1/ 1862

LBL-7019 UC-66 TID-4500-R66

MASTER

EXTENSIVE GEOCHEMICAL STUDIES IN THE GEOTHERMAL FIELD OF CERRO PRIETO, MEXICO

A. Manon, E. Mazor, M. Jimenez, A. Sanchez, J. Fausto, and C. Zenizo

December 1977

Prepared for the U. S. Department of Energy under Contract W-7405-ENG-48

C. C. L.

-27-18

LBL-7019

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

LEGAL NOTICE -

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Printed in the United States of America Available from National Technical Information Service U. S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Price: Printed Copy, \$ 6.50 Domestic; \$13.00 Foreign Microfiche, \$ 3.00 Domestic; \$ 4.50 Foreign

EXTENSIVE GEOCHEMICAL STUDIES IN THE GEOTHERMAL

7

FIELD OF CERRO PRIETO, MEXICO

A. Mañon $^{\rm l}$ and E. Mazor $^{\rm 2}$

M. Jimenez²

A. Sanchez²

J. Fausto²

C. Zenizo²

December 1977

LBL-7019

NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

- 1. Comisión Federal de Electricidad, Mexicali, Baja California, Mexico.
- Lawrence Berkeley Laboratory, Berkeley, California 94720; U.S. Geological Survey, Menlo Park, California. (On sabbatical leave from Geo-Isotope Group, Weizmann Institute of Science, Rehovot, Israel.)

TABLE OF CONTENTS

7

- -

PART I. REGULARITIES AND CORRELATIONS

1.	<u>Introduction</u>	1
	1.1 Objectives of the Present Communication	1
	1.2 History of the Cerro Prieto Geothermal Field	1
	1.3 Sources of Analytical Data	1
2.	<u>General Data</u>	1
	2.1 Geology	1
	2.2 Well Data	2
	2.3 Analytical Methods and Estimated Errors	2
	TABLE I	2
3.	Ion Correlations in the Wells	2
	3.1 Basic Plots Against Cl	2
	3.2 Weighted Most Concentrated Values of Each Well	2
	TABLE II	3
	3.3 Trace Elements	4
	3.4 Observations and Partial Discussion of Dissolved lons in Wells \ldots	4
	3.4.1 Variability of Ion Concentrations	4
	3.4.2 Conservative Elements	4
	3.4.3 Reactive Elements	4
	3.4.4 Homogeneity of the Brine in the Cerro Prieto Block \ldots \ldots \ldots	4
	TABLE III	5
4.	Variations in Ion Concentration in Space and with Time	5
	4.1 Effect of the Well Head Orifice Diameter	5
	4.2 Areal Variations	5
	4.3 Vertical Distributions	5
	4.4 Variations with Time or Production	5
5.	Enthalpy - Dissolved Ion Correlations	5
	5.1 Conservative lons	5
	5.2 Reactive, Temperature-Dependent Ions	5
	5.3 Enthalpy-SiO ₂ and Log Na/K Correlations for Repeated Sample	7
	5.4 Correlation of the Temperature-Dependent Reactive lons, K and SiO ₂	7
6.	Thermal and Mineral Springs	7
	6 1 Distribution and Constal Description	7
	6.2 Evaporation Effects	7
	0.2 Evaporation Ellects	/

6.3 Ionic Variations and Correlations									
6.3.1 Conservative Occurrence of Cl, Na, Ca, Li, and B 7									
6.3.2 Temperature-Dependent Reactions									
6.3.3 Higher HCO_3 Contents									
6.3.4 Higher SO ₄ Contents \ldots \ldots \ldots \ldots \ldots \ldots 8									
6.3.5 The Ca Content									
6.3.6 The Pattern of B									
7. <u>Gas Contents</u>									
7.1 CO_2 , H_2S , and NH_3 in the Wells									
7.2 Gas Observations in Fumaroles									
8. <u>A Model</u>									
Acknowledgements									
<u>References</u>									

7

PART II. FIGURES AND TABLES

Appendix	<u>A</u>
Tab l	e of Contents
Figure 1	Mexicali-Salton Sea Area
Figure 2	a. Satellite photograph of the Mexicali-Salton Sea Valley
Figure 3	Lithological column of Well M-39
Figure 4	Location map of wells and the section lines of Figure 5 and 6 \ldots \ldots 18
Figure 5	A NW-SE geological section
Figure 6	A SW-NE geological section
Figure 7	Geological section and partial view of the Mexicali Valley, B.C 20
Figure 8	lon contents in repeatedly collected samples from Well No. 11 as a function of the Cl content 21
Figure 9	a-f. Ion contents and pressure plotted as a function of the Cl content in repeatedly collected samples
Figure 1	 Ion contents in the weighted most concentrated samples in the various wells plotted as a function of the Cl content
Figure 1	. Schoeller diagram of Well No. 6
Figure 1	. Schoeller diagrams for the weighted most concentrated samples of the various wells
Figure l	. Trace elements and major elements in samples collected on September 23, 1976, plotted as a function of the Cl content
Figure 1	. Observed pressures as a function of the orifice diameter $\ \cdot \ $
Figure 1	. Maps with SiO ₂ and Cl contents and Na/K values of most weighted concentrated samples at each well
Figure 1	Concentration-depth graphs for Cl, SiO ₂ , and K for the producing wells

Figure 17	. Enthalpy-ion content correlations in samples of the producing wells, collected at different dates
Figure 18	. Best-fit lines or the correlations between enthalpy and the SiO_2 content and Log Na/K values
Figure 19	. Best-fit lines for the correlations between SiO ₂ -K and Log Na/K-SiO ₂
Figure 20	. Location map of springs and prospection wells
Figure 21	. Temperature measured in the springs
Figure 22	. Temperature and Na content of the springs as a function of the Cl content
Figure 23	. Ion contents of the springs as a function of Cl 41
Figure 24	. Variations of the SiO ₂ and Cl content and the Na/K values in the springs that were recollected six times in one year 42
Figure 25	. Average ion concentrations as a function of the Cl content
	in the springs \ldots \ldots \ldots \ldots 33
Figure 26	. Ca content as a function of the ${\tt HCO}_3$ content in the springs 44
Figure 27	. Temperature and CO ₂ content as a function of the H_2S content in the producing wells
Appendix	<u>3</u>
Table	of Contents
Table 1.	Well construction data with time intervals relevant to the chemistry tables
Table 2.	Conditions of temperature profile measurements in wells prior to commercial production
Table 3.	Analytical methods applied at the Cerro Prieto Laboratory -
Table 4	Chemical analyses in repeatedly collected samples of the wells
Table 5.	Separator flow, enthalpy, and chemical composition in sets of
T-11. (Charical and shuples of the producting werrs
Table 6.	
lable /.	Irace elements and sufface in producing wells
ſable δ.	gas in the steam
Table 9.	Chemical composition of springs in ppm
Table 10.	Chemical analyses of springs sampled six times during one year 110
Table 11.	Gas analyses of fumaroles

PART I. REGULARITIES AND CORRELATIONS

1. Introduction

1.1 Objectives of the Present Communication

The chemical laboratory at Cerro Prieto has accumulated a wealth of data during its 12 years of operation. These data include analyses of dissolved ions and gases in exploration and production wells and in thermal springs, as observed in repeatedly collected samples and measurements of wellhead and separator pressures, flow of steam and water and size of orifice, condition of well, etc., at the time of chemical sampling.

The objective of this present communication is to make this wealth of geochemical data available to the scientific community in order to facilitate new studies and interpretations from as many points of view as possible. Examples of such studies may be related to water-rock interactions, geothermometry, evolution of a producing geothermal field, comparison of thermal springs with samples from adjacent wells, or comparison of the Cerro Prieto system with other geothermal complexes throughout the world.

Bearing this objective in mind, we regard the major part of this report to be the tables given in Part II. The discussion in Part I is intended to illustrate graphically the geochemical pattern of the Cerro Prieto fluids, to search for ion correlations, and to provide a preliminary discussion of a small number of topics.

1.2 History of the Cerro Prieto Geothermal Field

Attention was drawn to the Cerro Prieto region because of the thermal springs scattered over an area of about 15 x 6 km. Several of these springs reach boiling or near-boiling temperatures. The northwestern part of the thermal spring area is dominated by the geologically recent Cerro Prieto ("Black Hill") volcano. Systematic exploration for geothermal resources was commenced in 1959 with field and photo-geology work (Mañon, 1976). In 1959 exploratory drills penetrated to a depth of $755\,\text{m}$ and were continued to greater depths, and in 1965 reached the granitic basement rock at a depth of 2,500 m. Two of the wells drilled up to then produced steam-water mixtures of enthalpies higher than 300 cal/g. Gravimetric and refraction seismic surveys were conducted during 1961-1963. A temperature gradient survey was done in 1965. aided by 50 drillholes 6 to 20 m deep. The same year marked the beginning of the systematic chemical studies. An aeromagnetic survey and a resistivity study were initiated in 1972 covering more than 400 ${\rm km}^2$ of the Mexicali Valley.

The site of the presently producing field was selected based on the success of the exploratory well Number 5. During the past 12 years, 16 producing wells have been completed. The total output is 750 tonnes/hr separated steam (at 75 psig) and 2,000 tonnes/hr separated water. The wells that supply the 75 Mw/hr plant are located over an area of about 0.7×0.7 km.

The 75 Mw/hour plant came into commercial operation in April 1973.

1.3 Sources of Analytical Data

From 1965 to 1969, the chemical laboratory of Cerro Prieto was headed by S.G. Mercado; and since, by A.M. Mañon. In the l2 years of its operation the laboratory has handled over 10,000 samples of water and steam collected from springs, fumaroles, research wells, and mainly from the production wells and discharge canals. The wealth of data obtained is well documented in the laboratory's archives. The sample data include relevant information on the mode of sampling, depth of production, and pressure and flow measurements that provided the basis for enthalpy calculations.

In comparison, the amount of Cerro Prieto data published in the literature so far is extremely small. Mercado (1968) published a chemical survey of the springs. At the first U.N. Symposium on Geothermal Resources held in Pisa, Italy, Mercado (1970) reported Na/K ratios and SiO₂ contents in a number of wells, and Molina and Banwell (1970) repeated Mercado's 1968 data on the springs. Werner and Olson (1970) included in their Salton Sea study the contents of a number of elements in seven Cerro Prieto wells. Crossby, Chatters, Anderson and Fenton (1972) reported measurements of stable hydrogen and oxygen isotopes in the geothermal wells and the regional shallow groundwaters. Chemically related papers of the Second U.N. Symposium on Geothermal Resources, San Francisco, California, included a report by Reed (1975) on the construction and maintenance of the producing wells at Cerro Prieto.

2. General Data

2.1 Geology

The Cerro Prieto geothermal field is located in the Mexicali-Salton Sea basin, which hosts several geothermal manifestations. The general features are seen in a map (Figure 1) from a satellite photo (Figure 2). The lithological sequence in the producing field is revealed by the section of Well M-39 (Figure 3). Clays and loose sand prevailed to a depth of 700 m in this well; shale and sandstone were observed from this depth down to the bottom of the well at nearly 1,500 m. Gravels and various clastic components are frequent in the whole section. An alluvial facies is thus dealt with, attributed by most workers to former

deltas of the Colorado River. The thermal waters are exposed to sandstone, shale, silt, and gravels of volcanic rocks and to minerals such as guartz, feldspars, mica, as well as calcite, which is a common cementing agent. Pyrite is often reported to be disseminated in the rocks. Reed (1975) lists the following minerals detected in well cores and cuttings: quartz, calcite, microcline, plagioclase, dolomite, kaolinite, montmorillonite, illite, moscovite, chlorite, and epidote. The Cerro Prieto thermal brines are in contact with these minerals, part of them belonging to the original country rocks and others being the product of water-rock interactions. The variability of rocks and minerals to which the spring waters are exposed may be even larger, as they occur over a greater area than the producing wells and while ascending to the surface their waters also come in contact with the shallow sediments.

Two geological sections are given in Figures 4-6, and a section and partial view of the Mexicali Valley are given in Figure 7. Two major faults (Figure 2a), a possible continuation of the Imperial fault and the San Jacinto fault, are established by air photos and are mainly based on geophysical work (Figure 2b). The block structure of the region may have direct influence on the movement of the thermal brines and different tectonic blocks may host brines of different compositions.

2.2 Well Data

Dominguez and Vital (1975) described the well casings, perforations and other technical data in detailed drawings, tables and text. A brief and up-to-date summary of production depths, casing diameters, and other remarks is given in Table 1 in Part II of the present communication. These data may be useful when utilizing the chemical data (Tables 4 and 5, Part II), as variations in the chemical composition may be traced back to variations in the well setups.

The well locations are shown in Figure 4 and a number of more remote exploration wells are indicated in Figure 20.

2.3 Analytical Methods and Estimated Errors

The analytical procedures applied by the Cerro Prieto laboratory over the years are summed up in Table 3, Part II.

The analytical errors were not routinely assessed. A general idea of the analytical quality was gained through processing of the data. In Section 3.1 basic plots are presented of the concentration of various elements in repeatedly collected samples from each well. In several cases the data fall on straight lines when plotted against the Cl content (Figures 9a-f). These lines reflect regularities in the geothermal system (e.g., mixing or concentration lines, to be discussed later on). The deviation of the individual data from a bestfit line are in such cases a result of the analytical errors and of the natural variations. Hence, these deviations may be applied to deduce <u>upper</u> limits to the analytical errors. To do so, wells with the best linear fits are best used, the assumptions being: a) that in these cases the natural deviations were minimal, and b) the analytical errors were the same for all wells. The data of repeated samples of Well No. 11 have been chosen by this criterion are reproduced in Figure 8. The deviations observed in Figure 8 are the analytical errors of each element and that of chlorine. For simplicity we suggest, therefore, to use half of the mean deviation as the one sigma error of each of the elements plotted in the graphs of Figure 8. These deduced analytical errors are summed up in Table I. It is seen that the errors for the major elements are relatively low and the chemical data seem to be good for geochemical processing of the type done in the following sections.

TΑ	۱B	L	E	Ι

Deduced Upper Limits for Analytical Errors*								
C1	Na	к	Li	Ca	В	HC03+C03	SiO ₂	
5%	5%	5%	5%	5%	10%	8%	10%	

* Text and Figure 8.

3. Ion Correlations in the Wells

3.1 Basic Plots Against Cl

Table 4 in Part II of this communication reports dissolved ion concentrations in samples that were repeatedly collected from the various wells. The data have been plotted against the Cl content in Figures 9a-f. These plots will be referred to in several of the following sections. Table 4, Part II, also contains information on the flow conditions (e.g., orifice diameter at which each sample was collected). This information is included in Figures 9a-f in the form of symbols explained in the figure caption. The wells are arranged in Figure 9a-f in the following order from a to f: first wells outside the producing field, namely, Wells 1A, 3, 6, 7, and 53. Then (from 11) the wells of the producing field arranged from north to south. This geographical order has been selected to facilitate the search for geographical trends in the data.

3.2 Weighted Most Concentrated Values of Each Well

Most wells are seen in Figures 9a-f to reveal large variations in their ion contents. In order to evaluate the distribution and composition of the deep-seated brines in Cerro Prieto, the weighted most concentrated samples of each well was reconstructed (Table II). The highest Cl value observed in each well was taken and the corresponding value of each of the other elements was read from the diagrams in Figure 9a-f. In linear plots (e.g., Na as a function of Cl) the necessary values were read from a best-fit line. This procedure was also applied to the horizontal lines observed in most Na/K versus Cl graphs (e.g., Well No. 11, Figure 9b). In cases of clustering, average values were taken (calculated from the original data, in

2

C

LBL-7019

3

Table II

Weighted Composition of the Most Concentrated Sample of Each Well (text), mg/l.

Well	Na	К	Na/K atomic	Li	Ca	В	HCO ₃ +CO ₃	SiO ₂	C1
IA	4,400	500	11.5	11.8	230	8.8	50	250	7,700
3	7,500	1,500	7.0	~20.	400	~12.	~80	650	12,000
7	6,000	1,400	7.3	15.5	300	13.	~200	500	10,300
6	4,500	470	16.2	17.	620	7.	1,000	155	8,200
53	8,300	2,800	5.0	-	350	-	-	1,250	17,300
11	8,600	2,230	6.6	28.	550	20.	40	900	16,700
42	6,100	1,470	7.0	17.5	380	-	-	-	11,600
38	8,100	2,000	6.8	23.	380	17.	~50	850	14,300
39	6,400	1,100	~10.	16.	420	14.	50	650	12,100
10	5,500	1,700	5.5	18.	350	~14.5	~300	~680	10,600
13	8,800	2,400	~6.3	26.	450	~18.	50	~1,050	16,200
15	3,200	270	~20.	-	40	-	-	-	5,200
15A	7,400	1,580	8.	18.	430	-	~20	~800	13,500
5	9,900	2,350	7.2	30.	580	22.	60	1,000	17,900
19A	8,700	2,180	6.8	~24.	550	-	-	-	17,000
20	8,300	2,000	7.0	26.	500	~14.	~200	950	15,500
25	9,200	2,000	7.8	28.	600	-	50	950	17,000
21	7,000	2,050	5.7	19.5	300	~16.	100	~800	13,000
21A	12,500	3,150	6.7	~30.	760	-	~40	960	21,400
26	9,800	2,400	6.9	30.	~850	~14.	~50	950	18,700
29	7,100	1,360	8.8	~21.	500	~13.	~50	470	13,100
30	9,600	2,500	6.5	30.	600	-	~40	920	17,800
27	9,000	2,600	6.5	-	950	-	-	-	18,000
8	9,900	2,600	6.4	30.	500	17	60	900	16,400
31	8,700	2,200	6.7	29	550	~14	~60	~900	16,300
35	9,500	2,600	6.2	25	550	-	~40	1,030	17,100
51	8,500	2,400	5.9	28	420	-	-	1,030	15,900

Table 4, Part II), e.g., the B content versus Cl in Well No. 21, Figure 9b.

The data in Table II were plotted in Figure 10 as functions of the Cl content. Thus, an overall picture of the whole field is obtained. A surprising similarity is seen between the patterns of the whole field in Figure 10 and the individual patterns for each well in Figure 9a-f. This indicates that the processes causing compositional variations between the wells are also operating in each well and are reflected in repeatedly collected samples (to be discussed later on).

The data of Table II are also plotted in Schoeller diagrams in Figures 11 and 12. In this type of representation the various ions are plotted in a logarithmic scale of concentrations. As an example, the most concentrated values of Well No. 6 (taken from Table II) are plotted in Figure 11. Thus a graphical representation of the chemical composition is obtained. Figure 12 is composed of such Schoeller diagrams of the weighted most concentrated values for each well. The data for the producing wells are arranged in Figure 12 in a geographical order from south (on bottom) to north (toward the top of the figure). The base lines of the diagrams (10 mg/liter) are regularly spaced and marked on the vertical axis. The following observations may be made:

a. The compositional lines for the mail well field (i.e., from Well No. 51 to Well No. 3) are rather parallel, indicating the wells possess

LBL-7019

similar dissolved salt assemblages. The major variations are due to the larger range of $\rm HCO_3+CO_3$ concentrations.

b. Well No. 6 and Well No. 53, which are outside the main field (Figures 4 and 7), differ in their composition to one another and from the producing wells. This is of highest interest as it may indicate that the compositions of the brines at Cerro Prieto vary from one tectonic block to another. Well No. 6 belongs to a western block separated from the producing field by a fault, and Well No. 53 belongs to an eastern block, separated from the producing field by another fault.

c. In nice agreement with such a tectoniccomposition classification, Wells Nos. 3, 7, and 1A as shown in Figure 12 resemble the main field wells. Thus, the brine reservoir of the producing field may well extend at least 2 km northward (Figure 4).

3.3 Trace Elements

Table 7 in Part II contains data on trace elements and sulfate in samples collected on 23 September 1976. These data are plotted against the CI content in Figure 13, which also includes the major elements observed in the sample collection (Table 5, Part II). With regard to the trace elements we would like to draw attention to the good correlations observed for Li, Cs, B, Rb, and Br, plotted against Cl (Figures 13a and b). Poor correlations were observed for Ba, I, and Sr (Figure 13c); and no correlation was seen for As and Fe (Figure 13d). The ion data should be regarded with care because of possible contamination from the casing.

3.4 Observations and Partial Discussion of Dissolved lons in Wells

3.4.1 Variability of Ion Concentrations: Large variations are observed in the ion concentration in water samples of the wells. This is seen both in repeated collections in the individual wells (Figures 9a-f) and in the weighted most concentrated values of the different wells (Figure 10). The most likely causes for these variations are concentration by steam loss on the one end and dilution with fresh water or condensed steam on the other. Also less quantitative variations are caused in certain elements due to re-equilibration (Section 5.2).

3.4.2 <u>Conservative Elements</u>: Various elements are seen (Figures 9a-f) to fall along straight lines when plotted against Cl. Examples are Wells: 53, 11, 38, 39, 13, 15A, 5, 19A, 20, 25, 21A, 26, 30, 27, 8, 31, 34, 35, and 51. The same trend, for major and trace elements, is also seen in Figure 13 in which data of the various wells are plotted together.

Comparing the lines formed by the different elements in Figure 13, it seems that two groups of elements exist. The elements of the first group in Figure 13a extrapolate to the zero value of the axis, thus exhibiting lines of the general equation y = ax. Li, Na, Rb, Cs, and B belong in this group. Value shifts along such lines are expected whenever concentrations of brine due to steam loss or dilutions with fresh water take place. Lines of the pattern y = ax exclude deviations caused by chemical reactions. This is because chemical reactions would be expected to be of different intensities for Cl and other elements, and would therefore deflect the lines of Figures 9a-f and 13 from extrapolating to zero. Hence, Li, Na, Rb, Ca, and B are termed <u>conservative</u> with regard to their appearance at the Cerro Prieto Wells.

3.4.3 <u>Reactive Elements</u>: Ca, K, SiO₂, and Br are seen in Figure 3b to plot on straight lines as well, but these do not extrapolate to zero. Instead, they cross the Cl axis and follow the equation y = ax-b. Another expression of this trend is seen by the different y/x values that these lines possess at their different sections. For example, the value of Cl/Ca in the upper part of the line in Figure 13 is 23, whereas in the lower part it is 36. Similarly, the Cl/K ratios seem to vary from 7.3 to 12.0; Cl/SiO₂ varies from 12 to 22; and Cl/Br ratios range from 450 to 1700.

The explanation for this "nonconservative" behavior of these elements seems to be the fact that they reacted with the aquifer rocks before ascending in the wells. These reactions seem most likely to be temperature dependent, caused by temperature variations, or temperature zones in the geothermal system. Such reactions are commonly attributed to SiO₂ and K, occassionally to Ca and at least at Cerro Prieto, Br seems to behave similarly. These elements are termed <u>reactive</u> in this communication.

3.4.4 Homogeneity of the Brine in the Cerro Prieto Block: Discussing the data in Figure 12 we noted that the brine in the western block, represented by Well No. 6, differed in composition from the highly saline brine in the eastern block, represented by Well No. 53. Both these wells differ from the brines in the producing block, as represented by Wells No. 3, 1Å, 7, and the producing wells. The brines of the producing wells, seem, however, to be close to each other in their compositions. This is revealed by the straight lines obtained by plotting the data of the producing wells versus Cl (Figures 10 and 13). Deviation of individual wells from a general average composition seems to be due to: a) temperature dependent re-equilibration of the reactive elements, and b) dilution by fresh water or concentration by steam loss.

Attention is drawn at this point to the similarities in the composition of the brine samples of the Cerro Prieto producing field, rather than to differences, which seem to be secondary effects. These second-order effects and the processes that cause them will be discussed later.

Set	Date	X = Enthalpy Y = SiO ₂			X = Enthalpy Y = log Na/K		$X = K Y = SiO_2$			$X = SiO_2$ $Y = log Na/K$			
	Date	a ₀	aı	r	a0	aı	r	a ₀	aı	r	a ₀	aı	r
1	1/31/74	-466.98	4.32	. 7603	1.31986	-0.00221	.7162	145.89	.3728	.763	. 9286	-0.00034	.6113
2	4/29/74	46.7	2.337	. 31022	1.30775	-0.00215	.76	443.53	.16725	. 328	. 86193	-0.00028	.2261
3	7/10/74				1.39784	-0.0023	.8776				<u> </u>		
4	8/29/74				1.09922	-0.00128	. 506						
5	1/15/75	385.2	1.33	. 2531	.9665	-0.00094	.513	363.35	.2644	.6734	.96173	-0.00037	.545
6	3/10/75	201.336	1.9144	.3	. 9455	-0.00093	. 492	358.81	. 27031	. 5926	.9058	-0.00032	.77
7	5/20/75							369.13	. 2251	.53	1.043	-0.00049	.575
8	7/15/75	248.3	1.7722	. 346	.9253	-0.001	. 292	379.2	.23543	.724	1.02897	-0.00052	.715
9	9/11/75	17.425	2.86	.268	1.171	-0.00158	.6	312.92	. 37891	. 5502	.925	-0.00028	.566
10	11/12/75	-194.7	3.106	. 332	1.20702	-0.00175	. 405	299.95	. 3013	.69423	1.02524	-0.00047	. 85
11	3/ 8/76	-182.9	3.7613	.634	1.1836	-0.0017	. 897	297.04	. 42443	. 85	. 9943	-0.00034	. 806
12	5/24/76				1.09434	-0.00142	.7663						
13	8/10/76				. 875	-0.00077	. 16123						
14	9/23/76	146.53	2.8665	. 23243	1.098	-0.00145	.6115	252.62	. 477	.8	.9189	-0.00026	. 684
15		-69.151	3.1121	. 4137	.9486	-0.00093	. 305	370.71	. 32141	. 45307	. 8854	-0.00025	.52
		Form of e	quations	Y = a ₀ +	- aıx								
All* Sets		-204.83	3.5935	. 52	1.1755	-0.00167	.662	378.4	.3	.44	. 8817	-0.00027	. 45
Sets Included		1,11,15			1,2,3,9,	11,12,14		1,5,6,8	3,9,10,11,	14,15	1,5,6,7	7,8,10,11,14	+
Other Sets		153	2.04	.315				Ī					
3815		2.6.8.10									1		

Table III. Best-Fit Correlation Factors for Enthalpy, SiO2, K, and log Na/K Relations.

.

* Excluded bad and dummy sets. Bad sets are those whose correlation index (r) are too low and slopes are too different from other sets due to the individual correlations indicating a family curve.

¢

4. <u>Variations in Ion Concentration</u> in Space and with Time

4.1 Effect of the Well Head Orifice Diameter

The data in Figures 9a-f are plotted in symbols indicating the diameter of the discharge pipe at the time of sampling. In general, samples collected via 1/4", 1/2", and 1" orifice diameters contain less dissolved ions than samples collected via 2" diameters or larger and full production. Examples are (Figures 9a-f) seen in Wells No. 53, 11, 5, 19A, 25, 26, 29, 27, and 51.

Several explanations may be offered to this effect, one being that the larger the orifice diameter is, the less significant the cooling is by conduction in the well; and the formation of steam becomes more significant. The more steam that is separated from the collected samples, prior to their analyses (the analytical data being reported for atmospheric pressures), the higher the ion content will be.

Another aspect of the influences observed due to sampling at different orifice diameters is the change of pressure observed with change of diameter. Two such examples are shown in Figure 14 for Wells No. 25 and 31. By changing the diameter from 1/2" to 3", increases in pressure are observed; but further increases of the orifice diameter results in a pressure drop. To explain this phenomenon: the geothermal pressure at the well bottom is proportionally corrected to the suppressing hydrostatic pressure of the water column in the well. When discharge is through an orifice of a small diameter, the water column is effectively cooled by conduction and its density is relatively high, resulting in efficient suppression of the geothermal pressure. As the flow is increased the water in the well gets hotter and lighter, and some of the net pressure at the wellhead increases. Beyond 3" the pressure seems to drop due to two effects that take over: namely, the drop of resistance to the flow of the fluid as the orifice diameter is increased and the drop of the reservoir pressure near the well because of the increased flow.

The Cl does not co-vary with the pressure (values are given in the upper part of Figure 14) but is affected by the orifice at small diameters. This observation should be remembered when samples are collected and the data interpreted.

4.2 Areal Variations

The Cl and SiO_2 contents and the atomic Na/K ratio of the most concentrated samples of each well (Table II) are indicated in the well maps of Figure 15. The center of the producing field seems to be characterized by high Cl and SiO_2 values (maximal) and relatively low Na/K ratios.

This pattern might be connected to higher enthalpy values observed in the center of the producing field. This could result in higher K content, and hence relatively low Na/K ratios which subsequently could also result in higher steam losses producing higher ion contents.

4.3 Vertical Distributions

Figure 16 shows average concentrations (for several years) of Cl, SiO_2 , and K contents for the producing wells as a function of the depth of the producing (slotted) zone. Two immediate difficulties are: a) the large ranges of production intervals, reaching up to 300 m; and b) the marked overlap of the depth of the production intervals in the various wells. No depth correlations are observed; i.e., the ion concentrations do not indicate stratification of brines in the production zone. This conclusion is tentative due to the poor depth resolution discussed above. It is hoped that future studies will clarify this point.

4.4 Variations with Time or Production

Significant variations are noted in several wells in repeatedly collected samples (Table 4, Part II). However, careful data analysis for each well revealed the variations are readily explainable by well characteristics; e.g., beginning or end of production, changes of well depth or casing, formation of cracks and their repair, and variation in the orifice diameter. (The relevant information is given in Tables 1, 4, and 5 in Part II.)

The influence of these operation conditions on observed ion concentrations seem to mask any variations that may occur with time, due to production.

5. Enthalpy - Dissolved Ion Correlations

5.1 Conservative lons

In Figure 17 various ions are plotted as a function of calculated enthalpy. Positive correlations are observed for the Cl, Na, and Li concentrations and enthalpy. The best-fit lines (excluding the September 1976 data) extrapolate to zero. Thus, Cl, Na, and Li reveal conservative behavior, also in enthalpy, similar to their behavior in Figure 13, where Na and Li were plotted against Cl. This seems to indicate that no noticeable chemical reactions take place as a result of the enthalpy variations.

5.2 Reactive, Temperature-Dependent lons

The concentrations of SiO_2 and K shown in Figure 17 reveal positive correlations with enthalpy. Their best-fit lines (excluding the September 1976 data) do not extrapolate to zero, indicating chemical reactions took place. This is in good agreement with the SiO_2 and K reactive patterns in Figure 13. As these reactions vary with this enthalpy, it might be concluded that they are temperature dependent. It is this type of observation when the SiO_2 and Na/K geothermometers are used.

5.3 Enthalpy-SiO₂ and Log Na/K Correlations for Repeated Sample Collections

A best-fit regression calculation has been made in Table III for the enthalpy and SiO₂ and log Na/K data in repeatedly collected sample sets given in Table 5, Part II. In Table III the correlations are given for best-fit lines of the equation $y = a_0x - a_1$ and the values of a_0 , a_1 , and for r, the correlation factor. The following patterns are observable (Figures 18 and 19):

a. The slope a_0 varies in sets 1 to 15 (Figure 18). The variation is small for the enthalpy-log Na/K relation but large for the enthalpy-SiO₂ relation. A possible explanation, is a ratio of a conservative ion such as Na to a reactive ion or K is not very sensitive to variations in ion concentrations induced by dilution-concentration processes occurring during the rise of the fluid in the wells. The SiO₂ value is, however, sensitive to such in-well variations. It seems that enthalpy-SiO₂/Cl may reveal higher correlations for this reason.

b. The relative variations of the constant a_1 are small for the enthalpy-log Na/K relations and higher for the enthalpy-SiO₂ relation, as well.

c. The correlation factor r varies in the individual sets significantly. For example, data sets 1, 3, 11, and 12 reveal good correlations, r being greater than 0.7 (Table III). In contrast, sets 8, 13, and 14 reveal no correlation, r being lower than 0.2. The same trend is noted in Figure 17 in which the September 1976 data show poor correlations but the other data sets show significant correlations.

The reason for the observed variations in the correlation parameters between data sets of different dates is not clear. It might reflect variations in the quality of enthalpy component measurements or real variations.

