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ABSTRACT 
! . 

The copstruction and operation of a semi-adiabatic,microcalorimeter 

a r e  discussed i n  d e t a i l .  The heat  of sollition 'of eu rophq  metal i n  0 . 1  N 

HC1.has been measured and i s  -164.6 + 1.0 Kcal/mole. This value i s  com- 

bined with ava i lab le  thermochemical data t o  calcula te :  

The preparation and proper t ies  of europium monoxide, prepared by 

reac t ing  the  metal with the  sesquioxide a t  high temperature a r e  described. 

. It has been character 'ized by: 
. . 

1. Crystal  s t ruc ture :  fcc ,  N a C 2 .  type,. ' . . 

9 
2.  La t t i ce  parameter : 5.143 .+ 0.001 A.  

3. Stoichiometry: O/EU = 1.021 2 0.001 

4. Thermodynamics : &-1~,=.-87 .8 * 1 . 7  Kcal/mole 

yielding AH0 = -145.1 k 2.2 ~ c a l / m o l e .  ~ E U O ( ~ )  

These heats  of formation a r e  combined with other thermochemical 

data  t o  ca lcu la te  the  heat  of formation of Eu +' -114.) Kcal/mole ; (as> : . - 
. . 

t he  E U - E U + ~  po ten t ia l :  +2.51 vo l t s ;  and t he  f r e e  energy of dispropor- 
(as )  . . 

t iona t ion  of EuO: +39. 9 Kcal. The i s  estimated t o  be -37.1 e.u.  



I. INTRODUCTION 

. I n  recen t  years, .  an increas ing .amount of thermodynamic information 

on t h e  r a r e  e a r t h s  and t h e i r  compounds has been published. .  While t h e  

p i c tu r e  i s  by no means complete, hea t s  of formation a r e  known f o r  most . .'* 
of t h e  oxides, and some of t h e  t r i h a l i d e s  and t r i p o s i t i v e  aqueous ions .  +d 

Entropy da t a  a r e  ava i l ab le  f o r  many of t he  oxides and metals. 

Un t i l  very recen t ly ,  t he r e  have been no experimental thermochemical 

da t a  on europium. Published values a r e  e i t h e r  est imates or  in te rpo la t ions  

from p l o t s  of ava i l ab l e  data  on the  other r a r e  ea r ths .  However, europium 

' metal  d i f f e r s  markedly from most of t h e  other r a r e  ea r ths  i n  i t s  physical  

p roper t i es ,  and s ince  t h e  metal i s  t he  reference s t a t e  f o r  t he  thermo- 

chemicalmeasurements, it seem's reasonable t o  expect t h a t  t h e  hea t s  and 

f r e e  energies of formation of europium'ions and compounds would show 

marked devia t ions  fram t h e  corresponding values f o r  those other r a r e  

e a r t h s .  

I n  t h e  following work the  experimental procedure followed i n  t h e  

determination of t h e  hea t s  of formation of Eu and EUO(~)  i s  presented. . . (as) 
The r e s u l t s  a r e  combined with ava i l ab le  thermodynamic data  t o  ca lcu la te  

t h e  heat  f o r  formation of EuCl +2 t h e  EL-EU'~ aqueous poten- 
. . 3 ( ~ ) ,  EU(aq) r .  

t i a l ,  and t h e  f r e e  ,energy of disproport ionation of'EuO ( C )  ' .:,: E Y O ( ~ )  i s  

a l s o  character ized as t o  l a t t i c e  parameter and ' s t o i ' c h i ~ r n e t r ~ .  The 

r e s u l t s  a r e  discussed i n  t h e i r  comparisons with o t h e r . r a r e  ea r ths  and 

t h e  a lka l i ne  ea r t h s  : 



11. MICROCALORIMETER 

A. Construction 

The microcalorimeter used for  a l l  heat measurements is a semi- 

adiabatic instrument with a vacuum gacket and water bath thermostated 

a t  25O~. The heat  capacity i e  approximately hiae calories per degree 

akd the temperature sensitivity &boutO'l x lo'* degree. A general view 
. . 

, bf the instrument is  shown i n  Fig. 1. 

A sectional drawing of the submarine chamber with the calorimeter 

unit  in place i s  shown in.Fig. 2.Q) The calorimeter reaction chamber, 

. M, i s  suspended inside the stainless ste&L subm&&ne chamber, 0, by 

means of a hollow luc i te  hanger vacuum sealed a t  both ends with Nerrprene 

O-rings. This hanger is  about a inches long with a narrow neck about 

& inch long, .0.100 .Inch outside diambter, and 0-065 inch inside diameter. 

Halfway up the neck i s  a luci te  guide 0.125 inch long with a 0.042 inch 

coaxial hole. The skirring shaft, I, passes through th i s  hanger and the 

guide minimizes f r ic t ion and eccentricity i n  the s t i r r ing  action. The 

s t i r r ing  shaft i s  a quartz rod about 0.042 inch'in diameter which is 

clamped a t  the umer end by means of a Bakelite collet  i n  the s t i r r ing  

chuck. The chuck is f i t t e d  witka spring loaded .screw-in-slot arrange- 

ment, D, t o  permit depression of the shaft a certain distance t o  break 

the sample bulb which is  attached t o  the lower end of the shaft. 

St irr ing speed is about 300 revolutions per minute through a flexible 

shaft t o  the s t i r r ing  chuck. A platinum resistance thermometer and 

calibrating heater connecting leads, K, L, are conducted through holes 

a i n  the submarine frame t o  copper binding posts, A, for the thermometer 

and a k- 'pr~n~ed plug, B, mounted in a 

The stainless s t e e l  submarine chamber is  

about 1-3/4 inches in  diameter and i s  screwed onto the frame against a 
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greased Neoprene gaskat  f o r  a vacuum seal .  A rad ia t ion  shield,  lJ ,  con- 

s i s t i n g  of ttro concentric tantalum c y l i n d e ~ s  i s  placed insid.e t h e  sub- 

marine chamber t o  minimize , rad ia t ion  heat  t r ans f e r .  This space i s  evac- 

uated by means of a mercury di f fus ion pump and l i qu id  nitrbgen t r z p  

backed up by a Welch Duo-seal Yore pump. The usual  vacuum i s  1 X 10- 5 

t o  5 X mm Hg. The thermal leakzge modulus, k, a s  defined by t h e  

expression: 
k ii .,..:.l d 0 ' 

g d t  
where @ i s  t h e  di f ference between the  temperature of t h e  calorimeter 

and t h e  temperature when' i 6  i s  i n  equilibrium with t h e  thermostat znd 

t i s  t h e  time, i s  about 5 X 10-3 mfn.-1. ' The pr inc ip le  heat  l eaks  now 

a re  d o n g  t h e  hanger, s t i r r i n g  shaf t ,  uld e l e c t r i c a l  leads .  
. . 

The calorimeter u n i t  i s  shown i n  Fig. 3. (l) The t i t a l u m  react ion 

vessel ,  H, has about a 9 m l .  capacity. The cap, F, the  four  thermometer 

and heater  conduits, G, and t h e  spool and sleeve, I,J, a r e  a l so  tantalum 

with gold soldered j o i n t s  where t h e  conduits jo in  t h e  spool and cap. ' 

This end of the  s t i r r i n g  shaf t ,  B, holds t h e  4-bladed platinum propeller ,  

sK, and t he  sample bulb, L, both sealed onto t h e  shaf t  with Apiezon W 

wax. Depressing t h e  sha f t  from t h e  s t i r r i n g  chuck above crushes t h e  

bulb against  t h e  znvil ,  14, admitting t h e  sunple' t o  t he  solution.  

The construction and packaging of t h e  thermosensihive e l c m ~ n t  and 

ca l ib ra t ing  heater  i s  a del.ic,ate operation. The thermomater i s  one mil. 

pure Pt ?:ire a d  the  heater  i s  e i t he r  #f& Kanganin o r  #40 Karma wire. .  

These a re  xound.non-inductively on a mica s t r i p  1.45 crn. X 4.50 cn. X . 

1-2 mil  th ick  which has been ,:notched along the  edges t o  hold t h e  wires 

i n  place. The P t  i s  wound on one end and t h e  heater  on the  other.  

This s t r i p  i s  then sandwi.ched between two more mica s t r i p s  and the  

combination mapped uound  t h e  tantalum spool and held i n  place with 
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three lengths of 5 m i l  tan9;d.m w h o .  The asseinbly must now be .?.nnerded 

t o  r e l i eve  s t r a i n s  i n  t h e  wires. i iar l ier ,  spools made i n  t h i s  way had 

only  about 5000 ohms res i s tance  between t h e  thermometer m d  heater  and 

thermometer and body a f t e r  annealing, while this res i s tance  should be 

thousands of megohms. It was found t h a t  t h e  annealing process tras re- 

sponsible fo r  the  lower res is tance,  apparently a s  t he  r e s u l t  of v o l a t i l i -  

za t ion  and condensation of a conducting f i lm of tantaluin o:f5.de. The 

p a r t s  had been c l e ~ a e d  in d i l u t e  acid, watar, uld alcohol; but it was 

now tilought t h z t  a much more thorough cleaning was required. So a l l  

tantaliun p a r t s  were heated i n  a 8 M HN03-2 M HF solut ion a t  10o°C f o r  

about 5 minutes; t h e  mj.& :md heater  ;md thermornater wires were care- 

f u l l y  cleaned of a l l  contaminants; and then a l l  p a r t s  handled with 

rubber gloves thereaf te r .  Annealing i s  done a t  about 600 '~  under high 

vacuum f o r  about 18  hours. Such spools a f t e r .  mnezl ing have res i s tznccs  

t h a t  a r e  thousands of megohms o r  2re  m ? a s u r a b l e .  

Since the t h c r ~ o m e t e r  i s  one 1cg 'Jf a Vheatstone bridge, i t s  r e s i s -  

timce must be adjusted so  t h a t  it l&ll 'balance tvith t h e  bridge c i r c u i t .  
I 

~cco&ingly, t h e  P t  wire i s  trimmed u n t i l  t he  desi red res i s tance  i s  

obtained. 

Fine quzrtz c a p i l l a r i e s  serve a s  i n su l a to r s  i n  t h e  four conduits 

2nd 8-10 rd.1 4.u wire i s  used f o r  t.'ne,thermornett?r leeds. No solder i s  

required as tihe ku 2nd P t  a r e  d i rec t ly  >ridded with a microtorch. The 

heater  leads  a r e  #31r Cu wire. in .  joining tho Cu t o  t he  Nmeanin o r  Karma 

' a solder i s  usua l ly  ased, but  sorne.times a d i r e c t  weld can be made by 

melting t he  Cu. A l l  l eads  and connections a r e  generously coated x.rith 

polystyrene ~ - d o ~ e  &d arranged i n  t h e  channel i n  t h e  spool j u s t  above 

t h e  mica. The s leeve i s  s l ipped on and sealed i n  place with e p o q  resin.  



