
-«,„

ANL-7213
Mathematics and

Computers (TID-4500)
AEC Research and

Development Report

'

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue CFSTI PRICES

i Argonne, Illinois 60439

H. C.$ _11.--; MN
5 00 3-0

MULTISTEP INTEGER-PRESERVING
GAUSSIAN ELIMINATION

by

Erwin H. Bareiss

Applied Mathematics Division

.

9

RELEASED FOR ANNOUNCEMENT

IN NUCLEAR SCIENCE ABSTRACTS

May 1966

 LEGAL NOTICE
This report was prepared as an account of Government sponsored work. Neither the United

States, nor ule Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the acm-

racy. completeness, or usefulness of the informatioli contained in this report, or that the use
of any information, apparatus, method, or process disclosed in this report may not infringe

privately owned rights. or
B. Assumes any linbilities with respect to the use of, or for damages resulting from the

use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any em-

ployee or contractor of the Commisiton, or employ, e of such contractor, to the extent that

such employee or contractor of the Commission, or employee of such contractor prepares,
' disseminates, or provides access to, any informatioh pursuant to his employment or contract

with the Commission. or his employment with such c ontractor.

4,9
.rh Operated by The University of Chicago
 under

Contract W-31-109-eng-38
with the

U. S. Atomic Energy Commission

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

2

TABLE OF CONTENTS

Page

ABSTRACT., , • • • • • • , • • • • • .0. • • • • • • • • • . 4

4
I. EVALUATION OF DETERMINANTS O.0 . . • 4

II. INTECER-PRESERVING TRANSFORMATIONS FOR THE EXACT SOLUTION OF
SYSTEMS OF LINEAR EQUATIONS 9
A. Reduction of A t o Triangular Ferm. 9

1. Division-free AZgorithms 9

2. Fraction-free Atgorithms 13

B. Reduction of A t o Diagonal Form. 15

III. ,FRACTION-PRODUCING AND MULTIPLICATION-FREE ELIMINATION
M E T H O D S. · · · · · · · · · · · · · · 18

IV. EFFICIENCY OF THE INTEGER-PRESERVING .ALGORITHMS 20

V. REMARKS ·ON PIVOTING.0 22

.
ACKNOWLEDGMENT. 24

1

3

LIST OF FIGURES

No. Title Page

1. Flow Chart for the Algorithms.(8),.(11), and .(12) 12
:

2. Flow Chart for the Algorithm (21). 19

3. Pivot-searching Subroutine to Algorithms (2.12) and (2.21),

r _- (k-2) -r'\Replacing Box er-- co --181 in Figs. 1 and 2. 23

.,

/2
{

\

4

MULTISTEP INTEGER-PRESERVING
GAUSSIAN ELIMINATION

' by

Erwin H. Bareiss

ABSTRACT

A method is developed which permits integer-preserving elimination
in systems of linear equations, AX = B, such that (a) the magnitude of
the coefficients in the transformed matrices is minimized, and (b) the
computational efficiency is considerably increased in comparison with
the corresponding ordinary (single-step) Gaussian elimination. The al-

gorithms presented can also be used for the efficient evaluation of de-
terminants and their leading minors. Explicit algorithms and flow charts
are given for the two-step method. The method should also prove superior
to the widely used fraction-producing Gaussian elimination when A is-

nearly singular.

.

I. EVALUATION OF DETERMINANTS

Let A be a square matrix of order n with elements aij, whose deter-
minant is

all a12 a13 ··· aln

a21 a22 a23 ··· a2n

Al = a31 a32 a33 ··· a3n • (1)
............

anl an2 an 3 • • • ann

The matrix A will be reduced to triangular form by integer-preserving
Gaussian elimination. Assume for convenience of explanation that pivot
searching with consequent interchange of rows is not considered. Then we
define

(0) '
I A (·0) 1 = |A l (aij = aij), (2)

and

fo) (O) (0) (O)
all a12 a13 ·o aln

(1) (1) (1)
0 122 a23 • a2n

IA(1) 1 1
(1) (1) (1)

o a32 a33 •·· a3n (3)n-1

...

(1) (1) (1)
0 an2 an3 "' ann

5

(1) (1) (1)
a22 a23 0. a 2n

(1) (1) (1)

IA(1) = 1-
a32 a33 , a3n

1 (o)In-2
 (3) Contd.

lall J
'

(1) (1) (1)
an2 an 3 .. ank

where

(0) (0)

(1) all alj
aij =

(o) (O) '
(4)

ail aij

Continuing in an obvious way, we have

(O) (O) (O) (O) (0)

all a12 ··· alk al,ktl ··· aln
(1) (1) (1) (1)

0 a22 ··· a2k a2, ktl ··· a2n

|A (k) = 1
......

f (0)ln-1 r-(k-ir-k (k) (k)Lall J "'Lukk 0 0 0 ak+1,k+1 0.0 ak+1,n

......0

(k) (k)
0 0 0 ak,k+ 1 ... ann

_(k) (k)

uk+1,k+1 ... ak+1,n

1
.e. ...

