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ABSTRACT

A theory of spontaneous T violation is presented. The total Lagrangian
i.s'cssumgd to be invariant under the time reversal T and a gauge transformation
(e.g., the hypercharge gauge), bur-fhe physical solutions are not. In addition to
the spin 1 gauge field‘ and the known matter fields, in its s%mplesf form the theory
consists of two complex spin O fields. Through the spontaneous symmetry breaking

mechanism of Goldstone and Higgs, the vacuum expectation values of these two

spin 0 fields can be characterized By the shape of a triangle and their quantum

fluctuations by its vibrational modes, just like a triangular molecule. T violations
can be produced among the known particles through virtual excitations of the vibra-
tional modes of the triangle which has a built-in T violating phase qngle. "Examples
of both Abelian‘and non~Abelian gauge groups are discussed. For renormalizable
theories, all sponfcm‘eously T violating effects are finite. It is found that at fow
energy, below the threshold of producing these vibrafion‘cl quanta, T violation is

always quite small.



1. Infroduction'

In this paper we discuss a theory of spontaneous T violation. To illustrate

the theory, we shall first discuss a simple mode! in which the weak interaction La-
: ﬂ-m%,m__"

grangian, as well as the strong and electromagnetic interaction Lagrangians, are

. T e
assumed to be invariant under
1. the time reversal T,
and - 2. a'gauge transformation, e.g., that of the hypercharge Y .

L

Yet, the physical solutions are required tq exhibit both T violation and Y nori-
conservation, In its construction, the model is similar to those gauge-group spon-
taneous symmetry violating fheoriesl-4 that have been extensively discussed in the

literature. The only difference is that one has now, in addition, the spontaneous

violation of a discrete symmetry 3, As we shall see, there exists actually a general -

o i T

class of such spontaneously T violating theories. ..The simple model serves only as a

prototype, which nevertheless embodies all of the essential features.
In addition to the known matter fields, the model consists of two independent
spin0 Y =1 complex fields ¢y 0 ¥ and a neutral spin 1 gauge field Bp . Under

the hypercharge gauge transformation exp (i YA), we have

4
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where f is the hypercharge coupling constant and the subscript k =1 and 2. As

usual, T is assumed to commute with Y,
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This gives then a well-défined difference between T and either CT or CPT.
Since T is an anti-unitary operator, we can always choose the phase of ) such
that |

-1 ,
T‘PkT = ‘Pk . , @)

To avoid irrelevant cdmplicaﬁons, we assume the theory not to be symmetric under
any linear transformation which mi.xes 9 and %, , so that,the right-hand side of
h(3) mu;f remain -

As will be discussed in the next section, the spontaneous T violation mech-
anism can be introduced by assuming a T invariant potential energy V(¢) between

) ch q>2' which has a minimum at the c. number point

9

L
(¢:,0,) = 2 (py e, p,) o @)
1 2 2 .

Py > 0 and ©#0 or w. This minimum point therefore defines a

whfare pi >0,
frioﬁéle wheré Py and Py form ;wo sides qnd @ the angle in bgf\;veen'. Because
of quantum effects there must be fluctuations of 9 and ¢, around their average
values. These fluctuations can be shown to correspond to fHé vibraﬁ;)ns of the triangle.
The entire ¢ ¥ sysfem‘ can then be visualized as a triangular molgcule which is |
defined by both its shape and its three vibrational modes of oscillation in the plane of
' the triangle. For cénvenience of nomenclature, we shall refer to this ¢y s complex
simply as "the triangle"..

In the absence of the gauge field Bp , there would be a zero mass boson, in

accordance with the Goldstone theorem].- In the present case, this Goldstone boson

corresponds simply fo the rotational degree of freedom of the triangle. Because of




the Higgs mechonismz, the presence of the gauge field BP eliminates the zero mass.
boson. As a result, BP acquires a mass, and the would-be Goldsfone boson becomes,
as usual, the Iongifudir;cl mode of BH . The detailed descripfibn of the triangle and
its interaction with the gauge field is given in section 2. |

While the Lagrangian is assumed to be T invariant, its solution, as charaé-
terized by the triangle, carries a phase angle 8 # 0 or w.: Therefore, it has a built-
in -T violation, somewhat analogous to the two~component neutrino theory which car-
ries a built-in screw direction. We_feccll that just on the basis of the qu-comp’onenf‘
neutrino theory alone, but wifhouf-any appropriate interaction, one cannot dis.ﬁnguish6
befyveen P and CP, an.d'consequenthly theré is no observable parity violation effect.
‘ -Here, one has a similar situation. éoth the gauge field ond.fhe vibrational levels of
this triangular molecule are of zero average hypercharge, < Y> =0 . Thus, although
l"hese vibrational levels are not invariant under T, there is no violation of the reciprocity
relations, since for states with < Y > =0 reciprocity relations can be derived by using
CT invariance alone, To observe violations of the reciprocity relations, there must be

states with <Y>#£ 0, such as K°, R®, ete.

Once this triangle is allowed to interact with known‘ particles with <Y > #A0,
T violatioh becomes a natural consequence. However, the existence of the triangle
does not determine the exact form of its interactions [ju;.f as the interaction of a neu~
triné is not specified by the fwo-componenf.fheory ] As a pure illustration, we con-
sider in section 3 a parfi-cularly s.imple form in which the usual T~ invariant AY =41

weak interaction Lagrangian L + is replaced by

£int = (9] ¢] + gzq’z) L_ + h.c. ) (5)



resulting _CP_ violati Angi,n..aK:om-_»aK—.g-ade'eaySai-s’rofmthewsupenwe.ak‘ﬁomr.

Because of the transformation property (1), this new Lagrangian clearly conserves Y .
Ttisalso T invariant, provided 9, and g, are relatively real. Through the virtual
emission and absorption of the triangle, violations of reciprocity relations can occur

among the known particles. As we shall see, this can give rise to Kf - 2w, and (if

o= =N

we assume the threshold energy for producing these triangles is 2 o few GeV) the

- e L S e

As will also be c-ii'scussed in the subsequent sections, in addition to the direct
exchange of the triangle between the matter fields, there is still another important
mechanism which can violate the reciprocity relations via the coupling between the
matter field and the gauge field. In this mechanism, the triangle prépagafes only in
a loop diagram, and as a result, one may have violations of the Furry Theorem; i.e.,
the loop diagram connecting an odd number of the gauge field quanta may now be non-
zero. Such a loop diagram can in turn produce T violations among the matter fields.

