\
& \left\langle K f_{\alpha}, K f_{\alpha}\right\rangle+\alpha\left\langle f_{\alpha}, f_{\alpha}\right\rangle=\left\langle K f_{\beta}, K f_{\alpha}\right\rangle+\beta\left\langle f_{\beta}, f_{\alpha}\right\rangle .
\end{aligned}
$$

In a similar way, taking the inner product with f_{β} Yields:

$$
\left\langle K f_{\alpha}, K f_{\beta}\right\rangle+\alpha\left\langle f_{\alpha}, f_{\beta}\right\rangle=\left\langle K f_{\beta}, K f_{\beta}\right\rangle+\beta\left\langle f_{\beta}, f_{\beta}\right\rangle .
$$

Now using the previous lemma we have

$$
\begin{aligned}
& \left\langle K f_{\alpha}, K f_{\alpha}\right\rangle+\alpha\left\langle f_{\alpha}, f_{\alpha}\right\rangle=\left\langle K f_{\beta}, K f_{\alpha}\right\rangle+\beta\left\langle f_{\beta}, f_{\alpha}\right\rangle \\
& 2 \frac{\beta\left\langle K f_{\beta}, K f_{\beta}\right\rangle+\alpha\left\langle K f_{\alpha}, K f_{\alpha}\right\rangle}{\alpha+\beta}+\beta \frac{\left(\beta\left\langle f_{\beta}, f_{\beta}\right\rangle+\alpha\left\langle f_{\alpha}, f_{\alpha}\right\rangle\right)}{\alpha+\beta}
\end{aligned}
$$

When we multiply each side of the previous result by $\alpha+\beta$ and simplify the algebraic expression, we obtain
(2.4.4)

$$
\beta\left\langle K f_{\alpha}, K f_{\alpha}\right\rangle+\alpha^{2}\left\langle f_{\alpha}, f_{\alpha}\right\rangle \geq \beta\left\langle K f_{\beta}, K f_{\beta}\right\rangle+\beta^{2}\left\langle f_{\beta}, f_{\beta}\right\rangle
$$

In a similar way from

$$
\left\langle K f_{\alpha}, K f_{\beta}\right\rangle+\alpha\left\langle f_{\alpha}, f_{\beta}\right\rangle=\left\langle K f_{\beta}, K f_{\beta}\right\rangle+\beta\left\langle f_{\beta}, f_{\beta}\right\rangle
$$

we obtain:
(2.4.5)
$\alpha\left\langle K f_{\beta}, K f_{\beta}\right\rangle+\beta^{2}\left\langle f_{\beta}, f_{\beta}\right\rangle \geq \alpha\left\langle K f_{\alpha}, K f_{\alpha}\right\rangle+\alpha^{2}\left\langle f_{\alpha}, f_{\alpha}\right\rangle$.

Now add equations (2.4.4) and (2.4.5), obtaining the inequality:
(2.4.6)

$$
\begin{gathered}
\beta\left\langle K f_{\alpha}, K f_{\alpha}\right\rangle+\alpha\left\langle K f_{\beta}, K f_{\beta}\right\rangle 2 \\
\beta\left\langle K f_{\beta}, K f_{\beta}\right\rangle+\alpha\left\langle K f_{\alpha}, K f_{\alpha}\right\rangle
\end{gathered}
$$

So (2.4.6) Yields the result:

$$
(\alpha-\beta)\left\langle K f_{\beta}, K f_{\beta}\right\rangle \geq(\alpha-\beta)\left\langle K f_{\alpha}, K f_{\alpha}\right\rangle .
$$

Since $0<\beta<\alpha$ we have

$$
\left\langle K f_{\beta}, K f_{\beta}\right\rangle 2\left\langle K f_{\alpha}, K f_{\alpha}\right\rangle .
$$

Thus we have $\left\|K f_{\beta}\right\| \geq\left\|K f_{\alpha}\right\|$ and the theorem.

3. IMPLEMENTING THE ALGORITHM

3.1. Calculation of a Starting Element

For the basic algorithm described in section 3.2 we require an initial choice for λ_{1}, λ_{1}, and any starting element $\mathrm{F}_{1,0} \in \mathrm{H}_{1}$.

In practice we will choose any initial starting element $f \in H_{l}$ such that $f \neq 0$ and $\|K * K f\| \neq 0$. Then we determine an actual starting vector $f_{1,0} \in H_{l}$ and a initial λ, λ_{1}, such that $f_{1,0}$ is, in some sense, close to a solution of $K * K f+\lambda_{1} f=K * g$.

Now to choose the actual $f_{1,0}$, consider the element

$$
f_{s}=\frac{K^{*} K f}{\left\|K^{*} K f\right\|} \in R\left(K^{*}\right)
$$

The element f_{s} is chosen normalized so as to control the size of the norm of the actual starting element $f_{1,0}$, which will be either $\mathbf{f}_{\mathbf{s}}$ or $\mathbf{- f}_{\mathbf{s}}$.

Choose $\lambda_{1} \geq 0$ so that

$$
\hat{Q}_{\lambda}\left(f_{s}\right)=\left\|\left(K^{*} K+\lambda I\right) f_{s}-K^{*} g\right\|^{2}
$$

is minimized. Note that if $\hat{Q}_{\lambda_{1}}\left(f_{s}\right)=0$ for some choice for $\lambda_{1}>0$, then we would have obtained an equation

$$
\left(K * K+\lambda_{1} I\right) f=K * g
$$

which has f_{s} as its solution.
To minimize $\hat{Q}_{\lambda}\left(f_{s}\right)$ with respect to λ, we write $\hat{Q}_{\lambda}\left(f_{s}\right)$ as

$$
\begin{aligned}
\hat{Q}_{\lambda}\left(f_{s}\right)= & \left\|K * K f_{s}-K * g\right\| 2 \\
& +2 \lambda\left\langle f_{s}, K * K f_{s}-K * g\right\rangle+\lambda^{2}\left\|f_{s}\right\|^{2} .
\end{aligned}
$$

Taking the derivative $\hat{Q}_{\lambda}\left(f_{S}\right)$ with respect to λ and setting $\frac{d}{d \lambda} \hat{Q}_{\lambda}\left(f_{s}\right)=0$ we get the result

$$
\begin{aligned}
\frac{d}{d \lambda} \hat{Q}_{\lambda}\left(f_{s}\right) & =2\left\langle f_{s}, K * K f_{s}-K * g\right\rangle+2 \lambda\left\|f_{s}\right\|^{2} \\
& =2\left\langle f_{s}, K * K f_{s}-K * g\right\rangle+2 \lambda=0 .
\end{aligned}
$$

Note also that $\left.\frac{d^{2} \hat{Q}\left(f_{s}\right)}{d \lambda^{2}}=2\left\langle f_{s}, f_{s}\right\rangle\right\rangle 0$, so that the solution to $\frac{d}{d \lambda}\left(f_{s}\right)=0$ yields a minimum.

By solving $\frac{\mathrm{d}}{\mathrm{d} \lambda} \hat{\mathrm{Q}}_{\lambda}\left(\mathbf{f}_{\mathbf{s}}\right)=0$ for $\lambda=\bar{\lambda}$, the minimum, we have the result:
(3.1.1)

$$
\begin{aligned}
\bar{\lambda} & =-\left\langle f_{\mathbf{s}}, K * K f_{s}-K * g\right\rangle \\
& =\left\langle g-K f_{s}, K f_{\mathbf{s}}\right\rangle \\
& =\left\langle K f_{\mathbf{s}}, g\right\rangle-\left\langle K f_{\mathbf{s}}, K f_{\mathbf{s}}\right\rangle
\end{aligned}
$$

By substituting $\lambda=\bar{\lambda}$ in $\hat{Q}_{\lambda}\left(f_{s}\right)$ we obtain

$$
\hat{Q}_{\bar{\lambda}}\left(f_{s}\right)=\left\|K^{*} K f_{s}-K^{*} g\right\|^{2}-\left\langle K f_{s}, g-K f_{s}\right\rangle^{2}
$$

For the choice for λ_{1} we need $\lambda_{1} \geq 0$, so consider the following three cases:

Case 1. If $\bar{\lambda}=0$, take $\lambda_{1}=\bar{\lambda}$ and we have computed an exact solution, $f_{s} \in R\left(K^{*}\right) \subset N(K)^{\perp}$, to $K * K f=K * g$.

Since K^{*} is one-to-one on the range of K we have that

$$
K^{*}\left(K_{S}-g_{1}\right)=0
$$

so $\mathrm{Kf}_{s}=g_{1}$. Thus we have computed the least squares solution of minimum norm, $f_{s}=f_{0}$, of $K f=g$.

Case 2. If $\bar{\lambda}>0$ then take $\lambda_{1}=\bar{\lambda}$ and $f_{1,0}=f_{s}$ for a starting element.

Case 3. If $\bar{\lambda}<0$ then replace f_{s} with $-f_{s}$ in
(3.1.1), since then the new value of $\bar{\lambda}$ is

$$
\begin{align*}
\bar{\lambda} & =\left\langle K\left(-f_{s}\right), g-K\left(-f_{s}\right)\right\rangle \tag{3.1.2}\\
& =\left\langle-K f_{s}, g+K f_{s}\right\rangle \\
& =-\left\langle K f_{s}, g\right\rangle-\left\langle K f_{s}, K f_{s}\right\rangle,
\end{align*}
$$

as compared with equation (3.1.1). So if 〈Kf,g-Kf〉 is negative for f_{s} and positive for $-f_{s}$ take

$$
\begin{aligned}
& f_{i, 0}=-f_{s} \quad \text { and } \lambda_{1}=\bar{\lambda}=-\left\langle K f_{s}, g\right\rangle-\left\langle K f_{s,}, K f_{s}\right\rangle . \\
& \text { If }\left\langle K f_{s}, g\right\rangle=0 \text { then a new starting element } f \text { must }
\end{aligned}
$$ be chosen.

Now from here on suppose that $\left\langle K f_{s}, g\right\rangle \neq 0$.
If 〈Kf,g-Kf〉 is negative for both f_{s} and $-f_{s}$ then from (3.1.1) and (3.1.2) there exists a real number a >1 such that for the scaled equation

$$
\mathrm{Kf}=\mathrm{ag}
$$

we have $\bar{\lambda}=\langle K f, a g-K f\rangle \geq 0$ for f one of the elements f_{s} or $-f_{s}$. In the above computation it was critical that $\left\langle\mathrm{Kf}_{\mathrm{s}}, g\right\rangle \neq 0$. So we take $\lambda_{1}=\bar{\lambda}$ and $\mathrm{f}_{1,0}$ to be the element f_{s} or $\mathbf{- f}_{s}$ which makes $\bar{\lambda} \geq 0$. The new equation $\mathrm{Kf}=\mathrm{ag}$ is then solved for af_{o}, the least squares solution of minimum norm of $\mathrm{Kf}=\mathrm{ag}$, and scaled back to the least squares solution of minimum norm, f_{o}, of the original equation $K f=g$ at the end of the algorithm.

In summary, for each $f \neq 0$ where. $\left\|K^{*} K f\right\| \neq 0$ and $f \in H_{1}$ a starting element $f_{1,0} \in R\left(K^{*}\right)$ and a $\lambda_{1} \geq 0$ can be chosen so that $\left\|\left(K^{*} K+\lambda I\right) f_{s}-a K^{*} g\right\|$ is a minimum (here $a \geq 1$). Thus we start as close as possible (in norm) to a solution of $\left(K^{*} K+\lambda I\right) f-a K * g=0$.