After drying and curing o f ' t h e  e p o g ,  f i n a l  sea l ing  of t h e  spool-sleeve 
( ' .  . 

seam i s  done with Apiezon W wax dissolved i n  toluene and painted on. 

The quartz i n su l a to r s  a re  s e a l e d , a t  t h e  top  of t h e  cap with Q-dope o r  

epoxy res in .  

A s  was previously indicated,  t h e  thermometer c i r c u i t  i s  a \heat- 

stone bridge a s  shown i n  Fig. 4. The decade, D, i s  i n  a s t e e l  box t o  

. . provide proper shielding.  wen-ding from t h e  .bottom of t h i s  box i n t o  

t h e  thermostat i s  an o i l  f i l l e d  i r on  pipe containing R1, R2, R3, and 
. . . # 

Rb. A six vo l t  s torage b a t t e r y  cut  and wited t o  give two v o l t s  provides 

a source of very 'constant  current  t o  t he  bridge which draws about 36 

'milliamperes. The low pass f i l t e r  i s  designed t o  a t tenuate  a. c. 

frequencies much g rea t e r  than one cps. The po t en t i a l  divider,  RlO, R11 ,  

mzy be used t o  reduce ' the . s ens i t i v i t y  by about a f a c t o r  of ten,  and 

under these  condit ions t h e  h t i r e  time-temperature curve can be record- 

:&.: graphically.  Thus accura$e correct ions  f o r  thermal leakage can be 

computed from t h e  curve. This y i l l  be discussed i n  more d e t a i l . l a t e r .  

The d. c. breaker ampl i f ier  iS:a 'Beckm'an Model 14  with an input  

'impedance of 50 ohms. The recorder i s  a Leeds and Northrup Speedomax 

Type G dual  range, dual speed, self-standardizing model. E r r a t i c  

behavior of t h e  o r ig ina l  system was t raced  t o  temperature s e n s i t i v i t y  

of t h e  decade box, t h e  breaker amplif ier  input  cable, and t h e  breaker . 

ampli f ier  i t s e l f .  Therefore t h e  box and cable ane wrapped i n  pads of 

g l a s s  wool insu la t ing  mate r ia l  and t h e  amplif ier  i s  enclosed i n  a 
. . 

styrafoam box and i s  cooibed by a stream of a i r .  

The heater  and -timer c i r c u i t  i s  shown i n  Fig. 5. The input  t o . t h e  

heater  c i r c u i t  i s  a s t a b i l i z e d  115 v o l t s  and t h e  timer inpu t  i s  a ;, 

standard 60 cps frequency which i s  divided dot& t o  1 cps. This i s  
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NOTES FOR FIG.5 

1. A l l  r e s i s t o r s  a r k  coated metal  f i l m  types un less  otherwise specif ied.  
I~ben  the  wattage i s  not  indica ted ,  1/8, 1/4, o r  1/2 watt  may be used, 
b u t  1/2 wat t  i s  preferred  when space permits. 

2; Overal l  opera t ion of t h e  d i v i d e r  network can be checked by p u t t i n g  on 
"0It and press ing Itstartlt button. It i s  necessary t o  hold t h e  s t a r t  
button down f o r  a time not  exceeding 1 sec. The r e g i s t e r  then records 
t h e  elapsed time i n  seconds between sounds of t h e  b e l l ,  which can be 
compared with any standard clock. The t l s topt t  button t u r n s  off  t h e  
counter a t  any i n t e g r a l  second. ' 

3. The timing e r r o r  due t o  delay  i n  operat ion of RE-1 can be determined 
by plac ing ' the Itpower" switch on'O.1 and us ing : thB "energy outputt1 a s  
a 'gate t o  con t ro l -  a"timer opera t ing a t  ' a  frequency of 3Okc o r  higher. 
The n e t  e r r o r  should not be more than a few mill iseconds,  and i s  repro- 
ducible. . . 

4. This b e l l  i s  polar ized and t h e  p o l a r i t y  must be determined so  t h a t  t h e  
gong sounds when current  i s  applied.  

L 

5. These numbers i n d i c a t e  t h e  f r a c t i o n  of'maximum power being applied. 
The "powert1 switch, 5-4, should be labled  with t h e s e  numbers. 

6. Numbers i n  hexagons r e f e r  t o .  p in  numbers on Plug-In board. 

7. Adjust C-9 t o  minimize hum between f l o a t i n g  "Energy Outputtt negative 
l ead  and ground. 

8. R-53 i s  adjus ted  so t h a t  v a r i a t i o n  i n  l i n e  vol tage  has minimum a f f e c t  
on I1Energy O u t p ~ t ~ ~  voltage. 

9. C-19, CR-12, and R-44 serve  only t o  insure  t h a t  when t h e  one switch 
i s  turned on, t h e  f l i p - f l o p  Q8-Q9 always comes on i n  t h e  "stoptt  posi t ion.  

102 .Af te r  tu rn ing  on llpomerlt switch, t h e  8.4 v o l t  regulated supply f o r  t h e  
. "Energy OutputH i s  wi th in  0.1% of t h e  f i n a l  va lue  i n  15 sec. ,  within 

0.05% i n  90 sec. ,  and wi th in  0.01% i n  2 hrs: 
I 'i 

11. Q-1, Q-2, 0 3 ,  Q-4, Q-5, and Q-6 ( 2 ~ 7 0 6 ~ )  hay be replaced by 2 ~ 1 9 9 0 ~ s .  



aouplcd t o ' t h e  heater  oircuit output and through on 'and of f  switches 

t h a t  s t a r t  and s top  t h e  heater  power on t h e  f u l l  second. A b e l l  sounds 

when t h e  heating s t a r t s  and when it stops; a r e g i s t e r  records t h e  number 

o f  seconds. The accuracy of the  timing and s t a b i l i t y  of t h e  output a r e  

good t o  a few hundreths of a percent, A multiple pole 3witch permits . 

se lec t ion  of t h e  f rao t ion  of maximum power t o  be applied, These 

f r ac t i ons  , a r e  0.1, 0.2, 0.3, 0.4, 0.5, 0.75, and 1.0. The currmk 

measuring res i s ton ,  which is: i n  s e r i e s  with t h e  calorimeter heater ,  i s  

of t h e  Manganin wire-wound type and is located i n  an o i l  bath, It has 

proved t o  be s t a b l e  t o  a few thousandths o f '  an ohm over a year ' s  t h e .  

, A Rubicon Type B High Precision potentiometer and box lamp and s c a l e  

galvonometer a r e  used t o  measure t h e  vol tage drops across t h e  current  

mezsuring r e s i s t o r  and calorimeter heater. ca l ib ra t ion  heat  inputs a r e  

on ,~ the .o rde r  of 0.2 t o  0.k caL and agree t o  a few hundreths of a percent, 
. .. . . 

I . . , .  The *sample is  contained in a' small  pyrex bulb of about 50 1 r 
capaci ty  and about 40 mg. i n  weight, with a f l a t ,  very t h i n  bottom. 

Previously, t h e  bulbs were sealed with an Apiezon W coated pyrex bead in 

t h e  neck, but t h e  gas i n  t h e  bulb t h a t  escapes upon sea l ing  contributed 

a 1arge .unaer ta in ty  t o  t h e  weight of t h e  sample. Now a f i n e  pyrex 

c a p i l l a r y  tube is inse r ted  i n to  t h e  bulb.alongside t h e  bead. .(See Fig, 6j. 
. . 

A -  b a l l  of ,Apie.zon 'Ct wax is  placed i n  t h e  neck on t op  of t h e  bead and t h e  

~ bulb i s . s e a l e d  a s  before with a hot wire, exoept t h a t  t h e  cap i l l a ry  

pern i t s  re-entry of gas to . the  bulb as  t h e  bulb.cools. t A piece of 3-mil 

tungsten wire with a small bead of wax i s  now ir\-serted i n t c  t h e  ou te r  
l 

end of t h e  c a p i l l a r y  and quickly sealed with a f i n e  hot wire. The 

r e su l t an t  weight l o s s  and uncertainty a r e  3.50 * 0.25 g. This uncer ta inty  l' 
I i s  u s u a l l y  l e s s  than 0.1% of t he  sanple weight, Weighings a r e  done on a 

Rodder ~ o d e l  'E quartz f i b r e  t o r s ion  balance s ens i t i ve  to*0.05 g, P 



Assembled bulb 

First seal ing 
! 

W 

Final sealing 

Fig .  6. A. -Wax 
B. - Glass bead 
C. - Pyrex c a p i l l a r y  
S. - Sample 
W. - Wire 



B . : Operation 

Usually, a sample i s  loaded one.day and run t h e  next morning. 
, \. 

The thermostat temperature i s  lowered a few ten ths  of a degree and t h e  

submarine chamber i s ' s e t  i n  place  and connected t o  t h e  vacuum l i n e .  

A t  t h i s  point ,  the  temperature of t h e  calorimeter' r ap id ly  approaches 

t h a t  of t he  bath  because t h e  vacuum i n  the  chamber:2s:,poor. The next 
I 

morning, however, t h e  vacuum i s  good and when the  thermostat temperatme 

i s  r e tu rned . t o  2 5 ' ~  the  calorimeter temperature l ags  behind. From four 

t o  s i x  ca l i b r a t i ng  hea t ' i npu t s  a r e  now made which r a i s e  t he  calorimeter 

temperature nearer t h e  equilibrium point .  This ho in t  i s  a few ten ths  

of a degree above t he  thermostat due t o  s t i r r i n g ,  thermometer current ,  

and f r i c t i o n  of t he  s t i r r i n g  sha f t  aga ins t  t h e  hanger. 

A s  t h i s  calorimeter i s  only semiadiabatic, the re  i s  a constant 

d r i f t  of t h e  calorimeter temperature toward the  equilibrium temperature- 

t h e  d r i f t  r a t e  being determined by t h e  thermal leakage modulus and t h e  
- 

temperature di f ference.  This dr i f t  i s  tracked on t he  recorder.  The 

reac t ion  of i n t e r e s t  i s  i n i t i a t e d  at  t h e  proper time, such t h a t  t h e  ' 

heat  evolved r a i s e s  t h e  calorimeter temperature from a point  below t h e  

equilibrium temperature t o  a point  above. The more near ly  equal  t he  

. corresponding temperature di f ferences  a re ,  t h e  smaller t he  thermal 

leakage correct ion.  Now severa l  more ca l i b r a t i ng  heat  inputs  a r e  made 

t o  complete the  run. Between'each heat  input a s e n s i t i v i t y  check i s  

made t o  determine t h e  number of recorder char t  d ivis ions  per  ohm change 

on t h e  decade. 