- [a fl"-2...[«i -11].-,-1 -(k) (k)

un, k+1 "' ann
:5)

where

(k-1) (k-1)

(k) akk akj (6)

aid = (k- 1) (k- 1)
aik aij

and finally

(0) (0) (0)
all ••• al,n-1 aln

1 ' . (n-2) (n-2)
l A(n-1) 1 - 0 an-1,n-1 an-1,n

[«f:1 1
... (n- 2) 1,

n-1 11

0 0 aym-n- 1, A-li (n- 1)

1 (n-1) (7)= annr (O)ln-2 f (n- 3) 1lal 1 j " ' lan-2, n-2.1
e

6

We note that |A| = |ACO) | = ... = |ACk) 1 = ... = IA(n-1) I is an integer when
(0) (0) (k-1)

all a.. are integers. The same is true for all , ···,
akk ...,

1J

(n- 3)
an-2,n-2'

and the determinants

.

(k) (k)

ak+1,k+1 "' ak+1, n

... (k = 1, 22, ..., n-1). (8)

(k) (k)
a .. a
n, k+1 nn

Thus by (5) the determinants (8) are divisible by

f [al:1-2...[ack-,1"-'-1}.
In particular, for·n = 3, we have

|ACO)| = |A(1) 1 = IA(2) 1,
4

or explicitly

(0) (0) fo)
all a 12 a 13

a(1) a(1) (2)22 23
(O) (O) (0) 1 a33

a21 a22 a23 = - - (9)
a(0) a(1) a(1) (0).
11 32 33 all

(0) (0) (0)
CZ 31 a32 a33

Because this relationship holds for every determinant of order 3, it is
natural to replace (6) by the integer-preserving transformation

(k- 1) (k-1)
Ck) 1 akk akj

a.. = · (10)
1J (k-2)

ak-1, k-1 (k-1) (k-1)

aik a..tJ

(- 1) 1 (0)
Letting a = 1, we have now, instead of (5), IA 1 = 'Al,

00

(0) (0) (O)
a11 ··· al,ktl "' al,n

(1) (1) (1)

0 a22. . ' a2, ktl ... a 2 n'
.

| A (k) = 1. '
Ck) (k).a ... a

.(0) .1(k-2) FaCk-·1)1 n-k k+1,k+1 k+1,n
u11 "'Wk-1,k-]i kk J ..0

(k)
'.

(k)
0 a ... a

n, k+1 n, n

(11)

7

(k) (k)

ak+1, k+1 0- ak+1,n

. |A (k) = 1F.(k-1)ln-k-1 (11) Contd.
l*kk 1

(k) (k)

an,k+1
... a

nn

and, instead of (7),

(n- 1) (n- 1)
|A | = ann · (12)

(0)Since (12) is true for any n and any choice of the a.. . it follows that we
have for n=k+1 ZJ -

(0) (0) (0) (0)
all a12 "' alk, alj

(0) (0) (0) (0)
a21 a22 "' a2 k a2j

(k)
a.. = (13)lJ

-,

(0) (O) (0) (0)
aki ak2 -0 akk akj

(0) (0) (0) (0)a. a, ... a.. a..
11 12 1X ZJ

(k- 1)
In particular a (k = 1 ..., n) are the main principal minors of A, with

kk
a(n-1) = lAI. Thus (10) can be used as a simple, integer-preserving, recur-nn
rence formula to calculate determinants and to investigate the signature of
A. Its application among others is in stability theory (Hurwitz Criterion).

(k)
Because the right side of (13) is a determinant, we can apply (11) to

a.. to obtain the representation
1J

(E) (£) (£)
a£+1,£+1 "' a£+l, k GE+l,j

(k) 1a.. = (14)

1,7 facE- 1,1 1<-2 (£)l £1
. ak,£+1 ,00 akk aki

(£) (E) (f)

ai,£+1 aik a..
lJ

For £ = 0, (14) reduces to (13); for £ =k -.1, (14) reduces to (10); and,
(k) (k)of course, for E = k, (14) is simply the identity a.. = a.. .
ZJ KJ

8

We have shown that the transformations (10) yield successively, as

diagonal elements, the leading principal minors and thus lead gradually to
 the calculation of the determinant of A. Since these minors are the small-

est numbers (in absolute value) that can reasonably be expected from a gen-
eral integer-preserving transformation, there is little incentive to search

(k)for formulas that yield smaller a.. than those given by (10). Instead, a
ZJ

(k)
useful question, which can be answered affirmatively, is: Can the a.. be

ZJ
computed more efficiently than by the recurrence formula (10)?

(£) , (k)
Once all a.. s are known, we can determine any a.. (k > £) by (14).

