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1 , O  INTRODUCTION 

Technical  S p e c i f i c a t i o n s  f o r  t h e  Advanced Tes t  Reactor C r i t i c a l  F a c i l i t y  
(ATRC) have r e c e n t l y  been prepared.  During t h i s  p repa ra t ion ,  a l l  of t h e  
ATRC Operating Limits  and a s s o c i a t e d  ana lyses  were recons idered .  Where 
j u s t i f i a b l e ,  some requirements  were made l e s s  r e s t r i c t i v e .  Where 
necessary t o  c h a r a c t e r i z e  more completely c u r r e n t  ope ra t iona l  p r a c t i c e  
and c u r r e n t  s a f e t y  ph i lo soph ie s ,  a d d i t i o n a l  l i m i t s  and requirements  
were s p e c i f i e d .  However, t h e  ma jo r i t y  of t h e  requirements of t h e  new 
Technica l  S p e c i f i c a t i o n s  de r ive  f  om cons ide ra t ions  and ana lyses  i n  t h e  f 1 I o r i g i n a l  s a f e t y  a n a l y s i s  f o r  ATRC . Moreover, no new acc iden t  
p o t e n t i a l s  o r  s a f e t y  i s s u e s  were i d e n t i f i e d .  

This  document has been repared  t o  supplement t h e  o r i g i n a l  ATRC Safe ty  P Analysis  Report ( s A R ) [ ~  . It provides t h e  b a s i s  f o r  t hose  r e v i s e d  
requirements  and conclusions incorpora ted  i n  t h e  new Technical  
S p e c i f i c a t i o n s .  The a r e a s  considered i n  t h e  r e p o r t  a r e :  

(1) Maximum c r e d i b l e  a c c i d e n t a l  r e a c t i v i t y  i n s e r t i o n .  

( 2 )  Reactor  ope ra t ing  power l e v e l  and t r i p  l e v e l  f o r  t h e  Neutron 
Level Subsystem. 

( 3 )  Permiss ib le  ramp r e a c t i v i t y  i n s e r t i o n  r a t e s .  

( 4 )  Hold-down r e a c t i v i t y  requirements .  

( 5  ) Shutdown r e a c t i v i t y  requirements  . 
( 6 )  D e f i n i t i o n  of major i nc iden t  

( 7  ) U n r e l i a b i l i t y  requirements  of Neutron Level and Sa fe ty  Rod 
Sub~ys tems.  

2 .0  SAFETY ANALYSIS 

2 . 1  Maximum Credib le  Accidental  Reac t iv i ty  I n s e r t i o n  

The maximum c r e d i b l e  a c c i d e n t a l  r e a c t i v i t y  i n s e r t i o n  a t  ATRC w a s  
o r i g i n a l l y  considered t o  r e s u l t  from t h e  rup tu re  of a  s p e c i a l  high- 
p re s su re  loop.  During s  ch n  a c c i d e n t ,  t h e  e n t i r e  f l u x  t r a p  annulus 
was assumed t o  be voided r1,27. Measurements have s i n c e  shown t h a t  t h e  
r e a c t i v i t y  e f f e c t  of vo id ing  t h e  high-pressure loop  may, under some 
cond i t i ons ,  be l a r g e r  than  t h e  1.20$ o r i g i n a l l y  post,ul.nted. Thus, 
t h e  ope ra t ion  of t h e  high-pressure loop  was r e s t r i c t e d  t o  r e q u i r e  
t h e  use  of an  aluminum f i l l e r  p i ece  i n  t h e  f l u  t r a p  annulus.  Under 
t h e s e  cond i t i ons  t h e  r e a c t i v i t y  e f f e c t  of voiding t h e  loop can be  no 
more than  one d o l l a r  (%0.75% ~ k / k ) [ 2 ]  . 
With t h e  l a r g e  void ing  e f f e c t  t hus  prevented,  an a n a l y s i s  of  p o s s i b l e  
c r e d i b l e  acc iden t s  a t  ATRC was conducted. No c r e d i b l e  acc iden t s  
were i d e n t i f i e d  which would in t roduce  more than  one d o l l a r  i n  
r e a c t i v i t y  i n  t h e  r e a c t o r .  However, i n  order  t o  be conserva t ive ,  t h e  
maximum c r e d i b l e  a c c i d e n t a l  r e a c t i v i t y  i n s e r t i o n  i s  now considered t o  
r e s u l t  from an unspec i f i ed  acc ident  which would in t roduce  1 . lo$  i n t o  
t h e  r e a c t o r  i n  a s tepwise  manner. 