To check t h e  performance of t h e  calorimeter and t he  technique of 

t h e  operator, samples of very pure c ry s t a l l i ne  magnesium.were run i n  

1.00M K C 1  solut ions  and compared with the  value obtained by Shomate and 

~ u f f m a n ' ~ )  on a much la rger  sca le .  The samples were f r e sh ly  cu t  and 



mechanically cleaned of  a l l  oxide, weighed on the previously mentioned 

t o r s i o n  balance, and t h e  weight corrected t o  vacuum. The measured hea t '  

evolution was corrected f o r  evaporation of water i n to  t h e  dry hydrogen 

evolved and i n t o  t h e  dry atmosphepe i n  t h e  bulb, and f o r  t h e  heat  of 

breakage of t h e  sample bulb. The l a t t e r  was detemined by breaking 

s e v e r a l  bulbs containing a small  amount of water and was found t o  be ' 

about (6k3) X ca lo r i e s  per  bulb. 



C. Calculation 

To exemplify t h e  calcula t ions  involved t he  evaluation of one 

ca l i b r a t i ng  heat  input and t h e  solut ion reac t ion  f o r  a magnesium run 

w i l l  be presented. \ 

 h he amount of 'heat .put ' i n t o  t he  calorimeter can be represented by . 

t h e  res i s tance  change on t he  decade required t o  rebalance t h e  bridge.  

For t h i s  t o  be s t r i c t l y  t r ue ,  t he  pos i t ion  of t h e  t rack  on the  char t  

. paper a f t e r  a heat  input must be returned t o  exact ly  t he  same pos i t ion  

t h a t  i 6  had a t  t h e  i n i t i a t i o n  of t he  heat  input .    ow ever, . s ince  t h e  

heat  input i t s e l f  and re-equi l ibra t ion of t h e  system require  a f i n i t e  

xength of time, extrapolat ions  o f .  the  fore-slope and af ter-s lope t o  
. . 

t h e  same time-midpoint of t h e  heating interval-are used. Also, s ince  

t h e  decade can be changed only by i n t eg ra l  amounts, t he  two extrapolated 
. . 8 

poin t s  do not usually coincide, but  a r e  separated by a ce r t a in  dis tance 

represented by a ce r t a in  number of char t  d ivis ions .  This d is tance can 

be.converted t o  ohms and f rac t ions  thereof by dividing by the  s e n s i t i v i t y  

i n  d iv i s ions  per ohm. Thus the  decade change required t o  re tu rn  t he  

bridge t o  t h e  same balance point  can be calcula ted.  

I f ,  now, t he  calorimeter heat  capacity and t h e  temperature coef- 

f i c i e n t  of res i s tance  of the  thermometer a r e  constant i n  t he  temperature 

range of t he  run, t h e  f r a c t i o n a l  change of the  res i s tance  of t he  thermon- 

e t e r  w i l l  be constant f o r  a given amount of heat  added, regardless  of t he  

i n i t i a l  temperature. ' Thus, r e f e r r i ng  t o  Fig.  4, t he  f r a c t i o n a l  change 

.of t he  res i s tance  i n  t he  var iable  arm of t h e  bridge and t h e  f r a c t i o n a l  

change i n  t h e  res i s tance  of t h e  thermometer a r e  equal t o  



where Ra and R a r e  the, decade value3 f o r  t h e  after-slope and f o r e  
f 

s l ope  respectively,  O r ,  more simply: , 

The amount of heat  f o r  a given input can be precise ly  calculated,  . so  

t h e  f r ac t i ona l  change per oa lor ie  can be calculated. 'Shase+values arc 

averaged over severa l  heat inputs  and t h e  average applied t o  the ... frac- 

Liona l  change calcula ted f o r  t h e  heat of reac t ion  of in te res t .  

me example heat;. input was f o r  60 seconds a t  0.4 maximum power, 
7.- , 'l 

and gave f o r  t he  voltage drops across t h e  standard current  measuring 
. ,  . .  . 

r e s i s t o r  and t h e  calorimeter heater ,  0,84235 v. and 0,54997 v. r e  

spec t  ively. .Thus we calculate:  

  he value of R s t  is 2 4 . 8 0 9 ~ ~ ;  thus  f o r  t h i s  heat  in'put: 

The decade value f o r  the  fore-slope was 2965n. and f o r  t he  af ter-  
. . ' .-. (,' . . 

: s lope  was 3 1 2 8 ~ .  Both slopes ,were extrapolated t o  t h e  midpoint of t h e  

heat  input, The extrapolat ion of t h e  after-slope was 4.7 char t  d ivis ions  

down sca l e  from t h a t  of t h e  f o r e s l o p e  which means. t h a t  t h e  res i s tance  
. . -  

, change on t h e  decade, 163& , was too l a rge  t o  re turn  t he  bridge t o  its 
. . . . 

former balance point. S e n s i t i v i t y  cheaks. a r e  made a t  in te rva l s  through- 
. . . . . ... 

out .the run, as  indicated previously, and a r e  p lo t ted  a s  divis ions  per 

ohm vs. average ohms on t he  decade, The s e n s i t i v i t y  f o r  t l i i s ' h ea t  . 

i npu t  was 2,564 %,' Thus t h e  decade change required t o  balance th,e 
. . A 



bridge was: 
. . ,  

1 6 3 ~ ~ -  AdJJ2L 161017n d iv  2.564 - 
n 

The after-slope resistance, then, should be 3126.17~ . The f raotional 

I ahange a& then be calculated: 
' 

a ,  1.0057632755 x 0.9943698371 - 1 

. . .  -, 0.000100~~49 

and the  fract ional  change per ca lor ie  iS' then: 

f.c. , 0.0001006649 
L 

c a l  0.26778 

Similar ly,  the  fraot ional  change per calor ie  f o r  the  other heat 

I inputs is oalculated. and the values averaged. 

The oaloulation of the f rac t ional  ohange f o r  the  reaction involves 

correotion f o r  t h e - n e t  heat leakage betwe'en the  calorimeter and the  

environment. ~k was indicated previously, the steady state.  t@perature 

is scmewhat higher than the environmental temperature. The thermal, 

1 leakage modulus, M.$, is  expressed thus: 

where Tactual and Tss a r e  the  actual  temperature of t h e  'calorinieter and 
. . 

the s t eady ' s t a t e  temperature respectively. To a suf f ic ien t ly  good' a p  

. proxima.t;ion, the  resis tance of the thermometer varies l i nea r ly  with 

temperature so the leakage modulus can be expressed as  an "ohmicr 

I leakage modulus", Mn, 

where Ractual and %, a r e  the  actual  decade se t t ing  and the  decade 

I 



s e t t i n g  a t  TsS respectively. M, and Rss a re  oalculated from the fore- 
22 I 

slope and after-slope which are expressed as  the  number of chart divisions 
I 

I 
I 

t h e  t rack  crosses per uni t  time. Since the chart flow-rate is  constant ! 

I 

and t h e  sens i t iv i ty  is known, the  slopes are expressed as ohms per 
. . 

J '  

millimeter. The fore-slope is  extrapolated t o  the beginning of the  

reaction and the after-slope extrapolated t o  the end of the  reaction, 

These two extrapolation points d i f f e r  i n  time by the duration of the  
' ' 

. . . .. 

reaction; and also, usually, bp a cer tain number of divisions which i s  
. .  - . .. . . . .  

corrected for  as  it was with 'each heat input. (See Fig, 2) I n  t h i s  

case the  difference was -1.9 div. o r  -2.&n. Ra is then 3793 :- 2.05 

'. o r  3790.95.~. . . 

. ' Thus-for our example: 
. . 

, ... 

after-slope ' = + 33.0 div 
d iv  lOOmm x 2.388 



Fore-slope 
low sensitivity 

I Time 

.I Temp. 

Fore-slope" 
high sensitivity 

Fig.  7. Recorder t rack  f o r  d issolut ion of magnesium i n  1.0~ HC1. 
1 



A s  was mentioned previously, t h e  po t en t i a l  divider permits moni- . . . . . . 
t o r i n g  t h e  temperature curve during t he  react ion.  The curve i n  t h i s  

example goes across  t he  T a s  i s  indicated by t h e  change in,.:sign of 
s S 

. '  t h e  slope, and t h e  pos i t ion  of R on t he  high s e n s i t i v i t y  and t he  
S s 

s e n s i t i v i t y  r a t i o .  This r a t i o  i s  11. Thus: 

Sens i t i v i t y  r a t i o  R = Low s e n s i t i v i t y  - 
d i v  mm m 

High s e n s i t i v i t y  - x - 
R d l v  

11 A L  = 2 .U7 , 
mm 2.451 2 .1  - 
d iv  

d iv  . Here 2.451 7 i s  t h e  average of t h e  high s e n s i t i v i t i e s  before and a f t e r  . 

t h e  reac t ion  

Thus RSS can be drawn across  t h e  temperature curve 7 7 . 1 m m  up-scale from 

R on t h e  low sensi t i ,v i ty .  This i s  shown i n  Fig .  7. The areas  A and B 
f 

represent  t he  heat  t h a t  l eaked  i n t o  and out of t he  calor imeter . respect-  

ively ,  and a r e  measured by superimposing t h i n  mm graph pager on t he  

char t  and counting squares. The low s e n s i t i v i t y  value i n  ohms per mm 

times t h e  leakage modalus; gives t h e  nuqber o f '  ohms per square mill imeter.  

This fac tor  times t he  n e t  area ,  (B - A ) ,  gives us t he  number of ohms ' 

t o  be added t o  Ra f o r  t h e  heat  l e ak  correct ion.  - 

correct ion = 1.011 X 1 0 3  A x 16n mm 2 
2 - 

mm - 



. . 

correction r + 1.69 .A 

The f rac t ional  change i s  2.76296 x 10-4. Dividing t h & s  by the  average 

f rac t ional  change per calor ie  of the several. heat inputs gives the net  

heat of the reaction: 

A s  was previousJ.y mentioned, th5s n e t  heat value must be carrected 

f o r  the heat of breakage of the  skmgle bulb, and the heat of vaporiz- 

ation of tha  solution i n t o  the dry hydrogen evolved and the a i r  i n . t h e  

~ bulb.' The heat of ~ a p o r i z a t i o n  of water i s  used. to  a?proximate the  

1 heat e f f ec t  i n  the one molar hydrochloric acid used and i s  10,4.$0 

calor ies  per mole, Thus one calculates fo r  the' heat of vaporization 

of water in to  t h e  dry hydrogen 0.002157 cal., and in to '  the  a i r  i n ,  the 

b Q b  a t  44% re la t ive  humidity 0,000201 cal. The heat of breakage 

i s  0.000560 cal.  Thus the heat of solution bf 161.2pg o f  pure Mg 

metal i n  1.00M H C 1  i s  0.73756 cal. o r  A H29$ = -111.2 i(cal/mole. 