In section 4, we examine some generalizations of the model to other gauge groups,
either Abeiiun or non-Abelian, but we restrict our discussion only to renommalizable the- |
ories. In all these cases, the general mechanism of T violation remains the same, and

the basic structure of the fricngle‘remcins intact, though its interaction with the known
matter fields‘con be quite different. Because, in these cases, the sponfaneon;s T vio-l
lation is tied to the spontaneous gauge-symmetry \./iolaﬁons7 of the weak and elecfré-
magnetic interactions, at low energy the magnitude of T violation among known par-
ticles always tu.rns out to be very small, either milliweak or superweak. Furfhermore,'
since such theories are renormalizable, all spontaneously T violdﬁng effects are finite

and computable, af least in principle. In the particular examples that have been




analysed, we find that T violations may be of the milliweak strength for | A T |=0

processes, but for KC - KSo decays, or other AY =12 rebctions, it is of the super=

weak strength. In any case, one feels that whatever the eventual gauge theory may be
for the weak and electromagnetic interactions, it should contain T violation as an

infegral part. The triangle theory of spontaneous T violation discussed in this paper

may provide just such a needed possibility.




2. The Triangle and the Gauge Field

In this section we consider the simple system of spontaneous T violation men-
tioned in the introduction. The system consists of two complex spin 0 fields ¢y 9

and a gauge field B“ . The most general form of a gauge invariant, T invariant and

renormalizable Lagrangian density is

| 8 L en ).t a .
s - - T [(in)el ] [( -8, )
. k=1,2 axp T 6xp p’) k]

'-g,(_i’_ B - ‘a%‘%)z' V(6) 6)

where T denotes the Hermitian conjugate, the potential energy V(¢) is given by

| R 2 2
Vil = - e e - M0 e + A )+ Ble) 0)° + Cloyl 0] 0,)
+ %[ (0] ) (Dol o, + Eol o + Fol o) + hoc.] @

and its eight constants 7\] , >\2 ; A, -+, F areall real so that T invariance holds.
In the spirit of renormalization, the renormalized values of these constants
can be arbitrarily assigned. Following the standard treatment of spontaneous symmetry-

breaking mechanism for the gcuge‘group], we assume
>\] and/or )\2 >0 . . @)
As we shall see, the spontaneous T violation can be induced by imposing

D >0 . ©®)



In addition, in order for V(¢) to have a lower bound, we require

E2 F2
A"'-g—B>0, B"'-g—B>O,
,ond
2 : 2 . : : 2
E F 1 EF
(A-%5) C-75) > #(c-0-55) -

As usual, all the above conditions refer to the renormalized constants.
Let us first locate the minimum of the function V(¢) in its c.number form.

In the tree Aapproximation, this minimum determines the vacuum expectation values
of ? and ¢, :

. - i9. 3
<<p]>vac—- 27 pe and <¢2> = 2 Py

vac

N~

Bécouse of (8), the minimum is not cxf' the origin, and because of the gauge invariance
of the Lagrangian we can always transform one of the vacuum expectation values, 'say
<o, >vac , to be real and not negative. It is sfraightfé;'word to obtain the necessary and
sufficient condition for both Py > 0 ond Py > 0. [See Appendix A for further details.

Similarly, one can readily verify that because of (9),

2

' -1 2
c0s® = - (4Dpyp,) (Epy+Fpl) an

in which the constants are chose;n to satisfy -1< cos@8< 1 ., Equation (11) has two
solutions: © and -8 . By using (3), one sees that either solution is not invariant under
T:, and therefore one has a spontaneous: T violation. The T invariance of the Lagran-
gian insures that both solutions should exist, and that they transform into ;ach other under -
The normal modes of this system can be derived by expanding the operators ) and

%, around their vacuum expectation values. We write



. ie
(p] + R] + nI])e

and - ! - (12)
q>2 = 2 (p2+R2+|I2)‘

where Pys Py and 8 are, as befére, c-numbers, but R, , R,, 1. and 12 are

i 27 1
Hermitian fields. If the coupling constant f between the gauge field Bp and 2%
¢, were zero, then the Goldstone theorem would apply and there should be one nor-

mal mode, called the Goldstone boson G, that has a zero mass. It can be easily

verified that in the tree approximation, G isgiven by

. 2 2 -3

[This can also be established by using the geometrical considerations given below. ]

The remaining three normal modes, which will be referred to as t] ’ té and tss

are linear combinations of the fields R R, and v ’

1772
1
= 62+ 0D) (o) - oy 1) ()
(L R 2 B B L
This linear relation may be written as
tl R]
t = t, = U- R, ' (15)
t3 I-

- where U isa (3 X 3) real orthogonal matrix.

As already mentioned in the introduction, the description of the system can
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be characterized by a triangular molecule. For example, Figure 1 gives a schematic
picture of such a triangular molecule whose two sides are Py “and P, respectively,
and the angle in between is 8. In the plane of the triangle, a triangular molecule

also has three normal modes of vibration, each of which is a linear combination of the

displacements §py = R]', 80, = R2 and §0 = p]-'ll.I - pz-llz, i.e.
3
2 2
(py * p5)
50 = I
Py P2

(as(illustrated in Figure 1). Under. the chge tran'sfonnoﬁon‘ exp (iYa), the entire
triangle rotates an angle a . Thus, the Goldstone boson G corresponds simﬁly to
the rotational degree of freedom of the triangle; this then leads to Eq. (13).

