A THEORY OF

SPONTANEOUS T VIOLATION

T. D. Lee

This research was supported in part by the U. S. Atomic Energy Commission.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Abstract

A theory of spontaneous T violation is presented. The total Lagrangian is assumed to be invariant under the time reversal T and a gauge transformation (e.g., the hypercharge gauge), but the physical solutions are not. In addition to the spin 1 gauge field and the known matter fields, in its simplest form the theory consists of two complex spin 0 fields. Through the spontaneous symmetry breaking mechanism of Goldstone and Higgs, the vacuum expectation values of these two spin 0 fields can be characterized by the shape of a triangle and their quantum fluctuations by its vibrational modes, just like a triangular molecule. T violations can be produced among the known particles through virtual excitations of the vibrational modes of the triangle which has a built-in T violating phase angle. Examples of both Abelian and non-Abelian gauge groups are discussed. For renormalizable theories, all spontaneously T violating effects are finite. It is found that at low energy, below the threshold of producing these vibrational quanta, T violation is always quite small.

1. Introduction

In this paper we discuss a theory of spontaneous T violation. To illustrate the theory, we shall first discuss a simple model in which the weak interaction Lagrangian, as well as the strong and electromagnetic interaction Lagrangians, are assumed to be invariant under

1. the time reversal T,
and 2. a gauge transformation, e.g., that of the hypercharge Y. Yet, the physical solutions are required to exhibit both T violation and Y nonconservation. In its construction, the model is similar to those gauge-group spontaneous symmetry violating theories ${ }^{1-4}$ that have been extensively discussed in the literature. The only difference is that one has now, in addition, the spontaneous violation of a discrete symmetry ${ }^{5}$. As we shall see, there exists actually a general class of such spontaneously T violating theories. . The simple model serves only as a prototype, which nevertheless embodies all of the essential features.

In addition to the known matter fields, the model consists of two independent spin! $Y=1$ complex fields ϕ_{1}, ϕ_{2} and a neutral spin 1 gauge field B_{μ}. Under the hypercharge gauge transformation $\exp (i Y \wedge$), we have

$$
\phi_{k} \rightarrow e^{i \Lambda} \phi_{k}
$$

and

$$
B_{\mu} \rightarrow B_{\mu}+f^{-1} \frac{\partial \Lambda}{\partial x_{\mu}}
$$

where f is the hypercharge coupling constant and the subscript $k=1$ and 2 . As usual, T is assumed to commute with Y,

$$
\begin{equation*}
T Y T^{-1}=Y \tag{2}
\end{equation*}
$$

This gives then a well-defined difference between T and either CT or CPT. Since T is an anti-unitary operator, we can always choose the phase of ϕ_{k} such that

$$
\begin{equation*}
T \phi_{k} T^{-1}=\phi_{k} \tag{3}
\end{equation*}
$$

To avoid irrelevant complications, we assume the theory not to be symmetric under any linear transformation which mixes ϕ_{1} and ϕ_{2}, so that, the right-hand side of (3) must remain ϕ_{k}.

As will be discussed in the next section, the spontaneous T violation mechanism can be introduced by assuming a T invariant potential energy $V(\phi)$ between ϕ_{1} and ϕ_{2} which has a minimum at the c. number point

$$
\begin{equation*}
\left(\phi_{1}, \phi_{2}\right)=2^{-\frac{1}{2}}\left(\rho_{1} e^{i \theta}, \rho_{2}\right) \tag{4}
\end{equation*}
$$

where $\rho_{1}>0, \rho_{2}>0$ and $\theta \neq 0$ or π. This minimum point therefore defines a triangle where ρ_{1} and ρ_{2} form two sides and θ the angle in between. Because of quantum effects there must be fluctuations of Φ_{1} and ϕ_{2} around their average values. These fluctuations can be shown to correspond to the vibrations of the triangle. The entire ϕ_{1}, ϕ_{2} system can then be visualized as a triangular molecule which is defined by both its shape and its three vibrational modes of oscillation in the plane of the triangle. For convenience of nomenclature, we shall refer to this ϕ_{1}, ϕ_{2} complex simply as "the triangle".

In the absence of the gauge field B_{μ}, there would be a zero mass boson, in accordance with the Goldstone theorem ' In the present case, this Goldstone boson corresponds simply to the rotational degree of freedom of the triangle. Because of
the Higgs mechanism ${ }^{2}$, the presence of the gauge field B_{μ} eliminates the zero mass. boson. As a result, B_{μ} acquires a mass, and the would-be Goldstone boson becomes, as usual, the longitudinal mode of B_{μ}. The detailed description of the triangle and its interaction with the gauge field is given in section 2.

While the Lagrangian is assumed to be T invariant, its solution, as characiterized by the triangle, carries a phase angle $\theta \neq 0$ or π. Therefore, it has a builtin T violation, somewhat analogous to the two-component neutrino theory which carries a built-in screw direction. We recall that just on the basis of the two-component neutrino theory alone, but without any appropriate interaction, one cannot distinguish ${ }^{6}$ between P and $C P$, and consequently there is no observable parity violation effect. Here, one has a similar situation. Both the gauge field and the vibrational levels of this triangular molecule are of zero average hypercharge, $\langle Y\rangle=0$. Thus, although these vibrational levels are not invariant under T, there is no violation of the reciprocity relations, since for states with $\langle Y\rangle=0$ reciprocity relations can be derived by using CT invariance alone. To observe violations of the reciprocity relations, there must be states with $\langle Y\rangle \neq 0$, such as $K^{\circ}, \mathrm{K}^{\circ}$, etc.

Once this triangle is allowed to interact with known particles with $\langle Y\rangle \neq 0$, T violation becomes a natural consequence. However, the existence of the triangle does not determine the exact form of its interactions [just as the interaction of a neutrino is not specified by the two-component theory]. As a pure illustration, we consider in section 3 a particularly simple form in which the usual T - invariant $\Delta Y= \pm 1$ weak interaction Lagrangian $L_{ \pm}$is replaced by .

$$
\begin{equation*}
\mathcal{L}_{\text {int }}=\left(g_{1} \phi_{1}+g_{2} \cdot \phi_{2}\right) L_{-}+h . c . \tag{5}
\end{equation*}
$$

Because of the transformation property (1), this new Lagrangian clearly conserves Y. It is also T invariant, provided g_{1} and g_{2} are relatively real. Through the virtual emission and absorption of the triangle, violations of reciprocity relations can occur among the known particles. As we shall see, this can give rise to $K_{L}^{\circ} \rightarrow 2 \pi$, and (if we assume the threshold energy for producing these triangles is $\gtrsim a f e w(\mathrm{GeV}$) the

As will also be discussed in the subsequent sections, in addition to the direct exchange of the triangle between the matter fields, there is still another important mechanism which can violate the reciprocity relations via the coupling between the matter field and the gauge field. In this mechanism, the triangle propagates only in a loop diagram, and as a result, one may have violations of the Furry Theorem; i.e., the loop diagram connecting an odd number of the gauge field quanta may now be nonzero. Such a loop diagram can in turn produce T violations among the matter fields.

In section 4, we examine some generalizations of the model to other gauge groups, either Abelian or non-Abelian, but we restrict our discussion only to renomalizable theories. In all these cases, the general mechanism of T violation remains the same, and the basic structure of the triangle remains intact, though its interaction with the known matter fields can be quite different. Because, in these cases, the spontaneous T violation is tied to the spontaneous gauge-symmetry violations ${ }^{7}$ of the weak and electromagnetic interactions, at low energy the magnitude of T violation among known particles always turns out to be very small, either milliweak or superweak. Furthermore, since such theories are renormalizable, all spontaneously T violating effects are finite and computable, at least in principle. In the particular examples that have been
analysed, we find that T violations may be of the milliweak strength for $|\Delta \vec{I}|=0$ processes, but for $K_{L}^{\circ}-K_{S}^{\circ}$ decays, or other $\Delta Y= \pm 2$ reactions, it is of the superweak strength. In any case, one feels that whatever the eventual gauge theory may be for the weak and electromagnetic interactions, it should contain T violation as an integral part. The triangle theory of spontaneous T violation discussed in this paper may provide just such a needed possibility.

2. The Triangle and the Gauge Field

In this section we consider the simple system of spontaneous T violation mentioned in the introduction. The system consists of two complex spin 0 fields ϕ_{1}, ϕ_{2} and a gauge field B_{μ}. The most general form of a gauge invariant, T invariant and renormalizable Lagrangian density is

$$
\begin{align*}
\mathcal{L}(B, \phi)= & -\sum_{k=1,2}\left[\left(\frac{\partial}{\partial x_{\mu}}+i f B_{\mu}\right) \phi_{k}^{\dagger}\right]\left[\left(\frac{\partial}{\partial x_{\mu}}-i f B_{\mu}\right) \phi_{k}\right] \\
& -\frac{1}{4}\left(\frac{\partial}{\partial x_{\mu}} B_{v}-\frac{\partial}{\partial x_{v}} B_{\mu}\right)^{2}-V(\phi) \tag{6}
\end{align*}
$$

where \dagger denotes the Hermitian conjugate, the potential energy $V(\phi)$ is given by

$$
\begin{align*}
V(\phi)= & -\lambda_{1} \phi_{1}^{\dagger} \phi_{1}-\lambda_{2} \phi_{2}^{\dagger} \phi_{2}+A\left(\phi_{1}^{\dagger} \phi_{1}\right)^{2}+B\left(\phi_{2}^{\dagger} \phi_{2}\right)^{2}+C\left(\phi_{1}^{\dagger} \phi_{1}\right)\left(\phi_{2}^{\dagger} \phi_{2}\right) \\
& +\frac{1}{2}\left[\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(D \phi_{1}^{\dagger} \phi_{2}+E \phi_{1}^{\dagger} \phi_{1}+F \phi_{2}^{\dagger} \phi_{2}\right)+\text { h.c. }\right] \tag{7}
\end{align*}
$$

and its eight constants $\lambda_{1}, \lambda_{2}, A, \cdots, F$ are all real so that T invariance holds. In the spirit of renormalization, the renormalized values of these constants can be arbitrarily assigned. Following the standard treatment of spontaneous symmetrybreaking mechanism for the gauge group ', we assume

$$
\begin{equation*}
\lambda_{1} \text { and/or } \lambda_{2}>0 \tag{8}
\end{equation*}
$$

As we shall see, the spontaneous T violation can be induced by imposing

$$
\begin{equation*}
D>0 . \tag{9}
\end{equation*}
$$

In addition, in order for $V(\phi)$ to have a lower bound, we require

$$
A-\frac{E^{2}}{8 D}>0, B-\frac{F^{2}}{8 D}>0,
$$

and

$$
\begin{equation*}
\left(A-\frac{E^{2}}{8 D}\right)\left(B-\frac{F^{2}}{8 D}\right)>\frac{1}{4}\left(C-D-\frac{E F}{4 D}\right)^{2} \tag{10}
\end{equation*}
$$

