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ABSTRACT 

- 
We descr ibe  experimental studies of the relative atomic p -meson 

capture probabilities in the constituents. of chemical compounds. F e r m i  

and Te l l e r  had predicted that the at 'omic-capture probability i s  p ro -  

protional to  the nu,clear charge of the atomic species  weighted by i t s  

atomic concentration. This i s  sometimes r e f e r r e d  to a s  the " F e r m i -  

Te l l e r  Z law. l V  Previous experiments  have indicated no c l ea r  sys tem-  

a t ics  to this  capture p rocess  and the re  a r e  conflicts between the r e -  

sul ts  of seve ra l  measurements  made with the same o r  s imi lar  com-  

pounds. In these experiments  the capturing atom has  been identified 
- 

by detection of either mes ic  x rays  o r  decay electrons f r o m  p mesons  

bound in the atoms' mes ic  K shell  in  the atomic, species .  In our ex- 
. . 

per,iment we a re .  concerned with oxides and sulfides of some medium- 

and high-Z elements  a s  well  a s  two metall ic solutions, and we detect 

a nuclear capture product, neutron, ra ther  than the decay e lec t rons .  

Our resu l t s  show that among the substances examined- -namely CuO, 

Sb203,  PbO, CuS, Sb2S3, PbS, AgLi, and CuAu-- the "Z  laws' be-  

havior i s  not indicated either in  insulators  o r  in  meta ls ,  although in , 

a l l  c a s e s  the re  i s  a preference  fo r  capturing in  the a tom of higher Z .  
n 

Suppose the atomic-capture probability i s  proportional to  Z 

( n  being any positive o r  negative number) ,  then we find that our ex- 

per imental  resu l t s  fall approximately in the range n = 2/3 to  n = 1.4, 

where n = 1 would define the prediction by F e r m i  and Te.ller. The  

measured  atomic-capture ra t ios  a r e :  CU/O = 6.14*0.85; S ~ / O  = 1.86* 0.096; 

P ~ / O  =4.56*0.53; CU/S'= 1.89*0.18; S ~ / S  = 1.64*0.10; P ~ / S  = 2.87*0.35; 

A ~ / L ~  = 11.66*3.39; AU/CU = 0.34*0.032. 



In connection with this experiment it was a l so  necessary  to  
- 

m e a s u r e  the p -meson lifetimes in a number of e lements  (including 

Au, which has not been reported before).  The  measured  l i fe t imes 

a r e  ( in  nsec) :  . S  = 498* 17; Cu = 162.6* 1.9; Ag .: 8 4 . 4 t  l.O;.'Sh = 91.3* 1.4; 

Au = 68.6* 1.3; P b  = 7 4 . l a e O a  



I .  INTRODUCTION 

- 
A. Atomic Capture of p Me,sons . . 

Tomonaga and Araki  were  the f i r s t  to  point out the effect o f  the 
. . 

coulomb field of the nucleus on the behavior of a slow charged meson.  
1 

They indicated that the repulsive field of the charged nucleus 

would prevent a positively charged meson f r o m  approachi i~g the i~uc leus .  

Thus the positively charged meson would be forced to  roam about in 

mat te r  and ultimately decay. But a slow. negative meson would be at  - 

t rac ted  to  the nucleus and undergo nuclear absorption. When the p- 

meson stops in  ma t t e r ,  it initially loses  i t s  energy by ionization a s  it 

slows .down and then finally i s  ztr'apped in  a ~ o h r  orb i t  about a nucleus. 
. . 

Then i t  cascades down to a . K  orbit ,  ,emitting Auger electrons and 

mes ic  x rays .  Once .the p-- meson reaches the K orbi t ,  it e i ther  

decays o r  interacts  with the nucleus. ' The c lass ic  experiment of 

Conversi ,  Pancini,  and Piccioni gave the f i r s t  evidence of this  com-  . . . .  

' petition between decay a n d c a p t u r e .  The e'xperiment consisted of 
. . . . 

stopping p- mesons in carbon a s  well  a s  in i ron,  and observing the decay 

e lec t rons .  They observed de'cay electrons f r o m  p- stoppings in carbon 

but a lmost  no decay electrons f rom i ron .  In l a t e r  experiments  the 

l i fe t imes were  measured  over a wide spec t rum of atomic numbers .  
394 ,  5 

. . 

These experiments w e r e  found to be compatible with the hypoth- 
. .  . 

e s i s  of nuclear absorption competing with' the decay. 

The -IT mesons o r  p mesons a r e  unstable par t ic les .  A requi re-  

ment for  the negative ? o r  p mesons to  be a b s 0 r b e d . b ~  the nucleus 

. ' is that the t ime taken by them to r each  the mes ic  K shel1,of the a tom 

should be l e s s  .tha.n their '  mean lifetime. F e r m i  and Tel le r  were  the 

f i r s t  to  point out that the t ime  taken by the IT o r  p 'meson to slow 
6 down and.be captured i s  much shor te r  than i ts .  decay t ime .  . Assuming 

the Ferrrii-Thomas model  f o r  the electrons,  F e r m i  and Tel ler  calculated 

that the total  t ime taken by a meson to be slowed down and captured 
- 13 

.and to  cascade down to the K orb i t  i s  of ' the o rde r  of 10 . sec ,  which 
. . 

i s  much shor te r  than the decay t ime of e i ther  the IT- o r  p meson,  
- 

thus ensuring the existence of mesonic a toms.  