2.2 'Reactor Operating Power Level and Tr ip  Level 

The ATRC Operating Limits speci f ied  a maximum power l e v e l  and a t r i p  
l eve l .  The Technical Specif ica t ions  now make no d i s t i nc t i on ,  because 
t h e  reactor  can be operated a t  any power l e v e l  up t o  t he  t r i p  l eve l .  
To prove t he  v a l i d i t y  of t h i s  asse r t ion ,  t h r ee  parameters which might 
l i m i t  t h e  operating power l e v e l  of t he  ATRC were investigated:  

(1) Radiation l e v e l  a t  the  surface of t he  ATRC canal. 

( 2 )  The temperature of t he  ATRC f u e l  element hot spot .  

(3) The re la t ionsh ip  between operating power l e v e l  and t h e  t o t a l  
energy re leased during an accident .  

The upper 1 i m i t . f o r  the  reac to r  power l e v e l  was found t o  be control led  
by,accident  conditions. '  The l imi t ing  power l eve l  and t r i p  l e v e l ,  
based on accident considerat ions,  were establislied i n  two s teps .  The 
f i r s t  s t ep  consisted of studying the  re la t ionsh ip  between t o t a l  energy 

. re lease  and i n i t i a l  power l e v e l ,  f o r  a f ixed t r i p  l eve l .  The r e s u l t s  
of t h i s  study a r e  shown i n  Table I. It can be seen t h a t  t h e  higher 
t h e  power l e v e l  t he  greater  t h e  t o t a l  energy re lease  from an accident .  
Moreover, t h e  maximum energy re lease  i s  seen t o  r e s u l t  from an i n i t i a l  
power l e v e l  only s l i g h t l y  below the  t r i p  l eve l .  

TABLE I 

. . 

TOTAL ENERGY RELEASE FROM THE MAXIMUM CRED-IBLE ACCIDENT AS A FUNCTION 
OF THE INITIAL POWER LEVEL 

Total  Energy Release 
- Above Tr ip  Level 

1 n i i i a l  Power Level (MW-sec ) 

Safety Rod Worth - 5.3$ 

Tr ip  Level - 12 kW 

Reactivi ty Inse r t ion  ( s t e p )  - 1.10$ ' - 
Safety Rod Drop Time - 800 msec 

Safety Rod Release Time - 25 msec 



The second s t e p  was t o  determine the  i n i t i a l  power l e v e l  and t r i p  l e v e l  
t h a t  wo.uld r e s u l t  i n  a  t o t a l  energy re lease  of approximately 1 4  MW-sec. 
An energy re lease  of 1 4  MW-sec would give a p ro tec t ive  margin f o r  a  
minor inc iden t  of  100% ( a  t o t a l  energy re lease  above the  t r i p  l e v e l  of 
28 MW-sec would r e s u l t  i n  minor f u e l  p l a t e  deformation and melt ing).  
The r e s u l t s  of the  ca lcu la t ions  a r e  shown i n  Table 11. From these  
r e s u l t s  a  maximum t r i p  l e v e l  of 26 kW can be permit ted t o  l i m i t  t he  
energy re lease  t o  1 4  MW-sec. 

TABLE I1 

TOTAL ENERGY RELEASE FROM STEP ACCIDENT AS A FUNCTION OF 
INITIAL POWER LEVEL AND TRIP LEVEL 

Tota l  Energy Release 
I n i t i a l  Power Level Trip Level Above Trip Level 

(kW ) (kw) (MW-sec) 

Safety Rod Worth - 5.3$ 

Safety Rod Drop Time - 800 msec 

Safety Rod.Release Time - 25 msec 

React iv i ty  I n s e r t i o n  - 1.10$ 

Reactor behavior during a l l  pos tu la ted  r e a c t i v i t y !  accidents  was 
ca lcu la ted  using the  s p a t i a l l y  independent IREKIN code [ 3 1 . The 
model used d id  not include expected negative thermodynamic feedback 
r e s u l t i n g  from temperature increases  and. void formation. It thus  
considerably overestimated energy r e l e a s e  f o r  a given accident .  The 
parameters used i n  the  ca lcu la t ions  a r e  s a f e t y  l i m i t  values or., as  i n  
the  case of B/R, a value which would g ive  a . l a r g e r  energy re lease  
than i f  measured values were used ( t h e  l a r g e s t  measured value of B/R 
i s  185 sec-l[h] .  