As usual, all the above conditions refer to the renormalized constants.
Let us first locate the minimum of the function $V(\phi)$ in its c. number form. In the tree approximation, this minimum determines the vacuum expectation values of ϕ_{1} and ϕ_{2} :

$$
\left\langle\phi_{1}\right\rangle_{\mathrm{Vac}}=2^{-\frac{1}{2}} \rho_{1} e^{i \theta} \quad \text { and } \quad\left\langle\phi_{2}\right\rangle_{\mathrm{Vac}}=2^{-\frac{1}{2}} \rho_{2}
$$

Because of (8), the minimum is not at the origin, and because of the gauge invariance of the Lagrangian we can always transform one of the vacuum expectation values, 'say $\left\langle\phi_{2}\right\rangle_{\text {vac }}$, to be real and not negative. It is straightforward to obtain the necessary and sufficient condition for both $\rho_{1}>0$ and $\rho_{2}>0$. [See Appendix A for further details. ${ }^{-}$ Similarly, one can readily verify that because of (9),

$$
\begin{equation*}
\cos \theta=-\left(4 D \rho_{1} \rho_{2}\right)^{-1}\left(E \rho_{1}^{2}+F \rho_{2}^{2}\right), \tag{11}
\end{equation*}
$$

in which the constants are chosen to satisfy $-1<\cos \theta<1$. Equation (11) has two solutions: θ and $-\theta$. By using (3), one sees that either solution is not invariant under T, and therefore one has a spontaneous T violation. The T invariance of the Lagrangian insures that both solutions should exist, and that they transform into each other under The normal modes of this system can be derived by expanding the operators ϕ_{1} and

$$
\phi_{1}=2^{-\frac{1}{2}}\left(\rho_{1}+R_{1}+i I_{1}\right) e^{i \theta}
$$

and

$$
\begin{equation*}
\phi_{2}=2^{-\frac{1}{2}}\left(\rho_{2}+R_{2}+i I_{2}\right) \tag{12}
\end{equation*}
$$

where ρ_{1}, ρ_{2} and θ are, as before, c-numbers, but R_{1}, R_{2}, I_{1} and I_{2} are Hermitian fields. If the coupling constant f between the gauge field B_{μ} and ϕ_{1}, ϕ_{2} were zero, then the Goldstone theorem would apply and there should be one normail mode, called the Goldstone boson G, that has a zero mass. It can be easily verified that in the tree approximation, G is given by

$$
\begin{equation*}
G=\left(\rho_{1}^{2}+\rho_{2}^{2}\right)^{-\frac{1}{2}}\left(\rho_{1} I_{1}+\rho_{2} I_{2}\right) \tag{13}
\end{equation*}
$$

[This can also be established by using the geometrical considerations given below.] The remaining three normal modes, which will be referred to as t_{1}, t_{2} and t_{3}, are linear combinations of the fields R_{1}, R_{2} and

$$
\begin{equation*}
I \equiv\left(\rho_{1}^{2}+\rho_{2}^{2}\right)^{-\frac{1}{2}}\left(\rho_{2} I_{1}-\rho_{1} I_{2}\right) \tag{14}
\end{equation*}
$$

This linear relation may be written as

$$
t=\left(\begin{array}{c}
t_{1} \tag{15}\\
t_{2} \\
t_{3}
\end{array}\right)=u \cdot\left(\begin{array}{l}
R_{1} \\
R_{2} \\
I
\end{array}\right)
$$

where U is a (3×3) real orthogonal matrix.
As already mentioned in the introduction, the description of the system can
be characterized by a triangular molecule. For example, Figure 1 gives a schematic picture of such a triangular molecule whose two sides are ρ_{1} and ρ_{2} respectively, and the angle in between is θ. In the plane of the triangle, a triangular molecule also has three normal modes of vibration, each of which is a linear combination of the displacements $\delta \rho_{1}=R_{1} ; \delta \rho_{2}=R_{2}$ and $\delta \theta=\rho_{1}^{-1} I_{1}-\rho_{2}^{-1} I_{2}$, i.e.

$$
\delta \theta=\frac{\left(\rho_{1}^{2}+\rho_{2}^{2}\right)^{\frac{1}{2}}}{\rho_{1} \rho_{2}} I
$$

(as illustrated in Figure 1). Under the gauge transformation $\exp (i Y a)$, the entire triangle rotates an angle a. Thus, the Goldstone boson G corresponds simply to the rotational degree of freedom of the triangle; this then leads to Eq. (13).

The configuration and vibration of a triangular molecule depend on nine real parameters: three for the shape of the triangle, three for the Eulerian angles that specify the real orthogonal matrix U and three for the frequencies (or masses) of the normal modes. In the present case, the function $V(\phi)$ depends only on eight constants $\lambda_{1}, \lambda_{2}, A, \cdots F$. This imposes a constraint

$$
\sum_{a=1}^{3}\left(\rho_{1} u_{a_{1}}+\rho_{2} u_{a_{2}}\right) u_{a_{3}} m_{a}^{2}=0
$$

where m_{a} is the mass of the normal mode t_{a}. Since the coupling constant $f \neq 0$, the zero mass Goldstone boson is removed through the Higgs mechanism 2. G now joins the two transverse components of B_{μ} to form a single massive neutral spin 1 boson B. In the tree approximation, the mass of B is

$$
\begin{equation*}
m_{B}^{2}=f^{2}\left(\rho_{1}^{2}+\rho_{2}^{2}\right) \tag{17}
\end{equation*}
$$

The Lagrangian (6) is constructed to be invariant under the gauge transformation
(1). One has therefore the current conservation

$$
\frac{\partial j_{\mu}}{\partial x_{\mu}}=0
$$

where

$$
j_{\mu}=i \sum_{k=1,2}\left(\frac{\partial \phi_{k}^{\dagger}}{\partial x_{\mu}} \phi_{k}-\phi_{k}^{\dagger} \frac{\partial \phi_{k}}{\partial x_{\mu}}\right)
$$

and the spatial integral of its time-component is Y . The Lagrangian (6) is T invariant; in addition, it is symmetric under the particle anti-particle conjugation C and the space inversion P. The parity of B_{μ} is -1 ; the parity of ϕ_{1} must be the same as that of ϕ_{2}, but it can be either +1 or -1 , since the Lagrangian is an even function of $\varphi_{k} \cdot$ Under C, one has

$$
\begin{aligned}
& C \phi_{k} C^{\dagger}=\phi_{k}^{\dagger} \\
& C B_{\mu} C^{\dagger}=-B_{\mu}
\end{aligned}
$$

and consequently

$$
C Y C^{\dagger}=-Y
$$

[If one wishes, one may also set $C \phi_{k} C^{-1}=-\phi^{\dagger}$ for both $k=1$ and 2.]
The normal modes t_{1}, t_{2} and t_{3} are not eigenstates of C nor of T. As an example of.C violation or T violation, we may consider diagrams for

$$
\begin{equation*}
n B_{\mu} \rightarrow m B_{\mu} \tag{18}
\end{equation*}
$$

where $n+m$ is an odd number. Because of loop diagrams in which the propagators are those of the triangles, the amplitudes for these C violating processes can be non-zero. [See, however, Appendix Ȧ for a list of special circumstances under. which some of these amplitudes may happen to be zero.]

By using (1) and (12)-(15), one can readily verify that both the gauge field and the normal modes of the triangle are of zero average hypercharge; i.e., $\langle Y\rangle=0$. Thus, for the system of the triangle and the gauge field alone, one can always introduce a new "time-reversal" operator T_{n} and a new "particle anti-particle conjugation" operator C_{n} such that

$$
\begin{array}{ll}
T_{n} t_{a} T_{n}^{-1}=t_{a} \\
T_{n} G T_{n}^{-1}=G & C_{n} t_{a} C_{n}^{-1}=t_{a} \\
T_{n} B_{\mu} T_{n}^{-1}=B_{\mu} & C_{n} G C_{n}^{-1}=G \\
\text { and } & C_{n} B_{\mu} C_{n}^{-1}=B_{\mu} .
\end{array}
$$

Since the Lagrangian $\mathcal{L}(B, \phi)$ can be written as a real function of these Hermitian fields, it must be invariant under the new C_{n} and T_{n}. Reaction (18) does not violate either T_{n} invariance or C_{n} invariance. The reciprocity relations are then maintained. However, under T_{n} one now has $\phi_{1} \rightarrow \phi_{1}^{\dagger}$ and $\phi_{2} \rightarrow \phi_{2}^{\dagger}$, and under C_{n} $\phi_{1} \rightarrow \phi_{1}$ and $\phi_{2} \rightarrow \phi_{2}$. Thus, the hypercharge Y neither commutes with T_{n}, nor anti-commutes with C_{n}. Nevertheless, this is totally acceptable, since in this simple system all the eigenstates are of $\langle Y\rangle=0$. In order to observe violation of reciprocity relations, one should enlarge the system to include some known particles with <Y> non-zero.

3. Violations of Reciprocity Relations

To illustrate how violations of reciprocity relations may occur, we discuss the example of a particular weak interaction Lagrangian given by (5). [Other forms will be discussed in section 4.] For clarity, let us consider first only the $P=-1$ part of the usual $\Delta Y= \pm 1$ non-leptonic weak interaction Lagrangian $L_{ \pm}$. The operator $L_{ \pm}$is in general rather complicated, not a single canonical field; but so far as its transformation properties are concerned, $L_{ \pm}$is the same as the appropriate K° or \bar{K}° meson field. Thus we may write

$$
L_{-} \sim K^{0} \quad \text { and } \quad L_{+} \sim K^{0 \dagger}
$$

where \sim indicates both sides have the same transformation properties. According to (5), with the inclusion of the triangle, the corresponding weak interaction becomes

$$
\begin{equation*}
\mathcal{L}_{\mathrm{int}} \sim\left(g_{1} \phi_{1}+g_{2} \phi_{2}\right) k^{\circ}+\text { h.c. } \tag{19}
\end{equation*}
$$

where g_{1} and g_{2} are both real so that T invariance holds. It is clear that (19) is also invariant under the hypercharge gauge transformation. By using (12), one may rewrite (19) in the form

$$
\begin{equation*}
\mathcal{L}_{\text {int }} \sim\left[F K_{1}^{0}+g\left(K_{1}^{0} x_{1}+K_{2}^{0} X_{2}\right)\right] \tag{20}
\end{equation*}
$$

where Γ and g are both real and positive

$$
\begin{equation*}
F^{2}=g_{1}^{2} \rho_{1}^{2}+g_{2}^{2} \rho_{2}^{2}+2 g_{1} g_{2} \rho_{1} \rho_{2} \cos \theta \tag{21}
\end{equation*}
$$

and $g=\left(\dot{g}_{1}^{2}+\dot{g}_{2}^{2}\right)^{\frac{1}{2}}$. The K_{1}° and K_{2}° meson fields are defined by

$$
K_{1}^{o}=2^{-\frac{1}{2}}\left(K^{0} e^{i a}+K^{o \dagger} e^{-i a}\right)
$$

$$
K_{2}^{0}=i 2^{-\frac{1}{2}}\left(K^{0} e^{i a}-K^{0 \dagger} e^{-i \alpha}\right)
$$

and a is given by

$$
\begin{equation*}
\Gamma e^{i \alpha}=g_{1} \rho_{1} e^{i \theta}+g_{2} \rho_{2} \tag{22}
\end{equation*}
$$