5.4 <u>Correlation of the Temperature-Dependent</u> <u>Reactive Ions, K and Si02</u>

Table III and Figure 19 describe the correlation patterns calculated for the $K-SiO_2$ and SiO_2 log Na/K relations. The correlation factor r is high in both cases; e.g., data sets 1, 8, 10, 11, and 14 reveal values of 0.70 to 0.85. This can be expected because of the good correlation observed between temperature-dependent reactive ions with enthalpy.

It is felt that the topic of geothermometry may be further studies in light of the available ion content-enthalpy data from Cerro Prieto and might be accompanied with a more detailed discus sion of the enthalpy calculations applicable to the Cerro Prieto field.

6. Thermal and Mineral Springs

6.1 Distribution and General Description

The springs provide thermal geochemical information on an extended area that links the Laguna volcano with the Cerro Prieto volcano (Figure 20). They are scattered over an area of about 5 x 11 km (for comparison, the currently producing wells are located on an area of 0.7 x 0.7 km, i.e., about 2% of the area covered by springs).

The springs vary in their discharge from 10 liters/min to almost stagnant seepages. The spring manifestations also include mud cones, mud pot, and fumaroles, which will be discussed separately.

Observed temperature readings range from 16° to 98°C. No clear geographical trend is observable in the temperature distributions and hot springs issue next to the cold springs (Figure 17).

Analytical data of the springs include a general survey by Mercado (1968) summarized in Table 9, Part II; and the data from a number of springs with steady flow sampled six times during one year are shown in Table 10, Part II.

6.2 Evaporation Effects

The temperature of the springs is plotted as a function of C1 in Figure 22. Two groups of springs emerge: a) springs of 30° C and higher with relatively low salt content (up to 14,000 mg/liter C1); and b) springs cooler than 30° C and high in salt content (up to 182,000 mg/liter C1). The last group, represented by 5 springs, seems to have undergone significant evaporation due to surface exposure prior to sampling, and hence they are cool and high in salinity. Tha Na-C1 plot in Figure 22 reveals the same evaporative group of five springs. These cases are omitted from the following figures and discussion of the springs.

6.3 Ionic Variations and Correlations

The data of the general spring survey (Table 9, Part II) are plotted in Figure 23 as a function of the Cl content.

The data of the repeated sampling in the fairflowing springs (Table 10, Part II) are plotted in Figure 24 as a function of the observed temperatures. The most outstanding features seen in this figure are the large variations observed both in the temperature and in the ion content of each spring when sampled repeatedly. The variations in the Cl content are relatively small but those of SiO₂ are large.

6.3.1 <u>Conservative Occurrence of Cl, Na, Ca, Li</u>, and B: In Figure 23 and especially in Figure 25, positive correlations are seen between Cl and Na, Ca, Li, andB. The best-fit lines can be forced to pass through zero, and these elements reveal a conservative behavior similar to the observations made at the wells.

LBL-7019

LBL~7019

6.3.2 <u>Temperature-Dependent Reactions</u>: The bestfit line of K in Figure 25 does not extrapolate to zero, revealing the reactive nature of this ion, similar to observations made at the wells, The Na/ K plot (Figure 24) as a function of spring temperatures reveals that the average values are negatively correlated to the temperature. Hence the K reactions are temperature-dependent and, as in the case of the wells, lower K concentrations match lower temperatures.

In contrast, the SiO_2 content reveals no correlation with spring temperature, indicating control by reactions that are not temperature dependent, e.g., a high pH value causing dissolution.

6.3.3 <u>Higher HCO₃ Contents (Compared to the Wells)</u>: The HCO₃ in the springs ranges from 0 to 480 ppm; about half the cases have values above 220 ppm. These values are significantly higher than the values observed in the wells, which are below 100 mg/liter HCO₃. The HCO₃ content in the springs reveals no correlation to Cl (Figure 23) and seem to originate from reactions to CO₂-rich waters with rocks while rising to the surface. Such reactions seem to be enhanced below about 200°C.

6.3.4 <u>Higher SO₄ Contents (Compared to the Wells</u>): The SO₄ content varies from 4 to 7000 mg/liter; about half of the springs have values above 50 mg/ liter. In contrast the wells contain little SO₄, ranging up to 18 mg/liter (Table 7, Part II). These gher higher SO₄ values in the springs are attributed to oxidation of H₂S at the surface, a phenomenon known in thermal springs in other regions.

6.3.5 The Ca Content: Figure 23 shows a cluster around the value of 400 mg/liter Ca. Figure 26 reveals two groups when Ca is plotted against HCO_3 . The one group contains about 400 mg/liter Ca, not correlating with the HCO_3 content and exceeding it in meg/liter (the maximal HCO_3 value being 8 meg/liter). The second group shows deviation, mainly enrichments relative to the basic value of 400 mg/liter.

The value of 400 mg/liter Ca is characteristic for the wells (Figure 10), and thus it seems that most spring waters issue with their original Ca content, i.e., no losses or gains occurred in most springs.

6.3.6 <u>The Pattern of B</u>: Boron is seen in Figure 25 to make up two groups. Most springs plot on a straight "conservative" line. Yet, three springs, number 22, 31, and 48, have remarkably high B contents, of up to 68 mg/liter. These values have been verified in the repeatedly collected samples (Table 10, Part II). The high B values are higher than the values observed in the wells (Figure 9a-f and 10). The three high B springs are not close to each other and an explanation of their B content is not in sight.

7. Gas Contents

7.1 CO_2 , H_2S , and NH_3 in the Wells

Table 6, Part II contains data on the CO_2 and H_2S content in one set of samples collected at the producing wells. These data plotted in Figure 27, show a positive correlation between CO_2 and H_2S , and between H_2S and the calculated well temperature. A similar general correlation is seen between the average CO_2 and H_2S values summed up in Table 8, Part II.

The correlation of CO_2 , H_2S , and well temperature might be explained by a steam and gas phase existing in the field and variably contributing excess steam, CO_2 , and H_2S to certain well under certain production conditions. A most likely location for such steam would be above the brine zone, below the sealing cap rock. The possible existence of a steam cap has originally been suggested by A. Truesdell in order to explain differences between temperatures deduced from SiO₂ contents and those determined from enthalpy measurements (personnel communication).

7.2 Gas Observations in Fumaroles

A number of steam vents (i.e., funaroles) are observed in the thermal springs areas. Three fumaroles (Table 11, Part II and Figure 20) have been repeatedly monitored during 1972. The measured temperatures ranged from 83° C to 100° C. CO_2 and H₂S are positively correlated to each other but no correlation emerges with the NH₃ values.

8. A Model

The chemical data of Cerro Prieto exhibit certain regula ities and reveal various correlations which are by no means random. The observed trend may be fitted together by a working model, which might be summed up in the following manner:

A. Basically one type of brine has to be assumed to explain the ma festations encountered in the producing wells and in Wells 1A, 3, and 7, that are located to the north in the same tectonic blocks (Figures 4 and 7).

B. Wells 6 and 53 are located in different blocks, bordering the block of the producing field. Their chemical composition is different, possibly indicating differences in the chemistry of the brines of each major tectonic block (Figure 12).

C. Modifications in the chemical composition of individual wells in the producing field may be caused by:

1) Steam losses or gains causing respective concentration or dilution (Figures 9 and 10).

2) Producing from different temperature zones being reflected by lower contents of SiO_2 and K due to reequilibration with aquifer rocks (hence, higher Na/K ratios).

3) Existence of a steam and gas cap at the upper part of the fluid system, below the clay sequence. Various additions of steam and gas to different wells may explain the observed positive correlation between CO_2 , H_2S , and well temperature (Figure 27).

4) Differences in ion contents in samples repeatedly collected in a well may be caused by last-minute processes caused by production. These may include concentrations by steam loss (mainly in samples collected at large orifice diameters) and occasional dilutions by condensed steam (in samples collected at narrow orifice diameters). Such processes may cause the shifts along correlation lines observed in individual wells (Figures 9a-f).

5) The temperature-dependent reactive ions, mainly, K and SiO₂, reequilibrate to the temperatures prevailing in the various temperature zones of the system, but they have no time to reequilibrate in response to changes caused during ascendance in the wells. Hence, the K and SiO₂ are extrapolating to zero (i.e., reveal conservative behavior) in the individual well plots (Figures 9a-f), but do not extrapolate to zero (i.e., reveal a reactive nature) when average data from different wells are plotted against Cl (Figure 10) or enthalpy (Figure 17). Hence the Na/K geothermometer reflects conditions at the well bottom and is not shifted by steam loss and other production-induced processes.

6) It seems that the original brine at depth has a Cl content of around 10,000 mg/liter. This is hinted at by the graphs of Figures 9 a-f. The various samples of each well plot in many cases along straight lines (e.g., Well No. 11; Figure 8 and many others). These lines are rather equally populated along sections that in most wells reveal an "initial" value around 10,000 - 11,000 mg/liter Cl. Examples (Figures 9a-f) are Wells 3, 7, 6, 53, 42, 38, 5, 19A, 20, 25, 21, 26, 29, 30, 8, 34, 35, and 51.

It is suggested that the samples above this original ion content under went different degrees of steam loss. The small number of samples with less than 10,000 mg/liter C1 seem to have been diluted either by shallow fresh water intruding a well (when samples at small orifice diameter) or by condensed steam.

7) The brines interact with aquifer rocks as revealed by the occurrence of secondary minerals in the cores and cuttings. Viewed via the water chemistry these reactions mainly involve the reactive ions, e.g., SiO_2 , K, and Ca (Figures 10 and 13). Bromide reveals a reactive pattern in Figure 13 but it is felt that more data is desired in order to discuss this trend for Br.

8) The thermal and mineral springs may be explained as being fed by a brine of the same type as encountered in the producing wells. The variations observed may be caused by:

a) Further interactions with country rocks, enhanced by the lower temperatures reached in the ascending water due to conductive cooling. Such reactions seem to cause the higher $\rm HCO_3,$ the lower $\rm SiO_2,$ and higher Na/K values (Figures 23-26).

b) Oxidation of ${\rm H}_2{\rm S}$ to ${\rm SO}_4,$ by contact with air at the surface, explaining the higher SO values.

c) Occasional evaporation before sample collection (Figure 22).

d) The above processes may cause changes in the pH, total ion concentration and other properties, which in turn may trigger further reactions, e.g.,solution of SiO₂ by highly acidic waters.

e) Varying dilutions by cold fresh (salt poor) water.

f) The fumaroles seem to originate from steam that ascends along cracks that are not invaded by fresh water.

Acknowledgements

Thank for continuous support of the present work are due to Ing. Hector Alonso E., Chief Coordinator of the Cerro Prieto Geothermal Project, C.F.E., Mexicali, Baja California. We enjoyed discussions with Ing. Bernardo Dominguez A. and the use of internal reports by Ing. Francisco Javier Bermejo, Ing. Antonio Razo M., and Ing. Salvador Soto P., and oral information from Ing. Juan Manuel Cobo R.

Continuous stimulation by Lawrence Berkeley Laboratory Staff is acknowledged, especially by Professor Paul A. Witherspoon, head of the Earth Sciences Division; and Drs. Harold A. Wollenberg and Marcelo Lippmann. Typing and drafting of the present report was done by Ms. Nan Parsons and Ms. Mirriam Schwartz.

A word of special thanks is due to Dr. Alfred H. Truesdell of the U.S. Geological Survey, Menlo Park, California, for joint efforts in the study of Cerro Prieto and data interpretation.

This work was sponsored in part by the U.S. Geological Survey (Grant 14-08-0001-G-333) and the U.S. Energy Research and Development Administration.

References

Crosby, J.W., Sutters, R.M., Anderson, J.V., and Fenton, R.K., "Hydrologic Evaluation of the Cerro Prieto Geothermal System Utilizing Isotopic Techniques." Final report, Research Report No. 27/11-5, Pullmann, Washington, 1972.

Dominguez A., B. and Vital B., F., "Reparación y Control de Pozos Geotérmicos en Cerro Prieto, Baja California, México." Second U.N. Symposium on the Development of Geothermal Resources, San Franciso, California, 1975. Pages 1983-1999 (with English translation).

LBL-7019

Mañon A., M., "Geothermal Potential of Mexico," Circum-Pacific Energy and Mineral Resources, Memoir No. 25, 1976.

Mercado, S., "Localización de Zonas Máxima Actividad Hidrotermal por Medio de Proporciones Químicas," Campo Geotérmico Cerro Prieto, Baja California, México." Sociedad Química de México, III Congreso Mexicano de Química Pura y Aplicada, 1968, 32 pages.

Mercado, S., "High Activity Hydrothermal Zones Detected by Na/K, Cerro Prieto, Mexico," U.N. Symposium on the Development and Utilization of Geothermal Resources, Pisa, Italy, Volume 2, pages 1367-1376, published in Geothermics, Special Issue 2, 1970.

Molina, B. and Banwell, C.J., "Chemical Studies in Mexican Geothermal Fields," U.N Symposium on the Development and Utilization of Geothermal Resources, Pisa, Italy, Vol. 2, pages 1377-1391. Published in Geothermics, Special Issue 2, 1970.

Palmer, T.D., Howard, J.H., Lande, D.P., "Geothermal Development of the Salton Trough, California and Mexico." Lawrence Livermore Laboratory, TID-4500, UC-13, University of California, Berkeley, California, 1975.

Razo, M. A., Internal Report, Comision Federal de Electricidad, Mexicali, Baja California, Mexico, 1968. Reed, M.J., "Geology and Hydrothermal Metamorphism in the Cerro Prieto Geothermal Field, Mexico." Second U.N. Symposium on the Development of Geothermal Resources, San Francisco, California, pages 539-547, 1975.

Soto, P.S., "Campo Geotérmico de Cerro Prieto Sobre la Falla de San Jacinto y su Posible Ampliación Hacia la Falla Imperial." Comisión Federal de Electricidad, México, Internal Report, June 1975.

Werner, S.L., and Olson, L.J., "Geothermal Wastes and the Water Resources of the Salton Sea Area," State of California, Department of Water Resources, Bulletin 147-7, 123 pages, 1970.

.

PART II

APPENDIX A - FIGURES

Table of Contents

Figure	1.	Mexicali-Salton Sea Area	12
Figure	2.	a. Satellite photograph of the Mexicali-Salton Sea Valley b. Faults seen on Figure 2a	13 14
Figure	3.	Lithological Column of Well M-39	15
Figure	4.	Location map of wells and the section lines of Figures 5 and 6	18
Figure	5.	A NW-SE geological section	19
Figure	6.	A SW-NE geological section	19
Figure	7.	Geological section and partial view of the Mexicali Valley, B.C	20
Figure	8.	Ion contents in repeatedly collected samples from Well No. 11 as a function of the Cl content	21
Figure	9.	a-f. Ion contents and pressure plotted as a function of the Cl content in repeatedly collected samples	22
Figure	10.	ion contents in the weighted most concentrated samples in the various wells plotted as a function of the Cl content	28
Figure	11.	Schoeller diagram of Well No. 6	29
Figure	12.	Schoeller diagrams for the weighted most concentrated samples of the various wells	30
Figure	13.	Trace elements and major elements in samples collected on September 23, 1976, plotted as a function of the Cl content	31
Figure	14.	Observed pressures as a function of the orifice diameter	32
Figure	15.	Maps with SiO ₂ and Cl contents and Na/K values of most weighted concentrated samples at each well	33
Figure	16.	Concentration-depth graphs for Cl, SiO ₂ , and K for the producing wells	34
Figure	17.	Enthalpy-ion content correlations in samples of the producing wells, collected at different dates	35
Figure	18.	Best-fit lines or the correlations between enthalpy and the SiO ₂ content and log Na/K values	36
Figure	19.	Best-fit lines for the correlations between SiO ₂ -K and Log Na/K-SiO ₂	37
Figure	20.	Location map of springs and prospection wells	38
Figure	21.	Temperature measured in the springs	39
Figure	22.	Temperature and Na content of the springs as a function of the Cl content	40
Figure	23.	Ion contents of the springs as a function of Cl \ldots \ldots	41
Figure	24.	Variations of the SiO $_2$ and Cl content and the Na/K values in the springs that were recollected six times in one year	42
Figure	25.	Average ion concentrations as a function of the Cl content in the springs	43
Figure	26.	Ca content as a function of the HCO $_3$ content in the springs \ldots .	44
Figure	27.	Temperature and CO $_2$ content as a function of the H_2S content in the producing wells	45

XBL 764-1182

Figure 1. Mexicali-Salton Sea Area (from Palmer, Howard, and Lande, 1975).

XBB 776-5469

.

SANDSTONE

Cement

Figure 3. Lithological column of Well M-39 (generalized from Razo, 1968). (The depth is indicated in meters.)

Figure 3b (continued. .)

XBL776-1204

Figure 3c. (continued . .)

XBL776-1179

Figure 4. Location map of wells and the section lines of Figures 5 and 6.

Depth in kilometers

Figure 6. A SW-NE geological section.

Ing. Salvador Soto	Pineda	0
August 1, 1975		Kilometers

Geologic section and partial view of the Mexicali Valley, B.C.

Figure 7.

Geological section and partial view of the Mexicali Valley, B.C.

XBL 7711-10495

Figure 8. Ion contents in repeatedly collected samples from Well No. 11 as a function of the Cl content. The mean deviations from the bestfit in each case were used to estimate upper limits for the analytical errors (text and Table I).

Figure 9. Ion contents and pressure plotted as a function of the Cl content in repeatedly collected samples. The wells are arranged from left to right (successively) in the following order: first remote wells, then wells of the producing field arranged from north to south. Data were taken from Table 4 of Part II of this report.

LBL-7019

- -

.....

....

XBL 7711-10500

Figure 9b. (Continued . .)

Figure 9c. (Continued . .)

24

LBL-7019

~

Figure 9d. (Continued . .)

25

XBL 7711-10501

Figure 9e. (Continued . .)

LBL-7019

Figure 9f. (Continued . .)

LBL-7019

Figure 10. Ion contents in the weighted most concentrated samples in the various well plotted as a function of the Cl content (data from Table 2 in Part II).

XBL 775-1045

Figure 11. Schoeller diagram of Well No. 6. This mode of data presentation provides a visual "fingerprint" of the composition.

Figure 12. Schoeller diagrams for the weighted most concentrated samples of the various wells. The base line for each well is marked on the left side (compare to Figure 11). On the top are the wells remote from the producing field and the producing wells follow in north to south order.

XBL 776-1176

Figure 13. Trace elements (Table 7, Part II) and major elements (Table 5, Part II) in samples collected on September 23, 1976, plotted as a function of the Cl content. A- conservatively behaving elements; B-reactive elements; C- elements revealing poor correlation; D-elements revealing no correlation to the Cl content (text).

XBL775-1038

Figure 14. Observed pressures as a function of the orifice diameter. Relevant data in the small tables give reference to corresponding chemical compositions (samples may be looked up in Table 4, Part II).

XBL 775-1040

Figure 15. Maps with SiO_2 and Cl contents and Na/K values of most weighted concentrated samples at each well (from Table 2, Part II).

XBL775-1037

16. Concentration-depth graphs for Cl, SiO₂, and K (average values of several years) for the producing wells. The vertical bars show the depths of the slotted casing intervals.

Figure 17. Enthalpy-ion content correlations in samples of the producing wells, collected at different dates (Tables 5 and 6, Part II).

XBL 7711-10492

Figure 18. Best-fit lines (Table 3, Part II) or the correlations between enthalpy and the SiO_2 content and log Na/K values. Numbers refer to the sampling data (set number) in Table 5, Part II.

1600 1400 1200 SiO₂ (mg/l) 400 10 200 100 L 0 800 1200 2000 400 1600 2400 K (mg/I) 1.0 0.9 0.8 Log Na/K 0.7 0.6 4 0.5 6 0.4 700 900 500 1100 1300 $SiO_2 (mg/I)$

XBL775-1043

Figure 19. Best-fit lines (Table 3, Part II) for the correlations between SiO₂-K and log Na/K-SiO₂. Numbers refer to sampling data (set number) in Table 5, Part II.

LBL-7019

Figure 20. Location map of springs and prospection wells.

.

XBL775-1044

Figure 21. Temperatures measured in the springs (Mercado, 1968).

XBL775-1039

Figure 22. Temperature and Na content of the springs as a function of the C1 content (solid circles are evaporated samples; text).

Figure 23. Ion contents of the springs as a function of Cl; results of the general survey by Mercado (1968), Table 9, Part II.

 \mathbf{U}

XBL 7711-10493

Figure 24.

24. Variations of SiO₂ and Cl content and the Na/K values in the springs that were recollected six times in one year (Table 10, Part II).

ā

XBL 775-1041

Figure 25. Average ion concentrations as a function of the Cl content in the springs (Table 10, Part II).

 \bigcup

,

•

.

Figure 26. Ca contents as a function of the HCO_3 content in the springs.

XBL 776-1178

Figure 27. Temperature and CO_2 content as a function of the H₂S content in the producing wells (Table 6, Part II).

LBL-7019

PART II

-

APPENDIX B - TABLES

Table of Contents

Table 1.	Well construction data with time intervals relevant to the chemistry tables	48
Table 2.	Condition of temperature profile measurements in wells prior to commercial production	50
Table 3.	Analytical methods applied at the Cerro Prieto Laboratory - Dissolved lons	51
Table 4.	Chemical analyses in repeatedly collected samples of the wells	53
Table 5.	Separator flow, enthalpy and chemical composition in sets of repeatedly collected samples of the producing wells	95
Table 6.	Chemical and physical well data by Reed	105
Table 7.	Trace elements and sulfate in producing wells	106
Table 8.	Average gas contents in producing wells; percent of dry gas in the steam	107
Table 9.	Chemical composition of springs in ppm	108
Table 10	. Chemical analyses of springs sampled six times during one year	110
Table 11	. Gas analyses of fumaroles	113

Table 1. Well Construction Data with Time Intervals Relevant to the Chemistry Tables.

Well	Time Interval	Production Interval Meters	Production Casing Diameter	Remarks
M-1A	4/ 4/66 - 4/27/74	311.9 - 523.5	10-3/4"	
M-2	All Data	35.7 - 726.5	26''	
M-2A	4/27/74 - 1/21/75	98.5 - 402.6	22''	
M-3	/ /66 - 9/ 2/72	650.6 - 894.5	11-3/4"	
M-4	No Chemistry Data	927.5 - 2001.3	11-3/4"	
M-5	/ /65 - 2/ 1/77	1097.2 - 1298.0	7-5/8'' ۶ 7''	
M-6	3/31/66 - 12/ 5/72	534.7 - 740.8	11-3/4"	
M-7	6/11/66 - 12/22/76	723.7 - 991.5	11-3/4"	
M-8	7/20/66 - 2/11/77	1120.0 - 1313.6	7-5/8''	
M-9	4/20/67 - 12/22/76	1060.9 - 1416.0 1060.9 - 1416.0 220.9 - 864.1	7-5/8'' 7-5/8''	Original liner Liner and shuttings
M-10	1/27/67 - 1/ 3/72	1079.0 - 1449.0	7-5/8''	
	8/21/67 - 10/16/71	868.0 - 956.8	7-5/8''	
M-11	5/27/76 - 2/17/77	1133.0 - 1229.0	5-1/2"	Production casing was replaced by 5-1/2" φ and cancelled the 868 to 966.8 production interval.
	7/18/68 - 2/16/72	1020.0 - 1312.0	8-5/8 & 11-2/4"	Braked casing 11-3/4" at 200m was re-
M-13	1/26/74 - 3/25/74	1020.0 - 1312.0	7-5/8"	After 3/25/74 the well was filled with mud.
M-14	10/ 3/74 - 3/1/77	1090.0 - 1297.0	7-5/8''	
M-15	8/18/67 - 11/ 9/73	1165.0 - 1256.0	7-5/8' & 5''	Collapsed casing from 160 to 614m were detected 3/10/72 and was abandoned in 1973.
M-15A	7/10/74 - 2/10/77	1091.0 - 1264.0	7-5/8"	
M- 19A	6/28/74 - 2/ 7/77	1045.0 - 1263.0	7-5/8''	Originally open from 1045 to 1488 m but without flow data.
M-20	11/21/67 - 2/ 7/77	812.0 - 1386.0	7-5/8 & 11-3/4"	Collapsed casing of 11-3/4" from 252 to 784 m was replaced by 7-5/8"¢ on 3/20/73.
M-21	7/10/68 - 11/ 7/72	1096.0 - 1504.0	7-5/8 & 11-3/4''	11-3/4" braked casing at 504 m was replaced by 7-5/8" ϕ on 1/2/73 but abandoned.
M-21A	4/24/74 - 2/ 7/77	1081.0 - 1300.0	7-5/8''	
M-25	1/25/73 - 2/ 8/77	1140.0 - 1271.0	7-5/8''	
M-26	9/12/67 - 2/ 9/77	1140.0 - 1271.0	7-5/8''	A cement plug was installed from 1140 to 1206 m on 2/24/75.
M-27	4/ 7/76 - 2/10/77	1087.0 - 1296.0	7-5/8''	
M-29	11/16/68 - 2/ 8/74 12/23/75 - 2/ 9/77	830.0 - 918.0 1100.0 - 1309.0	11-3/4'' 7-5/8''	In 1975 the well was repaired (redril- led from 1054 to 1309 m).

LBL-7019

Table 1. (Continued)

Well	Time Interval	Production Interval Meters	Production Casing Diameter	Remarks
M-30	9/22/73 - 2/10/77	1077.0 - 1497.0	7-5/8''	
M-31	3/12/68 - 2/11/75	1062.0 - 1222.0	7-5/8"	3/2763 the 11-3/4" casing was replaced by one 7-5/8"
M-34	3/25/68 - 11/10/75	797.0 - 927.0	11-3/4"	The well was closed and repaired in
	No Chemistry Data	1095.0 - 1516.0	7-5/8''	There are no data of flow after repara- tion
M-35	9/22/73 - 2/14/77	1082.0 - 1286.0	7-5/8''	
M-38	2/ 6/68 - 3/31/73	1086.0 - 1490.0	8-5/8''	On 6/23/73 collapses on the 8-5/8" were found from 104 to 470 m, it was repair- but later abandoned
M-39	4/17/68 - 1/24/77	1104.0 - 1493.0	7-5/8''	On 7/31/72 collapses on the 11-3/4" casing were found from 115 to 630 m and replaced by a 7-5/8"
M-42	5/ 7/76 - 2/11/77	974.0 - 1326.0	7-5/8''	
M-45	No Chemistry Data	1079.0 - 1396.0	5-1/2"	On 4/18/77 the 7-5/8" casing was replac- ed by the 5-1/2" production casing due to collapse in the 7-5/8"
M-46	No Chemistry Data	1086.0 - 1422.0	7-5/8''	7-5/8" collapsed casing - needs to be repaired
M-51	8/24/73 - 1/24/77	1122.0 - 1599.0	7-5/8''	
M-53	10/31/74 - 12/22/76	1785.0 - 1996.0	7~5/8''	
M-92	No Chemistry Data		Drilling Stage	Exploratory Well.
M-48	No Chemistry Data		Drilling Stage	Not concluded until 4/23/77 - 973 m
M-84	No Chemistry Data		Drilling Stage	Not concluded until 4/23/77
M-91	No Chemistry Data		Drilling Stage	Not concluded until 4/23/77

ľ

Table 2. Condition of Temperature Profile Measurements in Wells Prior to Commercial Production (1969).

Well No.	Flow Condition
M-3	Flowing by small diameter pipe (2 inches) at a well head pressure of 3.7 psig.
M-5	Flowing throttled with a 2 inch diameter orifice at a well head pressure of 693 psig.
M-6	Non flowing, water level at 12.5 mts. depth.
M-7	Non flowing, water level at unknown depth.
M-8	Flowing throttled with a 2 inch diameter orifice at a well head pressure of 625 psig.
M-9	Flowing throttled with a 3 inch diameter orifice at a well head pressure of 287 psig.
M-10	Non flowing, water level at unknown depth.
M-20	Flowing throttled with a 3 inch diameter orifice at a well head pressure of 475 psig.
M-26	Flowing with the well head valve partially open, at a well head pressure of 698 psig.
M-29	Flowing throttled with a 3 inch diameter orifice at a well head pressure of 265 psig.
M-34	Non flowing, water level at unknown depth.
M-38	Flowing throttled with a 3 inch diameter orifice at a well head pressure of 475 psig.
M-39	Non flowing, water level at unknown depth.

Constituent	Dates	Method	Reference
Al	9/23/76 - Present	AA - Flame Absorbance Mode	1
· · · · · · · · · · · · · · · · · · ·	7/ 9/76 - 9/23/76	Mercuric Bromide Stain	2
As	9/23/76 - Present	AA - Absorbance Mode	3
В	6/ 9/72 - Present	Colorimetric with Carminic Acid	4-5
Ba	9/23/76 - Present	AA - Flame Emission Mode	6
Be	9/23/76 - Present	AA - Flame Emission Mode	7
Br	6/ 9/72 - Present	Colorimetric with Phenol Red	8
	9/18/68 - Present	EDTA Titration	9
Ca	1975 - Present	AA - Flame Emission Mode	10
Co	9/23/76 - Present	AA - Absorbance Mode	11
Cs	9/23/76 - Present	AA - Flame Emission Mode	12
co3	9/18/68 - Present	Titration to Phenolphthalien Endpoint	13
C1	9/18/68 - Present	Mohr Method	14
Cr	9/23/76 - Present	AA - Absorbance Mode	15
Cu	9/23/76 - Present	AA - Absorbance Mode	16
F	6/ 9/72 - Present	Thorium Nitrate Titration	17-18
	6/ 9/72 - 9/23/76	Colorimetric with Phenanthroline	19
Fe	9/23/76 - Present	AA - Absorbance Mode	20
нсоз	9/18/68 - Present	Titration from Phenolphthalien to Methyl Orange Endpoint	21
1	6/ 9/72 - Present	Photometric with Ceric Sulfate	22
	9/18/68 - 7/15/76	Flame Photometric	23
К	7/15/76 - Present	AA - Flame Emission Mode	24
	9/18/68 - 7/15/76	Flame Photometric	25
Li	7/15/76 - Present	AA - Flame Emission Mode	26
	9/18/68 - 7/15/76	EDTA - Titration	27
Mg	7/15/76 - Present	AA - Absorbance Mode	28
Mn	9/23/76 - Present	AA - Absorbance Mode	29
	9/18/68 - 7/15/76	Flame Photometric	30
Na	7/15/76 - Present	AA - Flame Emission Mode	31
Ni	9/23/76 - Present	AA - Absorbance Mode	32
РЬ	9/23/76 - Present	AA - Absorbance Mode	33
Rb	9/23/76 - Present	AA - Flame Emission Mode	34
	7/15/77 - 7/ 9/77	Gravimetric	35
sio ₂	7/ 9/77 - Present	AA - Absorbance Mode	36
	9/18/68 - 9/23/76	Turbidimetric	37
so ₄	9/23/76 - Present	TQH (Tetrahydroxiquinone) Method	38
Sr		AA - Flame Emission Mode	39
	9/23/76 - Precent	AA - Absorbance Mode	40

51

Table 3. References.

1. "Methods for Chemical Analysis of Water and Wastes," (1971) Environmental Protection Agency, National Environmental Research Center, Cincinnati, Ohio 45268. Analytical Quality Control Lab. p.98.

2. "Standard Methods for the Examination of Water and Wastewater," 12th Edition (1965). American Public Health Association, Inc., New York, N.Y. 10019. Pages 58-60, Method B.

3. "Application of Sodium Borohydride for Atomic Absorption Determination of Volatile Hydrides," Duncan, L., and Parker, C.R., Springvale, Austria, Varian Techtron.

4. "Standard Methods for the Examination of Water and Wastewater," 12th Edition (1965). American Public Health Association, Inc., New York, N.Y. 10019. Pages 58-60, Method B.

5. <u>Annual Book of ASTM Standards</u>, <u>Part 31</u>, July 1971 American Society for Testing and Materials, Philadelphia, Pa. 19103. Pages 246-248, Method D-3082-74.

6. Water Quality Division Labs. Manual, (1971) Ottawa and Burlington, Ontario; Calgary, Alberta and Moncton, N.B. Water Chemistry Subdivision, p.59.