F e r m i  and Tel ler  also considered the slowing down and capture 

process  in a homogeneous chemical mixture .  They calculate that the 

probability for capture of a muon by a n  atom i s  proportional to  the 

energy loss  of the muon near that nucleus. F r o m  this they concluded 

that the relative atomic-capture probability of muons in different e le -  

ments  in a cdkpound should be proportional to the nuclear charge of 

the atomic spe:cies weighted by i t s  atomic concentration. This i s  some 

t i m e s  r e fe r red  to  a s  the "Fe rmi -Te l l e r  ZLaw. I '  

During the past yea r s  a number of experiments have been reported 

in the l i te ra ture  concerning the relative atomic -capture probabili t ies 
- 

of p mesons in insulators  and meta l .  7 -13  The resu l t s  of these ex- 

per iments ,  in which the same o r  s imi lar  compounds were  used, a r e  

in disagreement  with each other a s  well  a s  with the predictions of 

F e r m i  and Te l l e r .  In the present  experiment we descr ibe  a study of 

these  atomic capture rat ios  for different compounds having a wide 

range for the rat io  of the atomic numbers  of the constituent elements 

in  a compound. In addition to  the purely theoret ical  in te res t  in atomic-  

capture p rocesses ,  such information i s  a l so  needed in the in te rpre ta-  

tion of various experimental  resu l t s  obtained with nuclear emulsions,  
- 

compound t a rge t s ,  e t c . ,  when the p mesons a r e  brought to  r e s t  in 

such compounds and mixtures .  F o r  the interpretat ion of the i r  r e su l t s ,  

previous worke r s  have rel ied on the theoret ical  conjecture of F e r m i  

and Tel ler  which does not s e e m  to hold good. 14 

B. Capture in  Compounds 

Panofsky e t  a l .  determined the m a s s  of IT' mesons by studying 

n-  absorption in hydrogen. l 5  When they used LiH and CH2 t a rge t s ,  

they found none of the gamma rays  that accompany absorption by a 
- 

proton and infer red  that a l l  the IT mesons w e r e  captured in lithium 

and carbon, and none i n  hydrogen. This i s  known a s  the Panofsky 

ef fec t .  This was ,  however,  not surpr i s ing .  It had been pointed out i 

by F e r m i  and Tel le r  in their  paper that any meson orbi ta l  captures  in 

hydrogen wou!a c rea te  a sma l l  neutral  sys t em that could permeate  the 

la t t ice .  The resu l t  i s  that mesons would eventually be t r a n s f e r r e d  to 

a m o r e  highly charged nucleus.  



- 3 -  

Th'e 'experiment of Stearns and ' s tearns  was the f i r s t  specifically 

designed to determine the relative atomic -capture probability of neg- 
' 

. .ative mesons in compounds.. ( In their  measurements  they compared 

the relative yields of mes ic  x rays  for. a substance in  the fo rm of a 

compound and fo r  a mixture having the' s a m e  composition. ' F o r  . a  

mixture they assumed that the ordinary ionization-loss formula would 

govern the stopping power and thereby the amount of capture'in' each 

element.  They assumed that the stopping power per  a tom was pro-  

'. portional to  Z, and therefore. that  the amount of capture in  each e le -  . .'. 

ment of a macroscopic 'mixture  would go a s  Z t imes  atomic concen- 

t ra t ion.  They compared the x- ray  yields of ir-mesonic L a n d  M 

lines f rom a CaS -.compound ,and .a  mixutre  o.f the two elements .  They 

found the relative yields to  be the same  within 570. Similarly they 
- 

studied the p -mesonic x r ays ,  using A12,03 and a mixture of A1 and 

H 2 0 .  (which i s  equivalent to  oxygen because of the Panofsky effect) .  

The yields fo'r the mixture and the compound were  again found to be 

identical within 5%. Using these  resu l t s  and assuming that the capture 

in the compound depends upon ZTn, Stearns and Stearns found 

n = 1*0.20 for CaS and n = 1.0*0.1 for  A1203. .On the bas is  of these 

resu l t s  they showed that the relatiwe atomic captures  in a compound 

a r e  proportional to  Z; and therefore  a r e  in accordance with the p r e -  

dictions of F e r m i  and Tel le r .  

These resu l t s  have been cr i t ic ized by Sens et  a1. , who argue 

that the atomic stopping power for low-energy .mesons i s  not given by 

tKe ordinary ionization-loss fo rmula ' a s  was a'ssumed by ~ t e d r n s  and 

Stearns .  If we look at  the range-energy tables of Rich and Madey, 9 

we find that for low-energy mesons of the 'o rde r  of 1 MeV o r  s i ,  the 

stopping power of oxygen i s  m o r e  than that of Al; The atomic stopping 

power i s  not known accurately a t  low energies.,. 

Sens et  al. haye 'also looked into this problem. They stopped 

mesons in  compounds and rnea'sured the decay curves  by detecting . : 

.decay electrons with a counter te lescope;  Knowing the mean lifetime 

of p- m e s o n g  in each constituent of a compound and the branching 



rat io  between. decay and capture,  they unfolded the composite decay 

curve .  F r o m  it they were  able to get the relative number of p- 

mesons reaching the mes ic  K shel l  in the constituents of a compound. 

The methods of Stearns and Stearns,  and that of Sens< et a l .  , 

however, differ f r o m  each o ther .  In the fo rmer ,  the elements in  a 

compound a r e  identified by their  K and L s e r i e s  e t c . ,  for mesonic 

x r ays ,  while the la t te r  distinguishes the same elements by the differ- 

ent l ifetimes of mesons  in these elements .  

Sens et a l .  repor t  that their  resu l t s  a g r e e  much bet ter  with the 

capture occurr ing in  proportion to the number of a toms of each con- 

stituent than with the predictions of F e r m i  and Te l l e r .  These  r e su l t s ,  

together with the r e su l t s  of other worke r s  to  be mentioned l a t e r ,  a r e  

given in Table I. 

The resu l t s  of Sens et a l .  indicate that for  the oxide compounds 

the captures  in  oxygen a r e  consistently higher than the captures  accord-  

ing to  the calculations of F e r m i  and Tel le r .  The  captures  a r e  in  fac t  

not given by the atomic rat ios  e i ther .  This  can  be seen f rom the r e -  

sul ts  a s  given in Table I ( a s  well a s  f r o m  the plot in Fig.  24) .  

Various other workers--Backenstoss  et a l e  , l 2  Lathrop et a l .  , 1 ca 

Astbury et  al. , l 1  and Eckhause et a l .  13--have studied this  problem of 

p- captures  in different chemical  compounds. 

Backenstoss e t  a l .  'showed, on the bas is  of their  experiment in  

the compounds LiH, AgC1, and U F 4 ,  that their  resu l t s  for p- captures  

indicate violations of the Z law s imi lar  to  those observed by Sens et  a l .  

The i r  method consisted in finding the decay curves  charac ter i s t ic  of 

the decay of p- mesons captured in Li ,  C1, and F in those compounds. 

This  was done by detecting the decay electrons.  

