Geology and Mineralogy This document consists of 12 pages. Series A. # UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY RABBITTITE, A NEW URANYL CARBONATE FROM UTAH* Вy Mary E. Thompson, Alice D. Weeks, and Alexander M. Sherwood February 1954 Trace Elements Investigations Report 405 am. Mineralogist, V.40, nov. 3-4, p. 201-206, 1955. This preliminary report is distributed without editorial and technical review for conformity with official standards and nomenclature. It is not for public inspection or quotation. ^{*}This report concerns work done on behalf of the Division of Raw Materials of the U.S. Atomic Energy Commission. # USGS - TEI-405 ## GEOLOGY AND MINERALOGY | Distribution (Series A) | | f copies | |--|-----------|----------| | American Cyanamid Company, Winchester | | 1 | | Argonne National Laboratory | | | | Atomic Energy Commission, Washington | | 2 | | Battelle Memorial Institute, Columbus | 80000 | 1 | | Carbide and Carbon Chemicals Company, Y-12 Area | | 1 | | Division of Raw Materials, Albuquerque | 60000 | 1. | | Division of Raw Materials, Butte | 00000 | 1 | | Division of Raw Materials, Denver | 60.000 | 1 | | Division of Raw Materials, Douglas | 00000 | ` 1. | | Division of Raw Materials, Grants | 00000 | 1 | | Division of Raw Materials, Hot Springs | 0 0 0 0 0 | 1 | | Division of Raw Materials, Ishpeming | | 1 | | Division of Raw Materials, New York | | 6 | | Division of Raw Materials, Phoenix | | 1. | | Division of Raw Materials, Richfield | | 1 | | Division of Raw Materials, Salt Lake City | | 1 | | Division of Raw Materials, Washington | | .3 | | Division of Research, Washington | | 1 | | Dow Chemical Company, Pittsburg | | 1. | | Exploration Division, Grand Junction Operations Office | | 6 | | Grand Junction Operations Office | | 1 | | Technical Information Service, Oak Ridge | | - | | Tennessee Valley Authority, Wilson Dam | | 1. | | U. S. Geological Survey: | | | | Alaskan Geology Branch, Washington | 00000 | 1 | | Fuels Branch, Washington | | 1 | | Geochemistry and Petrology Branch, Washington | | 14 | | Geophysics Branch, Washington | | | | Mineral Deposits Branch, Washington | | | | E. H. Bailey, San Francisco (14016. PATK | | 1 | | K. I. Buck, Denver | | 1 | | J. R. Cooper, Denver | | 1 | | N. M. Denson, Denver | | 1 | | C. E. Dutton, Madison | | 1 | | R. P. Fischer, Grand Junction | | .1 | | L. S. Gardner, Albuquerque | | 1 | | M. R. Klepper, Washington | | 1 | | A. H. Koschmann, Denver | | 1 | | R. A. Laurence, Knoxville | | 1 | | D. M. Lemmon, Washington | | 1 | | J. D. Love, Laramie | | 1 | | R. G. Petersen, Plant City | | 1 | | J. C. Rabbitt, Washington | | 1 | | R. J. Roberts, Salt Lake City | | 1 | | Q. D. Singewald, Beltsville | | 1 | | J. F. Smith, Jr., Denver | | 1. | | R. W. Swanson, Spokane | | 1 | | A. E. Weissenborn, Spokane | | 1 | | W. P. Williams, Joplin | | 1. | | TEPCO, Denver | | 2 | | TEPCO, RPS, Washington | | 3 | | (Including master) | | | | | | 84 | ### CONTENTS | | | Pi | age | |--------------|------|--|------------| | Abstr | act | | 4 | | Intro | luct | ion and acknowledgments | 4 | | Occur: | renc | e | 5 | | Physic | cal | and optical properties | 7 | | Chemi | cal | composition | 8 | | X-ray | dif | fraction data | 9 | | Refer | ence | S | L 2 | | | | | | | | | TABLES | | | | | Pe | age | | Table | 1. | Chemical analysis and theoretical composition of rabbittite and chemical analysis of swartzite | LO | | | 2. | X-ray diffraction powder patterns of rabbittite and swartzite | Ll | | | 3. | Tentative indexing of hkO reflections of rabbittite | 12 | | ILLUSTRATION | | | | | | | | | | | | Pe | age | #### RABBITTITE, A NEW URANYL CARBONATE FROM UTAH bу Mary E. Thompson, Alice D. Weeks, and Alexander M. Sherwood #### ABSTRACT Rabbittite is a new hydrated calcium magnesium uranyl carbonate found in the Lucky Strike No. 2 mine, San Rafael district, Emery County, Utah, in July 