7. Ibid. p. 60.

52

8. "Standard Methods for the Examination of Water and Wastewater," 12th Edition, (1965). American Public Health Association, New York, N.Y. 10019. PPs. 66-67.

9. Ibid. pages 74-77, Method C.

 "Methods for Chemical Analysis of Water and Wastes," (1971) Environmental Protection Agency, Nationla Environmental Research Center, Analytical Quality Control Laboratory, Cincinnati, Ohio 45268. Pages 102-103.

 Water Quality Division Labs. Manual (1971)
Ottawa and Burlington, Ontario; Calgary, Alberta and Moncton, N.B. Water Chemistry Subdivision, p. 66.

12. <u>Analytic Methods for Flame Spectroscopy</u> (1972) Australia, Varian Techtron.

13. "Standard Methods for the Examination of Water and Wastewater," 12th Edition (1965). American Public Health Association, Inc. New York, N.Y. 10019. Pages 48-52.

14. Ibid. pages 86-87, Method A.

15. <u>Water Quality Division Labs. Manual</u> (1971). Ottawa and Burlington, Ontario, Calgary, Alberta and Moncton, N.B. Water Chemistry Subdivision, p. 64.

16. Ibid. page 67.

17. "Methods for Collection and Analysis of Geothermal Fluids," Ellis, A.J. and Ritchies J.A. (1961). Lower, Hutt, New Zealand, D.L. Report No. 2039, pages 42-43.

18. "Standard Methods for the Examination of Water and Wastewater," 12th Edition (1965). American Public Health Association, Inc. New York, N.Y. pgs. 138-140.

19. Ibid. pages 156-159.

20. "Standard Methods for the Examination of Water and Wastewater," 12th Edition (1965). American Public Health Association, Inc. New York, N.Y.10019. Pages 48-52.

22. Ibid., Pages 152-154.

23. Ibid., Pages 239-240.

24. "Methods for Chemical Analysis of Water and Wastes," (1971). Environmental Protection Agency, Natonal Environmental Research Center, Analytical Qualtity Control Laboratory, Cincinnati, Ohio 45268.

25. "Standard Methods for the Examination of Water and Wastewater," 12th Edition (1965). American Public Health Association, Inc., New York, N.Y.10019. Pages 166-167.

26. <u>Water Quality Division Labs. Manual (1971)</u>. Ottawa and Burlington, Ontario, Calgary, Alberta and Moncton, N.B. Water Chemisty Subdivision, p.70.

27. "Standard Methods for the Examination of Water and Wastewater," 12th edition (1965). American Public Health Association, New York, N.Y. 10019. Pages 74-77.

28. "Methods for Chemical Analysis of Water and Wastes" (1071) Environmental Protection Agency, National Environmental Research Center, Analytical Quality Control Laboratory, Cincinnati, Ohio 45268. Pages 112-113.

29. Ibid. Page 114.

30. "Standard Methods for the Examination of Water and Wastewater," 12th Edition (1976). American Public Health Association, Inc. New York, New York 10019. Pages 274-277, Method A.

31. "Methods for Chemical Analysis of Water and Wastes"(1971) Ottawa and Burlington, Ontario, Calgary, Alberta, and Moncton, N.B. Water Chemistry Subdivision, Page⁸1.

33. Ibid., Page 69.

34. <u>Analytic Methods for Flame Spectroscopy</u> (1972) Australia, Varian Techtron.

35. "Standard Methods for the Examination of Water and Wastewater," 12th Edition (1965). American Public Health Association, Inc., New York, N.Y. 10019. Pages 259-260,

36. <u>Analytic Methods for Flame Spectroscopy</u> (1972). Varian Techtron, Australia.

37. "Standard Methods for the Examination of Water and Wastewater," 12th Edition (1965). American Public Health Association, Inc. New York, N.Y. 10019. Pages 291-293, Method C.

38. <u>Betz Handbook of Industrial Water Conditioning</u>, 6th Edition (1962). Trevose, Penn. Betz Labs., pps. 404-406.

39. <u>Water Quality Division Labs. Manual</u> (1971). Ottawa and Burlington, Ontario; Calgary, Alberta; and Moncton, N.B.Water Chemistry Subdivision pps.84-85.

40. Ibid. p. 87.

Table 4. Chemical Analyses (mg/l; Na/K ratio is atomic) in Repeatedly Collected Samples of the Wells.

Flow Condition Dictionary for Table 4

	(Spanish - English	ו)			
1.	Cono = C	Cone, throttle, or equal to	11.	S = Sep.=Separador	Centrifugal separator.
		orifice but by vertical dis- charge.	12.	Sp and SV	Flow by separator and silencer.
2.	Descarga Lat.	Lateral or horizontal discharge	13.	0 = Orificio	Orifice.
3.	Desc. Aqua Laguna	Water discharge to the evapora-	14.	φ	Diameter of.
		tion pond (lake).	15.	Vert.= Vertedor =	Weir.
4.	Descontrolado	Blowout.		V	
5.	Linea = L	Line - pipe (lateral pipe).	16.	S.V.	Vertical silencer.
6.	Linea Lateral =	Lateral pipe.	17.	Nivel Bajo	Low water level in the separator.
	Linea Lat.		18.	Med.	Measuring flow of.
7.	Fondo Sep = Fondo	Sample from the bottom of the	19.	Tubo	Pipe.
	Separator	separator.	20.	V.R.	Partially open valve
8.	P = Purga	Small pipe (flowby).	21.	N.D.	Not analyzed
9.	P.Sep. = P.S.	Separator pressure.			
10.	Primeros Flujos	First flow.			

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	1	F	As	В	so4	c03	нсо3_	sio ₂	рН	Na/K atomic
5	-	-	/ 4/66	4450	570	12.2	210	n.d.	7420	5.2	0.95	trace	n.d.	54.2	7.2	9.0	51.8	229	8.1	13.25
6	-	-	7/67	5025	644	15.3	220	n.d.	7900	11.3	3.7	trace	n.d.	44.5	71.5	6.0	48.8	241	8.2	13.04
10	-	Linea 7-5/8''	10/ 7/72	4335	610	11.0	208	-	7511	-	-	-	-	8.0	-	17.9	27.9	240	-	12.1
11	-	V.R.	1/ 8/72	4125	526	9.9	222	-	7497	-	-	-	-	7.1	-	11.0	54.5	260	-	12.4
12	-	V.R.	2/ 9/72	4150	632	11.72	228	-	7674	-	-	-	-	9.5	-	5.2	58.6	205	-	11.1
13	-	V.R.	3/10/72	4200	612	13.25	224	-	7741	-	-	-	-	7.3	-	4.8	43.9	240	-	11.7
14	-	V.R.	7/11/72	3737	587	11.75	236	-	7669	-	-	-	-	8.4	-	10.5	47.9	250	_	10.8
15	-	V.R.	5/12/72	4175	575	11.62	212	-	7470	-	-	-	-	8.7	-	0	62.5	235	-	11.3
16	-		4/ 1/73	4575	590	11.8	232	-	7719	-	-	-	-	9.2	-	8.0	68.0	200	-	13.18
18	-		1/ 2/73	4375	587	11.8	228	-	7636	-	-	-	-	10.0	-	8.2	59.8	300	-	12.65
19	-		20/ 4/74	4396	587	8.2	233	-	7498	-	-	-	-	_	-	-	-	-	-	12.70

Table 4. Chemical Analyses (mg/1; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells.

Well M-1A

Wel	1	M-2A

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	1	F	As	в	so4	c03	нсоз-	si0 ₂	pН	Na/K atomic
1	-		17/ 4/74	2278	278	5.2	228	14.6	4038	-	-	-	-	-	-	-	-	78.7	-	12.3
3	-		21/ 1/75	3375	434	4.0	274	0	6400	-	-	-	-	-	-	-	-	-	-	13.2
			1																	
]i																	

LBL-7019

.

r

LBL-7019

Well M-3

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C 1	Br	1	F	As	В	S04	co3	нсоз-	sio ₂	рН	Na/K atomic
451	110	Ρ. 1/2" φ	18/ 9/68	5750	1353.0	9.95	348.0	-	10365	-	-	-	-	8.4	-	-	17.1	586.2	-	7.15
687	325	S. 10 ¹¹	6/ 3/70	6562	1568.0	20.7	392.0	-	12019	-	-	-	-	7.6	-	-	81.7	629.0	-	7.11
787	272	S.10"	12/10/70	6468	1442.0	20.4	360.0	-	11426	-	-	-	-	10.8	-	-	3.6	n.d.	-	7.62
788	242	Ρ. 2"φ	2/ 3/71	7125	1387.0	27.7	352.0	-	11040	-	-	-	-	10.8	-	-	488.0	524.5	-	8.73
790	204	P. 2"¢	26/ 1/72	7312	1372.0	16.75	312.0	-	11279	-	-	-	-	13.1	-	-	58.5	570.0	-	9.06
792	204	P. 2''¢	17/ 2/72	6250	1502.0	14.75	316.0	-	10836	-	-	-	-	15.2	-	-	87.3	525.0	-	7.0
793	201	Ρ. 2"φ	11/ 3/72	6500	1600.0	16.25	324.0	-	11026	-	-	-	-	14.6	-	-	96.4	650.0	-	6.9
794	210	Ρ. 2 ¹¹ φ	18/ 4/72	5775	1362.5	15.12	281.4	-	10831	-	-	-	-	14.3	-	-	93.63	590.0	-	7.2
795	198	P. 2"¢	9/ 5/72	5800	1387.0	17.37	316.2	-	10998	-	-	-	-	13.0	-	-	42.7	537.5	-	7.10
798	205	P. 2"¢	9/ 6/72	6125	1380.0	19.0	322.5	10.4	11279	1.9	0.5	2.12	0.33	15.2	13.8	11.9	63.1	630.0	8.03	7.54
800	205	P. 2"¢	7/ 7/72	6125	1390.0	18.75	355.8	-	11120	-	-	-	-	11.3	-	-	55.9	485.0	-	7.6
801	200	P. 2"¢	1/ 8/72	5875	1312.0	15.0	331.0	-	11261	-	-	-	-	11.0	-	13.7	64.2	507.0	-	7.6
802	130	P. 2''¢	2/ 9/72	5175	1287.0	16.5	320.0	-	10216	-	-	-	-	10.9	-	13.1	175.0	512.0	-	6.8

Well M-5

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	1	F	As	В	s04 ⁼	c03	нсоз-	\$i0 ₂	pН	Na/K atomic
427	570	orifice 3" ¢	18/ 9/68	8637.5	2317.5	29.1	506		16473	_	_			21.5	-	-	3.66	1176		6.33
482	570	3'' φ	10/ 4/69	9062.5	2287.0	-	520		16045	_	-	-	-	13.7	-	-	74.4	_	-	6.7
557	110	1/2''¢	6/ 3/70	6000.0	1518.0	17.4	316	-	10504	_	-	-	-	7.1	-	-	174.4	639	_	6.71
560	150	1/2''¢	12/ 9/70	6475.0	1681.0	21.4	344	_	11278	_	_	-	-	11.7	-	-	15.6	_	_	6.54
561	150	1/2''¢	2/_3/71	5812.0	1612.0	21.6	324	-	11038	_	_	-	-	11.6	_	-	13.42	785	-	6.13
563	190	1/2''¢	27/ 1/72	4825.0	1630.0	16.25	316	_	11230	-	-	-	-	13.2	-	-	104.9	785	-	5.03

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	CI	Br	I	F	As	В	s04 ⁼	co3	нсоз-	si0 ₂	рН	Na/K atomic
565	180	1/2''φ	17/ 2/72	6200.0	1587.0	16.75	334.8	-	11624	-	-	-	-	15.0		-	113.0	810	-	6.6
566	185	1/2''¢	14/ 3/72	6000.0	1560.0	14.25	332	-	11416	_		-	-	14.2	-		112.9	805		6.54
567]70	1/2''¢	17/ 4/72	6125.0	1667.5	16.8	255.2		11241	-	-		-	15.1	-		110.2	675		6.2
568	169	1/2''φ	8/ 5/72	6200.0	1675.0	15.50	262.0		11057	-	-		-	13.5	-	-	129.5	757	-	6.29
569	170	P. 1/2"¢	9/ 6/72	6]25.0	1487	15.7	301.0		11131	-		-	-	14.1	-	0	108.7	672		7.0
571	174	Ρ. 1/2"φ	7/ 7/72	6312.0	1337	15.4	. 347	-	11315	-		-	-	14.2		0	132.1	792	-	8.0
573	180	P. 1/2"¢	1/ 8/72	5687	1567	15.2	279	-	11290	-	-	-	-	10.1	-	0	138.3	795	_	6.2
579	180	P. 1/2"¢	5/ 9/72	5875	1450	19.7	332	_	11382	-	-	-	-	9.5	-	0	133.2	798	-	6.9
580	180	P. 1/2"¢	3/10/72	5625	1512	19.5	360	-	11187	-	-	-	-	10.5	-	7.86	117.2	790	-	6.3
581	193	P. 1/2"¢	3/11/72	6012	1487	18.0	312	-	11354	-	-	-	-	12.0	-	0	146.5	695	-	6.9
583	166	P. 1/2"¢	5/12/72	5950	1525	16.6	320	-	10657	-	-	-	-	12.1	-	5.35	111.5	665	-	6.6
584	166	P. 1/2"¢	3/ 1/73	5800	1440	18.0	266	-	10956	-	-	-	-	14.2		0.0	141	660	-	6.8
585	204	P. 1/2"¢	1/11/73	6250	1560	17.5	328	-	11108	-	-	-	-	11.7		5.3	106	840	-	6.8
591	320	123 P.	23/ 4/73	8750	2225	15.0	504	_	15195	17.7	0.5	0.25	0.09	16.2	2.0	0.0	73	683	7.5	6.7
597	300	123 p.s. 4-3/4"	24/ 5/73	9950	2350	30.7	584	-	17864	-	-	-	-	24.0	-	0.0	67	n.d.	-	7.2
598	300	L. agua 100 p.s.	21/ 6/73	8914	2187	27.9	506	-	16747	-			-	n.d.	-	-	-	986	_	6.9
599	300	Vertedor 100p.s.	21/ 6/73	8333	2070	28.3	456		15346		-		-	-		-		707	_	6.8
600	300		25/ 7/73	8300	2210	27.5	521	2.4	16431				<u> </u>			6.1	44	864		6.4
601	300	L. agua. 100p.s.	25/ 7/73	7950	2075	26.0	487	2.4	15597	-	_	-	-	-	-	5.1	30	n.d.	-	6.5
602	300	11 51	26/ 7/73	8135	2030	26.5	485	4.8	15577	-	-	-		-	-	6.1	29	879		6.8
603	290	<u> </u>	26/ 7/73	8250	1977	27.4	455	-	15344	-	_		-	-	-	-	-	950	-	7.1
604	290	31 - 31	22/ 9/73	8053	1949	28.4	441	-	14999	_	-				-	-	-	958		7.0
605	89.6	vert. 86.7p.s.	31/ 1/74	8750	2070	24.8	489	-	15850	-	-	-	-	-		-	-	1035	-	7.2

Table 4. Chemical Analyses (mg/l; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells.

<u>Well M-5</u> (Continued)

LBL-7019

٨

÷

ſ

Table 4.	Chemical	Analyses	(mg/1;	Na/K Ratio	is	Atomic)	in	Repeatedly	Collec	ted	Samples	of	the	Wells	•
----------	----------	----------	--------	------------	----	---------	----	------------	--------	-----	---------	----	-----	-------	---

<u>Well M-5</u> (Continued)

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	1	F	As	В	so4	co3	нсоз-	sio ₂	рН	Na/K atomic
605																		1000		
608	98.0	vert. 95.0p.s.	29/ 4/74	8582	2095	14.4	481	-	15241	-	-	-	-	-	-	-	-	611	-	6.3
609	2w96 2s95	sep, 54" s.v. vert	10/ 7/74	8825	2028	25.9	500	-	15720	-	-	-	-	-	-	-	-	1048	-	7.4
610	96-95	¥Г II	30/ 8/74	9013	2066	26.2	450.5	-	15834	-	-	-	_	-	-	-	-	-	-	7.4
615	103	Sep. 54''	15/ 1/75	8079	1970	22.0	332	7.3	15600	-	1.42	1.34	0.7	18.5	1.3	9.6	28.0	949	_	6.97
620	100	Sep. 54"	10/ 3/75	8037	1994	-	463	-	15005	-	-	-	-	-	-	-	-	884	-	6.8
625	90	н н	20/ 5/75	8007	1877	-	461	-	15407	-	-	-	-	-	-	-	-	901	-	7.20
632	110	11 11	15/ 7/75	7950	1950	22.3	460.5		15150	-	-	-	-	-	-	-	-	958.4	-	6.93
651	108	41 ¹ 18	11/ 9/75	7900	1950	21.2	456.0	-	15466	-	-	-	-	-	-	-	-	1097	-	6.89
657	105	Sep. 54"	12/11/75	7550	1820	21.6	455.0	-	15600	-	-	-	-	-	-	-	-	930	-	7.05
662	100	- н	8/ 3/76	7976	1892	21.8	455	0.5	15210	-	-	-	-	-	-	-	-	1159	-	7.17
663	108	Sep. 54"	24/ 5/76	7921	1922	18.9	523	0.48	14990	-	-	-	-	-	-	-	-	900	-	7.01
666	106	ни	21/ 9/76	8016	1899	22.90	504.0	0.50	14828	23.75	0.74	2.0	1.50	17.74	13.0	-	59.11	1318	7.89	7.18
667	11		21/12/76	8487	1969	21.4	403.0	0.24	15599	-	-	-	-	23.0	-	-	-	1034	-	7.08

Well M-7

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	I	F	As	В	s04 ⁼	c03	нсоз-	sio ₂	рН	Na/K atomic
115	80	1/2"¢	18-9-68	5156	1125	12.5	348	-	9603	-	-	~	-	2.3	-	-	26.8	481	-	25.82
122	23.4	1/2''¢	12-10-70	5000	1087	15.4	320	-	8815	-	-	-	-	9.3	-	-	38.4	-	-	7.81
123	76.0	ι φ	17-2-72	4575	1187.0	11.75	292	-	9900	-	-	-	-	13.0	-	-	197.6	465	-	6.55
125	78.0	1''¢	11-3-72	5875	1287.0	14.5	322	-	10245	-	-	-		14.0	-	-	257.9	485	-	6.7

LBL-7019

57

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	1	F	As	В	so4	co3 ⁼	нсоз-	sio ₂	рH	Na/K atomic
126	80.0	Ι''φ	18-4-72	4300	1287,0	14.5	316		10346	-	-	-	-	13.6	-	-	264.4	445	-	5.68
127	77.0	φיינ	18-4-72	5050	1125.0	13.75	268.3	-	9924	-	-	-	-	14.8	-	-	258.9	520	-	7.6
128	Sin Man.	۹۳	9 - 5-72	5400	1250.0	15.37	275.2	-	10176	-	-	-	-	12.3	-	-	187.3	475	-	7.55
132	79	ψu	8-6-72	6012	1187	15.12	311	-	10422	-	-	-	-	13.8	-	21.1	187.9	505	-	8.6
133	74	וייφ	7-7-72	6000	1362	14.45	312	-	10340	-	-	-	-	13.1	-	8.2	201.1	527	-	7.5
134	79	1''φ	1 - 8-72	5250	1187	12.75	295	-	10166	-	-	-	-	11.0	-	9.6	203.9	597	-	7.5
135	77	۹''	2-9-72	5250	1237	14.75	320	-	10266	-	-	-	-	13.0	-	2.62	207.7	482	-	7.2
136	75	φייו	3-10-72	5625	1262	16.25	304	-	10030	-	-	-	-	10.0	-	7.2	156.16	560	-	7.5
137	71	φייז קייז	7-11-72	5800	1175	16.0	316	-	10258	-	_	-	-	14.0	-	7.86	197.0	530	-	8.4
139	75	۹''φ	5-12-72	5800	1262	16.0	304	-	10109	-	-	-	-	13.8	-	26.8	136.0	480	-	7.8
140	81	Ρ1/2''φ	3-1-73	5800	1125	14.5	308	-	10060	-	-	-	-	13.6	-	5.4	190.4	485	-	8.7
143	88	P1/2''¢	1-2-73	5500	1137	15.6	316	-	10066	-	-	-	-	11.4	-	5.4	204.0	545	-	8.2
146	114	Turbine	8-11-73	5562	1099	-	264	-	9665	-	-	-	-	-	-	-	-	-		9.5
147	50	Ρ1/2''φ	23-5-74	5759	936	10.4	304	-	9900	-	-	-	-	-	-	-	-	454	-	10.4
148	35	Ρ2''φ	20-1-75	4669	932	5.0	287	-	9100	-	-	-	-	-	-	-	-	-	-	8.51
150	68	Ρ2''φ	22-12-76	6125	922m	13.80	421	3.7	11060	-	-	-	-	-	-	-	-	546	-	7.02

Table 4. Chemical Analyses (mg/l; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells.

Well M-7 (Continued)

i

٠

×.

LBL-7019

								wer	1 11-0											
Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Lî	Ca	Mg	C1	Br	I	F	As	В	s04	co3	нсоз-	si02	рН	Na/K atomic
176	134	Cono 5.9"	3/10/67	-	-	-	401	30	15251	-	-	-	-	101.6	-	-	-	797	-	-
293	-	Cono 7''	4/11/67	8028	1948	-	395	18.6	14362	-	-	-	-	93	-	-	-	824	-	7
296	-	Cono 7''	4/11/67	8562	1993	-	497	50.4	14645	-	-	-	-	84.6	-	-	-	1039	-	7.3
299	-	-	4/11/67	8512	2106	-	415	19.2	14835	-	-	-	-	89.6	-	-	-	954	-	6.8
307	300	Nivel bajo	4/11/67	8580	2123	-	398	34.7	14805	-	-	-	-	82.1	-	-	-	899	-	6.8
311	· 200	11	4/11/67	8782	2123	-	353	75.3	14909	-	-	-	-	84.4	-	-	-	1024	-	7.0
322	113	-	4/11/67	8488	2171	-	405	36.2	14919	-	-	-	-	80.9	-	-	-	905	-	6.64
445	648	Cono 4" orif. 4"	2/ 6/69	8305	2223	-	394	24.7	15841	-	-	-	-	12.3	-	-	-	1083	-	6.35
665	380	Sep. 54" Vert.	6/ 3/70	7656	1787	22.8	428	-	14503	-	-	-	-	10.7	-	-	68.3	1044	-	7.28
688	530	11	12/10/70	7156	1795	22.0	380	-	13366	-	-	-	-	13.6	-	-	1.22	-	-	6.77
691	507		2/ 7/70	7738	1912	-	378	14.1	13414	-		-	-	12.8	-	-	-	933	-	6.88
697	648	Sep. 54"	2/ 3/71	7125	1862	23.1	404	-	13642	-	-	-	-	10.5	-	-	2.44	864.5	-	6.5
705	670	Sep. 20"	28/ 1/72	7437	1990	19.25	404	-	13840	-	-	-	-	17.7	-	-	46.3	770.0	-	6.35
709	225	Sep. 20" y 54"	17/ 2/72	7750	1800	20.12	388	-	13889	-	-	-	-	17.4	-	-	66.8	810.0	-	7.3
710	157	Sep. 20" y 54"	14/ 3/72	7800	1845	20.0	412	-	13563	-	-	-	-	14.7	-	-	77.12	940.0	-	7.18
711	160	Sep. 54''	17/ 4/72	6775	1687.	5 18.75	337	-	13417	-	-	-	-	18.2	-	-	68.8	870.0	-	6.8
712	168	Sep. 54"	8/ 5/72	6825	1825	19.50	342	-	12133	-	-	-	-	17.0	-	n.d.	10.7	865	-	6.34
721	159	Sep. 54"	9/ 6/72	7025	1675	20.50	347	-	13052	-	-	-	-	15.6	-	10.9	44.68	850	-	7.10
726	159	Sep. 54"	8/ 7/72	8000	2075	20.0	425	-	14242	-	-		-	16.2	-	0	33.5	995	-	6.54
729	363	Ρ. 2" φ	1/ 8/72	7750	2 300	18.75	375	-	14858	-	-	-	-	9.1	-	13.7	44.7	995	-	5.72
738	690	Sep. 54"	4/ 9/72	7250	1800	23.00	398	-	14153	-	-	-	-	13.0	-	23.6	14.6	910	-	6.8
739	490	Ρ. 2'' φ	3/10/72	7400	2600	27.00	424	-	15732	-	-	-	-	12.7	-	18.3	37.28	915	-	4.83
741	740	s.v.	3/11/72	8850	2500	31.75	472	-	16284	-	-	-	-	16.7	-	5.24	45.27	875	-	6.02

Table 4. Chemical Analyses (mg/l; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells.

<u>Well M-8</u>

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	1	F	As	В	so4	co3	нсоз-	sio ₂	рН	Na/K atomic
743	705		5/ 7/72	8400	2425	28.25	436	-	15089	-	-	-	-	16.0	-	0	57.12	765	-	5.88
744	463	P. 2" ¢	3/ 1/73	9925	2550	29.75	488	-	16439	-	-	-	-	16.1	-	8.02	48.96	765	-	6.61
749	700	Ρ. 2¹¹ φ	1/ 2/73	8250	2250	29.0	400	-	14976	-	-	-	-	15.2	-	2.7	57.1	1020	-	6.2
752	435	Cono 3-1/2	16/ 4/73	7775	2075	-	381.6	-	14514	-	-	-	-	-	-	-	-	780	-	6.4
753	432	- 11	16/ 4/73	6625	1984	-	315.3	-	13905	-	-	-	-	-	-	-	-	-	-	5.7
754	120	Cono 7'' φ	17/ 4/73	6775	2062	-	368	1 3885	-	-	-	-	-	-	-	-	-	-	-	5.6
755	232	Descarga Lat.v. 6"	27/ 6/73	7995	2125	24.4	427	-	15885	-	-	-	-	18	-	5.56	74	1218	-	6.4
756	105	valv. 2"	22/ 9/73	8483	2236	28	497	+	16241	-	-	-	-	-	-	-	-	918	-	6.4
757	102		22/2/74	8066	2066	23.7	487	-	15400	-	-	-	-	-	-	-	-	979	-	6.6
758	112		30/ 4/74	3525	1958	15.1	577	-	14408	-	-	-	-	-	-	-	-	943	-	7.4
759	103 100	Sep. 54" sv-medic	11/ 7/74	8213	1835	22.8	445	-	14384	-	-	-	-	-	-	-	-	914	-	7.61
761	101 103		29/ 8/74	7919	1893	20.8	408	-	15158	-	-	-	-	-	-	-	-	-	-	7.1
765	111	н	16/ 1/75	6535	1675	17.0	244	9.7	12700	-	1.28	0.8	2.2	9.5	4.3	19.2	17.0	896	-	6.63
768	110	Sep. 54"	12/ 3/75	6526	1557	-	324	-	11994	4	-	-	-	-	-	-	-	893	-	7.1
772	98	11	21/ 5/75	6625	1557	-	315	-	12140	-	-	-	-	-	-	-	-	863	-	7.27
773	106	н	17/ 7/75	6100	1664	18.0	303	-	11800	-	-	-	-	-	-	-	-	872.8	-	6.23
781	115	н	11/ 9/75	6420	1470	16.2	323	-	11863	-	-	-	-	-	-	-	-	1098	-	7.42
784	113	11	11/11/75	6300	1440	20.0	314	0	11900	-	-	-	-	-	-	-	-	895	-	7.43
790	111	н	8/ 3/76	6435	1419	17.1	297	0.3	12110	-	-	-	-	-	-	-	-	1045	-	7.71
791	105	11	24/ 5/76	5591	1371	15.3	281	0.1	10580	-	-	-	-	-	-	-	-	840	-	6.93
792	98	11	23/9/76	5257	1310	14.50	258	0.04	10128	12.50	0.45	-	0.60	15.52	10.0	11.38	32.49	974	8.21	6.82
793	94	- 11	21/12/76	6411	1456	18.60	382	0.14	11945	-	-	-	-	-	-	-	-	974	-	6.80

Table 4. Chemical Analyses (mg/l; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells. <u>Well M-8</u> (Continued)

₽.

. اي

.

+

•

•

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br]	F	As	В	s04 ⁼	c03	нсоз-	\$i0 ₂	pН	Na/K atomic
430	300	Cono 4.9"	17/12/67	7430	1358	16.9	505	21.5	12313	-	-	-	-	93.9	-	-	-	308	-	9.3
432	250		17/12/67	7292	1345	16.2	504.4	19	12208	-	-	-	-	86.9	-	-	-	272	-	9.22
434	635		17/12/67	7545	1399	16.8	523	22.4	12299	-	-	-	-	35.9	-	-	_	359	-	9.17
717	300	Púrga 1/2 ⁰	6/ 3/70	5968	1160	15.0	424	21.8	10706	_ i	-	-	-	8.1	-	-	-	489.5	-	8.75
720	75	13	12/10/70	5718	12063	17	400	17	9850	-	-	-	-	6.1	-	-	-	-	-	8.2
721	100		2/ 3/71	4750	1187	14.5	396	10.9	9652	-	-	-	-	8.7	-	-	-	379.5	-	6.8
723	128	Ρ. 2'' φ	27/ 1/72	5575	1128	11.28	412	2.9	10540	-	-	-	-	11.5	-	-	-	410	-	8.4
725	122	ė1	17/ 2/72	5675	1475	12.75	410	-	10545	14	-	-	-	11.3	-	n.d.	76.4	355	-	6.5
726	126		11/ 3/72	6200	1300	17.5	442	-	10245	-	-	-	-	11.9	-	n.d.	82.6	655	-	8.1
727	143	U.	18/ 4/72	5600	1250	15.0	406	-	11192	-	-	-	-	13.1	-	n.d.	77.1	470	-	7.6
728	140	11	9/ 5/72	5700	1340	19.25	416.8	-	11497	-	-	-	-	11.6	-	-	26.2	652	-	7.22
729	140	13	9/ 6/72	5762	1212	19.25	468.6	-	11771	-	-	-	-	13.0	-	18.5	34.9	640	-	8.1
731	245	11	8/ 7/72	7000	1375	19.0	512.1	-	12291	-	-	-	-	13.4	-	13.7	30.7	410	-	8.65
732	220	11	4/ 8/72	6500	1400	17.75	512.1	-	12284	-	-	-	-	9.7	-	10.48	46.6	572.5	-	7.89
733	220	Ц	2/ 9/72	6425	1385	19.5	512.0	-	12309	-	-	-	-	12.7	-	2.62	61.2	515.0	-	7.87
734	165	a	3/10/72	6550	1350	19.0	480.0	-	11936	-	-	-	-	9.8	-	9.6	29.28	530.0	-	8.24
755	192	11	7/11/72	6850	1340	20.30	492.0	-	12001	12.7	-	-	-	12.7	-	18.34	39.94	510.0	-	8.69
762	150	U.	5/12/72	6000	1300	17.0	448.0	-	10657	-	-	-	-	12.0	-	0	73.44	540.0	-	7.84
738	160		1/ 2/73	6125	1260	17.2	468	-	11008	-	-	-	-	9.6	-	13.4	40.8	540.0	-	8.3
739	110	S. 54'' φ	24/ 4/73	5437	1150	13.7	517	-	12773	-	-	-	-	16.8	-	10.7	57.1	532	-	8.0
741	105	fondo S. 54'' φ	24/ 5/73	6450	1070	17.3	499	-	11662	-	-	-	-	22.7	-	8.4	61.7	-	-	10.2
742	100	11	14/ 6/73	6331	1067	n.d.	447	-	11459	-	-	-	-	11.5	-	7.8	65.3	495	-	10.1
743	100	Des. agua Laguna	5/ 9/73	6128	1030	18.5	465	-	11537	-	-	-	-	-	-	-	-	-	-	10.2

Table 4. Chemical Analyses (mg/l; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells. Well M-9

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	ł	F	As	В	s04	c03	нсоз_	\$i0 ₂	рН	Na/K atomic
744	100	11	22/ 9/73	-	-	-	-	-	-	-	-	-	-	_	-	-	-	527	-	-
745	82	fondo sep.	26/ 2/74	5842	941	16.1	422	-	10076	-	-	-	-	-	~	-	-	-		10.5
746	90	u	30/ 4/74	5550	838	12.2	437	-	10144	-	-	-	-	-	-	-	-	512	-	11.2
747	168		5/ 7/74	6100	778	14.7	371	-	9538	-	-	-	-	-	-	-	-	_		13.39
748	70	Purga l''¢	20/ 1/75	4058	532	4.0	343	-	7450	-	_	-	-	-	-	-	-	-	-	12.98
749	200	Cono 3-1/2'	21/ 8/75	5820	910	13.6	500	-	11162	-	-	-	-	-	-	-	-	346.5	-	10.87
750	200	Orif. 4"	11	5870	879	13.30	470	-	11032	-	-	-	-	-	-	-	-	342.3	-	-
751	190	0rif. 6"φ	22/ 8/75	5730	848	13.35	465	-	10645	-	-	-	-	-	-	-	-	357.3	-	11.49
752	80	Cono 6'' φ		5820	860	13.60	472		10845	-	-	-	-	-	-	-	-	353	-	12.31
753	230	P. 2"	25/ 8/75	5590	772	12.35	438	-	10311	-	-	-	-	_	-	-	-	347.6	-	-
754	108	Sep. 54"	11/ 9/75	6020	910	13.8	440	-	10862	-	-	-	-	-	-	-	-	594.0	-	11.25
757	108	11	11/11/75	5800	944	14.2	442	-	11100	-	-	-	-	-	-	-	-	495.0	-	10.44
762	5	Linea Lateral	9/ 3/76	5358	730	13.6	396	1.9	10020	-	-	-	-	-	-	-	-	-	-	12.48
763	150		11/ 8/76	3918	522	-	317.6	-	7098.4	-	-	-	-	-	-	-	65.9	-	-	12.76
764	115	P° 1''	22/12/76	4977	661	11.80	500.0	0.75	9350	-	-	-	-		-	-	-	641.0	-	9.75

Table 4. Chemical Analyses (mg/l; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells.

