
COO-3150-5 

THERMAL RESISTIVITY OF POTASSIUM BETWEEN 1.5 AND 15K \n unr^1 
R. S. Newrock and B. W. Maxfield ^mitfi 

Laboratory of Atomic and Solid S ta te Physics 
Cornell Universi ty 

I thaca , New York 14850 

- N O T I C E -
This report was prepared as an account of work 
sponsored by the United States Government. Neither 
the United States nor the United States Atomic Energy 
Commission, nor any of their employees, nor any of 
t he u\?con tractors, subcontractors, or their employees, 
makes any warranty, express or implied, or assumes any 
legal liability or responsibility for the accuracy, com­
pleteness or usefulness of any information, apparatus, 
product or process disclosed, or represents that its use 
would not infringe privately owned rights 

July 1972 

Report #1842 

Issued by the Mater ia ls Science Center 

jjlSTRTBUTtC aorT^^T"* 



DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible in 
electronic image products. Images are produced 
from the best available original document. 



* 
Thermal Resistivity of Potassium Between 1.5 and 15K 

* R. S. Newrock and B. W. Maxfield 
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Abstract 

The thermal resistivity of single and polycrystalline 

potassium specimens having residual resistance ratios between 

195 and 6500 has been measured between 1.5 and 15K. It is 

found that theoretical calculations based on semiclassical 

ideas are in reasonably good agreement with the experimental 

data, particularly for the more impure specimens at low 

temperatures. The role of umklapp scattering is clearly 

evident. Although umklapp processes can contribute as much as 

50% to the total thermal resistivity, the simple expression, 
2 

W = A/T + BT obtained by only considering normal scattering, 

describes the results remarkably well up to about 10K. 

Depending upon the purity, the values of B ranged from 2.38 
-3 -3 

x 10 cm/W to 1.53 x 10 cm/W, indicating a deviation from 

Matthiessen's rule of about 507o. The magnitude of the cal­

culated thermal resistivity is.very near, the experimental 
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result for impure specimens but the calculated values are too 

high for the purer specimens. It is shown that when impurity 

scattering is dominant, a variational calculation of the electron-

phonon thermal resistance should be quite accurate. In pure 

specimens the calculations are not expected to be nearly as 

good; reasons for this are discussed. At high temperatures, 

above 6 to 8K, the theoretical temperature dependence is in 

considerable disagreement with the experimental results. 

Deviations from Matthiessen's rule, as well as other possible 

reasons for this discrepancy, are discussed. Our data is in 

qualitative agreement with that of MacDonald, White and Woods; 

however, contrary to the observations of Stauder and MieLczarek, 

we observe no anomalous behavior in the thermal conductivity 

of potassium. Reasons for the differences between our results 

and those of Stauder and M ielczarekare presented and discussed. 

We conclude that the thermal resistance of potassium can be 

understood very well within the framework of existing theoreti­

cal work. In specimens of low and intermediate purity the 

contribution of lattice thermal conduction can be appreciable 

and should be taken into account when making comparisons with 

theory. 



I. INTRODUCTION 

In recent years there have been many measurements of the 

various transport properties of the alkali metals. Much of 
1-7 this work has been on potassium, which is known to have a 

8 9 
Fermi surface spherical to about one part in a thousand. ' 

In addition, it can be obtained with high purity and does not 

have the complicating feature of a martensitic phase transfor­

mation that exists in lithium and sodium. The high reactivity 

and other handling problems have made experimental work quite 

difficult; only recently, for instance, has sufficiently good 

data been obtained to allow a detailed comparison of the 
1 3 

measured electrical resistivity with theory. ' In zero mag­

netic field, the electrical resistivity can be explained very 

well by semiclassical transport theories provided electron-

phonon umklapp scattering is taken into account. On the other 

hand, the high-field magnetoresistance of potassium, which 

increases linearly with applied magnetic field over a wide 

field range, ' ' ' has proven difficult to explain on a semi-

classical basis. 

To further elucidate the transport properties of potassium 

it was decided to investigate the thermal and magnetothermal 

resistivity to determine the possible existence of differences 

similar to those observed for the electrical resistivity. 

This paper reports our zero magnetic field thermal resistivity 
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measurements. Single and polycrystalline potassium specimens 

have been measured between 1.5 and 15K in specimens having 

residual resistance ratios ranging from 195 to 6500. 

There are only two other measurements of the low tempera­

ture thermal resistance of potassium. The first by MacDonald, 

White and Woods was done on specimens encapsulated in glass 

capillaries. In addition to possible problems arising from 

differential thermal contraction, their data is not sufficiently 

extensive to permit detailed comparison with recent theoretical 

calculations. An anomalous behavior which is difficult to 

explain on any fundamental basis is observed in the second 

set of measurements. The next section contains a detailed 

discussion of the sample preparation and mounting procedures. 

Section III describes the results and makes comparisons to 

other work. In particular, the role of umklapp scattering in 

the thermal resistivity is discussed, the lattice conductivity 

is shown to be of importance even in reasonably pure samples 

and fairly large deviations from Matthiessen's rule are noted. 

Some concluding remarks are contained in section IV. \N 



II. EXPERIMENTAL DETAILS 

For any particular transport property of potassium, 

there are often a variety of results reported in the literature. 