Lathrop et  a l .  l a t e r  re tes ted  the compound LiI. They found that 

the experimental  resu l t  a g r e e s  with the Z dependence ra ther  than with 

the atomic rat io .  This  resu l t  i s  in striking contradiction with the 

r e su l t s  of Backcnstoss  ct  a l .  It may be worth pointing out that the 
' f inal  resu l t s  given by Lathrop  e t  al. a r e  obtained only af te r  applying 

r a the r  l a rge  c o r r e c t i o ~ s .  F o r  I / L ~  they obtained 10.5t1.3.  After  



. :  . . .  . . < . .  

Table I. Summary of "2 law" r e su l t s  f r o m  previous w,orkers\. 
Relative numbers  of y-. mesons  reaching th'e 1S level. in the ' 

'. 

consti tuents of a compound. 
. . -. . 

. . .  
Compound Ratio Observed Predic ted ,  F e r m i  Atomic 
. . a n d T e l l e r  , ra t io  : . . . .  n t 
- - -pp - - -  

. , Sens et  a l . .  (Chicago) . . , . :  .. . . .  
. . . . .... . , 

. ..:",: '.'C H C1 . . . . .  
6 4  2 c 1/c 

0:435*0.0378 0.943 ; 0.33 . i . . ' :  : 0.27+0,.083 

(Liquid) . . . . . . .  . . 

C6H4C12 C ~ / C  . 0.'476*0.045 0.943 0.33 0.35*0.091 
. . .  .(Solid) . . . . .  . .( 

. , c c 1 4  C 1/c 4.150.8 11.3 4.0 . . . .  
0.024*0.19 

. . . .  . . 

Lathrop et  a l .  (Chicago) , . . . . . .  . . . I .  . . 

LiI . .  . . , .. I / L ~  15.852.0 17.67 . . .  1 0.96*0.044 
. . . .  . . 

AgZn ~ g / z n  2.250.7 1.57 1 1.7550.71 . 

Astbusy et  a l .  (Liverpool) . . .  
. . .  

P b F 2  pb/F 4.850.7 
. . . , 

Backenstoss e t  a l .  (Carnegie  Tech. ) 

LiI I /L~  1.3*0.5 17.67 1 0.09150.13 

Eckhause e t  a l .  ( ~ H r n e ~ i e  T e c h . )  . . .  . . . .  

Assuming that  the  atomic capture  prob'ability goes a s  ' ~ " n  being any positive o= negative number) ,  we . . . . . . , . . . 
' have calculated .n for  these.cdmpounds.  

. . .  . . . .  . . . . .  . . . . . . 



applying.the correct ion f o r  the decays f rom stops in the container 

wal ls ,  they obtained the final ra t io  I / L ~  = 15.8*2.0, which i s  in ag ree -  

ment with the calculations of F e r m i  and Tel ler .  

.The  experiment of Astbury e t  a l .  with P b F Z  shows an agreement  

with the Z law behavior ra ther  than with atomic rat io .  

The resu l t s  of Eckhause e t  a l .  for BiF3 and U F 4  a l so  indicate 

that there  a r e  enhanced captures  in fluorinq ( the l o w e r  Z constituent), 

m o r e  than the Z law would p red ic t . .  Their  resu l t s  a r e  also not approx- 

imated by the atomic rat ios  ei ther ,  but l ie  between the atomic rat ios  

and the Z law. 
- 

Lathrop et al. have studied the atomic p captures  in  an  AgZn 

alloy which s e e m s  to indicate a Z law behavior. However, a recent  

study of a CuA12 alloy by Eckhause et  a l .  shows a disagreement  with 

the predictions by F e r m i  and Tel ler  of the direction of enhanced cap- 

t u r e  ili Ehe:heavier element.  The resu l t s  for  AgZn by Lathrop et  a l . ,  

a s  Eckhause e t  a l .  point out, though compatible with the F e r m i -  Tel ler  

predict ion, .  a r e  not in  disagreement  with their  resu l t  for  CuA12 alloy 

in view of the magnitudes of the uncertainties.  This can be seen f r o m  

the values of n for  these  alloys a s  given in Table I. 
- 

We also  have measured  the atomic p capture in metall ic com-  

pounds, CuAu and AgLi, which we repor t  in this  thes is  (Sec. VII, 

Table V). 

C .  P r e s e n t  Expekiment 

In view of the conflicting evidence among experimental  resu l t s  

and the absence of any apparent systematic  relationship governing the 

p- meson captures ,  we have c a r r i e d  out our experiment  using a tech-  

nique different f r o m  any previously employed. 

The previous investigations, a s  mentioned e a r l i e r ,  have been 

done. by the detection of decay electrons or  mes ic  x r ays .  These ex- 

per iments  suffer f r o m  the following disadvantages. In low- Z nuclei, 

the decay r a t e  of muons exceeds the capture r a t e .  Therefore the 

presence  of any low-Z mater ia l  in the immediate neighborhood i s  a 



I source  of a relatively large number of 'electrons'  (fdr example:,:: carbon 

in. the scintillation counter).  -If the detected product is a nuelear gamma 

ray ,  t hen  a single detector ra ther  than a countkr..tele~cop.e i.s used. 

, . This detector i s  then sensit ive to the brernsstrahlung .6a,ikgrdu'nd a s  

well  a s  to  the ' 'zero t ime' '  backgr0un.d produced by mes ic  x r ays .  

Therefore ,  we detect capture 'neutrons, ra ther  than decay elec-  

t rons  o r  me,sic x rays ,  in our investigation of the relative atomic-  
- 

capture probability of p. mesons in  the constituents of a compound. 

F o r  elements of Z g rea te r  than 10, the yield for capture products 

exceeds that for the decay products.  .The re  i s  very l i t t le background 

effect  caused by mesons stopping i,n the, counter o r  in  the container 
. . .  

. . . . . .  walls beca.u.se,of their  'low values . . .  0.f Z .  L . . . . . . .  : . . . .  

The cho iceof  ta rge ts  was  governed by the following considera-: 

tions : 

( 1) The rat io  .of the atomic numbers  of the two ,elements in the 

compound should differ sufficiently so that the l ifetimes of the p- 

mesons could be c lear ly  distinguished. The rat ios  of the atomic . 

m e m b e r s  covered a wide range -so that the overal l  effect of these  
- 

ra t ios  on the p. capture  could be seen .  In our experiment,  the .ratios 

varied between two and sixteen. 