<u>Well M-9</u> (Continued)

Well M-10

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	I	F	As	В	s04	c03	нсоз-	\$i0 ₂	pН	Na/K atomic
3	360	27/ 1/67	Linea Lateral	7530	1155	-	-	-	10530	-	-	-	-	-	-	-	-	-	-	11.1
4	465	27/ 1/67	¥1	5900	1100	-	-	-	10700	-	-	-	-	-	-	-	-	-	-	9.1
5	360	27/ 1/67	11	5950	1094	-	-	-	10670	-	-	-	-	-	-	-	-	520	-	9.2
24	350	30/ 1/67	ц	5100	950	15.4	390	-	-	15.4	3.24	0.3	-	43.8	16.1	-	73.2	451	5.9	9.12

LBL-7019

3

ł

LBL-7019

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	1	F	As	В	so4	co3	нсоз	si0 ₂	рН	Na/K atomic
101	280	17/ 3/67	0rif. 3"	4425	582	10.9	311	-	7020	7.0	-	-	-	11.5	20.7	-	61.0	351	5.6	12.9
155	265	12/ 5/67	Lin. Lat. Orif.3"	4900	670	7.9	332		8100	6.0	2.5	0.7	-	65.3	20.8	-	59.9	381	-	12.4
160	218	31/ 5/67	0rif.3-4"	4850	520	7.4	-	-	7670	-	-	-	-	-	-	-	-	309	-	15.8
161	219	2/ 4/67	11	4225	465	6.4	-	-	6680	-	-	-	-		-	-	-	306	-	15.4
162	220	2/ 6/67	- 11	4310	468	6.4	-	-	6600	-	-	-	-	-		-	-	301	-	15.6
171	182	3/ 7/67	0rif.3"	4600	486	10.0	348	- 1	7760	4.0	3.0	trace	-	24.4	25.1	-	48.2	306	5.5	16.1
167	175	21/ 6/67	11	3875	370	6.9	276	- 1	6150	-	-	-	-	-	-	-	91.5		5.5	17.8
174	255	8/ 8/67		5375	705	8.3	316	-	7870	7.3	2.5	0.7	-	41.3	14.6	-	79.3	351	5.7	12.9
183	202	8/ 9/68	P. 1/2"	5437	1620	12.4	316	-	9613	6.9	trace	-	-	-	2.8	6.0	26.8	746	-	5.7
187	190	27/ 3/69	P. 1/2"	5040	1781	-	283	17.8	10639	[-	-	-	-	12.2	-	-	-	-	-	4.81
207	395	6/ 3/70	- 11	4968	1500	16.4	216	21.8	8958	[-	-	-	-	8.8	-	-	-	674.5	-	5.63
225	195	12/10/70	0rif. 4.5"	5968	825	16.8	460	27.9	9653		- 1	-	-	10.7	-	-	-	-	-	12.3
249	462	2/ 3/71	P. 1/2"	4562	1592	15.2	276	4.8	9405	-	-	-	-	6.6		-	-	684.5	-	4.87
251	234	27/ 1/72	11	4750	1665	13.62	304	2.4	9686	-	-	-	-	17.0	-	-	-	615	-	4.85
253	212	17/ 2/72	P. 1/2"	4875	1600	15.62	332	-	9555		-	-	-	14.8		n.d.	570.5	635	-	5.00
254	210	11/ 3/72	11	5375	1550	15.25	300	-	9465	-	-	-	-	15.6	-	. 11	454.4	780	-	5.89
255	210	17/ 4/72		4675	1580	14.87	261		9875	-	-	-		17.1			462.7	700	-	5.00
256	222	8/ 5/72	11	5500	1625	18.75	300	- 1	10200	-	-	-	-	14.6	-		354.3	622.5	-	5.74
266	151	Purga 1/2"	3/ 1/73	4687	1362	15.0	284	-	9162	-		-	-	15.3		-	217	625	-	5.8

Table 4. Chemical Analyses (mg/l; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells.

<u>Well_M-10</u> (Continued)

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	CI	Br	I	F	As	В	s04	co3	нсоз_	5i0 ₂	pН	Na/K atomic
80	599	Purga 1/2"	27/ 8/67	9210	2168	26.6	443	23.6	15525	-	-	-	-	100.5	-	-	-	599.8	-	7.22
181	275	11	23/ 4/69	2040	7331	-	443.7	24.7	14353	-	-	-	-	12.2	-	-	-	-	-	6.11
201	252	11	6/ 3/70	1637	6281	19	318	28.9	11059	-	-	-	-	4.75	-	-	-	674.5	-	6.52
204	262		12/10/70	1887	6281	19.9	336	13.3	11130	-	-	-		10.7	-	-	-	-	-	6.33
206	283	11	27/ 1/72	1787	6387	18	332	12.15	12530	-	-	-	-	13.6	-	-	-	780	-	6.07
208	283	11	17/ 2/72	6750	1825	16.2	358	-	12412	-	-	-	-	13.6	-	n.d.	96.1	695	-	6.2
209	260	11	11/ 3/72	7000	1762	19.7	330	-	12292	-	-	-	-	14.0	-	11	104.6	665	-	6.7
213	295	FI	8/ 6/72	1362	1362	15.7	279	-	10540	-	-	-	-	12.0	-	-	147.6	680	-	7.3
214	214		8/ 7/72	3120	720	9.5	86.8	-	5511	-	-	-	-	6.9	-	-	220.7	402	-	7.9
215	215	U.	4/ 8/72	4250	1242	10.45	243	-	8157	_	_	-	-	7.2	-	-	186.4	595	-	5.8
249	360		2/ 9/72	8350	2260	28.2	544	-	16445	-	-	-	-	21.5	-	3.9	39.9	840	-	6.3
261	360	11	5/10/72	7000	2075	30.0	596	-	15732	-	-	-	-	14.9	-	-	39.9	815	-	5.7
267	270	н	7/11/72	4625	1250	14.2	280	-	8954	-	-	-	-	10.3	-	5.2	316.9	525	-	6.3
269	306		5/12/72	4300	1337	14.2	276		9262	-	-	-	-	11.5	-	16.0	152.3	535	-	5.4
270	308	11	3/ 1/73	5300	1300	15	310	-	9263	-	-	-	-	12	-	-	168	520	-	6.9
271	362	P. 2"¢	1/ 2/73	6425	1530	18	344	-	11256	-	-	-	-	11	-	-	136	775	-	7.1
275	580	Sep 54'' 3-5/32''	23/ 4/73	5500	1787	14	452	153	13150	1	.5	.1	-	16	6.2	-	46	597	7.6	5.2
280	580	Sep. 54 med. nivel	24/ 5/73	7775	1825	28	498	-	15032	-	-	-	-	25	-	-	66	652	-	7.2
281	578	m.n. 3-5/8"	14/ 6/73	8281	1987	n.d.	494	-	15965	-	-	-	-	17	-	-	59	870	-	7.1
282	570	ext. tub.	22/ 9/73	8416	1846	27	551	-	15324	-	-	-	-	-	-	-	-	927	-	7.7
284	587	ver.3-5/32	18/ 2/74	8166	1880	26	565	-	15300	-	-	-	-	-	-	-	-	682	-	7.4
285	603		29/ 5/74	8333	1806	24	551	-	14800	-	-	-	-	-	-	-	-	838	-	7.9

Table 4. Chemical Analyses (mg/l; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells.

Well M-11

LBL-7019

۳
· · · · ·

LBL-7019

									``											
Sample Number	Pc (psìg)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	1	F	As	В	so4	c03	нсоз-	\$10 ₂	pН	Na/K atomic
286	608	Sep. 54" ver.3-5/32"	10/ 7/74	8600	1818	25.1	563	-	15088	-	.9	-	-		-	_	-	873	-	8.04
287	615	ri -	30/ 8/74	8875	1834	24.4	527	-	15284	-	-	-	-	-	-	-	-	-	-	8.2
298	450	н	20/ 1/75	7504	1496	22.0	561	7.3	14450	-	1.3	0.4	0.4	9.8	4.3	9.6	44	758	-	8.5
311	445	Sep. 54"	10/ 3/75	7829	1510	_	639		14791	-	-	-	-	-	-	-	-	n.d.	-	8.8
315	225	Orif.5/32	22/ 5/75	6332	801	-	645	-	12160	-	-	-	-	-	-	-	-	551	-	13.4
316	180-190	Sep. 54"	27/ 5/75	6360	772	-	653	-	11994	-	-	-	-	-	-	-	-	-	-	14.0
318	200	Purga 2"	13/10/75	6380	630	-	747	-	12750	-	-		-	-	-	-	-	535.7	-	17.21
319	175	Cono 3-1/2	13/10/75	6400	650	-	742	-	12750	-	-	-	-	-	-	-	-	482.1	-	16.74
320	187	Orif.3"	13/10/75	6600	668	-	813	-	13300	-	-	-	-	_	-	-	-	582.8	-	16.80
321	128	Cono 5"	13/10/75	6300	630	-	780	-	12300	-	-	-	-	_	-	-	-	531.4	-	17.16
322	133	Lat. 6"	14/10/75	6100	600	-	696	-	12100	-	-	-	-	-	-	-	-	525.0		17.28
323	79	Cono 6''	14/10/75	5950	570	-	620	-	11400	-	-	-	-	-	-	-	-	514.0	-	17.75
324	65	Cono 7''	16/10/75	6010	560	-	600	-	11000	-	-	-		-	-	-	-	546.5	-	18.24
325	197	0rif. 3"	16/10/75	5600	560	-	618	-	11300	-	-	-	-	-	-	-	-	525.0	-	17.00
326		Pga. 1/4"	27/ 5/76	6765	1466	18.4	479	-	11850	-	-	-	-	-	-	-	-	-	-	7.84
327	312	Pga. 1''	7/ 6/76	7272	1581	20.1	454	-	12850	-	-	-	-	-	_	-	-	-	-	6.82
328	275	Cono 2''	7/ 6/76	7871	1955	23.7	521	-	15167	-	-	-	-	-		-	-	-	_	6.84
329	150	0rif. 3"	8/ 6/76	8365	2069	24.8	524	-	15342	-	_	-		-	-	-	-	-	-	6.87
330	92	Orif. 4"	14/ 6/76	8106	2048	25.0	521	-	15372	-	-	-	-	-	-	-	-	-	-	6.73
331	98	11	23/ 9/76	8229	2031	25.20	550	0.34	16129	36.50	0.70	1.70	1.10	-	12.00	-	59.11	1345.0	7.90	6.89
332	105	н	22/12/76	8366	2124	23.60	389	0.22	15588	-	-	-	-	-	-	-	-	-	-	6.70

Table 4. Chemical Analyses (mg/1; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells.

Well M-11 (Continued)

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	I	F	As	В	so4	co3 ⁼	нсо ₃ -	\$i0 ₂	рH	Na/K atomic
5	240		26/ 7/68	7928	2245	21.8	406.9	6.15	1 3920	-	-	-	-	9.1	-	-	-	1169	-	6.0
56	555	Cono 5" Orifice 6"	27/ 3/69	8559	2396	27	417	29.8	15675	-	-	-	-	12.9	-	-	-	1149	-	6.07
129	555	Orif. 3.5	6/ 3/70	7406	1975	24.5	436	21.8	14140	-	-	-	-	11.2	-	-	-	1109	-	6.37
138	247	Purga l"	12/10/70	6593	1718	25.7	408	21.8	12854	-	-	-	-	14.1	-	-	-	-	-	6.52
1 39	270	Purga I''	2/ 3/71	6687	1780	18.7	384	14.6	12721	-	-	-	-	11.8	-	-	-	754	-	6.58
141	231	н	26/ 1/72	6262	1705	19.5	328	17.0	12560	-	-	-	-	17.6	-	-	-	840	-	6.24
143	660	P. 1"φ	16/ 2/72	8937	2162	23.5	460	-	15761	-	-	-	-	19.0	-	n.d.	57.3	951	-	7.0
144	160	11	11/ 3/72	6225	1587	16.0	296	-	11172	-	-	-	-	14.1	_	n.d.	107.4	635	-	6.7
147	S.M.	Descontro Lado.	18/ 4/72	8000	2525	21.1	406	-	15642	-	-	-	-	19.2	-	n.d.	79.9	870	-	5.4
174	220	14" L. 7-5/8"	9/ 5/72	8750	1950	22.8	492	-	15949	-	-	-	-	16.6	-	n.d.	40.3	910	-	7.6
217	148	L. 8 & 6 v.r.	9/ 6/72	8775	2200	26.0	448	-	16254	-	-	-	-	18.5	-	11.9	26.8	880	-	6.7
263	104	P. 2"¢	26/ 1/74	5690	841	13	372	29	10120	-	-	-	-	-	-	-	-	-	-	11.7
264	300	11	12/ 2/74	6608	1152	19	461	5	11950	-	-	-	-	-	-	-	-	-	-	9.9
265	50	н	25/ 3/74	5463	745	12	360	22	8821	-	-	-	-	-	-	-	-	-	-	12.5

Well M-13

Well M-14

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Lī	Ca	Mg	C 1	Br	1	F	As	В	so ₄ =	c03	нсоз-	si0 ₂	pН	Na/K atomic
2	210	V.R. Pga Ľ	1/ 7/76	2811	789	-	150	-	5409	-	-	-	-	-	-	-	-	-	-	6.05
3	-	PGA. 1"	12/ 7/76	3202	919	-	158	-	6098	-	-	-	-	-	-	-	-	-	-	5.92
4	395	Cono 3-1/2	14/ 7/76	3087	617	-	21	-	5864	-	-	-	-	-	-	-	-	-	-	8.51
5	325	Cono 3-7/8	15/ 7/76	318	58	-	17.8	-	550	-	-	-	-	-	-	-	-	-	-	9.26

.

.

LBL-7019

*

t

ъ.

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	I	F	As	В	so4	co3 ⁼	нсоз"	si02	рН	Na/K
6	340	Lat. 4"	15/ 7/76	6988	1377	-	461.0	-	12677	_										atomic
7	235	Cono 4-7/8	15/ 7/76	151	33	-	10.3	-	1300					-	-	-	-	-	-	8.63
8	238	Lat.7-5/8"	16/ 7/76	7092	1391	_	480.0		1300			-		-	-	-	-	-	-	7.71
•	240		161 - 1-6				400.0	-	1269/	-	-	-	-	-	~	-	-	-	-	8.67
	240		16/ 7/76	6927	1370	-	470.0	-	12677	-	-	-	-	-	-	-	_	_	_	8 (0
10	235	11	20/ 7/76	6928	1426	-	472.0	-	12757	-	-	-	-							0.60
11	120		23/ 9/76	7079	1/120	17 70										~	-	-	-	8.26
			-31 3110	1015		17.70	445.0	0.61	13113	17.50	0.59	2.38	1.50	18.38	11.00	6.32	43.70	960.0	8.05	8.51
12	105		21/12/76	7357	1469	17.00	346.0	0.41	13383	-	-	-	-	-	-	-	-	877 0		8 rh

Table 4. Chemical Analyses (mg/l; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells. <u>Well M-14</u> (Continued)

Well M-15

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	1	F	As	в	so,=	co=	-			Nalk
25	192	Purga 2"	7/11/73	3187	270		26								304	03	HLU3	5102	рН	atomic
		· urgu z		5107	270		30	-	5231	-	- 1	j -	-	-	-	-	-	-	-	20.0
26	340		8/11/73	1200	190	- '	28	-	1494	-	-	-	-	-	-	_	-	-		10.7
27	230		8/11/73	1000	277	-	44	-	1793	-	-	-	-							10.7
28	166	11	8/11/73	1000	277	_	44		1002								-	-	-	8.7
									1993	_	-	-	~	-	-	-	-	-	-	-
29	150		9/11/73	1000	-	-	-	-	1993	-	-	-	-	-	-	_	-		-	
30	140		9/11/73	1000	-	-	-	-	2142	-	-	-	-	-	-					
31	140	11	9/11/73	1000														_	-	-
			5711775					-	2142	-	-	-	-	-	-	-	-	-	-	-
				}		{														
																				1
										j										

LBL-7019

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	I	F	As	В	so4	¢03	нсоз-	si0 ₂	рH	Na/K atomic
1	686	Purga 1/2" v.r.	10/ 7/74	10.3	2.4	-	-	-	41	-	-	-	-	-	-	-	-	n.d.	-	7.00
2	563	Cono 3''	15/ 7/74	3000	722.7	-	164.3	-	5730	-	-	-	-	-	-	-	-	11	-	7.05
3	526	Orif.3"	15/ 7/74	7530	1640	-	432.8	-	13505	-	-	-	-	-	-	-	-	728	-	7.61
4	395	0rif.4-1/4	16/ 7/74	6833	1541	-	448.8	-	13011	-	-	-	-	-	-	-	-	846	-	7.53
5	389		16/ 7/74	7150	1563	-	416.8	-	12991	-	-	-	-	-	-	-	-	823	-	7.78
6	300	Orif.5-1/2	17/ 7/74	7100	1525	-	420.8	-	13042	-	-	-		-	-	-	-	817	-	7.91
7	293	Linea 6"	17/ 7/74	7083	1565	-	420.8	-	13193	-	-	-	-	-	-	-	-	820	-	7.69
8	300		19/ 7/74	7544	1480	-	420.8	-	13068	-	-	-	ł	-	-	-	-	n.d.	-	8.66
9	298	41	22/ 7/74	7360	1437	-	801.6	-	13158	-	-	-	-	-	-	-	-		-	8.70
10	321	11	29/ 7/74	7566	1360	-	408.6	-	12868	-	-	-	-	-	-	-	-	- 11	-	9.45
11	280	11	30/ 8/74	7731	1405	16.6	425.0	-	13042	-	-	-	-	-	-	-	-	11	-	9.40
17	212	Sep. 54"	15/ 1/75	6003	1125	15.0	321.0	13.1	11500	n.d.	1.0	1.7	2.3	9.1	29.8	24.0	19.5	678	n di	9.07
20	200	11	11/ 3/75	5992	1107	-	413.0	-	10926	-	-	-	-	-	-	-	-	668	-	9.1
22	288	11	23/ 5/75	6141	1044	-	405.0	-	11311	-	-	-	-	-	-	-	-	636	-	10.0
28	165		28/ 7/75	5980	1004	12.64	265.0	-	11100	-	-	-	-	-	-	-	-	619	-	9.74
32	158		11/ 9/75	6350	1010	13.0	432.0	-	11315	-	-	-	-	-	-	~	-	717	-	10.69
38	100	11	10/11/75	5830	1000	13.0	375.0	-	11140	-	-	-	-	-	-	-	-	600	-	9.91
43	97	u .	8/ 3/76	5810.5	984	13.3	381.0	1.5	10900	-	-	-	-	-	-	-	-	717	-	9.62
44	102	U	24/ 5/76	5822	1001	13.5	409.0	1.6	10890	-	-	-	-	-	-	-	-	580	-	9.89
45	100	11	23/ 9/76	5051	984	12.90	407.0	1.57	11057	9.25	0.63	-	1.20	14.72	8.0	9.84	54.51	746	8.25	10.28
46	100	11	21/12/76	5819	855	10.90	313.0	1.70	10286	-	-	-	-	-	-	-	-	781.0	-	11.57
47	100	11	24/ 1/77	5630	799	10.90	345.0	1.70	9877	-	-	-	-	-	-	-	-	781.0	-	11.98

Well M-15A

LBL-7019

v 5

5

t.

LBL-7019

ж.

								wei	1 M-19A											
Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Lī	Ca	Mg	C1	Br	١	F	As	В	so4	co3៑	нсоз-	\$10 ₂	pН	Na/K atomic
1	0	Purga 2" v.r.	29/ 6/74	5890	1095	n.d.	490	n.d.	9488	n.d.	n.d.	n.d.	-	-	-	-	-	-	-	7.90
2	Ö	11	19/ 7/74	5608	1203	n.d.	353	n.d.	9975	n.d.	n.d.	n.d.	-	-	-	-	-	-	-	7.91
3	0	11	12/ 8/74	6120	1438	n.d.	305	n.d.	10145	n.d.	n.d.	n.d.	-	-	-	-	-	-	-	7.22
4	445	11	20/ 1/75	7518	1872	20.0	464	n.d.	14320	n.d.	n.d.	n.d.	-	-	-	-	-	-	-	6.81
5	445		10/ 2/75	7233	1877	-	455	n.d.	14740	n.d.	n.d.	n.d.	-	-	-	-	-	-	-	6.55
6	440	0rif. 3"	11/ 2/75	8722	2183	-	553	n.d.	17000	n.d.	n.d.	n.d.	-	-	-	-	-	-	-	6.79
7	315	Orif. 4"	11/ 2/75	8607	2177	-	557	n.d.	16960	n.d.	n.d.	n.d.	-	-	-	-		-	-	6.72
8	200	Linea 6"¢	12/ 2/75	8648	2157	-	549	n.d.	16970	n.d.	n.d.	n.d.	-	-	-	-	-	-	-	6.84
9	88	Cono 7'' ¢	12/ 2/75	7122	1825	-	449	n.d.	14360	n.d.	n.d.	n.d.	_	-	-	-	-	-	-	6.62
10	415	0rif. 3"	13/ 2/75	8540	2124	~	547	n.d.	16750	n.d.	n.d.	n.d.	-	-	-	-	-	-	-	6.83
11	558	Linea 6"¢	14/ 2/75	8066	2058	-	505	n.d.	15850	n.d.	n.d.	n.d.	-	-	-	-	-	862	-	6.7
14	102	Sep. 54"	10/ 3/75	8606	3157	-	525	n.d.	16025	n.d.	n.d.	n.d.	-	-	-	-	-	923	-	6.9
19	99	11	20/ 5/75	8702	2105	-	517		16431					-	-	-	-	880		7.03
23	120	Sep. 54''	15/ 8/75	8320	2260	24.33	525	-	16950									975		6.25
26	115	11	11/ 9/75	7580	1890	20.3	441	-	14666	-	-	-	-	-	-	-	-	1296	-	6.82
35	114		9/ 3/76	8232	2087	22.9	493	0.4	16200	-	-		-	-	-	-	-	1121	-	6.71
36	110	11	24/ 5/76	8490	2110	23.4	572	0.25	16110	-	-	-	-	-	-	-	-		-	6.84
37	114	u	23/ 9/76	8238	2058	24.40	556	0.21	16329	28.33	0.65	-	1.11	17.26	12.00	0.0	43.70	1291	8.25	6.81
38	109	11	21/12/76	8707	2118	21.30	440	0.18	16148	-	-	-	-	-	-	-	-	1094	-	6.98
																	1			
······································																				

Table 4. Chemical Analyses (mg/l; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells.

Well M-19A

_____ 6

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Lī	Ca	Mg	Cl	Br	I	F	As	В	s04 ⁼	c03	нсоз-	sio ₂	рH	Na/K atomic
74	442	Orif. 4.5" L. desc. 6	18/ 1/68	7625	1530	-	428	34	12780	-	-	-	-	81.8	-	-	-	776	-	8.47
443	267	Purga 2"¢	27/ 1/72	7125	1212	16.75	628	7.29	12708	-	-	-	-	16.2	-	-	-	835	-	9.99
445	276	Purga 2"¢	17/ 2/72	6000	1175	15.2	508	-	10885	-	-	-	-	11.8	-	n.d.	84.6	480	-	8.68
446	110	Purga 2"¢	14/ 3/72	5875	1180	19.2	700	-	12051	-	-	-	-	17.0	-	n.d.	88.12	579.5	-	8.46
447	93	Purga l"¢	17/ 4/72	5632	1255	16.6	549	-	11309	-	-	-	-	11.7	~	n.d.	308.4	610.0	_	7.63
449	95	Purga l″¢	8/ 5/72	5800	1350	19.0	553	-	11546	-	-	-	-	13.5	-	n.d.	227.4	622.5	-	7.29
451	105	Purga l''¢	8/ 6/72	6387	1285	19.12	610	-	12215	-	-	-	-	12.6	-	0.0	281.8	537.0	-	8.4
452	109	Purga l''¢	7/ 7/72	6500	1390	18.7	642	-	11901	-	-	-	-	14.2	-	8.2	262.6	635.0	-	7.94
453	126	Purga 1″¢	5/ 8/72	6675	1500	18.12	707	-	12510	-	-	-	-	10.4	-	0	268.1	605.0	-	7.56
454	128	Purga l''¢	5/9/72	6325	1415	19.6	708	-	12608	-	-	-	-	10.5	-	11.8	174.5	595.0	-	7.60
455	144	Purga l''¢	3/10/72	6050	1475	23.0	728	-	12935	-	-	-	-	11.0	-	0	170.4	635.0	-	8.01
456	157	Purga I″¢	3/11/72	6760	1425	20.25	672	-	12948	-	-	-	-	13.7	-	0	154.5	615.0	-	8.04
457	120	Purga l''¢	5/12/72	6200	1450	21.75	656	-	12250	-	-	-	-	13.0	-	5.35	108.8	590.0	-	7.44
459	110	Purga l''¢	3/ 1/73	6187	1275	18.2	664	-	10657	-	-	-	-	13.2	-	0	263	500	-	8.2
460	150	Purga 1''¢	1/ 2/73	6750	1475	21.7	656	-	12645	-	-	-	-	14.2	-	0	185	650		8.0
461	30	Purga 2"¢	9/ 4/73	5775	1212	n.d.	628	-	9787	-	-	-	-	-	-	-	-	447	-	8.1
462	400	Cono 2"	7/ 8/73	6090	1375	11	521	-	12060	-	-	-	-	-	-	-	-	-	-	7.5
463	170	Cono 6''	8/ 8/73	5817	1165	-	463	-	10603	-	-	-	-	-	-	-	-	-	-	8.5
464	170	Cono 6''	8/ 8/73	5825	1170	-	473	-	10773	-	-	-	-	-	-	-	-	-	-	8.5
465	255	Tubo 6" s.u.	9/ 8/73	6725	1450	-	555	-	12673	-	-	-	-	-	-	-	-	-	-	7.9
466	137	Cono 7"	9/ 8/73	6000	1275	-	461	-	10773	-	-	-	-	-	-	-	-	-	-	8.0
467	89	Cono 8''	9/ 8/73	5900	1267	-	461	-	11055	-	-	-	-	-	-	-	-	-	-	7.9

Well M-20

70

.

•

.

LBL-7019

Table 4. Chemical Analyses (mg/l; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells.