Most of the differences can be attributed to probe effects and 

to problems related to sample preparation and mounting. In 

view of this and the previously reported anomalous thermal 

resistivity of potassium, we feel that it is necessary to 

describe the experimental and sample preparation techniques 

in more than the usual detail. The following sections explain 

the mounting procedures, sample preparation and details of 

the apparatus as well as the methods of data acquisition and 

analysis. 

A. Sample preparation 

Potassium ranging from 99 to 99.95% nominal purity was 

used; the least pure samples were made by alloying pure 

potassium with pure sodium. Potassium, in the glass ampules 

supplied by the manufacturer, was melted under vacuum into 

pyrex tubes that had been coated with dry paraffin oil. 

While in the liquid state, the metal was outgassed in a 

vacuum of better than 10 Torr for at least 24 hours. If 

a single crystal was desired, the oven temperature was slowly 

lowered while an auxiliary heater maintained a thermal gradient; 

this procedure generally resulted in the formation of large 

(2 x 10 cm ) single crystals. 
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For some of the polycrystalline samples, pieces were cut 

from the large boules, etched in xylene containing 2% secondary 

butyl alcohol, coated with dry paraffin oil and pressed into 

1 mm thick plates using a stainless steel sample press. 

From these pressed plates, samples were cut to size with a 

razor blade. For other specimens, potassium prepared as 

described above was extruded using a 1 x 3 mm die. The 

single crystal samples were either string-cut from the large 

boules or grown between glass plates on a hot plate. After 

fabrication, all samples were etched and placed in a vacuum 

dessicator filled with dry paraffin oil. The samples were 

then allowed to anneal at room temperature for at least 24 

hours before being measured. 

Table I lists the physical characteristics of the samples. 

Due to the rapid deterioration of the surface upon exposure to 

air (and the subsequent need for etching), and the fact that 

the samples cannot be measured accurately after forming, the 

cross-sectional area of the samples is only accurate to 5%. 

B. The Cryostat 

A schematic view of the cryostat is shown in Fig. 1. 

All of the salient features are presented in the caption; 

however, a few points are worth further elaboration. H2 is 

the heater used to establish the thermal gradient. The former 

is made of phosphor-bronze twisted into a tweezer-like shape 
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(see inset A). The heater is wound on a cylinder of copper 

foil and soldered to this former; such an arrangement allows 

the heater to be attached quickly and firmly to the potassium. 

It also has the advantage that heat flows into the sample 

from both sides. Flange F is tapered and mates with a corres­

ponding flange on the vacuum can. When the mating surfaces 
12 are coated with a thin film of silicon grease, a seal that 

is leak tight to superfluid helium can be made in a few seconds. 

This enables the air to be pumped from around the sample 

before the potassium surfaces can deteriorate. 

The specimen platform was made from 5 mil stainless 

steel shim stock. Six-pointed star-shaped holes (see inset B) 

were spark machined into the platform to support the measuring 

thermometers. This was necessary because it is very difficult 

to attach anything directly to potassium at room temperature. 

Most glues and varnishes will react with potassium and it is 

too soft to withstand the pressure of mechanical clamps. In 

this configuration, the thermometers serve as supports for 

the sample and are separated by a high thermal resistance. 

The thermometers are calibrated germanium resistors 

mounted in small copper holders with GE-7031 varnish. These 

copper holders, which have flat upper surfaces, are inserted 

into the stars in the platform. To the flat copper surface 

is attached a 1 rail thick, accordian-folded copper foil (see 
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inset C). The sample is connected to these foils which allow 

for the differential contraction between the sample and the 

stainless steel platform. This avoids introducing strains 

into the sample when the apparatus is cooled. To ensure 

thermal isolation, the thermometers are attached to the heat 

station pins with approximately three ohms of copper and 

Evanohm wire. (The leakage power is therefore about . 03uW 

per degree temperature difference.) A copper bar is attached 

as shown, to the perimeter of the stainless steel platform, 

to aid it in reaching thermal equilibrium. Attached to the 

heat post is a press that is used to obtain a small thermal 

resistance between the helium bath and the sample. An AC 

Wheatstone bridge and a carbon resistance thermometer attached 

to the copper portion of the platform near the press is used 

to control the sample temperature through heater Hi. The 

specimen temperature could be stabilized to about 0.05 mK. 

The data acquisition system used is essentially the same 
13 as described by Stephan and Maxfield. Briefly, it consists 

of a scanner, a digital voltmeter (DVM) and both printed 

and punched paper tape output. Using a 25 Hz current phase-

locked to the DVM clock frequency, both the thermometer current 

and potential drop are measured using a four-terminal con­

figuration. The acquisition system puts the thermometer 

currents and voltages, the heater current and voltage and all 



other pertinent information onto the punched paper tape for 

computer analysis. This system works very well for tempera­

tures greater than 2K. However, below this temperature, noise 

in the scanner stepping switch made accurate measurements of 
14 the temperatures impossible; at the lower temperatures the 

scanner was manually stepped and the system allowed to 

stabilize after each step. 