The configuration and vibration of a triangﬁlar molecule depend on nine real
‘parameters: three for fhe shape of fhe triangle, three for ’the Eulerian angles that
‘specify the real orthogonal matrix U and three for the frequencies (or masses) of the
nomal modes. In the present case, the function V(¢) depends only on eight constants

)\] ' >\2 + A, +~ F. This imposes a constraint

3
Z (py Uy + Py Uy ) U =0 (16)

ay; Ma
a=1 3
where m, is the mass of the normal mode t a" Since the coupling constant f#£0 ,
the zero mass Goldstone boson is removed through the Higgs mechanismz.' G now

joins the two transverse components of BP to form a single massive neutral spin 1

boson B. In the tree approximation, the mass of B is

m'B2 = f2(912+922) . ’ ‘ - a7)
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The Lagrangian (6) is constructed to be invariant under the gauge transformation

(1). One has therefore the current conservation

AT
ax
M
where i
Joo= i z <a¢k¢-¢Ta¢k>
M k=],2 axp k k 5—;; !

and the spatial integral of its time-component is Y . The Lagrangian (6) is'“ T invar-
iant; in addition, it is syml;netric under the particle anti-particle conjugation C and
the space inversion P. The parity of BP is =1; the parity of q)i must be the s.amel .
as that of Py but it can be either +1 or -1, since the Lagrangian is an even func-

tion of ¢ . " Under C , one has

C¢kCT. 4{ .:‘

|
]
w

cs c'
H
and consequently
cyc = -v

| Elf one wishes, one may also set C . C-] = -q;Jr forboth k=1 and 2. ]

The .normal modes t] , t o and t, are rot eigenstates of C norof T. As

an example of C violation or T violation, we may consider diagrams for

nB - mB . (18)




1.

where n+ m is an odd number. Because of loop diagrams in ‘whiqh the propagators

——

are those of the triangles, the amplitudes for these C violating processes can be

non-zero. [See, however, Appendix A for a list of special circumstances under which

-

some of these amplitudes may happen to be zero. ]

. By'using (1) and (12) ~(15), one can readily verify that both the gauge field

_and the normal modes of the triangle are of zero overqge hypercharge; i.e., <Y> = 0.

Thus, for the system of the triangle and the gauge field alone, one can always intro-
duce a new "time-~reversal " operator T and a new "particle anti-particle conjugation”

operator Cn such that

-1

nta Tn =ta_ Cnto Cn - tc
Te1! =6 ) cecl=o¢
n n n n

-1 - -1
Te 17! =B and ce c V-3

npn M np N H

Since the Lagrangian £ (B, ¢) can be written as a real function of these Hermitian
fields, it m;Jst be ihvariant under the new Cn and Tn . Reaction (18) does not vio-
late either Tn invariance or Cn invarianc;. The reciprocity relatiors are then main-
tained.” However, under Tn one now' has ¢ 4>]T and ¢ = ¢2T ’ anf! under Cn
*1 9y and ¢~ 9, Thus, the hypercharge Y neither commutes with T , nor
cnfi-;commufes with C . Neverthe!ess this is totally acceptable, since in this sumple
sysrem all the eigenstates are of < Y >=0, In order fo observe violation of reciprocity

relations, one should enlarge the system to include some known particles with <Y >

non-zero.,



12,

3. Violations of .Reciprocity Relations

To illustrate how violations of reciprocity rela.ﬁons may occdr, we discuss
the example of a particula;' weak interaction Lagrangian given by (5). [ther forms
will be discussed in section 4. ] For clarity, let us consider first only the P =-1
part of the usual AY\=i 1 non-~leptonic weak interaction Lagrangian L, . The oper-

+

" ator L:h is in general rather complicated, not a single canonical field; but so far as its
S . . - . ' . o
transformation properties are concerned, Ld_- is the same as the appropriate K® or K

meson field. Thus we may write

: and L, ~ K

where ~ indicates both sides have the same transformation properties. According

to (5), with the inclusion of the triangle, the corresponding weak interaction becomes

v

.O
Simg ~ (9,0, *+ 9,9,) K + h.c. (19)

int

where 9, and g, are both real so that T invariance holds. It is clear that (19) is
also invariant under the hypercharge gauge transformation. By usiﬁg (12), one may .re-

write (19) in the form

Lo~ [r K+ a(K] X + Ky x2)] | (20)
whére' I' and g are both real and positive

2 2-2 2 2 '
' = 97p fgz Py +'29,9,pP,p, cos@ 1)

iandA g = (912 + 922)% . The’ K]O and K; meson fields are defined by

) . C,
K]O = 2-‘2(Ko e'? 4 KoT e-la)

’
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S - .
K2° = i2-§(K° e'® - KQT e-'a)
and a is given by
re® = 9, P, 94 9, Py - | (22)
The X, and X, fields are related to R], R2 and I] , 12 by
X‘] = g-] [g] cos(O-a)R] -9, sin(0-a) I]
+ 9, cosa R2 t 9, sina 12]
and | : (23)

X, = g"] [g] sin(g_a)Rl-+ g] cos(O-q) I]

- gzsinc(R2 +g2cosc 12] .

Under a hypercharge gauge transformation, the relative phase between K°

o . .
and R~ meson states changes; therefore, we can always choose their relative phase

o

1

component. The first temm T K: in (20) gives rise to the CP conserving transition

Klo—' 2w . The second term in (20) leads to the CP violating transition

so that K. represents the usual CP =+1 component, and K2o the usual CP =-1

o—.‘o
Ky = K i

its amplitude is determined by the Fourier transform of the contraction
2. ‘0
o X; 60 X500 - | 24)

With this CP violation, there is automatically also a violation of the reciprocity



M.

relation, Similarly, one - may phenomenologucally include the P = +'I parf of the A
Usual AY =1 1 nonleptonic weak interaction and, if one wishes, also fhe usual
AY =+1 semileptonic ‘weak interacﬁori in the Lagrangian (5). .The forme} gives,'
among other trdnsitions, the CP conserving reactién K2° -+ 3w, and the latter gives
all the usual CP conserving semileptonic AY #0 transitions. It is easy to show that
in both cases there is, in addition, a CP violating transition amplitude which also
depends linearly on (24).

The magnitude of the T violating amplitude (24) debends on the detailed
characteristics of the triangle: bot’r'm’:its shape and its vibraﬁo‘naIAmodes t(; . Itis
of interest to search for the maximum of (24). As will bé shown in Appendix B, if
' y+ My, My are fixed,

then by varying the shape and the vibrational modes of the triangle, under the constraint

the coupling constants f, T, 91+ 9y and the masses my, m

(16), the maximum value of the Fourier.transforrp of (24) at zero 4-momentum transfer,

and for my > m, > m,, is foun& to be

bo [0 - (F/m? )" (mi2- m?) . 25)

The po{rl"esponding vibrational modes of the triangle are given by (B. 10) and (B. Ill)

in Appendix B, and the shape is determined by (17), (21) and (B. 15). As an illus-
tration, we may ﬁénﬁdn the special case in which 9,=9, and m22 =3 (m]2 + m32) ’
then the rﬁaximuh T violating amplitude (25) can be realized if the triangle is

isosceles; if in addition we assume a right-angle isosceles triangle, then according to

Eq. (B.20) in Appendix B, the maximum T violation amplitude is

1 2 -2 “2, -
<-2‘:,—2_—- g (m3 - m] ). . @2¢6)
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In any case, (25), or (26), is proportional to 92 and is therefore second order
" in the weak interaction. For example, by using (17) and (26) one finds the magnitude of

the CP violating amplitude K?:’- K2° to be of the order of

o e FZ ng (m52 . m]-Z)

‘Since I' denotes the first order weak interaction constant, one expects this CP vio-
lating amplitude to be of the superweak sfrengfh9.