Well M-20 (Continued)

,

ł

			· · · · · · · · · · · · · · · · · · ·																	
Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	CI	Br	1	F	As	В	so4	co3	нсоз-	si0 ₂	рH	Na/K atomic
468	105	Sep. 54" vert.	22/ 9/73	8286	2058	27	495	-	15494	-	-	-	-	-	-	-	-	951	-	6.8
469	88	Sep. 54" vert.	31/ 1/74	6580	1690	19	501		13150	-	-	-	-	-	-	-	_	776	-	6.6
471	107	Sep. 54" vert.	30/ 4/74	7006	1551	16	516	-	12399	-	-	-	-	-	-	-	-	684	-	7.7
472	90 95	Sep. 54" vert.	10/ 7/74	7150	1432	19.6	507	-	12335	-	-	-	-	-	-		_	910		8.47
473	100	Sep. 54" vert.	30/ 8/74	6950	1433	18.8	484.5	-	12227	-	-	-	-	-	-	-	-	-	-	8.2
477	255	Sep. 54" vert.	11/11/74	4835	920	-	457		10028	-	-	-	-	-	-	-	-	646.6	-	8.9
478	194		12/11/74	5267	930.6	-	470	-	10574.9	-	-	-	-	-	-	-	-	603.3	-	9.6
479	316		13/11/74	5612	1407.6	-	377.9	-	12014.7	-	-	-	-	-	-	_	-	404.7	-	6.7
480	350		13/11/74	5750	1536.6	-	518.5	-	12312.6	-	-	-	-	-	-	-	-	546.3	-	6.3
482	99	Sep. 54" vert.	10/ 1/75	6035	1222.0	15	451.0	-	11496.0	-	0.9	1.1	0.4	8.2	11.6	21.6	52.5	606.6?)	8.4
486	95	Sep. 54"	10/ 3/75	6086	1222	-	465	-	11265	-	-	-	-	-	-	-	-	606	-	8.5
488	158	Linea 6" V.R.	28/ 4/75	6210	1267	-	583	-	11897	-	-	-	-	-	-	-	-	+		8.33
489	262	11	28/ 4/75	5813	1155	-	442	-	11192	-		-	-	-	-	-2	-	-	-	8.56
490	240	11	30/ 4/75	5019	909	-	425	-	10083	-	-	-	-	-	-	-	-	-	-	9.39
491	94	11	21/ 5/75	6785	1437	-	491	-	12969							1		686	-	8.03
496	95		15/ 8/75	5700	1216	11.92	470		11350				1	1	1			595		7.96
500	111	Sep. 54''	11/ 9/75	6380	1200	12.8	450		11412	-	-	-	-	-	-	-	-	641	-	9.04
504	128	Linea 6"	10/11/75	6600	1468	14.2	495	-	12700	-	-	-	-	-	-	-	-	675	-	7.64
510	99	Sep. 54"	8/ 3/76	5980	1254	13.5	445	2.1	11580	-	-	-	-	-	-	-	-	735	-	8.11
514	98		24/ 5/76	6346	1361	14.7	544.9	0.7	12050		-	-	-	-	-	-	-		-	7.93
517	94	11	21/12/76	6266	1234	12.40	448	1.90	11724	-	-	-	-	-	-	-	-	760	-	8.64
														1						
L	L		L		L	L	L	L	L	L	4					J	L	1	1	J

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	I	F	As	В	so₄	c03	нсо ₃ -	si02	pН	Na/K atomic
59	688	Ρ. 2" φ	27/ 1/72	6300	1950	14.0	31.2	-	10954	-	-	-	-	16.3	-	n.d.	85.4	830	-	5.49
61	680	Ρ. 2'' φ	17/ 2/72	6312	1930	18.75	338	-	12461	-	-	-	-	17.2	-	n.d.	98.2	775	-	5.55
62	674	P. 2" ¢	14/ 3/72	6325	1972	19.25	376	-	12392	-	-	-	-	13.9	-	n.d.	115.6	694.5	-	5.45
63	420	P. 2" ¢	17/ 4/72	5625	2062	18.0	287.9	-	12676	-	-	-	-	15.1	-	n.d.	115.7	840.0	-	4.63
64	422	P. 2" ∲	8/ 5/72	5875	1975	18.75	310.5	-	12329	-	-	-	-	17.8	-	n.d.	67.1	852.5	-	5.05
65	607	P. 2″ ¢	8/ 6/72	6120	1787	19.5	206.4	-	11328	-	-	-	-	16.6	-	17.2	81.9	845.0	-	5.8
67	639	P. 2'' Ø	8/ 7/72	5875	1750	19.25	295.1	-	10925	-	-	-	-	11.6	-	13.7	95.0	550.0	-	5.69
68	S.M.	Ρ. 2'' φ	4/ 8/72	7000	2050	18.25	321.2	-	13052	-	-	-	-	13.5	-	8.2	122.8	772.5	-	5.79
69	650	P. 2" ¢	4/ 9/72	5900	1805	19.75	340.0	-	12259	-	-	-	-	12.1	-	26.2	47.9	640.0	-	5.55
70	610	Ρ. 2" φ	3/10/72	5525	1725	18.12	304.0	-	11437	-	-	-	-	10.3	-	13.1	106.5	675.0	-	5.44
71	550	P. 2'' ¢	7/ 2/72	4325	1265	12.75	352.0	-	7968	-	-	-	-	11.3	-	0	676.4	700.0	-	5.81

We	1	1	M-21
	Ŧ	_	

Well M-21A

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Lî	Ca	Mg	C1	Br	I	F	As	В	s04 ⁼	c03	нсоз-	\$i0 ₂	рН	Na/K atomic
1	280	Purga 2" v.r.	24/ 4/74	5803	1628	14.3	318.6	8.8	10301	-	-	-	-	-	-	-	-	804	-	6.0
2	592	Orif. 3" vert.	19/ 8/74	11650	2873	-	664.0	-	19554	-	-	-	-	-	-	-	-	-	-	6.9
2A	592	Orif. 3" muest. a.	19/ 8/74	10300	2540	-	587.0	-	17292	-	-	-	-	-	-	-	-	-	-	6.9
3	615	Orif. 3" vert.	20/ 8/74	11581	2971	-	625.0	-	19956	-	-	-	-	-	-	-	-	-	-	6.6
4	615	muest. arena.	20/ 8/74	10167	2607	-	627.0	-	17745	-	-	-	-	-	-	-	-	-	-	6.6
5	300	Orif. 3" s.v.	21/ 8/74	12401	3022	-	747.0	-	20710	-	-	-	-	-	-	-	-	-	-	7.0
6	165	Linea y lat. 6" 4"	21/ 8/74	12406	3061	-	746.0	-	20821	-	-	-	-	-	-	-	-	-	-	6.9

L8L-7019

4

*

LBL-7019

k V

					······										_					
Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Lï	Ca	Mg	CI	Br	ł	F	As	В	so4	c03	нсоз-	\$10 ₂	рH	Na/K atomic
7	136	Cono 7" mues. are	22/ 8/74	10269	2428	-	591.0	-	17091	-	-	-	-	-	-	-	-	-	-	7.2
8	158	na.y Lin.64	23/ 8/74	12708	3163	-	769.0	-	21414	-	-	-	-	-	-	-	-	-	-	6.8
12	840	Lin. Lat. 6″ v.r.	11/12/74	9825	2811	-	609.2	-	17705	-	-	-	-	-	-	-	-	830	-	5.9
13	590	Lat. 6" v.r.	12/12/74	10540	2773	-	723.4	-	20720	-	-	-	-	-	-	-	-	961	-	6.5
14	125	Sep. 54"	10/ 1/75	9602	2517	24.0	557.0	-	18700	-	1.3	2.9	2.1	13.3	0.2	12.0	41.5	894	-	6.5
18	120	Sep. 54"	11/ 3/75	9177	2262	-	647.0	-	17190	-	-	-	-	-	-	-	-	903	-	6.8
22	140	11	26/ 5/75	8989	2206	-	605.0	-	17289	-	-	-	-	-	-	-	-	829	-	6.93
26	120	н	28/ 8/75	8020	2150	20.3	571.0	-	16300	-	~	-	-	-	-	-	-	817	-	6.34
30	120	11	11/ 9/75	8500	2120	19.8	555.0	-	16518	-	-	-	-	-	-	-	-	819	-	6.82
34	660	P. 2"	11/11/75	9200	2616	22.2	561.0	-	17700	-	-	-	-	-	-	-	-	890	-	5.97
38	137	lateraorif 3_y 4"	8/ 3/76	8628	2153	20.9	597	0.3	17100	-	-	-	-	-	-	-	-	941	-	6.81
39	130	Sep. 54"	24/ 5/76	8683	2186	20.9	699	0.3	16880	-	-	-	-	-	-	-	-		-	6.75
40	119	۲I II	23/ 9/76	8761	2252	21.70	679	0.18	17271	26.80	0.67	3.16	2.55	20.71	13.0	0.0	63.25	1104	7.95	6.62
41	120	11	21/12/76	8355	2000	17.50	537	0.23	16058	-	-	-	-	-	-	-	-	972	-	7.10

Table 4.	Chemical	Analyses	(mg/1;	Na/K Ratio	is	Atomic)	in R	epeatedly	Col	lected	Sample	es of	the	Wells	
----------	----------	----------	--------	------------	----	---------	------	-----------	-----	--------	--------	-------	-----	-------	--

Well M-21A (Continued)

₩ 4

Well M-25

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Lī	Ca	Mg	CI	Br	I	F	As	В	s04	co3	нсоз-	\$i0 ₂	рH	Na/K atomic
1	3		25/ 1/73	930	20	-	176	-	1487	-	-	-	-	-	-	-	-	-	-	79.9
2	5		25/ 1/73	934	20	-	180	-	1537	-	-	-	-	_	-	-	-	-	-	79.4
3	6		25/ 1/73	930	21	-	180	-	1487	-	-	-	-	-	-	-	-	-	-	74.6
4	6		25/ 1/73	936	22	-	180	-	1487	-	-	-	-	-	-	-	-	-	-	72.4

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	I	F	As	В	s04	coʒ	нсоз-	si0 ₂	pН	Na/K atomic
5	34		25/ 1/73	930	34	-	176	-	1537	-	-	-	-	-	-	-	-	-	-	46.5
8	92		27/ 1/73	5825	1412		376	-	10413	-	-	-	-	-	-	-	-	-	-	7.0
9	81		27/ 1/73	5450	1287	-	360	-	10513	-	-	-	-	-	-	-	-	-	-	7.2
10	51		29/ 1/73	5825	1330	-	360	-	10413	-	-	-	-	-	-	-	-	-	-	7.4
11	52		29/ 1/73	5625	1362	-	360	-	10413	-	-	-	-	-	-	-	-	500	-	7.0
12	52		30/ 1/73	5750	1450	-	372	-	10413	-	-	-	-	-	-	-	-	525	-	6.7
14	55	Purga 1/2"	1/ 2/73	5875	1400	21.2	344	-	10413	-	-	-	-	11.4	-	-	166	560	-	7.1
16	265	Purga 2"	24/ 5/73	7040	1440	24.9	500	-	12982	-	-	-	-	22.3	-	-	57	n.d.	-	8.3
17	460	11	26/11/73	7450	1644	-	480	-	13600	-	-	-	-	-	-	-	-	U.	-	7.7
18	500	11	27/11/73	7650	1590	-	480	-	13800	-	-	-	-	-	-	-	-	762	-	8.1
19	482	Cono 3''	3/ 3/73	7980	1820	-	521	-	14500	-	-	-	-	-	-	-	-	-	-	7.4
20	480	Orif. 3" vertedor	3/12/73	8520	1990	-	565	-	15750	-	-	-	-	-	-	-	-	-	-	7.3
21	358	Orif. 4" vertedor	3/12/72	8580	1930	-	565	-	15750	-	-	-	-	-	-	-	-	-	-	7.5
22	264	Orif. 5" vertedor	4/12/73	8520	1915	-	565	-	15700	-	-	-	-	-	-	-	-	946	-	7.5
23	236	Orif. 6" vertedor	4/12/73	8510	1835	-	561	-	15600	-	-	-	-	-	-	-	-	956	-	7.9
24	236	11	5/12/73	8490	1850	-	561	-	15650	-	-	-	-	-	-	-	-	-	-	7.8
25	2 30	11	8/12/73	8700	1850	-	570	-	15950	-	-	-	-	-	-	-	-	901	-	8.0
26	96	Vertedor Sin.Orif.	22/ 1/74	8515	2055	14.6	561	-	16000	-	-	-	-	-	-	-	-	878	-	7.0
26A	96	Lat. 6" vertedor	22/ 1/74	8650	2000	23.0	585	0.6	16900	-	-	-	-	-	7.0	-	44.0	900	-	7.3
27	105	-	30/ 4/74	8950	2055	14.3	561	-	16418	-	-	-	-	-	-	-	-	948	-	7.4
28	89	Sep. 54" vertedor	10/ 7/74	6898	2230	n.d.	628	-	16373	-	-	-	-	-	-	-	-	888	-	5.2
29	91	11	27/ 8/74	9238	1990	28.0	544	-	17041	-	-	-	-	-	-	-	-	-	-	7.9

r

.

74

Sample Number	Pc (psig)	Flow	Date	Na	к	Li	Ca	Ma		- P									_	
32	418	Lat. v.r.	25/11/74	(0.27				- ···g		Br	1	F	As	В	so ₄ =	c03	HC03	Si02	рH	Na/K
		vertedor	23/11//4	0937	2307	-	505	-	15545	-	-	-					+	+	<u> </u>	atomic
33	94	vertedor	9/ 1/75	8525	1980	23	457	21.0	15805							-	-	950	-	5.1
37	95	Sep. 54''	11/ 3/75	8211	1972		520				1.1	1.8	0.6	11.4	7.4	15.6	35.4	905	-	7.3
40	565				-572		539	-	15199	-	-	-	-	-	-		1	+	<u> </u>	
40	505	Linea 6"	5/ 5/75	8021	1944	-	490	-	15/20		+	+		+		-	-	942	-	7.1
43	96	Sep. 54"	23/ 5/75	8510	1847				13430		-	-	-	-	-	-	-	-	-	7.02
1.7					104/		525	-	15807	-	- 1	-	-	_						7.02
4/	94		28/ 7/75	7630	1930	22.8	512	-	15000	+	- <u> </u>						-	765	-	7.83
53	101		11/ 0/75	70(0				I	13400	-	-	-	-	-	-	- 1	-	893	_	6 70
			11/ 3/15	7960	1950	22.4	532	-	15667	-	-	-		†						0.72
57	106		11/11/75	7880	2030	22 0	6.87								-	-	-	1171	-	6.94
62	100		0				007	-	15700	-	-	-	-	-	-	_		005		
	100		8/ 3/76	8081	1935	22.3	465	0.8	15380	-		+					-	095	-	6.60
63	107		24/ 5/76	7804	1019							-	-	-	-	-	-	1076	-	7 10
(1)				7004	1910	23.1	557	0.46	15060	-	- 1	-	_	_						7.10
64	90		23/ 9/76	8063	1911	23.40	526	0 47	15215			+			_	-	-	-	-	6.92
65	100	11	21/12/76	0.00				0.47	15315	0.75	.63	2,50	0.84	20.75	12.00	-	68.10	1141	7 07	7.00
-			21/12//6	8138	1942	21.40	372	0.28	15263	~	-	1 -							1.9/	7.08
														-	-	-	-	984	-	7.13

s,

Well M-25 (Continued)

.

Well M-26

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Ma			1 .		1	1		·		.	·	
188	167	Cono 3.22"	7/12/67	9325	2620	24.0		ing		Br		F	As	В	so4	co₃=	нсоз-	sio2	pН	Na/K
451			11.2707	5555	2029	24.8	510	29.9	16772	-	-	-	-	13.0	_			970		a com c
451	90	Purga 1/2"	6/ 3/70	60625	1575	16	300	19.4	10605	-								0/2	-	6.03
455	168	0	12/10/70	5406	15/12	21.6						-	-	8.25	-	-	-	689.5	-	6.54
1.00	210			2.00	(1)4)	21.0	332	19.4	11071	-	-	-	-	10.5	_	1				
450	210		27/ 1/72	6287	1575	17.25	324	1.2	11348							_		-	-	5.95
460	275	Purga 2"	17/ 2/72	6275	1650							-	-	13.2	-	-	87.8	720	-	6.78
				03/5	1650	18.2	336	-	11427	-	-	-	-	14.8						
461	267		14/ 3/72	6350	1630	15.0	368		12205					14.0		n.d.	86.8	660	-	6.56
	-								12295	-	-	-	-	16.4	-	n.d.	99.14	605	-	6.62

LBL-7019

.

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	I	F	As	В	so4	c03	нсоз-	\$i0 ₂	рН	Na/K atomic
462	196	11	17/ 4/72	6000	1575	16.12	294	-	11417	-	-	-	-	12.9	-	n.d.	99.1	680	-	6.47
463	191	11 · · ·	8/ 5/72	6525	1750	17.0	306	-	11742	-	-		-	14.2	-	n.d.	69.8	725	-	6.32
465	189	11	8/ 6/72	4625	1587	20.5	297	-	11919	-	-	-	-	13.0	-	13.2	52.3	738	-	4.9
466	93	u.	7/ 7/72	6500	1610	20.75	338	-	11706	-	-	-	-	9.7	-	13.7	55.9	797	-	7.02
467	204	11	4/ 9/72	6650	1612	16.5	338	-	11771	-	-	-	-	10.7	-	4.12	100.5	755	-	7.0
468	227	11	5/ 9/72	6300	1582	19.75	320	-	12409	-	-	-	-	9.9	-	7,9	58.6	760	-	6.77
469	220	11	3/10/72	6375	1662	21.0	368	-	12336	-	-	-	-	11.3	-	5.24	71.9	745	-	6.51
470	213	11	3/11/72	6400	1565	18.75	328	-	12100	-	-	-	-	13.0	-	2.62	87.87	810	-	6.95
471	208	U	5/12/72	6175	1625	19.5	336	-	11810	-	-	-	-	12.0	-	0	81.6	725	-	6.46
473	289	11	3/ 1/73	6750	1537	24	356	-	12848	-	-	-	-	13.5	-	10	71	740	-	7.5
474	279		1/ 2/73	6775	1637	21	364	-	12794	-	-	-	-	14.4	-	8	62	850	-	6.9
475	370	Cono 3"	21/ 8/73	8740	2224	-	481	-	16029	-	-	-	-	-	-	-	-	-	-	6.7
476	210	Cono 411	21/ 8/73	9300	2464	-	529	-	17289	-	-	-	-	-	-	-	-	-	-	6.4
477	142	Orif. 6"	22/ 8/73	9300	2396	-	525	-	17286	-	-	-	-	-	-	-	-	-	-	6.6
478	100	Sep.54" vertedor	22/ 9/73	9012	2358	30	537	-	17227	-	-	-	-	-	-	-	-	954	-	6.5
479	100	Sep. 54" fondo sep.	22/ 9/73	9175	2398	30	542	-	17347	-	-	-	-	-	-	-	-	961	-	6.5
480	100	Sep. 54" vertedor	27/11/73	9187	2394	-	543	-	17098	-	-	-	-	-	-	-	-	1003	-	6.6
481	98	Sep. vertedor	27/ 1/74	-	-	-	-	-	-	-	-	-	-	-	-	-	-	929	-	-
482	98	11	29/ 1/74	9475	2285	26	773	-	17600	-	-	-	-	-	-	-	-	950	-	7.0
485	105	Vertedor	29/ 4/74	9380	2361	23	966	-	17006	-	-	-	-	-	-	-	-	838	-	6.8
486	89	Sep. 54" Vertedor	31/ 5/74	9300	2251	23	442	-	17153	-	-	-	-	-	-	-	-	-	-	7.02
487	92	11	11/ 7/74	9875	2205	31	838	-	17759	-	-	-	-	-	-	-	-	828	-	7.61

Well M-26 (Continued)

LBL-7019

£

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	CI	Br	l	F	As	В	\$0 ₄	co3	нсоз-	\$10 ₂	рН	Na/K atomic
488	100	11	27/ 8/74	9863	2284	29.9	892.5	-	18730	-	-	-	-	-	-	-	-	-		7.3
490	539	Linea 6"¢ Lateral	15/11/74	7682	2056	-	839	-	16781		-	-	-	-	-	-	-	-	-	6.3
491	149		18/11/74	8096	2207	_	823.4	-	17376	-	-	-	-	-	-	-	-	902		6.23
493	104	Sep. 54" Vertedor	10/ 1/75	8663	2043	23	521.0	9.7	16900	-	1.5	1.8	2.2	11.7	2.0	13.2	15.9	876	-	7.21
496	-	Fondo del sep.	24/ 2/75	9579	2066	-	962	-	18500	-	-	-	_	-	-	-	-	-	-	7.89
497	440	54" φ P. 2" φ	26/ 2/75	8019	2100	18.5	853	-	16700	-	-	_	-	-	-	-	-	570	-	6.49
498	535	Cono 3''	30/ 6/75	8257	2200	19.6	886	-	17200		-	-	-	-	-	-	-	-	_	6.38
499	524		1/ 7/75	8762	2300	20.0	946	-	18100	-	-	-	-	-	-	-	-	-	_	6.47
500	500	н	2/ 7/75	9048	2366	20.6	826	-	18500		-	-	-	-	-	-	-	-	-	6.50
501	680	Orif. 2-1/2	3/ 7/75	8667	2300	19.6	814	-	17900	-	-	-	-	-	-	-		-	 -	6.41
502	460	Cono 4''	3/ 7/75	8550	2300	15.8	830	-	179500	-	-	-	~ '	-		-	-	806	-	6.32
503	550	0rif.3-1/2"	4/ 7/75	8550	2283	19.7	802	-	17850	-	-	-		-	-	-	-	848	-	6.52
504	540	Orif.4"	7/ 7/75	8620	2283	19.4	788	-	17950	-	-			-	-	-	-	792	-	6.42
505	-	Descarga Lat. 6"ø	8/ 7/75	8550	2283	19.4	780	-	17900	-	-	-	-	-	-	-	-	820	-	6.37
506	530	Orif.4"	15/ 7/75	8550	2293	19.2	780	-	18200	-	-	_	-	-	-	-	-	-	-	6.34
507	538	Sep. 54" Vertedor	24/ 7/75	8701	2300	20.7	840	-	18600	-	-	-	-	-	-	-		820	-	6.43
508	530	Sep. 54" Vertedor	28/ 7/75	x	×	×	x	-	18775	-	-	-	-	-	-	-	-	799	-	-
512	511	Sep. 54''	11/ 9/75	8350	2040	19.0	780	-	16418	-	-	-	-	-	-	-	-	962	-	6.96
516	490	11	10/11/75	7830	1910	17.5	687	-	15300	-	-	-	-	-	-	-	-	817		6.97
519	140	11	15/12/75	7780	1762	-	695	-	15115	-	-	-	-	-	-	-	-	-	-	7.51
522	326	11	8/ 3/76	6830	1548	16.8	577	0.7	13300	-	-	-	-	-	-	-	-	1000	-	7.50
526	330	н	24/ 5/76	6556	1509	16.7	610	0.61	13480	-	-	-	-	-	-	-	-		-	7.39

Table 4. Chemical Analyses (mg/l; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells. <u>Well M-26</u> (Continued)

* 1

77

4

•

Sample Number	Pc (psig)	Fl <i>ow</i> Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	ι	F	As	В	s04	co3	нсо3_	si0 ₂	рН	Na/K atomic
527	350	L. Lat.	14/ 8/76	6505	1432	-	583.3	-	11960	-	-	-	-	-	-	-	41.5	-	-	7.73
528	312	11	23/ 9/76	6686	1514	19.90	581.0	0.69	12606	32.50	n.d.	n.d.	2.36	14.60	12.0	3.79	118.74	1006	8.0	7.53
529	308	в	21/12/76	6562	1467	15.10	510.0	0.43	14606	-	-	-	-	-	-	-	-	942	-	7.60

Table 4. Chemical Analyses (mg/1; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells. Well M-26 (Continued)

Well M-27

Sample Number	Pc (psig)	Flow Conditions	Date	Na	ĸ	Li	Ca	Mg	C۱	Br	1	F	As	В	so4	c03	нсо3_	sio ₂	рН	Na/K atomic
1	108	Purga 1/4"V.R.	7/ 4/76	1.8	1.9	-	-	-	12	-	-	-	-	-	-	-	-	-	-	1.65
2	180	11	12/ 4/76	11.7	3.6	-	-	-	17	-	-	-	-	-	-	-	-	-	-	5.44
3	210		13/ 4/76	8.0	2.9	-	-	-	24	- (-	-	-	-	-	-		-	-	4.71
4	162	11	14/ 4/76	9.7	3.4	-	-	-	16	-	-	-	-	-	-	-	-	-	-	4.77
5	250	11	19/ 4/76	32.2	9.3	-	_	-	54	-	-	-	-	-	-	-		-	-	5.85
6	295	\$1	20/ 4/76	34.1	9.8	-	-	-	57	-	-	-	-	-	-	-	-	-	-	5.87
7	340		23/ 4/76	169.5	48.8	-	-	-	350	-	-	-	-	-	-	-	-	-	-	5.90
8	440	11	28/ 4/76	380.0	382.0	-	-	-	2850	-	-	-	-	-	-	-	-	-	-	6.14
9	550	11	11/ 5/76	2108.0	605.5	-	-	-	4500	-	-	-	-	-	-	-	-	-	-	5.92
10	548	, 11	14/ 5/76	2001.0	508.0	5.09	178.0	_	4340	-	-	-	-	-	-	-	-	-	-	5.87
11	595	11	18/ 5/76	2420.0	676.0	5.95	208.9	-	5020	-	-	-	-	-	-	-	-	-	-	6.09
12	650	Purga	24/ 5/76	3140	843	13.0	271	-	6100	-	-	-	-	-	-	-	-	-	-	6.33
13	715	11	27/ 5/76	3384	844	14.0	298	~	7650	-	-	-	-	-	-	-	-	-	-	6.82
14	520	11	14/ 6/76	1988	598	4.9	181	-	4426	-	-	-	-	-	-	-	-	-	-	5.65
15	703		1/ 7/76	3173	990	-	351	-	7278	-	-	-	-	-	-	-	-	-	-	6.37

LBL-7019

ĸ

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	CI	Br	I	F	As	В	s04	co3	нсоз-	sio ₂	рН	Na/K atomic
16	696	0	2/ 7/76	3082	1023	-	345	-	7425	-	-	-	-	-	-	-	-	-	-	6.31
17	700	U.	5/ 7/76	3948	1030	-	356	-	7622	-	-	-	-	-	-	-	-	-	-	6.52
18	725	п	6/ 7/76	4147	1184	-	384	-	10498	-	-	-	-	-	-	-	-	-	-	5.95
19	300	Cono3-1/2'	6/ 7/76	9481	2631	-	928	-	18538	-	-	-	-	-	-	-	-	-	-	6.13
20	380	Orif.3-1/2'	7/ 7/76	6046	1581	-	459	-	11267	-	-	-	-	-	-	-	-	-	-	6.50
21	250	Orif.4"¢	7/ 7/76	5923	1 5 5 5	-	428	-	11017	-	-	-	-	-	-	-	-	-	-	6.47
22	400	Orif. 4"	8/ 7/76	5472	1445	-	372	-	10398	-	-	-	-	-	-	-	-	-	-	6.44
23	148	linea Lat. 6"¢	12/ 7/76	6024	1511	-	414	-	11097	-	-	-	-	-	-	-	-	-	-	6.78
24	110		23/ 9/76	5884	1384	13.10	361	0.04	11366	22.0	0.57	2.44	1.98	18.0	14.00	7.58	77.74	960	8.05	6.55
25	102		21/12/76	5752	1314	15.30	471	0.04	11233	-	-	-	-		-	-	-	933	-	7.45

Table 4. Chemical Analyses (mg/l; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells.

Well M-27 (Continued)

•2

.

Well M-29

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	I	F	As	В	so4	co3	нсоз-	si0 ₂	pН	Na/K atomic
13	260	0r1f.3-1/2	7/12/68	6550	1331	-	490	21.8	11880	-	-	-	-	13.2	-	-	-	496.5	-	8.3
26	202	Prif.3/4"	27/ 3/69	6531	1462	-	520	20.7	12312	-	-	-	-	9.6	-	-	-	-	-	7.6
80	209	Sep.54"	3/ 3/70	5875	1318	16.7	440	17.0	11211	-	-	-	-	5.84	-	-	-	485.5	-	7.57
92	110	Purga 1/2"	21/ 1/72	6762	1287	12.75	436	1.7	11132	-	-	-	-	11.3	-	-	-	390	-	8.93
94	95	Purga 2''¢	17/ 2/72	6000	1225	14.0	484	-	11033	-	-	-	-	14.8	-	n.d.	234.7	410	-	8.32
95	95	11	11/ 3/72	6625	1337	14.7	506	-	11368	-	-	-	-	14.5	-	- 11	237.6	509	-	8.42
96	90	11	18/ 4/72	5375	1237	14.2	425	-	11222	_	-	-	-	11.8	-	11	209.3	440	-	7.38
97	88	Purga l''¢	9/ 5/72	5425	1262	17.2	507	-	10665	-	-	-	_	11.4	_		270.0	437	-	7.29

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	I	F	As	В	so4	co3	нсоз-	si0 ₂	рН	Na/K atomic
98	92		8/ 4/72	4262	1312	18.0	434	-	0934	-	-	-	-	12.2	-	26.4	166.4	465	-	5.50
100	92	13	7/ 7/72	6187	1255	18.0	486	-	11120	-	-	-	-	9.8	-	12.4	216.5	482	-	8.36
101	92	11	4/ 8/72	6250	1287	15.1	520	-	11230	-	-	-	-	8.5	-	4.12	273.7	435	-	9.94
102	100	11	2/ 9/72	6050	1365	17.6	500	-	11163	-	-	-	-	12.7	-	5.24	189.0	472	-	7.53
103	95	11	3/10/72	6562	1337	18.2	492	-	11387	-	-	-	-	10.1	-	2.4	178.1	500	-	8.33
104	114		7/11/72	6550	1287	18.0	508	-	11553	-	-	-	-	13.4	-	7.86	186.4	490	-	8.64
105	109	Purga 2"	5/12/72	6200	1437	19.5	484	-	11553	-	-	-	-	12.8	-	-	108.8	475	-	7.33
107	100	Purga 1/2"	3/ 1/73	5925	1375	17.5	469	-	10657	-	-	-	-	13	-	16	128	480	-	7.3
108	101	Purga l''	1/ 2/73	6450	1280	20.0	516	-	11405	-	-	-	-	12	-	-	242	470	-	8.5
112	195	Sept. 54" muest.	23/ 4/73	6875	1362	22.0	509	90	12505	10.2	0.7	0.1	0.1	14	10.7	10	91	472	8.2	8.6
114	100	Sep. 54"	24/ 5/73	6780	1305	22.5	506	-	12576	13	-	-	-	-	-	-	38	-	-	8.8
115	95	Sep. 54'' Fondo. s.	14/ 6/73	7125	1362	-	493	-	13093	-	-	-	-	13	-	16	32	467	-	8.9
116	93	Sep. 54" ext. tib.	5/ 9/73	6307	1198	19.4	459	-	11929	-	-	-	-	-	-	-	-	-	-	8.7
117	90	Sep. 54" extremos	5/ 9/73	6380	1216	19.8	473	-	11907	-	-	-	-	-	-	-	-	388	-	8.9
118	85	Sep. 54" fondo s.	8/ 2/74	6249	935	11.9	473	-	12000	-	-	-	-	-	-	-	-	479	-	9.1
119	75	P. 2"	23/12/75	4970	490	=	477	-	8980	-	-	-	-	-	-	-	-	-	-	17.24
120	145	11	9/ 1/76	5320	538	-	529	-	9750	-	-	-	-	-	-	-	-	-	-	16.81
121	135	Cono3-1/2"	12/ 1/76	5620	570	-	549	-	10450	-	-	-	-	-	-	-	-	-	-	16.76
122	95	Cono 47/8''	13/ 1/76	4680	464	-	425	-	8300	-	-		-	-	-	-	-		-	17.15
123	57	Cono 6''	13/ 1/76	5750	583	-	523	-	10500	-	-	-	-	-	-	-	-	-	-	16.77
124	140	0r.4" Lat.	14/ 1/76	5900	622	-	531	-	10550	-	-	-	-	-	-	-	-	-	-	16.13
127	100	Sep. 4"	8/ 3/76	6813	1088	19.2	513	14	12510	-	-	-	-	-	-	-	-	708	-	10.65

Well M-29 (Continued)

.

ť

•

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C 1	Br	ł	F	As	В	s04	co3	нсоз-	si0 ₂	рН	Na/K atomic
128	95	п	3/ 4/76	6801	1121.5	19.5	584	-	12570	-	-	-	-	-	-	-	-	610	-	10.31
129	100	n	24/ 5/76	6841	1152	19.7	529	0.81	12580	-	-	-	-	-	-	-	-	-	-	10.10
131	105	Sep. 54"	21/12.76	7072	1236	19.30	271	0.90	12830	-	-	-	-	-	-	-	-	320	-	9.72

Table 4. Chemical Analyses (mg/l; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells. <u>Well M-29</u> (Continued)

. <u> </u>					<u></u>															
Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	1	F	As	В	s04 ⁼	C03	HC03_	\$10 ₂	рН	Na/K atomic
1	105	Purga 2"	22/ 9/73	6032	1665	19.3	340	-	11578	-	-	-	-	-	-	-	-	517	-	6.1
2	500	н	5/12/73	8119	2071	-	457	-	15200	-	-	-	-	-	-	-	-	-	-	6.6
3	560	Сопо З''	6/12/73	7930	2230	-	461	-	15100	-	-	-	-	-	-	-	-	-	-	6.0
4	540	0rif. 3"	6/12/73	9640	2360	~	557	-	17800	-	~	-	~	-	-	-	-	-	-	6.9
5	420	0rif. 9"	6/12/73	9590	2460	-	557	-	17750	-	-	-	-	-	-	-	-	-	-	6.6
6	238	Tubo6"s.v.	7/12/73	9560	2450	-	561	-	17500	-	-	-	-	-	-	-	-	- 1	-	6.6
7	279	11	8/12/73	9450	2640	-	557	-	173200	-	-	-	-	-	-	-	-	-	-	6.5
8	110	Sep. 54" vertedor	24/ 1/74	8270	1962	27.2	565	-	16000	-	-	-	-	-	-	-	-	920	-	7.2
9	118	11	30/ 4/74	9370	2100	28.6	622	-	16565	-	-	-	-	-	-	-	-	778	-	7.6
10	112	11	11/ 7/74	9375	1990	26.2	602	-	15931	-	-	-	-	-	-	-	-	896	-	8.0
11	112		27/ 8/74	8825	1973	26.4	612	-	15784	-	-	-	-	-	-	-	-	-	-	7.6
14	540	Purga 2" v.r.	25/11/74	7827	1 360	-	541	-	15295	-	-	-	-	-	-	-	-	913.7	-	9.78
15	115	Sep. 54" vertedor	8/ 1/75	8430	1968	23.0	540	7.0	15715	-	0.9	1.2	0.9	10.3	15.2	10.8	28.8	899	-	7.3
18	112	Sep. 54"	13/ 3/75	8111	1929	-	569	-	15345	-	-	-	-	-	-	-	-	877	-	7.1
20	578	Purga 2"	23/ 4/75	8043	2001	-	565	-	16035	-	-	-	-	-	-	-	-	-	-	6.83

Well M-30

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	I	F	As	В	s04 ⁼	co ₃ =	HC03	si0 ₂	рH	Na/K atomic
21	472	Linea 6" Orif. 3"	24/ 4/75	8330	1941	-	569		16338	-	-	-	-	-	-	-	-	-	-	7.29
22	553	н	24/ 4/75	8188	2086	-	571	-	16489	-	-	-	~	-	-	-	-	-	-	6.67
25	110	Sep. 54''	23/ 5/75	8093	1818	-	554	-	15612	-	-	-	-	-	-	-	-	839	-	7.57
31	109	ŧ1	16/ 7/75	7600	1880	21.66	561		15200	-	-	-	-	-	-	-	-	791.5	-	6.87
35	115	11	11/ 9/75	8100	1850	21.0	560	-	15466	-	-	-	-	-	-	-	-	1070.0	-	7.44
46	114	13	11/ 9/75	7620	1940	20.3	543	-	15100	-	-	-	-	-	-	-	-	870.0	-	
52	435	Lat. Orif 3"	8/ 3/76	7950	1899	21.6	497	0.7	15400	-	0.6743	-	-	-	-	-	-	1008	-	7.12
56	115	Sep. 54"	24/ 5/76	7952	1864	22.1	625	0.79	15080	-	-	-	-	-	-	-	-	-	-	7.25
58	116		10/ 8/76	6913	1592	-	532.1	-	12647.2	-	-	-	-	-	-	-	34.2	-	-	7.38
60	113	13	23/ 9/76	7809	1833	22.00	596.0	0.82	15173	33.50	0.58	1.32	0.47	17.50	13.00	3.79	0.84	1077	8.0	7.39
61	118	11	21/12/76	7881	1927	16.80	514.0	0.50	15263	-	-	-	-	-	-	-	-	947	-	7.85

Well M-30 (Continued)

Well	M-31

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Lī	Ca	Mg	CI	Br	ſ	F	As	В	s04 ⁼	co3 ⁼	нсоз-	sio ₂	рН	Na/K atomic
187	601	Cono 3''	22/ 3/69	9040	2439	28.7	495	19.5	15887	-	-	-	-	12.6	-	-	-	1344	-	6.3
228	380	Sep. 54"	4/ 3/70	7793	2038	22.4	441	26.1	15137	-	-	-	-	11.7	-	-	-	712.8	-	6.5
238	540	Purga 2"	2/ 3/71	6937	1940	27.6	412	14.6	13667	-	-	-	-	12.4	-	-	-	824.5	-	6.08
240	400	Sep. 10"	27/ 1/72	6775	1890	20.37	392	2.9	13594	-	-	-	-	15.3	-	-	-	700	-	6.09
242	332	Ρ. 2" φ	17/ 2/72	7375	1800	19.00	404	-	13594	-	•	-	-	16.3	-	n.d.	68.2	730	-	6.96
243	185	11	11/ 3/72	5875	1125	11.25	520	-	10197	-	-	-	-	15.1	-	11	88.12	569	-	8.87
244	309		18/ 4/72	6825	1915	17.80	366	-	13173	-	-	-	-	10.6	-	11	81.4	710	-	6.06

LBL-7019

,

1

LBL-7019

•

.