ZJ ZJ
If we calculate the elements of a row, which means that i will be fixed,
the determinant in (14) can be expanded by the last column. We see then

(£,1
that the cofactors of a are common to each element of the row and there-

kj
(£)

fore must be calculated but once for each row. Indeed, the cofactor of a..
1J

is even independent.of both i and j. After the cofactors are determined,
there will be only (k.- £ + 1) multiplications necessary to advance·from
(£) (k)a. . to a. . . If we choose to calculate the new elements of a column in-
1J KJ
stead of a row, which means that j will be fixed instead of i, the deter-
minant in (14) can be expanded by the last row and conclusions corresponding
to those above can be reached also.

Furtherbore, aZZ the cofactors are divisibte by aCE-1)
k-2.-1

This is
££(g) (k-1)

obvious for the cofactor of a.. because it follows from (14) for a
1J kk

For the rest of the cofactors it is sufficient for proof to note that since
interchanging rows or columns does not affect the absolute value of a deter-
minant, the matrix A could have been arranged so that any one of the border

(£) (£)
elements a. or a. (£ +1 s m s k) takes the place of the. present corner

lim mo

(£)
element a.. .

lJ
(k)

Thus, a.. could be calculated by an integer-preserving recurrence for-
lJ

mula of the form

(k) r (£) (£) (i . (£) Cl,)1 / (t- 1.1

aid = kk aij + m·=L+1 Cmj amj agE (15)

or

(k) r (£) (£)
1

,(,1«(,1/«:&-,t.
(16)aij = ckk aid Un tm 1m=£+ 1

(g) (£)
where the c. .c. are the divided cofactors discussed above. The last

mJ
-

'Lm

two formulas have the advantage of keeping the absolute value of the numer-

ator as small as can reasonably be expected in general. This statement
means that matrices exist such that dividend and divisor in (15) and (16)
are relatively prime.

9

From the multitude of transformations given by (14) we restrict our-
selves in what follows to £ · =k-1 and Z=k-2.

Note.can be taken of the following further property, which follows
(k) (k)from (13) or (14): If A is symmetric, then a.. = a.. for i, j > k.12 Ji

II. INTEGER-PRESERVING TRANSFORMATIONS FOR THE EXACT
SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

Let a linear system of equations be given by

AX = B, (1)

where

 all . a ln\
A = (aij)

... ... P (2)

\a n 1 . . . ann

 al,nt'i· ··· al

B = (aid) =
... (3)

 ansn+l...0 a

and

 Xll

"'

Xl, m-"\
X =1 : '. (4)

(41 ··· xn,min)

To solve (1), A shall be reduced

a. to triangular form with subsequent back substitution,

b. to diagonal form

such that the elements of the reduced system are integers, provided the

elements aij of

AC O = A 0 B (A augmented by B) (5)

are integers.

A. Reduction of A to Triangular Form

1. Division-free AZgorithms

The simplest reduction algorithm is given by Eq. (1.6).* The re-
currence formulas are

*Equation (1.6) means Eq. (6) of Section I.

10

(0)
a.. = a..
12 ZJ

(k- 1) (k-1)
akk akj

(k)
a.. = (6)

1J (k- 1) (k- 1)
aik a..lJ

(k = 1, 2, ..., n - 1) (i =k+1, ..., n)
(j =k+1, ..., n, n+1, ..., m).

The advantage of this formula is the absence of any division operations.
(k)

The disadvantage lies in large absolute integers a. . .
ZJ -

The next-simplest division-free transformation is given by
Eq. (1.14), if the divisor is disregarded and Z=k -2. The result is

(k-2) (k-2) (k-2)
ak-1, k-1 ak-1,k ak-1,j

(k) (k-2) (k-2) (k-2)

aid = ak, k-1 akk akj
(7)

(k-2) (k-2) (k-2)

ai, k-1 1 K ZJ

a., a..

It is also instructive to obtain (7) directly flom (6) instead of
from (1.14) by applying (6) twice as follows:

(k- 1) (k-1)
akk akj

(k)
a.. =
12 (k-i) (k-1)

a€k a..1J

(k-2) (k-2) (k-2) (k-2)) < (k-2) (k-2) (k-2) (k-2))= ak-1, k-iakk - ak-1,1<ak, k-i (ak-i,k-iaid - ak-i,jai, k-i)

(k-2) (k-2) (k-2) (k-2))/ (k-2) (k-2) (k-2) (k-2)\

_ ak-1,k-iaik - ak-1,kai, k-1 1(ak-1,k-ial<j - ak-1,jak, k-1 1
(k-2) (k-2) (k-2) (k-2) (k-2) (k-2)

= (ak-1, k-iakk - ak-1,kak, k-1 ak-1,k-laij

C (k-2) (k-2) (k-2) (k-2)) (k-2) (k-2)
0

_ <ak-i, k-ia€k - ak-1, kai, k-1 1 ak-1, k-iakj

(k-2)

(k-2) (k-2) (k-2) a(k-2) (k-2) (k-2) (k-2)1
_ ak-1, k-lakk ak-1,jai, k-1 k- 1, kak, k- i ak- 1, jai, k- 1]

(k-2)

(k-2)a(k-2) (k-2) _ (k-2) (k-2) (k-2) (k-2)1
+a

k- 1, k-iaik k-1, jak, k-1 k- 1, kai, k-lak- 1, jak, k- 1_ 0

11

The two products indicated by brackets [] cancel. The remaining terms have
(k-2)

the common factor a It then follows easily that for (6)
k-i,R-1.