As discussed earlier, there is another mechanism through which T violations
‘can be produced, and that is vig the coupling between the matter fields and the gauge
field, Such T violation effects are at least proportional to fé; fu‘rfhe?more, it con- -

serves Y . Thus, if fz is arbitrarily set to be ~a the fine structure constant, one

expects it to generate a AY =0 but C, T violating weak (or milliweak). inter-

action among known particles. For Kf ’ Kg decays, it'may add to the above

? = K2° transition on amplitude ~ 1‘203 . Hence, the superweak char-

acter of CP violation in K~decay remains the same.

AY=412 K

This simple interaction Lagrangian (5) is not intended to be a realistic theory
of weak interactions because it contains many defects. It leaves out all AY =0 weak
reccﬁonﬁ, and since (without introducing additional gauge fields) the usual weak inter-
action Lagrangian L:l: is not renormalizable, .it is also non-renormalizable. Neverthe-
less, this simple example does illusfrote.how through virtual emissions and absorptions
of the triarigle, T violations, and conseqbenﬂy also reciprocity violations, can'be

£

observed among known particles.



16.
4, Other Applir;uﬁons

The above theory of spontaneous T violation -ccm be applied to a large
class of interactions, which can be quite different from the simple model discussed
in'fh”e previous section. To ‘ivllusfrote these possibili'ﬁes, we consider the following
two examples of renormalizable theories:' ‘

(i) an Abelian example
We may identify the transformation (1) not with the hypercharge, but with a

different gauge, say exp (i NA) where, for the known particles, N is.the number

of left-handed charged leptons. _So far as the descriptions of the triangle and the

gauge field are cor{cemec'i, the discussion given in section 2 remains intact, except
q>] and ¢, are now considered to be of N =1 '(inst'ead of Y=1). bf‘course, the
discussion given in section 3 has to be modified.

To study Athe interaction with matter fields in fhis new case, let us introducé
a left-handed charged lepton field RL(x) and a right-handed charged lepton field

QR(x) which satisfy

.

Ys EL(x) = QL(x) and . Ys QR(x) = - RR(x). . (27)

Throughout the paper, all Dirac matrices YyrYpr s Y5 are Hermitian. By defi-
nition, SZL(x) isof N=1 and Q.R(x) of N=0. The total Lagrangian densifyv of

the system can be written as
S(L B + (B o) +2(e D) (28)

where £ (B, ¢) is given by (6),
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\

By = gl a . ot ] .
L(L, B) = EL 747}1(-5)-(-}-1 lpr)QL QRY4Y}J -a—x-;ﬂR
and
£(9,8) = =(gy¢;¢ gchz)n':’ Y, 4 *+ hoc O @9)

where 9, and g, are both real so that T invariance holds. The total Lagrangian
(28) is also invariant under the gauge transformation exp (i NA) . In addition, it is

invariant under a second gauge transformation

and

By using (12), we may rewrite (29) in the form
' - T i e t '

where X] and X, are exactly of the same expressions given by (23) in the previous
; .

section, g = (g]2 + 922 )72- " as before,

B = 860+ e k), @1)
. 1 0
mpe'® = 27 (g p " + g,p,) (32)
and therefore ¢
2 _ 3,2 2 2 2
mnl" 2(9] P-' + 92P2 + 29192p]p2c050) . . (33)

Since‘ ‘Pga ‘I’Q?sof P=1, C=1 and T=1 while i 374 754’2 is.‘of P=-1, .
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C=1and T=-1 , ‘through the direct emission and absorpﬂén of the triangle, there
isa P, T vioiafing effect in the (2 +2) scattering ohplifude. To lowest order, the
;:mplifude is proporf.ional to (24), exacﬂy as before. According to (25), and after
replacing T | by 2 m, , one finds the maximum yalue of the Fourier transform of

(24), at the zero 4-momentum transfer, to be

| ;
9 [¢° - 2(fmy/m )% T mo A,

(34)
(m2 - %:ATz)2

where m.l.' is the mean mass of the.vibrational modes of the triangle

m'T = %(m] + m3) \

and AT = (m] - m3) is the corresponding difference.. The other mass m,, lies be-
tween m. +3 AT and LI 3 AT . If in addition we assume the triangle fo bea
- simple right-angle isosceles tri.angle and 91=9, = 2-%9 , then (26) holds; the maxi-
mum T violation amplitude (34) becomes |
92 m. AT
VZ (m2 - 22

@35)

Moreover, there can also be T violating effects due to the direct coupling

f between B|‘l and 2, just as before., We erﬁphasize that although in this example
both the gauge group and the interaction are quite different from those in section 3,

the basic mechanism of T violation is identical. .
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. (ii) a non-Abelian example

3
Let us first consider the Weinber_g_r_n_t_bj’e_l__g_f_the_lh.gpj.qm._._,,]fhg group is SU2 X U] .

and the right-

There are four gauge fields KH and Bp . The usual L-neutrino field v

2

and left-handed charged lepton fields QR and Q.L form an SU2-doublei' and an SU2-
singlet:

vy ,

L = and R = ¢, . (36)
2 R
L
In order to have spontaneous T violation, we assume that there are two SUZ-

doublet spin 0 fields

¢+ <P+
1 2

¢l = ( o ) and ¢2 = ( o (37)
\% %

where the supﬂerscripf denotes thé electric charge. Both ¢, and ¢, are assumed to
transform like the product RT,L under the SU2 X U] group; therefore, their coupling
to the gauge fields is completely determ-iﬁed by the requirements of gauge invariance.
The most general form of a renormalizable, gauge invariant and T invariant potential

energy V(¢) is now given by, instead of (7),

- t i F o )2 t o )2
ViO) = =Aiopop = Moy o) + Aoy ¢1)7 + Bley 9)