Once λ_{1} is chosen, a sequence $\left\{\lambda_{j}\right\}_{j=1}^{\infty}$ can be constructed such that $\lambda_{j}>0, \lambda_{j} \rightarrow 0$ as $j \rightarrow \infty$, by taking $\lambda_{j+1}=x \lambda_{j}$ where $0<x<1$. In practice the sequence $\left\{\lambda_{j}\right\}_{j=1}^{\infty}$, is terminated when λ_{j} is less than some preassigned value μ. For the first λ_{j} such that $\lambda_{j} \leq \mu$ take $\lambda_{j}=\mu$.
\mathbf{x} is determined by numerical experimentation.

$$
\text { 3.2. The Sequence }\left\{f_{j, n}\right\}_{n=0}^{\infty}
$$

The sequence $\left\{f_{j, n}\right\}_{n=0}^{\infty}$, for j fixed, is constructed by taking

$$
f_{j, n+1}=f_{j, n}+\alpha_{j, n} W_{j, n}
$$

where $\alpha_{j, n}$ and $w_{j, n}$ are given by (2.2.8). The construction of the sequence $\left\{f_{j, n}\right\}_{n=0}^{\infty}$ is terminated when a measure of convergence fails, due to rounding errors in computation, to give an approximate solution f_{j} to the equation ($\left.K{ }^{*} K+\lambda_{j} T\right) f=K * g \quad$ (possibly scaled). The measure of convergence used is to note that from (2.2.4),

$$
Q_{\lambda_{j}}\left(f_{j, n}\right)-Q_{\lambda_{j}}\left(\dot{f}_{j, n+1}\right)=\frac{\left\langle W_{j, n}, W_{j, n}\right\rangle^{2}}{\left\langle K W_{j, n}, K W_{j, n}\right\rangle+\lambda_{j}\left\langle W_{j, n}, W_{j, n}\right\rangle}
$$

for $W_{j, n} \neq 0$, i.e. $Q_{\lambda_{1}}\left(f_{j, n+1}\right)<Q_{\lambda_{j}}\left(f_{j, n}\right)$, an approxmation to f_{j} is chosen to be the least value of n for which $Q_{\lambda_{j}}\left(f_{j, n+1}\right)<Q\left(f_{j, n}\right)$ fails in the computations, or $\left\|W_{j, n}\right\|$ is less than some preassigned value; which ever occurs first.

We use $\left\|W_{j, n}\right\|$ as a measure of $\left\|f_{j, n}-f_{o}\right\|$, since

$$
\left\|f_{j, n}-f_{0}\right\| \leq \frac{\left\|w_{j, n}\right\|}{\left\|\left(K^{*} K+\lambda I\right)^{-1}\right\|^{-1}}+\left\|f_{j}-f_{0}\right\|
$$

(see 2.4.1). Ideally we first choose λ so that $\left\|f_{j}-f_{j}\right\|$ is small and then make $\left\|W_{j, n}\right\|$ small. In practice it is difficult to make $\left\|f_{j}-f_{o}\right\|$ small with out some knowledge of the solution.

3.3. A Flow Diagram of the Basic Algorithm

The following diagram, given in Figure 3.3.1, is a basic description of the algorithm to find the least squares solution of minimum norm of the operator equation $K f=g$. The flow diagram describes the program in Appendix A for matrix equations and the subroutine BITER for discretized integral equations in Appendix B 。

Figure 3.3.1. Flow Chart of the Basic Algorithm

Figure 3.3.1. (Continued)

Figure 3.3.1. (Continued)

Figure 3.3.1. (Continued)

Figure 3.3.1. (Continued)

Figure 3.3.1. (Continued)

4. EXAMPLES

4.1. Matrix Examples

Let the real Hilbert spaces $H_{1}=E^{n}, H_{2}=E^{m}$ where $E^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right)^{T}: x_{i}\right.$ real $\}$ with the inner product

$$
\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}, x, y \in E^{n}
$$

be given. In this finite dimensional case each linear transformation $A: H_{1} \rightarrow H_{2}$ has a unique matrix representation

$$
A=\left(a_{i, j}\right)_{\substack{i=1, m \\ j=1, n}}
$$

with respect to each hases $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ in H_{1} and $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ in H_{2}. We shall always take our bases vectors to be the canonical bases. Since H_{1} and H_{2} are finite dimensional, all linear transformations are bounded and compact. Since A is of finite rank we have $R(A)=\overline{R(A)}$, so the algorithm (see section 2.2) will
converge to the least squares solution of minimum norm, \mathbf{x}_{0}, of $A x=g$ for all $g \in H_{2}$.

Let

$$
A=\left[\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
1 & 2 & 2 & 1 & 0 & 0 \\
3 & 3 & 3 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 & 1 & 1
\end{array}\right]
$$

Then A has rank three.
Consider $A x=g$ for the following two cases.
Case 1. $g_{1}=(10,12,13,22,43,35)^{\mathbf{T}} \in R(A)$:

Case 2.

$$
\begin{aligned}
g_{2} & =g_{1}+(-5,-2,-2,1,1,1)^{\mathrm{T}} \\
& =(5,10,11,23,24,36)^{\mathrm{T}}
\end{aligned}
$$

where $(-5,-2,-2,1,1,1)^{T} \in N(A)$.
In both Case 1 and Case 2 the least squares solution of minimum norm, $\quad x_{0}$, of $A x=g_{i}, i=1,2$ is

$$
\vec{x}_{0}=(17 / 6,43 / 12,43 / 12,29 / 6,49 / 12,49 / 12) \in N(A)^{\perp}
$$

\vec{x}_{0} was constructed by finding a basis

$$
\left[\begin{array}{r}
-1 \\
1 \\
0 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
1 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
0 \\
0 \\
0 \\
0 \\
-1 \\
1
\end{array}\right]
$$

for $N(A)$. Then a basis

$$
\left[\begin{array}{r}
1 \\
0 \\
0 \\
-1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
1 \\
1
\end{array}\right]
$$

is found for $N(A)^{\perp}$.

Since \vec{x}_{0} is contained in $N(A)^{\perp}, \vec{x}_{0}$ must be a linear combination of the above three vectors. Therefore to solve $A x=g_{i}$ we need only solve

$$
A\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{2} \\
-x_{1}+x_{2}+x_{3} \\
x_{3} \\
x_{3}
\end{array}\right]=g_{i}, \quad i=1,2
$$

The algorithm in Appendix A was used to find the approximate least squares solution of minimum norm for Case 1 and Case 2 with the results given in Table 1. Comparisons with the actual solution were computed separately.

For Run 1 Case 1 we will satisfy the error bounds of Statement (2.4.1) so that $\left\|f_{j, n}-f_{u}\right\|<10^{-6}$. We will assume that we know the eigenvalues of $A^{T} A$, which were computed to be $56.96,4.72,2.32,0,0,0$. Also we will assume that we have an approximation for $\left\|f_{0}\right\|$, the norm of the least squares solution of minimum norm, say 9.5. Now from (2.4.1) we have

$$
\left\|f_{j, n}-f_{o}\right\| \leq \frac{\left\|w_{\lambda_{j}, n}\right\|}{\lambda_{j}+2.32}+\frac{9.5 \lambda_{j}}{\lambda_{j}+2.32}
$$

We will choose terminal lama, $\mu=\lambda_{j}$ and $\left\|W_{j, n}\right\|$ so that

$$
\frac{9.5 \mu}{\mu+2.32}<\frac{10^{-6}}{2}
$$

and

$$
\frac{\left\|w_{j, n}\right\|}{\mu+2.32}<\frac{10^{-6}}{2}
$$

We actually used $\mu=1 . \times 10^{-7}$ and made $\left\|W_{j, n}\right\|^{2} \leq 10^{-12}$.
The results of several runs of case 1 and Case 2 are
given in Table 1. For each run we used the initial starting vector $F=(1,1 ., 1,0,0,0)^{\mathrm{T}}$. We computed $\left\|A^{T} g_{i}\right\|=470.14$.

Table 1. Matrix Example

	Run 1	Run 2	Run 3	Run 4
g	g_{1}	$\mathrm{~g}_{1}$	$\mathrm{~g}_{1}$	g_{2}
M	400	400	400	400
Th	$1 .(-7)$	$1 .(-16)$	$1 .(-16)$	$1 .(-16)$
W1	$1 .(-12)$	$1 .(-10)$	$1 .(-20)$	$1 .(-10)$
Mm	$1 .(-5)$	$1 .(-5)$	$1 .(-5)$	$1 .(-5)$
IX	411.68	411.68	411.68	411.68
EN	$4.2(-7)$	$3.3(-6)$	$3.3(-11)$	$3.3(-6)$
E1	$1 .(-6)$	$4.4(-6)$	$4.4(-11)$	$4.4(-6)$
E2	$1 .(-6)$	$4.4(-6)$	$4.4(-11)$	$4.4(-6)$
E3	$2.3(-7)$.	$1.9(-6)$	$1.8(-11)$	$1.9(-6)$
W2	$8.8(-7)$	$8.6(-6)$	$8.7(-11)$	$8.6(-6)$
Re	$6.5(-7)$	$5 .(-6)$	$5.1(-11)$	$6 .+2 .(-12)$
TI	132	104	293	104
Ex	3.19	2.60	6.93	1.66

$M=$ maximum number of allowable iterations for a given step.
$\mathrm{T} \lambda=$ terminal Lambda.
$\mathrm{wl}=$ terminal choice for $\left\|\mathrm{w}_{\mathrm{j}, \mathrm{n}}\right\|^{2}$.
$\lambda m=$ Lambda multiplier.
$I \lambda=$ computed initial λ_{1}, approximately.
$E N \simeq$ computed $\left\|f_{T \lambda, n}-f_{o}\right\|$.
EI = error bound computed from (2.4.1).
E2 $=$ error bound computed from (2.4.2).
$E 3=$ computed $\max \left|f_{T \lambda, n}-f_{o}\right|$.
$W 2=$ computed $\left\|\left(A^{T} A+\lambda I\right) f_{T \lambda, n}-A^{T} g\right\|$.
Re $=$ computed $\left\|\left(A f_{T \lambda, n}-g\right)\right\|$.
$T I=$ total iterations .
Ex $=$ execution time, seconds, WATFIVE.

4.2. An Inner Product Space

We will consider the real n-dimensional space R^{n}. with scalar field the real numbers. Define a mapping from $R^{n} \times R^{n}$ to R by

$$
(u, v) \rightarrow\langle u, v\rangle=\sum_{j=1}^{n} T_{j} u_{j} v_{j}
$$

where $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)^{T}, v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)^{T}$ and $T_{j}>0, T_{j} \in R$ for all $j=1, \ldots, n$. Thus we have a Hilbert space, which will be denoted by H_{T}^{n}. Let $\left\{e_{1}^{n}, e_{2}^{n}, \ldots, e_{n}^{n}\right\}$ be the orthogonal (not necessarily normalized) bases for H_{T}^{n} where $e_{j}^{n}=\left(0,0, \ldots, i_{j}, \ldots, 0\right)^{T}$, $j=1, n$.

$$
\text { If } A: H_{T}^{m} \rightarrow H_{S}^{n} \text { then } A^{*}: H_{S}^{n} \rightarrow H_{T}^{m} \text { will denote the }
$$ adjoint.

Theorem 4.2.1. If

$$
A: H_{T}^{m} \rightarrow H_{S}^{n} \text { is }\left(T_{j} a_{i, j}\right)_{i=1, n} \quad \text { then }
$$

$$
A^{*}=\left(S_{i} a_{i, j}\right)_{\substack{j=1, m \\ i=1, n}}
$$

Proof: We will show that the above A^{*} is the adjoint of A.

$$
\begin{aligned}
\left\langle A e_{k}^{m}, e_{\ell}^{n}\right\rangle & =\left\langle\sum_{i=1}^{n} T_{k} a_{i, k} e_{i}^{n}, e_{\ell}^{n}\right\rangle \\
& =T_{k} a_{\ell, k}\left\langle e_{\ell}^{n}, e_{\ell}^{n}\right\rangle \\
& =T_{k} S_{\ell} a_{\ell, k}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle e_{k}^{m}, A^{*} e_{\ell}^{n}\right\rangle & =\left\langle e_{k}^{m}, \sum_{j=1}^{m} s_{\ell} a_{\ell, j} e_{j}^{m}\right\rangle \\
& =s_{\ell}{ }_{l, k}\left\langle e_{k}^{m}, e_{k}^{m}\right\rangle \\
& =S_{\ell} T_{k}^{a}{ }_{\ell, k} \\
& =\left\langle A e_{k}^{m}, e_{\ell}^{n}\right\rangle
\end{aligned}
$$

for all k and ℓ, therefore A^{*} is the adjoint of A.

4.3. Discretizing Integral Equations

We will obtain a discretized form of Fredholm integral equations of the first kind,

$$
\text { (4.3.1) } K f(y)=\int_{0}^{1} k(y, x) f(x) d x=g(y), \quad 0 \leq y \leq 1
$$

where $g \in R(K)+N\left(K^{*}\right) \subset L_{2}[0,1], f \in L_{2}[0,1]$ and $k(y, x)$ is square integrable with respect to the product Lebesgue measure on $[0,1] \times[0,1]$.