( 2 )  We chose different binary compounds of the same element when 

the other constituent var ied great ly  in Z .  

(3 )  W e  chose oxides, since-.the previous work of Sens e t  a l .  included 

seve ra l  oxides, a l l  of which .indicated enhanced captures  in  oxygen. 

(4) We also  'chose seve ra l  sulfide compounds because the oxides. 

complement the sulfides a s  regards  chemical  s imi lar i ty  but:are dif-  

ferent  in Z .  Oxygen and sulfur  have the same  electron configurations 

in their  outer energy levels.  It i s  these outer levels which determine 

the chemis t ry ,  since i t  i s  they which . interact when a toms approach 

one another .  

In connection with this  experiment,  it was a l so  necessa ry  to  

m e a s u r e  p.--meson l i fe t imes in a number of e lements--namely,  S, 

Cu, Ags Sb, Au, and Pb.  These measured  lifetimes a r e  of com- 

parable  o r  grea ter  s ta t is t ical  accuracy  than the measurements  . 



previously reported by other  experimenter.^! . (Au has  not been reported 

previously.  ) ' The . .measured lifetimes, a r e  given, in Appendix.B. The 

. , capture  r a t e s  calculated f rom these a r e .  least-squares-fi t ted;to 

Primakoff '  s formula.. 
16 

- ,  . " .  
. . . . I 



.. . * . I I .  THEORY ' 

. . .. . .  . . . 

. .  . . . ,  . ., 

..  In this section we.outline the theoretical 'work.of F e r m i  and 

Tel ler  on the atomic capture of p,- mesons ~in~compoui~ds. ;  To discuss  
. . 

their  work, we have to consider the slowing down of a meson in ma t t e r .  

By studying this process ,  we can then discuss  how the physical a n d .  

chemical  s ta tes  of mat te r  may  influence the capture pro,cess.  

As  long a s  the velocity of the muon i s  grea ter  than the orbi ta l  velocity 

of the electrons (2000 eV) the slowing-down process  takes place in the 

same way a s  for the fast  heavy part idles .  The energy los s  pe r  unit 
. . 

t ime i s  given by 1 
4 

dW 4 ~ r e  N Z  
- . .- - - .- . : i n  (1) 

dt mV b .. . min 

where W i s  the energy of thg muon;" :V, -its veloc:ity, m the e1e.ctro.n 

m a s s ,  N the number of a toms with atomic number Z pe r  cubic cm,  

and bmax and bmin the ex t reme values of the collision' pa ramete r s .  
The logarithmic factor becoriies -zero when the velocity of the meson. 

becomes equal to the velocity of the electron.  

When the velocity of the meson i s  l e s s  than that corresponding 
. . . .  

to a kinetic energy of 2000 eV,' 'expression (1)  does not descr ibe  c o r -  

rect ly  the energy los s  of the mesons .  To calculate i t ,  F e r m i  and 

Tel ler  assumed that the mesons a r e  moving inside a degenerate elec-  

t ron  gas .  Suppose V, the velocity of the mesons,  i s  l e s s  than vo , 

. the F e r m i  l imit  velocity of the e lec t rons .  Then, since V i s  l e s s  than 
0 .  

vo , the meson can interact  only wi th  those electrons .whose velocities 

. a r e  between vo - V and vo ,. because of the Paul i  exclusion principle.  
. . . .  . .  . . 

So we can  wr i te ,  for  the . . energy  los s  u n i t t i m e  of the meson,  
. . . .  : . .. . . . . . . ... . . . . .  . 

. . . . . . . .  . 
where . . i s  the nukber ' o f  . . electrons per  cubic c m  that can collide 

. .. . . .. . . 
with the 'meson,  a i s  the electron-meson collision c r o s s  section for 



l a rge  deflections, and W i s  the averag.e energy t r ans fe r red  in col-  

l isions of this  type. 
' We can est imate roughly the quantities o n  the right-hand side of 

' . E q,. (2 ) .  When V i s  smal l  compared with vo , we can -write: 

2 4 . 2  
m e v  - 

-2 

. . 
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where  1: i s  the kinetic energy of the meson,  t o =  tJh3 = 4 . 8 4 ~  10' sec ,  
2 4 CI m e 

' 

i s  the charac ter i s t ic  t ime for the proc'ess, and p i s  the m a s s  of the . 
. 

meson.  A m o r e  exact calculation has  a l so  been made by F e r m i  and 

Tel le r ;  however, for  es t imates  of this  o rde r  of magnitude, Eq. (3) i s  

sufficient. 

To calculate- the r a t e  of energy loss  in this  region, we have to 1 

,. . - 
. . .  . . find the average'  , .  . value , .  T of the'kinetic energy T in Eq. (3).  

. . . .  . 



- 
The average kinetic energy  T i s  .given by 

. . 

where U. i s  the potential energy, d~ ..is the .volume element,, and W 

i s  the total  energy. In finding the averag.e-, F e r m i  and Tel ler  :supposed 

: that the .probability of finding the meson in a ,given volume :element i s  

weighted by the phase space available to i t .  
- 

F o r  W grea te r  than U, T i s  equal to,. W.. Near  ze ro  energy the 

meson cannot pass  f rom one atom to another.  . In such a case  U i s  no 
- 

longer negligible and .so  T i s  .appreciably l a rge r  than W., When W i s  
I 

negative, then the kinetic energy i s  of the o rde r  of the absolute value 
. I *  

of W. 

F e r m i  an.d Tel le r  . . u s i d  . . .  for the U the value obtained 
,. , . ., . . 

f r o m  the' s ta t is t ical  model,  namely 
. . . . .  . . . ., 

. ,  . 
) where  x - i s  re lated to the distance f r o m  the nucleus by the relation 

V =  and the length b = 0.47 X 1 0 ' ~  c m .  The funct ion  & ( x )  has  
17 

.' been tabdlated by F e r m i .  . . .  

' F r o m - E q s .  (4)  and-(5);  Fe-rmi and Tel ler  obtained,' for the  
- 

average kinetic energy '  T,  
. .  . 

. . 
where  xo i s  given'by ' 

. . . t .  

, . ' 3 \ 3  
> . .. 1 4 - r rbxo .  . .  