+Clo 01) (4, 9) + Tlof o)) (o] o))

+3[(0] o)) (Dol 0, + B¢l o, + Fol o) +he ]  @9)

which contains nine constants, and all these constants are assumed to be real so that T



invariance holds. The only formal difference between (38) and (7) is the € term. We

assume that both @) and (9) are valid, and in addition

D> C . | @5

In the tree approximation, the minimum of the c. number function V(cp) determines
the vacuum expectation values of q>] and ) - As will be shown in Appendlx C, the

addmonul condition (39) insures that the minimum of V(¢) occurs at

'<¢+> = <o) = 0 ,
] vac 2 vac

. 1
9 and < ¢2 = 27

vac

o -5
<o, > = 27p e p @o0)
1 Tvac 1 2

which again defines a triangle. Both Py and p, are assumed to be >0, and
QA0 or 1. So far as the neutral (but complex) fields ¢]° and q); are concerned,
the discussion is exactly the same as previously given in section 2, except that the

constant C in section 2 is now replaced by C+C.

We may expand, as before in (12),

' b,
o _ ,-z i0 .
¢ = 2" e (pI + _R] + i I])
and 1 @)
o _ -2 .
%, 2 (p2 + R2 + 112)

The three vibrational modes of the triangle t] Y ty are given by (15), and they
correspond respectively to three neutral bosons of masses m,, m, and m, . There

are now three Goldstone bosons; besides the neutral one

- '
¢® = (p2+pd) (o + pp L) “2)
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which is identical to the G given by (13), there are two charged ones:

+ 2 -2

2 i +
G™ = (py+py) 0

x ¥F
(P]?]e +p2¢2)

.

(43)

where cpl: = (qa:)T and k=1 or 2 . Through the Higgs mechanism, these three
Goldstone bosons (just as in the usuai Weinberg model) join the gauge fields to form
a set of three massive spin 1 intermediate bosons WE and W. In addition, there

are also two massive charged spin 0 bosons -

£ 2 2.3

+ Fi0
(p] + 92) (pz ¢] e l

]

and their masses are

m

H

2
2)‘

1(D-C)(p] + p

So far as the mechanism of T violation is concerned, one has exactly the same basic
structure as before. The triangle is again characterized by its shape and its vibrational
modes, and with the same constraint (16).

The interacﬁon between the lepton fields and the éauge fields is determined
by the requirement of gauge invariance; if is exactly the same as in the usual Wein-
berg model. The interaction between the spin 0 fields ¢, , ) and the lepton

fields is now given by
(L, ) = =(g, 0% 9, 9) LTy R+ hc. - @5)

where 9, and g, are again assumed to be real so that T invariance holds. This La=

grangian is clearly also invariant under the SU2 X U] gauge transformation; it describes

an interaction between the charged lepton 2% and q): which is exactly the same as
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(29) and which can again be rewritten as (30). Therefore there is a P, T violating
amplitude in £ + & scattering that is proportional to (24). |

The same P, T violating amplitude also leads to an electric dipole moment
- for the charged lépfon. Fon; definifgnegs, let us assume (35) holds; one has then a sim-

ple right-angle isosceles triangle. In this case, one finds

2 _ 2 _ -1
2 _ 2 _ 2
o] =95 = 242 Gm
: ~ i =2, . . {at .
where GF = 10 my i the Fermi constant. The P, T violating amplitude (35)
becomes
‘ . 2 :
4 GF my M. AT ,
5 W . @é)

The electric dipole moment e D(2) of 9% can then be readily evaluated. By using
(30), (24) and (46), we find

3

Gpmy

; 5 [mng(e3) - m].zJ(e’])] | @7)

D) =

where m,=m, +% AT and my = m, -3 AT denote respectively, as before, the

largest and the smallest mass of the vibrational modes of the triangle, € = (mz/m] )2 ,
2
€g = (mg/m3) , and

, R o = 1 -2 .1+(]-4e)%
JE) = ¢ + (2°) fne + — In I
(1 - 4e)’ 1= (1= 4e¢)

For e<< 1,

JE) T In(Ve) -3+ O(e Ine)
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If .m] and n;3 are arbitrarily set to be ~ 15 GeV and 10 GeV respectively, then
D(.p) is ~1.3 X ]0-2'5 cm. and - D(e) is ~3.6 X ]0—3? cm. At present, both
are too small to be detected.

The extension of. the Weinberg model to hadrons is not without orbifrarfness.
The direct coupling between hadrons and the spin 0 fields .q)]o and q>2° has the same

form as that in (45), except that L and R now refer to the appropriate hadron fields.

Such a coupling is usually assumed to conserve the isospin, Thus, similar to (46), in the

hadron-hadron scattering there is a- P, T violating, but [ AT l = 0, amplitude
given By
4G m2 m_ A
F'h 'TOT :
(48)

and which can lead to an electric dipole e D(h) of the order of

D(h) ~ —prme (49)
m

where m, denotes the corresponding hadronic mass.

The present experimental limit on the electric dipole moment- of the .neufron]o

is D(n) < 10_23 cm. If we arbitrarily set m o~ my the nucleon mass, then (49) gives
2
_T_mN o 2 X 1073 (50)
m ~

I
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which implies that the P, T violating amplitude 48) in a ] Al l = 0 hadronic
scattering process is

-2

< 107° ¢

F o (5?!)

For the AY = £ 1 processes, the corresponding T violating amplitude should be at

Igasf smaller by an additional factor GF mV2V ~a , i.e.,

¢ 0t e, . (52)

For the AY = £2 processes, some special constructions must be introduced té make
the usual T conserving amplifﬁde in the Kf ’ K; mass difference calculation

~ GF ml\zl (not ~ GF mVZV) times sma"er than the corresponding T ‘conserving
AY=%1 ‘amp|ifude. It seems reasonable to expec.t that relative fo' (52), a similar
factor ~G_m 2 also applies for the corresponding T violating AY =12 dmpli- |

F N

tude, and that would lead to a T violating amplitude

< 107 6, | (53)

in the mass matrix of the' K° = R° complex. Since (52) seems to be smaller than the
milliweak strength, one may expect the CP violating phenomena in the K decay

to be dominated by (53); the result would be of the observed superweak charactef.9.

