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ABETRACT

We pregent rasults of model caleunlations based on two different sporoxima-
tions which were both intended to be improvements over the Ceherent Potentiat
Approximation, We show that both approximations yield non-physical sclutions;
specifically, they prediet average Green's functions which contain singularities
on both upper and lower helf complex energy planes. We conjectwre that non-
analytic behavier will ccour generally in high-order approximations to the asverage

Creen's function.
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We report numerieal celoulations ﬁased on two very &ifferent extensicns of
the CPA. One is based on the corrected cumulant 2cheme of Yonezawal as developed
by Nickel and Krumhansl:% the other is bzsed on the cluster approach of Butler.
end Kohnd developed to include self-consisteney as outlined by Butler.* Our
gateulations of the aversge Green's function for bingry alloys are parried out
not only for real snergies but for complax energiez as well. It is thisz exten-
gion into the coﬁplex energy plane.that makes these caleulations unique and
showa shaclutely unambiguously thet the solutions of the equatione for the average
Greeﬁ"'s f‘unctili::n within both approximstions tontain nun-analyticities of'f ﬂle

.real energy axis., The non-analyticitiez are branch peints in both upper and
lower halves of the complex energy plane and are clearly non-physical, We con-

jecture that these non-analyticities are a genersl feature of extenszions of

the CPA. For this reason we suggest that proposed formal -approximations be
treated with caution -untﬂ their anaiytic hehavior is und_erstood..

Béfore we actually describe the numérical calculations we outlin; what wﬁ
feel are the most {mportant points to be learned from this caleulation. Scme of
these pointe may appear trivisl — however we feel that in thé past their signifi-
cance has been overlocked. -

1. The exact average lreen's function is analyiic in the complex energy
;;lane except: f'or & cut along the real sxis. That is', because every exact
ireen's function cﬂ_ntrihuting to the average has .singulall‘ities only

on the real axis one can show that the average and all its deriv-
atives are necessarily bounded off the real axis., HNote, however
that here and below we confine our discussion to the "physical
sheet" defined by the boundary ¢ondition G(E) ~ E°), E= =, and
the reality condition G*(E} = G{E*)., We say nothing about =ingu-

larities which appear in general on other branches of G(E).

MASTER




. 3
2, Non-anslyticity (by which we specifically mean non-snalyticity off the
resl ensrgy axis) mekes the approximation unscceptable, Non-gnelyticity implies
such physicelly nonsensical space ard time behavior of the Green's function as

solutions growing in time. Also, local properties such as the density of states

¢can noe longer be uniguely defined and furthermore sum rules, as for exanple
expressicnas for the integrated density of states, are no longer aatisfied.

3, There is no a-pricri resson to expect that an erbitrary approximation
to the expet average Green's function will be analytie. Analyticity appears
very hard to establish generally; we know of only one approximation scheme for

which a general proof has been found.>

Fote that anzlyticity has never been proved for the single-site CPA except
for certmin szpeciel mndels. On the other hand the CPA hegs been used very extensively
end no counter axample hag ever been found — suggesting that a proof of anadyticity
might exist, The work of Tsukads® and one of us (W. H. Butler, unpublished) is
particularly relevant here. These model calculations involve partitioning the
system into "molecular" clusters and performing & simple CPA caleulation with
these clusters az a "single-gite™ basis.’ Foirly extensive searchez in
the parameter space of potential strengths and concentration have

not turned up any non-analyticities.

4, The calculations presented here are based on two entirely different

formeiisms end approximations. Their only points in common are that they are




both sttempts to go beyond the CPA to take into aceount the affepts of fluctua-
tions and that they are both self-consistent theories in the sense that the
calculated averzge Green's function ie used in the defining equation for the
self-energy employed in the ealewlation. Because of this we feel that analytieity

probleme in other self-consigtent high-order spproximations will be the rule

rather than the excephion. Additional evidence comes from the numerical

work of Gapekg based on yet another approximation scheme.

It is important to realize that the approxinations discussed here do yield
analytical reswlts for certain cholces of the alloy parameters and even when
non-analyticity appears, often very reasonable density of states curves can be
found. Thus we feel that published results based on othelr approximabe formula—
tions must be treapted with caution — one needs to carry out a very extensive
search in parsmeter space to discover whether one's approximation has general
validity.