1952. It is pale green, finely acicular to fibrous, silky, and occurs as an efflorescence on the mine wall. It is optically biaxial, probably positive, with indices of refraction $\alpha = 1.502 \pm 0.005$, $\beta = 1.508 \pm 0.005$ and $\gamma = 1.525 \pm 0.003$. The specific gravity is about 2.6. The chemical analysis shows CaO 10.6 percent, MgO 9.2, UO₃ 37.4, CO₂ 17.8, H₂O 24.5, acid insoluble 0.5, total 100 percent, and indicates the formula Ca₃Mg₃(UO₂)₂(CO₃)₆(OH)₄·18H₂O. An X-ray rotation photograph of a small bundle of fibers shows the unit cell length $c_0 = 9.45 \pm 0.05$ A. From the indexing of hkO reflections a_0 is thought to be 32.6 ± 0.1 A and b_0 23.8 ± 0.1 A, with Z = 8. #### INTRODUCTION AND ACKNOWLEDGMENTS Rabbittite was collected from the Lucky Strike No. 2 mine, Emery County, Utah, in July 1952 by M. E. Thompson and A. D. Weeks when they visited the mine with other U. S. Geological Survey geologists. The mineral was determined as a new one because its X-ray diffraction powder pattern, and physical and optical properties differ from those of other known uranium carbonates. Of the uranyl carbonates in the literature, only swartzite might be confused with rabbittite. Swartzite is, however, definitely distinct from rabbittite and to make the differencesclear the optical properties, chemical analysis, and <u>d</u>-spacings of the X-ray powder pattern of swartzite are included for comparison with those of rabbittite. Rabbittite is named in honor of John C. Rabbitt who was chief of the U.S. Geological Survey Trace Elements Section from 1947 to 1953--in recognition of the leadership and inspiration he gave to the members of the laboratory. Thanks are gratefully extended to J. W. Gruner, University of Minnesota, for loan of an ore sample from the Lucky Strike No. 2 mine. This work was part of a project on mineralogy of uranium in sandstone-type deposits that is being conducted by the U. S. Geological Survey on behalf of the Division of Raw Materials of the U. S. Atomic Energy Commission. #### OCCURRENCE Rabbittite occurs as an efflorescence on a pillar of high-grade ore near the portal of the Lucky Strike No. 2 mine, Emery County, Utah. The mine is in a uranium deposit in the Shinarump conglomerate (Triassic), between the San Rafael River and the Muddy River on the west flank of the San Rafael Swell. Figure 1 is an index map showing the location of the mine. The ore contains pitchblende and is only partly exidized because the deposit is protected by the overlying Chinle formation and Wingate sandstone which rise in a high cliff above the mine. The ore Figure 1.-Index map of locality of rabbittite (geology after Orkild, 1952). near the portal was high grade, containing pitchblende with a little pyrite and galena and many yellow and orange secondary uranium minerals, including fourmarierite, 1/ rabbittite, zippeite, another uranium sulfate that is related to zippeite, and another new uranium mineral, possibly magnesium uranyl sulfate, whose description is not yet completed. Gypsum and at least two pink cobalt efflorescences, bieberite and sphaerocobaltite, were collected from the same pillar on which the rabbittite occurred. #### PHYSICAL AND OPTICAL PROPERTIES Rabbittite occurs as bundles of pale-green, extremely small, acicular crystals with a silky luster. The bundles of fibers resemble tale, in that some of them are bent and twisted. The hardness of rabbittite was determined approximately by rubbing it against gypsum and calcite while viewing the test through the binocular microscope. The mineral seems to be slightly harder than gypsum. If it is crushed too roughly when being prepared as a spindle for an X-ray powder photograph, the resulting picture shows broadened reflections. The mineral effervesces in dilute HCl and is slowly soluble in cold water. The specific gravity was measured by suspending grains of the mineral in a