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	I	F	As	В	s04 ⁼	co3 ⁼	нсоз-	\$10 ₂	рН	Na/K atomic
245	288	11	9/ 5/72	7187	1800	21.50	399.8	-	13033	-	-	-	-	13.3	-	- 11	24.8	705	-	6.78
247	265	11	8/ 4/72	7125	1725	21.75	331.1	-	13397	-	-	-	-	20.7	-	10.6	53.7	725	-	7.0
248	294	11	7/ 7/72	7325	1812	21.75	355.9	-	13266	-	-	-	-	12.8	-	20.6	30.7	810	-	6.87
249	258		4/ 8/72	7550	1887	19.75	394.9	-	13249	-	-	-	-	11.5	-	8.24	97.7	662	-	6.80
250	245	11	2/ 9/72	7350	1920	23.25	400.0	-	13059	-	-	-	-	14.2	-	-	90.5	650	-	6.51
251	2 30	11	3/10/72	7250	1725	21.25	396.0	-	13185	-	-	-	-	12.0	-	3.6	73.20	640	-	7.14
252	242	11	3/11/72	7812	1955	24.12	416.0	-	13944	-	-	-	-	14.5	-	5.24	74.56	850	-	6.78
253	269	- 11	5/12/72	6925	1712	24.25	408.0	-	13396	-	-	-	-	14.2	-	-	78.80	685	-	6.87
254	269		1/ 7/73	4982	1117	15	370	1	9650	-	-	1.4	-	-	20	-	105	480	8.3	7.6
255	200	п	1/ 2/73	7000	1717	21.5	384	-	12695	-	-	-	-	13.5	-	8.0	78.9	800	-	6.9
256	430	11	14/ 7/73	7500	1928	n.d.	421	-	14311	-	-	-	-	-	-	11.4	70.8	806	-	6.6
257	425	11	31/ 7/73	7380	1900	-	461	-	14019	-	-	-	-	-	-	8.1	58.7	-	-	6.6
258	500	Orif. 3"	31/ 7/73	8330	2050	-	507		15467	-	-	-	-	-	-	9.1	41.1	-	-	6.9
259	400	Orif. 4"	1/ 8/73	8160	2000	-	502	-	15175	-	-	-	-	-	-	8.5	32.8	-	-	6.9
260	310	Cono 5''	1/ 8/73	500 0	1250	-	316	-	9648	-	-	-	-	-	-	9.5	92.4	-	-	6.8
261	160	Cono 7''	2/ 8/73	6665	1750	-	420	-	12843	-		-	-	-	-	0.0	110.9	-	_	6.5
262	160	11	2/ 8/73	506	225	-	32	-	934	-	~	-	-	-	-	6.6	61.6	-	-	6.9
263	95	Cono 8''	2/ 8/73	7495	1960	-	469	-	14421	-	-	-	-	-	-	0.0	83.1	-	-	6.5
264	290	S.V. 6"φ Vertedor	22/ 9/73	8533	2172	28.5	549	-	16341	-	-	-	-	-	-	-	-	767	-	6.7
265	290	11	27/ 9/73	8783	2201	_	553	-	16301	-	-	-	-	-	-	-	-	829	-	6.8
266	270	Vertedor	16/ 2/74	8044	2011	21.6	453	-	14506	-	-	-	-	-	-	-	-	935	-	6.8
267	280	11	30/ 4/74	7850	2447	18.6	430	-	13849	-	-	-	-	-	-	-	~	770	-	5.5

Table 4. Chemical Analyses (mg/l; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells.

Well M-31 (Continued)

.

.

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Lİ	Ca	Mg	C1	Br	1	F	As	В	s04	co3	нсоз-	si0 ₂	рH	Na/K atomic
268	277	41	11/ 7/74	7988	1795	-	413	-	13761	-	-	-	-	-	-	-	-	766	-	7.56
269	278	11	27/ 8/74	8100	1432	22.8	476	-	13975	-	-	-	-	-	-	-	-	-	-	9.6
272	540	Purga 2" v.r.	3/12/74	2533	679	-	148	-	5560	-	-	-	-	-	-	-	-	399	-	6.3
273	420	0rif. 6" v.r.	4/12/74	5842	1493	-	311	-	11696	-	-	-	-	-	-	-	-	800	-	6.6
274	255	Sep. 54" vertedor	8/ 1/75	7241	1588	17.0	3 9 8	12.8	1 32 95	-	1.1	1.3	1.1	8.8	9.1	20.4	47.6	731	-	7.7
275	245	Sep. 54	12/ 3/75	6907	1604	-	413	-	12470	-	-	-	-	-	-	-	-	657	-	7.3
280	4-5	Linea 6	18/ 4/75	6181	1498	-	373	-	11814	-	-	-	-	-	-	-	-	-	-	7.01
281	470	11	18/ 4/75	5930	1408	_	293	-	11301	-	-	-	-	-	-	-	-	711	-	7.16
285	250	Sep. 54"	21/ 5/75	6965	1563	-	441	-	13262	-	-	-	- '	-	-	-	-	-	-	-
289	245	II	17/ 7/75	6320	1500	-	413	-	12750	-	-	-	-	-	-	-	-	744		7.16
293	120	н	18/ 9/75	6450	1480	18.5	434	-	13114	-	-	-	-	-	-	-	-	838	-	7.4
298	400	11	10/11/75	6100	1454	16.3	355	-	11800	-	-	-	-	-	-	-	-	740	-	7.13
303	406	Lat. Orif. 3"	8/ 3/76	5950	1356	16.5	307	0.3	11220	-	-	-	-	-	-	-	-	864	-	7.45
304	115	Sep. 54"	24/ 5/76	6551	1494	17.8	437	0.15	13530	-	-	-	-	-	-	-	-	-	-	7.45
305	109	11	23/ 9/76	6913	1540	18.40	463	0.16	13205	13.0	0.54	n.d.	0.89	18.0	18.00	6.32	57.82	833	8.0	7.31
306	108	11	21/12/77	7104	1539	16.70	336	0.11	13076	-	-	-	-	-	-	-	-	800	-	6.95

Well M-31 (Continued)

Well M-34

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	I	F	As	В	so4	c03	нсоз-	sio ₂	рH	Na/K atomic
194	465	S. 54" φ	5/ 3/70	6591	1362	14.4	584	20.5	11734	-	-	-	-	4.2	-	-	642	-	-	8.23
203	208	\$.1/2" φ	12/10/70	5062	993.7	16.7	456	14.5	9406	-	-	-	-	9.2	-	-	-	-	-	8.66
206	203	Ρ. 2'' φ	27/ 1/72	6137	1062	9.12	532	7.3	10245	-	-	-	-	11.2	-	-	-	580	-	9.82

LBL-7019

.

.

.

٠

LBL-7019

.

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Lj	Ca	Mg	C1	Br	I	F	As	В	s04	c03	нсо3	\$10 ₂	рĦ	Na/K atomic
209	327	11	11/ 3/72	7262	1825	20.25	400	-	13173	-	-	-	-	10.5	-	-	82.6	854	-	6.76
208	190	- 11	16/ 2/72	5575	1142	12.0	564	-	10589	-	-	-	-	12.8	-	-	n.d.	570	-	8.29
210	200	11	18/ 4/72	5000	1132	10.95	497	-	10242	-	-	-		10.9	-	-	74.3	605	_	7.5
211	200	11	9/ 5/72	5412	1150	15.25	505	-	10469	-	-	-	-	9.7	-	-	22.0	530	-	7.99
213	195	11	8/ 6/72	6000	1337	16.50	537	-	11234	-	-	-	-	11.1	-	8.4	65.2	657	-	7.60
214	195	ii.	7/ 7/72	6125	1200	17.0	607	-	11023	-	-	-	-	10.5	-	11.0	33.5	597	-	8.67
215	194	11	4/ 8/72	5875	1262	14.0	599	-	11082	-	-	-	-	9,5	-	5.47	69.8	677	-	7.90
216	190	11	2/ 9/72	6075	1230	16.87	600	-	11063	-	-	-	-	10.8	-	-	63.9	680	-	8.38
217	175	n	3/10/72	6450	1190	15.62	584	-	11137	-	-	-	-	8.6	-	4.8	56.1	2685	-	9.21
218	150	11	3/11/72	5500	1135	14.0	568	-	10806	-	-	-	-	11.9	-	7.86	66.5	625	-	8.23
219	152	11	5/12/72	5550	1237	15.25	556	-	10507	-	-	-	-	11.4	-	-	65.28	8635	-	7.61
221	90	u	3/ 1/73	5250	1050	13.5	524	-	9761	-	-	~	-	12.8	-	-	119.7	530	-	8.5
223	350	11	3/ 7/73	7165	1863	-	427	-	14717	-	-	-	-	-	-	-	-	-	-	6.5
224	475	11	4/ 7/73	-	1725	-	495	-	15225	-	-	-	-	-	-	-	-	-	-	8.2
225	320	Cono 3''	4/ 7/73	-	1426	-	565	-	14869	-	-	-	-	-	-	-	-	-	-	9.7
226	235	Cono 3''	5/ 7/73	-	1083	-	625	-	13245	-	-	-	-	-	-	-	-	543	-	11.4
227	165	EL	6/ 7/73	-	932	-	604	-	12586	-	-	-	-	-	-	-	-	436	-	12.6
228	122	0.4 7.8	6/ 7/73	-	733	-	484	-	10048	-	-	-	-	-	-	-	-	-	-	12.9
229	68	Cono 6''	7/ 7/73	-	591	-	409	-	8495	-	-	-	-	-	-	-	-	-	-	13.5
230	115	L. 6 ^{ιι} φ	9/ 1/13	-	875	-	623	-	12606	-	-	-	-	-	-	-	-	-	-	13.5
231	115	†1	11/ 7/73	6927	875	-	632	-	12586	-	-	-	-	-	-	-	-		-	13.5
232	85	F. Sep.	22/ 9/73	6924	1048	24	637	-	12704	-	-	-	-	-	-	-	-	500	-	11.2
233	80	Sep. 54" vertedor	16/ 2/74	7462	1251	22	597	-	12840	-	-	-	-	-	-	-	-	553	-	10.2

Table 4. Chemical Analyses (mg/l; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells.

Well M-34 (Continued)

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	1	F	As	В	s04 ⁼	c03	нсоз	si0 ₂	рH	Na/K atomic
234	100	11	30/ 4/74	6966	1193	25	888	-	12644	-	-	-	-	1	-	-	-	566	-	9.9
235	90	H	11/ 7/74	6975	1045	-	587	-	12858	-	-	-	-	-	-	-	-	554	-	11.36
236	92		27/ 8/74	7613	1106	15.4	629	-	12940	-	-	-	-	-	-	-	-	-	-	11.7
239	279	Lat. v.r. vertedor	18/11/74	5980	1273	-	597	-	12709	-	-	-	-	-	-	-	-	-	-	7.98
240	110	tı	18/11/74	6037	1218	-	637	-	12759	-	-	-	-	-	-	-	-	-	-	8.42
242	99		9/ 1/75	6925	1104	20.0	563	9.3	13096	-	0.6	2.0	0.3	7.7	34.4	16.8	46.4	553	-	10.60
245	99	Sep. 54"	13/ 3/75	6670	1161	-	569	-	12528	-	-	-	-	-	-	-	-	557		9.8
247	98	Linea 6"	13/ 5/75	6950	1054	-	593	-	13158	-	-	-	-	-	-	-		-	-	11.20
250	95	Sep. 54"	22/ 5/75	7202	1220	-	597	-	13349	-	-	-	-	-	-	-	-	477	-	10.04
254	96	11	16/ 7/75	6650	1142	18.7	593	-	12900	-	-	-	-	-	-	-	-	556	-	9.90
258	110	11	11/ 9/75	6700	1180	18.5	665	-	12964	-	-	-	-	-	-	-	-	714	-	9.65
262	218		10/11/75	6350	1240	16.8	494	-	12200	-	-	-	-	-	-	-	-	560	-	8.70

<u>Well M-34</u> (Continued)

Table 4. Chemical Analyses (mg/l; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells.

Well M-35

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	1	F	As	В	s04	c03	нсо ₃ -	si0 ₂	рH	Na/K atomic
1	290	P. 14 φ	22/ 9/73	5661	1576	17.8	569	-	10811	-	-	-	-	-	-	-	-	-	-	6.1
2	640	0rif. 3"	9/ 3/74	9571	2611	23.4	551	13.4	16810	-	-	-	-	-	-	-	-	-	-	6.2
3	350	Orif. 6"	12/ 3/74	9709	2476	23.7	498	1.9	16859	-	-	-	-	-	-	-	-	-		6.7
4	290	0F.6''×3''	13/ 3/74	9459	2557	19.6	545	-	17064	-	-	-	-	-	-	-	-	-	-	6.3
5	225	0F.6''x5''	14/ 3/74	9500	2431	24.4	519	-	16859	-	-	-	-	-	-	-	-	-	-	6.6
6	160	s.54" φ	30/ 4/74	8754	2385	26.3	457	-	16104	-	-	-	-	-	-	-	-	1040	-	6.2

.

-

LBL-7019

٠

.

LBL-7019

r

N

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	I	F	As	В	s04 ⁼	co3	нсоз-	si0 ₂	pН	Na/K atomic
7	150	11	10/ 9/74	8600	2215	24.7	459	-	15325	-	-	-	-	-	-	-	-	-		6.6
11	352	Lat. v.r. vertedor	18/12/74	8209	2200	-	477	-	16377	-	-	-	-	-	~	-	-	998	-	6.3
12	145	Sep. 54" vertedor	8/ 1/75	8506	2281	22.0	342	35.0	16195	-	0.8	2.1	0.9	8.6	4.8	7.2	30.5	1029	-	6.3
15	148		12/ 3/75	8356	2122	-	473	-	15665	-	-	-	-	-	-	-	-	1007	-	6.7
17	688	Linea 6" Orif.2-1/2	10/ 4/75	8119	2186	-	467	-	16026	-	-	-	-	-	-	_	-	-	-	6.31
18	720		10/ 4/75	8114	2183	-	463	-	15977	-	-	-	-	-	-	-	_	-	-	6.32
21	140	Sep. 54"	27/ 5/75	8337	2072	-	459	-	15992	-	-	-	-	-	_	_	-	891	-	6.84
25	140	ti	28/ 7/75	7840	2098	21.6	435	-	15600	-	-	-	-	-	-	-	-	1010	-	6.35
29	140	п	11/ 9/75	7500	2090	21.5	434	-	15667	-	-	-	-	-	-	_	-	1070	-	6.10
34	495	н	11/11/75	8070	2070	21.2	445	-	15700	-	_	-	-	-	-	-	-	920	-	6.62
53	135	11	8/ 3/76	7875	1969	21.7	414	0.5	15160	-	-	-	-	-	-	-	-	1129	-	6.80
107	135	11	24/ 5/76	7781	2016	22.2	496	0.27	15100	-	-	-	-	-	-	-	-	-	-	6.56
169	132	U	10/ 8/76	6831	1718	-	422.2	-	1249.2	-	-	-	-	-	-	-	12.2	-	-	6.76
191	127	н	23/ 9/76	7658	1956	22.20	459	0.24	14776	24.0	0.66	1.28	1.00	19.87	10.00	10.11	33.41	1207	-	8.00
192	127		21/12/76	7987	2005	20.50	381	0.12	15075	-	-	-	-	-	-	-	-	1037	-	6.77

Table 4. Chemical Analyses (mg/l; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells.

Well M-35 (Continued)

Well M-38

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	CI	Br	I	F	As	В	so4	co3	нсоз-	si0 ₂	pН	Na/K atomic
345	330	P. 2×1/2	2/ 3/71	7250	2040	26.2	328	17	13923	-	-	-	-	14.4	-	-	-	9045	-	6.04
347	413	Ρ. 2'' φ	27/ 1/72	7250	1600	12.75	264	2.4	11624	-	-	-	-	16.2	-	-	-	630.0	-	7.7

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	Cl	Br	1	F	As	В	so4	co3	нсоз-	si0 ₂	pН	Na/K atomic
349	430	н	17/ 2/72	7500	1862	18.25	270	-	11574	-	-	-	-	16.7	-	n.d.	124.2	800		5.75
350	438	11	14/ 3/72	7375	1855	17.75	304	-	13075	-	-	-	-	18.1	-	11	115.8	849	-	6.75
351	440	U	17/ 4/72	5925	1825	17.50	235	-	11612	-	-	-	-	16.3	-	1F	126.7	775		5.52
352	416	11	8/ 5/72	6275	1950	18.50	240	-	11644	-	-	-	-	13.6	-	11	67.1	855	_	5.47
353	410	11	9/ 6/72	5562	1575	18.0	193	-	10639	-	_	-	-	14.0	-	-	144.9	655	-	6.0
355	70		7/ 7/72	7000	2062	18.25	338	-	12872	-	-	-	-	15.7	-	16.5	99.7	762	-	5.76
356	45	D	4/ 8/72	8100	2275	21.25	412	-	14283	-	-	-	-	14.5	-	6.87	75.4	855	-	6.05
363	565	11	5/ 9/72	7800	1950	21.90	416	-	14153	-	-	-	-	13.7	-	10.5	43.9	767	-	6.80
364	540	Sep.	3/10/72	7050	1900	23.60	360	-	13984	-	-	-	-	14.7	-	7.86	58.6	755		6.30
365	219	Ρ. 6" φ	3/11/72	7050	1600	22.12	408	-	13147	-	-	-	-	16.8	-	13.1	47.9	740	-	7.48
371	264	Ρ. 1" φ	5/12/72	5937	1637	15.75	236	-	10159	-	-	-	-	14.0	-	16.0	136.0	680		6.15
373	390	п	2/ 1/73	6562	1700	20	392	-	12301	-	-	-	-	16.2	-	16.0	70.7	780	-	6.6
374	430		1/ 2/73	6800	1735	21.6	308	-	12595	-	-	-	-	15.5	-	10.7	92.5	920	-	6.6
375	378	11	1/ 3/73	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
377	260		3/ 3/73	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
378	-	-	3/ 3/73	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
379	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
380	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
381	413	Ρ. Ι'' φ	4/ 3/73	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-
382	412	Sep. 54" Orif. 4"	9/ 3/73	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
383	410	Sep. 54" Orif. 4"	23/ 3/73	7850	1587	21.0	432	40	13000	13.1	0,65	. 24	. 12	17.0	15.0	-	78	732	7.7	8.3
384	370- 440	Sep. 54"	31/ 3/73	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		

Table 4. Chemical Analyses (mg/l; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells.

<u>Well M-38</u> (Continued)

.

*

•

۹

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	1	F	As	В	so4	co3	нсоз-	\$i02	pН	Na/K atomic
385	-	-	31/ 3/73	6790	1285	-	-	-	12611	-	ſ	-	ſ	-	-	-	-	-	-	8.98
386	11	11	31/ 3/73	7295	1460	-	-	-	13504	-		-	-	-	-	-	-	-	-	8.5
387	- 11	13	31/ 3/73	7025	1345	-	-	-	12859	-	-	-	-	-	-	-	-	-	-	8.9
388	н	11	31/ 3/73	7295	1360	-	-	-	12909	-	-	-	-	-	-	-	-	-	-	9.1
389		11	31/ 3/73	7525	1475	-	-	-	12958		-	-	-	-	-	-	-	-	_	8.7
390			31/ 3/73	7750	1500	-	-	-	13504	-	-	-	-	-	-	-	-	-	-	8.8
391	,	н (31/ 3/73	6760	1'330	-	-	-	12760	-	-	-	-	-	-	-	-	-	-	8.6
392	"		31/ 3/73	7100	1460	-	-	-	13206	-	-	-	-	-	-	-	-	-	-	8.3
393			31/ 3/73	7375	1500	-	-	-	13653	-	-	-	-	-	-	-	-	-	-	8.4
394	11	"	31/ 3/73	7250	1450	-	-	-	13107	-	-	-	-	-	-	-	-	-	-	8.5
395			31/ 3/73	6900	1400	-	-	-	12988	-	-	-	-	-	-	-	-	-	-	8.4
396		ц	31/ 3/73	7250	1485	-	-	-	13604	_	-	-	_	-	_	_	-		_	8 2

Table 4. Chemical Analyses (mg/l; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells.

٠

.

Well M-38 (Continued)

Wel	1	M-39
_	_	

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	CI	Br	1	F	As	В	s04 [±]	c03	нсоз-	sio ₂	рH	Na/K atomic
45	235	Ρ. 2" φ	12/10/70	5031	975	16.0	250	14.6	. 9377	-	-	-	-	8.3	-	-	-	-	-	8.77
59	140	11	27/ 1/72	6012	1100	9	284	1.2	9506	-	-	-	-	12.3	-	-	-	505	-	9.29
61	90		17/ 2/72	4374	591	9.5	284	-	7880	-	-	-	-	10.8	-	-	94.2	435	-	12.58
62	110		11/ 3/72	5125	550	8.5	318	-	8196	-	-	-	-	10.6	-	-	74.3	610	-	15.84
63	168	£1	17/ 4/72	4175	485	9.5	255	-	7562	-	-	-	-	9.9	-	0	71.6	615	-	14.63
64	76	11	8/ 5/72	4775	600	9.75	270	-	7945	-	-	-	-	10.8	-	-	112.7	590	-	13.52

68

LBL-7019

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	CI	Br	I	F	As	В	so4	c03	нсоз-	si0 ₂	pН	Na/K atomic
65	76	11	9/ 6/72	4375	687	9.75	251	-	7979	-	-	-	-	10.0	-	11.8	84.5	502	-	10.80
67	0	11	30/ 4/73	4500	450	11	300	-	7727	-	-	-	-	10.3	-	n.d.	731	400	_	17.0
68	175	- 11	5/ 5/73	5062	737	n.d.	308	-	9752	-	-	-	-	17.9	-	-	-	650	-	11.7
69	295	Cono 3''	31/ 5/73	5031	560	-	344	-	9135	-	-	-	-	-	-	-	-	502	-	15.3
70	246	Cono 4"	1/ 6/73	4812	635	-	312	-	8850	-	-	-	-	-	-	-	-	413	-	12.9
71	155	Cono 5"	1/ 6/73	3425	690	-	220	-	6353	-	-	-	-	-	-	-	-	390	-	8.4
72	122	Cono 6"	4/ 6/73	1800	250	~	100	-	2359	-	-	-	-	-	-	-	-	190	-	12.2
74	100	s.v.	14/ 6/73	6000	785	-	351	-	10464	-	-	-	-	14.7	-	30	48	603	-	13.0
77 A	100	S. 54" φ	1/ 8/73	5940	895	-	480	1.3	11080	-	-	1.8	-	-	20	-	53	592	-	11.2
77	100	S.P.X.S.V.	22/ 9/73	6134	988	17.6	417	-	11279	-	-	-	-	-	-	-	-	593	-	10.5
78	100	н	22/ 9/73	5731	904	15.6	385	-	10362	-	-	-	-	-	-	-	-	520	-	10.8
79	. 85	n	12/ 2/74	6146	1090	17.4	421	-	11300	-	-	-	-	-	-	-	-	621	-	9.6
80	98	vertedor	30/ 4/74	6410	1098	12.1	419	-	12154	-	-	-	-	-	-	-	-	644	-	9.9
81	86	11	30/ 5/74	6037	1017	14.0	409	-	10733	-	-	-	-	-	-	-	-	-	- ,	10.9
82	85		10/ 7/74	6420	909	-	410	-	10889	-	-	-	_	-	-	-	-	578	-	12.0
83	81	ш	30/ 8/74	6275	827	22.16	433	-	10698	-	-	-	-	-	-	-	-	-	-	12.9
119	30	Ρ. 2'' φ	11/ 4/76	198.8	35.98	-	-	-	335	-	-	-	-	-	-	-	-	-	-	9.39
120	48	P. 2"	13/ 4/76	4557.9	593.9	-	-	-	8300	-	-	-	-	-	-	-	-	-	-	13.05
121	165	P. 2" x Lat.	14/ 4/76	5283. ¹	875.6	11.67	437.3	-	9000	-	-	-	-	-	-	-	-	-	-	10.26
122	204	11	19/ 4/76	5394	873.1	12.19	439.2	-	10220	-	-	-	-	-	-	-	-		-	10.50
123	215	11	20/ 4/76	5419.6	854.0	12.01	442.9	-	10130	-	-	-	-	-	-	-	-	-	-	10.79
124	222	Cono 3-1/2'	21/ 4/76	5789.0	1007	13.61	428.6	-	10670	-	-	-	-	-	-	-	-	-	-	9.77

Table 4. Chemical Analyses (mg/l; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells.

<u>Well M-39</u> (Continued)

2

٠

LBL-7019

ι.

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	CI	Br	I	F	As	В	s04	c03	нсоз-	\$10 ₂	рH	Na/K atomic
125	205		22/ 4/76	5577	930	12.91	418.5	-	10390	-	-	-	-	-	-	-	-	-	-	10.20
126	140	Cono 5''	22/ 4/76	4815	836	11.66	374.8	-	9400	-	-	-	-	-	-	-	-	-	-	9.79
127	135	11	23/ 4/76	4731	819	11.41	363.1	-	9220	-	-	-	-	-	-	-	-	-	-	9.82
128	200	Lat.Orif.3	23/ 4/76	5595	925	12.82	419.2	-	10300	-	-	-	-	-	-	-	-	-	-	10.28
129	129	Cono 16''	23/ 4/76	530	48.7	4.6	45.9	-	200		-	-	-	-	-	-	-	-	-	18.5
130	180	Lat. Orif. 3" ¢	26/ 4/76	5362	891	12.25	415.4	-	10180	-	-	-	-	-	-	-	-	-	-	10.23
131	90	Sep. 54"	3/ 4/76	5631	984	13.19	426.7	-	10550	-	-	-	-	-	_	-	-	516	-	9.73
132	94	- 11	24/10/76	5719	957	13.17	452.4	-	10500	-	-	-	-	-	-	-	-	-	-	10.16
133	94	11	12/ 8/76	5178	876	-	418.1	-	94429	-	-	-	-	-	-	k07.4	-	-	-	10.05
134	90	TI	23/ 9/76	5417	901	12.20	404.0	3.24	10181	5.80	0.56	n.d.	0.32	14.12	8.00	1.26	147.79	611.0	8.05	0.21
135	90	Lat. 2"	21/12/76	4645	439	7.60	363.0	4.81	8483	-	-	-	-	-	-	-	-	453.0	-	18.5

Table 4. Chemical Analyses (mg/l; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells.