The X_{1} and X_{2} fields are related to R_{1}, R_{2} and I_{1}, I_{2} by

$$
\begin{gathered}
x_{1}=g^{-1}\left[g_{1} \cos (\theta-\alpha) R_{1}-g_{1} \sin (\theta-\alpha) I_{1}\right. \\
\left.+g_{2} \cos \alpha R_{2}+g_{2} \sin \alpha I_{2}\right]
\end{gathered}
$$

and

$$
\begin{align*}
x_{2}= & g^{-1}\left[g_{1} \sin (\theta-\alpha) R_{1}+g_{1} \cos (\theta-\alpha) I_{1}\right. \tag{23}\\
& \left.-g_{2} \sin \alpha R_{2}+g_{2} \cos \alpha I_{2}\right]
\end{align*}
$$

Under a hypercharge gauge transformation, the relative phase between

K°

 and R° meson states changes; therefore, we can always choose their relative phase so that K_{1}^{0} represents the usual $C P=+1$ component, and K_{2}^{0} the usual $C P=-1$ component. The first term ΓK_{1}^{0} in (20) gives rise to the $C P$ conserving transition $K_{1}^{0} \rightarrow 2 \pi$. The second term in (20) leads to the CP violating transition$$
K_{1}^{0} \neq K_{2}^{0}
$$

its amplitude is determined by the Fourier transform of the contraction ${ }^{8}$

$$
\begin{equation*}
g^{2} x_{1}^{*}(x) x_{2}^{0}(0) \tag{24}
\end{equation*}
$$

With this CP violation, there is automatically also a violation of the reciprocity
relation. Similarly, one may phenomenologically include the $P=+1$ part of the usual $\Delta Y= \pm 1$ nonleptonic weak interaction and, if one wishes, also the usual $\Delta Y= \pm l$ semileptonic weak interaction in the Lagrangian (5). The former gives, among other transitions, the $C P$ conserving reaction $K_{2}^{0} \rightarrow 3 \pi$, and the latter gives all the usual $C P$ conserving semileptonic $\Delta Y \neq 0$ transitions. It is easy to show that in both cases there is, in addition, a CP violating transition amplitude which also depends linearly on (24).

The magnitude of the T violating amplitude (24) depends on the detailed characteristics of the triangle: both its shape and its vibrational modes t_{a}. It is of interest to search for the maximum of (24). As will be shown in Appendix B, if the coupling constants f, Γ, g_{1}, g_{2} and the masses $m_{B}, m_{1}, m_{2}, m_{3}$ are fixed, then by varying the shape and the vibrational modes of the triangle, under the constraint (16), the maximum value of the Fourier transform of (24) at zero 4-momentum transfer, and for $m_{1}>m_{2}>m_{3}$; is found to be

$$
\begin{equation*}
\frac{1}{2} g\left[g^{2}-\left(f \Gamma / m_{B}\right)^{2}\right]^{\frac{1}{2}}\left(m_{3}^{-2}-m_{1}^{-2}\right) \tag{25}
\end{equation*}
$$

The corresponding vibrational modes of the triangle are given by (B. 10) and (B. 11) in Appendix B, and the shape is determined by (17), (21) and (B. 15). As an illustration, we may mention the special case in which $g_{1}=g_{2}$ and $m_{2}^{2}=\frac{1}{2}\left(m_{1}^{2}+m_{3}^{2}\right)$, then the maximum T violating amplitude (25) can be realized if the triangle is isosceles; if in addition we assume a right-angle isosceles triangle, then according to Eq. (B.20) in Appendix B, the maximum T violation amplitude is

$$
\begin{equation*}
\left(\frac{1}{2 \sqrt{2}}\right) g^{2}\left(m_{3}^{-2}-m_{1}^{-2}\right) . \tag{26}
\end{equation*}
$$

In any case, (25), or (26), is proportional to g^{2} and is therefore second order in the weak interaction. For example, by using (17) and (26) one finds the magnitude of the $C P$ violating amplitude $K_{1}^{0} \neq K_{2}^{0}$ to be of the order of

$$
\sim r^{2} f^{2} m_{B}^{-2}\left(m_{3}^{-2}-m_{1}^{-2}\right)
$$

Since Γ denotes the first order weak interaction constant, one expects this CP violating amplitude to be of the superweak strength 9 .

As discussed earlier, there is another mechanism through which T violations can be produced, and that is via the coupling between the matter fields and the gauge field. Such T violation effects are at least proportional to f^{6}; furthermore, it conserves Y. Thus, if f^{2} is arbitrarily set to be $\sim a$ the fine structure constant, one expects it to generate a $\Delta Y=0$ but C, T violating weak (or milliweak) interaction among known particles. For $K_{L}^{\circ}, K_{S}^{\circ}$ decays, it may add to the above $\Delta Y= \pm 2 \quad K_{1}^{0} \nleftarrow K_{2}^{0}$ transition an amplitude $\sim \Gamma^{2} \alpha^{3}$. Hence, the superweak character of $C P$ violation in K-decay remains the same.

This simple interaction Lagrangian (5) is not intended to be a realistic theory of weak interactions because it contains many defects. It leaves out all $\Delta Y=0$ weak reactions, and since (without introducing additional gauge fields) the usual weak interaction Lagrangian $L_{ \pm}$is not renormalizable, it is also non-renormalizable. Nevertheless, this simple example does illustrate how through virtual emissions and absorptions of the triangle, T violations, and consequently also reciprocity violations, can be observed among known particles.

4. Other Applications

The above theory of spontaneous T violation can be applied to a large class of interactions, which can be quite different from the simple model discussed in the previous section. To illustrate these possibilities, we consider the following two examples of renormalizable theories:
(i) an Abelian example

We may identify the transformation (1) not with the hypercharge, but with a different gauge, say $\exp (i N \wedge$) where, for the known particles, N is the number of left-handed charged leptons. So far as the descriptions of the triangle and the gauge field are concerned, the discussion given in section 2 remains intact, except ϕ_{1} and ϕ_{2} are now considered to be of $N=1$ (instead of $Y=1$). Of course, the discussion given in section 3 has to be modified.

To study the interaction with matter fields in this new case, let us introduce a left-handed charged lepton field $\ell_{L}(x)$ and a right-handed charged lepton field $\ell_{R}(x)$ which satisfy

$$
\begin{equation*}
\gamma_{5} \ell_{L}(x)=\ell_{L}(x) \quad \text { and } \quad \gamma_{5} \ell_{R}(x)=-\ell_{R}(x) \tag{27}
\end{equation*}
$$

Throughout the paper, all Dirac matrices $\gamma_{1}, \gamma_{2}, \cdots \gamma_{5}$ are Hermitian. By definition, $\ell_{L}(x)$ is of $N=1$ and $\ell_{R}(x)$ of $N=0$. The total Lagrangian density of the system can be written as

$$
\begin{equation*}
\mathcal{L}(\ell, \mathrm{B})+\mathcal{L}(\mathrm{B}, \phi)+\mathcal{L}(\phi, \ell) \tag{28}
\end{equation*}
$$

where $\mathcal{L}(B, \phi)$ is given by (6),

$$
\mathcal{L}(\ell, B)=-\ell_{L}^{\dagger} \gamma_{4} \gamma_{\mu}\left(\frac{\partial}{\partial x_{\mu}}-i f B_{\mu}\right) \ell_{L}-\ell_{R}^{\dagger} \gamma_{4}^{\prime} \gamma_{\mu} \frac{\partial}{\partial x_{\mu}} \ell_{R}
$$

and

$$
\begin{equation*}
\mathcal{L}\left(\phi_{,} \ell\right)=-\left(g_{1} \phi_{1}+g_{2} \phi_{2}\right) \ell_{L}^{\dagger} \gamma_{4} \ell_{R}+\text { h.c. } \tag{29}
\end{equation*}
$$

where g_{1} and g_{2} are both real so that T invariance holds. The total Lagrangian (28) is also invariant under the gauge transformation $\exp (i N \wedge)$. In addition, it is invariant under a second gauge transformation

$$
\ell_{L} \rightarrow e^{i \xi} \ell_{L}
$$

and

$$
\ell_{R} \rightarrow e^{i \xi} \ell_{R}
$$

By using (12), we may rewrite (29) in the form

$$
\begin{equation*}
\mathcal{L}(\varphi, \ell)=-m_{\ell} \psi_{\ell}^{\dagger} \gamma_{4} \psi_{\ell}-(g / \sqrt{2})\left(x_{1} \psi_{\ell}^{\dagger} \gamma_{4} \psi_{\ell}-i x_{2} \psi_{\ell}^{\dagger} \gamma_{4} \gamma_{5} \psi_{\ell}\right) \tag{30}
\end{equation*}
$$

where X_{1} and X_{2} are exactly of the same expressions given by (23) in the previous section, $g=\left(g_{1}^{2}+g_{2}^{2}\right)^{\frac{1}{2}}$ as before,

$$
\begin{align*}
& \Psi_{\ell}(x)=\ell_{L}(x)+e^{i a} \ell_{R}(x) \tag{31}\\
& m_{\ell} e^{i a}=2^{-\frac{1}{2}}\left(g_{1} \rho_{1} e^{i \theta}+g_{2} \rho_{2}\right) \tag{32}
\end{align*}
$$

and therefore

$$
\begin{equation*}
m_{\ell}^{2}=\frac{1}{2}\left(g_{1}^{2} \rho_{1}^{2}+g_{2}^{2} \rho_{2}^{2}+2 g_{1} g_{2} \rho_{1} \rho_{2} \cos \theta\right) \tag{33}
\end{equation*}
$$