The case  of insulators  i s  different f r o m  that of meta ls .  F o r  , 

insulators  there  a r e  Brillouin gaps. The amount of energy given to 

the electrons in  metals  can  be a rb i t r a r i ly  small ,  but in ah  insulator 

it has  to b e - a t  least  a s  large a s  the Brillouin gap, *which i s  usually a 

few eiectron volts.  

We have mentioned b,efore that the energy delivered to  the electron 

in  a collision i s  of.the o rde r  of mvo V ,  This llleans that Eq..  ( 3 )  l o r  - 
the' energy 10s s . pe r  unit t ime, dW zr will be valid on ly fo r  mvo V:>GJ -7 to 

where  C i s  the Bril louin gap, o r  the minimum energy that the elec-  

t rons  can accept .  If the above condition i s  not obeyed, then the ra te  

of energy loss  will  be sma l l e r .  This condition will have to  be taken 
. . - 

into account while we c a r r y  out the integration in expression (4) fo r  T .  

F e r m i  and Tel le r  conclude that the effect of this  gap i s  to increase  

the slowing-down t ime  for p -  mesons by perhaps 100/0. 

, F & r m i , a n d  Tel le r  then considered the relative probability for I*- - 

meson capture by the constituents of the compound. They est imated 

this  to  be proportional to the energy loss  of the p- mesons near  that 

nucle,ar specie;.?. F r o m .  an expression of type (6),  they found it t o  be 

proportional to  Z. The complete expression f r o m  which they deduce 

the Z law has  not b'een given in detail  in the paper .  They mention that 

this  energy loss  a t  W = 0 i s  given by an  expression whose numerator  

contains the numerator  of ( 7 ) .  F o r  W = 0, this  i s  proportional to  Z.. 

The denominator of this  expression i s  a constant for  a l l  a tomic species  

(The  detailed calculation showing that the denominator i s  a constant for  

a l l  atomic species  i s  not given. ) However, we notice f r o m  Eq. (7)  

(which s e e m s  to this  author the co r rec t  expression for energy loss.? 

. . nea r  W = 0) that a t  W = 0 the denominator i s  proportional to  113 

a f t e r  substituting for  xo f r o m  Eq. (6a) .  The r a t e  of energy los s  i s  

then proportional to  z ~ / ~  instead of Z. 
I 



111. EXPERIMENTAL ARRANGEMENT 

A. The Magnet System and the Beam 

The experimental arrangment  i s  shown in  F ig .  1. Negative 

pions were  produced by bombarding a 2-in.  -thick Be ta rge t  in the 

184-inch cyclotron with 730-MeV protons.  Some of these  pions imme-  

diately decay into muons near  the ta rge t .  These pions and muons a r e  

momentum-analyzed by the fringing field and pass  out of the cyclotron 

vacuum tank through a thin aluminum window. The beam then entered 

the meson cave through an 8.-ft-long i ron  col l imator .  Focusing and 

fur ther  momentum analysis were  provided by an 8-in.  quadrupole 
' 

doublet and a 50-deg bend through an H magnet., The beam then passed 

through a 4 X4-in. ape r tu re  In.a P b  collimator into a room made f r o m  

4-ft  thick concrete  blocks. 

The beam was monitored by a coincidence telescope consisting of 

two 4x4 X 1/4-in. plastic sci.ntillators, S and S2,  p l aced  a s  shown 

in  F ig .  1. The signal f rom another coincidence telescope, s3s4X9 
signified the stopping of a meson in the tz rge t .  (The ba r  above a 

counter symbol means anticoincidence, o r  that the absence of a pulse 

was required.  ) The S3 and S4 were  plastic scint i l la tors  s imi lar  

in  s ize to S I  and S2. The C was a water  Cerenkov counter,  

5 X 5 X 2 in. , that served  to veto coinci.dence pulses produced by elec - 

t rons  in the beam. The anti-counter A, vetoed par t ic les  that passed 

through the ta rge t  without stopping. 
- 

Figure  2 shows the relative S3S4AC counting ra te  a s  a function 

of the thickness,of absorber  placed between S2 and.C. The momentum 

of the incident beam was  about 200 M ~ V / C .  . . 

Two things we-re done to minimize the neutron .background caused 

by stopping pions. F i r s t ,  CHZ &zs  used  a s  the absorbing ma te r i a l  

to minimize neutron production f r o m  IT- stoppings and to act  a s  a 

moderator  for  neutrons produced. Second, an effor t  'was made  to  

maximize the t.~/rr r a t io  with a minimum loss  of p. intensity.  
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Fig.  1. Experimental arrangement.  



The position of the . internal  Be ta rge t  was f i r s t  var ied to 

optimize the total  flux through the telescope. The ta rge t  can be moved 

both radially and azimuthally by means  of external  controls .  

Then the bending-magnet cu r ren t  was increased about 10%. 

While reducing somewhat the p intensity this  a l so  inc reases  the p/n 

rat io  f r o m  1/5 to somewhat bet ter ,  than 3/1. This i s  because the IT 

source  i s  essentially the s ize  of the target ,  whereas the p, being pro-  

'.. duced  in.^ ,decay, has  a m o r e  diffuse source.  By detuning the magnet 

we shift the apparent-source position away f rom the center  of the 

ta rge t .  This reduces both the IT and p intensit ies but the effect on 

the - IT'S i's much grea ter  than on the p ' s .  

In F ig .  2 we show a differential r inge  curve taken af te r  this  

adjustment i s  made.  The IT- peak i s  a t  8.5 in.  of. CH2 and' the p- 
2 

peak at 12.5 in.  The stopping r a t e  in a 5-g/cm targe t  over the a r e a  

defined by the 4x4-in.  counter was about 17,000/min. 

B. Electronics  

A schematic d iagram of the electronics  i s  shown in Fig.- 4.  The 

signal ( S ~ S ~ A ~ ) ,  indicati.ng a p- stop in the ta rge t ,  i s  used to  generate  

a Itgat.e 3 p s e c  wide through a gate generator ,  G. This gate 

pulse and ' a  signal f r o m  NX "coincidence" (neutrons and gammas)  a r e  

fed  into a coincidence circui t  (K)  whose output provides a "start1" pulse 

f o r  the time-to-height converter  ( to  be r e f e r r e d  to  a s  THC). The 

signal N,  f rom the neutron counter,  could be  ei ther  a neutron o r  a 
- 

gamma; the anticounter A vetoes charged par t ic les  ( for  example,  p 

. mesons)  that pass  through the ta rge t  without stopping. The signal 

f r o m  NX i s  delayed by about 1.25 psec,  a s  shown in F ig .  3. The s ig-  

nals f rom NX that appear  in this  t ime interval  give the background 

neutrons o r  gammas.  The background ra te  i s  es t imated by counting 

the number of neutrons or  gammas in this  range of channels.  
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Fig. 2. Differential r'ange curve of 200-M~V/C meson beam. 