Akhiezer and Glazman [l] prove that if $\int_{0}^{1}|k(y, x)|^{2} d y d x<\infty$ then k is compact. For $K f(s)=\int_{0}^{1} k(s, x) f(x) d x$ Bachman and Narici [3, page 403] note that the adjoint to K is K^{*}, given by

$$
K^{\star} f(s)=\int_{0}^{1} k(x, s) f(x) d x
$$

Of particular interest is the equation
(4.3.2)
$\int_{0}^{1} k(y, s) \int_{0}^{l} k(y, x) f(x) d x d y+\lambda f(s)=\int_{0}^{1} k(y, s) g(y) d y$
for $\lambda>0$.
For numerical purposes, we will restrict the discussion to the functions $k(y, x), g$ and f_{λ} where we have Riemann integration.

The methods of discretization of the integrals will initially parallel that found in Anselone [2, page 13] and Isaacson and Keller [9].
we have that
(4.3.3)

$$
\int_{0}^{1} k(y, s) g(y) d y=\sum_{j=1}^{m} s_{j} k\left(y_{j}, s\right) g\left(y_{j}\right)+R_{m}(s)
$$

where $R_{m}(s)$ is the discretization error. Here $S_{j}>0$
$j=1, m, \quad \sum_{j=1}^{m} S_{j}=i \quad$ are the quadrature weights for
$0=\mathrm{y}_{1}<\mathrm{Y}_{2}<\ldots<\mathrm{Y}_{\mathrm{m}}=1$, a partition of the interval $[0,1]$, chosen equally spaced for the Newton-Cotes closed
integration formulae.

$$
\begin{aligned}
& \text { For } \int_{0}^{1} k(y, s) \int_{0}^{l} k(y, x) f(x) d x d y \text { we have } \\
& (4.3 .4) \int_{0}^{1} k(y, s) \int_{0}^{l} k(y, x) f(x) d x d y \\
& =\sum_{j=1}^{m} s_{j} k\left(y_{j}, s\right) \sum_{i=1}^{n} T_{i} k\left(y_{j}, x_{i}\right) f\left(x_{i}\right)+\bar{R}(s)
\end{aligned}
$$

where $\overline{\mathrm{R}}(\mathrm{s})$ is the discretization error. Here $\mathrm{T}_{\mathbf{i}}>0$ for $i=1, n, \quad \sum_{i=1}^{n} \mathbf{T}_{i}=1$ are the quadrature weights for $0=x_{1}<x_{2}<\ldots<x_{n}=1$, a partition of the interval [0,1] chosen equally spaced for the Newton-Cotes closed integration formulae. The partition and weights for the $y_{j}{ }^{\prime} s$ are chosen as for (4.3.3). Thus from (4.3.3) and (4.3.4), (4.3.2) becomes
(4.3.5)

$$
\begin{aligned}
& \sum_{j=1}^{m} s_{j} k\left(y_{j}, s\right) \sum_{i=1}^{n} T_{i} k\left(y_{j}, x_{i}\right) f\left(x_{i}\right)+\lambda f(s)+\bar{R}(s) \\
& =\sum_{j=1}^{m} s_{j} k\left(y_{j}, s\right) g\left(y_{j}\right)+R_{m}(s) .
\end{aligned}
$$

Now, (4.3.5) can be written in the equivalent form

$$
\begin{aligned}
& \left(S_{j} k\left(y_{j}, s\right)\right)_{j=1, m}^{T}\left(T_{i} k\left(y_{j}, x_{i}\right)\right)_{\substack{j=1, m \\
i=1, n}}\left(f\left(x_{i}\right)\right)_{i=1, n}+\lambda f(s)+\bar{R}(s) \\
& =\sum_{j=1}^{m} S_{j} k\left(s, y_{j}\right) g\left(y_{j}\right)+R_{m}(s) \text {. Where }\left(v_{i}\right)_{i=1, \ell} \text { denotes an }
\end{aligned}
$$

ℓ-dimensional column vector.
Now partition the interval [0,1] for such that $s_{i}=x_{i}$ for $i=1, n$. Thus we obtain the linear system

$$
\begin{equation*}
\left(S_{j} k\left(y_{j}, x_{i}\right)\right)_{\substack{i=1, n \\ j=1, m}} \cdot\left(T_{i} k\left(y_{j}, x_{i}\right)\right)_{\substack{j=1, m \\ i=1, n}}\left(f\left(x_{i}\right)\right)_{i=1, n} \tag{4.3.6}
\end{equation*}
$$

$+\lambda\left(f\left(x_{i}\right)\right)_{i=1, n}=\left(S_{j} k\left(y_{j}, x_{i}\right)\right)_{\substack{i=1, n \\ j=1, m}}\left(g\left(y_{j}\right)\right)_{j=1, m}$
$+\left(R_{m}\left(x_{i}\right)-\bar{R}\left(x_{i}\right)\right)_{i=1, n}$.

Let

$$
\begin{aligned}
K & =\left(T_{i} k\left(y_{j} ; x_{i}\right)\right)_{\substack{j=1, m^{\prime} \\
i=1, n}} K: H_{T}^{n} \rightarrow H_{S}^{m} ; \\
K^{*} & =\left(S_{j} k\left(y_{j} ; x_{i}\right)\right)_{\substack{i=1, n \\
j=1, m}} K^{*}: H_{S}^{m} \rightarrow H_{T}^{n} ; \\
\vec{f} & =\left(f\left(x_{i}\right)\right)_{i=1, n}, \quad \vec{f} \in H_{T}^{n} ; \\
\vec{g} & =\left(g\left(x_{j}\right)\right)_{j=1, m}, \quad \vec{g} \in H_{S}^{m}
\end{aligned}
$$

and

$$
\vec{R}_{1}=\left(R_{n}\left(x_{i}\right)-\bar{R}\left(x_{i}\right)\right)_{i}=1, n, \quad \vec{R} \in H_{T}^{n}
$$

Thus (4.3.6) can be written in the form
(4.3.7)

$$
K \star K \vec{f}+\lambda \vec{f}=K \star \vec{g}+\vec{R}_{1}
$$

Similar to (4.3.5) we have the integral equation
(4.3.8)

$$
\int_{0}^{1} k(y, s) \int_{0}^{l} k(y, x) f(x) d x d y=\int_{0}^{1} k(y, s) g(y) d y
$$

and its discretized form
(4.3.9)

$$
K * K \vec{f}=K * \vec{g}+\vec{R}_{1},
$$

where \vec{R}_{1} is the discretization error vector. To solve equation (4.3.8) numerically we consider the system

$$
\begin{equation*}
\mathrm{K} * K \overrightarrow{\mathrm{f}}+\lambda \overrightarrow{\mathrm{f}}=\dot{K} * \overrightarrow{\mathrm{~g}} \tag{4.3.10}
\end{equation*}
$$

for $\lambda>0$ and small.
4.4. Error Bounds.

Throughout this section we will assume that $\gamma=\underset{\gamma_{n} \in \sigma_{0}\left(K^{*} K\right)}{\inf }{ }_{Y_{n}}$. For $\lambda>0$, first we will develop relationships between the solutions of the following equations

$$
\begin{aligned}
& K * K \vec{f}_{\lambda}+\lambda \vec{f}_{\lambda}=K * \vec{g}+\vec{R}_{\lambda} \\
& K * K \vec{f}_{O}=K * \vec{g}+\vec{R}_{O} \\
& K * K \vec{f}_{\lambda}+\lambda \vec{f}_{\lambda}=K * \vec{g}
\end{aligned}
$$

and
where $\vec{R}_{\lambda}, \vec{R}_{o}$ are the discretization error vector. $\vec{f}_{\lambda}, \vec{f}_{0}$ and $\overrightarrow{\vec{f}}_{\lambda}$ are the respective solutions to the above equations. These relationships will depend on an estimate for $\left\|\vec{R}_{\lambda}\right\|,\left\|\vec{R}_{0}\right\|$ and γ.

Assuming the above notation we have the following two theorems.

Theorem 4.4.1.
(4.4.1)

$$
\left\|\overrightarrow{\mathrm{f}}_{\lambda}-\overrightarrow{\bar{f}}_{\lambda}\right\| \leq \frac{\left\|\overrightarrow{\mathrm{r}}_{\lambda}\right\|}{\underline{\mu}+\lambda}
$$

where $\underline{\mu}=\inf _{\gamma_{n} \in \sigma\left(K^{*} K\right)}^{\gamma_{n}}$.

Proof: Since $(K * K+\lambda I) \vec{f}_{\lambda}=K \star \vec{g}+\vec{R}_{\lambda}$ and
$(K * K+\lambda I) \vec{f}_{\lambda}=K * \vec{g}$, we have $(K * K+\lambda I)\left(\vec{f}_{\lambda}-\vec{f}_{\lambda}\right)=\vec{R}_{\lambda}$. Thus

$$
\begin{aligned}
(\underline{\mu}+\lambda)\left\|_{\lambda}-\overrightarrow{\bar{f}}_{\lambda}\right\| & =\left\|\left(K^{*} K+\lambda I\right)^{-1}\right\|^{-1}\left\|\overrightarrow{\mathrm{~F}}_{\lambda}-\overrightarrow{\bar{f}}_{\lambda}\right\| \\
& \leq\left\|\left(K^{\star} K+\lambda I\right)\left(\overrightarrow{\mathrm{F}}_{\lambda}-\overrightarrow{\mathrm{F}}_{\lambda}\right)\right\| \\
& =\left\|\overrightarrow{\mathrm{R}}_{\lambda}\right\| .
\end{aligned}
$$

Thus we have the theorem.

Remark: Since $K * K \vec{f}_{O}=K * \vec{g}+\vec{R}_{0}$ we have $K *\left(K \vec{f}_{O}-\vec{g}\right)=\vec{R}_{0}$. Thus $\vec{R}_{0} \in R\left(K^{*}\right) \subset N(K)^{\perp}$. Therefore $\vec{f}_{0} \in N\left(K^{*} K\right)^{\perp}$.

Theorem 4.4.2.
(4.4.2)

$$
\left\|K * K\left(\overrightarrow{\mathrm{f}}_{0}-\overrightarrow{\bar{f}}_{\lambda}\right)\right\| \leq\left\|\vec{R}_{0}\right\|+\lambda\left\|\overrightarrow{\mathrm{f}}_{\lambda}\right\|,
$$

(4.4.3) $\quad\left\|\vec{f}_{o}-\overrightarrow{\vec{f}}_{\lambda}\right\| \leq \frac{\left\|\vec{R}_{o}\right\|+\lambda\left\|\vec{F}_{\lambda}\right\|}{\gamma}$ for $\gamma \neq 0$,
(4.4.4) $\quad\left\|\overrightarrow{\mathbf{f}}_{0}-\overrightarrow{\vec{f}}_{\lambda}\right\| \leq \frac{\left\|\overrightarrow{\mathrm{R}}_{0}\right\|+\lambda\left\|\overrightarrow{\mathbf{f}}_{0}\right\|}{\lambda+\gamma}$
and
(4.4.5) $\left\|\overrightarrow{\mathbf{f}}_{0}-\overrightarrow{\mathbf{f}}_{\lambda}\right\| \leq \frac{(\lambda+\gamma)\left\|\vec{R}_{0}\right\|+\lambda\|\mathrm{K} * \overrightarrow{\mathrm{~g}}\|}{\gamma(\lambda+\gamma)}$ for $\gamma \neq 0$.

Proof: For (4.4.2): Since $K \star K \vec{f}_{\lambda}+\lambda \overrightarrow{\bar{f}}_{\lambda}=K * \vec{g}$ and $K{ }^{*} K f_{0}=K * g+\vec{R}_{0}$ we have $K * K \overrightarrow{\vec{f}}_{\lambda}+\lambda \vec{f}_{\lambda}=-\vec{R}_{0}+K * K \vec{f}_{0}$. Thus $K^{*} K\left(\vec{f}_{o}-\overrightarrow{\vec{f}}_{\lambda}\right)=\vec{R}_{o}+\lambda \overrightarrow{\bar{f}}_{\lambda}$. Taking the norm of each side and using the triangular inequality we have

$$
\left\|K * K\left(\vec{f}_{0}-\overrightarrow{\bar{f}}_{\lambda}\right)\right\| \leq\left\|\vec{R}_{0}\right\|+\lambda\left\|\overrightarrow{\vec{f}}_{\lambda}\right\|
$$

For (4.4.3): Since $\gamma\left\|\vec{f}_{0}-\overrightarrow{\bar{f}}_{\lambda}\right\| \leq\left\|K \star K\left(\vec{f}_{0}-\overrightarrow{\vec{f}}_{\lambda}\right)\right\|$, the result follows from (4.4.2).