mixture of bromoform and acetone. The mineral floats just under the surface of a liquid with specific gravity 2.57. Rabbittite is considered to be monoclinic on the basis of its optical properties. The small acicular crystals are elongated parallel ^{1/} Specimen courtesy of J. W. Gruner. to the \underline{c} -axis. Under the microscope the crystals show a cleavage across the fibers, which is probably parallel to $\{001\}$, and two easy and perfect prismatic cleavages. Even with the aid of an oil immersion lens, individual crystals of rabbittite are too small to give an interference figure. The fibers in some of the bundles seem to lie in parallel orientation and measurements of the optical constants were made on several such bundles. Some of the bundles seem to be flattened on \{100} and give an optical figure thought to be an obtuse bisectrix figure. The optical properties of rabbittite are distinctly different from those of swartzite, as shown below: | Rabbittite | | Swartzite | -inglastas | |-------------|------------------------------------|---------------------------|-----------------------| | Orientation | <u>n</u> | <u>n</u> . | | | X | 1.502 <u>+</u> 0.005 | 1.465 | | | Y = b | 1.508 ± 0.005 | 1.51 | | | z ∧ c ~ 15° | 1.525 ± 0.003 Biaxial positive (?) | 1.540
Biaxial negative | | #### CHEMICAL COMPOSITION With the aid of a binocular microscope, slightly less than 0.1 g of rabbittite was handpicked for analysis. The mineral was concentrated by picking the largest aggregates of rabbittite from the friable sandstone. The aggregates were crushed, examined under the binocular, and further purified. A semiquantitative spectrographic analysis made by C. S. Annell on a 10 mg sample showed more than 10 percent U, 1 to 10 percent Mg and Ca, 0.1 to 1 percent Si, and 0.01 to 0.1 Al and Y. About 75 mg was available for the chemical analysis (table 1) made by A. M. Sherwood. In the chemical analysis of rabbittite the sample was first dissolved in water, and carbon dioxide was determined by titration with standard HCl. The silica was removed by volatilization with HF. The uranium was then separated with NH₄OH, reduced, and titrated with $K_2Cr_2O_7$. Calcium was precipitated with $(NH_4)_2C_2O_4$ and ignited to CaO; and the magnesium was precipitated with $(NH_4)_2HPO_4$ and ignited to $Mg_2P_2O_7$. Total loss on ignition at 900 C was determined and the percent CO_2 subtracted from it to calculate the total H_2O . The analysis indicates that the formula is probably ${\rm Ca_3Mg_3(UO_2)_2(CO_3)_6(OH)_4 \cdot 18H_2O}$ and that it differs from that of the other magnesium and calcium uranyl carbonates—bayleyite ${\rm Mg_2(UO_2)(CO_3)_3 \cdot 18H_2O}$, swartzite ${\rm CaMg(UO_2)(CO_3)_3 \cdot 12H_2O}$ (Axelrod et al., 1951), and liebigite ${\rm Ca_2(UO_2)(CO_3)_3 \cdot 9H_2O}$ (?). Swartzite contains the same elements as rabbittite but in different proportions. The chemical analysis of swartzite is given in table 1. #### X-RAY DIFFRACTION DATA The X-ray powder pattern of rabbittite distinguishes it from the other uranyl carbonates although, in common with the others, its powder pattern contains a number of lines with large <u>d</u>-spacings indicating a large unit cell. The pattern obtained with the X-ray spectrometer shows the closely spaced inner lines (table 2) with much better resolution than the ordinary powder pattern. The <u>d</u>-spacings of swartzite, as given in Axelrod et al. (1951), are listed in table 2 with those of rabbittite. From an X-ray rotation photograph of a bundle of fibers of rabbittite around the <u>c</u>-axis, c_0 was found to be 9.45 ± 0.05 A Table 1.--Chemical analysis and theoretical composition of rabbittite and chemical analysis of swartzite | | Rabbittite | | Swartzite | |------------------|--|--|--| | | Analysis of 75 mg
by A. M. Sherwood | Ca ₃ Mg ₃ (UO ₂) ₂ (CO ₃) ₆
(OH) ₄ °18H ₂ O | Analysis in
Axelrod et al.