The "stop" pulse for the THC i s  fed f r o m  the output of the coin- 

cidence, ( s ~ s ~ ~ c )  delayed by about 2 .5  psec.  The delay i s  introduced 

because the THC i s  stopped by the p"' stop signal, which appears  ea r l i e r  

than the "s tar t"  signal (neutron o r  The coincidence output of 

K ( s t a r t  signal) a l ready anticipates the stop signal. This  ensures  that 

the THC works only when there  i s  a ' ? s t a r t sq  si.gna1 followed by the "stop" 

signal. The THC produces a pulse proportionai to the t ime delay be-  

tween the neutron o r  gamma emission and muon stopping in  the ta rge t .  

This pulse then feeds the Nuclear-Data 101 pulse-height analyzer  which 

i s  gated by a neutron signal.  This neutron signal comes  f r o m  a pulse- 

shape discr iminator  which discr iminates  between a neutron and a gamma 

( to  be descr ibed in Sec. C.  ). We should notice that the slgnal applied 

to the pulse-height analyzer for analysis could be either a neutron o r  a 

gamma.  It i s  the neutron signal (that comes f r o m  the pulse-shape d is -  

cr iminator  and gates the pulse -height analyzer)  that te l ls  the pulse- 

height analyzer whether it i s  a neutron o r  a gamma.  

The time-to-height converter  is an Eldorado Model TH 300 mod- 

ified to cut off the r is ing r a m p  of the THC output pulse so  that a l l  the 

Pu l ses  have the same r i s e  t ime.  The essent ia l  feature of this converter  

can be understood by considering the function of a pentode 6BN6. In 

the absence of any signal, the control gr id of the pentode i s  held at  

approximately ze ro  bias ,  but the suppressor  grid i s  biased well  below 

cutoff.  The positive ' ? s t a r tn  gate i s  applied to the suppressor  gr id  and-  

i s  of sufficient amplitude to  cause a plate cur rent  to flow in  the tube. 

While the plate cu r ren t  i s  flowing, the plate voltage drops l inearly with 

t ime ,  charging a capacitor between the plate and ground. The "stop" 

gate i s  applied to . the control  grid.  The.s top gate, being negative, cuts 

off the plate cu r ren t  in  this  tube and. stops the l inear charging of the 

plate capaci tor .  The  capacitor thg&:di.schacrj@ s until iihe:.'st:artc.pulsei 

s t a r t s  i t s  recharging again.  The output pulse height i s  proportional to 
.. . 

the t ime delay betwe.en the s t a r t  and stop pulses .  

The linearity of the THC was checked by simulating the coincidence 

output of NX f r o m  a pulser  with repeti.ti.on r a t e  of 10 kc.  Th.e output 
- - 

of the p stop signal (S3S4AC) was simulated by the S j  scintillation 
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counter alone counting a ~a~~ source .  The radioactive source  provided 

stop pulses which occurred  randomly in t ime.  Because the t ime in t e r -  

vals  between the occurrence  of a s t a r t  pulse and the following stop pulse 

a r e  of random lengths, the spectrum displayed on th'e pulse-height ana-  

lyzer  (PHA) i s  a random-height spec t rum and, for  l inear  behavior of 

bgth the THC and PHA, should give equal probability of a pulse appear-  

ing in  each channel. The data f rom a typical run a r e  shown in  F ig .  5. 

These data were  fitted to a straight line ni'= m i  + n where ni represents  

the number of counts in  the ith channel, and i the channel number.  The - 
deviation f r o m  linearity i s  given by m/n. F o r  this  typical run, L . 1. 

m/n ='(1.174*0.356) x and n = 973 4.20. While making this  fit,  we 

used only 2 10'channels out of the total  256. The f i r s t  30 and the l a s t  

16 channels were  not taken .into consideration, a s  these displayed s:ol.me 

nonlinearity. This nonlinear region has  not been used in the data ana- 

lys i s  e i ther .  

The THC was  cal ibrated by varying the de?ay, D (Fig .  4) .  Delay 

D was  otherwise kept a t  1.25 ysec.  F o r  each delay, a par t icular  channel 

of the analyzer recorded  the maximum number of counts.  In the ideal  

case ,  only one channel should reg is te r  counts corresponding to a partic.- 

u la r  delay. But the counts for  one part icular  delay, in general ,  had a 

Gaussian distribution with a full width of l e s s  than two channels. The 

centroid of the channels was  found. Each  channel was  weighted pro-  

protionally to the number of counts in  i t .  . A typical calibration curve  

fo r  the measured  points is shown in Fig.  6 .  The calibration data a r e  

a l so  given in Table 11. 

The t ime-cal ibrat ion data were  fitted to a s t raight  line 

y. = axi  + b, where y r ep resen t s  the delay i n  nsec and x the channel 
1 

number.  The slope !'a" gives the calibration t ime in nsec/channel- 

F o r  the typical run  shown in  F ig .  6, a = 8.91 nsec/channel, and the 

s tandard deviation did not exceed 0.2 channel over  the range of channels 

used.  
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F i g .  5. Plot  showing the l inear i ty  of t ime-to-height  
conve r t e r .  A l e a s t - s q u a r e s  fit of the data  to  a 
s t ra ight  line shows the l inear i ty  to be ( 1.174t  0.356)X 
Note that channel  number  170 h e r e  co r r e sponds  to  
z e r o  t ime  c h a n n e 1 7 i n ' ~ i g s .  8-20.  L u  
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Fig.  6 .  Plot of the pulse-height analyzer channel number 
v e  the spacing in t ime between "start" and "stop" pulses.  



Table 11. Typical t ime calibration data for the t ime-toyheight 
conver te r .  

Change in delay Channel. number. Channel number . Fraction of 
(nsec)  ( f rom ,counts) (calculated f r o m  channel 

'i Xi best fit) 
Ai 

-757.; 1' 24 1.06 241.23 t o .  17 

t760.1 71.91 7 1.76 -0.15 
8 .  