Table 1 gives the corrected r e su l t s  for  four runs. 

Heat of the  Reaction Mg + 2 ~ + +  M ~ + +  + H2 t - 
Sample Weight Heat Evolved 

(.&) (calor ies)  (kJ7E1 e ) 

0.7375 -111.2 
Average -111.3 * 0.2 



Shomate and Huffman1 s value is  -112,322 f 0.0410 The resu l t s  ' 

indiaa te  tha t  there  are no signifioant systematic errors and tha t  t h e  

preaision of t h e  operation i s  about 0.2%. 



Europium metal  can be obtained commercially i n  qui te  high pur i ty :  

9 9 . 9  with , respect  . t o  a l l  contaminants, i s  claimed. One sample of metal 

was qui te  pure spectrographically, but  contained small, random tnclus ions  

of a reddish powder. The nature  of t h i s  powder i s  unknown, but  it 

rendered t h e  metal unsuitable f o r  use as calorimeter samples. A second 

I metal sample from t h e  same firm was double dis ' t i l led ,  but  s t i l l  showed 

t h e  r ed  inclusions,  t h i s  time i n  t he  form of t h i n  r ed  s t reaks  ins tead 

, of pockets. An attempt was made t o  "slagi' t h i s  ?two-phase" metal by 

' packing a s m a l l  Ta crucible  with chunks and melting under high vacuum. 

There was very l i t t l e  separation of t he  inclusions 'from the  metal, and 

only a very s m a l l  por t ion a t  t he  top of t h e  r e su l t i ng  2ngot proved 

s a t i s f ac to ry  f o r  calorimeter .samples. 

A small rod of europium metal was kindly furnished us by Professor 

Frank spedding, and t h i s  proved t o  be qu i te  sa t i s fac tory ,  One end of 

' t h i s  rod was f'ree of any v i sua l  contaminant. . The chemical p u r i t y  data  

f o r  t h i s  sample a r e  given i n  Table 11. A l l  Eu metal calorimeter samples 

were taken f'rom t h i s  rod. 

The samples were cut  and mechanically cleaned i n  a dry nitrogen 

81 i n e r t  atmosphere!! glbve box. The nitrogen was <obtained by bo i l ing  ' . . 

l i q u i d  nitrogen t o  f l u sh  t h e  box f o r  16 t o  18 hours. The box atmos- 

phere was then recycled through a l i q u i d  nitrogen t r a p  t o  remove water, 

and a copper wool furnace a t  600 '~  t o  remove oxygen. Under optimum 

conditions, f'reshly cu t  europiuh couid be held  f r e e  of t a rn i sh  f o r  

about two hours. Longer exposure t o  t he  box atmosphere would generate 

a f a i n t  golden ta rn i sh .  No samples were f r e e  'of t a r n i s h  because of t h e  

extreme r e a c t i v i t y  of europium and t h e  imperfect box atmospheres, but  



TABLE I1 

Analysis of Europium ~ e t a l  

( resul ts  expressed as  $) 

Ba < 0.01 Ho < 0.05 . Si<O.Ol 

Ca < 0.01 . La< 0.01 Tac 0.1 



29 

t h e  variations in tarnish realized did not affect the precision of the 

results outside of experimental error. It is assumed that an absolutely 

tarnish-free sample would yield results that d i f fer  from those obtained ' 

by ' less  than the experimental error. 



8. Europium Monoxide 

Europium monoxide was prepared by d i r e c t  combination of t he  metal 
I 

i 
and t he  sesquioxide, both 9 9 . 9  pure, i n  vacuum a t  high temperature i n  

a sealed tantalum crucible  in one method, and i n  a closed but unsealed 

, 
tanta'lum cruc ib le  i n  t h e  o t r e r  . ' (see Fig .  8. ) 

The unsealed system contained a port ion of oxide, and a 5% 

stoichiometric excess of metal according t o  t he  react ion:  

1.05 Eu + Eu 0 ' - 3  EuO + 0.05 Eu 
2 3 

The oxide was p re t rea ted  by heating i n  an oxygen atmosphere overnight (3 1 

a t  400°c t o  remove carbonate and absorbed gases. The oxide was then 

s to red  under dry  argon. ' The metal was cut  and cleaned i n  t he  i n e r t  

atmosphere box, sealed i n  a small t a r ed  g lass  bulb, and weighed on an 

Ainsworth Type V.M.. Assay balance t o  0 . O 1  mg. The corresponding amount 

of Eu 0 was calculated,  weighed, .and combined with .the metal i n  t h e  
2 3 .  

c ruc ib le  i n  t h e  dry box. The l i d  was s e t  i n  place and ' the crucible ,  

suspended'in an induction shie ld ,  was loaded i n  t he  vacuum l i ne .  The 

system w a s  ca re fu l ly  outgassed by gent le  heating with a R.F.  induction' 

heater  u n t i l  t h e  temperature could be r a i s ed  with no increase i n  pressure.  
? 

The crucible  w a s  then heated i n  high vacuum a t  from 1 4 0 0 ~ ~  t o  

-6 
1550 '~  f o r  about four hours a t  a pressure i n  t he  low 10 mm Hg range. 

The' c ruc ib le  was opened i n  t h e  d ry .  box and t h e  reddish-brown c rys t a l l i ne  

powder rembved. The ana ly t i c a l  data  on four preparations by t h i s  method 

a r e  given i n  Table 111, numbers 1, 2,. 3, and 4. 

Preparations 5,  6, and 7 were made i n  sealed systems. A heavy- 

walled tantalum crucible  with a properly machined f o r  subsequent 

he l i a r c  welding was used. The europium metal was cut ,  cleaned, and 
. . 

weighed as before;  and t h e  exact ly  stoichiometric mount  of Eu 0 
2 3 

calculated,  weighed out, and combined with t h e  metal i n  t he  crucible ,  



JV To plate 

I 
.I 

Unsealed crucible 

Sealed crucible 

Fig. 8.   ant alum crucib1e.s. 
, . 1 



, 

TABLE I11 

EuO Preparations AnanQses / 
Lattice I 

No. Parameter Stoichiometry - 
r, 

i+ 
listed lattice parameter does 
not apply to these numbers 



I 

'. 33 ' I  

The l i d  was then welded on an$ the system leak  ohecked a t  room tempera- 

ture .  It was heated as before  but cooled slowly: reduced t o  about 

8 0 0 ~ ~  over a three-hour in terval .  A l l  samples proved t o  be 99.9% 
. . ... , 

pure spectrographioally. 

Each preparation appeared t o  be inhomoger&s t o  a cer ta in  degree. 

They a l l  exhibited & oocasional.smal1 pocket of a b r igh t  yellow powder. 

The periphery of the  pooket was a dark wine color which faded i n to  t h e  
. . 

reddish-brown color of- t h e  major phase. The nature  of t he se  inclusions 
. . ,  

is  unknown, but they a r e  probably europium-oxygen combinations of 

varying oomposit ion. The amount of t h e  inclus ions  was estimated a t  

l e s s  than 0.1% of t h e  major phase. When t h e  %&merated pieces were 

broken up t o  y ie ld  chunks of a s i z e  su i t ab l e  f o r  t h e  calorimeter runs, 

t h e  inolusions could be removed. Preparations numbered 3. and 6. 

showed subs tan t ia l .  port ions,  1 5  t o  20%, of a second phase which was 

s i gn i f i c an t l y  darker i n  color  than t h e  o ther  phase, and was not as wel l  

ig@~erated nor a s  lustrous;. Powder pat terns  of samples from each of 

these  port ions a g r e e w i t h  each other,  but show no EuO l ines .  ~ c h a r d ( 5 )  

mentions a phase with an O/EU r a t i o  of 1.3 calcula ted from x-ray 

1 evidence. Biirnighausen and ~ r a u e r ( ~ )  repor t  a new europium oxide with 

t h e  composition Eu304 made from a n  I equal-molar mixture of EuO and 

Eu20 heated t o  900'~ f o r  2 hours under a pure i n e r t  gas. Tne formula 
3 

was determined by comparing t h e  i n t e n s i t i e s  and posit ions of t h e  powder 

pa t te rn  l i n e s  with those  of Eu2SrOq. Both substanoes a r e  orthorhombio 

with t h e  following. l a t t i c e  parameters: 
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The 8,quares of the sines of t h e  q l o s  ef  diffraction calculated frem 

Brauer t s  data a r e  no t '  in complete agreement with those  observed here; I 
I 

therefore ,  it is not claimed t h a t  t h e  second phase observed here is 

pure Eu30 No f u r t h e r  character izat ion of t h i s  phase has been done 
4- 

by t h i s  author. 

The oxygen-to-europium r a t i o s  shown in Table I11 were obtained by 

i g n i t i n g  a known weight of sample t o  constant weight of Eu203. From 

a t e n  t o  twenty milligrams of i8Eu011 were weighed in small quartz weighing I 
bulbs t o  a hundredth of a milligram on t h e  Ainsworth Type V.M. Assay i 

balance. The bulbs were loaded in a dry box and were f i t t e d  with small 

.. g la s s  stoppers t o  minimize contact of t h e  sample with t h e  a i r  during 

weighing. They were then igni ted a t  7 0 0 ~ ~  i n  air; the,weight inoreases 

were measured .on ' the  previously mnt ioned t o r s ion  balance and were from 

one-half t o  more than one milligram. The i gn i t i on  product powder pa t te rn  

agreed with t h e  monoclinic phase of Eu203. I n  ?reparations 3 .  and 6. 

it was intended t o  determine t h e  stoichiometry of both t h e  usual  reddish- 

brown phase and t h e  o ther  o r  dark brown phase. In  each aase t h e  f i r s t  

two values a r e  f o r  t h e  reddish-brown phase. 

Concerning t h i s  phase it is noted t h a t  t h e  l a t t i c e  parameters f o r  

t h e  . several  preparations a r e  e s sen t i a l l y  constant with t h e  exceptions . 

. o f  number 6. These.can be compared with t h e  value from a sample from 

Los Alamos S c i e n t i f i c  Laboratory: 5.1443 W. The l i t e r a t u r e  'values 

(5) inolude 5.1439 ~ , ( ~ ) 5 . 1 4 1  g,(8)and 5.14 8 

Monoxides aan c r y s t a l l i z e  with one o r  more of t h r ee  d i f f e r en t  

c r y s t a l  s t ructures :  sodium chloride,  z inc  blende, o r  wurtz i te  with 

- some var ia t ions  and defect  s t ructures .  I n  the  NaCl f o k ,  each atom is  

octahedral ly  coordinated; while i n  t h e  zino blende and wurtz i te  s t r uc tu r e s  

t h e  coordination i s  te t rahedral .  This d i f ferenoe can be seen in t h e  
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powder pattern of the  sample i n  the  r e l a t ive  in t ens i t i e s  of the  following 

pa i rs  of reflecticns: 111,200; 311,220; 331,420, The x-ray data  f o r  

Preparation 2 is  presented' in Table IV. The observed r e l a t ive  in t ens i t i e s  

of the  three pairs  of ref lect ions agree with the calcuiated values in- 
. . 