Since $\psi_{l}^{\dagger} \gamma_{4} \psi_{l}$ is of $P=1, C=1$ and $T=1$ while $i \psi_{l}^{\dagger} \gamma_{4} \gamma_{5} \psi_{l}$ is of $P=-1$,
$C=1$ and $T=-1$, through the direct emission and absorption of the triangle, there is a P, T violating effect in the $(\ell+\ell)$ scattering amplitude. To lowest order, the amplitude is proportional to (24), exactly as before. According to (25), and after replacing Γ by $\sqrt{2} m_{\ell}$, one finds the maximum value of the Fourier transform of (24), at the zero 4-momentum transfer, to be

$$
\begin{equation*}
\frac{g\left[g^{2}-2\left(f m_{\ell} / m_{B}\right)^{2}\right]^{\frac{1}{2}} m_{T} \Delta_{T}}{\left(m_{T}^{2}-\frac{1}{4} \Delta_{T}^{2}\right)^{2}} \tag{34}
\end{equation*}
$$

where m_{T} is the mean mass of the vibrational modes of the triangle

$$
m_{T}=\frac{1}{2}\left(m_{1}+m_{3}\right)
$$

and $\Delta_{T}=\left(m_{1}-m_{3}\right)$ is the corresponding difference. The other mass m_{2} lies between $m_{T}+\frac{1}{2} \Delta_{T}$ and $m_{T}-\frac{1}{2} \Delta_{T}$. If in addition we assume the triangle to be a simple right-angle isosceles triangle and $g_{1}=g_{2}=2^{-\frac{1}{2}} g$, then (26) holds; the maximum T violation amplitude (34) becomes

$$
\begin{equation*}
\frac{g^{2} m_{T} \Delta_{T}}{\sqrt{2}\left(m_{T}^{2}-\frac{1}{4} \Delta_{T}^{2}\right)^{2}} \tag{35}
\end{equation*}
$$

Moreover, there can also be T violating effects due to the direct coupling f between B_{μ} and ℓ, just as before. We emphasize that although in this example both the gauge group and the interaction are quite different from those in section 3, the basic mechanism of T violation is identical. .
, (ii) a non-Abelian example
Let us first consider the Weinberg model of theleptons. ${ }^{3}$. The group is $S U_{2} \times U_{1}$. There are four gauge fields \vec{A}_{μ} and B_{μ}. The usual ℓ-neutrino field v_{ℓ} and the rightand left-handed charged lepton fields ℓ_{R} and ℓ_{L} form an $S U_{2}$-doublet and an $S U_{2}$ singlet:

$$
L=\left(\begin{array}{c}
v_{\ell} \tag{36}\\
\ell \\
\ell_{L}
\end{array}\right) \quad \text { and } \quad R=\ell_{R}
$$

In order to have spontaneous T violation, we assume that there are two SU_{2} doublet spin 0 fields

$$
\begin{equation*}
\phi_{1}=\binom{\phi_{1}^{+}}{\phi_{1}^{0}} \quad \text { and } \quad \phi_{2}=\binom{\phi_{2}^{+}}{\phi_{2}^{\circ}} \tag{37}
\end{equation*}
$$

where the superscript denotes the electric charge. Both ϕ_{1} and ϕ_{2} are assumed to transform like the product $R^{\dagger} \cdot L$ under the $S U_{2} \times U_{1}$ group; therefore, their coupling to the gauge fields is completely determined by the requirements of gauge invariance. The most general form of a renormalizable, gauge invariant and T invariant potential energy $V(\phi)$ is now given by, instead of (7),

$$
\begin{align*}
V(\phi)= & -\lambda_{1} \phi_{1}^{\dagger} \phi_{1}-\lambda_{2} \phi_{2}^{\dagger} \phi_{2}+\mathrm{A}\left(\phi_{1}^{\dagger} \phi_{1}\right)^{2}+\mathrm{B}\left(\phi_{2}^{\dagger} \phi_{2}\right)^{2} \\
& +C\left(\phi_{1}^{\dagger} \phi_{1}\right)\left(\phi_{2}^{\dagger} \phi_{2}\right)+\overline{\mathrm{C}}\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{2}^{\dagger} \phi_{1}\right) \\
& +\frac{1}{2}\left[\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(D \phi_{1}^{\dagger} \phi_{2}+\mathrm{E} \phi_{1}^{\dagger} \phi_{1}+\mathrm{F} \phi_{2}^{\dagger} \phi_{2}\right)+\text { h.c. }\right] \tag{38}
\end{align*}
$$

which contains nine constants, and all these constants are assumed to be real so that T
invariance holds. The only formal difference between (38) and (7) is the $\overline{\mathcal{C}}$ term. We assume that both (8) and (9) are valid, and in addition

$$
\begin{equation*}
D>\bar{C} \tag{39}
\end{equation*}
$$

In the tree approximation, the minimum of the c. number function $V(\phi)$ determines the vacuum expectation values of ϕ_{1} and ϕ_{2}. As will be shown in Appendix C, the additional condition (39) insures that the minimum of $V(\phi)$ occurs at

$$
\begin{gather*}
\left\langle\phi_{1}^{+}\right\rangle_{\text {vac }}=\left\langle\phi_{2}^{+}\right\rangle_{\text {vac }}=0, \\
\left\langle\phi_{1}^{0}\right\rangle_{\text {vac }}=2^{-\frac{1}{2}} \rho_{1} e^{i \theta} \text { and }\left\langle\phi_{2}^{\circ}\right\rangle_{\text {vac }}=2^{-\frac{1}{2}} \rho_{2} \tag{40}
\end{gather*}
$$

which again defines a triangle. Both ρ_{1} and ρ_{2} are assumed to be >0, and $\theta \neq 0$ or π. So far as the neutral (but complex) fields ϕ_{1}^{0} and ϕ_{2}° are concerned, the discussion is exactly the same as previously given in section 2 , except that the constant C in section 2 is now replaced by $C+\bar{C}$.

We may expand, as before in (12),

$$
\phi_{1}^{0}=2^{-\frac{1}{2}} e^{i \theta}\left(\rho_{1}+R_{1}+i I_{1}\right)
$$

and

$$
\begin{equation*}
\phi_{2}^{\circ}=2^{-\frac{1}{2}}\left(\rho_{2}+R_{2}+i I_{2}\right) \tag{41}
\end{equation*}
$$

The three vibrational modes of the triangle t_{1}, t_{2}, t_{3} are given by (15), and they correspond respectively to three neutral bosons of masses m_{1}, m_{2} and m_{3}. There are now three Goldstone bosons; besides the neutral one

$$
\begin{equation*}
G^{0}=\left(\rho_{1}^{2}+\rho_{2}^{2}\right)^{-\frac{1}{2}}\left(\rho_{1} I_{1}+\rho_{2} I_{2}\right), \tag{42}
\end{equation*}
$$

which is identical to the G given by (13), there are two charged ones:

$$
\begin{equation*}
G^{ \pm}=\left(\rho_{1}^{2}+\rho_{2}^{2}\right)^{-\frac{1}{2}}\left(\rho_{1} \phi_{1}^{ \pm} e^{\mp i \theta}+\rho_{2} \phi_{2}^{ \pm}\right) \tag{43}
\end{equation*}
$$

where $\varphi_{k}^{-}=\left(\phi_{k}^{+}\right)^{\dagger}$ and $k=1$ or 2 . Through the Higgs mechanism, these three Goldstone bosons (just as in the usual Weinberg model) join the gauge fields to form a set of three massive spin 1 intermediate bosons $W^{ \pm}$and W°. In addition, there are also two massive charged sp in 0 bosons

$$
\begin{equation*}
H^{ \pm}=\left(\rho_{1}^{2}+\rho_{2}^{2}\right)^{-\frac{1}{2}}\left(\rho_{2} \phi{ }_{1}^{ \pm} e^{\mp i \theta}-\rho_{1} \phi_{2}^{ \pm}\right) \tag{44}
\end{equation*}
$$

and their masses are

$$
m_{H}^{2}=\frac{1}{2}(D-\bar{C})\left(\rho_{1}^{2}+\rho_{2}^{2}\right) .
$$

So far as the mechanism of T violation is concerned, one has exactly the same basic structure as before. The triangle is again characterized by its shape and its vibrational modes, and with the same constraint (16).

The interaction between the lepton fields and the gauge fields is determined by the requirement of gauge invariance; if is exactly the same as in the usual Weinberg model. The interaction between the spin 0 fields ϕ_{1}, ϕ_{2} and the lepton fields is now given by

$$
\begin{equation*}
\mathcal{L}(\ell, \phi)=-\left(g_{1} \phi_{1}+g_{2} \phi_{2}\right) L^{\dagger} \gamma_{4} R+h . c . \tag{45}
\end{equation*}
$$

where g_{1} and g_{2} are again assumed to be real so that T invariance holds. This Lagrangian is clearly also invariant under the $\mathrm{SU}_{2} \times \mathrm{U}_{1}$ gauge transformation; it describes an interaction between the charged lepton $\ell^{ \pm}$and φ_{k}° which is exactly the same as
(29) and which can again be rewritten as (30). Therefore there is a P, T violating amplitude in $\ell+\ell$ scattering that is proportional to (24).

The same P, T violating amplitude also leads to an electric dipole moment for the charged lepton. For definiteness, let us assume (35) holds; one has then a simple right-angle isosceles triangle. In this case, one finds

$$
\begin{aligned}
& \rho_{1}^{2}=\rho_{2}^{2}=\left(2 \sqrt{2} G_{F}\right)^{-1}, \\
& g_{1}^{2}=g_{2}^{2}=2 \sqrt{2} G_{F} m_{l}^{2}
\end{aligned}
$$

where $G_{F} \cong 10^{-5} \mathrm{~m}^{-2}$ is the Fermi constant. The P, T violating amplitude (35) becomes

$$
\begin{equation*}
\frac{4 G_{F} m_{l}^{2} m_{T} \Delta_{T}}{\left(m_{T}^{2}-\frac{1}{4} \Delta_{T}^{2}\right)^{2}} \tag{46}
\end{equation*}
$$

The electric dipole moment e $D(\ell)$ of $\ell^{ \pm}$can then be readily evaluated. By using (30), (24) and (46), we find

$$
\begin{equation*}
D(l)=\frac{G_{F}^{m_{l}^{3}}}{8 \pi^{2}}\left[m_{3}^{-2} J\left(\epsilon_{3}\right)-m_{1}^{-2} J\left(\epsilon_{1}\right)\right] \tag{47}
\end{equation*}
$$

where $m_{1}=m_{T}+\frac{1}{2} \Delta_{T}$ and $m_{3}=m_{T}-\frac{1}{2} \Delta_{T}$ denote respectively, as before, the largest and the smallest mass of the vibrational modes of the triangle, $\epsilon_{1}=\left(m_{\ell} / m_{1}\right)^{2}$, $\epsilon_{3}=\left(m_{\ell} / m_{3}\right)^{2}$, and

$$
\left.J(\epsilon)=\epsilon^{-1}+(2 \epsilon)^{2}\right)^{-1}\left\{\ln \epsilon+\frac{1-2 \epsilon}{(1-4 \epsilon)^{\frac{1}{2}}} \ln \left[\frac{1+(1-4 \epsilon)^{\frac{1}{2}}}{1-(1-4 \epsilon)^{\frac{1}{2}}}\right]\right\}
$$

For $\epsilon \ll 1$,

$$
J(\epsilon) \cong \ln (1 / \epsilon)-\frac{3}{2}+0(\epsilon \ln \epsilon)
$$

If m_{1} and m_{3} are arbitrarily set to be $\sim 15 \mathrm{GeV}$ and 10 GeV respectively, then. $D(\mu)$ is $\sim 1.3 \times 10^{-25} \mathrm{~cm}$. and $D(e)$ is $\sim 3.6 \times 10^{-32} \mathrm{~cm}$. At present, both are too small to be detected.

