DIGITAL LIBRARIES F)‘
University Libraries é

UNT Libraries AIP-to-DIP/ACP
Conversion Workflow

Date: October 2015
Version: 1.0

Contributors:

Mark Phillips Assistant Dean for Digital Libraries
Hannah Tarver Department Head, Digital Projects Unit
Ana Krahmer Supervisor, Digital Newspaper Unit
Daniel Alemneh Supervisor, Digital Curation Unit
Laura Waugh Repository Librarian for Scholarly Works

This work is licensed under a Creative Commons Attribution 4.0 International License.

UNT Libraries AIP-to-DIP/ACP Conversion Workflow

Introduction

The UNT Libraries has a formal definition of the required features and elements for an Archival
Information Package (AIP) documented in the UNT Libraries OAIS Information Package
Specification. That document, while describing what should be present in a valid Archival
Information Package (AIP) and Dissemination Information Package (DIP), does not cover the
process used for converting an AIP to a DIP. The goal of this document is to establish the
process and workflow for the conversion of an AIP to a DIP for the UNT Libraries’ Digital
Collections. Historically the UNT Libraries has referred to its Dissemination Information
Package (DIP) locally as the Access Content Package (ACP) and for the purpose of this
document they are equivalent and can be used interchangeably.

Ingest Dropbox

Dropboxes define the steps involved in the ingest process of our digital content. They are
responsible for creating the AlPs and DIPs for our repository, locally referred to as the Coda
repository and Aubrey access systems. A dropbox encapsulates a series of steps that are
executed, in sequential order, on the submitted digital objects. These steps are represented by
folders in the dropbox that hold the input, output, and errors for each step. The management
python scripts, such as makeAlP.py and makeACP.py, are used to convert a SIP to an AIP and
an AIP to a DIP/ACP, respectivly.

The conversion process proceeds after the successful conversion from a submitted Submission
Information Package (SIP) to an AIP that is covered in the document UNT Libraries SIP-to-AlP
Conversion Workflow. As can be seen from the dropbox organization list below, this newly
created AIP resides in the 3.ToACP folder, which is designated by Dropbox during ingest.

A dropbox is organized like this:

dropbox/

| -— 0.Staging/

.ToAIP/

.ToAIP-Error/

.ToACP/

.ToACP-Error/
.ToArchive/

.ToAubrey/
.ToAubreySorted/
.ToAubreySorted-Error/

O J o O b w N

| -— dropbox config.py
| -— makeACP.py

| -— makeACPSort.py

| -— makeAIP.py

"—- moveToCODA. sh

Verification steps

The verification steps that makeACP.py executes before processing an AlP include the
following:

1. Checks to see that the proper utilities and versions are installed on the ingest server.
2. Check the Namaste tag in the bag to make sure it is an AIP bag
3. Quickly validate the Baglt bag using the oxnum value in the bag-info.txt file.

Objects to convert to DIP are present from the previous SIP to AIP process and reside in the
3.ToACP folder, the makeACP.py script is exectuted, which walks through the three steps listed
above to determine if a supplied AIP can be converted into a UNTL-DIP.

If makeACP.py fails on check 1 in the above list, the whole process stops, if this step passes
then makeACP.py will start multiple sub-processes that allow for parallel processing of digital
objects and therefore takes advantage of available processors on the ingest server. If there is
an error in either step 2 or 3 in the list above, the process moves the object to the

4. ToACP-Error folder with a log file describing the error encountered and continues to process
the next object in the queue. When makeACP.py is finished running it will let the operator know
how many AlPs were processed, the number that were successfully converted into a DIP/ACP,
and the number that failed.

AIP to DIP/ACP Conversion

Once the makeACP.py script verifies that the submitted AIP is valid and well formed, it executes
a series of steps to complete the DIP creation. The steps include the following:

1. Retrieve instructions from coda_process.py

2. Based on the primary bitstream in each fileSet, create a web derivative file format for
each fileSet.

3. If a metadata.xml record is not present generate a generic metadata.xml record.

4. Generate a UNTL METS Dissemination Information Package Profile XML document.

If all of these steps are completed successfully then a DIP/ACP is created in the 6. ToAubrey
folder and the AIP that was processed is moved to the 5.ToArchive folder. If there were any
errors encountered, the AIP is moved to the 4. ToOACP-Error folder and the issue is logged with
the object so it can be fixed and reprocessed in the future.

Example AIP and DIP/ACP

Input AIP

metapthl234/

| --= 0=UNTL AIP 1.0

| -— bag-info.txt

| -— bagit.txt

| -— coda directives.py
| -- data/

\ |-- data/

\ | -- 01 tif/

\ | |-— 1999.001.001 O1.tif

\ | "--1999.001.001 _02.tif

\ | -- metadata/

\ | |-— 17711fdb-2e25-4566-bf3f-daal72a12190.jhove.xml
\ | "—- 963%acae-397a-4c90-8851-52b6£04c4d8d. jhove.xml
\ | -- metadata.xml

\ "——- metapthl234.aip.mets.xml

"—-- manifest-md5.txt

Resulting DIP/ACP

metapthl234/

| -- 0=UNTL ACP 1.0

| -— bag-info.txt

| -- bagit.txt

| -— coda_directives.py

|-- data/

\ | -— metapthl?234.mets.xml

| -— metapthl234.untl.xml

T—— web/

-- 01 _tif/

[-- 1999.001.001 01.jpg
|-- 1999.001.001 0l.medium.jpg
|--— 1999.001.001 0l.square.jpg
|-- 1999.001.001 Ol.thumbnail.jpg
[-- 1999.001.001 02.3jpg
|-- 1999.001.001 02.medium.]jpg
|-— 1999.001.001 02.square.jpg
== 1999.001.001 02.thumbnail.jpg

—— manifest-md5.txt