. dicat ing a NaCl type face-centered cubic s t ruc ture  fo r  EuO. This i s  

a l so  the  ease f o r  the  alkaline-earth oxides and the monoxides of many 

of the  t rans i t ion  metals. The l i t e r a t u r e  oontains data on other 

0 (t2 
lanthanide monoxides: Lao-5.249 2, (9)~e~-5 .11  8, (u) ~d0-5.068 A, 

Sm0-4,9883 ~,(~)~b0-4.86 8 , (5 )a l l  of which a r e  f cc  N a C l  type. With- 
' 

i n  the  accuraoy of the r e su l t s  i n  Table 111, nothing def in i te .  can be 

'. sa id  concerning t h e  aorrelAtion between l a t t i c e  parameter and t h e  O / h o  

A l l  the  europium monoxide analyses known t o  t h i s  observer have 

shown a non-stoiohiometric composit ion. This includes the  one sample 

from the  Los Alamos Scient i f ic  Laboratory where the  O/EU was 1.009. 

The l a t t e r  preparation consisted of t h e  stoichiometric combination 

of Eu and Eu203in a Ta capsule welded shut under high vacuum and then 

heated a t  1650'~ f o r  8 hours. The l a t t i c e  parameter measured 5.1443 2. 
. . 

A s  the  data a re  presented, an excess of oxygen is indicated; but I 

t h i s  can a lso  be represented as a deficiency of europium: an oqygen 

l a t t i a e  with some vacancies i n  t h e  ootahedral positions, ''Iron mon- 

(12) oxide, FeOn, presents just such a case, Oxides with g ~ e  - from 

1.06 t o  1.19 show a decrease i n  density and unit o e l i  volume with 

increasing oxygen content indioating ikon deficiency, The composition 

can be expressed Feo 940 t o  Fsgog&0i 

, "Manganese monoxide" has shown a composition range with the 0/Mn 

from 1.0056 t o  1.0f+4.(~~)1t was ref erred t o  as having cation vacanoies, 

thus the formula range is %0g940 t o  "Vanadium monoxide" 



Powder Pat tern  Data f o r  E'uO Preparation 2. 

r? 

0 .  hkl 
s i n  In t ens i t y  

Ref lect ion - - '::.obs. caL_cz obs. , calc. 



has a homogeneous N a C l  type phase over t he  composition range: O/V = 0.80 

t o  1.20, showing random vacancies f o r  both cat ions  and anions. 

The f a i l u r e s  of the  attempts t o  prepare the  exact ly  stoichiometric 

compound may ind ica te  i t s  i n s t a b i l i t y  a t  t h e  preparation .temperatures. 

There i s  a l s o  t he  posszb i l i ty  t h a t  the re  i s  an appreciable vapor pressure  

of europium over t he  oxide phase which does:not re-equi l ibra te  with t h e  

subst ra te  upon cooling.  chard'') repor t s  t h a t  EuO can be d i s t i l l e d  a t  

1 7 0 0 ~ ~  i n  vacuum wsthoht-: decomposition, yielding a d i s t i l l a t e  of un- 

changed s t ruc ture  and l a t t i c e  parameter. There i s  t h e  p o s s i b i l i t y  t h a t  

h i s  vaporized species was r e a l l y  europium metal which was oxidized t o  - 

EuO by r e s idua l  oxygen i n  t h e .  system, b u t ' i n  a wel l  degassed system 

t h i s  p o s s i b i l i t y  i s  unlikely. He did not say a t  what pressure t h e  

' .  d i s t i l l a t i o n  took place.  Stoichiometric analysis  of the  subs t ra te  

would ind ica te  t he  vaporization process. 

The mate r ia l  used fo r  t he  calor imetr ic  analyses was Preparation 1: 

EUoi. 021 For t h e  purposes of calcula t ion,  it was considered t o  be an 

i d e a l  so l i d  solut ion of Eu 0 i n  EuO, but  t h i s  i s  almost c e r t a in ly  not 
2 3 .  

t h e  case. It i s  thus  represented a s  EuO*O.O2lEu 0 
2 3'  

Calorimeter samples of Eu and EuO were of about 500pg mass and 

were prepared a s  was described previousl i .  ' This sample s i z e  was chosen 

because of c e r t a in  l imi ta t ions  imposed by t h e  microcalorimeter. 

C. Solutions 

The solut ions  of H C 1  used were prepared from ana ly t i c a l  grade 

reagents.  The solut ions  used 'for ' , the Eu metal calorimeter runs were 0.1 N 

H C 1  sa turated with O2 gas. Those f o r  EuO were 1 . O N  H C 1  sa turated with 

O2 gas. The function of the  O2 gas w i l l ' b e  discussed l a t e r .  



IV. C K L O R r n r n I C  MEASUR-TS 

A. Europium Metal 

The experimentally observed heats  of solut ion of europium metal 

i n  oxygen-saturated hydrochloric ac id  a r e  given . i n  Table V.. 
t 

For accurate  calcula t ions ,  a wel?-defined calorimeter reac t ion  i s  

of primary importance. ' I n  t he  case  of t u r o p i ~  there  can be some uncer- 

. t a i n t y  depending on t he  composition of t he  solut ion a t  t he  s t a r t  of t he  

reac t ion .  When t h e - ~ o l u t i o n  i s  sa turated with oxygen gas t h e  reac t ions  

(14) a r e  considered t o  be: . , 

+ +2 ' 

Eu + 2H -+ Eu + H2 (2) 

. 

and f o r  the  t o t a l  react ion:  

I n  ac id  solut ions  there  is  one other competing reac t ion  f o r  t h e  

+2. oxidation of Eu . 

But i n  considering t he  r e l a t i v e  reac t ion  r a t e s ,  react ion (3) i s  much 

f a s t e r  than ( 5 ) .  Samples of europium metal were dissolved i n  argon-. 

f lushed media and t h e  absorption spectrum taken with a Cary Model 14 

Recording Spectrophotometer. These solut ions  showed strong absorption 

i n  t h e  u l t r av io l e t :  with t he  europium conc'entration approximately 

thousandth molar, t he  o p t i c a l  densi ty  w a s  greater  than 2.0 at  wave 
0 

lengths  l e s s  than 3000 A. However, i n  an oxygen-flushed medium there  was 

no such absorption. Depending on t h e  e f f ic iency  of t h e  argon f lush,  

t h e  absorption pers i s ted  t o  a measurable extent  f o r  more than two hours, 

whereas t he  heat  evolution of t h e  reac t ion  i n  an oxygen-saturated medium 

i n  t h e  calorimeter was complete i n  1 t o  1; minutes.. 

The hydrogen gas evolved from the  solut ion of samples of La and'Eu 



Heat of Solution of Europium Metal i n  O2 sat ld.  0.1N H C 1  

Sample Ell+3 Heat 
Weight Molarity AH298. 2 

Og)  
( (~cal/rnole) 

2. 400.5 3.294 x 0.4347 -164.94 * 0.6 

3.  462.4 3.802 7 lo-' 0.4987 -163.91 1.0 

4. 546.6 4.496 x 0.5925 -164.77 1.0 

. .  Average -164.62 * 1.0 
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meta l s  i n  oxygen-saturated 0.1N H C 1  was measured and found t o  y i e l d  

hydrogen-to-metal mole r a t i o s  of  1.53 and 1.02 respect ive ly .  Thus it 

i s  claimed . tha t  i n  oxygen-saturated ac id ,  reaction!: (5) proceeds t o  a 

n e g l i g i b l e  ex ten t ;  so t h e  ca lcu la t ions  a r e  based on r e a c t i o n  (4). 

It was a l s o  attempted t o  run europium meta l  i n  an oxygen-free - 
medium thus  e l iminat ing  reac t ion  ( 3 ) ;  and s ince  reac t ion  (2) is  much 

f a s t e r  than r e a c t i o n  ( b ) ' ,  t h e  hea t  e f f e c t  due t o  r eac t ion  (2 )  can be . 

measured which, except  f o r  small corredt ions ,  i s  j u s t  t h e  heat :of  f o r -  

3.2 
mation of Eu 

( a s ) '  

Naintaining an  oxygen-free s o l u t i o n  proved t o  be r a t h e r  d i f f i c u l t .  I 

Simply f l u s h i n g  t h e  a c i d  with argon and loading i n  an  iner t ' a tmosphere  

proved t o  be inadequate because t h e  s o l u t i o n  i n  t h e  ca lor imeter  i s  open 

t o  t h e  atmosphere a long t h e  s t i r r i n g  s h a f t .  Since t h e r e  i s  a  small  

c learance  between t h e  s h a f t  and t h e  guide i n  t h e  hanger, a  mercury 

d r o p l e t  was used t o  f i l l  a  small  space around t h e  s h a f t  above t h e  guide. 

The mercury would not  drop through t h e  small  clearance. , I n  a d d i t i o n  

an "oxygen scavenge" was::put i n  with t h e  f lushed a c i d  when t h e  run  was 

loaded. The llscavengetl was a smal l  p iece  - about one milligram - of 

europium meta l  which would provide europous i o n s  t o  r e a c t  with t h e  

r e s i d u a l  oxygen. But s ince  t h e  mercury does not  wet t h e  s h a f t  and 

hanger, t h e r e  was s t i l l  a  small  leak  which consumed a l l  t h e  scavenge 

dur ing  t h e  long pump-doxm time. However, i f  an  appreciably  l a r g e r  

scavenge - about six milligrams - was used, t h e  s o l u t i o n  could he main- 

t a ined  oxygen f r e e  f o r  a s u f f i c i e n t l y  long period of time. 