The extension of the Weinberg model to hadrons is not without arbitrariness. The direct coupling between hadrons and the spin 0 fields ϕ_{1}° and ϕ_{2}° has the same form as that in (45), except that L and R now refer to the appropriate hadron fields. Such a coupling is usually assumed to conserve the isospin. Thus, similar to (46), in the hadron-hadron scattering there is a P, T violating, but $|\Delta \vec{I}|=0$, amplitude given by

$$
\begin{equation*}
\frac{4 G_{F} m_{h}^{2} m_{T} \Delta_{T}}{\left(m_{T}^{2}-\frac{1}{4} \Delta_{T}^{2}\right)^{2}} \tag{48}
\end{equation*}
$$

and which can lead to an electric dipole $e D(h)$ of the order of

$$
\begin{equation*}
D(h) \sim \frac{G_{F} m_{h}^{3} \Delta_{T}}{4 \pi^{2} m_{T}^{3}} \tag{49}
\end{equation*}
$$

where m_{h} denotes the corresponding hadronic mass.
The present experimental limit on the electric dipole moment of the neutron ${ }^{10}$ is $D(n)<10^{-23} \mathrm{~cm}$. If we arbitrarily set $m_{h} \sim m_{N}$ the nucleon mass, then (49). gives

$$
\begin{equation*}
\frac{m_{N}^{2} \Delta_{T}}{m_{T}^{3}} \lesssim 2 \times 10^{-3} \tag{50}
\end{equation*}
$$

which implies that the P, T violating amplitude (48) in a $|\Delta \vec{I}|=0$ hadronic scattering process is

$$
\begin{equation*}
\lesssim 10^{-2} G_{F} . \tag{51}
\end{equation*}
$$

For the $\Delta Y= \pm 1$ processes, the corresponding T violating amplitude should be at least smaller by an additional factor $G_{F} m_{W}^{2} \sim a$, i.e.,

$$
\begin{equation*}
\lesssim 10^{-4} G_{F} \tag{52}
\end{equation*}
$$

For the $\Delta Y= \pm 2$ processes, some special constructions must be introduced to make the usual T conserving amplitude in the K_{L}^{0}, K_{S}^{0} mass difference calculation $\sim G_{F} m_{N}^{2}$ (not $\sim G_{F} m_{W}^{2}$) times smaller than the corresponding T conserving $\Delta Y= \pm 1$ amplitude. It seems reasonable to expect that relative to (52), a similar factor $\sim G_{F} m_{N}^{2}$ also applies for the corresponding T violating $\Delta Y= \pm 2$ amplitude, and that would lead to a T violating amplitude

$$
\begin{equation*}
\lesssim 10^{-9} G_{F} \tag{53}
\end{equation*}
$$

in the mass matrix of the $K^{\circ}-\bar{K}^{\circ}$ complex. Since (52) seems to be smaller than the milliweak strength, one may expect the $C P$ violating phenomena in the K decay to be dominated by (53); the result would be of the observed superweak character?.

For the $|\Delta \vec{I}|=0$ processes, the T violating amplitude can be of the milliweak strength, and this may have important experimental consequences. In addition, as discussed earlier (and also in Appendix A), there exist other T violating diagrams in which the T violation is generated via the direct coupling between the matter fields and the spin 1 intermediate bosons. However, a full investigation lies outside the scope of this paper.

Acknowledgement

I am indebted to G. C. Wick for his valuable suggestions, and 1 also wish to thank N. Christ and A. Mueller for helpful discussions.

Appendix A

1. We first discuss the vacuum expectation values of ϕ_{1} and ϕ_{2} :

$$
\begin{equation*}
\left\langle\phi_{1}\right\rangle_{\text {vac }} \equiv 2^{-\frac{1}{2}} \rho_{1} e^{i \theta} \text { and }\left\langle\phi_{2}\right\rangle_{\text {vac }} \equiv 2^{-\frac{1}{2}} \rho_{2} \tag{A.1}
\end{equation*}
$$

In the tree approximation, ρ_{1}, ρ_{2} and θ can be determined by setting the minimum of the c. number function. $V(\phi)$ at $\left(\phi_{1}, \phi_{2}\right)=2^{-\frac{1}{2}}\left(\rho_{1} e^{i \theta}, \rho_{2}\right)$. According to (7),

$$
\begin{equation*}
V=-\frac{1}{2}\left(\lambda_{1} \rho_{1}^{2}+\lambda_{2} \rho_{2}^{2}\right)+\frac{1}{4}\left(\rho \rho_{1}^{4}+q \rho_{2}^{4}+2 r \rho_{1}^{2} \rho_{2}^{2}\right)+\frac{1}{2} D \rho_{1}^{2} \rho_{2}^{2}(\cos \theta-\delta)^{2} \tag{A.2}
\end{equation*}
$$

where $\quad p=A-(8 D)^{-1} E^{2}, \quad q=B-(8 D)^{-1} F^{2}$
and

$$
r=\frac{1}{2}\left[C-D-\frac{E F}{4 D}\right]
$$

$$
\delta=-\left(4 D \rho_{1} \rho_{2}\right)^{-1}\left(E \rho_{1}^{2}+F \rho_{2}^{2}\right)
$$

The function V must have a lower bound, and therefore (10) holds; i.e.,

$$
\begin{equation*}
p>0, \quad q>0 \quad \text { and } \quad p q>r^{2} . \tag{A.3}
\end{equation*}
$$

Since $D>0$, the minimum of V is at

$$
\begin{equation*}
\cos \theta=\delta \tag{A.4}
\end{equation*}
$$

and since λ_{1} and/or $\lambda_{2}>0$, this minimum is not at the origin, but at

$$
\rho_{1}^{2}=\left(p q-r^{2}\right)^{-1}\left(q \lambda_{1}-r \lambda_{2}\right)
$$

and

$$
\begin{equation*}
\rho_{2}^{2}=\left(p q-r^{2}\right)^{-1}\left(p \lambda_{2}-r \lambda_{1}\right) . \tag{A.5}
\end{equation*}
$$

In order that $\theta \neq 0$, or π, and both ρ_{1} and ρ_{2} are >0, we require, in addition to (8) and (9),

$$
\begin{gather*}
|\delta|<1, \\
q \lambda_{1}>r \lambda_{2} \quad \text { and } \quad p \lambda_{2}>r \lambda_{1} . \tag{A.6}
\end{gather*}
$$

We note that if $r>0$, then both λ_{1} and λ_{2} must be >0; but if $r<0$, then at least one of them, either λ_{1} or λ_{2}, must be >0 but the other one could be <0, provided (A.6) is satisfied.
2. The expansion of ϕ_{1} and ϕ_{2} around their vacuum expectation values

$$
\begin{equation*}
\phi_{1}=2^{-\frac{1}{2}}\left(\rho_{1}+R_{1}+i I_{1}\right) e^{i \theta} \tag{A.7}
\end{equation*}
$$

and
leads to

$$
\begin{equation*}
V(\phi)=V_{\text {c.no. }}+v_{\text {quad }}+v_{\text {cub }}+v_{\text {quart }} \tag{A.8}
\end{equation*}
$$

where the subscripts refer to, respectively, a c. number expression, a quadratic function of R_{k}, I_{k}, and corresponding cubic and quartic functions. [The linear function is absent because of the minimum condition.] To obtain the normal modes t_{1}, t_{2} and : we need only to diagonalize $\vee_{\text {quad }}$:

$$
\begin{aligned}
V_{\text {quad }}= & {\left[A \rho_{1}^{2}+\frac{1}{2} \cos \theta\left(D \rho_{2}^{2} \cos \theta+E \rho_{1} \rho_{2}\right)\right] R_{1}^{2} } \\
& +\left[B \rho_{2}^{2}+\frac{1}{2} \cos \theta\left(D \rho_{1}^{2} \cos \theta+F \rho_{1} \rho_{2}\right)\right] R_{2}^{2} \\
& +\left[C-D\left(1+\cos ^{2} \theta\right)\right] \rho_{1} \rho_{2} R_{1} R_{2}+\frac{1}{2} D\left(\rho_{1}^{2}+\rho_{2}^{2}\right) \sin ^{2} \theta I^{2} \\
& -\left(4 \rho_{1} \rho_{2}\right)^{-1} \sin \theta\left(E \rho_{1}^{2}-F \rho_{2}^{2}\right)\left(\rho_{1}^{2}+\rho_{2}^{2}\right)^{\frac{1}{2}}\left(\rho_{2} R_{1}-\rho_{1} R_{2}\right) I
\end{aligned}
$$

where ρ_{1}, ρ_{2} and θ are given by (A.4) and (A.5). It is convenient to introduce I, G, R and R^{\prime} where G and I are defined by (13) and (14) respectively, and

$$
R \equiv\left(\rho_{1}^{2}+\rho_{2}^{2}\right)^{-\frac{1}{2}}\left(\rho_{2} R_{1}-\rho_{1} R_{2}\right)
$$

and

$$
\begin{equation*}
R^{\prime} \equiv\left(\rho_{1}^{2}+\rho_{2}^{2}\right)^{-\frac{1}{2}}\left(\rho_{1} R_{1}+\rho_{2} R_{2}\right) \tag{A.10}
\end{equation*}
$$