2 7 x = ~ ~ ~ - = 0 . 2 0 1  a = 8.95 nsec/channel . . 

- variance = 0.201/5 = 0.040 b = 1402 -53 nsec .  

s tandard deviation =-  V.2 

The t ime delays were  made by inserting calibrated RG 63-U 

cables  into the circui t .  The apparatus  for .ca l ibra t ing  these  cables  

consis ts  of two pulse genera tors .  Each  one of them produces a pulse 

whose t ime separat ion i s  adjustable and known. The t ime  base  for the 

measurement  of the pulse separat ions i s  provided by a 1-Mc crys ta l -  
,. . . . 

controlled osci l la tor .  The pulse separat ion can  be var ied  in definite 

t ime s teps  of 20 nsec each (50 Mc'). We a lso  have a vern ier  which 

. '. . -pe rmi t s  adjustment of one of the 20-nsec s teps to  O:1 nsec accuracy  to 

cover the range of in-between s teps .  The vern ier  i s  essent ial ly  an 'ad- 
. . 

justable2 phase-shifting 'network. In pract ice,  one f i r s t  adjusts  the 

timing of the two pulses  to  be in coincidence. Then the length of un?. 

known cable to be measured  i s  inser ted  in s e r i e s  with one of the pulses 

The two pulses a r e  now no longer in  coincidence, a s  one pulse must  

t r ave l  through the length of unknown cable.  However, the pulse that i s  

traveling through the unknown cable can be s ta r ted  e a r l i e r  in t ime to 



:bring the .two pulses into coincidence again. The amount the pulse had 

... . . . to be .advanced in t ime to produce .coincidence again i s  known. and hence . . . . .. .. 
.'. .the length of the cable can be measured .  F o r  shaped pulses of. the type 

. . .  
used in this experiment ,  our apparatus was used to  measure  the delay 

I 

of'two 2-psec cables ,  separately f i r s t  and then in series. .  'l'he two meas -  
>;: 

urements  agreed  within 1 nsec.  

C . Neutron Col.1nte.r and Pulse  -Shape Discr iminator  

To detect neutrons in the presence of garnrrliiray,s, we used a 

pulse-shape discr iminator  with the neutron scintillation counter .  This 

discr iminator  i s  essent ial ,  since,:the. ra te  of emission of gamma rays  

i s  comparable with that of neutrons.  

The neutron counter consists of a 5-in.  o.  d .  by 1-in. -thick g lass  

container fi l led with liquid scint i l la tor .  The liquid scinti l lator used 

was  Nuclear ~ n t e r ~ r i s e  2 12. The g lass  container was attached to a 

RCA 7046 photomultiplier tube by means of a lucite pipe. The scinti l-  

la tor  was flushed continuously with d r y  argon gas to remove oxygen, a s  

oxygen in..liquid scinti l lator s destroys the pulse - shape discrimination 

propertie 's .  

The principle of pulse-shape discrimination can  be understood a s  

follows: Neutrons produce recoi l  protons and y rays  produce Compton 

electrons.  The scintillation pulse shapes produced by these secondary 

par t ic les  a r e  different.  The scintillation-light output can be descr ibed 

by a combination of exponentials of two different t ime constants .  The 

amplitude ra t ios  of these fast  and slow output components are  different  

f o r  different kinds of par t ic les .  This fac t  i s  utilized in discriminating 

between different par t ic les .  

~ e v e r . a l  types of c i rcu i t s  have been developed a s  pulse-shape 
. . 

discr iminators .  2 2 ,  23  IA the present  p ~ l ~ e - ~ h i p e  d iscr iminatof ,  the 

discr iminat ion i s  c a r r i e d  out by a c i rcu i t  connected to  the l a s t  dynode 

of the photomultiplier. 'The c i rcu i t  i s  shown i n  F ig .  7 .  The e a r l i e r  
. . 

. .. 
.,I -0. 

The author would like to  thank 'Mr .  Cordon Kerns  who designed the 

above apparatus  and per formed the cable measuremen t s .  



par t  of the pulse (fast  component) dr ives  a Q6 100 diode which presents  

a low impedance :to: the incoming pulse. An RC circui t  ( t ime constant . 

0.5 psec)  then produces an output pulse proportional to the light in  the 

f a s t  component. The l a t e r  par t  of the pulse (slow component) goes 

through a 1.-kn r e s i s to r  and then through an RC circui t  ( t ime constant 

0.5 psec)  which produces an output pulse proportional to the light in the 

slow component. The l a rge r  of the' two pulses i s  attenuated and inverted.  

The pulses a r e  then mixed and the attenuator i s  adjusted in such a way 

that the output pulse i s  negative for  y rays  and positive for neutrons.  
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Fig. 7 .  Photomultiplier tube base  for RCA 7046 tube. 
The points P 1 and P2, on the pulse shape discr iminator  
that separa tes  out the f a s t  and slow pa r t s  of neutron and 
gamma pulses,  i s  connected to  the l a s t  dynode (14). 



IV. EXPERIMENTAL PROCEDURE 

- 
The relative atomic-capture probability of p mesons was m e a s -  

ured  by finding the l ifetime curve that,  for a single element,  i s  fur.-.'. 

nished by an  exponential whose intercept gives the ra te  of emission of 

.capture products and the inverse of slope, the l ifetime. In the case  of 

a binary compound, the l i fe t ime curve i s  composed of two exponentials 

corresponding to the different  l ifetimes of the p- meson in the two 

elements  of a compound. This composite curve can  then be decomposed 

into two curves ,  each of which corresponds to a par t icular  element.  

The intercepts  a t  ze ro  t ime  for  each curve can then be used to  find the 

relative number of p- mesons  stopping in the mes ic  K shel l  of dif-  

f e ren t  nuclear spec ies  in the compound ta rge t .  

Several  runs f o r  each element and compound ta rge t  were  taken. 

. Each  t a rge t  was run for  an  hour at  a t i m e  o r  sometimes m o r e .  . To 

. find the relative atomic-capture probability, we have compared the 

- relative captures  in the constituents of the compound with those in the 

separa te  elements .  Because this  metLod was used, we r a n  the compound 

and the separa te  elements  consecutively, to minimize, the effects of long- 

t e r m  t ime  drif ts .  In this  way about 3000 neutrons were  collected in  an 
5 - 2 hour fo r  10 p -meson stoppings'for a ta rge t  of thickness 5.0 g/cm . 

