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I. INTRODUCTION 

This a r t ic le  i s  pr imar i ly  devoted to the development of a method f o r  

calculating the solution of a time-dependent two- space-dimensional Euler ian 

hydrodynamics problem f o r  a region with an a rb i t r a ry  polygonal approximating 

mesh  having a general  moving (time-dependent) fluid boundary. This new 

method i s  the cent ra l  feature of the CEL (Coupled Euler  - Lagrange) calculation., 

The CEL code i s  a time-dependent, two- space-dimensional (compres  - 

s ib le ,  inviscid,  non-heat-conducting) hydrodynamics code which enables us to  

couple an Euler ian approximation of some regions of a fluid with a Lagrange 

approximation f o r  each of the adjacent regions of the fluid. 

The ma jo r  problem in  the C E L  method i s  developing a suitable Euler ian 

calculation. In CEL the Eulerian boundary i s  defined by one o r  m o r e  Lagrange 

lines and i s  therefore defined by a polygonal line ( i .  e . ,  a line made up of 

s t raight  line segments) .  A. moving polygonal line intersecting the fixed 

Eulerian mesh  will c r ea te  i r r egu la r  time-dependent boundary zones,  and in 

general  these boundary zones can be defined a s  the union of closed polygons. 

The problem then , for  the Eulerian calculation becomes one of app.roximating 

the differential equations fo r  a t ime-dependent,  polygonal region.in a way that 

i s  consistent with the in te r ior  equations. We a lso  wish to  have a n o v e r - a l l  



cons,istency of the difference approximations f o r  the Lagrange and Eulerian 

regions.  This development constitutes the centr-a1 theme of the a r t ic le .  

In Section I1 we d iscuss  in  some detail  the advantages"and limitations 

of pure  Lagrange and pure  Euler ian calculations. We find tha t  many problems 

a r e  m o r e  naturally approximated by allowing cer ta in  regions to  be given an 

Euler ian description and the remaining regions a Lagrange description. It i s  

f o r  this c l a s s  of problems that the CEL method has.proven most  useful. 

In Section I11 we descr ibe  the C E L  code and the organization of the 

calculations. We point out that there  a r e  some inherent advantages in the 

C E L  method which enable us to  approximate fair ly  complicated fluid regions,  

and thus we overcome a ser ious limitation of most  calculational methods. As 

a ,by-product  of the organization of the C E L  calculations,  we a r e  able to  allow 

different regions of the fluid to  be calculated with a t ime interval  (At) which 

i s  charac ter i s t ic  of the par t icular  region, and the details of this procedure 

a r e  discussed.  

In Section IV we develop a generalization of the difference approximation 

of a par t ia l  derivative over an a rb i t r a ry  region R. We accomplish this by 

represent ing a par t ia l  der ivat ive,  a t  least  approximately,  by a line integral  

taken over the boundary aR. Relative to an Eulerian approximating mesh  

(including boundary z.ones) the calculation reduces to the problem of evaluation 

of a line integral  over an a rb i t r a ry  polygon .R where the function values a r e  

given only a t  the mesh  points (ver t ices  of aR). Consequently we must  i.nfer 

the values of the function on 8 R f r o m  the values a t  these mesh  points. The 

s imples t  assumption, namely that the function var ies  l inearly between the 

m e s h  points .reduces the line integral  to  a finite sum of the average values of 

the function at the mesh  points t imes  appropriate  mesh  .lengths. We point out 

that the resulting approximation of par t ia l  derivatives i s  indeed a natural  one 



s ince ,  i n  par t icu lar ,  i t  reduces to  the usual approximations when R i s  a . 
t r iangle  o r  when R i s  a quadri la teral .  Fu r the r  we show that the difference 

0 

approximation of the conservation equation f + o. f c  = 0 l eads  to  a difference 

equation with the  same  basic' conservation propert ies .  (We make  this p rec i se  

i n  Theorems 2 and 3. ) 

We find empirically that the difference equations must  retain th.e con- 

s ervation property of the Eulerian hydrodynamical differential equations. It 

i s  therefore a necessary  condition that any difference approximation of par t ia l  

derivatives must  be such that this approximation leads to  difference equations 

which retain this conservation property.  We thus find that the generalization 

of the difference approximation which we employ i s  completely satisfactory. 

In Section V we define the approximating mesh  and the space  and t ime 

centering of the dependent var iables  including the definition of 'an ar t i f ic ial  

viscosity var iable  (q): (von Neumann and Rich,tmyer, 1960) which i s  used to 

t r ea t  automatically the appearance of shocks in the flow. We then define the 

difference expression f o r  the divergence using the generalizations of Section 

IV. We give a .heur.istic description of the physical meaning of the divergence 

expression and discuss  the stability of the difference equations. W e  then give 

the complete se t  of difference equations which hold f o r  the in te r ior  points of 

the m e s h  and seve ra l  reasonable options a r e  indicated. 

In Sectian VI we derive the conservation f o r m  of the hydrodynamical 

equations f o r  the situation when the space variables  x and y may have an 

a rb i t r a ry  velocity relative to  the fluid velocity. The governing equations fo r  

the Euler ian t ime  dependent boundary zones a r e ' a  special  case  of these mo,re 

general  equations.. We show that thes e equations include our  Euler ian 

in ter ior  equations when the space variables  a r e  independent of t ime and 

. include the ,Lagrange  equations when the space variables  move with the fluid 

velocity. 



. In-Section VII we investigate the difference equations of Section VI in 

the Lagrange limit  and determine the t ime  centering of the Jacobian of the 

t ransformation (i. e. , the t ransformation of the Lagrange variables  to  the 

Euler ian space variables) .  In Theorem 5 we establish a difference ,app.roxi- 

mation for. the Jacobian over a region R ,  and we find an interpretation of the 

Jacobian a s  the a r e a  of R. I t  i s  this interpretat ion (of the Jacobian a s  an 

a rea )  that we use  when we approximate the m o r e  general  equations that apply 

f o r  the boundary zones. 

In Section VIII we develop in  detail  the character izat ion of a boundary 

zone and define cer ta in  boundary sequences which a r e  associated with a 

boundary zone. These boundary sequences a r e  needed f o r  the definition of 

the boundary difference equations. A. procedure fo r  the construction of these 

sequences i's sketched.and seve ra l  examples a r e  given. 

Now the difference equations a r e  defined on a staggered mesh  (that i s ,  

the momentum and velocity components a r e  defined a t  the gr id p.oints while 

the remaining dependint var iables  (density,  energy,  etc. ) a r e  defined a1 the 

center  of each ce l l  of the mesh);  consequently i t  i s . necessa ry  to define 

boundary zones .and the associated boundary sequences fo r  this new mesh.  

This new m'esh i s  constructed by taking a s  new latt ice points the midpoints of 

the cel ls  of the original grid.  Boundary zones f o r  this staggered g r id ,  of 

course ,  are  determined in exactly th,e s a m e  way a s  boundary zones fo r  the 

~ r i g i n a l  gr id;  hence the,se details a r e  omitted, 

Having defined boundary zones and the associated sequences,  the 

necessa ry  machinery i s  at  hand to take up the difference equation f o r  the 

boundary zones. 

In Section IX we as sume  that the appropriate  boundary sequences of 

Section VIII have been determined,  ,and we  use  the generalized difference 



approximation of the divergence of Section VI. Using the resul ts  of the . ,  
discussion of ' the Jacobian of Section VII, we proceed:to t h e  formulation of 

the difference equations f o r  some .of the generalized differential equations of 

Section VI,. in  par t icular  those equations which a r e  nominally c'entered a t  the 

midpoints of boundary zones ol the original gr id  (i. e . ,  the equations fo r  p ; ~ , ,  

etc.  ). . Special attention i s  necessary  when. the a r e a  of a boundary zone 

approaches ze ro ,  and this i s  discussed. 

In-.Section X we formulate  the difference equations f o r  the components 

of momentum m =.pu  and:n = pv which a r e  nominally centered at  the gr id 

points of the original gr id o r  at  the midpoints of the boundary zones of the 

staggered mesh .  

The determination of the boundary pres.su're a t  the Eule rlan- Lag range 

interface i s  discussed. When we have determined this boundary p r e s s u r e ,  

the Lagrange phase of the calculation i s  completely determined. 

In Section'.XI we define a se t  of Lagrange difference equations by making 

use of the general  difference approximations of Section IV. .We point out that 

. . the resulting Lagrange diff er.enc e equations' (for a :quadrilateral-  approximating 

grid) a r e  just the  usual ones that one obtains by evaluating t h e s p a c e  deriva-  

t ives in  t'erms of derivatives with respect  to the Lagrange variables .  Thus 

' '  we show that our approach recovers  the usual difference equations and a t  the 

s a m e  t ime insures  an over411 consistency of the Lagrange and Eulerian 

difference equations. 

) 
/ In Section-XII:.: we present  some graphical resul ts  of . typ ica l .  C E L  

problems. 



11. . A. GENERA.L DISCUSSION OF HYDR0DYNA.MICA.L CALCULATIONS 

Before .proceeding with a description of the C E L  code, let us examine 

the general  c lass  of problems i n  which we a r e  in te res ted  and d iscuss  the 

advantages a s  well  a s  the limitations of pure Lagrange o r  pure  Euler ian 

approximations . 
In hydrodynamics we wish to  solve init ial  value problems with prescr ibed  

boundary conditions. Thus we a r e  given the init ial  ( t  = 0) s ta te  of a fluid in a 

r e g i o n ~ O  = R(x,y,O) of the x , y  plane and the external  forces  acting on the 

boundary (aR) of the fluid f o r  0 - < t - < T. We a r e  then to determine the s ta te  

of the fluid,and the region R = R (x,  y ,  t) occupied by the fluid f o r  subsequent 

t imes  0 < t < T. In general  we deal  with seve ra l  fluids in  which c a s e  . - - 
R = U.R. (where Ri= R i x ,  Y ,  t) i s  the region occupied by .the ith fluid). I£ we 

'1 1 - 
denote by Di = D i  (x,  y , t )  that portion of the boundary of R. which i s  in  the " 

1 

' interior of R (i. e . ,  Do..'= aR. fl. (R - aR) ) ,  then the l ines D. a r e  the positions 
1 1 1 

of the ma te r i a l  interfaces. of the fluid (called contact d.iscontinuitiks) and the 

Di ,move wi th the  fluids i n  such a b a y  that the p r e s s u r e  and the normal  (to. D.) 
3. 

component of velocity a r e  continuous. Thus we have the additional task  of 

determining the curves of discontinuity D. f o r  0 < t <.T.  ,' 

1 - - 
Usually i n  a .Lagrange calculation we approximate the  region.^' w i t h a  

0 meSh in  such a way that the boundary a R  and the cu ives  D.' = D. (x,y,O) 
1 1 .  

correspond to specific .Lagrange lines. Since the tangential components of 

velocity may be discontinuous a c r o s s  contact discontinuities, i t  i s  generally 

necessary  to provide special  "slip-surface" calculatioris f o r  those Lagrange 

lines which define the curves D.. 
1 

In a .  Lagrange calculation the mesh  points correspond. to elements of. 

m a s s  in  the fluid, and these mesh  points follow the part ic le  paths of the fluid 

elements.  . Consequently, the f ac t  that the positions of the boundary aR and of 



. the curves D. a r e  automatically determined in  the calculation i s  one of the 
1 

features  . that makes a Lagrange approximation s o  useful. Another important 

fea ture  (again due to the fact  that the approximating gr id moves with the fluid) 

i s  that the region R i s  always approximated by the s a m e  number.of m e s h  

points; thus the initial accuracy of the approximati:on i s  in general  maintained 

throughout, the calculation. Lagrange calculations have proven to be very  

accura te  a s  long a s  the approximating mesh  remains regular ,  and, in genera l ,  

the number of mesh  points needed to approximate a region R accurately i s  

surpris ingly small .  It has  beenfound that Lagrange calculations a r e  ideal  

fo r  cer ta in  la rge  c l a s ses  of problems. In par t icu lar ,  in t e r m s  of accuracy 

and economy in . the  number of m e s h  'points needed, i t  i s  .practically a requi re-  

ment to use  a Lag range approximation in following the .motion of thin plates 

o r  thin ribbons of fluid which move many t imes the i r  original thickness. 