C. Sample Mounting Procedure 

The annealed sample was carefully removed from the paraffin 

oil and etched slightly. It was then dipped in dry Dow-Corning 
15 DC-200 fluid (200 cS viscosity); the excess fluid being 

allowed to drain off leaving a very thin coating of fluid that 

served to retard surface deterioration. A drop of very 

viscous DC-200 fluid (60,000 cS) was placed on the ends of 

the pleated copper foils attached to the thermometers, the 

sample was placed on top of the foils with one end on the heat 

post, and a small pressure applied via the press. The DC-200 

fluid, when frozen, adheres very well to the potassium and 

provides an adequate thermal link between the potassium and the 

thermometers and heater. Several other oils and greases were 
16 tried with little success; they all tended to crack at liquid 

nitrogen temperature. 

The thermal resistance of a typical DC-200 thermal joint 

was measured to be about 450 fyw at 6K. At this temperature 
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both the power dissipated in the thermometers and the maximum 

possible heat leak through the thermometer leads was always 

less than O.l^W. A heat current of O.luW through such a 

foil-DC-200 joint will give a temperature difference of approxi­

mately 0.05 mK, a negligible error for the temperature gradients 

that could be used above 3K. At lower temperatures the resis­

tance of the joint increases but there is a corresponding 

decrease in both the power dissipated in the thermometers 

and in the thermometer lead heat conduction. In practice, 

errors attributable to this thermal joint were negligible 

above 1.5K. For comparison purposes, the thermal resistance 

of a 1 mil thick layer of GE-7031 varnish of similar cross-

section is approximately 50 K/W. 

After placing the hot heater onto the sample, the vacuum 

can was put in place and the cryostat evacuated. The time 

between removal of the sample from the DC-200 fluid and the 

end of the mounting procedure was between 60 and 90 seconds; 

in addition it took about 2 minutes to evacuate the system 

to 100 microns. Upon opening the system, there was always 

some oxidation present on the surface of the sample although 

there was seldom any in the vicinity of the thermometers. 

After evacuation, the cryostat was cooled slowly to 

liquid nitorgen temperatures. All of the samples were slow-

cooled, meaning that it took from \ to 2 hours to reach 77K. 
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Using such a procedure, it has been shown that, in very pure 

potassium, the electrical residual resistivity ratio can be 

doubled over that obtainable by quenching the sample from 300K 

to 77K.1 

D. Calibration, Testing and Measurement Procedure 

The germanium resistance thermometers used in this experi-
18 

ment were calibrated against a commercial standard. For cali­
bration, all thermometers were placed in a large copper block 
that was attached to the platform of the cryostat described 
previously. The resistance of all thermometers was determined 
at many temperatures between 1.2 and 20K. A curve fitting 
routine using Chebyschev polynomials gave calculated tempera­
tures that matched the measured ones to within 1 mK below 5K 
and within 4 mK above 5K. Below 4.2K, the thermometer cali­
bration was also checked against the vapor pressure of liquid 
helium. 

The thermal resistivity data are taken in the following 

manner: Power is applied to the cold heater HI until the 

cold thermometer resistance indicates that the desired tempera­

ture has been reached; the resistance of each thermometer is 

then measured. This gives the zero-heat-current temperature 

difference and acts as a correction for small calibration errors 

and heat leaks into the thermometers. Power is next applied to 

the hot heater H2 while power in the cold heater is adjusted to 
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bring the cold thermometer back to the correct temperature. 

Again, the resistance of each thermometer is measured. The 

thermal resistance is calculated from the hot heater power 

and the true temperature difference. The gradients used were 

less than 50 mK below 4.2K, less than 100 mK between 4.2 and 

8K and less than 200 mK above 8K. 

Because of the relatively poor thermal conductance between the 

thermometer and the specimen, self-heating must be kept to an absolute 

minimum. To ascertain whether these quantities had any 

undesirable effects upon our measurements and to test the 

apparatus in general, several runs were performed on indium 

specimens following essentially the same mounting procedure 

as used for the potassium. The temperature dependence of the 

thermal resistivity of a typical indium specimen is shown in 

Fig. 2 plotted as WT vs. T (see Eq. (14)). Results for other 

specimens as well as those of other workers are given in 

Table II. Our results are in good agreement with literature 

values. The thermal resistivity showed no dependence upon 

either heater or thermometer power within the experimental 

range of these parameters. 



III. RESULTS AND DISCUSSION 

The temperature dependence of the thermal resistivity W 

of potassium is shown in Figs. 3 through 9. To 'facilitate 

comparison with recent theoretical calculations, Figs. 3 and 4 
2 

shows W^/T as a function of the temperature, where WTT is the 

experimentally determined temperature dependent portion of WT. 

A smooth extrapolation to zero temperature of WT as a function 
3 

of T is used to obtain the temperature independent portion 

of WT; the zero temperature intercept is then subtracted from 

each of the measured points to obtain W . The data in Figs. 

3 and 4 are representative of all samples that were measured; 

the large amount of scatter in the low temperature data arises 

from problems inherent in subtracting two nearly equal numbers. 

Data plotted in this manner emphasize deviations from the simple 

Bloch theory of thermal conductivity. If only normal electron-

phonon scattering were important, then the thermal resistivity 
2 

should increase as T for T <_ 0.1 9 , where 9 is the Debye 19 temperature (9̂  « 90K for potassium ) ; such behavior would 
correspond to a straight, horizontal line in Figs. 3 and 4. 