For (4.4.4): Since $K \star K\left(\vec{f}_{0}-\overrightarrow{\vec{F}}_{\lambda}\right)=\vec{R}_{0}+\lambda \overrightarrow{\bar{f}}_{\lambda} \quad$ we have $(K * K+\lambda I)\left(\vec{f}_{0}-\vec{f}_{\lambda}\right)=\vec{R}_{0}+\lambda \overrightarrow{\mathbf{f}}_{0}$. Taking norms of each side of the above and using the triangular inequality yields $\left\|\left(K *_{K}+\lambda I\right)\left(\vec{f}_{0}-\overrightarrow{\mathbf{f}}_{\lambda}\right)\right\| \leq\left\|\vec{R}_{o}\right\|+\lambda\left\|\overrightarrow{\mathbf{f}}_{0}\right\|$. Since $(\lambda+\gamma)\left\|\overrightarrow{\mathbf{F}}_{0}-\overrightarrow{\mathbf{F}}_{\lambda}\right\| \leq\left\|\left(\mathrm{K}^{*} \mathrm{~K}+\lambda \mathrm{I}\right)\left(\overrightarrow{\mathbf{f}}_{0}-\overrightarrow{\mathbf{F}}_{\lambda}\right)\right\|$ (4.4.4) follows.

For $(4.4 .5):$ Since $\left\|\left(K^{*} K+\lambda I\right) \overrightarrow{\vec{f}_{\lambda}}\right\|=\|K * g\|$ and $(\lambda+\gamma)\left\|\overrightarrow{\vec{F}_{\lambda}}\right\| \leq\left\|\left(K^{\star} K+\lambda I\right) \vec{f}_{\lambda}\right\|$ we have $\left\|\overrightarrow{\vec{f}_{\lambda}}\right\| \leq \frac{\left\|K^{\star} \vec{g}\right\|}{\lambda+\gamma}$. Thus
from (4.4.3) the result follows.
Now take $\overrightarrow{\bar{f}}_{j, n}$ as a term in the sequence ($2,2.8$) converging to the least squares solution of minimum norm, \vec{f}_{0}, of $K * K \vec{f}=K * \vec{g}+\vec{R}_{0}$. The following error bounds on $\left\|\overrightarrow{\mathrm{E}}_{0}-\overrightarrow{\bar{f}}_{j, n}\right\| \quad$ can be obtained.

Theorem 4.4.3.
(4.4.6)

$$
\left\|\overrightarrow{\mathrm{f}}_{0}-\overrightarrow{\bar{f}}_{j, n}\right\| \leq \frac{\left\|\overrightarrow{\mathrm{R}}_{0}\right\|+\left\|K^{*} K \overrightarrow{\bar{f}}_{j, n}-K^{*} \overrightarrow{\mathrm{~g}}\right\|}{\gamma} \text { if } \gamma \neq 0
$$

(4.4.7)

$$
\left\|\overrightarrow{\mathrm{f}}_{0}-\overrightarrow{\vec{f}}_{j, n}\right\| \leq \frac{\left\|w_{j, n}\right\|}{\lambda_{j}+\gamma}+\frac{\left\|\vec{R}_{o}\right\|+\lambda\left\|\overrightarrow{\bar{f}}_{j}\right\|}{\gamma} \text { if } \gamma \neq 0
$$

(4.4.8) $\quad\left\|\overrightarrow{\mathrm{f}}_{0}-\overrightarrow{\bar{f}}_{j, n}\right\| \leq \frac{\left\|w_{j, n}\right\|}{\lambda_{j}+\gamma}+\frac{\left\|\vec{R}_{o}\right\|+\lambda_{j}\left\|\overrightarrow{\mathrm{f}}_{\mathrm{o}}\right\|}{\lambda_{j}+\gamma}$,
and
(4.4.9)
$\left\|\overrightarrow{\mathbf{f}}_{o}-\overrightarrow{\bar{f}}_{j, n}\right\| \leq \frac{\left\|W_{j, n}\right\|}{\lambda_{j}+\gamma}+\frac{\left(\lambda_{j}+\gamma\right)\left\|\vec{R}_{o}\right\|+\lambda_{j}\left\|\mathcal{K}^{*} \vec{g}\right\|}{\gamma\left(\lambda_{j}+\gamma\right)} \quad$ if $\quad \gamma \neq 0$.

Proof: For (4.4.6): Since $K * K \vec{f}_{O}=K * \vec{g}+\vec{R}_{O}$, we have $K * K\left(\vec{f}_{0}-\overrightarrow{\bar{f}}_{j, n}\right)=K * \vec{g}-K \star K \overrightarrow{\bar{f}}_{j, n}+\vec{R}_{0}$. Take the norm of each side of the above result and use the triangle inequality, yielding $\left\|K^{*} K\left(\vec{f}_{0}-\overrightarrow{\vec{f}}_{j, n}\right)\right\| \leq\left\|\vec{R}_{0}\right\|+\left\|K \vec{q}^{\prime}-K{ }_{K} \overrightarrow{\bar{f}}_{j, n}\right\|$. The result (4.4.6) follows from $\gamma\left\|\vec{f}_{o}-\overrightarrow{\bar{f}}_{j, n}\right\| \leq\left\|K * K\left(\vec{f}_{o}-\overrightarrow{\vec{f}}_{j, n}\right)\right\|$.

For $(4.4 .7),(4.4 .8),(4.4 .9):$ These bounds on $\left\|\overrightarrow{\mathrm{f}}_{0}-\overrightarrow{\vec{f}}_{j, n}\right\|$ follow from the triangle inequality $\left\|\overrightarrow{\mathbf{f}}_{0}-\overrightarrow{\bar{f}}_{j, n}\right\| \leq\left\|\overrightarrow{\vec{f}}_{j, n}-\overrightarrow{\vec{f}}_{j}\right\|+\left\|\overrightarrow{\bar{f}}_{j}-\overrightarrow{\mathbf{f}}_{o}\right\|, \quad$ Theorem 4.4 .2 and $\left(\lambda_{j}+\gamma\right)\left\|\overrightarrow{\bar{f}}_{j, n}-\overrightarrow{\bar{f}}_{j}\right\| \leq\left\|\left(K^{*} K+\lambda_{j} I\right)\left(\overrightarrow{\bar{f}}_{j, n}-\overrightarrow{\vec{f}}_{j}\right)\right\|=\left\|W_{j, n}\right\|$. 4.5. Perturbations of g

In the case where g is not known exactly, we have the integral equation
(4.5.1)

$$
\int_{0}^{1} k(y, x) f(x) d x=g(y)+\epsilon(y)
$$

where $\in(Y) \in L_{2}[0,1]$. (4.4.10) may or may not have a solution (see 2.3). We follow the procedure and notation of section 4.3 and obtain the matrix representation for (4.5.1). Thus
(4.5.2) $K * K \vec{f}+\lambda \vec{f}=K * \vec{g}+K * \vec{\epsilon}+\vec{R}_{2}$
where \vec{R}_{2}. is the discretization error vector. The system of equations actually solved is
(4.5.3)

$$
K^{\star} K \overrightarrow{\mathrm{f}}+\lambda \overrightarrow{\mathrm{f}}=\mathrm{K}^{\star} \overrightarrow{\mathrm{g}}+\mathrm{K}^{\star} \vec{\epsilon} .
$$

Let $\overrightarrow{\vec{f}}_{\lambda, \epsilon}$ be the solution to $(4.5 .3)$.
$\| \overrightarrow{\bar{f}}_{\lambda}-\overrightarrow{\bar{f}}_{\lambda, \epsilon}, \underline{\underline{\gamma+\lambda}\|\vec{\epsilon}\|}$ from Theorem 2.3 .1 and statement
(4.3.10).

Let $\overrightarrow{\bar{f}}_{j, n, \epsilon}$ be a term in the sequence defined by (2.2.8). If a bound for $\|K * \vec{\epsilon}\|$ or $\|\vec{\epsilon}\|$ can be found, we can obtain bounds on $\left\|\vec{f}_{o}-\overrightarrow{\vec{f}}_{j}, \epsilon\right\|$ and $\left\|\overrightarrow{\mathbf{f}}_{0}-\overrightarrow{\bar{f}}_{j, n, \epsilon}\right\|$. Theorems 4.4.2 and 4.4 .3 can be extended, with similar proof, to the following theorems.

Theorem 4.5.1.

(4.5.3) $\left\|K^{\star} K\left(\vec{f}_{0}-\overrightarrow{\mathbf{f}}_{\lambda, \epsilon}\right)\right\| \leq\left\|\vec{R}_{0}\right\|+\left\|K^{\star} \vec{\epsilon}\right\|+\lambda\left\|\overrightarrow{\mathbf{f}}_{\lambda, \epsilon}\right\|$
(4.5.4)

$$
\left\|\vec{f}_{0}-\overrightarrow{\vec{f}}_{\lambda, \epsilon}\right\| \leq \frac{\left\|\vec{R}_{o}\right\|+\|K \star \vec{\epsilon}\|+\lambda\left\|\overrightarrow{\vec{f}}_{\lambda, \epsilon}\right\|}{Y} \text { if } \quad \gamma \neq 0
$$

$$
(4.5 .6) \quad\left\|\overrightarrow{\mathrm{f}}_{0}-\overrightarrow{\mathbf{f}}_{\lambda, \epsilon}\right\| \leq \frac{\left\|\overrightarrow{\mathrm{R}}_{0}\right\|+\left\|K^{\star} \vec{\epsilon}\right\|+\lambda\left\|\overrightarrow{\mathrm{f}}_{0}\right\|}{\lambda+\gamma}
$$

(4.5.7)

$$
\left\|\vec{f}_{0}-\overrightarrow{\vec{f}}_{\lambda, \epsilon}\right\| \leq \frac{(\lambda+\gamma)\left\|\vec{R}_{o}\right\|+\lambda\left\|K^{*}(\vec{g}+\vec{\epsilon})\right\|}{\gamma(\lambda+\gamma)} \quad \text { if } \quad \gamma \neq 0
$$

Theorem 4.5.2.

$$
(4.5 .10)
$$

$$
\left\|\overrightarrow{\mathrm{f}}_{0}-\overrightarrow{\bar{f}}_{j, n, \epsilon}\right\| \leq \frac{\left\|\mathrm{w}_{\dot{j}, n}\right\|}{\lambda_{j}+\gamma}+\frac{\left\|\vec{R}_{0}\right\|+\|K * \vec{\epsilon}\|+\lambda_{j}\left\|\overrightarrow{\mathrm{f}}_{0}\right\|}{\lambda_{j}+\gamma}
$$

(4.5.11)
$\left\|\vec{f}_{0}-\overrightarrow{\bar{f}}_{j, n, \epsilon}\right\| \leq \frac{\left\|w_{j, n}\right\|}{\lambda_{j}+\gamma}+\frac{\left(\lambda_{j}+\gamma\right)\left\|\vec{k}_{0}\right\|+\lambda_{j}\left\|K^{*}(\vec{g}+\vec{\epsilon})\right\|}{\gamma\left(\lambda_{j}+\gamma\right)}$ if $\gamma \neq 0$.

It should be noted that the error bounds given by (4.4.6) and (4.5.8) are numerically not as nice as they look. Even for $\left\|\vec{R}_{0}\right\|=\left\|K^{*} \vec{\epsilon}\right\|=0$ and γ fairly large,

$$
\begin{aligned}
& \begin{array}{l}
(4.5 .8) \\
\left\|\vec{f}_{o}-\overrightarrow{\vec{f}}_{j, n, \epsilon}\right\| \leq \frac{\left\|\vec{R}_{o}\right\|+\left\|K^{*} K \overrightarrow{\vec{f}}_{j, n, \epsilon^{\prime}}-K^{*}(\vec{g}+\vec{\epsilon})\right\|}{\gamma} \quad \text { if } \quad \gamma \neq 0 \text {, }, ~
\end{array} \\
& \begin{array}{l}
\left\|\overrightarrow{\mathbf{f}}_{0}-\overrightarrow{\vec{f}}_{j, n, \epsilon}\right\| \leq \frac{\left\|W_{j, n}\right\|}{\lambda_{j}+\gamma}+\frac{\left\|\vec{R}_{o}\right\|+\|K * \vec{\epsilon}\|+\lambda_{j}\left\|\overrightarrow{\vec{f}_{j}} \epsilon^{\prime}\right\|}{\gamma} \text { if } \gamma \neq 0, ~
\end{array}
\end{aligned}
$$

making $\left\|K * K \overrightarrow{\bar{f}}_{\dot{j}, \mathrm{n}}-\mathrm{K} * \overrightarrow{\mathrm{~g}}\right\|$ small is not necessarily good measure of convergence for the following reason. The methods of numerical quadrature used to obtain the matrix representation of the integral equation are essentially piecewise polynomial approximations to the integrand. From numerical experimentation, making $\left\|K * K \overrightarrow{\bar{f}}_{j, n}-K * \vec{g}\right\|$ as small as possible, will cause oscillations in the final result. This is due to computer convergence. An apparent measure of this effect can be noted in the output column AF-G of the algorithm in Appendix B.