The r a d i a t i o n  l e v e l  a t  the  canal  surface  above the  r e a c t o r  and t h e  
temperature of t h e  f u e l  element hot spot  do not present  a  hazard a t  
a  power l e v e l  of 26 kW. The r a d i a t i o n  l e v e l  above t h e  r e a c t o r  a t  a  

.power l e v e l  of 26 kW would be approximately 1 3  m~/hr [51 .  The temper- 
a t u r e  of the  'hot spo t  i n  an ATRC f u e l  element a t  a  power l e v e l  of 26 kW 
under n a t u r a l  convection condit ions would be l e s s  than 100'~.  These - 
ca lcu la t ions  were made using t h e  method developed f o r  t h e  BSR-I1 
~ e a c t o r [ 6 ] .  A peaking f a c t o r  of 3.6 was used f o r  t h e  l a t t e r  
ca lcu la t ions  [ 4 I .  



2.3  Ramp React iv i ty  Inse r t ion  Rates 

Ramp r e a c t i v i t y  inse r t ion  r a t e s  have been r e e v a l ~ a t e d ~ b a s e d  on a t r i p  
l e v e l  of 26 kW. The r e s u l t s  of t he  analyses a r e  shown i n  Table 111. 

TABLE I11 

STUDY OF ATRC RAMP ACCIUENTS 

Ramp Rate 
($/set 1 

Total  Energy Release 
Above T r i p  Level 

(MW-sec ) 

Safety Rod Worth - 5.3$ 

Tr ip  Level - 26 kW 

Safety Rod Drop Time - 800 msec 

Safety Rod Release Time - 25 msec 

I n i t i a l  Power Level - 0.25 mW 

B / R  - 210 sec-' 

In terpola t ing from these  r e s u l t s ,  a ramp r e a c t i v i t y  i n se r t i on  r a t e  .of 
0.22 $/sec w i l i  produce 1 4  MW-sec of energy-, which corresponds t o  the  same 
pro tec t ive  margin t h a t  e x i s t s  f o r  t he  maximum s t ep  r e a c t i v i t y  
i n se r t i on  (1.10$). 

The energy ca lcu la t ions ,  which were made using t h e  I R E K I N  Code, a r e  
considered very conservative. Not only were negative thermodynamic 
feedback e f f e c t s  neglected, but t he  calcula t ions  contained t h e  following 
add i t iona l  conservat&sms: 

( 1 )  The ca lcu la t ions  assumed t he  sa fe ty  rods scrammed from t h e i r  upper 
. l i m i t s ,  even though a moment before t h e  scram they were a t ,  pos i t ions  
of maximum d i f f e r e n t i a l  r e a c t i v i t y  worth (middle of sa fe ty  rod 
withdrawal s t roke ) . 

( 2 )  The scram r e su l t ed  when t h e  power l e v e l  reached t he  Safety L i m i t  
(26 k ~ ) .  No c r ed i t  was taken f o r  operator ac t ion o r  any other  
subsystem ac t ion .  



2.4 Hold-Down React i v i t v  

To prevent inadvertent c r i t i c a l i t y  during subcri t ical  experiment or 
fue l  element changes, suff ic ient  h o l d - d m  reac t iv i ty  must be available 
t o  allow fo r  loading errors  and uncompensated react ivi ty  changes. 
The la rges t  single uncompensated change i n  reac t iv i ty  tha t  can be 
conceived i s  approximately 1.5$ ( -fuel element insertion i n  high-worth 
posi t ion) .  Applying a safety factor  t o  account fo r  two successive 
uncompensated changes and adding conservatism t o  qccount fo r  an 
er ror  equivalent t o  1.0$, the  minimum hold-down reac t iv i ty  required 
i s  4,0$ ( ~ ~ 3 . 0 %  ~ k / k ) .  

2.5 Shutdown Reactivity 

The amount of shutdown reac t iv i ty  necessary t o  mitigate an accident 
cannot be determined without considering the  r a t e  a t  which the  shut- 
down reac t iv i ty  i s  inserted in to  the  reactor.  The studies i n  
Section 2.2 have shown tha t  the  maximum credible accident can be 
acceptably mitigated i f  -5.3$ i s  inserted in to  the reactor with a 
delay of 25 msec and d drop time of 800 msec and if  the neutron l eve l  
subsystem t r i p  l eve l  i s  26 kW. In  those studies it was assumed tha t  
the safety rods f e l l  under gravity with a constant acceleration of 
9.4 f t /sec2.  A curve showing the posit ion of the  safety rods as  a 
function of time is presented i n  Figure 1, while the reac t iv i ty  worth 
of the  safety rods a s  a function of position, t ha t  was assumed i n  the  
calcula%ions, i s  shown i n  Figure 2. 