The solid and dashed curves shown in Figs. 3 and 4 are 
20 

theoretical curves calculated by Ekin using the Kohler vari­
ational method; as indicated in the figure captions, each curve 
corresponds to a different pseudopotential. Electron-phonon 
umklapp processes are specifically included in the calculation 
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and appropriate measured parameters for potassium (such as the 

phonon spectrum and lattice constant) were used. Also, the 

phonon system is assumed to be in equilibrium; that is, no 

phonon drag effects are included. The theoretical curves in 

Fig. 3a were calculated using the trial function 

0 = k-u(e - n) (1) 

where k is the electron wave vector, u is a unit vector in 

the direction of the thermal gradient, u is the chemical 

potential and e is the electron energy. This trial function 

is the exact solution to the linearized Boltzmann equation in 

the relaxation-time approximation. In Figs. 3b and 4, which 

show results for intermediate and high purity samples, the 

calculated values were obtained using a corrected trial function, 

2 
0 = k.u(e - u)[l + a(T)( ! L~^) ] , (2) 

where a(T) is a variational parameter. Qualitatively, the 

calculations agree very well with the data. The definite 

"hump" in the data is due to umklapp scattering, and corresponds 

to large wave-vector phonons being frozen out of the phonon 

distribution at the lower temperatures. As the temperature 

increases, larger wave-vector phonons are excited, increasing 

the amount of umklapp scattering and thereby increasing W. 

For the very impure samples, the quantitative agreement 

between our measurements and the calculated values is very 



-15-

good, even though a very simple trial function is used to cal­
culate the temperature dependent portion of the electronic 
thermal resistivity. In the treatment that follows we show 
explicitly that if a particular scattering mechanism is 
dominant and if that mechanism can be described by a relaxation 
time, then the relaxation-time trial function can be used to 
obtain the temperature dependence of those scattering mechanisms 

21 
not describableby a relaxation time. 

The electrical and electronic thermal currents in a 
metal are given, respectively, by 

3e " ^ + ^ - ' T (3> 
JQ = £ S - E + i S * V T (4) 

22 
where the L.. are elements of the thermoelectric tensor. 
In zero magnetic field the tensors reduce to scalars for 
materials having cubic symmetry. Therefore from Eqs. (3) and 
(4), it follows that 

CT = LEE 
_ /_ LETLTE \ 

*e " iLTT ' ~ L ^ - ) 

Q = -LET/LEE 
where a, K and Q are the electrical conductivity, electronic 
thermal conductivity, and the thermopower, respectively. Using 
the Onsager relation, L — = -L_„/T, one obtains 
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He = - ( L n + Q2Ta) . (5) 

Using the free electron theory of metals, an order of magni­

tude estimate can be obtained for the second term in the 

bracket of Eq. (5). Taking a Fermi energy of 2.1 eV for potas-
22 sium gives Q w 60 nV/K at 5K. Thus for potassium having a 

23 residual resistivity ratio of 100 (very impure), one obtains 

2 -7 
Q Ta ~ 3 x 10 W/cm-K. For potassium of this purity, H 
is typically greater than 1 W/cm-K, so thermoelectric effects 

can be ignored. Hence we have K = -L m m and J_ = -x VT . & e TT Q e 
The thermal current can be written as 

?Q = 7 3 I * fk<e " *>Tc <6> 
x 4TT 
-+ 

where v^ is the electron velocity and fs* the electron distri­
bution function which is obtained from the Boltzmann equation: 

-TTS?- & + zh x *)' T I " ^3.JdE'{f£l(i-fE)Q(k;C)-fE(i-fg,)Q(^')} 
4TT 

(7a) 
When linearized, the Boltzmann equation can be written as (for 

zero external electric and magnetic fields) 

(7b) 
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where 
r-O 

-O 

and 
"■(-sS> (8b) 

k 

P(k,k') = fg(l - fg,)Q(k,k') 

Q(k,k') is the transition probability from state k to k1, 

f^ is the equilibrium distribution function, and the temperature 

gradient is taken to be in the x-direction. 

The total scattering probability can always be written 

as the sum of the individual scattering probabilities. 

Here we consider two scattering mechanisms. If one of the 

scattering mechanisms can be described by a relaxation time T, 

then the collision integral may be written as 

W(TI) = - ̂  + W'Oi) , (9) 

where W1 (r\) is the collision integral for the second scattering 

process, one which cannot be described by a relaxation time. 

It should be noted that this does not amount to assuming 

Matthiessen's rule to be valid. If the scattering mechanism 

describable by a relaxation time is also the dominant one, 

then substituting Eqs. (8) and (9) into Eq. (7) and iterating 

yields r| to zeroth and higher orders; namely 
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r\x = no + T W (no) (11) 

■n2 » ^ + T W [TW!
(IIO)] (12) 

Substituting Eqs. (8a), (10), and (11) into Eq. (6) and noting 
that, for a crystal with cubic symmetry, K = -J /VT, one 

e v} 
obtains 

ofr* 
x = - ^ fdk(- - * - ) <e :^> V2T + ^ fdk v T ( V ^ V ' (TI ) 

e , 3 J \ de£ / T x A.-** ' X \ k^T / v ' o ' 

The first integral on the right is K , the thermal conductivity 
when only the dominant scattering mechanism is present. When 
both mechanisms are present (but W = 1/H is still dominant) 
it follows that 

W = 1/H = W 1 -
e e r 

h J* *o[-»'(^l O] 
rr k 

-afH 
= W + — « (13) 

.-af? 
'k 

The second term on the right hand side is just the variational 
expression for the thermal resistivity if the first order 
deviation function if , is identified as the trial function. 

o 
W' (r\) is the collision integral for the other scattering 
mechanism. When the simple trial function, Eq. (1), is used 
to calculate W , one readily obtains the Wiedemann-Franz law 
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and thus W T is independent of temperature. 