4.6. Integral Equation Examples'

For a first example we will consider the integral equation with symmetric kernel $k(x, y)=x+\dot{y}$,

$$
\begin{equation*}
K f(y)=\int_{0}^{1}(x+y) f(x) d x=\frac{1}{3}+\frac{y}{2} \in R(K), \quad y \in[0,1] \tag{4.6.1}
\end{equation*}
$$

K*K has non-zero eigenvalues

$$
\frac{7}{12}+\frac{\sqrt{3}}{3}=1.160683 \text { and } \frac{7}{12}-\frac{\sqrt{3}}{3} \approx .005983
$$

For (4.6.1) the least squares solution of minimum norm is $f_{0}(x)=x$.

The algorithm described in Chapter 2 and listed in Appendix B was used to obtain the following approximate solutions. Simpson's rule was used to determine the quadrature weights. In this example $\left\|\vec{R}_{0}\right\|=\left\|\vec{R}_{1}\right\|=0$, the norm of the discretization error vectors. The interval [0,1] was partitioned:

$$
\overrightarrow{\mathbf{y}}=\overrightarrow{\mathbf{x}}=\left[\begin{array}{l}
0.00 \\
0.25 \\
0.30 \\
0.75 \\
1.00
\end{array}\right]
$$

A. 5×5 matrix represention for the integral
equation (4.4.1) gives

$$
K=\left[\begin{array}{lllll}
0.0000 & 0.0833 & 0.0833 & 0.2500 & 0.0833 \\
0.0208 & 0.1667 & 0.1250 & 0.3333 & 0.1042 \\
0.0417 & 0.2500 & 0.1667 & 0.4167 & 0.1250 \\
0.0625 & 0.3333 & 0.2083 & 0.5000 & 0.1458 \\
0.0833 & 0.4167 & 0.2500 & 0.5833 & 0.1667
\end{array}\right]
$$

and

$$
\therefore \mathrm{K}_{\mathrm{K}} \mathrm{~K}=\left[\begin{array}{lllll}
0.0278 & 0.1528 & 0.0972 & 0.2361 & 0.0694 \\
0.0382 & 0.2153 & 0.1389 & 0.3403 & 0.1007 \\
0.0486 & 0.2778 & 0.1806 & 0.4444 & 0.1319 \\
0.0590 & 0.3403 & 0.2222 & 0.5486 & 0.1632 \\
0.0694 & 0.4028 & 0.2639 & 0.6528 & 0.1944
\end{array}\right]
$$

The non-zero eigenvalues of $K^{*} K: H_{T}^{5} \rightarrow H_{T}^{5}$ were computed to be 1.160677 and 0.005983 . We assumed that an estimate for $\left\|\overrightarrow{\mathbf{f}}_{0}\right\|$ is known; $\left\|\overrightarrow{\mathbf{f}}_{0}\right\| \simeq .577$ from (4.4.8)

$$
\left\|\overrightarrow{\mathbf{f}}_{0}-\overrightarrow{\bar{f}}_{j, n}\right\| \leq \frac{\left\|w_{\dot{j}_{,} n}\right\|}{\lambda_{j}+0.005983}+\frac{.577 \lambda_{j}}{\lambda_{j}+0.005983}
$$

$\lambda_{j}=$ terminal $\lambda=1 \cdot x 10^{-9}$ and $\left\|w_{j, n}\right\|^{2}=10^{-8}$ are determined so that $\left\|\overrightarrow{\mathrm{f}}_{0}-\overrightarrow{\mathbf{f}}_{j, n}\right\|<10^{-6}$. We used $M=600$, maximum iterations per change in $\lambda, \lambda_{i+1}=.0001 \lambda_{i}$, and initial starting vector $\left(f_{i}\right)_{i=1,5}, f_{i}=1, i=1,5$. The algorithm computed an initial starting $\lambda, \lambda_{I}=.133889238$. After 225 iterations, we found the $\overrightarrow{\vec{f}}_{j}$ approximate least squares solution of minimum norm to be

$$
\left[\begin{array}{l}
\overline{\mathbf{f}}_{\mathrm{j}}(0) \\
\overline{\mathbf{f}}_{\mathrm{j}}(.25) \\
\overline{\mathbf{f}}_{\mathrm{j}}(.50) \\
\overline{\mathbf{f}}_{\mathrm{j}}(.75) \\
\overline{\mathbf{f}}_{\mathrm{j}}(1.0)
\end{array}\right]=\left[\begin{array}{l}
.000000176 \\
.250000097 \\
.500000023 \\
.749999948 \\
.999999873
\end{array}\right]
$$

Also the following information was computed:

$$
\begin{aligned}
& \left\|\overrightarrow{\bar{f}}_{j, n}-\overrightarrow{\mathrm{f}}_{0}\right\|<9 \times 10^{-8}<10^{-6} \\
& \left\|\overrightarrow{\bar{f}}_{j, n}-\overrightarrow{\mathrm{f}}_{0}\right\| \leq \frac{\left\|K * K \overrightarrow{\bar{f}}_{j, n}-K * \vec{g}\right\|}{\gamma}<10^{-6}
\end{aligned}
$$

and

$$
\max _{i=1,5}\left|\bar{f}_{j, n}\left(x_{i}\right)-f_{0}\left(x_{i}\right)\right|<1.8 \times 10^{-7}
$$

The same problem was run a second time using the same initial information, except to terminate when $\lambda_{j}=10^{-15}$ and $\left\|W_{j, n}\right\|^{2}<10^{-28}$ obtaining, after 745 iterations,

$$
\left\|\overrightarrow{\bar{f}}_{j, n}-\overrightarrow{\mathrm{f}}_{o}\right\|<8 \cdot x \cdot 10^{-13}
$$

and

$$
\max _{i=1,5}\left|\bar{f}_{j, n}\left(x_{i}\right)-f_{0}\left(x_{i}\right)\right|<1.6 \times 10^{-12}
$$

As a second example consider the integral equation
(4.6.2)

$$
K f(y)=\int_{0}^{1}(y-x)^{2} f(x) d x=\frac{y^{2}}{2}-\frac{2 y}{3}+\frac{1}{4} \in R(K)
$$

which Bellman et al. [4, page 159] used for testing purposes of an algorithm he developed for finding the least squares solution of minimum norm. (4.6.2) has least squares solutinn of minimum norm $f_{U}(x)=x$. The quadrature method Bellman used was Simpson's rule, with 11 equally spaced points, as we will use.

A bound for the norm of the quadrature error was found to be $\left\|\vec{R}_{0}\right\|=0$, since Simpson's rule integrates $\int_{0}^{1}(y-x)^{2} f(x) d x$ for $f(x)=x$ exactly and the errors for

$$
\int_{0}^{1}(y-x)^{2} \int_{0}^{1}(y-x)^{2} f(x) d x d y=\int_{0}^{1}(y-x)^{2} g(y) d y
$$

subtract identically when $f(x)=x$.
In Bellman's example, also based on a variation of regularization, he used $\lambda=10^{-7}$ and required a good initial approximation to the solution. To obtain somewhat comparable results, the algorithm in Appendix B. with his λ was used.

The matrix operator $K^{*} K ; K * K: H_{T}^{1 l}-H_{T}^{11}$, has computed non-zero eigenvalues .038101, . 027778 and . 000814 . To compare the results of the algorithm in Appendix B with his we used $\lambda_{j}=$ Terminal Lambda $=10^{-7}$, control on $\left\|\left(K^{*} K+\lambda_{i} I\right) f-K^{*} g\right\|^{2}=10^{-16}$, lambda multiplier $=10^{-3}$, maximum steps for each $\lambda_{i}=300$ and initial starting vector $\left(f_{i}\right)_{i=1, l l}$ where $f_{i}=0$ for $i=1,10, f_{11}=1$.

The algorithm given in Appendix B choses a new starting vector and gave the results given in Table 2 for Run 1. The bound for. $\left\|\overrightarrow{\vec{f}_{j}}, n-\vec{f}_{v}\right\|$, was computed using $\gamma=.000814$ and .577 as an estimate for $\left\|\overrightarrow{\mathbf{f}}_{0}\right\|$ in (4.4.8). The results were about the same as Beliman obtained:

Now Bellman also looked at the same example (4.6.2), but rounds the data representing \vec{g} correct to three places. We ran the same example with the same starting
information as for Run 1, to obtain two place accuracy compared to none for Bellman (see Table 2, Run 2). For Run 2 , the bound for $\left\|\overrightarrow{\bar{f}}{ }_{j, n, \epsilon}-\vec{f}_{0}\right\|$ was computed using $Y=.000814, .577$ as an estimate for $\left\|\vec{F}_{0}\right\|$ and

$$
\|K * \vec{\epsilon}\| \leq\|K *\|\|\vec{\epsilon}\| \approx \sqrt{.038101} \cdot .0005 \approx .0001
$$

in (4.5.10).
For a third run of a discretized version of (4.6.2) the ll-point trapezoidal rule was used as the quadrature method. In this case, the matrix operator $K * K$ has computed non-zero eigenvalues .040182, . 028900 and .000926. An upper bound on the norm of the discretization error vector was computed to be $\left\|\vec{R}_{0}\right\| \leq .056$. To compare with Run 1 , the same starting information was used and the computed error determined by using (4.4.8).

Table 2. Integral Equation Example 2

	Run 1	Run 2	Bellman	Run 3		
Total iterations	339	339	341			
$\left\\|\overrightarrow{\bar{f}}_{\mathrm{j}, \mathrm{n}}-\overrightarrow{\mathrm{f}}_{\mathrm{o}}\right\\|$	$2.7(-5)$	$1.9(-3)$	$1.2(-2)$			
$\max _{\mathrm{i}}\left\|\overline{\mathrm{f}}_{\mathrm{j}, \mathrm{n}}-\mathrm{f}_{\mathrm{o}}\right\|$	$4.6(-5)$	$3 .(-3)$.9	$3.1(-2)$		
Computed error	$1 .(-4)$.11	61.			

For a last example we will consider the integral equation of the first kind with kernel

$$
k(x, y)=\left\{\begin{array}{lll}
(1-y) x & \text { if } & 0 \leq x \leq y \leq 1 \\
(1-x) y & \text { if } & 0 \leq y \leq x \leq 1
\end{array}\right.
$$

Tricomi [24, page l16] notes that the eigenvalues associated with
$K^{*} K(f)(x)=\int_{0}^{1} k(x, y) \int_{0}^{1} k(x, y) f(x) d x d y=\gamma f(x)$
are $\quad \gamma_{1}=\frac{1}{\pi^{4}}, \quad \gamma_{2}=\frac{1}{(2 \pi)^{4}}, \ldots, \gamma_{n}=\frac{1}{n^{4} \pi^{4}}, \ldots$.
Strand [20, page 7l] shows that for
$g(y)=y\left(3-5 y^{2}+3 y^{4}-y^{5}\right) / 30 \in R(K)$,
$K f(y)=\int_{0}^{1} k(x, y) f(x) d x=g(x)$ has least squares solution
of minimum norm $f_{o}(x)=x-2 x^{3}+x^{4}$.
For the discretization of the integral equation

$$
\int_{0}^{1} k(x, y) \int_{0}^{1} k(x, y) f(x) d x d y=\int_{0}^{1} k(x, y) g(y) d y
$$

the error for a 51 point Simpson's rule was estimated to be (upper bound) 1.4×10^{-7}.