(k-2) (k-2) (k-2)
ak-1,k-1 ak-1,k ak-1,j

.

(k) (k-2) (k-2) (k-2) (k-2)a.. = a
12 k-1,k-1 ak, k-1 akk akj

(k-2) (k-2) (k-2)
a..ai, k- 1 aik ij

(k-2)
Disregarding the factor a in this equation yields (7). Therefore,

k-1,k-1
(k) (k-2)the coefficients a.. of (7) are smaller by a factor a and. in addi-
MJ (k-2)

k-1,K-1 '
tion, can be obtained from a.. more efficiently than those of (6) because

1J
two terms cancel and need not be calculated. This fact also implies greater

numerical stability if the a.. are not integers.
1J

To save space in the fast memory of an electronic computer, the re-
cursion formulas should be arranged in such a way that overwriting is pos-
sible. Because (7) implies that two iteration steps are taken at once, care
must be taken to sequence the calculations properly. The recursion algo-
rithm, transforming one row at a time, is given below by Eqs. (8); and the
proper sequencing of the calculation is determined by the flow chart shown

in Fig. 1. 7
(k-2) (k-2)

(O) (k-2)
ak-1,k-1 ak-1, k

•C =
aij = aid, 0 (k-2) (k-2)

ak'k-1 akk

(k-2) (k-2) (k-2) (k-2)

(k-2) (k-2)ak-l, k-1 ak-1,k ak'k-1 akk
C. =- ; C. =
Zl

(k-2) (k-2) .
(k-2) (k-2)

12

ai, k-1 aik ai, k- 1 aik > (8)

(k) (k-2) (k-2) (k-2) (k-2) (k-2) (k-2)
a.. =a +a c +a
12 ij co kj il k-1,jc€2 '

f o r i=k+1, ..., n; j=k+1, ..., m;

(k-2) (k-2)

* ak-1, k-1 ak-1,£(k-1) (k)

ak

=
= ak f , for £ =

k, ..., m.
(k-2) (k-2)

ak'k-1 aki
--/

12

START ----1* a.. + a . (i = 1, ..., n; j = l lilI m) ---* 2 + k EXIT/J tj

"

. noV
(k-2) yes no

c 4 k s n-1, ----0, k=n
0

a
yes

k+i

(k-2) (k-2)

Cil ; c€2
£ +1+i k + 2-* k

a

yes

no
k+j £ +1+2 E m,

V

j+1+j -0 J.k) (k-1)
 akR%J

L. A nornorj= m;\ yes yes
h i =n, . k+EC /

Fig. 1. Flow Chart for the Algorithms (8), (11), and (12)

It is worthwhile to visualize the effect of the transformations (8)
(k-2) (k)

on the matrix A The equation for a.. , when formally extended to
iJ (k- 2)j=k-1 and j=k, reduces the elements a.. (i > k) to zero for two col-

(k-2)
. ZJ

umns, and leaves the elements a unchanged. Once the elements
Ck) kj (k-2)

a.. (i > k) have been determined, the element a is transformed to zero
KJ k, k- 1(k- 1)by the formula for a This sequence in calculating the transformation

k£
(k-2) (k-2)

is, of course, required only because the elements ak-i,j' akj are needed
(k) .to calculate a.. (1 > k), and space requirements are minimized in the fast
1J

memory by overwriting and avoiding unnecessary working storage.

By replacing the third-order determinant by a fourth-order deter-

minant, one can develop a simultaneous, three-step, division-free, elimina-
/ tion algorithm similar to the two-step algorithm (8), and so on. Each of

these algorithms will produce smaller integers in the final triangular
(n- 1)

· matrix A than the previous algorithms.

13

2. Fraction-free AZgorithms

The direct use of (1.14) also yields integer-preserving transfor-
mations, but requires divisions in each step. Letting £ =k-l i n (1.14)yields (1.10) , and the algorithm corresponding to ·(6) is as follows:

(-1) (O)

aoo 1, aid = air

(k-1) (k- 1)
akk akj

(k)b.. ; , (9)
zj (k-1) (k-1)

aik a..1J

(k) (k) /(k-2)a.. = b /a
1 0 ij / k- 1,k- i; .

(k = 1 ..., n-1; i=k+1 , ..., n;n; j=k+1, ..., m).