Corrected Cumulsnt Celculgtion: We present below 8 calculation for & cne-

dimensicnal tight binding =ystem for a particular sei of model parameters. Other
calculations, both in one apnd three dimensions have been performned; the single
caleulstion prezented here adequately describes the nature of the problem.

We congider the model Hemiltonian H = X W a a. + I € a."'a; where W_  is

1j7y i i}
Lranglationally invariant end defines sn unperturbed Green's function Bij (E)

i
take to be ¢, = 1.75 with probability ¢ = .25 and £ = 0 with probability l—c

= (2r)~) rax exp{ikHiJ} {E — ecoska}~!. Randomness is contained in £, which we

= .75. Note that the band splitting parameter d=(e, - e_} / (half band

width) equals 1.75; we are in a strong scattering regime.
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We wse the corrected cumulant scheme described in Nickel
and Krumhansl (NE) and truncate the self-energy
at the level of palrs, nearest and next-nearest neighbor only. That is, we
take the self-energy to be E{k) = T§i} + 25§2)(1) + 22{;) (2} + 2z{?) coska
+ 23523 co3 2ke. Our approximate average Green's function is then given by
)y = (en)=) fax Exp{ikﬂn} {E — coska — £(k))™!. To obtain I we have to
solve sgquation (22) in WX twice; cnce to obtain 2851 + Eé:}(lj and Eéfl in terms
of (G)pp and (G)gy. and agsin to obtain EE;} + ESEJ(EJ and E&ij in terms of
(Gygo and (G)pz. We must also solve the CPA{1) equation to obtain Ef,) in terms
of (G)gg. Thesa equations in addition to the equations for E(k) and (G}, &iven
sbove then completely define the problem. The numeriecal work is completely
straightforward. We require the three matrix elements {G}ﬂﬂ,f(ﬂ}ﬂl, andl{G}gz

and these we cbtain by iteretion using = Newton-Raphzon technigue,

The squations are highly non-linear and yield many solutions. We deter-
mine the ecorrect solution by starting st & very large value of the energy vhere
we know the ssymptotic valueg of the quantitiss appearing in the eguations. We
then follow this unique solution towerds the energy region of intersst, The
salf-energy Egi}(E} obtained in this caleulation is shown in Fig.

1l for 3 small region

in the complex energy plane, Because of the existence of branch point singular-
ities off the real axis one is forced to introduce branch cuts to define a
single valued function EE;](E}, ] This is a largely =rbitrary
procedure; we have chosen to draw cuts perpendicular to the real axis. Note that

ﬂG(E}}G necessarily has the same analytic structure and thus, for

0
example, the density of states (I||1'=-'{}{E}?-*':m on the real axis) will

show step discontinuities.




We have elready outlined why such behavior in E(E) &n&;{G{E]) iz unsatis-
factory. We now discuss to vhat extent
it can be conslidered a general feature. First, when-we éruncated the self-
energy at nearest neighbor pairs only we could not fini any non-analyticitiss
in this one-dimensional model tut we ﬁid.find them in a similar strong scatteriné
high concentraticn regime in a three dimensional simple cubic model. If we
.extend the self-energy to include palirs out as lar a5 eighth-pegrest neighbor
{in one-dimension) the non~-analyticities remein. IFinally, they alza ocour if
we inciude neprest and next-nearest neighbor ﬁairs and the close packed triplet
configuration in the self-energy. A large range of concentraticn and scatﬁering

strengths has not been investigated;

Self-Consictent Cluster Caleulation: The celeulation described-helow Was
"hased on the same model Hamiltonian as the corrected cumulent calculstion
descpibed above, Although the nature snd motivation of thé approximations.

are quite 4ifferent |
;1m11§r off-gx»jis singulerities are observed for some concentrations and band
gplittings.