Well M-39 (Continued)

Well	M-42

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	CI	Br	1	F	As	В	so4	co3	нсо3-	\$i02	рН	Na/K atomic
1	38	Purga 1/4"	7/ 5/76	5179	1259	15.2	339	-	10200	-	-	-	-	-	-	-	-	-	-	6.99
2	110	t i	11/ 5/76	5935	1400	17.1	369	-	11350	~	-	-	-	-	-	-	-	-	-	7.21
3	145	11	14/ 5/76	6181	1479	17.3	377	-	11550	~	-	-	-	-	-	-	-	-	-	7.10
4	190	11	18/ 5/76	6100	1498	17.5	377	-	11650	-	-	-	-	-	-	-	-	-	-	6.92
5	360	Purga 2"	24/ 5/76	6984	1646	18.6	429	-	12680	-	-	-	-	-	-	-	-	-	-	7.21
6	460	Purga l''	14/ 6/76	6710	1628	19.4	430	-	12598	-	-	-	-	-	-	-	-	-	-	7.01
7	465	П	1/ 7/76	6774	-	-	434	-	12838	-	-	-	-	-	-	-	-	-	-	-

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	Cl	Br	I	F	As	В	s04	co3	нсоз-	si0 ₂	pН	Na/K atomic
10	112	Purga 1/2"	11/ 8/76	4697	1178	-	328	-	9298	-	-	-	-	-	-	-	-	-	-	6.28
12	525	Purga 2''	15/11/76	7261	1701	-	455	-	12967	-	-	-	-	-	-	-	-	-	-	7.26
13	479	Orif. 3"	16/11/76	7184	1638	-	445	-	12996	-	-	-	-	-	-	-	-	-	-	7.46
14	290	Orif. 5"	17/11/76	7332	1669	-	455	-	12996	-	-	-	-	-	-	-	-	-	-	7.47
15	225	Orif. 6"	17/11/76	7184	1658	-	449	-	12948	-	-	-	-	-	-	-	-	-	-	7.37
16	137	Cono 7''	17/11/76	6611	1513	-	416	-	11949	-	-	-	-	-	-	-	-	-	-	7.43
17	485	Orif. 3"	19/11/76	7223	1658	-	455	-	13062	-	-	-	-	-	-	-	-	-	-	7.41
18	117	11	21/12/76	7442	1600	17.80	355	0.21	13815	-	-	-	-	-	-	-	-	929	-	7.91

<u>Well M-42</u> (Continued)

Well M-51

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Lî	Ca	Mg	C1	Br	I	F	As	В	S04	co3	нсоз-	sio ₂	рH	Na/K atomic
1	317	Ρ. 2" φ	24/ 8/73	6600	1920	-	224	-	12411	-	-	-		-	-	-	-	510	-	5.8
3	520	11	20/10/73	7975	2285	28	435	-	15245		-	-	-	-	-	_	-	999	-	5.9
4	510		22/ 9/73	7775	2238	27	385	-	14866	-		-	-	-	-	-		860	-	5.9
5	790	Cono 3''	1/10/73	8550	2470	-	408	-	15912	-		-	-	-	-	-	-	-	-	5.9
6	790		2/10/73	8112	2385	-	414	-	15593	-	-	-	-	-	-	-	-	1030	-	5.8
7	690	Cono 411	5/10/73	8128	2407	-	417	-	15444	-	-	-	-	-	-	-		-	-	5.7
8	340	Ρ. Ι'' φ	27/ 4/74	6180	1905	16	302	-	11184	-	-	-	-	-	-	-	-	785	-	5.5
9	300	11	20/ 1/75	5380	1618	13	256	-	10800	-	-	-	-	-	-	-	-	-	-	5.6
10	112	P.1/2" φ	11/ 8/76	2746	816	-	148.3	-	5448.8	-	-	-	-	-	-	-	91.5	-	-	5.72
12	230	11	21/12/76	5199	1551	13.0	208.0	0.06	10046	-	-	-	-	-	-	-	-	727	-	5.70

۶

					·				·				·					·		
Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	Cl	Br	ł	F	As	В	s04 ⁼	c03 [™]	нсоз-	sio ₂	рĤ	Na/K atomic
1	52.89	Purga 1/2'	31/10/74	5116	1548	-	281	-	9433	-	-	-	-	-		-	-	-	-	5.62
2	52.89		31/10/74	5127	1658	-	237	-	9850	-	-	-	-	-	-	-	-	-	-	5.26
3	64.9	n	31/10/74	4427	1652	-	246	-	8936	-	-	-	-	-	-	-	-	-	-	4.55
4	157.8	11	1/11/74	4612	1525	-	246	-	9334	-	-	-	-	-	-	-	-	_	-	5.14
5	125	11	2/11/74	4954	1673	-	264	-	9830	-	-	-	-	-	-	-	-	-	-	5.03
6	147.7	11	4/11/74	4849	1681	-	224		9830	-	-	-	-	-	-	-	-	-	-	4.9
7	162	п	5/11/74	5078	1716	-	220	-	10674	-	-	-	-	-	-	-	-	-	-	5.02
8	175	и ⁴ ј	6/11/74	5154	1740	-	114	-	9929	-	-	-	-	-	-	-	-	765.7	-	5.04
9	184		7/11/74	4932	1728	-	220	-	9880	-	-	-	-	-	-	-	-	733	-	5.45
10	186	11	8/11/74	4908	1783	-	246	-	10525	-	-	-	-	-	-	-	-	762	-	4.68
11	268	. ti	11/11/74	5286	1790	-	241	-	10574	-	-	-	-	-	-	-	-	-	-	5.01
12	270	11	12/11/74	5290	1859	-	241	-	10922	-	-	-	-	-	-	-	-	715.5	-	4.87
13	274	п	12/11/74	5384	1912	-	233	-	11121	-	-	-	-	-	-	-	-	899.5	-	4.78
14	280	11	15/11/74	5002	1850	-	202	-	10624	-	-	-	-	-	-	-	-	466	-	4.6
15	301		18/11/74	5493	2016	-	246	-	11617	-	-	-	-	-	-	-	-	442	-	4.63
16	328	11	19/11/74	3500	1314	-	171	-	8043	-	-	-	-	-	-	-	-	442	-	4.53
17	315	11	21/11/74	4861	2011	-	277	-	11965	-	-	-	-	-	-	-	-	430	-	3.95
18	335	11	25/11/74	5014	2050	-	220	-	11746	-	-	-	-	-	-	-	-	-	-	4.15
19	429		26/11/74	5697	2138	-	244	-	13446	-	-	-	-	-	-	-	-	-	-	4.52
20	724	Purga 1/2 _x 1" φ	27/11/74	6900	2678	-	300	-	14995	-	-	-	-	-	-	-	-	-	-	4.37
21	849	11	27/11/74	7055	2748	-	340	-	16295	-	-	-	-	-	-	-	-	-	-	4.36
22	909	H	28/11/74	7753	2801	-	352	-	16284	-	-	-	-	-	-	-	-	-	-	4.7

1

Well M-53

Sample Number	Pc (psig)	Flow Conditions	Date	Na	к	Li	Ca	Mg	C1	Br	1	F	As	В	s04 ⁼	c03	нсо ₃ -	si0 ₂	pН	Na/K atomic
23	999	Purga 2"TA	28/11/74	7742	2840	-	296	-	15986	-	-	-	-	-	-	-	-	-	-	4.63
24	979	Purga 2"VR	29/11/74	7905	2664	-	342	-	15986	-	-	-	-	-	-	-	-	-		5.04
25	1044		29/11/74	7963	2669	-	341	-	16185.	-	-		-	-	-	-	-		-	5.07
26	1089	11	29/11/74	7843	2742	-	340	-	16483	-	-	-	-	-	-	-	-	1441	-	4.86
27	1089	- 11	29/11/74	7905	2801	-	348	-	16334	-	-	-	-	-	-	-		-	-	4.8
28	939	Purga 1/2 x 1" ¢	3/ 3/74	7691	-	- '	-	-	16495	-		-	-	-	-	-		-		-
29	922	Purgas A. 1/2 x 1"T.	7/12/74	7770	2726	-	333	-	16145	-	-	-	-	-	-			-		4.84
30	899		11/12/74	8318	1957	_	351	-	17325	-	-	-		-	-	-	-	-		-
31	930	ш	18/12/74	9167	2211	-	349	-	16127	-	-	-	-	<u>-</u> ·		-		-		7.05
32	875	51	27/12/74	7245	2727	-	333	-	15877	_ ·	-	-	-	-		-	-	1190		4.51
33	910	Reg. Purga 1/2" t.a.	2/ 1/75	8260	2750	-	333	-	19450	-	-	-		-			-	1187	-	5.10
34	895	11	6/ 1/75	7820	2781	-	321	-	16100	-	-	-			-	-		-	-	4.77
35	860	P.1/2" t.a 1" R.	14/ 1/75	8200	2751	-	-	-	16200		-		-			-		1216	-	5.06
36	830	11	20/ 1/75	7656	2691	-	320	-	15800	-	-	-		-	-	-			-	4.83
37	635	P.1y1/2"	28/ 2/75	7436	2491	-	317	-	14179	-		-		-	-				-	5.1
38	1100	Lat. 3 x 3" ¢	3/ 3/75	9583	3155	-	409	-	18064		-	-		-	-	+		1350	-	5.2
39	11500	Lin. Lat. 3 x 3-1/2"	5/ 3/75	9660	3157	-	397	-	18258	-			-	-			-	-		5.2
40	10401	Lin. Lat. 3 x 3" φ	5/ 3/75	9759	3216	-	393	7.3	18501	-						6.0	122	1502.	4 -	5.2
41	690	P. 2"	28/10/75	8200	2660	23.5	347	-	15800	-		-	-					885		5.24
42	310	Purga 2" d	12/ 8/76	4614	1184	-	241.4	-	9777.	8 -		-	-			3.6	32.9	-		6.63
43	273	11	22/12/76	5405	1956	17.70	333.0	.07	11252	-		-	-			-		833		4.70
														_					1	

Table 4. Chemical Analyses (mg/l; Na/K Ratio is Atomic) in Repeatedly Collected Samples of the Wells.

Well M-53 (Continued)

Well No.	Sample No.	Date	Separator Pressure Kg/cm²	Separator Steam Flow Ton/Hr.	Separator Water Flow Ton/Hr.	Total Flow Enthalpy cal/g	Na mg/1	K mg/l	Li mg/l	Ca mg/1	Mg mg/l	C1 mg/1	SiO₂ mg/1
M-5	605	1-31-74	6.3	65.5	146.9	315	8749	2068	24.8	489	-	15,850	1035
M-8	757	2-22-74	7.2	71.6	132.3	338	8070	2064	23.7	485	-	15,400	979
M-9	745	2-26-74	5.8	22.0	82.9	265	6316	938	16.1	420	-	10,076	-
M-11	284	2-18-74	8.7	35.7	118.7	283	8187	1876	26.0	566	-	15,300	682
M-20	469	1-31-74	6.2	44.3	107.4	307	6573	1709	19.0	501	-	13,150	776
M-25	26	1-22-74	6.7	59.0	146.2	304	8515	2052	24.6	563	-	16,000	878
M-26	482	1-29-74	6.3	33.6	71.2	320	9474	2283	26.0	774	-	17,600	950
M- 30	8	1-29-74	7.9	81.8	231.5	295	8655	2033	27.2	567	-	16,000	920
M-31	266	2-16-74	19.0	79.5	134.1	348	8047	2009	21.6	453	-	14,506	935
M- 34	233	2-16-74	5.6	25.0	125.0	241	7462	1247	22.0	595	-	12,849	553
M-39	79	2-11-74	6.0	41.8	165.0	258	6552	1087	17.4	420	-	11,300	621

Table 5. Separator Flow, Enthalpy and Chemical Composition in Sets of Repeatedly Collected Samples of the Producing Wells. Sets are Numbered successively According to Sampling Dates.

Separator Separator Separator Total Flow Na Κ Li С1 SiO₂ Ca Mg Well Sample Pressure Steam Flow Water Flow Enthalpy Date mq/l mg/1 mg/l mg/1mg/1 mg/1mg/1 No. No. Kg/cm² Ton/Hr. Ton/Hr. cal/g M-5 4-29-74 608 6.7 65.0 123.0 336 8585 2052 14.4 481 -15,241 611 M-8 758 4-30-74 7.2 69.8 135.8 335 8515 1955 15.1 575 14,408 943 -M-25 27 4-30-74 6.6 6.6 131.3 307 2052 14.6 8936 563 -16,418 948 485 M-26 4-29-74 6.6 6.6 56.5 325 9356 2357 23.0 966 17,006 838 -M-30 9 4-30-74 7.5 7.4 204.3 307 9356 2099 28.6 619 16,565 778 _ M-31 267 4-30-74 7.1 154.1 7.1 332 7859 2443 18.6 428 13,849 770 _ M-34 234 4-30-74 6.2 6.1 108.2 245 6971 1192 25.0 888 --12,644 566 M-39 80 4-30-74 5.7 131.0 5.7 262 6409 1095 12.1 420 12,154 644 -

Set 2

Set 1

٠

÷

~

	Well No.	Sample No.	Date	Separator Pressure Kg/cm²	Separator Steam Flow Ton/Hr.	Separator Water Flow Ton/Hr.	Total Flow Enthalpy cal/g	Na mg/1	K mg/l	Li mg/l	Ca mg/1	Mg mg/1	Cl mg/l	SiO ₂ mg/l
_	M-5	609	7-10-74	6.1	64.6	118.0	337	8802	2028	25.9	500	-	15,720	1048
	M-8	759	7-11-74	6.0	70.8	135.3	336	8213	1835	22.8	445	-	14,384	816
	M-11	286	7-10-74	6.5	23.4	63.9	298	8599	1818	25.1	563	-	15,088	873
	M-20	473	7-10-74	6.2	44.4	108.2	308	7151	1432	18.8	507	-	12,227	-
	M- 25	28	7-10-74	6.2	50.3	121.5	308	8950	2055	-	628	-	16,373	888
	M-26	487	7-11-74	5.9	25.6	50.8	328	9874	2205	31.0	838	-	17,759	828
	M- 30	10	7-11-74	6.9	76.2	196.5	305	9373	1990	26.2	602	-	15,931	896
	M-31	268	7-11-74	6.7	76.6	150.7	332	7988	1795	-	413	-	13,761	766
	M- 34	235	7-11-74	5.8	23.6	104.8	253	6975	1045	-	587	-	12,850	554
	M-39	82	7-10-74	5.1	29.2	126.9	251	6419	909	-	410	-	10,889	578
														····
	Well No.	Sample No.	Date	Separator Pressure Kg/cm²	Separator Steam Flow Ton/Hr.	Separator Water Flow Ton/Hr.	Total Flow Enthalpy cal/g	Na mg/l	K mg/l	Li mg/l	Ca mg/1	Mg mg/l	C1 mg/1	SiO ₂ mg/l
	M-5	610	8-30-74	6.4	64.0	128.9	328	9013	2066	26.2	451	-	15,834	-
	M-8	761	8-29-74	6.9	65.0	68.2	423	7919	1893	20.8	408	-	15,158	
	M-11	287	8-30-74	6.3	19.0	53.7	293	8875	1834	24.4	527	-	15,284	-
	M-15A	11	8-30-74	7.5	92.5	210.8	320	7731	1405	16.6	425	-	13,042	-
	M-20	473	8-30-74	6.8	37.0	109.0	292	6950	1433	18.8	485	-	12,227	-
	M-25	29	8-27-74	5.8	46.0	115.4	303	9238	1990	28.0	544	-	17,041	-
	M-26	488	8-27-74	6.8	36.5	71.4	333	9863	2284	29.9	893	-	18,730	-
	M- 30	11	8-27-74	7.0	73.7	198.8	301	8825	1973	26.4	612	-	15,784	-
	M-31	269	8-27-74	7.1	75.5	135.8	346	8100	1432	22.8	476	-	13,975	-
	M- 34	236	8-27-74	6.0	20.9	103.4	246	7613	1106	15.4	629	-	12,940	-
	M- 35	7	9-10-74	7.8	101.1	208.8	341	8600	2215	24.7	459	-	15,325	-
	M-39	83	8-30-74	5.6	17.7	104.7	233	6275	827	21.2	434	-	10,698	-

Table 5. Separator Flow, Enthalpy and Chemical Composition in Sets of Repeatedly Collected Samples of the Producing Wells.

<u>Set 3</u>

Set 4

LBL-7019

Well No.	Sample No.	Date	Separator Pressure Kg/cm²	Separator Steam Flow Ton/Hr.	Separator Water Flow Ton/Hr.	Total Flow Enthalpy cal/g	Na mg/l	K mg/l	Li mg/l	Ca mg/1	Mg mg/l	C1 mg/1	SiO₂ mg/1
M- 5	615	1-15-75	6.4	59.0	119.2	328	8070	1970	22	332	7.3	15,600	949
M-8	765	1-16-75	7.2	65.4	113.5	348	6535	1675	17	244	9.7	12,700	896
M-11	298	1-20-75	8.1	38.0	127.9	286	7504	1496	22	561	7.3	14.450	758
M-15A	17	1-15-74	6.6	60.2	188.3	286	6003	1125	15	321	13.1	11,500	678
M-20	482	1-10-75	5.9	40.0	100.0	303	6035	1222	15	451	-	11,496	606
M-21A	14	1-10-75	7.8	89.1	54.2	473	9602	2517	24	557	19.4	18,700	894
M-25	33	1-9-75	6.5	45.2	114.7	305	8525	1487	23	457	21.0	15,805	905
M-26	493	1-10-75	6.3	33.6	73.6	320	8663	2043	23	521	9.7	16,900	876
M- 30	15	1-8-75	7.4	69.5	170.3	312	8430	1968	23	540	7.0	15,715	899
M- 31	275	1-8-75	7.5	72.3	135.8	343	7241	1588	17	398	12.8	13,295	731
M- 34	242	1-9-75	6.5	15.2	85.7	241	6925	1104	20	563	9.3	13,096	553
M- 35	12	1-8-75	8.0	105.0	214.4	333	8506	2281	22	342	35.0	16,195	1029

Table 5. Separator Flow, Enthalpy and Chemical Composition in Sets of Repeatedly Collected Samples of the Producing Wells.

۰

٠

Set 6

<u>Set 5</u>

Well No.	Sample No.	Date	Separator Pressure Kg/cm²	Separator Steam Flow Ton/Hr.	Separator Water Flow Ton/Hr.	Total Flow Enthalpy cal/g	, Na mg/1	K mg/l	Li mg/1	Ca mg/1	Mg mg/1	C1 mg/1	SiO ₂ mg/1
M-5	620	3-10-75	6.4	56.4	125.5	318	8037	1994	-	463	-	15,005	884
M-8	768	3-12-75	7.1	65.0	119.2	342	6526	1557	-	324	-	11,994	893
M-11	311	3-10-75	6.9	35.0	116.2	282	7829	1510	-	639	-	14,791	-
M-15A	20	3-11-75	6.7	56.8	196.1	278	5992	1107	-	413	-	10,926	668
M-19A	14	3-10-75	6.4	55.4	138.5	306	8606	2157	-	525	-	16,025	923
M-20	186	3-10-75	6.4	33.2	90.4	297	6086	1222	-	465	-	11,265	606
M-21A	18	3-11-75	7.4	82.3	74.5	425	9177	2262	-	647	-	17,190	903
M-25	37	3-11-75	5.7	43.2	96.3	315	8211	1972	_	539	-	15,199	942
M- 30	18	3-13-75	4.8	68.2	171.9	309	8111	1929	-	569	-	15,345	877

1	Well No.	Sample No.	Date	Separator Pressure Kg/cm²	Separator Steam Flow Ton/Hr.	Separator Water Flow Ton/Hr.	Total Flow Enthalpy cal/g	Na mg/1	K mg/1	Li mg/l	Ca mg/1	Mg [.] mg/1	C1 mg/1	SiO ₂ mg/l
	M-31	278	3-12-75	7.4	69.0	138.4	333	6907	1604	-	413	-	12,470	657
	M- 34	245	3-13-75	4.3	16.8	84.0	247	6670	1161	-	569	-	12,528	557
	M-35	15	3-12-75	7.4	105.0	218.7	331	8356	2122	-	473	-	15,665	1007

Table 5.	Separator Flow	w, Enthalpy	and	Chemical	Composition	in	Sets	of	Repeatedly	Collected	Samples
	of the Produc	ing Wells.									

Well No.	Sample No.	Date	Separator Pressure Kg/cm²	Separator Steam Flow Ton/Hr.	Separator Water Flow Ton/Hr.	Total Flow Enthalpy cal/g	Na mg/l	K mg/l	Li mg/l	Ca mg/1	Mg mg/l	Cl mg/l	SiO ₂ mg/l
M-5	625	5-20-75	6.3	54.5	127.2	312	8001	1877	_	461	-	15,407	901
M-8	772	5-21-75	6.6	68.6	118.4	346	6656	1557	-	315	-	12,140	863
M-11	315	5-22-75	5.9	14.5	62.9	255	6332	801	-	645	-	12,160	551
11	316	5-27-75	N.D.	N.D.	N.D.	-	6360	772	-	653	-	11,994	-
M-15A	22	5-23-75	6.4	52.3	180.6	276	6141	1044	-	405	-	11,311	636
M-19A	19	5-20-75	5.8	50.9	108.4	319	8702	2105	-	517	-	16,431	680
M-20	491	5-21-75	6.4	36.4	91.2	309	6785	1437	-	491	-	12,969	686
M-21A	22	5-26-75	7.1	81.8	85.3	407	8989	2206	-	605	-	17,289	829
M-25	43	5-23-75	6.3	45.4	100.4	318	8510	1847	-	527	-	15,807	765
M-30	25	5-23-75	6.9	66.3	167.2	309	8993	1818	-	554	-	15,612	839
M-31	285	5-21-75	7.6	70.4	136.7	336	6965	1563	-	441	-	13,263	711
M-34	250	5-22-75	5.9	13.6	80.2	234	7202	1220	-	597	-	13,349	477
M-35	21	5-27-75	7.5	104.0	202.2	336	8337	2072	-	459	-	15,992	891

Set 7

Set 6

LBL-7019

.

C

<u>Set 8</u>

۲

.

Table 5. Separator Flow, Enthalpy and Chemical Composition in Sets of Repeatedly Collected Samples of the Producing Wells.

Well No.	Sample No.	Date	Separator Pressure Kg/cm²	Separator Steam Flow Ton/Hr.	Separator Water Flow Ton/Hr.	Total Flow Enthalpy cal/g	Na mg/1	K mg/1	Li mg/l	Ca mg/1	Mg mg/l	C1 mg/1	SiO ₂ mg/1
M-5	632	7-15-75	6.4	54.5	112.1	326	7950	2950	22.3	461	-	15,150	958
M-8	773	7-17-75	6.9	59.9	127.6	325	6100	1664	18.0	303	-	11,800	873
M-15A	28	7-28-75	6.6	44.5	163.6	272	5980	1004	12.6	105	-	11,100	619
M-19A	23	7-15-75	7.21	85.3	116.0	375	8320	2260	24.3	525	-	16,950	975
M-20	495	7-15-75	6.0	37.7	115.8	286	5700	1216	11.9	470	-	11,350	595
M-21A	26	7-28-75	7.1	77.2	84.1	405	8020	2150	20.3	571	-	15,300	817
M-25	47	7-28-75	6.3	39.9	93.2	312	7630	1930	28.8	512	-	15,400	893
M-30	31	7-16-75	7.1	62.6	134.2	224	7600	1880	21.6	561	-	15,200	791
M-31	289	7-17-75	7.0	64.0	135.0	326	6320	1500	16.3	413	-	12,750	744
M- 34	254	7-16-75	5.9	13.6	64.8	251	6650	1142	18.7	593	-	12,900	556
M-35	25	7-28-75	7.8	102.6	195.2	340	7840	2098	21.6	435	-	15,600	1010

	Well No.	Sample No.	Date	Separator Pressure Kg/cm²	Separator Steam Flow Ton/Hr.	Separator Water Flow Ton/Hr.	Total Flow Enthalpy cal/g	Na mg/1	K mg/1	Li mg/l	Ca mg/1	Mg mg/1	Cl mg/l	SiO₂ mg/l
<u>Set 9</u>	M-5	651	9-22-75	6.6	176.9	49.9	304	7900	1950	21.2	456	-	15,466	1097
	M-8	781	n	7.2	169.8	61.8	347	6420	1470	16.2	323	-	11,863	1089
	M-9	754	11	7.4	118.3	28.9	290	6020	910	13.8	440	-	10,862	594
	M-15A	32	13	7.0	266.1	50.4	262	6350	1010	13.0	432	-	11,315	717
	M-19A	26	11	7.6	187.3	73.6	362	7580	1890	20.3	441	-	14,666	1296
	M-20	500	11	6.7	124.0	30.9	289	6380	1200	12.8	450	-	11,412	641
	M-21A	30	U	7.7	163.6	73.2	389	8500	2120	19.8	555	-	16,518	819
	M-25	53	11	6.4	124.9	39.1	319	7960	1950	22.4	532	_	15,667	1171
	M-26	512	11	7.8	226.6	84.5	354	8350	2040	19.0	780	-	16,418	962

E

	Well No.	Sample No.	Date	Separator Pressure Kg/cm²	Separator Steam Flow Ton/Hr.	Separator Water Flow Ton/Hr.	Total Flow Enthalpy cal/g	Na mg/l	K mg/l	Li mg/l	Ca mg/1	Mg mg/l	C1 mg/1	SiO ₂ mg/l
Set 9	M- 30	35	11	7.4	218.4	61.3	307	8100	1850	21.0	560	-	15,466	1070
	M-31	293	ri	8.1	220.0	73.6	336	6450	1480	18.5	434	-	13,114	838
	M-34	258	11	7.1	69.5	11.3	250	6700	1180	18.5	665	-	12,964	714
	M-35	29		8.0	284.2	95.0	336	7500	2090	21.5	434	-	15,667	1070

Table 5.	Separator Flow,	Enthalpy a	nd Chemical	Composition	in S	Sets o	<pre>F Repeatedly</pre>	Collected	Samples
	of the Producing	g Wells.							

	Well No.	Sample No.	Date	Separator Pressure Kg/cm²	Separator Steam Flow Ton/Hr.	Separator Water Flow Ton/Hr.	Total Flow Enthalpy cal/g	Na mg/l	K mg/1	Li mg/l	Ca mg/l	Mg mg/l	C1 mg/1	SiO ₂ mg/l
<u>Set 10</u>	M-5	657	11-12-75	6.9	50.0	125.6	308	7550	1820	21.6	455	-	15,600	930
	M-8	784	11-11-75	7.1	58.2	115.0	333	6300	1440	20.0	314	-	11,900	895
	M-9			6.7	23.6	70.9	290	5800	944	14.2	422	-	11,100	495
	M-15A	38	11-10-75	6.9	44.1	168.4	271	5830	1000	13.0	375	-	11,140	600
	M-25	57	11-10-75	7.0	36.8	86.2	314	7880	2030	22.0	687	-	15,700	895
	M-26	516	11-10-75	7.0	76.8	111.8	367	7830	1910	17.5	687	-	15,300	817
	M- 30	46	11-11-75	7.3	60.4	155.2	307	7620	1940	20.3	543	-	15,100	807

<u>Set 11</u>

Well No.	Sample No.	Date	Separator Pressure Kg/cm²	Separator Steam Flow Ton/Hr.	Separator Water Flow Ton/Hr.	Total Flow Enthalpy cal/g	Na mg/l	K mg/l	Li mg/l	Ca mg/1	Mg mg/l	C1 mg/1	SiO₂ mg/l
M-5	662	3-8-76	6.2	48.1	106.7	317	7976	1892	21.8	445	0.5	15,210	1159
M-8	790	3-8-76	6.9	54.5	118.3	323	6435	1419	17.1	297	0.3	12,110	1045
M-15A	43	3-8-76	6.3	40.9	169.2	261	5810	984	13.3	381	1.5	10.900	717
M-19A	35	3-9-76	6.7	61.7	102.2	351	8232	2087	22.9	493	0.4	16,200	1121
M-20	510	3-8-76	6.3	29.0	72.4	307	5980	1254	13.5	445	2.1	11,580	735
M-25	62	3-8-76	6.3	35.4	77.1	320	8081	1935	22.3	465	0.8	15,380	1076

LBL-7019

Sample

No.

522

127

53

Date

3-8-76

3-8-76

3-8-76

Separator

Pressure

Kg/cm²

7.7

6.3

7.1

Separator

Steam Flow

Ton/Hr.

87.6

26.8

89.4

Mg

mg∕1

0.7

1.4

0.5

C1

mg/1

13,300

12,510

15,160

SiO₂

mg/1

1000

708

1129

Total Flow

Enthalpy

cal/g

328

219

322

Na

mg/l

6830

6813

7875

Κ

mg/l

1548

1088

1969

Li

mg/l

16.8

19.2

21.7

Ca

mg/l

577

513

414

Separator

Water Flow

Ton/Hr.

186.8

220.2

196.0

Set	11	

Set

Well

No.

M-26

M-29

M-35

Well No.	Sample No.	Date	Separator Pressure Kg/cm²	Separator Steam Flow Ton/Hr.	Separator Water Flow Ton/Hr.	Total Flow Enthalpy cal/g	Na mg/1	K mg/1	Li mg/l	Ca mg/l	Mg mg/l	C1 mg/1	SiO ₂ mg/l
M-5	663	5-24-76	7.35	47.7	112.2	312	7921	1922	18.9	523	0.48	14,990	900
M-8	791	11	7.35	56.4	90.2	358	5591	1371	15.3	281	0.10	10,580	840
M~15A	44	(1	7.00	48.6	183.0	272	5822	1001	13.5	409	1.6	10,890	580
M-19A	36	ai -	7.56	63.4	108.0	350	8490	2110	23.4	572	0.25	16,110	-
M-20	514	11	6.65	27.9	85.3	287	6346	1361	14.7	545	.7	12,050	-
M-21A	39	11	9.10	77.3	114.0	370	8683	2186	20.9	699	0.3	16,880	-
M-25	63	11	7.35	33.2	84.4	305	7804	1918	23.1	557	0.46	15,060	-
M-26	526	н	22.32	85.4	184.4	328	6556	1509	16.7	610	0.61	13,480	_
M-29	129	U	7.00	28.2	246.6	6841	6841	1152	19.7	529	0.81	12,580	-
M-30	56	11	7.70	58.2	147.4	309	7952	1864	22.1	625	0.79	15,080	-
M-31	304	н	8.05	59.5	124.5	328	6551	1494	17.8	437	0.15	13,530	-
M-35	107	н	9.10	89.0	187.5	327	7781	2016	22.2	496	0.27	15,100	-
M- 39	132	u	6.93	28.6	139.5	252	5719	957	13.2	452	5.63	10,500	_

LBL-7019

	Well No.	Sample No.	Date	Separator Pressure Kg/cm²	Separator Steam Flow Ton/Hr.	Separator Water Flow Ton/Hr.	Total Flow Enthalpy cal/g	Na mg/1	K mg/l	Li mg/l	Ca mg/1	Mg mg/l	C1 mg/l	SiO₂ mg/l
<u>Set 13</u>	M-5	664	8-10-76	7.70	46.5	105.6	317	6914	1631	-	443	-	12,537	-
	M-30	58	8-10-76	7.42	57.2	140.7	311	6913	1592	-	532	-	12,647	-
	M-35	169	8-10-76	7.56	82.6	188.4	245	6831	1718	-	422	-	12,497	-
	M- 39	133	8-12-76	6.16	15.9	80.2	245	5178	876	-	418	-	9448	-

Table 5.	Separator Flow,	Enthalpy and	d Chemical	Composition	in	Sets o	f Repeatedly	Collected	Samples
	of the Producing	g Wells.							

	Well No.	Sample No.	Date	Separator Pressure Kg/cm²	Separator Steam Flow Ton/Hr.	Separator Water Flow Ton/Hr.	Total Flow Enthalpy cal/g	Na mg/1	K mg/l	Li mg/l	Ca mg/l	Mg mg/1	C1 mg/1	SiO ₂ mg/l
	M-5	666	9-23-76	6.3	47.6	124.7	301	8016	1899	22.9	504	0.50	14,828	1318
	M-8	792	"	6.5	38.9	77.3	330	5257	1310	14.5	258	0.04	10,128	971
	M-11	331	11	6.5	-	-	304	8229	2032	25.20	550	0.34	16,129	1345
•	M-14	11		7.0	57.7	132.3	317	7079	1439	17.7	445	0.61	13,113	960
	M-15A	45		6.7	48.3	170.0	276	5951	984	12.9	407	1.57	11,057	746
	M-19A	37		7.2	56.6	142.8	308	8238	2058	24.4	556	0.21	16,329	1291
	M-21A	40	11	7.1	63.9	89.9	372	8761	2252	21.7	679	0.18	17,271	1104
	M-25	64	11	5.6	31.8	78.2	308	8063	1911	23.4	526	0.47	15,315	1141
	M-26	528	11	7.4	7716	153.8	335	6686	1514	19.9	581	0.69	12,606	1006
	M~27	24		7.2	50.1	37.2	-	5884	1384	13.1	361	0.04	11,366	960
	M-29	130		6.5	30.4	253.7	219	6966	1156	20.3	554	1.39	12,971	739
	M-30	90	t1	7.1	56.5	170.9	291	7809	1833	22.0	596	0.82	15,173	1077
	M-31	305		7.2	59.6	114.2	337	6913	1540	18.4	463	0.16	13,205	833
	M- 35	191	11	7.4	82.3	179.7	324	7658	1956	22.0	459	0.24	14,776	1207
	M-39	134	11	5.6	13.5	67.0	245	5417	801	12.2	404	3.29	10,181	611

<u>Set 14</u>

LBL-7019

102

Separator Separator Separator Total Flow Na Κ Li Ca Mq C1 Si02 Well Sample Pressure Steam Flow Water Flow Enthalpy Date mq/1mg/l mg/l mq/1mg/l mq/1mq/1Kg/cm² Ton/Hr. Ton/Hr. No. No. cal/q 12-21-76 M-5 667 7.3 46.1 122.5 304 8487 1969 21.4 1034 403 0.24 15,599 Set 15 ш M-8 793 6.9 31.2 78.6 305 6411 1456 18.6 382 0.14 11,945 920 M-11 332 12-22-76 7.0 17.0 47.3 298 8366 2124 23.6 389 0.22 15,588 1040 12-21-76 M-14 12 7.5 58.4 149.7 308 7375 1469 17.0 346 0.41 13,383 877 н M-15A 46 6.3 21.2 81.0 267 5819 855 1.70 10.9 313 10,286 781 п M-19A 38 7.5 57.4 140.8 315 8707 2118 21.3 440 0.180 16,148 1094 IF-M-20 517 6.6 27.1 85.4 288 6266 1234 12.4 448 1.90 11,724 760 п M-21A 41 7.2 64.2 111.3 351 8355 2000 17.5 537 0.23 16,058 972 п 65 M-25 6.9 29.3 72.1 312 8138 1942 21.4 372 15,263 984 0.28 н M-26 529 7.4 73.8 299 213. 6562 1467 15.1 510 0.43 12,606 942 п M-27 25 7.0 42.6 58.5 378 5752 1314 15.3 471 0.04 11,233 933 41 M-29 131 6.7 26.7 228.1 221 7072 1236 19.3 271 0.90 12,830 320 H M-30 61 7.5 55.0 141.5 310 7881 1927 16.8 514 0.50 15,263 947 п M-31 306 7.6 52.8 121.9 322 7104 1539 16.7 336 0.11 13,076 800 11 M-35 192 7.5 78.2 178.0 323 7987 2005 20.5 381 0.12 15.075 1037

Set 16

Well No.	Sample No.	Date	Separator Pressure Kg/cm²	Separator Steam Flow Ton/Hr.	Separator Water Flow Ton/Hr.	Total Flow Enthalpy cal/g	Na mg/1	K mg/l	Li mg/l	Ca mg/1	Mg mg/1	Cl mg/l	SiO₂ mg/l
M-5	668	2-17-77	6.6	46.0	124.5	298	8167	1975	21.2	423	0.63	15,364	1066
M-8	798	2-10-77	6.4	25.9	53.6	326	6369	1525	16.2	285	0.21	11,863	973
M-11	333	2-17-77	6.9	18.5	48.6	321	8478	2044	24.0	471	0.44	15,751	1034
M-14	13	2-3-77	7.5	57.8	154.6	308	7212	1468	16.7	389	0.99	12,893	845
M-15A	48	2-4-77	6.3	12.3	49.5	264	5576	791	10.4	337	1.85	9,886	578
M-19A	39	2-7-77	7.3	52.1	124.2	312	8463	2318	22.6	481	0.44	15,892	1151
M-20	518	2-7-77	6.6	24.5	72.0	391	6392	1189	13.1	481	2.20	11,846	729

LBL-7019

103

	Well No.	Sample No.	Date	Separator Pressure Kg/cm²	Separator Steam Flow Ton/Hr.	Separator Water Flow Ton/Hr.	Total Flow Enthalpy cal/g	Na mg/l	K mg/l	Li mg/l	Ca mg/1	Mg mg/1	C1 mg/1	SiO ₂ mg/1
<u>Set 16</u>	M-21A	42	2-9-77	6.8	63.3	116.2	340	8361	2096	18.5	533	0.36	15,740	948
	M-25	66	2-8-77	6.3	29.8	69.7	314	8043	2029	21.6	461	0.68	15,249	990
	M-26	530	2-9-77	7.0	72.5	193.2	304	6607	1572	15.6	493	0.74	12,409	903
	M-27	26	2-10-77	7.1	41.0	64.3	359	5986	1468	14.6	293	0.12	11,041	963
	M-29	132	2-9-77	6.5	28.2	235.3	219	7002	1312	19.4	501	0.91	12,915	682
	M-30	62	2-10-77	7.2	55.3	140.7	307	8063	2005	20.7	595	0.81	15,225	960
	M-31	307	2-11-77	6.7	52.6	116.4	320	6514	1647	16.8 [,]	373	0.22	12,260	824
	M-35	214	2-11-77	7.4	78.9	179.1	319	7874	1980	20.4	399	0.31	14,585	1119

Table 5. Separator Flow, Enthalpy and Chemical Composition in Sets of Repeatedly Collected Samples of the Producing Wells.