For the | AT | = 0 processes, the T violating amplitude can be of the
milliweak strength, and this may have important experimental consequences. In
addition, as discussed earlier (and also m Appendix A), there exist other T violcfin_g
diagrams in which the T violation is genergfed via the direct coupliné between the
matter fields and the spin 1 intermediate bgsons. However, a full investigation lies

outside the scope of this paper.
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Appeﬁdi;( : A
1. We first discuss the vacuum expectation values of ) and o,
< ) $vac = 2'% P eig ;:nd <<p2 >vac = 2"?E pé . (A1)

In the tree approximation, P, , Py and O can be determined by setting the minimum

3 i0

of the c.number function V (¢) at (q>] , "4;2) =2 (p1 e , pz) . According to @),

o 2 2 4 4 22 .22 Wi
Y—-50\,9]+>~292)+9:(pp]+q92+2rp]p2)+2Dp]pz(coso-8)

(A.2)
- T -1 '
where o= A - (8D E2 q = B - (8D) F2
_ 1 EF
r = 3 [C D m]
_ -1 2 2
and & = - (4Dpypy) (Epy+ Fpy)
The function V must have a lower bound, and therefore (10) holds; i.e.,
' 2
p>0, qg>0 ~ and pq > r . (A.3)
Since D>0, the minfmum of V isat
cos@ = 5 , (A.4)
'and since )\] and/or >\2 > 0, this minimum is not at the origin, but at
o2 = (pa-D (g, - 1)
1 Pq q 1 2
(A.5)

and

o
pg = (Pa=r7) (pA,=1A))
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In order that 0 0, or m, and both P and py are >0, we require, in addition

to B) and B),

ls | < 1

r

> rA and pA; > rA, (A.6)

q A 2 2 1

1

We note that if r>0, then both >\] and kz must be >0 ; butif r< 0, then at
least one of them, either >\] or )\2 , must be >0 but the other one could be < 0 ‘
provided (A.6) is satisfied.

2. The expansion of 2 and ¢, around their vacuum expectation values

e ) i0
¢, = 2 (p]+ R]A+ lI])e
and (A.7)
S
, -3 . :
9, 2 (p2+ R2+ 112)

1

leads to

Vie) = vc.no. * vquc:d * Ve unarf

(A.8)

where the subscripts refer to, respectively, a c.number expression, a quadratic func-
tion of Rk , Ik , and corresponding cubic and quartic functions. [The linear function

,t2 and

is absent because of the minimum condition. ] To obtain the normal modes t

1

we T\eed only to diagonalize unad :

Vowad = [A p]2+%coso(op22 cos 0 + Ep, py)] R]?'
+ [Bp22+ '%ccAusg(Dp]2 cos'@ + Fp] pz):[ R22
+[C- D(1+ces?0)] o, p, R, R, + $D(p? + p2) sin 0 12
- (4p, 92)']sin0 (E 912- szz) (pf‘+ 922)%(92 Ry = o Ry) I

(A.9)
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where pA , ‘and O are given by (A.:4)- and (A.5). It is convenient fo introduce
17 P2 Y

I, G, R and R' where G and I are defined by (13) and (14) respectively, and

N}j—

2 2

=
]

and i (A 10)

2
(P * py) (P Ry+pyRy)

R

The constraint (16) is derived by noting that‘fhe product R'I is absent in unad ’

and the Goldstone boson (13) is determined by observing that G is absent in unod .

3. We shall now derive a set of conditions under which certain C, T violating

diagrams must be zero if the system contains onl); ¢, ond Bp . [As explained be-
: ( | _

fore, even if such diagrams are not zero, there is no violation of reciprocity relations -

without other fields. ] We define

- -0
#) = P (py e - pyd,)

: -1 -0 A-1)
where )
2 2.2
p = (py *+py))
From (A. 1), we find
. B!
<¢}> =0 ond <op> =27p (A. 12)
vac . . vac
which are both-real. In terms of q>]' and q>2' , (A.7) becomes
1
¢y = 27 (R+il)
(A.13)

and 1
22 (p+ R +iG)

bd
N~
]



29,

The function V(¢), defined by (7), can now be written as

Vo= - ]4>]'Tq>1- 4>2 o5 = (A 4>] ¢y + h.c.)
+A’(¢, ¢,) + B(q>2 ¢2) + C'(cp{ ¢ )(<1>2 %))
+% [_—_(qﬁ'lr q>2') (D' q;i ¢é+ E' ¢ 'T q;l + F q>2 q>2)+ h.c.] (A. 14)

where the new constants )xi , A 2 , * *+, F can be readily expressed in terms of the -

original eight real parameters >\] , ~>\2 ,+ -+ F;eqg.,

~2,, 2 2
M P (A et M)

. =2 2 2
>‘2 = p (A]p]+>‘2pz)l

W
|

=2
p ()\lekz)plpz , etc.

Because of Hermiticity only )\3' , D, E and F' may have imaginary parts. By using

(A.4), (A.5) and (A.11), we find
Im>\:,3= o , mF =0

Im D'

-1 2 2, . .
- (2 P p2) (E Py - F p2) sin 8 (A. 15)
. and

ImE' = 4 p—2 Py Py D.sin 20

In addition, there are three equalities:

. 2 2 .,
PP =) + (e - py) Ny
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B =

o (A. 16)

p F =4>\3

These three equalities imply that among the eleven new real parameters A}, >\2' ,
>\3' , A", B, C, Re D;, Im Q' , Re E', ImE' and F' only eight are independent,

In terms of these new fields, (A.9) becomes’

Viwad = 2[-2p 3 p%(C' +Re D) ] RZ + ;}Aég'z
WL 2 t ' 2 !A t
+3 [-M+ 5p7(C'-Re D) ] I"+ 2N RR

+3p%(Im D) IR . | (A.17)

The coupling between ¢|; and the gauge field B!.1 has the same covariant

form as that between ¢, and Bp; e.g., the current operator jp remains given by

]

L g,
. e ' 11' k
jy = )2 <"“axp“' % axp> . (A-18)

k=1,2

The corresponding interaction Lagrangian is
R , 3G aR al
-8, (Gé‘x—f Mol R
o H H H

B

o fm BjR' - %fzaf(rz+ R2+ R2+ G2

In addition to this interaction, we also have V and V _in (A.8). In a power
cub quart :

series expansion in f, we regard all masses to be of the zeroth order, and therefore
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2

Vo, ~ 0@ and 0() . (A. 20)

\Y ~
cu quart

We note that-because of (A. 12) and (A. 15}, in order to have C, T violations
[e.g., n B“ # mB when n+m isanodd numberj one must have Im D' # 0 and/or

ImE' £0. The following theorems can then be easily established:

- Theorem 1 If @ = ; and if 1 is a normal mode, then.(wifhouf other fields) there

isno C, T violation.

