Nuclear-waste disposal in geologic repositories

PDF Version Also Available for Download.

Description

Deep geologic repositories are being widely studied as the most favored method of disposal of nuclear waste. Scientists search for repository sites in salt, basalt, tuff and granite that are geologically and hydrologically suitable. The systematic evaluation of the safety and reliability of deep geologic disposal centers around the concept of interacting multiple barriers. The simplest element to describe of the geologic barrier is the physical isolation of the waste in a remote region at some depth within the rock unit. Of greater complexity is the hydrologic barrier which is determined by the waste dilution factors and groundwater flow rates. ... continued below

Physical Description

Pages: 17

Creation Information

Isherwood, D. August 2, 1982.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Deep geologic repositories are being widely studied as the most favored method of disposal of nuclear waste. Scientists search for repository sites in salt, basalt, tuff and granite that are geologically and hydrologically suitable. The systematic evaluation of the safety and reliability of deep geologic disposal centers around the concept of interacting multiple barriers. The simplest element to describe of the geologic barrier is the physical isolation of the waste in a remote region at some depth within the rock unit. Of greater complexity is the hydrologic barrier which is determined by the waste dilution factors and groundwater flow rates. The least understood is the geochemical barrier, identified as a series of waste/water/rock interactions involving sorption, membrane filtration, precipitation and complexing. In addition to the natural barriers are the engineered barriers, which include the waste form and waste package. The relative effectiveness of these barriers to provide long-term isolation of nuclear waste from the human environment is being assessed through the use of analytical and numerical models. The data used in the models is generally adequate for parameter sensitivity studies which bound the uncertainties in the release and transport predictions; however, much of the data comes from laboratory testing, and the problem of correlating laboratory and field measurements has not been resolved. Although safety assessments based on generic sites have been useful in the past for developing site selection criteria, site-specific studies are needed to judge the suitability of a particular host rock and its environment.

Physical Description

Pages: 17

Notes

NTIS, PC A02/MF A01.

Source

  • Society of Civil Engineers conference on geotechnics of waste management, Philadelphia, PA, USA, 19 Jan 1982

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE82020176
  • Report No.: UCRL-86582
  • Report No.: CONF-820154-1
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 5096284
  • Archival Resource Key: ark:/67531/metadc1052182

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 2, 1982

Added to The UNT Digital Library

  • Jan. 22, 2018, 7:23 a.m.

Description Last Updated

  • Jan. 31, 2018, 6:33 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Isherwood, D. Nuclear-waste disposal in geologic repositories, article, August 2, 1982; California. (digital.library.unt.edu/ark:/67531/metadc1052182/: accessed June 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.