For a s tep or ramp reac t iv i ty  accident the  largest  credible posi t ive 
reac t iv i ty  tha t  would require compensation i s  1.10$. Applying a safety 
fac tor  of two (compensatf~n would be required fo r  2.20$) and assuming 
a minimum stroke worth of 5.3$, no more than 20 inches of safety, rod 
insertion, as shown i n  F igure2 ,  will be required t o  mitigateconsespa,tively 
a steg accident of 1.10$ o r  a r m p  accident with a mscttdty inser t ion 
r a t e  of 0.22 $/sec. Allowing an additional 9 inches t o  assure tha t  
a l l  20 inches a re  above the  shock absorbers (and .thus i n  f ree- fa l l )  the 
safety rods must be 29 inches withdrawn prior t o  c r i t i c a l i t y .  A s  
shown i n  Figure 2*29 inches of.withdrmal w i l l  provi.de :the repyf-red 
27eao*ivlrt$b 



Time After Scram b e c l  

Fig. 1. Posit ion of ATRC safety rods a s  function of tlme follow-ing 8 scram. 
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Position of Saf'ety Rods (in.) 

Fig. 2. Reactivity of safety rods as a function of position, 



2.6 Major Incident  

A major inc ident  a t  ATRC has been defined a s  an inc ident  f o r  which t h e r e  
may be &age t o  t h e  permanent r e a c t o r  components [eg, g r i d  p l a t e ,  
c o n t r o l  rod d r ive  mechanisms). However, it must b e - f e a s i b l e  t o  r e p a i r  
o r  replace  t h e  damaged components. The damage t o  f u e l  elements mdy be 
extensive.  Radiological  doses t o  personnel r e s u l t i n g  from r e l e a s e  of 
f i s s i o n  product inventory caused by melting of f u e l  p l a t e s  may be 
g r e a t e r  than out l ined i n  AECM 0524 but w i l l  be l e s s  tkian requirements 
of 10CFR100. 

Because t h e  ATRC does not have a pressure  v e s s e l  o r  a  containment 
s t r u c t u r e  and because t h e  r e a c t o r  s t r u c t u r a l  components ( including the  
pool  s t r u c t u r e )  can be ' repai red  o r  replaced,  t h e  l i m i t i n g  c r i t e r i a  f o r  
a  major inc ident  w i l l  be t h e  exposure of personnel t o  ioniz ing 
r a d i a t i o n .  An example of a  major inc ident  would be t h e  i n s e r t i o n  of 
s u f f i c i e n t  r e a c t i v i t y  t o  cause f u e l  p l a t e  melt ing and t h e  r e l e a s e  of 
f i s s i o n  products t o  t h e  ATRC bui ld ing and eventual ly t o  t h e  environment. 
For ca lcula t io 'na l  purposes a  major inc ident  has been a r b i t r a r i l y  
de f ined ' a s  t h e  melting of t h e  equivalent  of one f u e l  element. Calculat ions 
have shown it would r e q u i r e  a  t o t a l  energy r e l e a s e  of approximately 

.60  MW-sec t o  melt t h e  equivalent  of one f u e l  element (melting would 
occur a t  t h e  core hot -spots) .  Radiological  doses t h a t  would be 
rece ived by ATRC personnel and o f f - s i t e  personnel,  i f  t h e  equivalent  
of one f u e i  element from a 24-MWd ATR core melted, a r e  shown i n  
Table I V .  

TABLE I V  

RADIOLOGICAL DOSES TO ATRC AND OFF-SITE PERSONNEL 
RESULTING FROM MELTING OF A FUEL ELEMENT 

ATRC NTRS 
Personnel Boundary 

Thyroid Dose 232 rem 3 .2  rem 

Whole Body Dose 0.84 rem 0.3 mrem 

Bone Dose 0.83 rem 0.01 rem 

The dose ca lcu la t ions  i n  Table I V  were made using t h e  following 
assumptions: 

( 1 )  The ATRC core was p r e i r r a d i a t e d  i n  t h e  ATR and had generated 
24 MWd of energy. 

(2 . )  The f u e l  elements had cooled f o r  f i v e  days p r i o r  t o  i n s e r t i o n  i n  
t h e  ATRC. The pos tu la ted  accident  occurred immediately a f t e r  t h e  
elements had been placed i n  t h e  r e a c t o r .  

I 

( 3 )  It took a maximum of t e n  seconds f o r  personnel t o  evacuate t h e  
.-ATRC bui ld ing a f t e r  t h e  accident  . 