The constraint (16) is derived by noting that the product $R^{\prime} I$ is absent in $\dot{V}_{\text {quad }}$, and the Goldstone boson (13) is determined by observing that G is absent in $V_{\text {quad }}$.
3. We shall now derive a ṣet of conditions under which certain C, T violating diagrams must be zero if the system contains only ϕ_{k} and B_{μ}. [As explained before, even if such diagrams are not zero, there is no violation of reciprocity relations without other fields.] We define

$$
\begin{align*}
& \phi_{1}^{\prime} \equiv \rho^{-1}\left(\rho_{2} \phi_{1} e^{-i \theta}-\rho_{1} \phi_{2}\right) \\
& \phi_{2}^{\prime} \equiv \rho^{-1}\left(\rho_{1} \phi_{1} e^{-i \theta}+\rho_{2} \phi_{2}\right) \tag{A.11}
\end{align*}
$$

where

$$
\rho=\left(\rho_{1}^{2}+\rho_{2}^{2}\right)^{\frac{1}{2}}
$$

From (A. 1), we find

$$
\begin{equation*}
\left\langle\phi_{1}^{\prime}\right\rangle_{\text {vac }}=0 \text { and }\left\langle\phi_{2}^{\prime}\right\rangle_{\text {vac }}=2^{-\frac{1}{2}} \rho \tag{A.12}
\end{equation*}
$$

which are both real. In terms of ϕ_{1}^{\prime} and $\phi_{2}^{\prime},(\mathrm{A} .7)$ becomes

$$
\phi_{1}^{\prime}=2^{-\frac{1}{2}}(R+i I)
$$

and

$$
\phi_{2}^{\prime}=2^{-\frac{1}{2}}\left(\rho+R^{\prime}+i G\right)
$$

The function $V(\phi)$, defined by (7), can now be written as

$$
\begin{align*}
V= & -\lambda_{1}^{\prime} \phi_{1}^{\prime \dagger} \phi_{1}^{\prime}-\lambda_{2}^{\prime} \phi_{2}^{\prime \dagger} \phi_{2}^{\prime}-\left(\lambda_{3}^{\prime} \phi_{1}^{\prime \dagger} \phi_{2}^{\prime}+h . c_{0}\right) \\
& +A^{\prime}\left(\phi_{1}^{\prime \dagger} \phi_{1}^{\prime}\right)^{2}+B^{\prime}\left(\phi_{2}^{\prime \dagger} \phi_{2}\right)^{2}+C^{\prime}\left(\phi_{1}^{\prime \dagger} \phi_{1}^{\prime}\right)\left(\phi_{2}^{\prime \dagger} \phi_{2}^{\prime}\right) \\
& +\frac{1}{2}\left[\left(\phi_{1}^{\prime \dagger} \phi_{2}^{\prime}\right)\left(D^{\prime} \phi_{1}^{\prime} \phi_{2}^{\prime}+E^{\prime} \phi_{1}^{\prime \dagger} \phi_{1}^{\prime}+F^{\prime} \phi_{2}^{\prime \dagger} \phi_{2}^{\prime}\right)+\text { h. c. }\right] \tag{A.14}
\end{align*}
$$

where the new constants $\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \cdots, F^{\prime}$ can be readily expressed in terms of the original eight real parameters $\lambda_{1}, \lambda_{2}, \ldots F ;$ e.g.,

$$
\begin{aligned}
& \lambda_{1}^{\prime}=\rho^{-2}\left(\lambda_{1} \rho_{2}^{2}+\lambda_{2} \rho_{1}^{2}\right) \\
& \lambda_{2}^{\prime}=\rho^{-2}\left(\lambda_{1} \rho_{1}^{2}+\lambda_{2} \rho_{2}^{2}\right), \\
& \lambda_{3}^{\prime}=\rho^{-2}\left(\lambda_{1}-\lambda_{2}\right) \rho_{1} \rho_{2}, \text { etc. }
\end{aligned}
$$

Because of Hermiticity only $\lambda_{3}^{\prime}, D^{\prime}, E^{\prime}$ and F^{\prime} may have imaginary parts. By using (A.4), (A.5) and (A. 11), we find

$$
\begin{align*}
& \operatorname{Im} \lambda_{3}^{\prime}=0, \quad \operatorname{Im} F^{\prime}=0 \\
& \operatorname{Im} D^{\prime}=-\left(2 \rho_{1} \rho_{2}\right)^{-1}\left(E \rho_{1}^{2}-F \rho_{2}^{2}\right) \sin \theta \tag{A.15}
\end{align*}
$$

and

$$
\operatorname{lm} E^{\prime}=4 \rho^{-2} \rho_{1} \rho_{2} D \cdot \sin 2 \theta
$$

In addition, there are three equalities:

$$
\rho_{1} \rho_{2}\left(\lambda_{1}^{\prime}-\lambda_{2}^{\prime}\right)+\left(\rho_{1}^{2}-\rho_{2}^{2}\right) \lambda_{3}^{\prime}=0
$$

$$
\rho^{2} B^{\prime}=\lambda_{2}^{\prime}
$$

and

$$
\begin{equation*}
\rho^{2} F^{\prime}=4 \lambda_{3}^{\prime} \tag{A.16}
\end{equation*}
$$

These three equalities imply that among the eleven new real parameters $\lambda_{1}^{\prime}, \lambda_{2}^{\prime}$, $\lambda_{3}^{\prime}, A^{\prime}, B^{\prime}, C^{\prime}, \operatorname{Re} D^{\prime}, \operatorname{Im} D^{\prime}, \operatorname{Re} E^{\prime}, \operatorname{Im} E^{\prime}$ and F^{\prime} only eight are independent. In terms of these new fields, (A.9) becomes

$$
\begin{align*}
V_{\text {quad }}= & \frac{1}{2}\left[-\lambda_{1}^{\prime}+\frac{1}{4} \rho^{2}\left(C^{\prime}+\operatorname{Re} D^{\prime}\right)\right] R^{2}+\frac{1}{4} \lambda_{2}^{\prime} R^{\prime 2} \\
& +\frac{1}{2}\left[-\lambda_{1}^{\prime}+\frac{1}{4} \rho^{2}\left(C^{\prime}-\operatorname{Re} D^{\prime}\right)\right] \mathrm{I}^{2}+2 \lambda_{3}^{\prime} R R^{\prime} \\
& +\frac{1}{2} \rho^{2}\left(\operatorname{Im} D^{\prime}\right) I R . \tag{A.17}
\end{align*}
$$

The coupling between ϕ_{k}^{\prime} and the gauge field B_{μ} has the same covariant form as that between ϕ_{k} and B_{μ};e.g., the current operator j_{μ} remains given by

$$
\begin{equation*}
j_{\mu}=i \sum_{k=1,2}\left(\frac{\partial \phi_{k}^{\prime \dagger}}{\partial x_{\mu}} \phi_{k}^{\prime}-\phi_{k}^{\prime \dagger} \frac{\partial \phi_{k}^{\prime}}{\partial x_{\mu}}\right) \tag{A.18}
\end{equation*}
$$

The corresponding interaction Lagrangian is

$$
\begin{align*}
& -f B_{\mu}\left(G \frac{\partial R^{\prime}}{\partial x_{\mu}}-R^{\prime} \frac{\partial G}{\partial x_{\mu}}+1 \frac{\partial R}{\partial x_{\mu}}-R \frac{\partial I}{\partial x_{\mu}}\right) \tag{A.19}\\
& -f m_{B} B_{\mu}^{2} R^{\prime}-\frac{1}{2} f^{2} B_{\mu}^{2}\left(I^{2}+R^{2}+R^{\prime 2}+G^{2}\right)
\end{align*}
$$

In addition to this interaction, we also have $V_{\text {cub }}$ and $V_{\text {quart }}$ in ($A, 8$). In a power series expansion in f, we regard all masses to be of the zeroth order, and therefore

$$
\begin{equation*}
V_{\text {cub }} \sim 0(f) \quad \text { and } \quad V_{\text {quart }} \sim 0\left(f^{2}\right) \tag{A.20}
\end{equation*}
$$

We note that because of (A.12) and (A. 15), in order to have C, T violations [e.g., $n B_{\mu} \nRightarrow m B_{\mu}$ when $n+m$ is an odd number] one must have Im. $D^{\prime} \neq 0$ and/or Im $E^{\prime} \neq 0$. The following theorems can then be easily established:

Theorem 1 If $\theta=\frac{\pi}{2}$ and if I is a normal mode, then (without other fields) there is no C, T violation.

Proof If I is a normal mode, then the coefficient of IR in (A. 17) must be zero. Hence $\operatorname{Im} D^{\prime}=0$. If $\theta=\frac{\pi}{2}$, then according to (A. 15) Im $E^{\prime}=0$. The theorem is then established. Thus, for example, the amplitude for $n B_{\mu} \neq m B_{\mu}$ must be zero if $n+m$ is an odd number.

The same theorem can also be proved by noting that in this case, by using (A.4) and (A.9), one has $E=F=0$. Hence, a new time reversal operation may be defined, under which $\phi_{1} \rightarrow-\phi_{1}$ and $\phi_{2} \rightarrow \phi_{2}$, instead of (3). The vacuum expectation values $\left\langle\phi_{1}\right\rangle_{\text {vac }}=i 2^{-\frac{1}{2}} \rho_{1}$ and $\left\langle\phi_{2}\right\rangle_{\text {vac }}=2^{-\frac{1}{2}} \rho_{2}$ are compatible with this new time reversal operation, and therefore without other matter fields there is no T violation.

Theorem 2 If the normal modes t_{1}, t_{2} and t_{3} are all degenerate (i.e., $m_{1}=m_{2}=m_{3}$), then there is also no C, T violation.

Proof Because of the degeneracy, we may choose the normal modes to be $t_{1}=R$, $t_{2}=I$ and $t_{3}=R^{\prime}$. From (A.17), one sees that the absence of $R R^{\prime}$ and $I R$ coupling gives $\lambda_{3}^{\prime}=0$ and $\operatorname{Im} D^{\prime}=0$. The degeneracy $m_{1}=m_{2}$ gives $\operatorname{Re} D^{\prime}=0$. These together with (A. 16) imply

$$
\lambda_{3}^{\prime}=F^{\prime}=D^{\prime}=0
$$

There is, therefore, only one term in (A. 14) that depends on the relative phase between ϕ_{1}^{\prime} and ϕ_{2}^{\prime}, and it is proportional to E^{\prime}. We may rotate $\phi_{1}^{\prime} \rightarrow e^{i \beta} \phi_{1}^{\prime}$, $\Phi_{2}^{\prime} \rightarrow \phi_{2}^{\prime}$; this does not alter their vacuum expectation values, nor the coupling between ϕ_{k}^{\prime} and B_{μ}, but it can transform E^{\prime} to real. Once E^{\prime} becomes real, one may define the time reversal to be the antiunitary operator under which $\phi_{1}^{\prime} \rightarrow \phi_{1}^{\prime}$ and $\dot{\phi}_{2}^{\prime} \rightarrow \phi_{2}^{\prime}$. Since (A. 14) contains only real parameters and since $\left\langle\phi_{1}^{\prime}\right\rangle_{\text {vac }},\left\langle\phi_{2}^{\prime}\right\rangle_{\text {vac }}$ are also both real, the theorem is proved.

Remarks The condition of Theorem 2 can be weakened: We need only $t_{1}=R$, $t_{2}=1, t_{3}=R^{\prime}$ and $m_{1}=m_{2}$, but m_{3} can be different.