Impurity scattering is generally considered to be isotropic 

and amenable to a relaxation time approximation. For our very 

impure samples, we will assume that electron-impurity scattering 

is the dominant scattering mechanism and that it can be des­

cribed by a relaxation time. Taking W1 (r[ ) to be the electron-

phonon collision integral and noting that the second term in 

Eq. (3) is just W_, one observes that, in the impurity dominated 

case, Eq. (1), used as a trial function, yields the temperature 

dependent portion of the electronic thermal resistivity due 

to electron-phonon scattering. Thus it is not surprising that 

the simple trial function (often called the impurity or "dirty 

limit" trial function) yields calculated values that are in 

excellent quantitative agreement with the experimental results, 

as shown in Fig. 3a. One expects calculations done using the 

impurity trial function, Eq. (1), to become increasingly less 

accurate as electron-phonon scattering becomes more important 

because the impurity trial function becomes an increasingly 

poorer description of the real deviation function. 

Figure 4b shows results for sample K-9, the purest sample 

shown; at low temperatures the data lie 10 to 20% below the 

calculated values even when the corrected trial function, 

given by Eq. (2) is used. (This corrected trial function has no 

particular physical meaning but is merely an attempt to obtain 
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20 lower values of the variational calculation.) Ekin points 

out that below 4K the corrected trial function yields a thermal 

resistivity that is estimated to be about 10% too high. This 

is insufficient to account for the observed difference. 

This difference between theory and experiment should be 

contrasted with the electrical case, where calculations using 

the various pseudopotentials bracket the results for both pure 

and impure samples. Except perhaps for the very impure 

samples, the thermal resistance calculation is not as good as 

the electrical resistance calculation. The correct pseudo-

potential should be the same for the electrical or thermal 

case; since the electrical calculation is very good, the pseudo-

potentials used should be reasonably accurate reflections of 

the true ion potentials. Hence the observed differences can 

probably be attributed to the choice of the trial function. 

The two most obvious possibilities in this regard are neglecting 

both phonon drag and any anisotropy in the electron distribution 

function. Roy and Wilkins have calculated the effect of 

phonon drag on the electrical and thermal resistivity. They 

find that the magnitude of the phonon-phonon relaxation time 

is quite critical in establishing the drag resistance. However, 

when experimentally determined phonon-phonon relaxation times 

are used, the drag resistance turns out to be only a few tenths 

of a percent of the total resistance, negligible for the 
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purposes of this discussion. 

As the temperature is reduced, umklapp scattering will 

be confined to the areas of the Fermi surface nearest the 

zone boundaries (^.10/directions). Such localized (in momentum 

space) phonon scattering, similar to the so-called "hot spots" 
25 of Young, could play a significant role in determining the 

transport properties of potassium. In particular, such localized 

scattering will create an anisotropic distribution function. 

The trial function used in the variational calculation should 

reflect this anisotropy. The effects of such an anisotropic 

distribution function have been calculated for the electrical 
26 

resistivity. In that case, the magnitude of the umklapp 

scattering contribution to the electrical resistivity is reduced 

by 10 to 15% while the normal component is unaffected. The 

umklapp contribution to the electrical resistivity exceeds 

that due to normal scattering by a factor of 4 to 5 whereas 

in the thermal resistivity both mechanisms contribute about 

equally in the 2 to 8K temperature range. Thus it is likely 

that the effects of including an anisotropic trial function 

in a calculation of the thermal resistivity will be an order 

of magnitude less than in the electrical case, and therefore 

insufficient to account for the observed differences. Hence 

it appears that the difference between theory and experiment 

is not likely to be found in the gross approximations that have 
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been made but rather in the more subtle behavior of the energy 

dependence of the trial function. 

Referring again to Figs. 3 and 4, it is evident that, 

with the exception of the most impure samples, the measured 

thermal resistivity above 8K does not change as rapidly as the 
2 calculated thermal resistivity. W_,/T decreases more rapidly 

for impure specimens than for the pure specimens, but as 

discussed below, this behavior is due to lattice thermal 

conduction. Therefore, for all specimens the calculations seem 

to underestimate the high temperature electronic thermal 

resistivity.- Reasons for this are not clear. As far as the 

temperature dependence is concerned, electrical resistivity 

calculations yield excellent agreement with the experimental 

results over the whole temperature range; again, this indicates 

that the various pseudopotentials are not grossly incorrect. 

The main differences between the electrical and thermal resis­

tivity are the roles of small angle and inelastic scattering. 

Pseudopotentials are generally considered to be quite good 

when used to calculate the effects of small angle scattering. 