Proof If I is a normal mode, then the coefficient of IR in (A, 17) must be zero,
Hence ImD'=0. If © =;- , then accordfng to (A.15) Im E' = 0. "The theorem is
fhen established. Thus, for exlomple, the amplitude for n sz m Bp must be zero if
n +m is an odd number,

The same theorem can also Be proved by noting that in this case, by using (A.4)
and (A.9), one has E=F =0. Hence, a new time reversal operation may be defined,
under which ¢~ =%, and q52 =0, instead of (3). The vacuum expectation values

1

<¢,> =i22p. and <o, >
1 vac 1 2

versal operation, and therefore without other matter fields there is no T violation.

=22 p., are compatible with this new time re-
vac 2 ‘

Theorem 2 If the normal modes ty, t2 and t; are all degenerate (i.e.,
m, =m, = m3) , then there isalsono C, T violation.

Proof Because of the degeneracy, we may choose the normal modes to be t) = R,

t2 =1 and t3 =R'. From (A.17), one sees that the absence of RR' and IR coupling
gives )\3' =0 and InD'=0. The degeneracy m, =m, gives Re D' = 0. These

together with (A.'16) imply
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‘There is, therefore, only one tem in (A 14) that depends on the relative phase be-
tween cp.; and .¢2' ' Aan’d it is proporﬁonalA to E' . We may rotate q:i ~ eiB¢i '

q>2' - q>é ; this does not alter their vacuum expectation values, nor fhe‘coupling be-
tween ¢l;. and B’.l , but it Ican transform E' to real. Once E' Becomes real, one
may define the time reversal to be fhe{anﬁunih‘:ry operator under which ¢p; -".q)-]' and

¢2' - <p2' . Since (A. 14) contains only real parameters and since < 4>i >

» <>
vac | vac

are also both real, the theorem is proved.
Remarks The condition of Theorem 2 can be weakened: We need o'nlly t = R,

, t2 =1,t 3 = R' and my=m but m, can be different.

K
" Theorem3 If R' is a nomal mode, then to order f3 the ompli-fude of
Bp(k)z Bp(p) + Bp(q) vanishes for arbitrary v-ilrtual momenta k, p and q.

Proof  From (A.17), it follows that if R' Ais a nomal mode then )\\; =0, which
implies FF =0, on a;:counf of (A. 16). In (A. 14), there. are only two terms, one pro-
portional to D' and the other to E', that depend on the relative phase between q;i
and q:é . Just as in the previous proof, we may rotate q;i - eiﬁq;i and. ¢2‘ - <p2' ,
but this time to make D' real. All C, T violating effects must then be proportional

to Im E' . It is easy to verify that in (A, 14), the Im E' tem is of the form

‘ Y(mE) (R2+ %) (Ip+ IR - GR)

Because of (A, 20), unorf does not contribute to the lowest order f3 diagrams for

Bp(k) = Bp(p) + Bp(q) , but 'chb may. Since R' is assumed to be a normal mode, chb
can contribute to such diagrams only if it contains at least one factor of R’ Ein which

case the chb vertex can link with the - me Bz R' wvertex in (A, 1.9) through the
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R' propagator]. Hc;Wever, the cubic function part of the above ImE' term does not
contain any R' factor; hence, the theorem.
For a general triangle, the actual calculation of the transition

Bp(k) = Bp(p) + Bp(q) is rather complicated, but we hope to give some of the details

'in a separate publication.
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Appendix B

To es-fabl.ish (25), we first express X] and )(2 ,. defined by (23), as linear

functions of the normal modes t] . t2 , 1-,3 and the Goldstone mode G :

X, = a i + oo, t, + astg (B.1)

and

]

kb]~ t] + b2 t2 + b3t3 +yG (8.2)

%

where a., bj and y are constants. From (22), it follows that

91P4 sin(@ - a) - g, P, sina = 0.

and
9P, cos(0 -a) + g,p, cosa = T ;

these together with (23) require X, to be independent of G and the constant y in

]
. (B.2) given by’
vy = (@p)'T (8.3)

1

where g=(g]2+ 922) and p=(p]2+ p22) . Let us define

o by
a =| a and b = ‘b2 . . (B.4)
% by
By using (23), one derives
aa = 1 p ‘ ab =0
and ,
| Bb o= 1-4 = 1- (gp)Pr? (8.5)

where ~ denotes the transpose,

.
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/

The Fourier transform of (24) at the zero momentum is

gam2p (B.6)
where
' m]2‘ 0 ,
M= [ o m2 oo . (8.7)
0 m2
3

We may search for the maximum of (B.6) by varying a and b, but keeping M2 and
the three ortho-normal relations given in (B.5) fixed. It is straightforward to show

that for m, >m,>m,,

defam?e ] £ 3 [1-er?r? ] m2-m?) , @8

and the equal sign holds when

. . -l
- - _22%
a =c:3=27 , bl=-b3=-22[]-(gp) r

and

ay = b, =0 . (B.9)

Clearly, the maximum value for | 92 g M-2 b | remains the same, if one changes
t]—~ -t], or t3—--t3, or a= =a, or b— =b,

For any given shape of the triangle Pyr Py and O, one finds that the maxi-

mum in (B.8) can be realized if the normal modes are given by

t, - -
‘} P - (B (o + )% a1+ [a®(+ 8 6] .R+yR'} (8.10)

and

=
t) = (a2+B2) {YBI.- yaR+(a2+52)R'} (B.H)'
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where t, ossumes the upper sign in (B. 10), t3 the lower sign, y is given by (3.3),

I, R and R' are defined by (14) and (A. 10),
-1 2 2 .2 2
B = (eT) pggg,sin® (8. 13)

and therefore
'02+ Bz+72 = 1 . _ (B.14)

The only condition is that the constraint (16) should hold. Because of (B. 10) and (8. 11),

this constraint can also be written as

: .
2 2,72 2 2 2 2 2

%(a+§) a(m]—m3) = p[mz—%(m}+m3)] . (B. 15)
One can readily verify that the solutions (B, 10) and (B. 11) together with (B.9) indeed
lead to X, and X2 defined by their original expression (23).