The matrix representation for $K * K$ has minimum positive non-zero eigenvalue $\gamma=7.915 \times 10^{-9} \quad$ (computed). Since Y is small a choice for the terminal λ_{j}, from the error bounds is not practical (see Theorem 4.4.3). Considering the expression

$$
\left\|\overrightarrow{\mathbf{f}}_{j}-\overrightarrow{\mathbf{f}}_{o}\right\| \leq \frac{\lambda_{j}\left\|\overrightarrow{\bar{f}}_{j}\right\|+\left\|\vec{R}_{o}\right\|}{\gamma},
$$

numerical experimentation indicates that a reasonable choice for terminal λ_{j} is for the order of magnitude of $\lambda_{j}\left\|\overrightarrow{\bar{f}}_{j}\right\|$ and $\left\|\overrightarrow{\mathrm{R}}_{\mathrm{o}}\right\|$ be about the same. Assuming $\left\|\overrightarrow{\bar{f}}_{j}\right\| \approx .22 \approx\left\|\vec{f}_{0}\right\|$ we get a choice for terminal λ_{j}, $\lambda_{j}=6.4 \times 10^{-7}$. Using $\left\|K * K \overrightarrow{\bar{f}}_{j, n}+\lambda \overrightarrow{\vec{f}}_{j, n}-K * \vec{g}\right\|^{2}=10^{-16}$ we get a computed error bound: $\left\|\overrightarrow{\bar{f}}_{j, n}-\overrightarrow{\mathbf{f}}_{0}\right\|<.46$ from (4.4.8). We allowed a maximum of 500 iterations per step and set the lambda multiplier $=.001$. The algorithm in Appendix B generated its own starting vector from the initial starting vector

$$
\vec{f}\left(x_{i}\right)=\left\{\begin{array}{lc}
1 & \text { if } \quad 17 \leq i \leq 35 \\
0 & \text { otherwise }
\end{array}\right.
$$

and initial $\lambda_{1} \simeq .00795$. After 52 iterations we obtained actual results:

$$
\begin{gathered}
\left\|\overrightarrow{\vec{f}}_{j, n}-\vec{f}_{0}\right\|<1.332 \times 10^{-4} \\
\max _{i=1,52}\left|f_{j, n}\left(x_{i}\right)-f_{0}\left(x_{i}\right)\right|<3.024 \times 10^{-4},
\end{gathered}
$$

and

$$
\left\|K^{*}\left(K \overrightarrow{\bar{f}}_{j, n}-\overrightarrow{\vec{f}}_{0}\right)\right\|<7.121 \times 10^{-6} .
$$

5. SUMMARY AND FUTURE RESEARCH
5.1. Summary

The advantage of the iterative method developed in the paper is primarily that it avoids the calculation of $\left(K^{*} K+\lambda I\right)^{-1}$ directly and that the iterative process is stable. The unwanted oscillations in the final solution that often appear in solutions by other methods in the literature do not occur. In some applications the error bounds obtained become large numerically when an upper bound on $\left\|\vec{R}_{o}\right\|$ or $\|\vec{\epsilon}\|$ is large or when γ is near zero. An upper bound for $\left\|\vec{R}_{0}\right\|$ can be difficult to obtain unless some information about the solution is known.

When comparing with other iterative methods in the literature, we generally have at least two additional significate figures. The iterative method here converges for examples where other methods in the literature fail to converge to a solution.

5.2. Future Research

It would be desirable to modify the algorithms in Appendix A and B so that γ and the parameters for convergence are computed within the algorithm.

A method of discretization for integral equations with non-uniform mesh size should be developed that better describes the properties of a particular kernel and g.

It would be nice to find a method of determining the weights for quadrature in representing the kernel, independent of any information about the form of the solution.

6. BIBLIOGRAPHY

1. Akhiezer, N. I. and Glazman, I. M. Theory of Linear Operators in Hilbert Space. Vol.l. New York: Frederick Ungar Publishing Co., 1961.
2. Anselone, P. M. Collectively Compact operator Approximation Theory and Applications to Integral Equations. Englewood Cliffs, New Jersey: Prentice Hall, Inc., 1971.
3. Bachman, G. and Narici, L. Functional Analysis. New York: Academic Press Inc., 1966.
4. Bellman, R., Kalaba, R. and Lockett, J. A. Numerical Inversion of the Laplace Transform. New York: American Elsevier Publishing C., Inc., 1966.
5. Diaz, J. B. and Metcalf, F. T. "On iteration procedures for equations of the first kind, $A x=y$, and Picard's criterion for the existence of a solution". Math. Comp. 24 (1970): 923-935.
6. Hanson, R. J. "A numerical method for solving Fredholm integral equations of the first kind using singular values": SIAM J. Numer. Anal. 8 (1971): 616-622.
7. Helmberg, G. Introduction to Spectral Theory in Hilbert Space. New York: John Wiley and Sons, Inc., 1969 .
8. Herr, D. G. "On a statistical model of. Strand and Westwater for numerical solution of a Fredholm integral equation of the first kind". J. Assoc. Comput. Mach. 21 (1974): 1-5.
9. Isaacson, E. and Keller, H. Analysis of Numerical Methods. New York: John Wiley and Sons, Inc., 1966.
10. Kammerer, W. J. and Nashed, M. Z. "Steepest descent for singular linear operators with nonclosed range". Appl. Anal. 1 (1971): 143-159.
11. Kammerer, W. J. and Nashed, M. Z. "Iterative methods for best approximate solutions of linear integral equations of the first and second kinds". J. Math. Anal. Appl. 40 (1972): 547-573.
12. Kammerer, W. J. and Nashed, M. Z. "On the convergence of the conjugate gradient method for singular linear operator equations". SIAM J. Numer. Anal. 9 (1972): 165-181.
13. Landweber, L. "An iteration formula for Fredholm integral equations of the first kind". Amer. J. Math. 73 (1951): 615-624.
14. Nashed, M. Ż. "Steepest descent for singular linear operator equations". SIAM J. Numer. Anal. 7 (1970): 358-362.
15. Nashed, M. Z. "Generalized inverses, normal solvability, and iteration for singular operator equations". In Nonlinear Functional Analysis and Applications, pp.311-35y. Edited by L. B. Rali. New York: Academic press, Inc., 1971.
16. Nashed, M. Z. and Wahba, G. "Convergence rates of approximate least squares solutions of linear integral and operator equations of the first kind". Math. Comp. 28 (1974): 69-80
17. Peterson, W. C. "An elementary characterization of Fredholm equations of the first kind". Document Library, Ames Laboratory, USAEC, Ames, Iowa, Report No. IS-3497, 1974.
18. Phillips, D. L. "A Technique for the numerical solution of certain integral equations of the first kind". J. Assoc. Comput. Mach. 9 (1962): 84-97.
19. Smithies, F. "Integral equations". Cambridge Tracts in Mathematics and Mathematical Physics 49 (1958): 1-169.
20. Strand, 0. N. Theory and Methods for operator Equations of the First Kind. Ph.D. Thesis, Colorado State Univ., 1972. Ann Arbor, Michigan: University Microfilms (Diss. Abstr. 73: 2820).
21. Strand, O. N. "Theory and methods related to the singular-function expansion and Landweber's iteration of integral equations of the first kind". SIAM J. Numer. Anal. 11 (1974): 798-825.
22. Strand, O. N. and Westwater, E. R. "Statistical estimation of the numerical solution of a Fredholm integral equation of the first kind". J. Assoc. Comput. Mach. 1 (1968): 100-114.
23. Tikhonov, A. N. "Solution of incorrectly formulated problems and the regularization method". Soviet Math. Dokl. 4 (1963): 1035-1038.
24. Tricomi, F.G. Integral Equations. New York: Interscience publishers, Inc., 1957.
25. Twomey, S. "On the numerical solution of Fredholm integral equations of the first kind by inversion of the linear system produced by quadrature". J. Assoc. Comput. Mach. 10 (1963): 97-101.
26. ACKNOWLEDGMENTS

I would like to express my thanks to Dr. R. J. Lambert for his patience, understanding and unfailing encouragement during my years at Iowa State as well as his guidance and assistance during this research work. I would like to thank Dr. G. R. Luecke for his guidance during this research and his perseverence during the final writing of this paper. I would like to thank my wife and growing family for their understanding during the many years of being a graduate student. I would like to extend my appreciation to Mrs. Madonna Blanshan for her excellent typing.

8. APPENDIX

8.1. Appendix A, Linear System

The following program is written to find the least squares solution of minimum norm of an $N N$ by N system of equations, $A x=g$. The basic flow chart for the program is given in Figure 3.2.1.

The user must input the following information in the order given:

1. NN $=$ the number of rows of the matrix A. The format for reading $N N$ is given in line SYSTO280.
2. $N=$ the number of columns of the matrix A.. The format for reading N is given in line SYSTO280.
3. $M=$ the maximum number of iterations per change in lambda. The format for reading M is given in line SYSTO280.
4. $\mathrm{BB}=$ terminal lambda. The format for reading M is given in line SysTo320,
5. $D D=$ control on $\|A T A F+L A M B D A * F-A T G\|^{2}$. the format for reading $D D$ is given in line SYST0320.
6. The matrix A is read by rows. The format for reading A is given in line SYST0340.
7. Read the vector g. The format for reading g is given in line SYSTO340.
8. Read the initial starting vector F. The format is given in line SYSTO340.
9. $\mathrm{XLAM}=$ lambda multiplier. The format for reading XLAM is given in line SYSTO340.

The output of the starting information begins at line SYST1440. The output of the final solution begins at line SYST2370.

```
C THE FOLLOWING IS A PROGRAM TO SOLVE AN NN BY N SYSTEM OF
    EGUATIONS, AF=G, FOR THE LEAST SQUARES SOLUTION OF MINIMUM
    NORM. IF N OR NN IS GREATER THAN 10. THE DIMENSION
    STATEMENT MUST BE CHANGED TO AT LEAST A(NN,N),G(NN),F(N).
    AT(N,NN),ATA(N,N),R(NN),T(N),V(NN),W(N),S(NN), AND WW(N).
    INPUT:
        N= THE NUMBER DF COLUMNS OF THE MATRIX A -
        NN=THE NUMBER OF ROWS OF THE MATRIX A.
        N=THE MAXIMUM NUMBER OF ITERATIONS PER CHANGE IN
        LAMZDA.
        BB=TERMINAL LAMBDA.
        CD=CONTROL ON | |ATAF+LAMEDA*F-ATG||**2.
    XLAM=LAMBOA MULTIPLIER.
    IMPLICIT REAL*8 (A-H,O-Z)
    DIMENSICN A(10.10),G(10),F(10),AT(10,10),ATA(10,10),R(10)
    DIMENSION T(10),V(10),W(10),S(10),WW(10)
    REAC(5.11) NN
    READ(5.11) N
    11 FORMAT(15)
    FEAC(5,11) M
    READ(5,21) BB
    READ(5.21) OD
    21 FORMAT(D10.5)
    31 FORMAT(BF10.5)
        DO 10 I=1 .NN
    READ MATRIX A BY ROWS.
```

SYST0010
SYST0020
SYST0030
SYST0040
SY ST0050
SYST0060 SYST0070 SYST0080 SYST0090 SYSTO100 SYSTOIIO SYSTO120 SYSTO1 30 SYSTO140 SYSTO 150 SYSTO160 SYSTO170 SYSTO180 SYST0190 SYSTO200 SYST0210 SYST0220 SYST0230 SYST0240 SYSTO250 SYST0260 SYST0270 SYST0280 SYST0290 SYSTO300 SYST0310 SYST0320 SYST0330 SYST0340 SYST0350 SYST0360 SYST0370

```
    10 READ(E,31) (A([,J),J=1,N)
.C
C READ VECTOR G OF AF=G.
C
        FEAD(5.31) (G(I),I=1,NN)
C
C
C
    READ INITIAL STARTING VECTOR F.
    READ(5.31) (F(I),I=1,N)
    FEAD(5,31) XLAM
    WRITE(E,12) NN,N,M
    12 FORMAT('O'.'NN='.I5,5X.'N=`.I 5.5X,'M=`.15)
    #FITE(E.26) DO
    26 FORMAT('0', 'CONTROL ON || ATAF+LAMBDA*F-ATG ||*2=0,D24.16|
    WRITE(6.22) 6B
    22 FORMAT('0'.'CONTROL ON LAMBDA=*,D24.16)
    WRITE(5,24) XL AM
    24 FORMAT('0',"LANBDA MULTIPLIER='.D24.16)
    WRITE(6,32)
    32 FOFMAT(*O',*MATRIX A=* %/)
    DO 20 I=1,NN
    20 WRITE(6,42) (A(1,J),J=1,N)
    42 FORMAT(' '.1O(F10.5.1X))
    WRITE(6.52)
    52 FOFMAT('0',*G=!./)
        WRITE(6,42) (G(I),i=1,NN)
        WRITE(6,62)
    E2 FORMAT('O*.'STARTING VECTOR F='./1
        WRITE(6.42) (F(I),I=1,N)
        LL=0
        DO 30 I=1,N
        DO 30 J=1,NN
    30 AT(I,J)=A(J,I)
        \infty 410 I=1,N
        W(I)}=0.00
        DO 410 J=1.NN
41C:W(I)=W(I)+AT(I,J)*G(J)
```