Unfortunately, the very  features  of the Lagrange method which make  i t  

so  useful a r e  a l so  the ones which make i t  totally unsatisfactory fo r  calcu- 

lating a flow in  which turbulence develops o r  in  which contact discontinuities 

may appear  a t  places in the flow not previously specified. If ei ther a contact 

discontinuity appears  (at  other than a Lagrange line which corresponds to one 

of the curves D.) 0.r .if turbulence develops,  the m,esh points of the gr id will 
1 ' 

attempt . to follow this .motion and part ic les  of m a s s  which were  initially 

0 
neares t  neighbors in R no longer remain . so  physically. Consequently the 

approx.imating m,e.sh will become highly dis tor ted,  and the calculation. becomes 

quite inaccurate  i f ,  indeed, we a r e  able .to proceed with the calculation a t  all.  

In most  situations in  which turbulence develops,  the t ime interval  (At)' a t  

' 

which one ,is required to operate  fo r  stability tends to zero.  This i s  due to 

the fact  that the t ime interval  needed for  stability i s  proportional to the 

shortest:  distance separating two Lagrange gr id l ines and the minimum distance 



between neighboring lines of the gr'id will in general  tend to  zero.  when the 

m e s h  becomes distorted. 

Much effort has  gone into developing automatic remapping techniques 

which a i m  to replace a dis tor ted.mesh with a regular  one. This remapping 

i s  then done periodically (or  even a t  every t ime  step) and i s  a useful tech- 

nique which allows us to  complete o r  to  extend the total  t ime of some Lagrange 

calculations. However,  i f  a remapping becomes necessa ry ,  i t  essentially 

means  that the fixed mesh  of an -Eulerian calculation i s  m o r e  appropriate.  

A fact  which i s  not generally recognized i s  that the class .  of problems 

which can be'solved by the u s e  of such remapping techniques i n  conjunction 

with a .Lagrange  m e s h  i s  only slightly l a rge r  than the c lass  of problems 

where  no remapping i s  necessary .  The ,re 'ason.for the fai lure  to enlarge 

substantially the c l a s s  of problems which can be solved by the use  of remap-  

ping techniques . i s  due to  the explicit res tr ic t ion that only the in te r ior  points 

of the m e s h i n  the subregions Ri can be  remapped,  while the gr id  points on 

the boundary aR,  and the gr id  points on the ma te r i a l  interfaces D. must  be 
1 

left unaltered. This most  na tura l  requirement  (for a Lagrange grid) on the 

m e s h  points defining aR and the curves D. i s  simply too res t r ic t ive  to allow 
1 

f o r  the general  shapes which the region R and the subregions Ri may take. 

.. .. A.nother difficulty (not necessar i ly  involving turbulent-f low problems) 

develops when a region R,  which i s  initially simply connected, subsequently 

becomes multiply connected. In fact  a ser ious  difficulty a r i s e s  even i f  a neck 

develops in' some region of R. In such 'cases  the distance between separa te  

gr id  l ines of the Lagrange approximating mesh  will approach ze ro  (in the neck 

region) ,  .and then the stability condition will fo rce  At to  zero.  F o r  example, 

consider  the resul t  of sq.ueezing the center  of a tooth paste  tube. 
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It i s  c l ea r  that no amount of rezoning of a Lagrange approximating grid 

(which keeps the total number of grid l ines  .fixed) will extend the calculation 

when the region R attempts to become multiply connected. What i s  required 

(in general)  when rezoning becomes necessary  in a Lagrange calculation i s  to  

allow the line which defines aR to c r o s s  the approximating grid l ines  a s  it 

moves and in this  way re ta in  the des i red  number of mesh  points in a l l  regions 

of R. Then we automatically allow R to become multiply connected. 

A remedy for the difficulties encountered with a Lagrange approximation 

i s  provided i f  we use a rnultifluid Eulerian approximatibn (that i s ,  an  approxi- 

mating grid which i s  fixed and with l ines approximating the fluid boundary aR 

and the mater ia l  in te r faces  D.,  which move relative to this  fixed gr id) .  In 
1 

principle,  a t  l eas t ,  a l l  hydrodynamical calculations could be approximated by 

a multifluid Eulerian calculation, but pract ical  considerations limilt the c lass  

for which it i s  suitable. 

Let us examine these practical considerations.  The procedure for  an 

Euler ian calculation (with, sayo a rectangular approximating mesh)  i s  f i r s t  

the determination of a rectangular region (8) in the x ,  y plane which i s  l a rge  

enough to contain R in  i t s  inter ior  for  0 < - t < - l '  We then approximate thls 

rectangular region with a rectangular mesh  and, finally, by introducing some 

auxil.iary l ines we approximate the boundary aR and the curves Di. 

Now, nature seems  to provide for a conservation of difficulties. Even 

though an Eulerian approximation with i ts  fixed mesh  will automatically t r ea t  

turbulent flow when i t  appears  (and regions a r e  automatically allowed to 

become multiply connected), the difficulties in an Euler ian calculation l ie  in 

0 determining properly the positions of the (Lagrange)  l ines  which approximate 

the boundary aR ,  and the mater ia l  interfaces D.. 
1 



The curves  which approximate aR and the D. must  move with the fluid 
. . .-,. . -  ... r - .  . . 1 . .  . 

and consequently will c rea te  i r r egu la r ,  t ime dependent, boundary zones in 

the fixed Eulerian mesh. It i s  not reasonable to  expect that we will be able 

to  approximate .the' differential  equations in . these i r regular  boundary zone s 

with the same degree  of accuracy that we a r e  able to  approximate the 

differential  equations in the . inter ior  cel ls  of the mesh. Thus f rom the stand- 

point of the accuracy of the calculation a t  any t ime t ( 0  < - t < - .  T ) ,  the rat io  of 

the number of inter ior  zones in each subregion R. to  the number of boundary 
1 

zones i n  each subregion Ri, which we denote by Ai(t), and which i s  roughly a 

measure  of the accuracy of an Eulerian calculation for the subregion .R., 
1 

should be made a s  large a s  possible. The ra t ios  A.(t)  can  in general be made 
1 

l a rge  (with ,an approximation mesh  of practical s ize)  i f  the length of aR. i s  
1 

small  compared to the a r e a  of R.. If on the other hand, any subregion Ri of 
1 

the region R i s  such.that the length of aRi i s  l a r g e  compared with the a r e a  of 

R. ( a s  in the case of a subregion which i s  a long,thin ribbon, e tc . ) ,  then in 
1 

o r d e r  for  the rat io  A.(t) to be . la rge ,  we must  cover K with.a  fine approxi- 
3. . . 

mating mesh ,  and this  i s  normally not pract'ical. Thus f o r  a pure.Euler ian 

calculation to be  accura te ,  we a r e  res t r ic ted  to those regions R for  which all 

of the ra t ios  A.(t) will be l a rge  for  a l l  t ,  0 < t < T. 
. 1  - .  - -  

Another consideration which.is .important concerns .the number -of mesh 

points .in the .mesh approximating the l a rge  rectangle fl which a t  any given 

t ime 0 - < t < T l i e s  outside (i, e . ,  the number of m e s h  points which . a re  
- .  

exter.ior points) of the region R. . These exter ior  points a r e  inactive ,points .of 

the calculation and although .it i s  .possible to  eliminate the calculations a t  these 
. . 

exter.ior points in an Euler.ian code, they nevertheless  constitute .par t  of the 

total  number of mesh  points available in any problem. Hence for a fixed total 

number of mesh  points, the ra t ios  A.(t) will dec rease  (and hence the accuracy 
1 



of the calculation will dec rease )  a s  .the number of exter ior  points . increases .  
. . 

If we denote byc(t)  the rat io  of points of the mesh  which a r e  .inter.ior (or  on 

the boundary of R) to the to t a l  number of points of the mesh  (whic'h approximate 

@), then for the grea tes t  accuracy and economy in any Eulerian calculation 

~ ( t )  should be a s  near ly  equal to one a s  possible. The ratio ~ ( t )  can be thought 

of a s  a measure  of the efficiency (in t e r m s  of accuracy  and economy) of a n  

Euler ian calculation. 

Generally speaking then, we see .that the problems which a r e  m0s.t 

suitable for a pure ~ u l e r i a ~ ~ c a l c u l a t i o n  a r e  those in. whidh (for 0 < - t .- < T )  the 

a r e a  of the region R i s  a s  close a s  possible  to  the a r e a  of the largeir rectangu- 

l a r  region bf and for which the a r e a  of each subregion R. i s  l a rge  compared 
1 

with the length of the subregion boundary aRi. 

Clearly,  many problems a r e  neither ideally suited for a pure Lagrange 

nor a pure Euler ian calculation but could bes t  be calculated by some com- 

bination of Euler ian and Lagrange approximations. Exper.ience has  shown 

that in most problems .the region R occupied by the fluids can.be decomposed 

in a natural way into subregions R. (the R. near ly  always correpond to sub- 
1 1 

regions which contain different fluids) such that for  la rge  intervals  in t ime ( t )  

each subregion R. i s  most  accurately and economically approximated by ei ther  
1 

a pure Lagrange o r  a pure Eulerian calculation. That i s ,  we find empir ical ly  

that most  fluids have "natural"  Lagrange regions and "na tu ra l t '  Euler ian 

regions for  most  of the calculation. In par t icular ,  it generally happens that 

a region R can be accurately approximated by a Lagrange grid f r o m  t = 0 to 

some t ime t (0 < t l  < T )  and for t imes  t > t l ,  the calculation will become 1 - - 

inaccurate (o r  for stability reasons i t  will be impossible to continue). If a t  

the t ime t l  we allow these subregions R. of R which a r e  no longer accurately 
1 

calculated using a Eagrange approximation'to 'be given an  Euler ian 



approximation, and the remaining subregions to retain their  Lagrange 

approximations,  we find in general that the calculation can  be completed. 

It i s  for  such c l a s ses  of problems that either initially or  at some la te r  

t ime can benefit by  allowing some of the subregions to be approximated by an 

Euler ian grid and the remaining subregions to be approximated by Lagrange 

g r ids  that the C E L  code was developed. This ability to couple Euler ian and 

Lagrange calculations in  a hydrodynamics code has been found to be most 

useful, and indeed for many problems it i s  practically a necessity.  F o r  

example,  problems in which thin plates push on a gas ,  we find that the thin 

plate i s  a natural Lagrange region and that the gas  region essent ial ly  requi res  

an  Euler ian approximation in o rde r  to allow for turbulent motion. Similarly,  

if we wish to  calculate the motion of a balloon being inflated o r  of a soap 

bubble being formed,  we find that the balloon and soap f i lm a r e  natural  

Lagrange regions,  while the inflating gas  i s  a natural  Euler ian region. 
... 

111, DESCRIPTION O F  THE GEL CODE 

The bas ic  idea in the CEL code i s  that the boundary aR,  (of the region 

R = U .R. we wish to approximate) and the curves  D. (which separate  the sub- 
1 1  1 

regions R.)  a r e  to be approximated by Lagrange lines.  Thus the moving 
1 

boundar.ies (aR and the D.)  a r e  made to  correspond to some Lagrange lines in 
1 

the Lagrange approximating grids. 

A subregion R. which i s  approximated by the Euler ian mesh  will conse- 
1 

quently have i t s  boundary aR. prescr ibed by the Lagrange calculations. Thus 
1 

the Euler ian calculation reduces to a calculation on a fixed mesh  having a 

pre  scr.ibed moving boundary and therefore constitutes .one .of the cent ra l  

calculations in the CEL code. 

1 
The CEL code cons is t s  of a la rge  rectangular 'Euler.ian mesh  which we 

denote by E ,  and, depending on the prijblem we wish to  solve, f rom one ,to six 



separa te  Lagrange gr ids  which we denote by L. 1 .  (t). i = .1,  2 , .  . . 6 (i. e . ,  E and 

the L.( t )  a r e  the se ts  of lattice points which define the Euler ian and the 
1 

Lagrange gr ids  respectively. Also, the ~ a ~ r a n ~ e  gr ids  a r e  denoted a s  

functions of t ime since their  gr id  points move with the fluids they approxi- 

mate)  . 
The calculat ions that a r e  made a t  each t ime s tep in the code a r e  divided 

.into th ree  .main pa r t s  : . Lagrange calculations , Eulerian calculations , and a 

calculation which couples the Eulerian and Lagrange regions by defining that 

par t  .of the Eulerian m e s h . E  which is:active..and .. . . . . . by determining the p r e s s u r e s  

f r o m  the Eulerian region .which ac ts  on the Lagrange boundaries-. 