( 4 )  The quant i ty  of f i s s i o n  products released i n t o  t h e  building 
was f rac t iona ted  according t o  ~ 1 ~ - 1 4 8 4 4 [ 7 I  ( i e ,  one percent of t h e  
s o l i d s ,  50 percent of t h e  halogens, and 100 percent of t h e  noble 
gases ) .  The r e l e a s e  was assumed t o  d i f fuse  instantaneously 
throughout the  bui ld ing.  

( 5 )  The meteorological parameters were those associated with a short-  
term re lease ,  i e ,  a  Hilsmeier-Gifford a and a Markee a . The 
long dis tance  d i f fus ion  was characterizgd by Class F ( igvers ion)  
weather with a 2-m/sec windspeed. 

The bone dose i s  t h e  r e s u l t  of inhaling 9 0 ~ r .  The lOCFRlOO doses f o r  
accident  condit ions a r e  300-rem thyroid  dose and 25-rem whole body 
gamma dose. The I D 0  guideline value bone dose i s  150 rem. I 

2.7 Protec t ion System R e l i a b i l i t y  Studies 

A preliminary r i s k  t r e e  ana lys i s  of t h e  ATRC has been completed. The 
prepara t ion of t h e  r i s k  t r e e ,  i n  general ,  followed procedures out l ined 
by Romano Sa lva to r i  [ 81 . A s  new data  become ava i l ab le  the  r i s k  t r e e  
can be updated. The r i s k  t,rw i s  shown in Figure 3 .  

The u n r e l i a b i l i t y  requirements of t h e  .Neutron Level Subsystem which 
' r e s u l t e d  from t h e  ana lys i s  (0.005 fo r  each channel, and assuming a minimum 

of two channels) and upon which t h e  spec i f i ca t ions  a r e  based a r e  
reasonable and very c lose  t o  u n r e l i a b i l i t ~  requirements which a re  expected 
t o  be recommended i n  a11 IEEE standard. An u n r e l i a b i l i t y  of 0.005 can be 
achieved through t h e  use 'o f  qua l i ty  components, good engineering 
design, and the  use of channel t e s t ing ;  i n t e r v a l s  based on fa i l -unsafe  
f a i l u r e  r a t e  data .  When the  u n r e l i a b i l i t y  of each channel i s  maintained 
5 0.005, t h e  probabi1,ity of f a i l i n g  t o  generate a t r i p  s igna l  w i l l  . 

be .s 2.5 x Moreover,. when the  p robab i l i ty  of more than two s a f e t y  
rods f a i l i n g  t o  scram i s  maintained a t  or  below 2.5 x t h e  
p robab i l i ty  of f a i l u r e  t o  t r i p  s u f f i c i e n t  sa fe ty  rods t o  mi t iga te  
an accident  w i l l  be 5 5  x (combined probabi l i ty  of f a i l u r e  t o  
generate a t r i p  signa1"and f a i l u r e  t o  scram a t  l e a s t  t h r e e  sa fe ty  rods ) .  
To maintain t h e .  u n r e l i a b i l i t y  of t h e  sa fe ty  rod subsystem a t  2.5 x 
t h e  u n r e l i a b i l i t y  of each of t h c  f i v e  sa fe ty  rods must be I 0.014. 

The frequency of core t r a n s i e n t s  and t h e  frequency of na tu ra l  phenomena 
which would cause a major accident  a t  ATRC a r e  not wel l  known. Therefore, 
bes t  est imates of these  values were used i n  t h e  r i s k  t r e e  ana lys i s .  The 
frequency of r eac to r  power t r a n s i e n t s  has been s e t  a t  I x 1 0 - ' / ~ e a r .  
The a c t u a l  frequency of r eac to r  power t r a n s i e n t s  i s  believed t o  be lower. 
The frequency of na tu ra l  phenomena which would cause a major accident  
a t  ATRC i s  considered t o  be extremely small and has accordingly been 
s e t  a t  1 x 1 0 - ~ / ~ e a r .  



Frequency of a major acciden d 

Frequency of core t r a n s i e n t s  
and f a i l u r e  t o  scram suf- 
f ic ie~xL safe ty  rods 

I 
Probabi l i ty  of f a i l u r e  t o  
scram s u f f i c i e n t  s a f e t y  rods 

5 x 10-5 

f 

Probabi l i ty  of f a i l u r e  t o  
generate  t r i p  s i g n a l  

2.5 x loe5  

*Neutron Level Channel 

Fig. 3 .  Simplified ATRC risk tree 
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