Theorem 3 If R^{\prime} is a normal mode, then to order f^{3} the amplitude of $B_{\mu}(k) \neq B_{\mu}(p)+B_{\mu}(q)$ vanishes for arbitrary virtual momenta k, p and q.

Proof From (A.17), it follows that if R^{\prime} is a normal mode then $\lambda_{3}^{\prime}=0$, which implies $F^{\prime}=0$, on account of (A. 16). In (A. 14), there are only two terms, one proportional to D^{\prime} and the other to E^{\prime}, that depend on the relative phase between ϕ_{1}^{\prime} and ϕ_{2}^{\prime}. Just as in the previous proof, we may rotate $\phi_{1}^{\prime} \rightarrow e^{i \beta} \phi_{1}^{\prime}$ and $\phi_{2}^{\prime} \rightarrow \phi_{2}^{\prime}$, but this time to make D^{\prime} real. All C, T violating effects must then be proportional to $\operatorname{Im} E^{\prime}$. It is easy to verify that in (A. 14), the Im E^{\prime} term is of the form

$$
\frac{1}{4}\left(I m E^{\prime}\right)\left(R^{2}+I^{2}\right)\left(I p+I R^{\prime}-G R\right)
$$

Because of (A.20), $V_{\text {quart }}$ does not contribute to the lowest order f^{3} diagrams for $B_{\mu}(k) \neq B_{\mu}(p)+B_{\mu}(q)$, but $V_{\text {cub }}$ may. Since R^{\prime} is assumed to be a normal mode, $V_{c u b}$ can contribute to such diagrams only if it contains at least one factor of R^{\prime} [in which case the $V_{\text {cub }}$ vertex can link with the $-f m_{B} B_{\mu}^{2} R^{\prime}$ vertex in (A. 19) through the
R^{\prime} propagator]. However, the cubic function part of the above $\operatorname{Im} E^{\prime}$ term does not contain any R^{\prime} factor; hence, the theorem.

For a general triangle, the actual calculation of the transition
$B_{\mu}(k) \neq B_{\mu}(p)+B_{\mu}(q)$ is rather complicated, but we hope to give some of the details in a separate publication.

Appendix B

To establish (25), we first express X_{1} and X_{2}, defined by (23), as linear functions of the normal modes t_{1}, t_{2}, t_{3} and the Goldstone mode G :

$$
\begin{equation*}
x_{1}=a_{1} t_{1}+a_{2} t_{2}+a_{3} t_{3} \tag{B.1}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{2}=b_{1} t_{1}+b_{2} t_{2}+b_{3} t_{3}+\gamma G \tag{B.2}
\end{equation*}
$$

where a_{i}, b_{j} and γ are constants. From (22), it follows that

$$
g_{1} \rho_{1} \sin (\theta-\alpha)-g_{2} \rho_{2} \sin \alpha=0
$$

and

$$
g_{1} \rho_{1} \cos (\theta-\alpha)+g_{2} \rho_{2} \cos \alpha=\Gamma ;
$$

these together with (23) require X_{1} to be independent of G and the constant γ in (B. 2) given by

$$
\begin{equation*}
\gamma=(g \rho)^{-1} \Gamma \tag{B.3}
\end{equation*}
$$

where $g=\left(g_{1}^{2}+g_{2}^{2}\right)^{\frac{1}{2}}$ and $\rho=\left(\rho_{1}^{2}+\rho_{2}^{2}\right)^{\frac{1}{2}}$. Let us define

$$
a=\left(\begin{array}{l}
a_{1} \tag{B.4}\\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \quad b=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

By using (23), one derives

$$
\tilde{a} a=1, \quad \tilde{a} b=0
$$

and

$$
\begin{equation*}
\tilde{b} b=1-\gamma^{2}=1-(g \rho)^{-2} \Gamma^{2} \tag{B.5}
\end{equation*}
$$

where \sim denotes the transpose.

The Fourier transform of (24) at the zero momentum is

$$
\begin{equation*}
g^{2} \sim M^{-2} b \tag{B.6}
\end{equation*}
$$

where

$$
M^{2}=\left(\begin{array}{ccc}
m_{1}^{2} & 0 & 0 \tag{B.7}\\
0 & m_{2}^{2} & 0 \\
0 & 0 & m_{3}^{2}
\end{array}\right)
$$

We may search for the maximum of (B.6) by varying a and b, but keeping M^{2} and the three ortho-normal relations given in (B.5) fixed. It is straightforward to show that for $m_{1}>m_{2}>m_{3}$,

$$
\begin{equation*}
\left|g^{2} \tilde{a} M^{-2} b\right| \leqq \frac{1}{2} g^{2}\left[1-(g \rho)^{-2} \Gamma^{2}\right]^{\frac{1}{2}}\left(m_{3}^{-2}-m_{1}^{-2}\right) \tag{B.8}
\end{equation*}
$$

and the equal sign holds when

$$
a_{1}=a_{3}=2^{-\frac{1}{2}}, \quad b_{1}=-b_{3}=-2^{-\frac{1}{2}}\left[1-(g \rho)^{-2} \Gamma^{2}\right]^{\frac{1}{2}}
$$

and

$$
\begin{equation*}
a_{2}=b_{2}=0 \tag{Bi}
\end{equation*}
$$

Clearly, the maximum value for $\left|g^{2} \widetilde{a} M^{-2} b\right|$ remains the same, if one changes $t_{1} \rightarrow-t_{1}$, or $t_{3} \rightarrow-t_{3}$, or $a \rightarrow-a$, or $b \rightarrow-b$.

For any given shape of the triangle ρ_{1}, ρ_{2} and θ, one finds that the maximum in (B. 8) can be realized if the normal modes are given by

$$
\left.\begin{array}{l}
t_{1} \tag{B.10}\\
t_{3}
\end{array}\right\}=2^{-\frac{1}{2}}\left\{-\left[\beta \pm\left(\alpha^{2}+\beta^{2}\right)^{-\frac{1}{2}} \alpha\right] I+\left[\alpha \mp\left(\alpha^{2}+\beta^{2}\right)^{-\frac{1}{2}} \beta\right] R+\gamma R^{\prime}\right\}
$$

and

$$
\begin{equation*}
t_{2}=\left(\alpha^{2}+\beta^{2}\right)^{-\frac{1}{2}}\left\{\gamma \beta I-\gamma \alpha R+\left(\alpha^{2}+\beta^{2}\right) R^{\prime}\right\} \tag{B.Il}
\end{equation*}
$$

where t_{1} assumes the upper sign in (B.10), t_{3} the lower sign, γ is given by (B.3), $1, R$ and R^{\prime}, are defined by (14) and (A. 10),

$$
\begin{align*}
& a=(\rho g \Gamma)^{-1}\left[\left(g_{1}^{2}-g_{2}^{2}\right) \rho_{1} \rho_{2}-g_{1} g_{2}\left(\rho_{1}^{2}-\rho_{2}^{2}\right) \cos \theta\right] \tag{B.12}\\
& \beta=(g \Gamma)^{-1} \rho g_{1} g_{2} \sin \theta \tag{B.13}
\end{align*}
$$

and therefore

$$
\begin{equation*}
\alpha^{2}+\beta^{2}+\gamma^{2}=1 \tag{B.14}
\end{equation*}
$$

The only condition is that the constraint (16) should hold. Because of (B. 10) and (B.11), this constraint can also be written as

$$
\begin{equation*}
\frac{1}{2}\left(\alpha^{2}+\beta^{2}\right)^{-\frac{1}{2}} \alpha\left(m_{1}^{2}-m_{3}^{2}\right)=\beta\left[m_{2}^{2}-\frac{1}{2}\left(m_{1}^{2}+m_{3}^{2}\right)\right] \tag{B.15}
\end{equation*}
$$

One can readily verify that the solutions (B.10) and (B.11) together with (B.9) indeed lead to x_{1} and x_{2} defined by their original expression (23).

As an explicit example, we may consider the special case $g_{1}=g_{2}=2^{-\frac{1}{2}} \mathrm{~g}$ and $\rho_{1}=\rho_{2}=2^{-\frac{1}{2}} \rho$; i.e., an isosceles triangle. From (B. 12), one sees that $\alpha=0$; therefore, (B. 15) implies

$$
\begin{equation*}
m_{2}^{2}=\frac{1}{2}\left(m_{1}^{2}+m_{3}^{2}\right) \tag{B.16}
\end{equation*}
$$

The angle θ and the side $2^{-\frac{1}{2}} \rho$ of the isosceles are determined by (17) and (21), which can now be written as

$$
\begin{equation*}
\mathrm{T}^{2}=\frac{1}{2} g^{2} \rho^{2}(1+\cos \theta) \tag{B.17}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{B}^{2}=f^{2} p^{2} \tag{B.18}
\end{equation*}
$$

If in addition we assume $\theta=\frac{\pi}{2}$, i.e., a right-angle isosceles triangle, then $\Gamma=2^{-\frac{1}{2}} g \rho$; hence, $\beta=\gamma=2^{-\frac{1}{2}}$, the normal modes become

$$
\begin{align*}
& t_{1}=\frac{1}{2}\left(-I-\sqrt{2} R+R^{\prime}\right) \\
& t_{2}=\frac{1}{\sqrt{2}}\left(I+R^{\prime}\right) \tag{B.19}\\
& t_{3}=\frac{1}{2}\left(-I+\sqrt{2} R+R^{\prime}\right)
\end{align*}
$$

and the corresponding maximum T violation amplitude in (B .8) is

$$
\begin{equation*}
2^{-\frac{3}{2}} g^{2}\left(m_{3}^{-2}-m_{1}^{-2}\right) \tag{B.20}
\end{equation*}
$$

As another example we may take the limiting case $\theta=0$, or π. From (B.13) it follows that $\beta=0$; hence ($B .15$) implies $m_{1}^{2}=m_{3}^{2}$, and therefore according to (B.8) the maximum T violation amplitude is zero, as it should be.

In general, if the coupling constants f, g_{1}, g_{2}, Γ and the masses m_{1}, m_{2}, m_{3} and m_{B} are given, then in order to realize the maximum T violation amplitude in (B.8), the shape parameters ρ_{1}, ρ_{2} and θ are determined by (17), (21) and (B. 15), and the vibrational modes t_{1}, t_{2} and t_{3} by (B. 10) and (B. 11).