We:suppose that we a r e  at  the - nth t ime  s tep (t of the CEL 

. . j 
calculation .and that we wish to advance a l l  quantities by one t ime  s tep  to  the 

t ime t n t l .  We as sume  that the s ta te  of the fluids (density,  energy,  etc. ) i s  

n known at t and a lso  that we know the positions of the Lagrange gr ids  (i. e . ,  

n we have 'determined L. = ~ ~ ( t " ) ) .  In add i t ion ,we  suppose that we have 
1 

determined that subset of the.Euler ian m e s h  E ,  which .is inter?or  to ,  o r  on 

the boundary of, those subregions R. having an Euler ian approximation. We 
1 

denote thio ouboet of E a t  t = tn by En = E(tn). The calculations f o r  the next 

t ime  s tep proceed i n  the following wa.y. 

n 
The fi 'rst calculation uses  the known ( t  = t ) s ta te  of the Lagrange fluids 

and the p r e s s u r e s  acting on the Lagrange boundaries to soive the Lagrange 

difference equations f o r  each of the grids L.". The solution to ' the differences 
1 

n t  1 
equations gives us the t = t s ta te  of. the Lagrange f lu idsand  new gr id  

nt.  1 
positions L. . 

1 

Next i t  i s  necessary  to determine the se t  E"" , and this i s  done by one 

phase of the coupling calculatio? which uses  the new gr id  positions L~" .  We 
1 

a r e  then in  a position to solve the Euler ian differ,ence approximation equations 



n t l  n t  1 
f o r  the t s ta te  of the fluid' in the region 'E . . This i s  done in the Eulerian 

phase of t h e  G E L  calculation.. 

n t  1 Having determined the t s t a t e  of the Eulerian region,  the second 

phase of the coupling calculation determines the t n f l  p r e s s u r e s  which ac t  on 

the boundaries of the Lagrange gr ids  L:' We have thus advanced a l l  of the 

n t  1 
fluid quantities and gr id positions to the i r  t = t values and this  then 

completes one basic  calculational cycle (o r  one basic t ime s tep  of the calcu- 

lation). 

The description of the CEL calculat ion~wil l  be completed by giving the 

"s ta r t  up" o r  init ial  ( t  = 8) s ta te  of the fluids and the init ial  positions of the 

0 0 
m e s h  points fo r  the gr ids  L. i = 1 ,  2 ,  . . : , E and the subset E . . In o r d e r  to  

1 

make this m o r e  concrete  let us consider a s imple multifluid problem and give 

the procedure f o r  approximating this problem on the CEL code. 

We consider  the region R ( s e e  Fig.  l a )  composed of five subregions 
i=5  

.(i. e. , R =ivl Ri) which a r e  each initially ( t  = 0) a t  r e s t  and a t  a constant 

0 
p r e s s u r e  P with each R. corresponding to  a different gas (i. e. ,  the init ial  

0 ' . I  

s ta tes  (except 'for p res su re )  o r  the equations of s ta te  fo r  the different sub- 

regions RP a r e  different). L e t  R be  initially the rectangular region 
1 

0 
R = { < x , y > l ~ . < x < a / \ ~  - - - < y < b } .  - 

The prescr ibed  bouidary conditions f o r  t - > 0 a r e  a s  follows: We 

consider  that th,e region R has  rigid wall boundaries except f o r  the left-hand 

boundary, which we denotc by P = P (x, y ,  t) (and which initially i s  the line 

0 
P = { < x , ~ >  1 x = 0A0 - < y - < b ) ) ,  where a collstant p r e s s u r e  P1 > P  0 is applied. 

Thus .if u and v a r e  the x and y components of velocity, respect ively,  then the 

prescr ibed  boundary conditions a r e  given by: 

and P1 constant on P = l ( x , y , t ) .  



In o r d e r  to  approximate this problem on the' CEL code we must  approxi- 

mate  the moving boundary and the interface curves D  
i" " 

D 4  ( see  Fig.  l a )  

by Lagrange lines using the Lagrange gr ids .  This i s  possible by letting the 

0 0 0 0 
gr id L approximate R O  L, approximate R and L approximate e i t h e r  R  

0 
1 1 '  2 3 ' 3 4  - 

0 0 0:- 0 
a r  R4 U R5. The subregion R  o r  the subregions RO a n d R 5  could then be 

2 2 
0 0 

approximated by the. Eulerian m e s h  -E..  To be specific,  we let .L approximate 
. 3  

0 0 0 0 
R  and we approximate R .and R5 with an Euler ian mesh  E . .  4  2 

In o rde r  to define the mesh  E we must  f i r s t  determine a rectangular 

region .kwhich  i s  la rge  enough to contain the subregion R and ,R  in  i t s  
2 5 

in te r ior  fo r  a l l  t - > 0. Now the boundary p r e s s u r e  P1 i s  g rea te r  than the 

init ial  p r e s s u r e  P in R ,  consequently we can expect the bounda.ry I to  l ie  . 
0 

always to  the right of the y axis. With this assumption on I we chbose R = . R  0 

and we then approximate dQ with the Euler ian mesh  E. The number of mesh  

0 0 0  
points in  E and the se t s  L 1 ,  L 2 ,  L will depend on the accuracy we des i r e .up  3 

to  the maximum permit ted ' in  the code. 

The.multiregion problem we have just considered i s  a s imple example 

of a problem that would be most  difficult to  approximate (in a na tura l  way) by 

a pure Lagrange code. This s t ems  f r o m  the fact that the var ious subregions 

do not lend themselves to a s,ingle approximating mesh  in which the contact 

discontinuities (the curves D  i 9  a - o  

D4 in'ig. l a )  correspond to Lagrange 

lines. 

This difficulty in. representing even a .mildly complicated geometr ic  

figure i s  a ser ious  defect i n  most  Lagrange codes and is  a difficulty which 

.occurs  in many computational methods in hydrodynamics. 

We find that the CEL method of coupling seve ra l  separa te  Lagrange 

gr ids  with an:Eulerian m e s h  allows a grea t  deal  of. flexibility' in  approximating 

multiregion .problems i n  a .most natural  way. Indeed, this i s  one of the mo.st 

important features  of the C E L  method. 



Another important  fea ture  of the C E L  code occurs  a s  a by-product. It 

. i s  that in  a basic computational cycle the Lagsange calculations a r e  done 

independently -for each Lagrange gr id  L. and that the Eulerian calculation i s  
1 

done separately a s  well. These separa te  calculations enable us to use  a 

sepa ra t e  t ime interval  (Ait)  fo r  each of the Lagrange gr ids  L.(t) a l l  of which 
1 

may be  different f r o m  the t ime interval  At f o r  the Eulerian m e s h  E(t) .  We 

do this  i n  the following.way. 

In each basic cycle  of the calculation, we determine the maximum At 

which.is allowable ( f rom sbability considerations) f o r  each of the Lagrange 

gr ids  L.(t)  and f o r  the Eulerian gr id  E( t ) .  In o r d e r  to  insure  the stability of 
1 

the ent i re  calculation the 'standard procedure would be to  select  the minimum 

of these  allowable At 's  .and use  i t  fo r  both the Lagrange and Euler ian phases 

of the next basic calculational cycle. In prac t ice ,  however,  we find that the 

allowable At 's  f o r  the different Li(t) and f o r  E(t)  can be quite different,  and, 

in  genera l ,  the At f o r  the Euler ian gr id  E(t)  i s  the largest .  Consequently .in 

CEL the At that i s  required fo r  stability (at  t , =  t" in  the Euler ian region.E(t)  

i s  chosen a s  the basic  t ime interval  f o r  the (n + 1)th cycle of the calculation. 

To ins.ure stability of the Lagrange calculations fo r  the (n t 1)th cycle ,  a 

t ime  in terva l  i s  chosen fo r  each gr id  L.(t) which is"stab1e fo r  that gr id and at  
1 

the s a m e  t ime ,is some submultiple of (or  equal to) the basic  Eulerian At. 

Each .Lag range gr id  i s  .then advanced the appropriate . . number s f  .time 

s teps  s o  that a t  the end of the basic calculational cycle a l l  the gr ids  have 

been advanced to the s a m e  total  t ime.  

This ability to  use  different t ime intervals  fo r  the Lagrange and 

Euler ian gr ids  has  proven to  be an  important fea ture  of the C E L  code and has 

resul ted in  the saving of much computation t ime.  It . i s  quite natural  that this 

should be s o ,  s ince the stability condition on the allowable t ime interval  a t  a 
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point i n  the fluid i s  a function of the local soundspeed and mesh  s i ze  at the 

point (and of the fluid velocity. a t  a point in the Eulerian.mesh).. . '' 

Now, physically the local souiid speed  (and fluid velocity) can va ry  

considerably in different reg ionsof  the fluid,  and the mesh  s i ze  (for accura'cy) 

in general  will a l so  be a function of the region being approximated. It i s  

therefore t'o be expected that the different subregions will have different 

stability requirements.  We f ind tha t  i t i s  desirable  toa l low these different 

regions the i r  "character is t ic1 '  t ime interval  in a hydrodynamic calculation. 

IV.. GENERA.LIZA.TION OF THE DIFFERENCE A.PPROXIMA.TION. FOR 
PA.RT1A.L DERIVA.TIVES OVER A.N A.RBITRA.RY REGION 

We shal l  l imit  the discussion to two-dimensional car tes ian  coordinates,  

the extension to axially symmetr ic  problems being s t raight-forward with no 

new difficulties. The differential equations we consider will be approximated 

by difference equations a-ssuming that the region of the fluid flow in  the (x, y) - 

plane i s  covered by a rectangular mesh.  The difference 'equations fo r  a 

quadri la teral  gr id o r  general polygonal mesh  a r e  easily obtained due to the 

completely general  nature of the development, the necessary  changes (and 

the changes required f o r  the ax.ially symmetr ic  case)  being indicated .at the 

appropriate  places .in the text. 

The re  a r e  many equivalent fo rms  of the sys tem of differential equations 

which charac ter ize  the flow of an inviscid non-heat -conducting fluid in  

Eulerian coordinates , but cer ta in  formulations lead to  considerably m o r e  

accura te  difference approximations than do others .  The differential  equations 

considered h e r e  a r e  in  conservation f o r m ,  and these lead to a natura.1 se t  of 

.difference equations. These difference approximations have proven 

... . (empirically) to be quite accurate .and generally most  satisfactory f o r  a .wide 

range of two -dimensional problems. 



In the present  fsrmulat ion,  momentum i s  considered a. fundamental 

dependent var iable  and velocity becomes a defined quantity; i t  i s  quite 

important to c a r r y  this distinction .over to the difference equations. The 

differential  equations i n  conservation f o r m  a r e  given by: 

N + .g- NJZ = -'.P 
t Y 

t.  
+ a .  pJZ = 0- 

Et  + v .  EU = - P v . . U  - - - - 

where M . =  pu and N = pv a r e  the x and y components of momentum (pe r  unit . 

volume, U = ui + vj  i s  the velocity,  p i s  the density,  E i s  the internal  energy - - - 
p e r  unit volume, and P i s  the p res su re .  

We note that if P  i s  se t  equal to ze ro  then ( I ) ,  (2 ) ,  and (4) have the 

s a m e  f o r m  a s  (3) and thus express  the conservation of these  quantities . in the 

absence of a fo rce  field. . . 

1t has  been found empirically that the difference analog of these 

conservation expres  si'ons must  a l so  conserve the t ranspor t  of these quantities 

:algebraically.  (This statement ' i s  made exact i n  Theorems 2 .and 3. ) We . 
, 

meet .  this requirement and a t  the s a m e  t ime obtain a natural  generalization of 

the difference approximation fo r  the par t ia l  derivatives (and the expression 

f o r  the divergence i n  par t icular)  f o r  a n  a rb i t r a ry  covering mesh ,  by the 

following theorem. 