SYSTO 380
SY ST0390
SYSTO400 SYST0410
SYST0420 SYSTO430 SYST0440 SYST0450 SYST0460 SYST0470 SYST0480 SYST0490 SYST0500 SYST0510 SYSTOE20 SYSTOS30 SYS 10540 SYSTOS50 SYST0560 SYST0570 SYST0580 SYST0590 SYST0600 SYST0610 SYST0620 SYST0630 SYST0640 SYST0650 SYST0660 SYSTOE70 SYST0680 SYST0690 SYST0700 SYST0710 SYST0720 SYST0730 SYST0740

```
        Z2=0.000
        DO 430 I=1,N
    420 zz=z2+w(I)*w(I)
        ZZ=DSQRT(ZZ)
        WRITE(6.29) 22
        29 FORMAT('OD.| || ATG ||=0.D24.16)
        IF(ZZ.GE.1.D-40) GO TO 430
        WRITE(6.421)
    421 FORMAT('0',6X,'SOLUTION IS THE ZERO VECTOR',/)
        GO TO 600
C
C OBTAIN A STARTING VECTOR AND AN INITIAL LAMBDA.
c
    4 ミ0 DO 40 I=1,N
    DO 40 J=1.N
    ATA(I, J)=0.0DO
    DO 40 L=1.NN
    40 ATA(I,J)=ATA(I,J)+AT(I,L)*A(L.J)
    DO SO I=1,N
    T(I) =0.000
    DO 50 J=1,N
    50 T(I)=T(I)+ATA(I,J)*F(J)
        zz=0.CDO
        DO 6O I=1.N
    60 ZZ=ZZ+T(I)*T(I)
        ZZ=DSQRT(ZZ)
        DO 70 I=1,N
    70 T(I)=T(I)/ZZ
        DO. }80\textrm{I}=1.\textrm{NN
        R(I)=0.0C0
        DO 80 J=1,N
    80 R(I)=R(I)+A{I,J)*T(J)
        CR=1.000
        L=2.000
        J=1
    90 x=0.000
        DO 100 I=1 NN
```

SYST0750
SYST0760 SYST0770 SYST0780 SYST0790 SYST0800 SYST0810 SYST0820 SYST0830 SYS10840 SYST0850 SYST0860 SYST0870 SYST0880 SYST0890 SYST0900 SYST0910 SYST0920 SYST0930 SYST0940 SYST0950 SYST0960 SYS70970 SYST0980 SYSTOs90 SYST1000 SYST1010 SYST1020 SYST1030 SYST1040 SYET1050 SYST1060 SYST1070 SYST1080 SYST1090 SYST1100 SYST1110

```
    100 X=X+(G(I)-R(I))*R(I)
    SYST1120
    IF(X.GE.O.ODO) GO TO 1000
    IF(J•EQ\bullet2) GO TO 1010
    CO 110 1=1.N
    110 T(I)=-T(I)
    \infty 11EI=1,NN
    115 R(II=-R(I)
    GO TO SO
1010 CO 120 1=1,NN
    120 G(II=U*G(I)
        J=1
        CR=CR*U
        GO TO SO
1000 00 130 I=1,NN
    130 R(I)=R(I)-G(I)
        RR=O.CDO
        CO 140 I=1,NN
    14C RR=RR+R(I)*R(I)
        DO 150 I=1.N
        w(I)}=0.00
        DO &50 J=1 ,NN
    150W(I)=W(I)+AT(I.J)*R(J)
        ZZ=0.0C0
        DO I\inO I=1.N
    160 2Z=ZZ+W(I) #w(I)
        YY=ZZ-X*X
        AB=RR + X
        DO 170 I=1 ,N
    170 W(I)=W(I)+X*T(I)
C
C DUTPUT STARTING INFORMATION.
C
    WRITE(6.72) X
    72 FORMAT('O',"INITIAL LAMBDA='.D24.16)
        WRITE(6.82)
    82 FORMAT('O'.3X, STARTING VECTOR F'.10X."ATAF+LAMBDA*F-ATG"./)
    OD 180 I=1,N
```

YST1120
SYST1130
SYST1140
SYST1150
SYST1160
SYST1170
SYST1180
SYST1190
SYST1200
SYST1210
SYST1220
SYST1230
SYST1240
SYST1250
SYST1260
SYST1270
SYST1280
SYST1290
SYST1300
SYST1310
SYST1320
SYST1330
SYST1340
SYST1350
SYST1360
SYST1370
SYST1380
SYST1390
SYST1400
SYST1410
SYST1420
SYST1430 SYST1440 SYST1450 SYST1460 SYST1470 SYST1480

```
    1BO WRITE(6,92) T(I),W(I)
        92 FORMAT(. .,3024.16)
        96 FORMAT(' .,D24.16)
        WRITE(6,84)
    84 FORMAT('0'.10X,'AF-G',/1
        DO 132 I=1.NN
    182 WRITE(6,96) R(I)
        WRITE(6.94) CR
    94 FORMAT(.O'.*SCALING FACTOR=*,D24.16)
        WRITE(E.102) YY
    102 FOFMAT(*O..'MINIMUM VALUE='.D24.16)
        XX=X
C
C MAIN ITEFATIONS OF THE ALGORITHM BEGIN.
C
1020 x=xx
        K=1
1030 AA=AB
        YY= ZZ
        DO 1GOI=1.N
        WW(1)=W(I)
        w(I) =0.000
        OO 190 J=1,NN
    19CW(1)=w(I)+AT(I,J)*R(J)
        DO 20CI=1.N
    200 W(I)=W(I)+X*T(I)
        zz=0.0.CO
        DO 210 I=1.N
    210 ZZ=ZZ+w(I)*W(I)
        IF(ZZ.LT•DD) GC TO 1040
        CO 220 I=1,NN
    220 V(1)=R(I)
    DO こ25 I=1.N
    225 F(1)=T(1)
        VV=RR
        OO 230 I=1,NN
        S(J)=0.00DO
```

SYST1490
SYST1500
SYST1510
SYST1520
SYST1530
SYST1540
SYST1550
SYST1560
SYST1570
SYSTI580
SYST1590
SYST1600 SYST1610 SYST1620 SYST1630 SYST1640 SYST1650 SYST1660 SYST 1670 SYST1680 SYST1690 SYST1700 SYST1710 SYST1720 SYST1730 SYST1740 SYST1750 SYST1760 SYST1770 SYST1780 SYST1790 SYST 1800 SYST1810 SYST1820 SYST1830 SYST1840 SYST1850

```
    DO 23C J=1.N
230 S(I)=S(I)+A(I,J)*W(J)
    r=0.000
    DO. 240 I=1.NN
240 r=y+S(I)*S(I)
    Y=Y+X*ZZ
    E=zZ/r
    00 250 I=1.N
250 T(1)=T(1)-8*W(1)
    DO 260 I=1,NN
    R(I)=0.000
    DD 260 J=1,N
260 F(I)=R(I)+A(I,J)*T(J)
    DO 27C I=1,NN
27C R(I)=R(I)-G(I)
    RR=0.0DO
    OO 280 1=1.NN
280 FR=FF+R(I)*R(I)
    AB=0.CDO
    DO.290 I=1.N
290 AB=AB+T(I)*T(I)
    AB=RR+X*AB
    IF(K.EG.1) GO TO 300
    IF(AB.LT.AA) GO TO 300
    CO 310 I=1,N
    T(I)=F(I)
310 W(I)=WW(I)
    DO 295 1=1 .NN
2SER(I)=V(I)
    RR=VV
    ZZ=YY
    K=K-1
    GJ TO 330
300 IF(M-K) 600,330,340
340 K=K+1
    GO TO 1030
104C k=k-1
```

SYST1860 SYST1870 SYST1880 SYST1890 SYST1900 SYST1910 SYST1920 SYST1930 SYST1940 SYST1950 SYST1960 SYST1970 SYST1980 SYST1990 SYST2000 SYST2010 SYST2020 SYST2030 SYST2040 SYST2050 SYST2060 SYST2070 SYST2080 SYST2090 SYST2100 SYST2110 SYST2120 SYS12130 SYST2140 SYST2150 SYST2160 SYST2170 SYST2180 SYST2190 SYST2200 SYST2210 SYST2220

```
    330 LL=LL+K
        IF(<.LT.M) GO TO 440
        WRITE(6.212t X
    112 FORMAT,'0'.3X, 'AT LAMBDA=',D24.16,3X.'THE MAXIMUM VALUE DF M HAS
        CBEEN ATTAINED')
    440 IF(X.EG.BE) GO TO 360
        XX=XLAM* X
        IF(XXeLT&BB) GO TO 350
        GO TC 1020
    350 xX=BB
        GO TO 1020
C
C RE-SCALE THE COMPUTATIONS AND OUTPUT.
C
    3\inO WRITE(6.122)
    122 FORMAT''O',3X,'FINAL SOLUTION F',1OX. 'ATAF+LAMBDA*F-ATG'./)
        OO 370 I=1 N
        T(I)=T(I)/CR
        W(I)=WII)/CR
    370 WRITE(6.G2) T(I),W(I)
        WRITE(6,84)
        DO 375 I=1.0NN
        R(I)=R(I)/CR
    375 WRITE(E.96) R(I)
        ZZ=ZZ/(CR*CR)
        RR=२R/|(R*CR)
        ZZ=DSGFT(ZZ)
        RR=O SOPT(RR)
        TT=\.000
        OO 380 I=1 N
    380 TT=TT+T(I)*T(I)
        TT=DSGRT (TT)
        WRITE(E.132)
    132 FORMATG:0.,8X.,||F ||:.12X.'|| ATAF+LAMBDA*F=ATG ||:.10X.
        C|||AF-G ||, |)
        WRITE(6,92) TT,ZZ,RR
        DO 390 I=1 N
```

SYST2230
SYST2240
SYST2250
SYST2260 SYST2270 SYST2280 SYST2290 SYST2300 SYST2310 SYST2320 SYST2330 SYST2340 SYST2350 SYST2360 SYST2370 SYST2380 SYST2390 SYST2400 SYST2410 SYST2420 SYST2430 SYST2440 SYST2450 SYST2460 SYST2470 SYST2480 SYST2490 SYST2500 SYST2510 SYST2520 SYST2530 SYST2540 SYST2550 SYST2560 SYST2570 SYST2580 SYST2590

```
        v(I)=0.000
        \infty 390 J=1.NN
    390V(I)=V(I)+AT(I.J)*R(J)
        VVV=0.CDO
        DO 400 I=1.N
    4OC VVV=VVV+V(I)*V(I)
        VVV=OSGRT(VVV)
        WRITE(6.144) VVV
    144 FDRMAT('O..8X,'||AT(AF-G) ||=0.D24.10)
        WRITE(E.142) LL
    142 FORMAT('O', 'TOTAL ITERATIONS=',16)
C
C IF THE ACTUAL SOLUTION IS KNOWN, A PROGRAM TO COMPARE THE
C ACTUAL SOLUT ION WITH THE COMPUTED SOLUTION CAN BE PLACED
C MERE, TFE COMPUTED SDLUTION IS GIVEN BY THE VECTOR T. THE
C
C
600 STCP
        END
```

 SYST2600
 SYST2610
 SYST2620
 SYST2630
 SYST2640
 SYST2650
 SYST2660
 SYST2670
 SYST2680
 SYST2690
 SYST2700
 SYST2710
 SYST2720
 SYST2730
 SYST2740
 SYST2750
 SYST2760
 SYST2770
 SYST2780

8.2. Appendix B, Subroutine BITER

Subroutine. BITER is a program written to find a λ approximate least squares solution of minimum norm of an integral equation of the first kind. The subroutine BITER assumes that the integral equation is of the form

$$
\int_{0}^{1} k(y, x) f(x) d x=g(y), y \in[0,1]
$$

A driver program must be written which obtains the following information:

1. Partitions the interval integrated over, [0,1], into N-1 equal subintervals for an N-point closed NewtonCotes integration formula. The N-points constructed are stored in the vector $X V$.
2. Partitions the domain of g, $[0,1]$, into NN-1 equal subintervals for an $N N$-point closed Newton-Cotes integration formula. The NN-points constructed are stored in the vector YV.
3. Construct the vector $G V(I)=g(Y V(I)) I=1, N N$.
4. Construct the matrix representing the kernel

$$
k(x, y), A(k(X V(I), Y V(j)) \underset{\substack{j=1, N N \\ I=1, N}}{ }
$$

5. Construct the vector WTK of weights for the kernel using a closed N-point Newton-Cotes formula.
6. Construct the vector WTKT of weights for integration of the adjoint of the kernel using a closed NN-point Newton-Cotes formula.
7. The driver program must be dimensioned as the dimension statement for the subroutine BITER.
8. The driver program must supply the controls on convergence given by

$$
\begin{aligned}
& \text { XLMDA }=\text { Lambda multiplier, } \\
& B B=\text { Terminal lambda, }
\end{aligned}
$$

and

$$
\mathrm{DD}=\text { control on }\|A T A F+L A M B D A * F-A T G\|^{2}
$$

The output section of the starting vector and initial
lambda begins at line BITR1080. The output section for the final results begins at line BITRI990.

```
            SUEFDUTINE EITER(N,NN,A,GV,WTK,WTKT,XV,YV,F,XLMDA,M,BB, BI TROO1O
        CAT,ATA,R;T,V,W,WW,S,DD)
            IMFLICIT REAL*& (A-H.O-Z)
            DIMENSION A(NN,N),AT (N,NN),WTK(N),WTKT(NN),XV(N),YV(NN),F(N)
            DIMENSION ATA(N,N),GV(NN),R(NN),T(N),V(NN),W(N),WW(N),S(NN)
            LL=C
C
C CONSTRUCT THE ADJOINT=AT TO KERNAL=A.
C
C
C TRANSPOSE THE UNWEIGHTEO KERNEL.
C
            CO 510 I=1,NN
            DO 巨10 J=1 NN
    510 AT(J,I)=A(I,J)
C
C CONSTRUCT THE WEIGHTED KERNEL.
C
            OO \subseteq20 I =1 NN
            DO 520 J=1.N
    520 A(I,J)=A(I,J)*WTK(J)
C
C CCNSTRUCT THE WEIGHTED KERNEL TRANSPOSE.
C
            D =30 I=1.N
            DO 530 J=1 .NN
    530 AT(I.J)=AT(I,J)*WTKT(J)
C
C TEST FOR A ZERO SOLUTION..
C
        DO 810 I=1,N
        W(I)=0.000
        DO 810 J=1,NN
    810w(I)=w(I)+AT(IfJ)*GV(J)
            ZZ=0.000
            DO 820 I=1.N
    820 ZZ=ZZ+WTK(I)*(W(I)*W(I))
```

```
                ZZ=OSGFT(ZZ)
                WRITE(6.29) ZZ
    29 FOFMAT('0','| || ATG ||=.,D24.16)
        IF(IZ.GE.1.D-40) GO TO 830
        WRITE(6,821)
    821 FOFMAT(*O.,6X.'SOLUTION IS THE ZERO FUNCTION'./)
        GO TC E2O
C
C CONSTRUCT THE WEIGHT ED KERNEL TRANSPOSE*WEIGHTED KERNEL.
c
    830 DO 540 I=1,N
        DO 540 J=1.N
        ATA(I,J)=0.ODO
        DO 540 L=1,NA
    540 ATA(I,J)=ATA(I,J)+AT(I,L)*A(L,J)
C
C OBTAIN AN ACTUAL STARTING VECTOR AND INITIAL LAMBDA.
C
    DO 20 I=1,N
        T(I:=0.000
        DO 20 J=1.N
    20.T(I)=T(I)+ATA(I,J)*F(J)
        ZZ=0.ODO
        OO 30 I=1,N
    30 ZZ=ZZ+WTK(I)*(T(I)*T(I))
        ZZ=DSGFT (ZZ)
        DO 40 I=1,N
    40
        *=T(1//ZZZ
        DO 50 I=1,NN
        R(II =0.000
        DO 50 J=1,N
    50 R(I)=R(I)+A(I,J)*T(J)
        CR=i.000
        U=2.000
        J=1
    s2 x=0.000
    DO 60 I=1,NN EITFOT4O
```

```
        60 X=X+(GV(I)-R(I))*(R(I)*WTKT(I))
            IF(X.GE.O.ODO) GO TO 1000
            IF(J-EG*2) GO TO 1001
            J= J+1
            \infty >0 I=1,N
        7 0
            T(I)=-T(I)
            DO 80 I=1,NN
        80 R(I)=-R(I)
            GO TO 92
1001 CO 450 I=1,NN
    450 GV(1)=U*GV(I)
            J=1
            CR=CR*U
            GO TO 92
1000 DO-90 I=1,NN
        90 F(II=R(I)-GV(I)
            RR=0.0DO
            CO 100 I=I.NN
    100 RR=RR+nTKT(I)*(R(I)*R(I))
            CO 110 1=1.N
            w(I)=0.000
            DO 110 J=1.NN
    110w(I)=W(I)+AT(I,J)*R(J)
            ZZ=0.000
            CO 120 I=1.N
    120ZZ=ZZ+WTK(I)*(W(I)*W(I))
            YY=ZZ-X*X
            AB=FF+X
            DO 130 I=1,N
    130W(I)=W(I)+X*T(I)
C
C OUTPUT SECTION FOR THE STARTING INFORMATION.
C
    WRITE (6,2) x
    2 FORMAT ('0'.*INIT IAL LAMBDA='.D24.16)
        WRITE (6,3)
    3 FORMAT('0'.12X;'X=*.18X,'STARTING='.12X,'ATAF+LAMBDA*F-ATG='./)
```

BITR0750
BITF0760
BITR0770
B1TR0780
BITR0790
BITR0800
BITF0810
BITR0820
BITR0830
BITROB40
BITR0850
BITFO 860
EITR0870
BITR0880
BITF0890
BITR0900
BITF0910
B ITR0920
BITRO9 30
BITF0940
BITR0950
BITF0960
BITR0970
BITF0980
BITF0990
BITR1000
BITF1010
BITR1020
BITF1030
BITF1040
BITR1050
BITF1060 BITR1070 BITF1080 BITF1090 BITR1100 BITFIIIO

```
        DO 140 I=1.N
    140 WRITE(6.4) XV(I),T(I),W(I)
        4 FORMAT(* *,3D24.16)
        MRITE (6,5)
        5 FORMAT('O',12X,'Y=`.18X,'AF-G=*,/)
        DO 150 I=1.NN
    150 WRITE(6.6) YV(I),R(I)
        6 FORMAT(: .,2024.16)
        WRITE(6.7) CR
        7 FORMAT(.O.,'SCAL ING FACTOR=",D24.16)
        WRITE(6.8) YY
        8 FORMAT('O'.'MINIMUM VALUE='.D24.16)
        XX=X
C
C THE MAIN ITERATIONS OF THE ALGORITHM*
C
171.x=xx
    k=1
    41 AA =AB
        YY=ZZ
        DO 160 [=1.N
        WW(I)=W(I)
        W(i):=0.000
        DO 160 J=1 ,NN
160 W(I H=W(I)+AT(I,J)*R(J)
    OO 170 I=1 .N
170 w(I)=w(I)+x*T(I)
    ZZ=0.000
    DO 180 I=1 N
180 ZZ=ZZ+WTK(I) #(#(I) xW(I))
    IF(ZZ.LT•DD) GO TO 403
    DO 190 I=1.NN
190 V(1)=F(I)
    DO 200 I=1,N
200 F(II=T(I)
    VV=RR
    DO 210 I=1.NN
```

BITRII20 BITR1130 BITR1140 BITR1150 BITE1160 BITR1170 BITR1180 BITF1190 BITR1200 BITF1210 BITR1 220 BITF1230 BITF1240 BITR1250 BITF1 260 BITR1270 BITF1280 BITE1 290 BITR1300 BITE1310 BITR1 320 BITR1330 BITF1340 BITR1350 BITF1360 BITR1370 BIT\&1380 BITF1390 BITR1400 BITF1410 BITR142C BITF1430 BITR1440 BITR1450 BITF1460 BITR1470 BITF1480

```
    S(I)=0.000
    BITF1490
    DO 210 J=1.N
    S(I)=S(I)+A(I,J)*W(J)
    Y=0.D CO
    DO 220 I=1.NN
220 Y=Y+WTKT(I)*(S(I)*S(I))
    Y=Y+X*ZZ
    B=ZZ/Y
    DO 230 I=1.N
230 T(I)=T(I)-B*W(I)
    DO 240 I=1.NN
    R(I)=0.0DO
    OO 240 J=1.N
240 R(I)=R(I)+A(I.J)*T{J)
    DO 250 I=1.NN
250 R(I)=R(I)-GV(I)
    RR=0.000
    OD 260 I=1.NN
200 RR=RR+WTKT(I)*(R(I)*R(I))
    AB=O.CDO
    DO 270 I=1.N
270 AB=AB+MTK(I)*(T(I)*T(I))
    AB=RR+X*AB
    IF(K.EG.1) GO TO 20!
    IF(AB&LT\bulletAA) GO TO 201
    DO 280 I=1,N
    T(I)=[(I)
280 W(I)=WW(I)
    OO 290 I=1 .NN
2SO R(I)=V(I)
    RR=VV
    ZZ=YY
    K=K-1
    GC TO 401
201 IF{M-K) 620,401,301
301 K=K+1
    GO TO 41
```

BITF1490
BITR1500
BITFISIO
BITR1520
BITR1530
BITF1540 BITR1550 BITR1560 BITR1570 BITF1580 BITF1590 BITR1600 BITF1610 BITR1620 BITR1630 BITF1640 BITR1650 BITFI 660 BITR1670 BITF1680 BITF1690 BITR1700 BITF1710 BITR1720 BITF1730 BITF1740 BITR1750 BITF1760 BITR1770 BITF1780 BITF1790 BITR1800 BITF1810 BITR1820 BITF1830 BITF1840 BITR1850

```
    403 K=K-1
    401 LL=LL+K
        IF(K.LT.M) GO TO 440
        WRITE(6,1) X
        1 FORMAT('O'.3X.'AT LAMBDA='.D24.16.3X.'THE MAXIMUM VALUE OF M HAS
        CBEEN ATTAINED')
    440 IF(X.EG.BB) GO TO 600
        XX=XLMDA*X
        IF(XX•LT•日B) GO TO 610
        GO TO 171
    610 xX= ES
        GO TO 171
c
C OUTPUT SECTICN FOR THE FINAL RESULTS.
C
600 WRITE(6.23)
    23 FOFMAT('O'.12X,*X=. .14X,"FINAL SOLUTION F=.,10X,
        C'ATAF +LAMBDA*F-ATG=',/)
            CO 320 I=1.N
        T(I)=T(I)/CR
        W(I)=W(I)/CR
    320 WRITE(6,4) XV(I),T(I),W(I)
        WRITE(6.5)
        DO 330 I=1.NN
        R(I)=R(I)/CR
    330 WRITE(6.6) YV(I),R(I)
        ZZ=Z゙Z/(CR*CR)
        RR=RR/(CR*CR)
        ZZ=DSGRT (ZZ)
        RR=D SQRT(RR)
        WRITE(6.26) ZZ.RR
```



```
        CD24.16)
        WRITE(E,23) LL
    28 FORMAT('0','TOTAL ITERATIONS=',I6)
        CC=0.0 DO
        DO 34C I=1.N
```

BITF1860 BITR1870 BITF1880 BITF1890 BITR1900 BITF1910 8 ITR1 920 BITR1930 BITF1940 BITR1950 BITF1960 BITR1970 BITF1980 BITF1990 BITR2000 BITF2010 QITR2C 20 BITF20 30 BITR2040 BITR2050 BITF2060 BITR2070 BITF2080 BITF2090 BITR2100 BITF2110 BITR2120 BITF21 30 BITR2140 BITR2150 BITF2160 BITR2170 BITF2180 BITR2190 BITF2200 BITF2210日ITR2220

```
340 CC=CC*WTK(I)*(T(I)*T(I))
BITR2230
CC=OSORT(CC)
WRITE(6.9) CC
    9 FORMAT(.O..' NORM OF THE SOLUTION='.D24.16)
        DO 390 I=1 ,N
        v(I)=0.000
        DO こ90 J=1,NN
3SC V(I)=V(I)+AT(I .J)*R(J)
    VVV=0.ODO
    DO 40C I=1.N
4co VVV=VVV+WTKT(I)*(VCI)*V(I)I
    VVV=OSQRT (VVV)
    WRITE(6.144) VVV
144 FORMAT('0.,8X.'|| AT(AF-G) ||=0,024.16)
62C RETURN
        END
    BITF2360
    8ITR2370
BITF2380
```