Letting Z=k-2 i n (1.14) yields

(k-2) (k-2) (k- 2)
ak-1,k-1 ak-1, k ak-1,j

(k) 1 (k-2) (k-2) (k-2)

aid = L(k-3) 12 ak, k-1 akk akj
(10) ·

rk-2, k-2]
(k-2) (k-2) (k-2)

a..ai, k-1 aik ij

(k-3)
According to Section I, the minors of order two are divisible by ak-2,k-2.
Thus, we have the following two algorithms (restricting ourselves, as be-
fore, to row-by-row transformations only). The first alternative is as
follows:

./

(-1) (0)

aoo = 1, aid 1J

(k) (kz2) (k-2) (k-2) (k-2) (k-2) (k-2)
bij = aid CO + a. C. +a

Rj 1.1 k-1,je€2 ;

(k) (k)/f (k-3) 12

aid = bid/ \3k-2,k-21
i , (11)

(k-1) (k-2) (k-2) (k-2) (k-2)
b

0 kg = ak- 1, k- iak£ _ ak' k- iak- 1, li

(k-1) (k) (k-i)/ (k-3)

ak£ 7 ak£ = bk£ / ak-2, k-2' .

14

(k-2) (k-2) (k-2)
In this algorithm, the GO , cil ' c€2 are computed as in (8). Also,

the range for i, j, k, £ is the same, and the sequence of computation is

„ prescribed by the flow chart shown in Fig. 1. In writing down (11), we have
emphasized that divisions must be carried out as the last arithmetic opera-

(k) (k)tion in determining a.. , ak£ ' to preserve fraction-free (i.e., integer)
- ' ZJarithmetic.

(k-3)For the second alternative, we divide the c's of (11) by a
(k)

k-2, k-2
before computing a. . . This has the advantageous effect that the
(k) 10b. . of (11) will be replaced by smaller absolute integers. The net effect

f (k- 3) 1 #4in computational efficiency is: one multiplication to obtain lak-2, k-2.|.
is saved, And one division per k-recursion and two divisions per €-recursion

are added. If one is willing to accept this penalty in efficiency (which
for large systems is relatively small), the following algorithm evolves. In
each equation, the division, if any, should be the last arithmetic operation.

(k-3) (k-2)
We also take advantage of. the fact that ak-2, k-2 = ak-2, k-2'

1
a< 0) 1 ; a<.0.) = a. .;00 KJ XJ

(k-2) ((k-2). (k-2) (k-2) (k-2)\ (k-2)

Co (ak- 1, k-iakk - ak. 1, kak, k- 1)/ ak-2, k-2;

(k-2) ((k-2) (k-2) (k-2) (k-2)\ / (k-2)

Cil (ak-1, kai, k-1 - ak-i, k-ia€k ak-2,k-2;

(k-2) a(k-2)
(k-2) (k-2) Ck-2)\ / (k-2)

c€2 k, k-ia€k _ akk ai, k- 1)/ak-2, k-2; * (12)

(k) a(k-2)

(k-2) (k-2) (k-2) (k-2) (k-2)\ / (k-2)

aid id co + akj cii + ak-1,jc€2)/ak-2, k-2

(f o r i=k+1, ..., ni· j=k+1, ..., m);

(k- 1) 1 (k-2) (k-2) (k-2) Ck-24 / (R-2) (k)

akE = (ak-1, k-iaki - ak-1,gak, k-1//ak-2, k-2 = akg

(fort·=k,...,m). 3

Again, the, sequence of computation is prescribed by the flow chart in .Fig. 1.
(k-1)- _ (n-1)

As shown in Section I, the elements akk = akk (k = 1, ..., n), obtained

by (11) or (12) , are the leading principal minors of A;. in particular,

a (n- 1) = lAi.nn

In a similar manner, multistep elimination algorithms can be de-
veloped from (1.14).

15

After A has been reduced to triangular form, the system (1) can be
solved for X by back substitution, using either rational arithmetic, or an-
other· suitable special algorithm. The net effect is, of course, the reduc-
tien of A ,to diagonal form.

B. Reduction of A to Diagonal Form

The extension of the.one-step algorithms (6) and (9) to achieve reduc-
tion of A to diagonal form is simply accomplished by applying the transfor-
mation also to the elements of the rows 1 to k - 1. Corresponding to (9),
we have the algorithm

-

(- 1) (O)
co O 1, aij = aid;

(k) (k- 1) (k-

1) (k-1) (k-1) / (k-1)
aid akk aid - akj aik //ak-1,k-1 ,

(13)

(i 0 k; j=k+1, ..., m);

(k) (k-1)
akj akj

/

We purposely omitted

(k) (k)

aii akk
(i=l ..., k ·- 1). (14)

The algorithm (13) needs some explanation. To begin with, the last equation
in (13) states that only row k remains unchanged; in particular, that
(k) (k-1) (k-2)

akk = akk . Applying this identity to the divisor ak-i,k-i of (9), we

(k-2) (k-1)

have written for the.divisor in (13) not ak-i, k-1 but ak-1,k-1. Assume now

(k-i)
that (14) is true for (k - 1). Because a = 0 for j < k, it follows

kj(k)from the second line of (13) for a. . (i < k), from (14) for .(k - 1) and from
the last equation in (13) that

t1

(k-1) (k-1) (k-1) (k-1)
(k) akk aii _ 0 akk ak-1, k-1 (k- 1) (k)

=
ali

=
(k-1) (k-i)

=
akk =.akk

ak-l,k-1 ak-1, k- 1

Since this equation is true for k = 2, (14) is true. Thus, when k = n,

A (n) .0 B (n) should have the form

- a(n) 0,0,0
(n) (n)

nn al,A+l"'alm

A(n) 0 8(n) = : (15)

fn) (n) (n)
0 ann an3n+1"'anm

16

(n) (n- 1)
where a =a = |A|. Then the solution to (1) is given by

nn nn

CA) CE) (16)
mra = ar, n+8/ nn

- Note that the numerator and denominator in (16) have the same numerical
values as if (1) were solved by Cramer's rule.