THEOREM 1 : Given.a region R with boundary a R  in the x ,  y plane and f , u ,  

and v a s  suitable differentiable functions in  R ;  then there  exists a point: (xo,  yo) - 
in  R f o r  which the following equality holds: 



and 

. . 
Similar ly,  t he re  a r e  points (x l  , .y l) ,  (x2 , ,y2)  such that . 

in which al l  contour.integrals a r e  taken counter clockwise. 

The proof follows immediately f r o m  the mean value theorem and Green ' s  

theorem. By Green ' s  theorem,  

Jifxdxdy = j f  dy,  J l f  Y dxdy = - f dx ,  

. R . . aR R  
f 

aR 

and 

JJ[(fu)x.+ ( f v ) d  dxdy = fudy - fvdx. f 
Now by the mean value theorem, the re  exist values of .x and y in  R  such that 

f x f x  dy = llfx dxdy, f jx dy = JJfy dxdy, and 
Y 

aR  R  aR  R  

dy = IJ) [(fulx + (fv) Y- 1 dxdy (where we have 

used the xdy). Combining these equalities and solving 

R  aR  

f o r  fx , f  and ( f d x  + (fv) , we have Eqs. ( 6 ) ,  (7)  and (8). 
Y Y 

We note that ,(8) could. a lso have been derived by applying the mean 

value theorem to the divergence theorem,  and i t  . i s  this application of the 

divergence theorem that one uses  to  approximate the divergence fo r  axially 

. . symmetr ic  problems. 

The regions R  we have in  mind a r e ,  of cour se ,  the individual cel ls  of 

the mesh  o r  the par t ia l  boundary zones formed by .the intersection of a moving 



Lagrange boundary with a .  fixed Euler ian grid. Theorem.  1 enables. to  
. . 

approximate P , P and the divergence t e r m s  occurr ing in .  (1) through. (4) in 
x Y 

a completely automatic way, regard less  of the shape of the region. 

It i s  c l ea r  that we must  know the values of the function on the boundary 

of the cel ls  of the mesh  in o r d e r  to  evaluate the line integrals  and to this end 

we make the following assumptions: Our difference equations enable us to  

solve f o r  the values of the dependent var iables  a t  mesh  points,  and the 

definitions of the functions a r e  extended around the boundaries of a cel l  by 

l inear  interpolation between the mesh .  points, that i s  , the mesh-point values 

a r e  joined by s t raight  l ines.  This reduces the line integrals  of our theorem 

to 'sums of products of average mesh  point values of the function with the 

2 
appropriate  mesh  lkngths along the bounda.ry of a cell .  

Thus ( 6 ) ,  (7),  and (8) reduce to  '(see: F i g .  . 2 )  

.i= 1 

where the N ver t ices  of the jth ce l l  of the m,esh a r e  numbered counter-clock- - 

wise i = 1 ,  2 , .  . . N and f N t l  - = f , xN+ - x1 , etc. 



To see how reasonable (or  natural)  the. approximations ( 9 )  and (. lo) a r e  

let  us .consider the c a s e s  n = 3 , 4 ,  that i s ,  over t r iangular  'and..quadr.ilateral 

regions. 

In case  n = 3 the standard approximations .to the part ia l  der ivat ives  

af/ax and a f / ay  a r e  obtained byipassing a plane through the thr,ee ver t ices  

and assigning to ~ f / A x  andAf/Ay the values obtained by evaluating af'/ax and 

a f / a y  at. some point on this  surface.  Now a plane pas sing through the three  

boints (x,  ~ , f ) ~  i = 1 , 2 , 3  has  the f o r m  f = Ax t By t C,  where A, B,  and C 

a r e  constants. Thus fx = A ,  f = B and i t  i s  easily verified that A i s  just (9 )  
. Y 

and B i s  (10). 

In the case  n = 4 a straight-forward approximation i s  obtained by making 

achangd of var iab le-x  = x(a ,b ) , '  y = y ( a , b )  such.that the quadri la teral  ( x , ~ ) ~  

i = 1, 2,, 3 , 4 ' i s  the map of a square ( a 9 b ) .  i = 1 , 2 , 3 , 4  in the a , b  plane with 
1 

s ides  paral le l  to the a and b axis (Fig.  3). Then one may,evaluate f and f 
X Y 

in t e r m s  o fde r iva t ives  with respec t  to a and b; i. e . ,  fx = ( l / ~ ) ( f ~ ~ ,  - f y ), 
b a 

f = - ( l / ~ )  (faxb - fbxa) where J i s  t h e  Jacobian x y 
.a b - XbYa 

of the . t r ans -  
Y 

formation. Using the natural'approximations,for der.ivatives with respect  to 

a and b for  a square in the a , b ,  plane, i . e . ,  

i t ' s  ea sy  to verify that the resulting approximations 'of f and f a r e  just (') 
X Y 

and (10). 

. We now wish to establish a fur ther  property of our difference approxi- 

mations by considering the conservation equation 

f t  t ( f ~ ) ~  t (fv) = 0 
Y (12) 

and the corresponding con.s:ervation difference equation obtafned by using ( 1 1). 



We note that the conservation, equation ( 12) has  the following property . 
, f  : ' .  . , .' 

1 . '  . 
THEOREM 2: - If. f = 0 on the boundary aD of a domain D in the x i  y plane and - 

rI . ' 

f t  t ( f ~ ) ~  t ( f ~ ) ~  = 0 - in  D ,  then f 'dxdy = constant. - , 

r/ 

D 
PROOF: This follows immediately f r o m  our hypothesis that f = 0 on aD and 

the divergence theorem, since 

a f dxdy = f t  dxdy = - Il[(fu) t (fv) ] dxdy = - [ [(fu)dy - (fv)dx] = 0.  a t  X Y 
D D D aD 

Thc correoponding diffcrcnce otatement i s  provided by thc following 
\ 

n 
theorem: Letting f denote the average value of' f in theJth cell  a t  the nth 

j - 

t ime s tep ,  we approximate f by 
t 

and using (1 1) our differences approximation of (12) .is given by 

and we prove the following: 

THEOREM 3:  - Let T denote the network of l ines comprising the finite 

difference mesh.  If f = O on the boundary 8 T  of the m e s h , T ,  then 
j 

1 f: = constant 

j 

( a s  a function .of n)  where  A.  i s  the a r e a  of the jth cell', and the sum i s  
J 

extended over al l  cells of T. 

PROOF: Our resu l t  will be established i f  we can show that 



Thus f r o m ( l 3 )  we wish to  show that 
. . 

- 

Substituting f rom ( 1  l ) ,  we see  that the above equation i s  equivalent to  
N 

j . i  

C (.sine e the denominator (xi+ 1 +xi)  (yi+ 1 - yi) of ( 1  1)  i s  just 2A..). Now (14) 
J 

i=  1 
does indeed hold, s ince ,  in summing over a l l  ce l l s ,  each s ide of an in te r ior  

cel l  i s  t r ave r sed  twice in  opposite directions and thus cancel in  pa i r s .  Thus 

only t e r m s  on the boundary a T  of T remain and these vanish because , by 

hypothesis, the f n  vanish on the boundary. 
J 

Having examined the reasonableness of ( 9 ) ,  ( 1.0) and ( 1 I ) ,  we now pass  

to the part icular  c a s e  of a rectangular mesh  and the difference approximations 

of ( 1 )  through (5).  We must  distinguish between regular  in te r ior  cel ls  and the 

i r r egu la r  boundary cel ls  formed by the intersect ion of the fluid boundary with 

the gr id lines. , 

V. EULER1A.N DIFFERENCE EQUA.TIONS, FOR INTERIOR CELLS O F  THE 
MESH 

Our rectangular mesh  i s  defined by the lines x . k = 0 ,  I , . . yQ ; Q = 0 ,  k ' 

1 , 2 ,  . . .. ; and the i r  intersect ions give the latt ice points x = xk; y = yp ; k ,  Q = 0 .  

1 , 2 , .  . ( see  Fig.  4). 

Certain of the dependent var iables  (momentum and velocity components) 

a r e  most  naturally defined at  the latt ice points of the g i id  and at  (n + 1 / 2 ) ~ t  

points. in t ime.  The remainder  (p , E ,  and p) a r e  defined at the midpoints 



of the ce l l s  and a t  inte'gral values 'nAt i n  t ime.  ~k denote 

f [xk , l  ' Y k , l '  (.n+ 1 / 2 ) ~ t ]  

by f ~ f  y2 
and g(xk+1/2,1+1/2' Yk+1/2,1+1/2' nAt) 

n 
by : . ' . . :!!k+1/2,1+1/2 ' 

111 part icular  we solve fo r  M nt1/2 n+1/2 n+1/2 nt1/2 
k , l  N k , l  ' ' V k , l  j 

n n 
p k +  + ck+ + l / i ,  P:+ + In addition we solve f o r  a m i x e d  

n+ 1/2 variable  q 
k t  1/2, l + 1/2 which i s  an ar t i f ic ial  viscosity (von Neumann and 

Richtmyer., 1950) a n d i s  necessary  (unless shock fitting o r  other techniques 

a r e  used)' in  the difference equations to  represent  shock discontinuities 

properly.  The ar t i f ic ial  viscosity (q) ac ts  to  spread  a shock over a fixed 

number of cells in  such a way that the function values vary  continuously 
- 

through the region of the shock  and satisfy the.   ank kine-Hugoniot conservation 

relations.  We shal l  consider  q to  be defined by 

where C; i s  a constant weakly dependent on the equation of s ta te  of the 

2 ma te r i a l s  (Go i s  approximately equal' to  one),  and L i s  a length appropriate  

2 to  the cel l  in  which q i i  'calculatkd. ' (L' i s  of the o r d e r  of (AX)' t (Ay) . ) 

F o r  functions defined .at  the mid-points of the ce l l ,  we make  the follow- 

ing definitions bas  ed on ( 1 1)  

Definition I 

nt 112 
( )  U k t l , l t 1 / 2  

i. e . ,  average of .known values 

(ii) v 
n t  1/2 
k+1/2,1+1 



n t  1 /2~ n t  1 /2 

n t  1/2 
U k + l , l t l / 2  . .> ( y l t l - y l ) i f  u k t l , l + l / 2  2 P 

( i i i )  (fuAy) 
. k t l ,  1 4 2  n t  1 /2 nt1/2 

< 0 
U k + l , p t  l/2 ( y l t l - y l ) i f  \ + 1 , ~ + . 1 / 2  - 

Before proceeding ,to the difference equati0ns.a word is..in o r d e r  r ega rd -  
I 

n+ 1 /2 
ing thc definition of the divergence [ y .  f ~ _ ]  k t  1/2, 1-t 1/2' 

Physically it has  an.intuitive meaning, for .if f i s  considered a s  a s tep 

function, i. e ., constant over a cel l ,  then .the te  i t s  on .the direct ion of the 

velocity normal  to  the s ides  of a cell  dictate which values of f a r e  t ransported 

in o r  out of the cell  in one t ime step. (It might s e e m  more  natural  to t ranspor t  

the average value of f a c r o s s  a cell  side,  but such action leads to mildly un- 

stable difference .equations.) The question of the stability of the difference 

equations .leads to somewhat complicated algebraic  equations and will not be 

discussed he.re; however, the two  l imit ing cases  U U>> c2, and c2 .>> U - U 
N - ,., - 

. (where C i s  the local sound speed) (again, riot discussed)  can eas i ly  be shown 

to imply that, the following -inequalities must  hold for  each :cell of the m e  ah: 

At < A X A ~ / [ A Y ~  ul + h ( v l  1 and At < min ( h ,  A ~ ) / c .  F o r  the g e n e r a l  case  the 

following .restr,iction has  been found sat isfactnry i n  practice: 



Using Definition I, then, th'e'difference equations corresponding to (3 ) ,  

(4), ( 5 ) ,  and (15) a r e  given by . . 

(17) 
n t  1/2 

If I y . ;  ' k t  l / 2 , l t  1/2 > 0 

n t l  n t l  n.t 1 
Pk+1/2 ,1 t i /2  = ~ ( ~ k + l / 2 , l t l / 2 '  ' k + l / 2 , l t 1 / 2 ) '  

n t l  /2 
Pkt  i / 2 , l t  i /.z in (18) i s  ordinar.ily obtained in, oqe itara.ti ,on 

by using 1/2, l t  l j 2 ,  a s  a f i r s t  guess  and then averaging the . r e su l t  of the 

fir s t  guess  with P" 
kt1/2,4+ 1/2 foy the final es t imate.  