Therefore the energy dependence of the pseudopotential and 

the treatment of inelastic scattering appear to be possible 

explanations for the difference between the electrical and 

thermal cases. Yet another possibility may be related to the 

observed deviations from Matthiessen's rule. 
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The temperature dependent portion of the measured thermal 

resistivity, which we have identified as W , will not be due 

entirely to electron-phonon scattering, but, as is shown below, 

can contain an additional temperature dependent term. With 

only electron-impurity scattering present, the electrons, under 

the influence of a temperature gradient, will reach a steady-state 

distribution, f^ • Similarly, with only electron-phonon 

scattering present, the steady-state distribution will be fh . 

In general, f£ will not be equal to fr> . When both types of 

scattering are present simultaneously, the resulting steady-

state distribution will be a compromise between the two. 

The result of this is that when both mechanisms are present, 

the total resistivity is greater than the sum of the resistivities 

when each mechanism acts separately. Thus, the total resistivity 

can be written as 

imp pn 

where W. (c) and W ^(T) are respectively, the impurity and phonon 
resistivities with each mechanism acting separately. 6(c,T), 

which can be shown to be always positive, can depend upon both 

the impurity concentration and the temperature. The variational 

calculation is done with a trial function that yields the best 

values of W h(T) whereas the experimental data, W , contain the 

additional term 6(c,T). In the electrical case it is known 

that 6(c,T) can have a temperature dependence different from 
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27 
that of W L ( T ) . 6(C,T) will be small at the lower tempera­
tures but deviations from Matthiessen's rule might account for 
the observed difference between theory and experiment at the 
higher temperatures. In order to actually calculate a value 
for 6(c,T) with any degree of accuracy from experimental data 
the specimen geometrical factor must be known very well. In 
this experiment the geometrical factor is not known with 
sufficient accuracy so no attempts have been made to extract 
a value for 6(c,T) from our data. 

We can, however, demonstrate deviations from Matthiessen's 

rule at low temperatures by comparing the coefficient B (see 

Eq. (14) below) for samples of different purity. The purity 

dependence of B is shown in Fig. 5. (The estimated error is 5%.) 

The 507o change over this purity range is larger than the corres­

ponding deviations (307o) observed in the electrical resistivity. 

The curve drawn through the data points in Fig. 5 is only meant 

to indicate the general trend in the data; B is essentially 

constant in the low purity range, decreases as the purity 

increases and then tends to become constant for high purities. 

The present experiments show quite clearly that umklapp 

scattering plays an important role in determining the low tempera­

ture thermal resistivity. However, the temperature dependence 

is not very much different from what one would expect if only 

normal scattering were present. Figure 1 of Ref. 20 shows the 
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calculated thermal resistivity decomposed into the separate 

contributions due to normal and umklapp scattering. In the 

temperature interval from 4 to 7K, umklapp scattering contributes 

as much as 50% to the total thermal resistivity. Even so, 
2 

the total thermal resistivity is closely represented by a T 

dependence. This should be contrasted with the electrical case 

where umklapp scattering contributes as much as 4 to 5 times 

the resistance of normal scattering in the same temperature 

range and the electrical resistivity cannot in any sense be 

described by a simple power law. It is a curious coincidence 

that just when the thermal resistivity due to the normal processes 
2 begins to deviate below a T dependence, the resistivity due to 

umklapp processes increases in nearly the correct proportion to 

give a total thermal resistivity having a quadratic temperature 
2 

dependence; this extends the regime over which the simple T 

law appears valid. 

This simple power law behavior is best illustrated by 

displaying both the theory and experimental results in the more 

standard form shown in Figs. 6 and 7. The expression generally 

used to describe the electronic thermal resistivity of a metal is 
We - | + BT2 (14) 

2 
Here BT represents the electron-phonon scattering contribution 
to the resistivity, usually calculated using the Bloch theory and 
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A/T is the thermal analog to the electrical residual resistivity; 

A = P /L , where P is the electrical residual resistivity and o o o J 

L is the Lorenz number. The results of calculations using 

the Bardeen pseudopotential and the uncorrected trial function 

are shown in Fig. 6. (These are the same results as the solid 

curve in Fig. 3b.) This pseudopotential was chosen because it 

gives the greatest low temperature curvature and therefore 

has the greatest deviation from a straight line on such a plot. 

The scale of the abscissa is the same as that used when plotting 

the experimental data to obtain (WT)„0. Above 3K, the theory 

is closely approximated by a straight line, but there is some 

•upward curvature at the lower temperatures. Because of this, 

data should be taken to fairly low temperatures so that (WT) fi 

can be determined accurately. In the less pure samples, the 

percentage error introduced by extrapolation from a high tempera­

ture will be small; however, it can be as large as 10% in 

the purer samples. (Note that the other pseudopotentials will 

give a much smaller curvature which represents a smaller possible 

extrapolation error.) Such an error will always overestimate 

the residual resistivity ratio and can cause large errors in 

determining the temperature dependent portion of the thermal 

resistivity. However, the percentage error in W will decrease 

with increasing temperature. Figure 7 shows the measured tempera 

ture dependence of the thermal resistance of potassium when 
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3 plotted as WT vs. T . The relevant specimen parameters as 

well as those parameters describing the curves (A and B, Eq. 

(14)) in this figure are listed in Table I. The residual 

resistivity ratios listed in Table I have been obtained using 

the experimentally determined values for (WT) ~ and assuming 

the Wiedemann-Franz law to be valid. Values for B were deter­

mined from the data between 4 and 8K. Both A and B are accurate 

to about 5%, the major error arising from the determination 

of the cross-sectional area. 