The scheme used is that of reference L. !? fThe ayéragﬂ deneity of states
pET sitglﬁ{ﬂnu}, is caleulsted for a site at thé center of a clugter, The
sites within the cluster are treated exactly during the configurationsl aﬂéragé L
vhile those outszide the c¢lusier are deperibed by an Effﬁcti?e Hamiltonian,

H=IW, a+a + I E-afa..
i i i

J i




Selfwconsistency iz introduced by choosing E 50 that the avarage density

of states per site c¢alculated for the gite at the center of the cluster is

_ L Thus we chooge] —
equal to the density of states caleulated for the mediuwm;V({Ggppd = Ggp- Here G
is the Green's Tunction calculated with salf-ensrgy E on all sites,

Figure 2(a} shows the diagonal element of the Green's function, Ggp caleu-
lated for a three gite eluster with e = 2 and £_ = 0, both with probebility .5.
W iz taksn to be .5 so that the band splitting parameter, §, iz 2. Hote the
branch noint cceurring for ReE % 2.1, Figures 2(b) and 2{c} compare the trus
density of states to that obtained from this approximation, The curve in 2{c)
vas obtained by drawing the branch sut in G parsllel to the ImE axis.

We have investigated seversl values of § as well as several concentyations
&nd cluster sizes. Off-axis branch points sre characteristic of large & and

high concentration. They exist for five site clusters as well as for three

sites. In the work of reference I branch points exist above the resl

energy axis at many of the peaka in the density of states. Difficulties in
following, numerically, the solution to the self-consistent cluster equation
through the peaks were not recognized as being due to off-sxis branch points.
The analyticity problemsz of the zelf-consistent cluster approach and possible
goluticns to these difficulties will be 3iscussed more fully in a subsequent

publication.

Eroners &t al.l? have used the methed of reference 4 (coupled with &
further approximation which simplifies the numerical problems in three dimen-
sions) to calculate the demsity of states of a model simple cubic disordered
alloy., When we repeated their calculation for & somewhat higher value of &

(6 = 2) than the one they used we found regions in the complex E plane in which
no solution could be obteined. This is not simply a numeriesl problem, but is
releted to the branch points which occur in the one-dimensional caleulation.
In our opinion the utility of the self-consistent cluster technique in three

dimensions is sti)] an open guestion which we hope to discuss further elsevhere.




Conclusions: We feel that the results described above require a2 complete
resppraizal of all methods based on averaging as used to date to describe
excitations in random systems. Io the hope of stimulating additional research
we conjecture that self-consistency arbitrarily applied or equatjons of motion
arbitrarily truncated will not work becauwse one has not taken into sccount
vroperly the interactions between different fluctuating components of the field,
=.g., palr and triplet rescnances in the corrected cumilent scheme, resonances
in different spatislly localized clusters in the cluster scheme. To be more
specific, we note that the palr approximetion of NK allows pair fluctuations
throughout the ecrystal and also coupies them all by introducing self-energy
matrix elements hetween all possible pairs. The self-ronsistent cluster approach
of Butler allows for fluctuations in only one region of the crystal and not
alzavhere by forcing s medium deseription in terme of a single site-disgonsl
gelf-energy. Finally, the CPA of Tsukada again atlows or fluctuations in all
regicns of the crystal but it szpecifienlly execludez any interacticons by never
introducing matriy alements of the sglf-snergy between different "molecules.”
Thus in some senge this "molecular" CPA appears as the mean; of course, it is
not at 211 obvious thaet this has anything vhatever to do with the fact that it

seems to yield enalytical results.
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Fig. 1. Contours of egual real and imaginary parts of the self-energy
in the pair approximation of WK. The solution has been chosen such that

(G{E}} ¥ B~} fror large E.

Fig. 2. (&) Contours of equal real and imaginary parts of the Green
Tunetion, Eﬂu, in the self-consistent cluster approximation. The sclution has
been chosen such thet G(E} 3 E-! For large E. ({b) Exact density of states.
{¢) Dengity of states from the sellf-consistent cluster approximation. The
dashed line st BeE 4 2.1 indicates where the bresach cut has been dravnm, The
deshed line st ReX 0 2.3 iz due fo an uncertainty in the density of stgtes
a=soeiated with a singulerity on the Rek axis. The Green's function is con-

tinuous at RekE n 2.3 for ImE slightly greater than zero.
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