We next consider the var iables  ( M  = pu.and N = p v )  centered at the 

latt ice points (x 
k' Y l  ) As before we make the following definitions based on 

(9).  (10). (11) and the numbering of Fig.  5. Define x l  = 1/2(% + x i t l ) ;  

y1 = + Y ~ ) '  etc.  

Also, 

+ .  u1 = 1 /4(uk, - U k + l , l - l  + u,k+191 + \ , J  
- 

V1 - 1/4(vk,l-1 + v k + l , l - l  f ~ ~ ~ ~ , ~  + v k ,  l ). 

Let 



Definition I1 

The difference equations of (1) and (2) a r e  then given by 

and u.and v a r e  defined by 



where 

Clear ly equations (9 ) '  (10)'and ( 1  1) were  hardly necessary  in the 

development of our  - inter ior  difference equations, a s  the.  regular i ty  of a 

rectangular me sh would lead to these equations in a most  natural  way. This 

development was  followed to exhibit. the "naturalness '" of ( 9 ) ,  (10),and (11) 

and to establ ish the procediire necessa ry  to  obtain dil lerence equations .for an 

a r b i t r a r y  approximation mesh  (i. e . ,  one not necessar i ly  rectangular) .  It is 

a l so  valuable to  know that the iliterior difference equations a r e  jus,t special  

c a s e s  of the more  genera l  boundary e G a t i o n s  which we t 'reat in the next 

section. ' 

VI. THE CONSERVATION FORM O F  THE HYDRODYNAMICAL EQUATIONS 
WHEN THE SPACE VARIABLES X AND Y MAY HAVE AN ARBITRARY 
V.ELOCITY RELATIVE TO THE FLUTD VELOCITY 

Before proceeding 'to the difference equations for the'houndary zones, 

we must ' cons ider  the more  general  set  of differen.tia1 equations',th.~.t. char -  

. ac te r ize  the .fluid flow relat ive to space var iab les  .x and y which a r e  in neither 

Euler-ian nor Lagrange coordinates and which may move relative to ' the fluid 

in an  a r b i t r a r y  way. In our par t icular  case  the boundary of the fluid i s  a 

Lagrange line(in that it moves with the fluid) and moves a c r o s s  the stationary 

Euler ian gr id ;  hence in the hnundary region we have a mi~tnrl s y ~ ~ t c n ~ .  

We consider x and y a s  functions of the independent var iables  a ,  b ,  and 

t and le t  w = u-x u = v-y and fi = w i  + uj. It can be shown that the total 
t ' t ' - - - 

t ime derivative i s  then given by 

k = Ft + WF + u F  
X Y - - = Ft t C2. vF. (22) 

We note this  , reduces to the .Euler ian  t ime derivative for x = yt = 0 and to F 
t t 

as i t  should in the Lagrange . l imit  xt  = u, yt = v. 



The hydrodynamic 'equations, a s  usual, a r e  given.:  by 

J P ( p , e )  = 0 

where e i s % t h e  internal energy per  unit mass .  

The se t  (23) i s  not in . a  conservation f o r m  consistent with the set  (1) 

through (4)  which was  used for the inter ior  points of the mesh. We shall  use 

the .identity (26),0f Theorem 4 ,  below, to bring the equations .into the required. 

form. 

THEOREM 4. - If J = ( '=)denotes ,the ~ a c o b i a n  of x a n d y  with respect  to a 
.a, b - 

a i d  b,  5 2  = m i  + r j ,  and if p sat isf ies  the equation; + p v .  U = 0 then - . - - U 
- - 

t v .  u -  V .  52 + - 
-,. - - - J 11 

( 2 q 5  

and fo r  any sufficiently differentiable .function f 

PROOF: 

Now making use of the r e su l t s  of implicit differentiation 



we have . 

t 

Hence 

which: is  (24). Now (25) follows immediately f r o m  this  and (22) a s  

which i s  ze ro  by hypothesis. I.,ikewise, on expanding the right-hand side of 

(26) and using (22) ,  (24) ,  and ' (25), we have : 

- m - - Jt  ( ~ f ) ~  + ( p f )  $ t o .  (p f )R  = p f t  + f p  + p* (Vf) + f V . p ?  + ~f 7 
t - -  

We then obtain the equations in conservation. 'form.by multiplying th,e 

f i r s t ,  second, and third equations of (23) by p and using the identiy (26) 

((25)  being the density equation in conservation form) .  

In par t icu lar ,  we note that if x and y a r e  not functions of t ime then 

J = 0,  n = U, and we have the Euler.ian equations (1)  through.(5).  Sinlilarly, t - - 
if x and y move with the fluid velocity (xt = u, yt = v, thus.Q = 0) then (27) - 
through (31) reduce to our  Lagrange equations in conservation form. 



The boundary zone difference equations a r e  a par t icular ly s imple case  

of (27) through. (3 1)  in that - reduces to U on the s ides  of aboundary  cel l  
- '  

which a r e  par t  of the Eulerian g r id ,  and 52 reduces 'to ze ro  on the moving - 
Lagrange boundary. In view of th i s ,  we will define the difference approxi- 

mation of. (27) through (31) f o r  just this special  case .  Before proceeding, to 

the gene.ral equations, let  us consider the differencing of the f i r s t  two t e r m s  

in  each of the equations (27) through (30). 

VII. .' GENERA.L CONSIDERA..TIO.NS FOR'..THE BOUNDA.RY 
ZONE CA.LCULA.TIONS 

. . 

We consider the special  c a s e  of the Lagrange limit  (i. e . ,  52. = 0) of the - 
m a s s  -conservation equation (29). 

Differencing (32) a t  some point (xi, yi) in  a region R ,  we have 

n t l  11 n t l  .n  
n t  I - n n Ji - Ji  : J.. 

- n 
- pi  - p i  J;+ - p i  i n t  - 1 J') n .I P i  

- 
- P i  n+1 

J i. i 

n t l  n t l  - 
o r  pi J i  - pn  J", which i s  the Lagrange statement of conservation of 

i 

m a s s  (i. e. , p J = constant in  time)'. This relation dictates the t ime evaluation 

of the denominator of J ~ / J  a s  J~~~ instead of a centered value J n t  1/2 . . 

This situation i s  common to each of the equations (27) through (30) 'and 

n 
we wish -a  difference interpretation of the Jacobian J . 

In the following theorem we find the Jacobian interpreted a s  the a r e a  
G 

of the boundary zone. 

I THEOREM 5: I£ a region r - in  ( a ,b ) - space  maps onto a region R - in ( x , y ) -  

space by the transformation x = x ( a ,  b ,  t) , y = y(a ,  b ,  t) , and if  the Jacobian of 

the transformation J ( x , y )  = exists and i s  positive everywhere in R ,  - then 

the re  exists &po i@ ( 5 ,  q) -& R such, that 
. . . . 



. . J ( C  ,tl) =. 
R 

il dadb 

PROOF: ' :  B~ hypothesis 1 . ~ 1  = J .  and therefore we have, l{dxdy = SJ'J dadb; 

R r 
and . f rom the mean  value theorem the re  exists a point ( 6 ,  q) in R such that 

J ( e ,  T ) i l d a d b  = T S J d a b ,  f r o m  which (34) follows. 

COROLLARY: F o r  the equations of hydrodynamics the Lagrange variables  

( a ,  b) can always be chosen s o  that J(x, 'y) > 0. . 

PROOF: We established the corol lary by choosing the Lagrange variable  a 

and b to  be the init ial  positions of the fluid elements (x(a ,  b, 0) = a and 
. . 

y(a ,b ,O)  = b ) .  Then J O ( X , ~ ) . =  J(x(:a,b,O),  y(a ,b,O))  = J ( a , b )  = 1 a n d f r o m t h e  

0 0 0 0 
conservation of. m a s s  we have p J = p J = p ,where  p.. i s  the initial density 

I j  ( a ,  b ,  0). Now, s ince density i s  always positive we must  have J(x., y) > 0. 

, We s e e  f r o m  (33) that .the difference equati~ns deal  only wi.th the ra t in  

0 
of Jacobians; hence the underlying ( a , b )  space and the init ial  value ( J  ) of the 

Jacobian can be choosen arb i t ra r i ly .  In the difference equations'.we shal l  

identify the Jacobian Jn with the a r e a 6 f  the boundary z o n e a t  the - nth t ime 

step. F o r  the boundary zone calculations cer ta in  seqiiences .m~.~st be . 

determined and these a r e  defined i n  the next section. 

VIII. BOUNDA.RY ZONES A.ND BOUNDA.RY. SEQUENCES 

The boundary zones a r e  formed by the intersect ion of a polygonal line 

Lagrange boundary (that i s ,  we a s sume  the boundary i s  defined by a polygonal 

line which moves with the fluid) and the fixed ~ u l e r i a n  grid.  M0s.t often the 
. . 

resulting boundary zones will be a simply connected .polygon whose s ides  a r e  

fo,rmed by part  of the qriginal fixed grid and portions of the polygonal ~ a ~ r a n ' g e  



line. It is entirely.possible that the Lagrange bound+ry will decompose an 

Eulerian cell  into i e v e r a l  disjoint pieces and one must  provide f o r  thik ' " 

sibility in' the difference equations. 

To make the description of a boundary zone p rec i se  we define the 

following t e r m s .  

We suppose the polygonal Lagrange line parameter ized  with parameter  

s (0 < s < 1) such that f o r  increasing values of s the Lagrange line i s  t r ave r sed  

with the Euler ian gr id to  the left.. Denote the Lagrange line a t  the - nth t ime 

s tep by 

~ " ( s )  = [<xn(s) ,  yn(s) > lo < s < I ]  . (3.5) 

Consider the point se t  A consisting of (a) the ver t ices  of Ln(s) and (b) the 

intersections of Ln(s) with the gr id lines of the Eulerian mesh .  Let the 

.members  of A. be a r ranged in  the o rde r  of increasing s ,  and cal l  this sequence 

n 
i s  taken to be on the left when t ravers ing  L (s )  in the direction of increasing 

s , this Eulerian fluid region (including the boundary Ln(s)) we: denote by E". , 

Let G he the gr id  point with coordinates (x yk) and consider the 
k,B k ' 

rectangular ce l l  of the mesh  with co rne r s  Gk, , G k + l ,  , Gk+l ,  + l ,  Gk,p + l .  . 

Denote by c n ( k , l )  the pa r t  of this ce l l  which i s  common  with.^^. cn(k,B) 

will be a boundary zone if par t  of i ts .boundary,  a c n ( k , l ) ,  i s  contained,in 

Ln(s) (i. e . ,  a c n ( k ,  l )nLn(s )  # 0). Since Ln(s) i s  a polygonal l ine,  boundary 

zones a r e  composed of one o r  m o r e  polygonal regions,  and fo r  the difference 

equations we need the ver t ices  (of the boundaries of these  polygonal regions) 

ordered in a counterclockwise direction. These sequences (one fo r ' each  

polygon) a r e  called boundary 'sequences and a r e  denoted by 



where  the index j indicates thedth polygon making up a c n ( k ,  1). 1" - I i s  
j 

the number of ver t ices  in the - jth polygon and f o r  the purposes of the line 

integral  formulation we s e e  that the f i r s t  and las t  ver tex must  be the same  

point, i .  e . ,  v;(k, 1 , j) = vn (k ,  l , j). We a lso  denote the coordinates of these .1r 
J ver t ices  by 

n 
v:(k,Q,j) = (,"k,Q,j), y i ( k , Q , j ) )  (37) 

The complete details of the construction of the boundary sequence ( 3 6 )  

' will  not be  pursued,  but we note that the ~ : ( k , l ,  j) a r e  points of {L:} together 

with some of the latt ice points G k , Q 9  G k t l , ~ '  G k t l , ~ + l '  G k , ~ t l  
. These a r e  

n n 
easily determined by s tar t ing a t  the f i r s t  Li intersecting aC (k ,  1) and pro-  . 

n 
ceeding along L (;s) in  a counterclockwise direction (i .  e . ,  in the directi'on of, 

increasing s )  until L~.(s)  leaves c n ( k , l )  and then continuing along a c n ( k , l )  in  

a counterclockwise direction. 'l'he boundary sequence then includes a l l  of the 

n n 
gr id  points and L. that a r e  met  until the s tar t ing Li i s  reached. These L: 

1 

and gr id  points make  up the f i r s t  ( j  = ]).boundary; seq,uence and.the process  i s  

repeated fo r  the next ( i f  any)  L~ in common with acl'(k, 1). F o r  par t icular  
1 

examples s e e  Figs.  6 and 7. 