+ 

However, t h e  hea t s  o f '  s o l u t i o n  of europium meta l  i n  such s o l u t i o n s  

va r i ed  considerably. Visual  observation of europium meta l  d issolved 

i n  oxygen-free hydrochloric  ac id  revealed a  r e s i d u a l  white m a t e r i a l  

' 

t h a t  could be  cent r i fuged,  The s o l u t i o n  would a l s o  e x h i b i t  a  I'yndall 

beam. Thus t h e  ccalor&eter r eac t ion  i s  not  defined. The na tu re  of 
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t h i s  white mate r ia l  is unknown, but it is possibly a polymeric hydrated 

europous oxide o r  eu~opous hydroxide. I n  t h e  immediate v i c i n i t y  of 

t h e  dissolving metal, t h e  pH is probably qu i t e  high, as t h e  hydrogen 

ions a r e  consumed; t h i s  could l ead  t o  t h e  hydrolysis  of the  EhS2 fornied 

and subsequent polymerization of the  hydrolysis  product, which i s  only 

slowly at tacked by hydrogen ion. There i s  a l s o  t h e  p o s s i b i l i t y  of t he  

oxidation of  to ~ u ~ ~ b ~  ~ 2 0  with hydrolysis  of t he  Eu+3 a s  Eut3 

hydrolyses more read i ly  than EU'~, The polymer formed then could be 
. . 

one containing EU'~. 

The s i t u a t i o n  is thermodynamically q u i t e  d i f f e r en t  when oxygen is 

, .  p l e n t i f u l  in the  solut ion:  EU'~( ,~)  is  no longer s o  s t a b l e  and t h e  

d i sso lu t ion  proceeds much more.rapidly t o  completion. 

The oalorimeter react ion may be b e t t e r  defined if t h e  europium 

sample is  a l ready a s  Eu 11. For t h i s  case, we used Iteuropium monoxideN 

which is  described & . t h e  next section,  



B. "Europium  ono oxide" 

f i e  experimental values f o r  t he  heat  of solut ions  of "europium 

mon'oxide" i n  oxygen-saturated hydrochloric ac id  axe tabula ted i n   able 

VI. 

It was found t h a t  t he  "EUO" d id  not  d issolve  a s  r ead i l y  i n  O . l N  

. H C 1  as t h e  europium metal, but  ins tead required 2 t o  3..minutes; a su i tab ly  

f a s t  d i s so lu t ion  was obtained i n  1 . O N  KC1,  however. A s  i n  t he  case of 

t h e  metal,  these  solut ions  were sa turated with oxygen gas t o  define t h e  

.calorimeter react ion:  

f 
Eu0;0~..021~~ o + 2 . 1 2 6 ~  '-+ E U ' ~  + 0 . 0 4 2 ~ ~ ~ ~  + 1 . 0 6 3 ~ ~ 0  ( 6 )  2 3 

and f o r  t h e  t o t a l  react ion:  

EbOr.0 ; O S X E ~ ~ O ~ :  + 3 . l 2 6 ~ "  + 0 . 2 5 0 ~  + 1 . 0 4 2 ~ ~ ' ~  + 1.563~20 (8) 

The uncer ta inty  i n  t h e  average value f o r  t h e  heat  of solut ion of 

EuO1 .021 i s  r a t h e r  l a rge  and indicates  a degree of inhomogeneity i n  t h e  

mate r ia l .  This i s  not  no'l;iced fn  the  stoichiometric measurements becailse 

t h e r e  t h e  sample s i ze  was about f o r t y  times l a rger ,  whereas t h e  ca lo r i -  

meter samples were chunks of t he  proper s i z e  chosen 'a t  random from t h e  

broken-up agglomerate. 

As was mentioned previously, "EUO" was used i n  an attempt t o  

determine t h e  heat  of formation of Eu +2 The. oxygen-free solut ions  
(as )  ' 

, were prepared by running a solut ion 0.005N i n  Euf3 and lN i n  HC1 through 

a Jones Reductor and loading i n  an i n e r t  atmosphere. The solut ions  

' thus  prepared provided very conveniently an oxygen-free solut ion '  with . 

su f f i c i en t  E U + ~  scavenge. The expected calorimeter reac t ion  i s  then 

r eac t i on  (6) fr'om which. t h e  heat  of formation o f  Eu can be calcula ted.  
. . (as )  

However, r eproduc ib i l i ty  i n  t he  heats  of solut ion was very poor, 



, . TABU 'VI 

Heat of Solution of EuO, ' ,,, i n  0, s a t  Id. 1. ON H C 1  
I* U L L  L. 

Sample &3 Heat 

Weight ' . ~ o l z i i t y  . , 
Evolved ( c a l )  OH298. 2 

9 ~ )  (~ca l /mole )  

4. 305.0 1.82 x 0.1636 -86.3 0.6 
Average -87.8 a 1.7 
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and t h e  values f o r  t h e  heat  of formation of E U + ~  appeared t o  be about 

1 5  Koal too negative, as compared with t h e  calcula ted value. Here, 

a s  in  t h e  case with europium . . metal mentioned previously, t h e  calorimeter . 

reac t ion  d i e s  not  appear t o  be ~611-defined. The d i sso lu t ion  r a t e  

t h i s  case  i s  .muoh slower .- 7 t o  10 minutes -- so the  increase in pH 

around t h e  sample may not be as rapid, but s ince  t h e  s t a r t i n g  mate r ia l  

is  already t h e  oxide, t h e  conditions f o r  formation of a hydrated oxide 

polymer rnay still be favorable, 

It i s  recommended t h a t  EuC12 be used f o r  t he  determination of t h e  
. . 

+2 ' hea t  o f  formation Eu(,~) as  it is read i ly  soluble  without change in 

' pH, The heat of so lu t ion  in  oxygen-saturated H C 1  would y ie ld  t h e  heat 

of formation of EuC12(,); t h i s  value and t h e  heat  of so lu t ion  in oxygen- 

+2 f r e e  H C l ,  would y ie ld  t he  heat of format ion o f  E U ( ~ ~ ) .  



V. m S m S  AND DISCmSION 

The calorimetric measurements of t he  heat  of solut ion of europium 

metal i n  oxygen-saturated 0 . U  H C i  permit t he  calculatdon of t he  

standard ,heat of fbrmation of Eu +3 I f  we subtract  from t h e  average 
(as)  

heat  of solut ion given i n  Table N; t h e  heat  of formation of one-half 

mole of water, ( I5)  neglect  t he  s l i g h t  change i n  t he  composition of 
I . +  ' 

t h e  H C 1  so lu t ion  due t o  consumption of H i n  t h e  d i sso lu t ion .of  t h e  

1 . metal, and approximate t h e  s t a t e  of i n f i n i t e  d i l u t i on  by 0 . m  HC1, we 
. . 

obtain  

, A  p l o t  of t h e  experimental heats  of formation of aqueous t r i p o s i -  

t i v e  lanthanide ions i s  given i n  Fig. 9. (16,17,18) , 

It i s  noted that t h e  heat  of formation of Eu i s  some 33 t o  34 
(as)  

Kcal more pos i t i ve  than t h e  values f o r  Sm 
(as)  

+3 but  it should +3 or ~ d .  
(as) ' 

a l s o  be noted t h a t  e&opium metal i s  very unlike . e i t h e r  Sm or Gd. Some 

of t h e  pektinent physical  proper t ies  of the: 2anthanj.de metals a r e  included 

i n   able VII. ( l g )  For 'each of t h e  proper t ies  l i s t ed , .  Eu and Yb a r e  t h e  

anomolies .. 
Fig.  9 indicates  t h a t  for .most  of t h e  r a r e  ea r ths  the re  i s  roughly 

a l i n e a r  decrease of o n l y  about 0.8~cal/mole per atomic number i n  t he  

hea t s  of formation of the  aqueous t r i p o s i t i v e  ions.  Hence, f o r  these  

elements, t h e  terms i n  t h e  Born-Haber cycle: 
1. 

must sum t o  t h e  same value within a few rcilocalories. 

Values fo r  t he  f i r s t  ion iza t ion  p o t e n t i a l  a r e  tabula ted ( l g )  f o r  

most of t h e  lanthanides,  but  only f o r  lanthanum a r e  t h e  f i r s t  t h r ee  

known. The sum of t h e  f i r s t  t h r ee  ionizat ion po t en t i a l s  f o r  the  
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Fig. 9. Heats of formation of aqueous t r i p o s i t i v e  lanthanide ions.  



T A B U  VII 

Some Physical Propert ies of Lanthanide Metals 

Met. ' ' AHO sub. ' 

Met. 
.Valence Oc . ~ ~ ~ l / & l $  g/cc R a d . 8  cc/mole 

Tm 3 .  1545 . 58.4 9.27 1.75 18 

Y b .  .2.0 824 41.5 7.02 . 1.96 2 5 



r e s t  of t h e  lanthanidets aan be oalaulated From t h e  Bonn-Haber cyele 

with values f o r  t h e  standard heats of formation of t h e  aqueous tri- 

pos i t i ve  ions, t h e  heats  of sublimation, and t he  heats of hydration " I 
of t h e  gaseous t r i p o s i t i v e  ions. 

The heats of hydration can be estimated from t h e  Born equation. . . 

q2 1 E s -  
2r (1 - 8) 

. ' where q is  t h e  charge on t h e  ion in esu, r i s  the  radius of t h e  hydrated 

ion  in centimeters, and D i s  the  d i e l e c t r i c  constant of water. I n  t he  

neighborhood of t h e  oharged 'pa r t i c le ,  t h e  d i e l e c t r i c  constant i s  prob- 

; ably much d i f f e r en t  from t h e  bulk value of 78, but unless t h e  value is . . 
1 d r a s t i c a l l y  d i f f e r en t  f rom 78, t h e  (l-.-jJ) term e f f ec t s  t h e  energy by 

only  about a peroent. 

A measure of t h e  radius  of  t h e  hydrated ion i s  t h e  ion ic  conduc- 

t ance  a t  i n f i n i t e  d i lu t ion.  The t rend  of t h e  hydrated r a d i i  i s  t h e  

tnverse '  of t h e  t rend  of t h e  i o n i c .  conductances, i f  Stokes Law f o r  t h e  

flow of a p a r t i c l e '  through' a viscous medium i s  assumed t o  approximhte 

t h e  case. I f  t h e  radius  of one ion can be determined, t h e  others  can 

.' be in fe r red  from conductance.data. Only in t h e  case of lanthanum 

a r e  t h e  necessary da ta  ava i lab le  f o r  t h e  calcula t ion of t h e  radius of 

t h e  hydrated t r i p o s i t i v e  ion, ' ; 

*3 
The heat  of hydration of La(g) can be calcula ted from t h e  sum of 

t h e  first t h r e e  ionizat ion po ten t ia l s ,  t h e - h e a t  of sublimation, and t he  

standard heat  of format ion of ~ a i ! ~ )  using t h e  ~ o r n - ~ Q b e r  cycle: 



With t h i s  value and t h e  born equation, and using 78 f o r  t he  d i e l e c t r i c  

constant of water, t h e  radius of t h e  hydrated t r i p o s i t i v e  lanthanum 

ion  can be calculated: , 
p. 

x 4.80 x 10 -i0)2 1 6 . 0 2 3 ~ 1 0  23 1104 = ( 3  ( 1  - 2 r  Z) 4,'184 

rh+3 = 1.368 
. . 