Table 6. Chemical and Physical Well Data by Reed (1975).

Wall		Pressure	(bar)	Separator	Separator -	Mass Flow	(10 ³ kg/hr)		Total
No	Date	Well Head	Separator	Temperature (°C)	Steam	Silencer Water	Silencer Steam	Total	Enthalpy (cal/g)
M-5	1/30/74	7.49	7.22	166.1	65.5	146.9	21.1	233.5	305.9
M-8	2/22/74	7.91	7.84	169.6	71.6	132.3	20.1	224.0	327.8
M-9	2/22/74	6.67	6.18	160.0	22	(128)*	0	150	234
M-11	2/18/74	41.7	8.67	173.6	35.7	118.7	19.4	173.8	271.9
M-20	1/31/74	7.08	6.67	163.0	44.3	107.4	14.6	166.3	296.3
M-25	2/21/74	7.58	6.70	163.2	59.0	146.2	19.9	225.1	294.3
M-26	2/21/74	7.19	6.70	163.2	33.6	71.2	9.7	114.5	309.8
M-29	2/ 8/74	6.87	6.80	164.0	10	(54)*	0	64	242
M- 30	2/21/74	8.74	7.63	168.5	81.8	231.5	34.7	348.0	285.5
M-31	2/16/74	19.6	7.91	170.0	79.5	134.1	20.6	234.2	337.8
M-34	2/16/74	6.53	6.39	161.2	25.0	125.0	16.4	166.4	237.1
M- 39	2/12/74	6.87	6.53	162.1	41.8	165.0	22.0	228.8	254.0

6a. Well Conditions during Sampling, for Producing Wells, in the Cerro Prieto Geothermal Field.

* Separator water flow estimated from well records made prior to removal of the silencer.

Well	Lab. pH				Concen	tratio	n (mg/1)			
No	(at 25°C)	Li	Na	к	Mg	Ca	HC03	C1	S04	S102	В
M-5	8.2	22.5	8350	2050	0.8	525	42.8	15,600	<5	1000	21
M-8	8.3	18.5	8000	2000	0.4	460	65	15,300	15	1000	20
M-9	8.0	12.5	5550	880	1.8	420	66	10,000	32	500	13
M-11	8.2	20.0	8200	1800	1.1	540	40	16,700	10	900	19
M-20	8.4	15.5	7100	1620	1.4	510	57.9	12,800	<5	800	17
M-25	8.1	23.0	8650	2000	0.6	585	44.0	16,900	7	900	20
M-26	8.0	20.5	9050	2200	0.9	840	39.6	16,800	<5	1000	19
M-29	8.1	15.0	6450	1200	3.7	480	54.7	12,100	15	500	18
M- 30	8.1	22.0	8500	1980	0.9	585	36.4	16,400	16	950	19
M-31	8.3	19.5	7700	1930	0.2	500	48.4	15,400	6	850	19
M-34	8.3	18.0	7100	1200	3.0	645	48.4	13,100	40	600	16
M- 39	8.4	14.0	6100	1080	1.9	455	60.4	11,300	47	650	18

6b. Chemical Composition of Separated Water Samples from Wells in the Cerro Prieto Field.

6c. Composition of Separated Steam Samples from Wells in the Cerro Prieto Field.

Well	Pressure	e (bar)	Steam Flow	Composition (mg/kg			
No	Well Head	Separator	(kg/hr)	C0 ₂	H ₂ S		
M~5*	21.7	7.91	67,000	6,200	1,420		
M-8	8.60	7.98	73,000	8,060	1,950		
M-9	8.18	8.18	32,000	5,500	1,300		
M-11*	40.7	10.8	46,000	6,060	1,470		
M-20	7.98	7.47	41,000	8,150	1,540		
M-29*	7.56	7.36	57,000	10,100	1,450		
M-31	20.7	7.22	78,000	6,530	1,750		
M-34	6.87	6.24	42,000	7,960	1,630		

* Analyses supplied by A. Mañon (personnal communication, 1974).

Well	Sample	Date	RЬ	Cs	Sr	Ba	S04	Be	Mn	Fe	Co	Ni	Cr	Cu	Zn	A)	As	F	Br	1
M-5	666	9/23/76	11.2	39.5	15.4	9.39	13.0	<0.03	0.88	0.51	<0.01	<0.01	<0.5	<0.05	0.06	0.01-0.05	1.50	2.0	23.75	0.74
M-8	331	9/23/76	8.4	25.5	7.3	5.72	10.0	<0.03	0.04		<0.01	<0.01	<0.5			0.01-0.05	0.60		12.50	0.45
M-14	11	9/23/76	7.9	33.2	17.6	10.71	11.0	<0.03	0.02	0.80	<0.01	<0.01	<0.5	<0.05	0.01	0.01-0.05	1.50	2.38	17.50	0.59
M-15A	45	9/23/76	4.1	26.0	20.6	10.73	8.0	<0.03	0.39	1.87	<0.01	<0.01	<0.5	<0.05	0.01	0.01-0.05	1.20		9.25	0.63
M~19A	37	9/23/76	12/0	42.3	15.1	10.94	12.0	<0.03	1.80	1.35	<0.01	<0.01	<0.5	0.5 - 0.1	0.01	0.01-0.05	1.11		28.33	0.65
M-21A	40	9/23/76	13.3	45.2	13.3	12.10	13.0	<0.03	0.47		<0.01	<0.01	<0.5		0.01	0.01-0.05	2.55	3.16	26.80	0.67
M-25	64	9/23/76	11.1	41.6	15.7	10.82	12.0	<0.03	0.60	0.31	<0.01	<0.01	<0.5	<0.05	<0.01	0.01-0.05	0.84	2.50	30.75	0.63
M-26	528	9/23/76	9.4	30.6	13.4	14.30	12.0	<0.03	0.33	0.61	<0.01	<0.01	<0.5	0.91-0.05	0.07	0.01-0.05	2.63		32.50	
M-27	24	9/23/76	9.3	29.4	8.2	6.13	14.0	<0.03	0.14	1.40	<0.01	<0.01	<0.5	*0.95	*0.19	0.01-0.05	1.98	2,44	22.00	0.57
M-29	130	9/23/76	6.7	32.5	25.2	10.44	10.0	<0.03	0.54	1.90	<0.01	<0.01	<0.5		0.03	0.01-0.05	0.4		17.50	0.48
M-30	90	9/23/76	11.0	38.9	18.8	8.03	13.0	<0.03	2.65	0.50	<0.01	<0.01	<0.5	*1.0	0.01	0.01-0.05	0.47	1.32	33.50	0.58
M-31	305	9/23/76	9.7	34.9	15.3	7.14	18.0	<0.03	0.15	0.26	<0.01	<0.01	<0.5	0.05	0.01	0.01-0.05	0.89		13.00	0.54
M-35	191	9/23/76	11.5	38.6	14.6	8.90	10.0		0.57	1.18	<0.01	<0.01	<0.5	0.05	0.02	0.01-0.05	1.00	1.28	21.00	0.66
M-39	134	9/23/76	3.0	23.9	20.0	9.05	8.0	<0.03	0.43	0.62	<0.01	<0.01	<0.5	0.05	0.01	0.01-0.05	0.32		5.80	0.56
M-11	331	9/23/76	12.3	40.9	15.0	11.48	12.0	<0.03			<0.01	<0.01	<0.5			0.01-0.05	1.1	1.7	13.50	0.70

Table 7. Trace Elements and Sulfate in Producing Wells.

•

* Sample may be contaminated by brass parts of sampling vessel.

Well No	Years	C02	H ₂ S	NH3*	CO ₂ /H ₂ S
M- 3	66-70	2.44 (5)	0.19 (5)	-	12.84
M-5	67-75	1.43 (31)	0.18 (31)	0.009 (4)	7.94
M-8	67-75	3.38 (53)	0.30 (53)	0.009 (3)	11.26
M-9	67-75	1.32 (31)	0.17 (31)	-	7.76
M-10	67-70	4.73 (8)	0.25 (8)	-	18.92
M-11	67-75	1.83 (17)	0.24 (17)	0.009 (2)	7.63
M-15A	74-75	2.50 (10)	0.23 (10)	0.010 (3)	10.87
M-19A	75	1.51 (7)	0.20 (7)	0.009 (3)	7.55
M-20	68-75	2.62 (22)	0.233 (22)	0.010 (3)	11.24
M-21A	74-75	1.91 (9)	0.184 (9)	0.010 (3)	10.38
M-25	74-75	1.51 (9)	0.183 (9)	0.009 (3)	8.25
M-26	67-75	1.63 (28)	0.204 (28)	0.009 (1)	7.99
M-29	69-73	3.43 (13)	0.205 (13)	-	16.73
M-30	74-75	1.30 (8)	0.182 (8)	0.008 (3)	7.14
M-31	68-75	2.50 (21)	0.240 (21)	0.009 (3)	10.42
M- 34	68-75	1.82 (17)	0.172 (17)	0.010 (3)	10.58
M- 35	74-75	1.17 (8)	0.168 (8)	0.010 (3)	6.96
M- 38	68-69	4.02 (46)	0.274 (46)	-	14.67
M- 39	74	2.78 (1)	D.290	-	9.59

Table 8.	Average gas contents in producing wells;	percent	of	dry	gas
	in the steam (and number of samples).				

* NH₃ analyses of 1975.

Na	К	Li	Ça	Mg	C1	Br	\$04	нсоз	sio ₂	Na/K atomic	Na/Li	Na/Ca	c1/s04	Ca/Mg
4,050 4,050 4,200 3,300 1,700 4,050 3,950 3,830 19,000 3,900	655 642 680 510 160 662 688 640 1,850 447	12.6 11.5 14.7 12.7 2.5 8.5 10.2 10.2 61.0 12.0	359 405 375 459 468 296 304 329 2,710 440	49 63 25 91 98 53 12 18 568 92	8,360 8,640 10,000 9,250 2,900 9,000 9,050 8,650 41,000 8,280	4.3 4.6 6.6 12.1 0 6.1 25.5 9.1 6.5 7.5	41 30 39 21 225 92 62 76 3,650 143	308 366 290 414 0 122 98 110 244 488	123 112 81 93 295 87 114 120 138 159	10.5 10.7 13.0 11.0 18.1 10.4 9.7 10.2 17.4 14.4	97 106 107 78 205 135 117 113 94 98	19.7 17.4 24.2 12.5 6.2 24.4 22.6 20.4 12.2 15.3	553 782 702 1,212 35 270 403 302 33 158	4.4 3.9 9.1 3.0 2.9 3.4 15.8 11.4 2.9 2.9
7,000 2,930 4,170 4,150 79,800 48,000 3,750 27,800 6,400 3,140	1,044 570 741 598 6,890 3,700 546 2,430 1,030 390	17.4 8.3 - 220.0 105.0 10.0 69.0 19.0 8.9	760 246 327 454 5,880 4,170 340 2,680 622 392	206 22 13 3 2,020 1,730 51 948 120 65	13,760 6,730 8,500 183,000 99,500 7,570 58,400 12,340 6,450	21.1 - - 2.5 6.9 3.7 21.9 8.2	1,060 260 186 328 1,275 3,640 88 3,310 630 115	0 6 732 132 224 584 122 488	119 273 222 253 36 71 96 81 166 130	10.8 8.7 9.6 11.8 17.1 22.0 11.7 19.4 10.6 13.7	121 106 - - 109 138 113 121 101 106	16.0 20.7 22.3 15.8 23.5 20.0 19.1 18.1 17.9 13.9	35 71 125 67 395 75 235 48 53 154	2.2 6.7 15.2 86.0 1.7 1.5 4.0 1.7 3.1 3.6
5,150 4,250 4,970 13,200 4,620 4,100 4,080 4,270 4,250 4,000	670 535 555 1,180 695 540 545 603 610 537	13.2 11.6 11.8 28.2 10.9 11.3 9.9 10.8 10.9 9.5	400 340 720 1,625 335 358 360 410 380 364	46 24 96 292 39 51 64 56 17 19	10,500 8,600 10,050 9,100 8,040 7,900 7,930 8,300 7,930	- 12.3 14.3 19.0 13.3 11.4 8.4 6.9 13.0 12.3	130 20 350 2,960 45 4 21 19 13 17	194 98 352 84 74 452 388 388 388 74	87 101 59 186 162 100 108 121 94 88	13.1 13.5 15.2 19.0 11.3 12.9 12.7 12.9 11.8 11.7	118 110 127 141 128 109 124 119 118 127	22.4 21.7 12.0 14.3 24.0 20.0 19.6 18.1 19.5 19.1	221 1,215 82 24 553 718 895 1,145 1,705 1,273	5.3 8.5 4.5 3.4 5.1 4.2 3.4 4.4 13.8 11.6
4,350 3,770 3,380 3,850 4,100 3,660 6,000	657 664 580 757 990 540 800	10.8 11.4 10.2 10.8 11.9 9.9 18.4	354 394 348 325 316 344 1,436	8 55 80 53 24 39 105	8,400 7,120 6,890 7,700 8,360 7,600 12,250	- 1.4 1.0 6.4 14.6 5.8	17 91 55 244 102 8 1.920	30 438 438 98 48 282 204	70 134 103 114 100 130 80	11.2 9.6 9.9 8.7 7.0 11.4 12.8	124 100 100 107 104 111 99	21.4 16.7 16.9 20.5 18.1 18.3 7.2	1,355 216 342 86 242 2,670 17	27.3 4.3 2.6 3.7 8.0 5.3 8.2

Table 9. Chemical Composition of Springs in ppm (Mercado, 1968).

Spring Temp

°Ċ

94

36

79

78

. 56

54

No.

Ĩ4

6

8

14

16

34

36

Acidity

C02

18

6,000

4,370

3,950

6,000

18.4

8.0

9.0

13.5

1,436

1,060

1,160

12,250

9,950 8,000

13,700

16.6

17.6

10.9

18.0

1,920

12.8

17.5

16.0

15.0

7.2

9.0

11.2

31

0.8

1.1

1.0

pН

6.8

6.35

6.85

6.50

2.0

6.15

7.55

7.08

4.60

6.20

3.60

2.60

3.73

4.25

5.85

5.95

6.05

5.50

5.57

6.25

7.02

6.48

6.65

5.05

5.55

6.28

6.65

6.45

8.15

7.33

8.35

6.35

6.48

6.75

6.75

6,70

6.40

4.68

1.65

4.05

LBL-7019

۰.

Table 9. (Continued)

۰...

Spring No.	Temp °C	pН	Acidity CO ₂	Na	к	Li	Ca	Mg	C1	Br	s04	нсоз	\$10 ₂	Na/K atomic	Na/Li	Na/Ca	c1/s04	Ca/Mg
41 42 43 44 45 46 47 48 49 50	40 37 60 33 26 63 46 69 57 69	2.40 6.55 6.70 1.56 7.75 6.55 6.35 6.44 6.50 7.10	180 20 218 10 20 25 30 40 30	4,100 5,800 3,700 6,020 5,000 4,620 4,450 3,700 1,350 250	1,010 1,110 567 600 1,040 565 540 233 91	12.1 20.0 10.8 10.6 16.2 13.4 13.9 10.7 4.4 1.0	407 641 391 698 450 415 435 358 283 34	81 71 68 347 28 55 49 61 20 2	8,410 11,950 7,350 13,150 10,000 8,820 8,500 7,070 2,930 793	9.4 21.9 7.8 15.6 - - 9.4 - 0	690 8 18 429 20 6 7 5 960 225	0 390 268 0 122 212 232 484 128 340	247 375 114 172 80 93 125 80 45 40	7.0 9.0 11.1 17.5 8.3 13.9 14.0 12.5 9.8 4.6	102 87 103 172 93 101 97 104 92 75	17.4 15.7 16.4 15.1 19.5 19.5 17.6 18.0 10.1 12.7	33 390 1,120 98 138 382 3,600 3,730 8 9	2.8 5.5 3.5 1.2 9.6 4.5 5.9 3.6 8.5 8.6
51 52 53 *54 *55 *56 *57 58	65 33 56 98 100 100 100 35	8.0 1.32 5.70 7.4 8.1 7.8 7.5 6.65	0 3,605 88 0 0 0 0 58	4,860 510 4,760 3,700 4,010 3,900 3,700 3,780	1,200 305 1,210 400 430 410 415 495	15.8 0.6 16.0 8.0 8.5 8.0 8.3 10.8	381 116 416 492 488 480 458 360	7 19 38 39 48 35 82	10,150 0 10,160 6,700 7,070 6,930 6,510 7,240	17.2 - - 12.0 14.7	28 7,025 172 130 112 107 132 5	60 0 158 42 22 36 40 624	92 395 114 92 81 74 80 80	6.9 2.8 6.7 15.5 15.8 16.1 15.1 13.0	93 256 90 139 145 147 135 106	22.0 7.6 19.8 13.0 14.3 14.1 14.1 18.3	987 - 162 141 173 178 136 3,750	35.0 - 14.0 7.9 7.8 6.2 7.9 2.7

* Tulecheck; 100°C Springs, 17 km N-W of Cerro Prieto Volcano.

601

.

LBL-7019

	Sample Number	Date	Temp °C	Flow Conditions	Na	К	Ca	C1	В	SiO4	Na/K atomic
Spring No. MF-1	580	21-111-72	-	-	4625	512.5	294.5	8001	8.8	350.2	15.34
	585	20-V-72	-	-	3500	355.0	335.4	7925	8.6	-	16.76
	609	12-XIII-72	-	-	3750	365-0	352.4	7985	7.9	345.0	17.46
	614	11-IX-72	92	ll lts/Min	4175	475.0	328.0	8123	8.3	325.0	14.93
	626	29-XI-72	94	-	4175	887.5*	336.0	8167	9.0	360.0	7.99*
	636	20-XIII-72	88	-	4300	937.0*	330.0	8167	8.5	340.0	7.8*
·		<u></u>		Averages:	4100	585.	329.	8060	8.5	344	12.0
Spring No.H-1-20	603	9-VIII-72	93	N.D.	3850	500.0	295.1	6866	5.3	-	13.0
	613	9-IX-72	98	N.D.	3837	543.7	276.0	7126	7.7	117.5	12.0
	618	16-X-72	85	N.D.	3775	531.2	264.0	6842	6.2	110.0	12.07
	623	24-XI-72	95	N.D.	3812	487.5	292.0	7021	9.7	105.0	13.29
	632	15-XII-72	96	N.D.	3726	487.0	276.0	7022	14.7*	110.0	13.1
		· · · · · · · · · · · · · · · · · · ·		Averages:	3800	510.	280.6	6975	7.2	111.	12.7
Spring	593	10-VII-72	47	10 lts/Min	3912	425	390.6	7072	5.2	153.3*	15.64
1.0. 17	605	9-VIII-72	-	-	4000*	587.5*	624.9*	23150*	9.7*	100*	39.0*
	616	13-IX-72	50	5 lts/Min	4000	450.0	272.0	7275	6.9	125	15.10
	617	16-X-72	44	-	5435	562.0	272.0	7341	6.5	115	16.44
	622	24-XI-72	44	-	4000	412.5	272.0	7270	9.5	100	16.48
	630	15-XII-72	36	-	3875	395.0	272.0	7470	9.3	105	16.7
1				Averages:	4244	449.	296.	7286	7.5	119	16.1
Spring No. 21	571	29-1-72	61	low	3000	407.5	192	5280	10.9	105	12.5
	573	18-II-72	64	low	3000	405.0	214	5516	6.8	110	12.6
	577	15-III-72	67	low	3437	675.0*	216	5806	8.1	145	8.65
	581	28-LV-72	68	-	3300	425.0	212	5773	8.6	120	13.2
	583	18-V-72	71	4 lts/Min	4012	470.0	249	6604	8.0	135	14.5
	590	22-VI-72	68	4 lts/Min	3675	452.5	250	6649	8.0	125	13.8
	597	20-VII-72	64	minimal	3687.5	490.0	206.4	6730	6.2	110	12.8
Ì	601	8-VIII-72	-	-	3750	475.0	256.0	6600	N.D.	13.4	
	602	9-VIII-72	-	-	4000*	537.5*	390.6*	7289.7*	6.4*	12.65	
	631	15-XII-72	56	N.D.	3500	462.0	248	6225.0	8.6	90	12.9
I	·· ····	- · · · · · · · · · · · · · · · · · · ·	4	Averages:	3536	458.3	227	6131	7.3	122	12.8

Table 10. Chemical Analyses of Springs Sampled Six Times During One Year (mg/1).

110

 \star Not included in the averages.

LBL-7019	9
----------	---

Υ

T

T

Table 10. Chemical Analyses of Springs Sampled Six Times During One Year (mg/l).

Т

Т

T

Т

Υ

Cnni	na
Shiri	ny
No	22
110.	<u> </u>

4

	Sample Number	Date	Temp °C	Flow Conditions	Na	к	Ca	C1	В	SiO4	Na/K atomic
Spring No. 22	2	11-1-67	48	-	5050	570	324	8220	53.8	118.5	15.0
	46	11-II - 67	32	-	5275	615	315	8560	34.1	121.0	14.6
	78	17-III-67	38	-	5450	650	317	8650	N.D.	N.D.	14.2
	101	11-IV-67	42	-	5830	684	316	8800	N.D.	N.D.	14.5
	125	12 - V-67	48	-	5575	675	320	8920	N.D.	N.D.	14.0
	149	8-VI-67	50	-	5500	690	342	8780	58.9	N.D.	13.5
	173	3-VII-67	41	-	5625	690	336	8940	42.4	N.D.	13.8
	209	8-VIII-67	55	-	5675	750	336	8120	38.8	N.D.	12.80
	<u> </u>			Averages:	5497	665	326	8624	45.6	119.7	14.05
Spring No. 31	9	18-I-67	62	-	5325	660	344	8930	35.9	103.5	13.7
	48	17-II-67	62	-	5400	685	357	8900	44.7	86.0	13.4
	79	17-111-67	62	-	5750	700	347	8900	N.D.	N.D.	13.96
	102	11-IV-67	67	-	5400	710	336	9040	N.D.	N.D.	12.9
	126	12-V-67	69	-	5625	740	364	9100	N.D.	N.D.	12.9
	150	8-VI-67	70		5800	724	344	9060	63.9*	N.D.	13.6
	174	3-VII-67	70	-	5650	736	348	9050	33.0	N.D.	13.0
	210	8-VIII-67	69	-	6050	730	356	9120	40.2	N.D.	14.10
				Averages:	5625	711	349	9012	38.4	94.7	13.45
Spring No. 31B	594	10-VII-72	94	10 lts.Min	4812	737.5	329.8	8289	8.7	137.5	11.08
	604	9-111-72	-	_	4300	675 0	320.8	8225	6 9	00.0	11 02

ng 31B	594	10-VII - 72	94	10 Its.Min	4812	737.5	329.8	8289	8.7	137.5	11.08
	604	9-VIII-72	-	-	4300	675.0	329.8	8235	6.8	90.0	11.83
	612	9-IX-72	100	-	4562	681.0	316.0	8372	8.9	100.0	11.4
	624	24 - XI-72	49	-	4425	725.0	324.0	8366	10.1	95.0	10.37
	633	15-XII-72	92	-	4550	712.0	316.0	8416	11.5	120.0	10.9
				Averages:	4556	715	323.	8370	8.7	106.	11.0

Spring No. 45

)

* Not included in the averages. T

Т

Ń

	Sample	Date	Temp	Flow Conditions	Na	 К	Ca	C1	В	Si04	Na/K
,	Number	A 11775									atomic
Spring	606	9-VIII-72	61	N.D.	4887.5	572.5	451.3	8668	7.8	125.0	14.5
NO. 45	615	11-IX-72	65	4 lts/Min	4675	587.5	440.0	8770	815	115.0	13.52
	620	17-X-72	63		4625	500.0	424.0	8740	8.3	120.0	15.73
	628	29-XI-72	59	-	4875	505.0	432.0	8814	10.8	155.0	16.41
	634	18-XII-72	64	N.D.	4750	550.0	426.0	8864	9.7	135.0	14.7
				Averages:	4773	510.	440.	8772	9.4	145.	15.8
pring lo. 48	4	11-I-77	58	-	4400	500	358	7400	36.6	120	14.96
	49	17-II-67	56	-	4725	532	374	7650	32.3	86	15.10
	77	11 - I-67	58	-	4675	520	352	7470	N.D.	N.D.	15.30
	103	11-1V-67	64	-	4876	552	368	7600	N.D.	N.D.	15.00
	127	12-V-67	62	-	4875	540	360	7560	N.D.	N.D.	15.30
	151	8-VI-67	65	-	4850	530	360	7540	44.9	N.D.	15.5
	175	3-VII-67	64	-	4700	540	356	7470	26.9	N.D.	15.00
	211	8-VIII-77	63	-	5250	555	352	7500	27.3	N.D.	16.10
	L	J		Averages:	4794	34	360	7524	33.6	103	15.3
Co uni na	·						r	, <u> </u>	·		
No. 60	565	28-I-72	50	Regular	7100*	905*	644*	14747*	15.6	100	13.3
I	575	18-11-72	68	Regular	3625	3375	244	6235	8.7	120	18.3
:	579	15-111-72	70	Regular	3787.5	592*	232	6177	9.0	110	10.9
	589	28-V-72	51	1.2 Lts/Min	5250*	915*	267	6262	7.2	200	9.75
	591	22-VI-72	78	2 Lts/Min	3800	375	290.8	7092	8.7	182,5	17.2
i	596	20-VII-72	72	1.2 Lts/Min	3675	350	256	6145	6.0	190	17.8
	607	9-VIII-72	71	N.D.	3625	362.5	269	6403	6.2	115	17.0
	610	9-IX-72	68	N.D.	3250	347	246	6249	5,7	152.5	15.9
	621	17-X-72	82	N.D.	3625	350	236	6193	5.3	165.0	17.60
	L	- 	-4	Averages:	3627	354	255	6344	7.10	148.3	15.2
Spring	600	27-VII-72	79	Fair	3575	475.0	N.D.	6584	N.D.	120.0	12.79
VO. 61	608	12-VIII-72	89	-	3675	482.5	556*	6600	5.6	110.0	12.55
	611		+			542.0	0.04	6710		107 5	20.7

500.0

475.0

495

252

260

258.7

6723

6673

6659

8.1

7.5

6.8

165.0

170.0

138.5

13.81

13.9

12.75

4062

3875

3725

Table 10. Chemical Analyses of Springs Sampled Six Times During One Year (mg/1).

112

* Not included in the averages.

90

90

-

-

Averages:

29-XI-72

20-XII-72

625

635

)

Table 11. Gas Analyses of Fumaroles (percent volume of dry gases).

Fumarole Number	Sample Number	Date	Temp. °C	c0 ₂	H ₂ S	NH ₃	Residual Gas	Moles Total Gas Moles Water
	36	25/ 3/72	100	50 1	11 9	0.27	35.8	0.027
	37	25/ 3/72	100	56 5	12 0	0.27	21.2	0.027
	/ 	19/5/72	-	58 7	12.0	0.27	28.0	0.020
	45	26/ 6/72	_	50.7	12.1	0.30	20.9	0.022
FV-1	ر ہ 47	20/ 0/72	_	57.8	12.9	0.50	20.9	0.020
	52	14/8/72	_	49.6	7.8	0.55	20.5	0.025
	54	12/ 9/72		49.0 54 6	11.6	0.50	42.1	0.029
	67	27 772	_		10.2	0.52	21.7	0.033
		22/12//2		5/./	10.5	0.20	31.7	0.036
	34	23/ 3/72	91	26.9	10.3	-	62.8	-
	35	23/ 3/72	91	33.5	9.8	-	56.7	-
	42	20/ 5/72	92	25.3	6.7	-	68.0	-
	44	23/ 6/72	92	9.0	2.3	-	88.8	-
MF-1	48	24/ 7/72	83	5.3	1.7	-	93.0	-
	49	27/ 7/72	83	15.9	3.9	0.31	79.9	-
	51	12/ 8/72	92	23.3	5.7	0.02	71.0	0.218
	53	11/ 9/72	92	13.0	3.0	0.003	84.0	1.13
	63	20/12/72	88	8.2	1.8	0.003	90.0	1.22
	31	3/ 3/72	-	45.8	27.0	2.5	24.8	0.0061
	32	3/ 3/72	-	38.8	27.4	2.1	32.3	0.0064
	33	6/ 3/72	_	52.6	21.8	1.8	23.8	0.0056
]	38	27/ 3/72	-	48.7	12.9	1.9	36.5	0.0045
	39	28/ 4/72	-	52.2	14.2	2.1	31.6	0.0056
5-42	40	18/ 5/72	-	44.5	10.2	2.3	43.0	0.0047
1-42	43	22/ 6/72	-	43.4	12.3	1.3	43.0	0.0060
	46	21/ 7/72	-	46.3	11.2	3.8	38.7	0.0058
	50	11/ 8/72	-	50.0	7.7	2.1	40.2	0.0061
	56	14/ 9/72	-	39.3	4.9	2.1	53.7	0.0077
	61	4/11/72	-	46.9	9.6	3.5	40.0	0.0040
	65	21/12/72	-	68.4	9.7	5.0	16.9	0.0030