F o r  the divergence expressions in  the boundary difference equations . . i t  

i s  necessa ry  to determine the relative velocity, L! - ,= w i  t a j  a t  each of the - - 
n ver t ices  V. (k,  Q , j) o r  the average value of R between v ? ( k , l  , j) and v:+ ] ( k , Q  , j ) .  
1 - 1 .  

If we denote this average  velocity by 9 ~ ~ 1 ~  ( k . 1 .  j) t h e n w e  will cal l  the 
. .  . 

sequences of the components w, 'I2 (k,  Q , j )  boundary, velocity s equenc es " f-it 1/2 

o r  simply velocity sequences and denote them by . 



n n As noted previously,  if the line segment joining Vi ( k , l  , j) and. Vi+ (k ,  1 ,  j) 

i s  par t  of t h e ~ a ~ r a n ~ e  line,  L"(s),  then'&:':# ( k , l  , j) = r y ' i i  (k,; , j) = 0; if 

the line segment i s  par t  of the Eulerian g r id ,  then the relative velocities 

reduce to the fluid veloci t ies ,  i. e . ,  nt 'I2 (k ,  l , j) = ui+ n t  1/2 
"it 1/2 ( k , P ,  j) and 

n t  1/2 
n t l h ( k , l  , j )  = vitl12 ( k , l  , j ) .  

I 

5i+ 1/2 

So f a r  in  the discussion of boundary'.zones we have been considering 

cells Cn(k, 1) in which the variables  p , q ,  s , and P a r e  defined, i. e. , these 

variables  a r e  considered to have a constant value in  the region Cn(k ,Q) .  The 

components of momentum a r e  defined a s  constant in ' ce l l s  of a staggered m e s h  

defined by the intersect ion of gr id l ines x = ( x  +x - 1 
kt112 2 k .k+l)'  Y Q + I / z - z ( ~ P + ~ P + ~ )  

If we let the latt ice points of this mesh  be 'denoted by Gktl12 , Q  + 
- 
- (xk+ 1/2' 

Ya + 1/2 
) and let Cn(kt1/2,1t  1/2) be the common pa r t  of the rectangle with 

corners .  G k+l/2,1+l/2 '  Gk- l /2 ,P+l /2  G k - l / 2 , ~ - 1 / 2 '  G k t l / 2 , 1 - l / 2  , and E ~ ,  

then M and N a r e  defined ( a s  constant) over  the cel ls  Cn'(kt l/2, Q + 1/2). 

Consequently we have momentum boundary zones (i. e. ,' those Cn(kt  l/2 ,P + 1/2) 

n 
which have har t  of the i r  boundary acn(k+ 1/2, P + 1/2) in  common with .L ( s ) ) .  

and i t  i s  necessary  to  construct momentum boundary sequenc'es which we 

denote by 

fV;(k+ 1/2,Q t 1/2, 
i = 1 , 2 . .  . . 1~(k+l /2 ,P+l /2)  (.3 9)  

and boundary velocity sequences denoted by 



where  these  sequences have the same  definition relative to  the momentum 

ce l l s  cn (k+  l / 2 , l t  l/2) a s  (37) and (38) had relative to the cel ls  c n ( k , l ) .  

In addition to  ( 3 9 )  and (40) the momentum equations involve the p r e s s u r e  . . 

gradient and thus i t  i s  necessary  to' construct a p r e s s u r e  (plus ar t i f ic ial  

viscosity = P t q )  sequence denoted by 

i3 1 $ 2 ,  . . . , I?((+ I/+, 1 + 1/2) 
J 

n 
where  the P P k f  1/2,~+1/2)  a r e  the p r e s s u r e  and ar t i f ic ial  viscosity i n  E a t  

the points ~ f ( k + l h , l t l / ~ ) . ~  

TX. BOUNDA.RY ZONE DIFFERENCE EQUA.TIONS FOR THE VA.RIA.BLE 
p, r ,' . ETC. WH'ICH A.RE CENT.'ERED IN THE BOUNDA.RY ZONES Cn(k, 1) 

We shal l  f i r s t  consider  the boundary zone difference equations.for the 

var iables  p , q , ~  and P which a r e  centered in the cells c n ( k ,  1). (That  i s ,  these 

var iab les  a r e  considered to have a constant value a t  each t ime s tep over the 

ce l l s  c n ( k , l ) .  ) 

We consider that the boundary sequences (36). and. ( 8 3 8 )  have 'been 
lS 

determined and we wish to define the difference approximations of the Jacob- 

. ian  J: (which f r o m  (34) i s  the a r e a  of c n ( k , l ) )  and the divergence of any 

I1 
s tep  function which i s  constant over C ( k , l )  t imes  the relat ive velocity 

- 
!2 - (i. e . ,  7 .  - fa). - Then y7. - U - i s  obtained f r o m  the fundamental identity (24). 

We consider that we a r e  dealing with a par t icu lar  boundary ce l l  c n ( k , l )  

which i s  composed of jn(k ,Q)  polygonal regions,  and we shal l  understand that 

the var iables  V , x , y ,  w ,  r, e t c . ,  re fer  to  c n ( k , l )  (i. e . ,  f o r  x:(k,l, j) we shal l  

wr i te  $(j) , etc. ); ~ c c o r d i n ~ l ~ ,  then 



where the subscript kt1/2,8+1/2 i s  used to be  consistent with the notation 

used f o r  the in te r ior  equations; (i. e. , .we a r e  treating the dependent var iables  

which for  nonboundary zones a rk  centered in  space a t  the midpoints kt1/2,. 
, ' 

I+ 1/2 of th.e Eulerian cel ls) .  

In o rde r  to  approximate v .  f@ we s e e  f r o m  Eq. ( 1  1 )  that i t  wi l l 'be  - 
composed of a sum of t e r m s  of the f o r m  ( f ~ ) ~ +  1/2(yi+ - y ~ , ' - ( f ~ ) i t 1 / 2  (xit -xi) .  

Now w i t  l h  and i t  1/2 have been defined, s o  we must  dktermine f 
i t  1/2' 

A. s 

pointed out previously,  the relative velocities w and.u vanish on the Lagrange 

n line L (s )  and reduce to  u .and v .for the other polygonal line segments malying,, 

up the boundary of c n ( k , l ) .  These line segments a r e  composed of portions of 

the s ides  of the original rectangular Euler ian cel l  and consequently a r e  ei ther  . 

horizontal o r  ve r t i ca l  line segments.  A.long the horizontal line segments 

- y. = 0 and.along vertica1,segments x. -x. = 0. Thus f Y i t l  .I i t 1  1 i t  1/2 need only be 

defined f o r  those cases  where. wA y 0 and WAX # 0. There  a r e  four  possi-  

bilities . for  each of these nonvanishing t e r m s .  

Let w i+  l h ' y i t  1 - Y,) = Ui+ l h ( ~ i +  1 y # O then xi = xk o r  x. - 
1 - X k t l '  

Letting f n  be the value of the function f over  the cel l  c n ( k , l )  we define 
k,P 

if xi = xk and u 
fk-  1 , l  

. i n  
n + l h  < o  

n + 1 2  i . x i = x i  a n d u i t /  
( fw) i t  112 

i f  xi = xkt and u n t l h  ,, , i t  1/2 
. . 

i f  xi = xk+ and u n+1/2 < o f k t l  , P  i t  1/2 



- Similar ly,  if oAx = vAx # 0 ,  then, yi = yp o r  yi - yp + , and 

yP and v 

n+ 1/2 
(j) = j 144) 

and v f k , ~ + l  if yi = Y l t l  
. . 

In t e r m s  of (4.2), (49) and.(44) we' define the divergence and (as  in the 

c a s e  of the Jacobian) we us& the subscripts  k+1/2 and-P+1/2. 
n.t 1 n 

Letting f = 1 and using'(24) we define 

' .  n t l  n 
Jk+ 1/2, P + 1/2 ' Jk+ 1/2# Q +  1/2 ' (46) + -. -...,--.-...-.,.A-.. -.- --,......-.......-...- - .--.-. . :- " "." ------ P. !I :I l:f., 1 t 1/2 n,+ 1 

At J k + l / 2 , ~ t l / 2  , 

, . 
.We can now give the difference approximation f o r  eq,uations ( 2 9 ) ;  (30) 

,. and. f o r  q (q.for  the boundary zones . i s  s t i l l  given by ( 1  5)).  Keeping in  mind . 

; .: 

the discussion.  of (32) we :have 

J 
ntl . n .,.- n + l / 2 , ~ + 1 A  ,.-.,+.-, .. ,.,., .- ..---- - --.- ,.. At ppEl ... , . - 

Pk+ 1/2 , Q  + 1/2 - '.kt 1/2,8 + 1/2 n t  1. [ 1 ::l$,n+i/z (47) 
J k + l / 2 , ~ + 1 / 2  



n t l  n 
n t  1/2 = Co 

2 ~pktl/2,1t1/2,tpktl~,~ti/2 
'kt 1/2, 1t 1/2 2 

where P = P t q and P 
n t  1/2 n 

is obtained by i terat ion using P a s  a f i r  s t  guess. 

n t l  n t l  
pk+ 1/2,1+ 1/2 k+1/2,1+1/2' 'kt1/2, 1t 1/2 

n 
A special  situation develops when .the a r e a ,  k t  1/2, * 1 + 1/2 of cn(k ,  1) 

becomes some smal l  fraction of the . a rea  of the o r i g i n a l . ~ u l e r i a n  ce1.l. . If ,the 

n 
boundary zone calculation were  to proceed a s  J 

k+1/2,1+1/2 0 then the .time 

interval for  stability would a l so  approach zero.  . To avoid th is ,  the boundary 

zone c n ( k , l )  can  be blended with an adjacent zone,' i. e., cn (k ,  1 )  and one of 

i t s  neighbors a r e  combined to f o r m  a single new boundary zone. This 

technique we a l l  blending, and i t  only slightly per turbs  the fluid flow. A 

n n 
somewhat c ruder  possibility i s . t o  dec lare  C (k, 1) empty when J 

k t  1/2, 1 t 1/2 

, i s  sma.11 and redistribute i t s  m a s s , .  internal energy,  and the PdV work (in 

n 
J k t  1/2. 1t 1/2 going to  zero)  to an adjacent zone. This technique has  been used 

quite successfully 'in CEL and leads to a fluctuation in the flow of a few per -  

cent. 



X. DIFFERENCE EQUATIONS FOR THE COMPONENTS O F  MOMENTUM 
(m=qu,  n=pv) WHICH ARE CENTERED IN THE 

BOUNDARY ZONES Cn(kt 1 /2 , l t  1/2) 

As in the preceding discussion, we must  define the Jacobian, divergence 

and in addition.we must  appeal to . (9 )  and (10) for the .approximation o'f the 

p r e s s u r e  gradients over  the momentum b o u h d a ~ y  zones Cn(k+ 1/2 , Q  t 1/2). 

Since the Jacobian and divergence have precisely t h e  s a m e  definition 

relat ive .to the momentum mesh  .as  they did fo r  the .fundamental ine sh  

n 
(composed of the C (k,  I ) )  we simply state 

' 

and fo r  any f defined over Cn(k + 1/2, I t  ' 1/2) 

"- 'I2 
h a s  the same definition relative to Cn(kt 1/2, I + 1/2) a s  f n  where fit  i t  1/2 

had to Cn(k, I )  in  (43) and (44).  

The components of the p res su re  gradient a r e  approximated using (9) ,  

( l o ) ,  (42) and taking an  a r e a  weighted average of the der ivat ives  for  each of 

the jll(k+ 1/2, l t 1/2) polygonal regions of  kt 1/2,1 t 1/2). W e  note t h a t  t h e  

denominator of (9) and (10) i s  twice .the a r e a  of the po.lygona1 region under 

consideration and that the Jacobian, J:, l ,  i s  the s u m  of the a reas 'of  these 

polygons'. Hence 



and 

We a r e  now able to approximate the momentum equations (27) and (28) 

fo r  the boundary zones c n ( k  + 1/2, 1 t 1/2). 