Hyd 

(20) and t h e  Conductance da ta  on severs1 r a r e  ear th  s a l t s  a r e  ava i lab le  

i o n i c  'conduotances of t h e  t r i p o s i t i v e  r a r e  ea r th  aqueous ions have 

been .tabulated. ,(21) These showa . . decreasing t rend  indicat ing an in4 
I . . 

oreasing hydrated radius, a s  would be expected. The hydrated radius 
. ., 

' . . I  

of any lanthanide t r ipos , i t ive  ion can then be k r e s s e d  a s  t h e  r a t i o  

of t h e  ion ic  c,onductance of ~ a 3 ~ )  t o  t h a t  of t h e  o t h e i  ion times 

. . 
t h e  radius of q a q ) .  

The,heats  of hydration of t he  gaseous t r i p o s i t i v e  i o n s  can now 

be estimated, and f o r . t h o s e  lanthanides f o r  wh ich the  heat  of formation 

of. t he  aqutbus t r i p o s i t i v e  ion i s  known, t h e  sum of t he  . f i r s t  t h r ee  

ion iza t ion  po ten t ia l s  can be. calaulated,  A l l  these  da t a  a r e  tabulated 
1 .  

in Table VIE, and a p lo t  of t h e  heats of hydration and sums o f '  t he f i r s t  

t h r ee  ionizat ion po ten t ia l s  i s  given a s  Fig. 10. 

The calcula t ion of the.hydrated r a d i i  is  admittedly.empirica1. 

One would expect t h e  radius o f .  t h e  aque6us ionio  species  t o  be near ly  

approximated by t h e  sum of t h e  crystal lographio . . ion ic  radius plus t h e  

length  of t h e  associated water dipoles i n  t h e  f i r s t ' h y d r a t i o n  sphere, 

I n  t h e  case of lanthanum t h i s  sum would be aroundf.ourangstrorns, but  

then one encounters l a rge  inconsistancies i n  tho dalculated values for :  

t h e  hydra'tion energy.' .. .. 

For t h e  purpose of t h e  present consideration, s u f f i c e  it t o  say  n . . .  

t h a t  t h e  resu l t ing  ionizat ion po t en t i a l  sum does show t h e  expected 



TABLE V I I I  

Ionic cond. 
a t -  d i l .  69.3 

+ 3 I . C .  L a  
(aq 1 

+3 
1.000 0.991 1.001 0.997 1.016, 1.021 1.034 

I . C .  M 
( a s >  

+3 14 3 

r 
Hyd. . 

1104 1111 . 1104 1104 1087 1079 1064 1'049 1049 1049 1042 1042 

100 9 8 AHsUbe Kcal. 85 . 76. 51 42 81 (72) 70. 7 5 75 58 42 . 94 
. . 

-AH +3 Kcal. 169 167 ' 168 163 164 130 163 . ,159 
fM(as) . 

. . 
I. P. Kcal. 835, 846 851 865 872 907 820 815 
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Fig .  10. Heats of hydrat ion of M ' ~  - o - o - (g> .. 
C F i r s t  t h r e e  I.P. - 0-jo - 



t rend  through Sm, and the peak a t  Eu and drop t o  Gd a r e  significant,  

even through the  absolute .value may be in error. . . .  

The formation of Euri) involves the  breaking of t h e  r e l a t ive ly  

s t a b l e  half-f i l led 4f s h e l l  of electrons. If the trend through S m .  
. . . . 

i s  continued through &, t h e  value f o r  Eu i s  about 38 e.v. which 

indicates  tha t  the addit  ibna l  s tab i l iza t ion  energy of the  electron 

t h a t  completes the  ha l f - f i l led  4f .she3tP i s  about 1.3 e.v. o r  30 Kcal, . . 

~ # r ~ e n s e i * $ J s  given an expression from whiah t h i s  energy can be calcu- 

lated. He says tha t  the differences between the  values of the  expres- 

s ion DS(S + 1 )  foe  q and q + 1 increase . . l inear ly  with q except where. 

q = .21+ 1,' where t h e  difference Jumps t o  D(2d+ 2). Here D is h is  

spin-pairing energy parameter, q  is the  number of kf electrons and S 

and have the  usual significanae. The sequence of in t e res t  i s  tabu- 
. . 

l a t e d  i r ,Tab le  W. Instead of the  differenoe being 3.75D f o r  q  in- 

oreasing from 6 t o  7, as the  plot would show, the differenoe junips t o  

D ( 2  R + 2) o r  8D. . So the  "hump in . the  ionization energiestr. is the  ex- 

.peoted o r  plot value subtraoted from the peak. Thus: 

8 D  - 3..75D = 4,25D 

~brgensen ' s  value f o r  D in t h i s  case is  18.5 Kcals, so the  theore t ica l  

value f o r  t h e  additfonal s tabi lazat ion.  energy f o r  the .  electron tha t  

completes the  half-f i l led 4f she l l  is about 8O...Kcals. This is in 

reasonable agreement with our experimental value. ' 

' 

' The caloulated values f o r  the  sum of t h e  f i r s t  three ionization 

potent ials  , f o r  Gd and Er appear t o  be too.  low: one .would expect them. 

t o  be more posit ive than the  value f o r  Sm.. What is indicated is tha t  

t h e  configuration of OdC3, (Xe) 4f7, is  more s t ab le  than the  config- 



TABLE. IX 

q S . DS(S + 1) ' .   if f 

2.00D 

3. 751, 

6. OOD 

8.75D 

12.00D 

15.75D 



ura t ion  of ~ a + ~ ,  ( ~ e ) ;  8nd tha t  t he  increase in nuclear char& of Gd 

. and Er over ~a does not inarease t h e  sum of the  f i r s t  three ionization 

potent ia l s  which i s  almost cer ta in ly  not. t h e  case. 

A s imilar  s i tua t ion  i s  seen in t h e  3d t rans i t ion  ser ies ,  where, in 

aonsidering the  sum of t h e  f i r s t  two ionization potentials,  La, Eu, 

(23) and 
" 'and Gd a r e  analogous t o  Ca,Cr,  and Mn respectively. The data  

. . 

r e su l t ing  plot  a r e  shown in Table X and Fig. ll. There i s  the  peak . .. 

at C r ,  but t he  value f o r  P! i s  more posi t ive '  than t h a t  f o r  Ca. 

Preoisely why the  r e su l t s  fo r  Gd and Z r  are  not as  expected i s  

not  known, except t h a t  t h e  calculations and assumptions based on La . , 

may tend t o  break down f o r  the  l a t e r  members of the  series.  
. . 

' The original  vaiuei f o r  the  standard heat of formation of sinIlq), , - 

~ ~ f z ~ ) ,  ind ybtZq) were ixherpolated from the  resu l t s  obtained by H. 
. , . .  . , 

' Bornme= and 8- ~ ~ ~ ( ~ 4 )  on t h e  heats o f  solution of m o s t  of the r2re  

ear th  metals i n  d i lu t e  HC1. Their metal samples were prepared by 

reduction of the  anhydrous t r iah lor ide  with potassium metal and sub- 

sequent removal of the excess potassium by d i s t i l l a t ion .  'The heats . 

of solutioi of t h e  mixture of metal and K C 1  were corrected f o r  the  heat 

of solution of three  moles of KC1. Bowever, Sm, Eu, and Yb were not 

run  because of t h e  reduction t o  the  diahloride instead of t h e  metal. 

More recent data  indicate t h a t  Bormer and Hohmum's values a r e  about 

8 . t o  10 Koal too negative due t o  the  incomplete removal of potassium 

from the  reduct ion product. 

The value f o r  Eu was then s e t  a t  -164 ~cal/mole; and from solution 

measurements, the  standard heat of formation of EuC13(,) was considered 

t o  be about -24.4 ~cal/mole. Th i s  l a t t e r  value is  now recalculated a t  



TABLE X 

, Atomic Configurations, Ion ic  Cor~f igura t ions  and 
Sums of F i r s t  Two I o n i z a t i o n  P o t e n t i a l s  f o r  

F i r s t  T rans i t ion  S e r i e s  

Sum F i r s t  . 
Atom Config. Ion Config. Two I.P. 

~a ( h ) 4 s 2  ~ a ' ~  (Ar) 

+2 
2 '  Sc (Ar)3d1 Sc ('Ar)3d 4s 

~ i + ~  (Ar)3d2 T i .  ( ~ r ) 3 d  ,4s 



Fig. 11. Plot  of sum of first two ionization po ten t ia l s  f o r  
pa r t  of first t r ans i t i on  se r ies .  
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* .  The standard heat  o f  formation of fir&) aan be calcula ted from 

our  value f o r  t h e  heat of 'formation of EU&), t h e  E u ' ~  - E U + ~  aqueous 

I +3 poten t ia l ,  +d entropy estimates f o r  E U ' ~  anci.Eu . The value f o r  t h e  

E U + ~  - Eu+~ aqueous potent ia l .appears  t o  be f a i r l y  well established,  

MaCoy (25 ) repor t s .  0.43 volt : ,  from an europium formate-f ormic acid medium. 

(26) used 0.0I.M solut ions  of t h e  r a r e  e a r t h  su l f a t e s  ~bddaok  and Brukl 

i n  polarographia measurements and repor t  0.429 volt .  Lait inen and 

1 Taebel (27) 0.425 vo l t  from polarographic s tud ies  on chlor ide  . . 
so lu t ions  i n  Oou1 MH4C1. L.P, Shul 'gin and Yu. A. Koztmin (28) give 

0.428 v o l t  in a lN H C 1  solution. Entropy estimates can be made by 

Brewer's method(*9) i n  whioh t he  ava i lab le  entropies a r e  plot ted vs. 

t h e  ion ia  r a d i i  for divalent  and t r i v a l e n t  ions respectively. Lewis 

. . and Randall, as revised by P i t ze r  and Brewer, (30) l i s t  entropies fo r  t h e  

aqueous t r i p o s i t i v e  ions of  A l ,  Fe, and Gd. A p lo t  of these  values 

vs. ion ic  r a d i i  y ie lds  an essen t ia l ly  s t r a i g h t  l i n e  from which one 

obta ins  ~ 8 ~ + ~  = - 43.0 e.u. for qU+3 = 1.03Rm(31) A similar plot  

0 
of  the*  d ipos i t ive  ions y ie lds  S&+2 = -6.7 e.u.for qU+2 = l.12'd(31)0 

I The equations involved are:. 