However, algorithm (13) as presented above yields not the matrix (15)
in the fast memory but, after proper identification of the actual operations,

L(0) (1) (2) (n- 1) (n) (n)

 a<0) (1)
(2) ·(n- 1) (n) (n)

ull a12 a13 "' aln al,n+l "' alm

21 a22 a23 "' a2n a2'n+1 "' a2m

(O) (1) (2) (n- 1) (n) (n)
(17)a31 a32 a33 "' a3n a 3' n+1 ' ' ' a 3m '

0

< a(0) a(1) a(2) .(n-1) (n) (n)
<nl n2 n3 nn n, ntl nm

a a ... a

and the solution of (1) is then given by

= a(n) la(n-1) (18)
rs r,n+sf nn '

(k- 1) .
which is identical to (16). The elements akk

in (17) are now the leading
principal minors of A, as given by (1.13).

Next, we implement the two-step algorithm (12) to yield a reduction of
A to diagonal form. Assume diagonalization has been achieved up to

(k-3) (k-2).
Then the application of (10) to the a.. 's of all rows except

ak-2, k-2'
i=k-1 and i=k yields the matrix

(k-2) ' Ck)

ak-2, k-2 ak-2, k+1 ' '
00

(k-2) (k-2) (k-2)
.0

ak-1,k-1 ak-1,k ak-1,k+1 '00
(19).

(k-2) (k-2) (k-2)
... 0

ak'k-1 akk ak, k+1

(k)00
ak+1, k+1 "

0 :

17

(k-2)
The element a- in (19) is then transformed to. zero by the'last equation

R, k-1
of (12) to yield

(k-2)
ak-2

00

(12-2) (k-2) (k-2)0
ak-1,k-1 ak-1, k ak-1,k+1 "'

(20)
(k- 1) (k-i)0 0 akk ak'k+ 1

00a(k)

k+1, k+1

(k-2)

It remains to transform ak-i, k to zero. We note that in (20),

(k-2) (k-1)
ak-1,j = ak-1,jo

(k)But then, (13) can be applied to calculate a.. for i=k-1.
1J

To terminate the iteration process, 'we will have to distinguish as be-

fore between n even and n odd and omit the appropriate algorithms which be-
come unnecessary. The final matrix A(n) e B(n) again has the theoretical

appearance (15); and the.actual contents of.the memory cells of the original
(0)

a.. are given by (17). The solution of (1) is given by (18).
%J

Thus we have the following algorithm, where the division, if any,
should be the last.arithmetic operation:

(O) (O)
a = 1, a.. = a..;00 12 ZJ

(k-2) ((k-2) (k-2) (k-2) Ck-2))/ (k-2)

co (ak-1, k-iakk - ak-1,kak, k-1)/ak-2, k-2;

(k-2) ((k-2) (k-2) (k-2) Ck-2)) / (k-2)

Cil \ak-1,1<ai,k-1 - ak-1,k-ia#k)/ak-2,k-2;

(k-2) ((k-2).(k-2) (k-2) Ck-23) / (k-2)

c€2 (ak, k- laik _ akk ai, k-1)/ak-2, k-2; (21)

(k) ((k-2)c(k-2) (k-2) (k-2) (k-2)((k-2)) / (k-2)
a.. la
tJ C ij 0 + akj cil + ak-1,j f2 /ak-2, k-2

for (itk, i. tk-1; j=k+1, ..., m);

(k- 1) ((k-2) (k-2) (k-2)

(k-2)%12»2) Ck)akp (ak-i, k-iakp - ak, k-lak-1, k-2, k-2 =.akp

(p =k,..., tn);

18

-

(k) ((k-1) (k-2) (k-1) (k-2)\ /(k-2)
ak- 1, q = (ikk ak- 1, q - akq ak- 1, k | ak- 1, k- 1

(q =k+1, ..., m);

and finatzy if n is odd , (21) Contd.

(n) (n- 1) (n- 1) (n-1) (n-1)
a..

= <ann
a.. -a a

lJ tj nj in n-1,n-1jlat,-1)
(i = 1,2, ..., 'n -1,j=n+1, ..., m).

*

(k) (k)
Again we have omitted 'a. . =a (i = 1, ..., k - 1). The sequence of com-zz kk
putation is prescribed by the flow chart shown in Fig. 2.