In o r d e r  to define the velocity we need an average density for  

c n ( k  t 1/2, 1 + 1 2 )  This i s  defined a s  the a r e a  weighted average of the 

neighboring densi t ies .  Thus 

n 
where ( p  J ) i  is the m a s s  in  the - ith (nonempty) c n ( k ,  1) adjacent to c n ( k  t 1/2, 

1 + 1/2). Then 

A special  situation develops when the gr id  point (x 
k , ~ ' ~ k , P  

) i s  c,overed 

n 
by the Lagrange region, i. e . ,  ( X k , l ' y k ,  1 ) i s  not in E . Then (55) and (56) 

a r e  used to determine the tangential components of momentum and the normal  

n components a r e  constructed f r o m  the motion of the Lagrange boundary L ( s ) .  



.This  completes the d iscus  s.ion of the .Euler.ian calculation and next we 
, .. - ,  , 

briefly take up the Lagrange calculations. 

The situatioli h e r e  .is quite i t ra ightforward a s  .one need specify only the 
. . . 

n 
p res su re  a t  the Lagrange ' ~ u l e r i a n '  interface L ( g )  to  determine t h e  Lagrange 

calculation completely. In GEL, this boundary p res su re  i s  taken to be the 

area-weighted average of the . . p r e s s u r e s  in .all theEuler , ian  .boundary zones 

which have par t  of their  boundary in common with a given straight line 

segment of ~ " ( s ) .  (See Fig.  8.) This boundary p r e s s u r e ,  although not quite 

8 
c o r r e c t ,  i s  a sat isfactory choice in pract ice.  We proceed then to the 

Lagrange calculations. 

XI. LAGRANGE DIFFERENCE EQUATIONS 

The following equations provide a simple and accurate  se t  of Lagrange 

difference equations. Our approximating mesh  i s  quadr.ilatera1 iri t e r m s  of 

the space variables  x = x(a ,  b ,  t ) ,  y = y(a,  b ,  t )  (where a and b a r e  the Lagrange 

coordinates);  and the space and time centering of u ,  v,  p ,  etc.  a r e  .the same 

a s  . in  the .Eulerian equations. We will again use  the approximations of 

Theorem 1 and Theorem 5 and thus we have an  over-a l l  consistency to the 

difference equations in  CEL. It i s  a l so  . interesting ,to note that the resulting 

Lagrange difference equations a r e  .identical to the usual differencing where 

the part ia l  der.ivatives with respect  to  x' and y a r e  expressed ,in t e r m s  .of the 

par t ia l  der ivat ives  with respect  to  ,the Lagrange variables  a and b and these 

derivat ives  a r e  -then.approximated on a square .mesh  in the ( a ,  b )  space. (See 

Fig.  3 .) This again shows the '. 'naturalne s s  I' of. the approximations g.iven by 

Theorem 1. The use of these approximations i s  a lso.-sat isfactory. in  that no 

re ference  . i s  made to the underlying ( a ,  b)-space.  Consequently, one could' 

just a s  easi ly  approximate the Lagrange equations over  an  a r b i t r a r y  (instead 

of a quadri la teral)  mesh  .in (x, 'y)- space. 



The differential equations i n  Lagrange coordinates a r e  given by: 

Yt = V 

p J = Constant 

Where J i s  the Jacobian and e h e r e  i s  the internal  energy p e r  w i t  m a s s  
(a b) 

The following definition uses  the numbering in  Fig.  9 and i s  based on 

equations ( 9 ) ;  ( l o ) ,  ( 1  1)  and Theorem 5 (which approximated the Jacobian a s  

an area) .  

. . Definition I11 

n 
(i) 

and letting. F = P t q 

1 
(ii) [F~x]:,~ = g  {(Fl1 - P 1 3 ) ( x 4  t x 5 + X 6  - X8 - X9 - x2) 

(iii) 

n t  1/2 

(iv) [ux t v - - 1 n t  1/2 
n t l  (yit - yi) 

k+1/2,8+1/2 Jk+ l/2,1+ 1/2 



The Lagrange difference equations a r e  then given by: 

n 
n t l  - n Jk+ 1 / 2 , 1 t  1/2 

Pk+1/2,Qt1/2 - Pkt1/2,Qt1/2 n t l  
J k t 1 / 2 , ~ t 1 / 2  

n t l  - n t l  n.t 1 
1/2,1+ 1/2 - P(ekt1 /2 ,~+1/2 '  P k t 1 / 2 , ~ t 1 / 2  ) 

n t  1/2 
Where Pk+ 1/2,1+ 112 

in  (6'5) i s  obtained by using pn 
k.,!: 1 /2 , 1 -1- 1 /2 

a s  a f i r s t  

es t imate  in  (65) and averaging the result  of (66) w i t h p n  
kt1/2,8+1/2 

f o r  the 

final estimate.  

The velocity equations (40) and (6.1) must  be modified f o r  the points of 
_-I_  

the latt ice which define the boundaries of the Lagrange region, but the remain-  

ing equations hold f o r  a l l  points of the mesh.  The modifications to  (60) and 



(61) a r e  straightforward and simply requi re  a consistent application of (9)  

and (10) to determine P and P (where the p r e s s u r e  acting on these boundaries 
X Y 

i s  determined f rom the Euler ian region o r  i s  a given boundary value). As an 

example,  s e e  Fig.  10. 

This completes the description of a typical Lagrange region in  CEL. 

It should be pointed out that a s  elaborate Lagrange calculations a s  des i red  

can just a s  easily be coupled to  the Eulerian region, and of course  ( a s  i s  the 

c a s e  of the C E L  code) seve ra l  independent Lagrange regions can be used to  

help represent  m o r e  complicated geometr ies .  

XII. DISCUSSION A.ND GRAPH1CA.L RESULTS OF 
SEVERA.L CEL CALCULA.TIONS 

The following examples a r e  intended to exhibit the fundamentals .of the 

CEL code ra ther  than to present  the solution of par t icular ly difficult o r  

significant problems 

In o rde r  tu display the fluid flow, it,  has  been found most  useful to plot 

the fluid velocity vec tors  at  each point of the Euler ian mesh .  F o r  the 

Lagrange regions,  we plot the position of th.e Lagrange gr id  points and the 

lines joining these gr id points. The plotting i s  done automatically a s  par t  of 

the output using a cathode ray tube which i s  associated with the computer.  

In the f i r s t  problem ( see  Fig.. . I  I )  we consider  Mach w:.flow of a perfect 

gas .  (y, = 1.4) past  a rigid disk.  The init ial  conditions in the gas a r e  ze ro  

temperatures (hence ze ro  sound speed) ,  constant density,  and constant 

velocity paral le l  tu the axis. of revolution (Z axis) .  The gas i s  given an 

Eulerian representation and the rigid disk i s  represented by a s imple . . 

stationary Lagrange gr id  (labeled L in  the f igures) .  1 

F igure  l l a  shows the gas flow shortly a f te r  s t a r t  up. Cavitation occurs  

behind the disk and the shocked gas begins to  expand into this region. The 



gas  i s  essentially brought to  r e s t  in front  of the disk and a bow shock fo rms  

and begins to move out to the left. 

F igures  1 l b  through 1 I f  show subsequent t imes  and i l lustrate  the 

development of a circulating region behind the disk and the establishment of 

a s ta t ionary bow shock. F igure  1 l f  i s  essentially the s teady-state  configu- 

ration of the flow past the disk. 

The second CEL problem i s  again Machco~flow of a perfect gas past  a 

dense (but compressible)  meta l  sphere.  Here  a bow shock fo rms  and a shock 

i s  t ransmit ted into the sphere .  

In this problem the gas i s  again approximated by the Euler ian grid.  

However,  in o rde r  to have an example of a problem with two Eulerian regions 

approximating different fluids,  the sphere  was deliberately decomposed into 

a cent ra l  sphere  and a outer  spherical  shell .  The outer spherical  she l l  i s  

approximated by a Lagrange gr id and the cent ra l  sphere  i s  approximated by 

the Euler ian mesh .  Th i s . i s  i l lustrated in  Fig.  12a. 

F igure  12b i s  a plot of the problem shortly af ter  t = 0. The.remaining 

f igures  (Figs .  - 12.c through 12g) show the flow in  the gas and the progress  of 

the t ransmit ted shock through the sphere. '  In the resulting deformation of the 

sphere  we see  (a t  the leading edge) the rapid growth of a spike and a bubble 

which i s  ,character is t ic  of Taylor unstable flow. 

This type of instability a r i s e s  when. a l e s s  dense fluid acce lera tes  a 

m o r e  dense fluid (as  i s  the case  of the gas accelerating the m o r e  dense 

sphere).. The nature of the instability i s  such that any perturbation of the 

interface separating the two fluids will grow in  t ime with the amplitudes of 

the shor t e r  wavelength components of the perturbation growing the m o r e  

rapidly. 



In this problem the s ta r t -up  conditions introduced a slight dent in  the 

f i r s t  two Lagrange zones representing the leading edge of the sphere.  This 

dent corresponds to a shor t  wavelength; consequently a spike and bubble were  

formed. 

This calculation points out one of the difficulties present  i n  two space 

dimensional problems. Namely, i f  the flow i s  physically unstable,  then any 

perturbation of the interface separating two fluids can quickly grow and may 

ultimately make the problem meaningless.  

Since the flow may be perturbed (locally) a s  much.as  a few percent in 

the CEL calculations,  (due to the "sc'avengingtt - o r  uncovering; s e e  Section 

IX) of f ract ional  boundary zones,  we can expect trouble in  problems where . 

the flow may;be unstable. The effect of such perturbations in  sma l l  boundary 

zones can be minimized by using a "blending" calculation ( see  Section IX) 

instead of the c rude r  "scavenging" calculation. and a lso  by the use  of a f iner  

Eulerian mesh  relative to the Lagrange mesh .  By using a more refined 

Eulerian mesh  the Lagrange boundary "sees"  an integrated p r e s s u r e  field 

and es s entially any perturbations a r e  smoothed out. Experience has shown 

that sufficient accuracy i s  obtained when the zones of the Eulerian m e s h  a r e  

roughly one third the a r e a  of the zones of the Lagrange mesh .  

In CEL the re  i s  a l so  a provision f o r  the introduction of an ar t i f ical  

surface tension t e r m 9  which can act  selectively on any Lagrange-Eulerian 

interface.  Its effect i s  to damp out short  wave length i r regular i t ies  of the 

Lagrange interface (i. e. , wavelengths represented by two o r  th ree  Lagrange 

mesh  lengths) but does not damp longer wavelengths. This surface tension 

t e r m  was not u s e d i n  this second example nor  was the Eulerian mesh..size 

sufficiently ref ined,for  the s i ze  of the Lagrange mesh  that was used. (See 

Fig.  12a. ) 



In the third ,example ( see  Fig.  13a) we consider a .region occupied by 

t h r e e  different fluids (regions I ,  I1 and 111, and IV). Initially we suppose that 

a plane shock has  been established by a piston (region I) moving to  the right 

and that a t  t = 0 f o r  our problem the shock front has  just reached the dotted 

line separating regions I1 and III. Here  regions I1 and I11 have the s a m e  

equation of s ta te  but correspond to shocked gas in I1 and unshocked gas in 111. 

Region IV i s  a thin but dense piston which i s  f r e e  to  move when the resulting 

shock front  reaches i t .  

The boundary conditions f o r  this problem a r e :  a constant pressure '  P 
1. 

i s  maintained on the piston surface D and a ze ro  p r e s s u r e  on the f r e e  1 

sur face  D The remaining boundaries of the problem a r e  rigid walls 
4' 

(hatched. regions) hence the component of velocity normal  to  these surfaces 

i s  zero.  