As an explicit example, we may consider the special case 9,=9, = 2-% g

1

and =Py = 272 p; i.e., anisosceles triangle. From (B. 12), one sees that a =0;

therefore, (B. 15) implies

= F(mi+ml) . (8. 16)

Nij—

The angle © and the side 2 °p of the isosceles are determined by (17) and (21),

which can now be written as

2

2= }g

p2('|+cosO)_ ' ‘ (8. 17)

and ,
2 _ 22
Mg = 2 P . (B. 18)
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If in addition we assume 0 = = , i.e., a right-angle isosceles triangle, then

T
2

r =2-%gp ; hence, B =y =2-% , the normal modes become

ty = 2(-I1-Y2R+R) ,

1
2 vz 4
ty = 3(-1+2 R+ R) ,

and the corresponding maximum T violation amplitude in (B.8) is

2.3 gz(m‘;z- m;Z)A . (B.20)

As another example we moy take the limiting case 8 =0, or w. From (B.13)
it follows that B =0; hence (B. 15) impliés m‘]?' = 32 , and .fherefore according to
(B.8) the maximum T violation amplitude is zero, as it should be.

In general, if the coupling constants f, 917 99 T' and the masses m.,
m, , ma and my are given, then in order to realize the maximum T violation am-
plifude in (B.8), the shope parameters’ Pyr Py and @ are determined by (17), (21)

and (B. 15), and the vibrational modes tyr énd t, by (B. 10) and (B. 11).
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Appendix C

In this Appendix, we discuss the minimum of the c. number potential energy

V (¢) defined by (38); this minimum is assumed to be at

4/ 0 | |
_
¢2 = 2 < P2> ) : ] (C.Z)

where 0. isreal, and ¢, Py » Py are all real and 2 0, Since V is invariant

Aand

under the SU2 X U, gauge transformation, we can always transform the upper com-
ponent of ¢; to zero, and both components of ¢, to real and non-negative. Equa-

tion (38) can then be written as

' 2 : 2 2 2
Vo= <3 pf- k(P enl) + 3 Dpl o2 [(co0s0 - a) - A2 ]

2 - : ,
+1 [Apy+B(7+p]) + Cplta?+p]) + (C-D)pZpl] (€3)
where
-1 2 2, 2
A = -(4Dp, p,) ‘[Ep] + F(o +p2)] . (C.4)
For D > 0, the minimum of V is at

cos® = A . (C.5)

Keeping (C.5) satisfied, we find



39.
TV a3V S | |
— = 5+ 50-0p2 . (C.6)
do dp , .
2
Since D>C, ot f_\_/?_ = 0 the derivative EYQ' is always positive; hence to
a Py do”
obtain the minimum of V we require
2=0 . (C.7)

The function V then reduces to (A. 2) discussed in Appendix A provided the constant

C in (A.2) is replaced by C+C.,
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Appendix D

It is possible to have a spontaneous T violation, but without a spontaneous

gauge-symmetry violation, Let us consider a simple example which consists of a

spin field ¢ and a single Hermitian spin O field ¢. The Lagrangian density £

is assumed to be renomalizable, and it is invariant under T, C.and P :

2 .
= 3\ _ oot )
© = i(E) - ve - oy (g )
_ H | ) M | |
- ig“’TY475"’4> | . . (D)

where fhé péfenfial V(p) is given by
Vie) = -ire?+ 3Agt . (D.2)

From Hemniticity, the parameters m, g, A and A must be real. It can be readily

verified that the Lagrangian £ is invariant under T, C and P under which

To(r, DT = co(F, -1) , » (D.3)

Co(f, NC = ot 1), | (D.4)
and . \_] -

Po(r, )P = —g(-T, 1) - (D.5)

the corresponding transformations of ¥ are standard. In addition, £ is invariant

under the simple gauge transformation

q:—oeiﬁ*l' and 'q>-+¢ . (D.6)
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As we shall see, the solution may violate T invariance, but it remains gauge invariant,
To generate a spontaneous T violation (but without a spontaneous gauge-sym-

metry violation), we assume the (renormal ized) coupling constants to satisfy
A>0 and A >0 . , (D.7)

Thus, the vacuum expectation value of ¢ is not zero;

vac

<¢> = p £ 0 . ’ (D.8)

Since, according to (D.3)=(D.5), ¢ isof P==1, CP==1 and T=-1, sucha
non-zero vacuum expectation value implies spontaneous violations of P, CP and T.

In the tree approximation, p is determined by the minimum of the c.number

_function V. Therefore,

2 = alh L - (0.9)
We may write
¢ = p +X . o ‘ (D. 10)
The potential V becomes
V(X) = V°+%<p2X2+ApX3 +.;‘;-AX4 | (D. 11)

2

where V° =3 A-] A° and p2 = 2A . In order to render the quadratic expression .

- ‘I’T')&(m-l- igpy5) ¥ into a more familiar form, we perform a unitary transformation U :

veul = [exp(-3iy, a)] ¥ - (D.12)
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and ‘
ueU = o
where : . .
sinjg = M "gp , cosa = M 'm (D.13) . .
and ‘ - ‘ |
A . 3 o
- M = (m?+ g2p%) . (D. 14)

The Lagrangian £ becomes

2 . |
to ax et f, 8 '.

- g‘PT y4(sin a+i75'cosa)4‘ X . (D. 15)

Since ¢TY4*P isof P=1, C=1 and T=1 while iq"T'Y4 75

C=1 and T=-1, the Lagrangian (D. 15) satisfies spontaneous T, P and CP vio-

$ isof P==1,

lations, but the gauge invariance (D.6) remqins preserved.

From (D.9) one sees that fheré are two solutions of < ¢ >v<;c : pand -p.
Either solution is not invariant under T, P and CP. Butsince the Lograngian is
invariant under T, P and CP , both solutions must exist, and fhey. should transform

into each other under either T, or P, or CP.

-
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Figure Caption

A schematical drawing of the triangle; 1 represents one of its
vibrational degrees of freedom defined by (14), and G represents

its rotational degree of freedom, defined by (13).