In a similar way, one can construct three-step elimination algorithms,
 nd so on.

III. FRACTION-PRODUCING AND MULTIPLICATION-FREE ELIMINATION METHODS

For completeness and comparison, it should be recognized that one can
improve the efficiency·of the elimination by reducing diagonal elements to
unity, but thereby sacrificing integer preservation:

(k) (k- 1)/ (k- 1) (k) (k-1) (k- 1) (k)= a.. (1)
al<j = akj / (11<1< ; Ctij 1.3 - aik akj ·

Several equivalent techniques have been devised for the proper utilization
of the Gaussian algorithm (1) to bring a square matrix into triangular
form. f All use (m - k) divisions and (m - k) (n - k) multiplications and
subtractions each to obtain A (k) from A (k- 1).

The two-step algorithms of the previous sections can be reduced to

(k- 1) (k-2) / (k-2)
ak- 1,j ak- 1,#ak- 1, k- 1 (j = k,..., m);

(k- 1) (k-2) (k-2) (k-i)
a. . akj - ak, k-iak-i,j (j = k,..., m);
KJ

> (2)

(k) (k-i) / (k- i)

akj akj / akk (j =k+1, ..., m);

(k) fk-2) (k) (k) (k-i) (k-2)a.. a (j=k + 1, ...,m);
tj ij - akj ci - ak-1,jai, k-1

.

where

(k) (k-2) (k- 1) (k-2)
C. =

aik _ ak- 1, kai, k- 1
(i=k+1, ..., n).

1

*M. H. Doolittle (1878), T. Banachiewicz (1938), and P. D. Crout (1942).

19

START b a.--* a . (i = 1, ..., n; j = l. m) EXIT 4
%J KJ

4 A

0+k

yes

(k-2) noc 4- k+2+k +Eff_ k<n-1 7 D k = n,
0

+ yes 1 ;-
no

k+i q=m, 0 + i

T 1
I€ +1+i (kj

ak- 1, q ----t € +1+i

--3no- i
>n, 4+1+q i = n, 1

yes

= 1 1
no

1+i k+q n+j
86

yes wV '1=

- i =k- 1 7 no p =m, j + 1 + j -
yes

no

(k-2) (k-2)
Ck- 1) a (n)

cil : ci2 akp N

t

k+j --0 P+1+P j = m?
yes no

j + 1 + j 4- : i+P

1

a(k)
1J

j = m?
yes no

Fig. 2. Flow Chart for the Algorithm (21)

20

(k-2) (k)
For the reduction of A . to A by this arrangement, both (1) and

(2) need the same number of arithmetic operations, namely 2(m - k) + 1 divi-
sions, and 2(m - k)(n - k) + (n - k) + (m - k) + 1 multiplications and sub-
tractions each. In (2), as against (1), only about half the number of new

(k)words need to be addressed to obtain a new element a. . . But this advantage
1J

is balanced by the need for a more complicated algorithm (2). Thus, under
the assumptions of this section, no significant advantage can be expected by

using (2).

The following multiplication-free algorithm may also be of interest.

We start by dividing each row by its first element and then subtract the
first row from all other rows. This transformation makes all elements of
the first column zero except all, which is unity. Then, we divide rows 2
to n by a€2 and subtract row 2 from. all others below, and so on, to give

-

(k-#) (k-1)/ (k-1)

ai j = ai j / aik (j > k);

> (3)

a(k.) = aCk-li) - J.k.-41 (i, i , k) ;ZJ tj KJ
*

where

(k) (k-)
akj = akj '

(k- 1) (k)
of course. To transform A into A , there are (m - k) (n - k+ 1)
divisions and (m - k) (n - k) subtractions but no multiplications necessary.
For modern computers, which divide as fast, or nearly as fast, as they mul-
tiply, (3) is better suited, for the pivoting sweep and division sweep can
be combined into a single sweep. The algorithm (3) can also be used to

(n)
transform A into diagonal form with a.. = 1 (i = 1, ..., n) by changing%1
(i > k) into (i 0 k).

IV. EFFICIENCY OF THE INTEGER-PRESERVING ALGORITHMS

(k-1) (k)
To transform A into A in the process of reducing A to triangular

form, the one-step integer-preserving methods need

2 (m ·- k) (n - k) muZtipZ€cations,
(m - k) (n - k) subtractions,

and, unless we choose the division-free algorithm (2.6),

(m - k)(n - k) divisions.

21

Ck-2) (k)
To advance from A to A , we need

4 (m - k) (n - k) + 2 (n - k) + 2 (m - k) + 2 muZtipZ€cations,

and

2 (m - k) (n - k) + (n - k) + (m - k) + 1 subtractions and divisions, if any.
(k-2) (k)To advance from A to A , the corresponding two-step method (2.12)

uses

3(m - k)(n -k)+ 4(n -k)+ 2(m -k+1)+2 multiplications,

2(m - k) (n - k) '+ 2(n - k) + (m - k + 1) + 1 additions or subtractions,

and

(m -k) (n-k) + 2(n -k) + (m -k+1) + .1 divisions.