(1951) by
Grimaldi | | CaO | 10.6 | 11.32 | 7.32 | | MgO | 9.2 | 8 .09 | 5.47 | | บ03 | 37° [†] | 38.54 | 38.85 | | C02 | 17.8 | 17.79 | 17.92 | | H ₂ 0 | 24.5 | 24.26 | 29.69 | | Acid insoluble | 0.5 | | 0.75 (rem.) | | Total. | 100.0 | 100.00 | 100.00 | (personal communication, H. T. Evans, 1953). The zero-layer reflections were indexed graphically, using a modified version of Bjurstrom's chart (Bunn, 1946, p. 380) and the hkO indices thus obtained are listed in table 3. The <u>a</u> and <u>b</u> axes appear to be at right angles to one another and according to the graphical solution $a_0 = 32.6 \pm 0.1$ A and $b_0 = 23.8 \pm 0.1$ A. The number of formula units in the unit cell is probably 8; by calculation from the approximate figures for a_0 , b_0 , c_0 , from the specific gravity, and with no allowance made for β angle differing from 90° , the number of formula units is 7.8. The mineral is considered monoclinic because of its optical properties. The β angle cannot be accurately determined on the present material, but it is probably close to 90° . Table 2.--X-ray diffraction powder patterns of rabbittite and swartzite. (d-spacings of rabbittite measured on X-ray spectrometer pattern, $1/4^{\circ}$ per minute, Cu/Ni radiation.) | Rabbittite | | Swartzi | Swartzite <u>1</u> / | | | |--|---|--|--|--|--| | Ī | <u>d</u> | I. | <u>d</u> | | | | 3
1
5
3
1
8
3
1
5, broad
5
7
1
8
1
3
3
1, broad
5 | 19.4 18.6 11.28 8.63 8.24 7.79 7.15 6.81 6.47 5.83 5.22 4.81 4.51 4.37 4.28 4.05 3.84 3.70 3.33 | 10 9 5 1 0 1 8 2 2 2 2 2 7 5 1 1 1 7 2 1 8 2 5 4 5 2 2 8 5 8 2 2 3 2 | 8.76
7.37
5.85
5.46
4.38
6.55
3.37
3.29
1.4
1.77
1.21
1.96
1.96
1.96
1.96
1.96
1.96
1.96
1.9 | | | ^{1/} Axelrod et al. (1951). $a_0 = 32.62$ Table 3.--Tentative indexing of hkO reflections of rabbittite (X-ray rotation photograph around c-axis; Cr/V radiation) $b_0 = 23.77$ | | - J. 40L | 0 | | |---|-----------|-------------------|------------| | I | d (meas.) | d (calc.) | <u>hk0</u> | | 5 | 19.0 | 19.21 | 110 | | 3 | 16.2 | 16,3 | 200 | | 4 | 13.5 | 13.45 | 210 | | 3, broad | 12.0 | 11.88 | 020 | | 5
3
4
3, broad
7
3
3
3 | 11.24 | 11,17 | 120 | | 3 | 9.89 | 9 | 310 | | 3 | 9.60 | 9,60 | 220 | | 3 | 8.96 | siya cata. | C=2 1000 | | 10 | 8.13 | 15ء8 | 400 | | | | 8.02 | 320 | | | | 7.92 | 030 | | 3 | 7.71 | 7.71 | 410 | | | | 7.70 | 130 | | 3
1
3
3 | 7.13 | 7.13 | 230 | | 1 | 5.95 | 5.94 | OHO | | 3 | 5.82 | 5.85 | 140 | | 3 | 5.70 | 5.72 | 520 | | | | 5 ₋ 68 | 430 | | .1. | 5.21 | 5.21 | 340 | | 5 | 4.80 | 4.80 | 440 | | | • | 4.75 | 050 | | 5 | 4.70 | 4.71 | 150 | | 5
5
5
1 | 4.40 | 4.39 | 540 | | 5 | 4.34 | 4.36 | 350 | | 1 | 4.10 | 4.11 | 450
640 | | 3
5 | 4.03 | 4.01 | 640 | | 5 | 3.84 | 3.85 | 260 | | | | 3.84 | 550 | #### REFERENCES Axelrod, J. M., Grimaldi, F. S., Milton, C., and Murata, K. J., 1951, The uranium minerals from the Hillside mine, Yavapai County, Arizona: Am. Mineralogist, v. 36, p. 1-22. Bunn, C. W., 1946, Chemical crystallography, London, Oxford Press, 422 p. Orkild, P. P., 1952, Photogeologic map, Stinking Spring Creek-5 quadrangle, Emery County, Utah: U. S. Geol. Survey, Trace Elements Memo. Rept. 528. (open-file report)