The sum of. these  two react ions  i s  j u s t  t he  react ion f o r  t he  formation of 

+3 from the  metal  and hydrogen ion f o r  which AH' = - 130.4 ~cal/rnole.  
EU(as) . . 
The enthalpy' change f o r  (11) is:  

AH? = AFO + TASO , . 
., 

= - n%*+ TASO , 

= - 1 x 23,060 x 0.43 + 298(, - 43.0 + 15.6' ' 6-71 

= - 16.1 ~ca l /mo le  
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AH' f o r  react ion (2)  i s  then - 130.4 + 16.1 o r  - 114.3 ~ c a l / m o l s  which 

i s  t h e  heat  of formation of Eu 
+2 
(aq). 

The Eu - E U + ~  'aqueous po t en t i a l  can be calcula ted from t h e  heat  of 

formation of Eu +2 and t h e  entropy of europium metal. Habermann and 
( a s )  

0 Daane (32) est imate sEU = 19.3 e.u. From this we ca lcu la te  

4 F s A H -  TdS 

= - 114.3 -'298( - 6.7 + 31.2 - 19.3) 

= - 115.8 Kcal. 

(28) 
Shullgin gives, an  expression f o r  t he  dependence of t h e  equlibrium 

constant  f o r  '(11) on temperature from which AS can be calculated:  

= - 14.8 e.u. A s = -  (nlP 

From t h i s  one ca lcu la tes  AH f o r  (11) t o  be - U. 3 Kcal and A ~ y ~ ~ + 2  = - -  

- 116.1 Kcal. The Eu - Eut2 aqueous po ten t ia l  i s  then 2.57 v. These a r e  

i n  reasonable agreement with our values. 

Since there  i s  much more data  ava i lab le  f o r  t he  entropies of t he  

d ipos i t i ve  aqueous ions  than t he  h r ipos i t ive ,  t he  Brewer p lo t  i s  l i k e l y  

t; give a b e t t e r  value f o r  t he  entropy of E U + ~  than Eu + 3 
( a s >  ( a s > '  

Theref o re  

0 us ing  S +2 = - 6.7 e.u. from the  Brewer plot , :  and' t he  AS f o r  reaction Eu 

(11) of - U . 8  e;u. calculated from Shul lg in l s  expression, we ca lcu la te  

s 0+3  = - 3 7 . 1 , e . u .  
&(as>  

It i s  the  opinion of the .au thor  t h a t  a more accurate value f o r  

so  +3 Eu could be calcula ted .from heats of solut ion data  on EuCl 
( a s >  

2(c) '  
0 

a s  was indicated previously, and t h e  present est imate f o r  SEU+2 . 
( a s )  
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w i t h '  tho heat of eo lu t ion  o f  ht01.021 (or $UOi 0. 021Eu203) in 1N.' RCl, 

t h e  p rev ious ly  determined h e a t  of  format ion  of  Eu +3 and t h e  h e a t  of  
,. ( a s >  ' 

format ion  o f  EU'!O we can c a l c u l a t e  t h e  h e a t  of  format ion  of Eu0-0.021Eu 0 
2 3' 2 3 

u s i n g  equat ion  (7). The c o r r e c t i o n  t o  t h e  i n f i n i t e l y  d i l u t e  s tandard  

. s t a t e  can be approximated from t h e  d a t a  o f  FJestrwn and Robinson (33 )  on 

t h e  h e a t  of  s o l u t i o n  of  F u C 1  i n . d i f f e r e n t  concen t r a t ions  of  hydro- 
. 3 ( 4  

c h l o r i c  ac id .  ' A .  e x t r a p b l a t i o n  of  t h e i r  da tq  g ives  a d i f f e r e n c e  of  

- 1.5 Kcal between 1 . 0 0 ~  H C 1  and i n f i n a t e  d i l u t i o n .  Thus: 

There i s  a v a i l a b l e  o n e . v a l u e  f o r  comparison wi th  t h i s  number. The h e a t  

of  combustion of  Eu01.02 t o  E ~ I  0 was done on a sma l l  sample and t h e .  
2 3 

rough va lue  o f  350 ?a l /g  obtained.(34) From t h i s  and t h e  va lue  f o r  t h e  

s t anda rd  hea t  of  formation of  Eu 0 
2 3 ('J5) , we c a l c u l a t e  

The d i f f e r e n c e  between t h e s e  two va lues  i s  l a r g e ,  b u t  t h e  sample f o r  t h e  . . 

combustion experiment was f a r  t o o  small f o r  a n  a c c u r a t e  measurement and 

t h e  r e s u l t i n g ' u n c e r t a i n t y  i s  l i k e l y  t o  be apprec iab le .  

The h e a t  of f.ormation of pure f i O  i s  then  t h e  h e a t  of formation 
( c )  

of  Fh0*0.021 Eu 0 minus 0>021 t imes t h e  hea t  of formation of Eu 0 
3 2 3' 

Fle ' c a l c u l a t e :  

., 
I 

For comparison, t h e  stand.ard h e a t s  of formation of  o t h e r  monoxides (15,231 

-t a r e  given,:.hn Table X I .  Considering t h e  h e a t s  of formation,  EuO i s  

q u i t e  u n l i k e  t h e  t r a n s i t i o n  metalrnonoxides and very  much l i k e  t h e  a l k a l i n e  

e a r t h  monoxides. Elut, on t h e  o t h e r  hand, llEuOlt, a s  prepared,  i s  non- 

s t o i c h i o m e t r i c  l i k e  t h e  t r a n s i t i o n  me ta l  llmonoxidesll, 



TABLE XI 

. . Thermodynamic Properties 
of Some Monoxides 

so so AH: . so . , . AH: AH;' - - .  - 
MgO - 143.8 6.4 14nO - 92.0. U.4 BiO -49.9 (17) f 

CaO -151.9 , 9.5 FC0.950 - 63.7 12.9 GeO - 73 (12) 

SrO 1 . 1  13.0 COO -55.2 10.5. PbO -52.4 16.2 

b o .  -133.4 16.8 ~ u o  -37.1 10.4 sno - 68.4 13.5 

EuO - 145;l (16.3) NiO - 58.4 9.2 HgO - 21.7 17.2 
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Concerning t h e  s t a b i l i t y  of  EuO, we can cons ide r  t h e  d ispropor t ion-  I 

a t i o n  r e a c t i o n :  

The change i n  entropgr, AS;, can be c a l c u l a t e d  from a v a i l a b l e  es t imates :  
, . 

(36 ,32) .  

From t h e s e  two v a l u e s  t h e  change i n  t h e  Gibbs f r e e  energy and t h e  d i s -  

p r o p o r t i o n a t i o n  cons tan t ,  KD, can be ca l cu la t ed :  

= 39,910 ca l .  

This  i n d i c a t e s  cons iderable  s t a b i l i t y  kb d i s p r o p o r t i o n a t i o n  a t  25'~. 

P repa ra t ion  tempera tures  known t o  t h i s  a u t h o r  have ranged from about  

1 2 5 0 ~ ~  t o  about  1650°c, s o  t h e  equl ibr ium i s  s h i f t e d  f a r  t o  t h e  "monoxide" 

s ide ,  and we s e e  t h a t  EuO has cons ide rab le  s t a b i l i t y  over  a  wide range 

' of temperature.  

7 2 Because pf  i t s  e l e c t r o n i c  conf igura t ion-  (Xe)4f 5d06s - europium 

me ta l  i s  d i p o s i t i v e  and hence v e r y  d i f f e r e n t . f r o m  moat of  t h e  o t h e r  r a r e  

e a r t h  metals .  S ince  t h e  me ta l s  a r e  t h e  r e f e r e n c e  s t a t e s  f o r  thermo- 
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chemical measursmenta, C h i s  d i f f ' e~ence  i s  re f lec ted  i n  t he  values for the  

thermodynamic proper t ies  of corresponding species. 

Again because of i t s  e lec t ron ic  configuration europium' forms r e l -  

a t i v e l y  s t ab l e  d ipos i t i ve  species i n  which it c lo s ly  resembles t he  

a lka l i ne  earths.  This i s  present ly  seen i n  t h e  thermodynamic .proper t ies  
r, 

of t he  d ipos i t ive  aqueous ion  and t he  monoxide. 

Europium ttmonoxidetl i s  a l s o  seen' t o  resemble the  t r a n s i t i o n  metal 

, ttinonoxidesH i n  t h a t  it i s  non-stoichiometric. The present paper . indicates 

. t h a t  t h e  oxygen -.to-- europium r a t i o  i s  grea te r  than one. . 

Further work along t h i s  l i n e  should include s imi la r  s tudies  on 

' ytterbium, a s  it i s  l i k e  europium i n  severa l  ways, and a l s o  samarium 
. . 

, and thulium s ince  t h e  d ipos i t ive  va1ence::state has, been observed there  

a l so .  
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T h i s  r e p o r t  was p r e p a r e d  a s  a n  a c c o u n t  o f  Government  
s p o n s o r e d  w o r k .  N e i t h e r  t h e  U r ~ i t e d  S t a t e s ,  n o r  t h e  Com- 
m i s s i o n ,  n o r  a n y  p e r s o n  a c t i n g  on b e h a l f  o f  t h e  C o m m i s s i o n :  

A .  Makes a n y  w a r r a n t y  o r  r e p r e s e n t a t i o n ,  e x p r e s s e d  o r  
i m p l i e d ,  w i t h  r e s p e c t  t o  t h e  a c c u r a c y ,  c o m p l e t e n e s s ,  
o r  u s e f u l n e s s  o f  t h e  i n f o r m a t i o n  c o n t a i n e d  i n  t h i s  
r e p o r t ,  o r  t h a t  t h e  u s e  o f  a n y  i n f o r m a t i o n ,  a p p a -  
r a t u s ,  m e t h o d ,  o r  p r o c e s s  d i s c l o s e d  i n  t h i s  r e p o r t  
may n o t  i n f r i n g e  p r i v a t e l y  owned r i g h t s ;  o r  

B. Assumes a n y  l i a b i l i t i e s  w i t h  r e s p e c t  t o  t h e  u s e  o f ,  
o r  f o r  damages  r e s u l t i n g  f r o m  t h e  u s e  o f  a n y  i n f o r -  
m a t i o n ,  a p p a r a t u s ,  m e t h o d ,  o r  p r o c e s s  d i s c l o s e d  i n  
t h i s  r e p o r t .  

As u s e d  i n  t h e  a b o v e ,  " p e r s o n  a c t i n g  o n  b e h a l f  o f  t h e  
C o m m i s s i o n "  i n c l u d e s  a n y  e m p l o y e e  o r  c o n t r a c t o r  o f  t h e  Com- 
m i s s i o n ,  o r  e m p l o y e e  o f  s u c h  c o n t r a c t o r ,  t o  t h e  e x t e n t  t h a t  
s u c h  e m p l o y e e  o r  c o n t r a c t o r  o f  t h e  C o m m i s s i o n ,  o r  e m p l o y e e  
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