To facilitate comparison with other work, the thermal 

conductivity as a function of temperature for representative 

samples is shown in Figs. 8 and 9. The solid curves in Figs. 

8 and 9 are calcualted from Eq. (14) using the experimentally 

determined values for A and B given in Table I. The dashed 

curve in Fig. 9 is computed in a similar manner except that 

the lattice conductivity, which is appreciable, has been 

included. 

Our results are in reasonable quantitative agreement with 

those of MacDonald, White and Woods whose measurements were 

done on potassium encapsulated in small glass capillaries. 

Differential thermal contraction will strain such potassium 
23 28 

samples; ' the resulting effects can introduce significant 

errors in the electrical resistivity and, presumably, in the 

thermal resistivity as well. Because of this, it does not seem 
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reasonable to make any further comparisons with their data. 

Our results are in considerable disagreement with those 

of Stauder and Mielczarek. We see no evidence for any 

anomalous contributions to the thermal resistivity in any of 

the potassium samples that we have measured, whether pure 

or impure or in either single or polycrystalline form. (Samples 

K-16 and K-15 are in the same purity range as the single 

crystals measured by Stauder and Mielczarek.) 

In an attempt to determine possible reasons for the differ­

ences between our measurements and those of Stauder and Mielczarek 
29 we have compared our experimental technique with theirs. 

There exist a number of difficulties which we feel invalidate 

much of their data; several of them are listed below. 
1) Copper leads were used to make electrical connections 

to the thermometers. The low thermal resistance of such leads 

(about 0.01ft compared to our resistance of 3ft) gives poor 

isolation between the thermometers and the liquid helium bath. 

Poor thermal isolation is particularly troublesome when the 

sample-to-thermometer thermal resistance is high as is likely 

when making contact to reactive materials such as potassium. 

2) As far as we could determine, no attempt was made to 

compare their two germanium thermometers against one another 

or to take a zero-power-input temperature difference to use 

as a correction for small heat leaks and small thermometer 
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calibration errors (see Section IID). They used commercial 

calibrations which are, in general, only accurate to 5mK. 

When small applied temperature differences are used large 

errors in W will result. Note that our thermometers were 

both calibrated against the same standard. 

3) They do not report any attempt to use their method to 

measure a metal such as indium or copper, whose thermal conducti­

vity is known. If such measurements had been made, under the 

same experimental conditions as used for potassium, and the 

apparatus shown to perform properly, then doubts raised by the 

first two possibilities might be eliminated. 

In the absence of any such calibration measurements and 

in view of the problems raised above we must conclude that 

the anomalous results reported by Stauder and Mielczarek 

are not a property of potassium. 

Figure 10 shows the calculated lattice thermal conductivity 
20 of potassium as a function of the temperature. The lattice 

conductivity values in Fig. 10 were calculated by Ekin assuming 

only phonon-electron scattering; phonon-impurity scattering 
30 

has been neglected. Archibald, Dunick and Jericho have 

measured the lattice thermal conductivity of extremely impure 

potassium-cesium alloys. When their results are compared with 

theory, phonon-impurity scattering is found to be quite important. 

Our "dirty" samples are an order of magnitude more pure than any 
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of their specimens so such scattering will be much less important. 

However, phonon-impurity scattering will increase with temperature. 

Thus the calculated thermal conductivity plotted in Fig. 10 

should be regarded as an upper limit, particularly at the 

higher temperatures. 

The heat current carried by the lattice will be added to 

the electronic heat current; therefore, when lattice conduction 

cannot be neglected, the measured thermal resistance will be 

less than the resistance due to electronic conduction alone. 

Comparing the curve in Fig. 10 with those in Figs. 8 and 9, 

one sees that below about 6K the lattice term can be neglected 

in all but the most impure specimen. For reasonably pure 

specimens (RRR > 2000), the calculated lattice conduction is 

less than 1% of the total conduction at 6K. At higher tempera­

tures the lattice becomes more important. Above 20K, the lattice 

can account for as much as 50% of the heat conduction depending 

on purity. However, for impure samples the lattice conductivity 

may be very important at lower temperatures. For example, 

in sample K-16, having a residual resistivity ratio of 195, 

lattice conduction accounts for about 13% of the total heat 

conduction at 10K. The lower curve in Fig. 9 represents a fit 

to Eq. (14) where A and B are determined from the data below 

6K. If the lattice conductivity given in Fig. 10 is simply added 

to the conductivity given by Eq. (14), one obtains the upper 
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curve in Fig. 9. It is quite evident that the correction is 

large at the higher temperatures. As the purity decreases, 

lattice conduction becomes an increasingly larger fraction 

of the total conduction. As previously mentioned this is 
2 responsible for the decrease in WT/T for the more impure 

samples being more rapid than in the purer specimens above 

8K. (No corrections for the lattice conductivity have been 

made for the calculated curves shown in Fig. 8.) 



IV. CONCLUSION 

We have presented evidence showing that the low temperature 

thermal resistivity of potassium can be adequately explained 

using semiclassical ideas. The importance of umklapp scat­

tering has been demonstrated. Umklapp processes become important 

between 2 and 3K and eventually become responsible for about 

50% of the total thermal resistivity. However, the temperature 

dependence of the normal and umklapp contributions to the 

thermal resistivity complement one another in a manner that 
2 results in an apparent T law for the total thermal resistivity 

to temperatures greater than 9/10. 