Algorithm (2.11) uses 2(n - k) + 1 divisions less and one multiplication
more. Algorithm (2.8) uses no divisions at all.

For the fraction-producing algorithms of Section III, the algorithms
(3.1) and (3.2) need

2 (m - k) (n - k) + (n - k) + (m - k) + 1 muZtipZ€cations,

2 (m - k) (n - k) + (n - k) + (m - k) + 1 subtractions,

and

2 (m - k) + 1 divisions

(k-2) (k)
each to transform A into A Algorithm (3.3) needs no multiplica-
tions, the same number of subtractions, but

2 (m - k) (n - k) + (n - k) + 3 (m - k) + 2 divisions.

Thus, for large mn, the proportions of the number of multiplications in the
one-step integer-preserving to the two-step integer-preserving to the

fraction-producing elimination algorithms are about 4:3:2. A comparison of
the number of divisions does not carry much weight, since they were intro-
duced to obtain absolute smallest integers and are optional. One can post-
pone divisions until overflow forces a reduction in the magnitude of the
integers.

The integer-preserving algorithms (2.12) and (2.21) can be used to
devise an absolutely stable general elimination routine. Assume that»
through a preliminary transformation the elements aij became of roughly
equal order of magnitude. Then the a.· are truncated and the decimal point

1J
(O)

removed. The new elements are integers and designated by a. . . The matrix
1J

(,39 is then subjected to (2.12) or (2.21). We note that for noninteger

a..'s, initial truncations can never be avoided on computers that work in
1J

22

the binary system, unless the aij's are given as binary numbers, and then
only if they can be represented accurately within a given word length. Be-
cause (2.12) and (2.21) yield in the general case the absolute smallest

possible integers, the largest magnitude of any auxiliary number is of order.
max det(aij). This value can be used to estimate the maximum integer word

.· length. Tne algorithms of Section III, in contrast, can never be reduced to
/ (0)\

a routine, free of rounding errors after (a j is given.

If floating-point arithmetic is used, and the aij's are given as exact
fractions with only a few significant figures relative to the total word
length, (2.12) and (2.21) can be expected to yield more accurate solutions
than (3.1) or (3.3).

We conclude with the following remark: Algorithm (2.12) was originally
developed to provide for expansion of a determinant of general commutative

elements (such as polynomials, or elements of an Abelian group, etc.). Its
further usefulness in numerical application is most welcome.

V. REMARKS ON PIVOTING

In any single-step (i.e., ordinary) Gaussian-type elimination, pivoting
(k-1)

becomes necessary when, in the course of computation, akk = 0 in (2.6),
(2.9), (2.13), or (3.1).

In the two-step·elimination methods, pivoting becomes necessary when
(k-2)

el = 0 in (2.12) and (2.21). The fifth line in each of these equations
(k-2)

shows that in this case the a.. would not participate in the transforma-
1J

tion. Thus we have to interchange row k and/or k-1 with rows i>k o f
(k-2) (k-2)

A until we obtain a el 0 0. If this is not possible, A is singular.
Because single-step elimination is used in transforming row k, the element

(k-2)
ak-1,k-1

must also not be zero. Therefore, it is recommended to add a

pivoting algotithm to (2.12) and (2.21). Of several possibilities, one may
follow the flow chart given in Fig. 3.

If A is symmetric, it is recommended that corresponding rows and

columns are interchanged simultaneously to preserve the symmetry of the
transformed matrices ACk)

..

. 23

0,11111 = 0111>

yoo
(k-2)

no
k.8 1

li

yes < a(k-2) = 0, no -
Interchange rows s and k - 1:

D k+t

< 6, k- 1 - « ,2 · - a k.-2) (i = L. . . , m)6

.

6+1+s t+1+t
, bt = ak- 1, k-iatk _ ak-1.kat, k-1

(k-2) (k-2) (k-2) (k-2)

r no no

h s =n, t=n, 4
yes I bt = 07

- yes yes no

'I

Det A=0(A singu Zar) co = bt/ak-2, k-2(k-2) 1 (k-2)

V .
Interchange rows t and k:

EXIT 4 t=k?

a -2) - a (k-2)(4= 1, ..., m) notj
yes

6
Fig. 3. Pivot-searching Subroutine to Algorithms (2.12) and (2.21),

(k-2) ,-
Replacing Box (-•• cl 81 in Figs. 1 and 2

2

.

24

ACKNOWLEDGMENT

The author wishes· to express his gratitude to Burton S. Garbow and
1·

William J. Cody for reading the manuscript and offering many suggestions
for improving the text. Besides the careful reading of the manuscript,

Burt Garbow has calculated several examples and is preparing general codes
based on algorithms (2.12) and (2.21).

In going through Muir' s five volumes of "The Theory of Determinants,"
the author.could find no reference to a multistep approach in elimination
methods as introduced here. Readers are invited to let the author know of
any related publications of which they may have any knowledge.

-