Appendix C

In this Appendix, we discuss the minimum of the c. number potential energy
$V(\phi)$ defined by (38); this minimum is assumed to be at

$$
\begin{equation*}
\phi_{1}=2^{-\frac{1}{2}}\binom{0}{\rho_{1} e^{i \theta}} \tag{C.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{2}=2^{-\frac{1}{2}}\binom{\sigma}{\rho_{2}} \tag{C.2}
\end{equation*}
$$

where θ is real, and $\sigma, \rho_{1}, \rho_{2}$ are all real and $\geqq 0$. Since V is invariant under the $S U_{2} \times U_{1}$ gauge transformation, we can always transform the upper component of ϕ_{1} to zero, and both components of ϕ_{2} to real and non-negative. Equation (38) can then be written as

$$
\begin{align*}
V= & -\frac{1}{2} \lambda_{1} \rho_{1}^{2}-\frac{1}{2} \lambda_{2}\left(\sigma^{2}+\rho_{2}^{2}\right)+\frac{1}{2} D \rho_{1}^{2} \rho_{2}^{2}\left[(\cos \theta-\Delta)^{2}-\Delta^{2}\right] \\
& +\frac{1}{4}\left[A \rho_{1}^{4}+B\left(\sigma^{2}+\rho_{2}^{2}\right)^{2}+C \rho_{1}^{2}\left(\sigma^{2}+\rho_{2}^{2}\right)+(\bar{C}-D) \rho_{1}^{2} \rho_{2}^{2}\right] \tag{C.3}
\end{align*}
$$

where

$$
\begin{equation*}
\Delta=-\left(4 D \rho_{1} \rho_{2}\right)^{-1}\left[E \rho_{1}^{2}+F\left(\sigma^{2}+\rho_{2}^{2}\right)\right] . \tag{C.4}
\end{equation*}
$$

For $D>0$, the minimum of V is at

$$
\begin{equation*}
\cos \theta=\Delta . \tag{C.5}
\end{equation*}
$$

Keeping (C.5) satisfied, we find
39.

$$
\begin{equation*}
\frac{\partial V}{\partial \sigma^{2}}=\frac{\partial V}{\partial \rho_{2}^{2}}+\frac{1}{4}(D-\bar{C}) \rho_{1}^{2} \tag{C.6}
\end{equation*}
$$

Since $D>\bar{C}$, at $\frac{\partial V}{\partial \rho_{2}^{2}}=0$ the derivative $\frac{\partial V}{\partial \sigma^{2}}$ is always positive; hence to
obtain the minimum of V we require

$$
\begin{equation*}
\sigma^{2}=0 \tag{C.7}
\end{equation*}
$$

The function V then reduces to (A.2) discussed in Appendix A provided the constant C in (A.2) is replaced by $C+\bar{C}$.

Appendix D

It is possible to have a spontaneous T violation, but without a spontaneous gauge-symmetry violation. Let us consider a simple example which consists of a $\operatorname{spin} \frac{1}{2}$ field ψ and a single Hermitian spin 0 field ϕ. The Lagrangian density $£$ is assumed to be renomalizable, and it is invariant under T, C and P :

$$
\begin{align*}
\mathcal{L}= & -\frac{1}{2}\left(\frac{\partial \phi}{\partial x_{\mu}}\right)^{2}-V(\phi)-\psi^{\dagger} \gamma_{4}\left(\gamma_{\mu} \frac{\partial}{\partial x_{\mu}}+m\right) \psi \\
& -i g \psi^{\dagger} \gamma_{4} \gamma_{5} \psi \phi \tag{D.1}
\end{align*}
$$

where the potential $V(\phi)$ is given by

$$
\begin{equation*}
V(\phi)=-\frac{1}{2} \lambda \phi^{2}+\frac{1}{4} A \phi^{4} \tag{D.2}
\end{equation*}
$$

From Hermiticity, the parameters m, g, λ and A must be real. It can be readily verified that the Lagrangian \mathcal{L} is invariant under T, C and P under which

$$
\begin{align*}
& T \phi(\vec{r}, t) T^{-1}=-\phi(\vec{r},-t), \tag{D.3}\\
& C \phi(\vec{r}, t) C^{-1}=\phi(\vec{r}, t), \tag{D.4}
\end{align*}
$$

and

$$
\begin{equation*}
P \phi(\vec{r}, t) P^{-1}=-\phi(-\vec{r}, t) \tag{D.5}
\end{equation*}
$$

the corresponding transformations of ψ are standard. In addition, \mathcal{L} is invariant under the simple gauge transformation

$$
\begin{equation*}
\psi \rightarrow e^{i \beta} \psi \quad \text { and } \quad \phi \rightarrow \phi \tag{D.6}
\end{equation*}
$$

As we shall see, the solution may violate T invariance, but it remains gauge invariant.
To generate a spontaneous T violation (but without a spontaneous gauge-symmetry violation), we assume the (renormalized) coupling constants to satisfy

$$
\begin{equation*}
\lambda>0 \text { and } A>0 . \tag{D.7}
\end{equation*}
$$

Thus, the vacuum expectation value of ϕ is not zero;

$$
\begin{equation*}
\langle\phi\rangle_{\mathrm{Vac}}=\rho \neq 0 . \tag{D.8}
\end{equation*}
$$

Since, according to (D.3)-(D.5), ϕ is of $P=-1, C P=-1$ and $T=-1$, such a non-zero vacuum expectation value implies spontaneous violations of $P, C P$ and T. In the tree approximation, ρ is determined by the minimum of the c. number function V. Therefore,

$$
\begin{equation*}
\rho^{2}=A^{-1} \lambda \tag{D.9}
\end{equation*}
$$

We may write

$$
\begin{equation*}
\phi=\rho+X \tag{D.10}
\end{equation*}
$$

The potential \vee becomes

$$
\begin{equation*}
V(x)=V_{0}+\frac{1}{2} \cdot \mu^{2} x^{2}+A \rho x^{3}+\frac{1}{4} A x^{4} \tag{D.II}
\end{equation*}
$$

where $V_{0}=-\frac{1}{4} A^{-1} \lambda^{2}$ and $\mu^{2}=2 \lambda$. In order to render the quadratic expression $-\psi^{\dagger} \gamma_{4}\left(m+i g \rho \gamma_{5}\right) \psi$ into a more familiar form, we perform a unitary transformation U :

$$
\begin{equation*}
U \psi U^{\dagger}=\left[\exp \left(-\frac{1}{2} i \gamma_{5} \alpha\right)\right] \psi \tag{D.12}
\end{equation*}
$$

and

$$
U \phi U^{\dagger}=\phi
$$

where

$$
\begin{equation*}
\sin \alpha=M^{-1} g \rho, \quad \cos \alpha=M^{-1} m \tag{D.13}
\end{equation*}
$$

and

$$
\begin{equation*}
M=\left(m^{2}+g^{2} p^{2}\right)^{\frac{1}{2}} \tag{D.14}
\end{equation*}
$$

The Lagrangian \& becomes

$$
\begin{align*}
U \mathcal{L} U^{\dagger}= & -\frac{1}{2}\left(\frac{\partial x}{\partial x_{\mu}}\right)^{2}-V(X)-\psi^{\dagger} \gamma_{4}\left(\gamma_{\mu} \frac{\partial}{\partial x_{\mu}}+M\right) \psi \\
& -g \Psi^{\dagger} \gamma_{4}\left(\sin \alpha+i \gamma_{5} \cos \alpha\right) \Psi X . \tag{D.15}
\end{align*}
$$

Since $\Psi^{\dagger} \gamma_{4} \psi$ is of $P=1, C=1$ and $T=1$ while $i \psi^{\dagger} \gamma_{4} \gamma_{5} \psi$ is of $P=-1$, $C=1$ and $T=-1$, the Lagrangian (D. 15) satisfies spontaneous T, P and $C P$ violations, but the gauge invariance (D.6) remains preserved.

From (D.9) one sees that there are two solutions of $\langle\phi\rangle_{\text {vac }}: \rho$ and $-\rho$. Either solution is not invariant under T, P and $C P$. But since the Lagrangian is invariant under T, P and CP, both solutions must exist, and they should transform into each other under either T, or P, or $C P$:

References

1. J. Goldstone, Nuovo Cimento 19, 154 (1961); J. Goldstone, A. Salam and S. Weinberg; Phys. Rev. 127, 965 (1962).
2. P. W. Higgs, Phys. Letters 12, 132 (1964), Phys. Rev. Letters 13, 508 (1964) and Phys. Rev. 145, 1156 (1966); F. Englert and R. Brout, Phys. Rev. Letters 13, 321 (1964); G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, Phys. Rev. Letters 13, 585 (1964); T. W. B. Kibble, Phys. Rev. 155, 1554 (1967).
3. S. Weinberg, Phys. Rev. Letters 19, 1264 (1967) and 27, 1688 (1971), Phys. Rev. D5, 1412 (1972) and D5, 1962 (1972); A. Salam and J. C. Ward, Phys. Letters 13, 168 (1964); A. Salam in Elementary Particle Theory, ed. N. Svartholm (Almquist and Forlag A. B. Stockholm, 1968).
4. G. 'f Hooft, Nucl. Phys. B33, 173 (1971), B35, 167 (1971) and Phys. Letters 37B, 195 (1971); B. W. Lee, Phys. Rev. D5, 823 (1972); B. W. Lee and J. Zinn-Justin, Phys. Rev. D5, 3121, 3127,3155 (1972). H. Georgi and S. L. Glashow, Phys. Rev. Letters 28, 1494 (1972); J. Prentki and B. Zumino, Nucl. Phys. B47, 99 (1972); J. D. Bjorken and C. H. Llewellyn Smith, Phys. Rev. D7, 887 (1973).
5. There also exist in the literature discussions of other theories of spontaneous $C P$ violation, different from those considered in this paper: T. D. Lee, Phys. Rev. 137, B1621 (1965); Roger Dashen, Phys. Rev. D3, 1879 (1971), J. Nuyts, Phys. Rev. Letters 26, 1604, 27, 361 (E) (1971), and M. A. B. Beg, Phys. Rev. D4, 3810 (1971). See also Appendix D.
6. For the free neutrino, the Weyl theory and the Majorana theory are clearly equiva-

- lent. For further discussions, see K. M. Case, Phys. Rev. 107, 307 (1957).

7. The spontaneous T violation is logically an independent proposition; it does not have to be tied to any spontaneous gauge-symmetry violations. See Appendix D for a simple example.
8. See the definition given by G. C. Wick, Phys. Rev. 80, 268 (1950).
9. We recall that in the superweak theory [L. Wolfenstein, Phys. Rev. Letters 13, 502 (1964)], the CP violating element in the mass matrix between K_{1}^{0} and K_{2}^{0} is only $\sim 10^{-8} \mathrm{e} . v$. , which is $\sim 10^{-7} G_{F}^{2} m_{N}^{5}$ where G_{F} is the Fermi constant of β decay and m_{N} the nucleon mass.
10. W. B. Dress, P. D. Miller and N. F. Ramsey, Phys. Rev. D7,

Figure Caption

Figure 1. A schematical drawing of the triangle; I represents one of its vibrational degrees of freedom defined by (14), and G represents its rotational degree of freedom, defined by (13).
$=0.5$