Detailed comparison between theory and experiment shows 

that the agreement is better at low than at high temperatures. 

The fairly large observed deviations from Matthiessen's rule 

might be responsible for the disagreement at high temperatures-

and it would be useful to attempt to include both electron-

phonon and electron-impurity scattering in the variational 

calculation to see how this affects the temperature dependence 

of the thermal resistivity. 

No anomalous electron or phonon contributions to the 

thermal resistivity are observed. The effects of lattice 

conductivity are clearly present even in samples of intermediate 

purity; this additional conduction mechanism must be taken into 

account if accurate comparisons with theory are to be made. 
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The existence of a sizable lattice conductivity in even 

reasonably pure samples makes the thermal resistivity a much 

more difficult transport property to analyze than the 

electrical resistivity. 
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Figure Captions 

Fig. 1: The Cryostat: HSl and HS2 are heat stations, HS1 

is connected directly to the bath; S is a stainless 

steel platform with a copper rod C around the peri­

meter; T are the measuring thermometers and R is 

the control thermometer; Fo is a pleated copper foil, 

Cu the thermometer holder and Ge the germanium 

resistance thermometer; P is a small press; F is a 

tapered flange and V are the vacuum lines. 

Fig. 2: Thermal resistivity of indium multiplied by the 
3 

temperature as a function of T ; indium was measured 

as a check on the measurement procedure. 

Fig. 3: Temperature dependence of W„/T where 
WTT = WT - (WT) Q (see text) for 
(a) sample K-15, (b) sample K-14. The curves are 

theoretical values calculated by Ekin using different 

pseudopotentials: solid line ( ), Bardeen 

pseudopotential; broken line ( ), Lee-Falicov 

pseudopotential; double broken line ( ), 

Ashcroft pseudopotential. The relaxation time trial 

function, Eq. (1), was used for the calculations in 

(a) and the corrected trial function, Eq. (2), for 

the calculations in (b). 

-38-
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2 Fig. 4: Temperature dependence of W /T for (a) 

sample K-13, and (b) sample K-9. The curves are 

the same as shown in Fig. 3b. 

Fig. 5: The coefficient, B. (see Eq. (14)), as a function of 

the residual resistance ratio, RRR. The open circles 

are data from this work, the closed circle is from 

Ref. 30, 

Fig. 6: The calculated thermal resistance given by the solid 
3 

curve in Fig. 3a replotted as WT versus T . The 

dashed line is an extrapolation of the linear, high 

temperature region. 

Fig. 7: The measured thermal resistance of potassium times 
3 the temperature as a function of T ; (a) for samples 

K-9, K-15 and K-16, and (b) for samples K-ll, K-13 

and K-14. 

Fig. 8: Thermal conductivity n as a function of temperature 

for potassium samples ranging in purity from RRR = 6000 

to RRR = 195. The curves are calculated from 1/K = 

A/T + BT2. (See Eq. (14)and Table I.) 

Fig. 9: The thermal conductivity as a function of temperature 

for the lowest purity sample, K-16. The solid line 
2 

is calculated from 1/K = A/T + BT (see Eq. (14) and 
Table I). As described in the text, the broken line 
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includes the lattice thermal conductivity in the 

calculated values. 

Fig. 10: Theoretical lattice thermal conductivity as a function 

of temperature (from Ref. 20). 



TABLE I 

RRRC Type Width Thickness 

(mm) (mm) 

K-9 
K-10 

K-ll 

K-12 

'' K-13 

K-14 

K-15 

K-16 

K-17 

4.8 
6.6 
16.5 

6.8 
5.5 
7.1 

26.8 

151.2 

4.5 

1.53 

1.65 

2.23 

1.72 

1.73 

1.94 

2.35 

2.38 

1.80 

6130 

4455 

1780 

4325 

5345 

4140 

1095 

195 
6535 

poly. 

poly. 

poly. 

poly. 

poly. 

single 

single 

poly. 

poly. 

7.0 
7.0 
3.5 
3.0 
3.0 
5.0 
3.0 
3.0 
3.0 ■ 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.5 
1.0 
1.0 

a . Our potassium was purchased from MSA Corporation, Evans City, Pennsylvania. 
2 

b. The coefficients A and B are obtained by fitting the data to W = A/T + BT as described 
in the text. 

c. The residual resistivity ratio is determined using the Wiedemann-Franz law; see Ref. 23. 

d. The thickness measurements were accurate to better than +0.05 mm while the width measurements 
are accurate to about +0.1 mm. 

Sample
3 A

b
=(WT) T = Q ^ B

b 

(10"
2
cm K2

/W) (10"
3
cm/W) 



Hulm 
In A 
In B 
In C 
Jones and 

• 

Toxen 

TABLE II 

Aa(cm K2/W) 

.138 

.014 

.009 

.0085 

.0034 

Ba(10"3cm/W) 

1.89 
1.64 
1.51 
1.41 
1.11 

a. A.and B are coefficients obtained by fitting the data to 
W = A/T + BT2. 

b. J. K. Hulm, Proc. Roy. Soc. A204, 98 (1950). 
c. R. E. Jones and A. N. Toxen, Phys. Rev. 120, 1167 (1960). 
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