0 
If we let p I  denote the initial density of region I ,  p O the init ial  density I1 

of region. 11, etc. , then the init ial  conditions a re :  

0 -  0 0 - 0 = 0 ;  and vI, 0 -  - vII 0 -  - vIII 0 - - vIV 0 = 0. UI - u11 ' 0 9 U1l~ - 'JIV 

F igure  13b shows the initial Eulerian and Lagrange gr ids .  F igure  13c 

i s  short ly  a f te r  t = 0 and we s e e  that the shock i s  continuing into region I11 

and that i t  i s  .reflecting f r o m  the rigid wall in the upper half of region, 11. 

In F ig .  13d we s e e  that the high p r e s s u r e  behind the reflected shock has 

resul ted in  flow around the corner  of the rigid wall and the shock proceeding 

into region I11 i s  no longer plane. 

In .Fig.  13e the reflected shock has reached the piston (region-I) and I' _ 

has  begtin to slow i t  down. In.Fig.  13f, the reflected shock has turned .the.. . 

upper half of region I around and i t  has  begun to expand to the le f t . ,  The 



curved shock has a l so  reached region IV and a ' shock  proceeds into the upper 

half of this region. 

In F ig .  13f the shock i s  through the upper half of region IV and the 

surface D i s  beginning to expand into a vacuum. In Fig.  .13g through 13i we 4 ' 

continue to follow the flow. We s e e  that the gas flow around the co rne r  has  

reached the x axis and produces a reflection of the flow and .a shock i s  

produced which stops the forward motion of the lower half of region I. The 

problem was discontinued a t  this t ime. 
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FOOTNOTES 

J. -8- 

.Work done under the auspices of the U. S. A.tomic-Energy Commission. 

'up to 7000 mesh  points a r e  provided fo r  in  the IBM 7094 vers ion  of CEL 

and up to  20,000 mesh  points can be used in  the IBM 7030 (s t retch)  version of 

the CEL code. 

'1t i s  c l ea r  that if the functions a r e  extended between mesh  points by 

higher o rde r  (o r  other) interpolating functions then a different approximation 

of derivatives i s  obtained. 
u1 + u 

 nothe her possibility i s  f o r  
u5 u6 

2 2 

4 ~ . n o t h e r  possibility i s  V 2  + f o r  
v5 + v7 

2 2 .  

5 ~ h e  fundamentalidentity corresponding to  (24) f o r  the axially symmetr ic  
(RJ)t 

c a s e  i s  v .  U - 0-a + --- 2 21/2 where R = (x  + y ) - - - - ( R J ) .  . 

6 
F o r  the axially symmetr ic  c a s e  (where R=:(x .~  +:y2)1/2) the t e r m  RJ replaces 

J and RJ i s  likewise interpreted a s  the volume of revolution of the boundary 

zone. 

7 ~ . c t u a l l y ,  f b r  those ~ 3 k . t  1/2,.4 + 1h)which a r e  ver t ices   of theLagrange  
1 1 

n 
line L ( s ) ,  we should use a boundary p r e s s u r e  consistent with the fact that . 

p r e s s u r e  i s  continuous a c r o s s  a contact discontinuity, but in  prac t ice  this i s  

difficult to  determine and using the Eulerian p r e s s u r e  has  proven to be 

sat isfactory.  

8 ~ n ( s )  i s  in  general  a contact discontinuity a c r o s s  which the p r e s s u r e  and 

the nprmal  component of velocity a r e  continuous. This implies  that the 

p r e s s u r e  acting on Ln(s) i s  a mass-weighted average of the Euler ian and 

.Lagrange pr .essures .  

' ~ o b e r t  Lelekier ( former ly  a t  LRL Livermore)  f i r s t  suggested and showed 

the usefulness of introducing an ar t i f ic ial  surface tension t e r m  ( in the s a m e  

,spiri t  ,as  the use  of an  ar t i f ic ial  viscosity) i n  o rde r  to study Taylor unstable 



Fig .  l a .  A s imp le  mult if luid p rob lem with the in i t ia l  ( t  = 0 )  condit ions.  

Ini t ial  dens i t i e s  for  reg ions  R P , .  . .R: a r e  p p ,  . . . p 5 ,  0 in i t ia l  veloci t ies  

a r e  z e r o ,  and in i t ia l  p r e s s u r e s  a r e  P P  = p20 = P: = p t  = P: = Po. 

The  p r e sc r i bed  boundary conditions fo r  t  - > 0 a r e  P i  r const .  on 1 and 

P1 > Po. The remain ing  boundary of R is a r igid wall.  Th i s  i s ,  u is the x 

component of velocity,  v is the  y component of velocity,  and u ( a ,  y ,  t )  = v(x ,  0 ,  t )  

= v(x, b, t )  = 0 .  

Fig I b. A poss ib le  in i t ia l  approximat ion of the p rob l em in F ig .  la 
using the  C E L  code.  

0 R = R(x ,y ,O)  = { < x , ~  > 10 - < x - < a 0 - < y - < b)  
0 and we choose  hi = R . 

L: approx imates  0 
R1 ; 

0 L2 approx imates  

0 L j  approx imates  0 
R4 ; 

E a p p r o x i i n a t e s A = R 0 ;  

EO approx imates  RO, u R: 



T'lle - jth ce l l  of a general . ,polygonal  cover ing m e s h .  
r e  l l u~nhe red  i n  ;r counter-c lockwise  d i rec t ion  ( x i , y i )  
y, 

(a ,  b), (a,bl, 

( a ,  b), (a, bI2 

The  N 

: i .  3. T h c  cl \ ladri lateral  wi th 've r t i ces  (x ,y ) .  i  = 1, 2 ,  3 , 4  in the x , y  plane 
1 

i s  t h c  m a p ' ( b y  the t r an s fo rma t ion  x = x (a ,b ) ,  y  = y(a ,  b ) )  of the s q u a r e  in the 
CL, i ?  plane.  W e  take the squa re  wi th ' i t s  s i de s  pa r a l l e l  to the a  and b  axes  
a n d  u,ith ve r t i c e s  ( a ,  b) ,  i  = 1, 2 ,  3 ,  4.  The point (x ,y) .  is the m a p  of (a, b ) .  

1 1 
( i . e . ,  x. 1 x(a bi) c t c . ) .  

I i '  



X X X X 
k - l  k .  k+ l  

G L L - ~ ~ U  -3152 

Fig. 4. A rectangular  mesh  defined by the straight l ines xkk = 0,  1,2,. . . , 
yip = 0,1,2 , . . . The latt ice points of the mesh  a r e  .the intersections x = 
y, = yQk, Q = 0, 1,2.. . Xk' 

Fig. 5. Numbering used in Definition 11. The dotted box with co rne r s  1, 
2, 3, 4 corresponds to  a momentum cell .  



Lagrange 
-1.i n e , 
L (s)pt nth 
time step. 

Fig .  6 .  A.n Eu l e r i an  region with a Lagrange  boundary.  ( I )  T h e  
n 

polygonal l ine  joining the  points L 0 ' L ,  L ,  L L LY5. LY7, and 

"79 
n i s  the.Lagi-ange 1:~nunc:lary L ( s )  a t  the  - nth t i m e  s tep .  ( 2 )  The  shaded 

n 
region including the boundary Ln(s )  i s  the  Eu l e r i an  f luid region E . 



F i g .  7 .  An en la rgement  of the c e n t r a l  por t ion of F i g .  6. 
n (1)  aC(k,4 ) i s  the polygon with ve r t i c e s  L 5 ,  L:, L Gk,l and t h e r e  is one 

boundary sequence assoc ia ted  with acn ( k , ~  ) which i s  

(2)  8c1'(k- 1,P) i s  composed of t h r e e  polygons with ve r t i c e s  ( i )  L n 
7 2 ~ g n ,  Gk,l ;  

n n I I li - (iii) L I 3  , ("1 L l o ,  L l 1  s Gk- 1,1, L 1 4 ,  G k - l , l + l ,  and t h e r e  a r e  t h r e e  boundary 

sequences  a s soc i a t ed  with a c n ( k -  llP ), namely,  

17 n n 
( 3 )  8C (k- 1 ,B - 1) i s  the polygon with ve r t i c e s  L 8 '  L;' L l ~ '  G k - l l l '  

G ,  ,  Gk,p - Gk,p and has  one boundary sequence assoc ia ted  with i t  namely 



Fig.  8. The p r e s s u r e  a t  the Lagrange-Euler ian in terface  i s  de te rmined  
f rom the Eule r ian  mesh .  The Lagrange line segment  joining j and j  + 1 
f o r m s  p a r t  of the bounderies of zones 1, 2, 3 ,  and 4.  Hence, 

F ig .  9 .  Numbering used in  Definition 111 



F i g .  10. Veloc i ty  ca l cu la t ion  a t  the ~ a g r a n g c  bounda ry  k = 0 .  T h c  p r e s -  
s u r e  i s  s u p p o s e d  known a long  the L a g r a n g e  l ine  k = 0 a n d  then  by ( 9 )  a n d  (10 )  



Fig. 1 1. Cathode-ray tube plot of Mach oo flow of a perfect gas past a 
rigid disk. The disk is  represented by the fixed Lagrange grid L1. 
(a) Shortly after t = 0 the shocked gas begins to expand into the cavitated 
region behind the disk. The bow shock i s  becoming established and begins 
to move out. 

Fig. 11. (b) The bow shock continues to move out. 



g I .  (c) Flow behind the disk begins to stagnate on the axis.  

Fig.  1 1  
extended. 

(d) The stagnation region behind the disk has become more 
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Fig. 11. (e) A slow circulation begins in the stagpation region. 

Fig. 1 1 .  (f)  This i s  essentially the steady-state configuration; we see  
that a slow circulation behind the disk has developed. 



Fig. 12. Cathode-ray tube plot of Mach co flow of a perfect gas past a 
dense (but compressible) metal sphere. (a) Initial configuration. The 
sphere i s  approximated by both the Lagrange grid and (the central portion 
of the sphere) by the Eulerian mesh. The Eulerian region outside of the 
sphere approximates the gas. 
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Fig. 12. (b) The flow of gas over the sphere shortly after t = 0. The 
initial conditions of the gas a r e  zero temperature (hence zero sound speed) 
and a uniform velocity parallel to the Z axis. The compressible sphere i s  
initially at rest  and at  zero temperature. The gas velocities a r e  plotted 
only at  every other vertical line in the Eulerian mesh. 



Fig. 12. (c) The bow shock begins to form and the sphere compresses as  
the transmitted shock proceeds into the sphere. Here the gas velocities a r e  
plotted a t  every other Eulerian mesh point. We see  velocities appearing in 
the Eulerian region of the sphere. 

Fig. 12. (d) In the start-up of the probleiz? a slight dent was produced on 
the leading edge of the sphere. Since the flow i s  Taylor unstable, this 
perturbation grows with time, and we see  a spike and a bubble forming. 



Fig. 12. (e) The transmitted shock has progressed m a r e  than halfway 
through the sphere. The instability on the leading edge has become more  
pronounced. 

Fig. 12. (f) Here we begin to plot the gas velocities at every Eulerian 
mesh point. 



Fig. 12. (g) We see that the amplitude has progressed beyond the 
~ l e r i a n  region of the sphere. The problem was discontinued. a t  this time. 
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Fig. 1 3 .  (a) Here we consider a region occupied by three different fluids: 

Regions I ,  I1 and 111, IV. Regions I1 and I11 have the same equation of state 
but correspond to different states of the fluid. 

RlAN REGION 

Fig. 1 3 .  (b) The initial position of the two Lagrange grids and the 
Eulerian mesh. 



Fig. 13.  ( c )  Shortly after t = 0: A reflected shock i s  developing and the 
initial shock continues toward the second Lagrange piston. 

Fig. 13. (d) The reflected shock produces a high pressure region, which 
produces flow around the corners. A s  a result of this flaw the shock that 
proceeds to the right i s  no longer plane. 



Fig. 13. (e) The reflected shock has reached the upper portion of the 
piston and has begun to turn it  around. 

Fig. 13. (f) The reflected shock has turned the upper portion of the left- 
hand piston around. The main shock has reached the second piston and a 
transmitted shock proceeds into it .  



Fig. 13. (g) The shock i s  through the upper half of the second piston and 
the f r ee  surface has begun to expand. 

-- 

Fig. 13. (h) The flow around the corner has reached the x axis and i s  
dcf lec t ed. 



Fig. 13. (i) The shock on the axis has now stopped the forward motion 
of the f irst  piston. The calculation was discontinued at this time. 