Each  t a rge t  was run a t  leas t  twice.  

The counting r a t e  of the neutron counter wa.s a lso checked a t  
. . 

regular  intervals  by using a PuBe source  in some fixed position and 

recording the coknting r a t e .  The countingr r a t e  did not change by m o r e  

t h a n ' l ~ o .  This was.done to  ensure  ihat  the overa l l  sensitivity of the 

neutron counter remained constant. 



V. ANALYSIS OF DATA 

. A. General Outline 

The data  recorded  during the various runs were  the number of 
- 

p. -meson stoppings and the t i~ r l e  distribution of neutrons emitted af te r  
- 

the stoppings, presumably caused by nuclear capture of p. mesons 

f rom the K shel ls .  The ra te  of disappearance of p.- mesons f r o m  the 

m e s i c  a t o m s q s  'K orbit  can  be written a s  

where  No ( Z )  i s  the number of muons bound to the K orbi t  of an element 

of atomic number Z. at t = 0 .  This . i s  ;thk same  a s  the total  number of 

mesons  stopping. The A i s  the total  disappearance r a t e .  T h e  Ad 

and Ac a r e  the muon-decay and nuclear -capture r a t e s ,  respectively.  

The observed neutron t ime distribution Y(t) i s  proportional to 

dN and the detection efficiency E of the neutron detector .  Therefore  
dt 

we can  wr i te  

D 
~ ( t )  = E N,A, e  at+^, 

1 
where  B i s  the background ra t e ,  and E i s  the detection efficiency of 

the detector for neutrons f r o m  the element.  F o r  a binary compound, 

where  E i s  -the detection efficiency f o r  the constituent e lement  in the 

compound, and C and C2 a r e  the atomic-capture probabili t ies,  and 

the i r  sum should b-e unity. 

The subscript 's 1 and 2 identify the two elements  of the compound, 

The detection efficiency includes the e f fec ts  caused by the different 

neutron energy spectra, for the different e lements ,  the neutron mult i -  

plicity,. and the attenuation of neutrons in the t a rge t .  
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B. Lifetime Measurements  

The neutron time-distribution data for an  element was  leas t -  
. . 

squares-fi t ted to  Eq.  (10) with the help of an  IBM 704 program known 
. .. 

a s  FRENIC. The makes a leas t - squares  fit by a process  of 

i terat ion.  
. . 

To find the lifetime of p.- mesons in a cer ta in  element,  we put 

in the estimates '  of the lifetime and the in te icept  (which i s  the r a t e  of 
. . 

emiss ion  of .neutrons a t  'zero t ime) .  The. background parameter  was  
.. . . . . .  

kept constant. Then th& program was' used to calculate '  the intercept  a t  

ze ro  t ime'  and to :calculate the l ifetime. The goddness of fit of data was  
2 , .  

tes ted by applying a X2" test'. In a l l  k d ~ e s  the P(x ) was between 0.10 
2 

; and 0.90. T h e  P ( x  ) i s  obtained f rom the table of. X2 p robabi l i t ie :~  f o r  

a giv,en . . number of degrees  of f reedom. In our case  the numbers of 
. . 

. degrees  of f reedom were  l a rge r  than a r e  given in standard tables .  In 
2 

such cases ,  P(x ) was calculated by using a method given in  Ref. 27. 

, . Several  runs for each elemental ta rge t  were,  taken. The weighted 
. .  . . . 

average of these measurements  was found. Then a x2 f i t  of these 

measured  values to the average was made .  F o r  a l l  those c a s e s  in which ': 

., . .  the var iance was  greatel; than,unity,  the e r r o r  on the.average l i fe t ime 

was multiplied by the square  root of the var iance.  This procedure 

allows . for  , ..nons.tatistical fluctu,ations. in the data.  The e r r o r s  thus 

,quoted take.  into consideration both counting s tat is t ics  and reproduci'- 

bility . The resu l t s  a r e  given in Appendix B . . .  . 



. . 
- .. 

C .  Z Law Measurements  

, ' .. . . - ,  

~; . , . . The Z law, data were  analyzed a s  follows: The.neutron t ime-  
, ,: 

distribution data f r o m  a,compound target  were  least-squares.-fi t ted to 
, , . . 

Eq.  ( 1 1), 'with th; help of the FRENIC program.  To c a r r y  out the 

analysis  we inser ted  the known background, the known values of the . .  . ':. 
, . . . 

l ifetimes, and the es t imates  of the intercepts a t  ze ro  t ime.  Then the 
. . . 9 

paramete r s  fo r  the background and the l ifetimes were  held culls taul, 

. .. while the p rogram ... . was used to calculate those the intercepts  designated 
, . 

in terrrls of the symbols of Eq.  ( 11) a s  E 1C l N o ~ c (  1) and E2G2No Ac(2) .  

. .  % 
To find C ' and C2,  we have to know: E NoAc( l! and 

- .  . . 

E ~ ' . N , A ~ ( ~ )  for the separ+te  elements forming the compound. To find 
1 

E NoAc( 1) .and E ~ N ~ A ~ ( Z ) ,  we f i t t ~ d  the d i t a  f o r  the el6rnehts to  Eq.  

: ' ( l o ) ,  a.gain:;~with the help' of FRENIC. This tirile the lor:  

background and tfie l ifetimes were  held constant.  . r h e  program was 

us~d ' to ' ca l cu la t e  out the intercepts  E l ' ~ o h c (  1) and E ~ N ~ A  (2 ) .  These 
. . C 

intercepts  were  cor rec ted  fo r  the effects included in ' the.  detdctioh 
2 I .  

1 # .  . . . 
effic!i.ency 'E' and E . 

. . , -,,, , ' The probability C f o r  atomic captu;e of p. mesons in  one of 
.. . 
the,  constituents in  the compound was obtained by dividing tlie intercept  

f o r  this  constituent by that for  the separate  demer i t .  Similarly,  the 
8 , .  

atomica-capture probabili ty.  C2 of the othera.congtituent in the compound 

was  obtained,. . The rat io  c 1 / ~ 2  gives the' relntiii& atomic-capture 
- 

probability of p. mesons  in  the constituents of the compound . 
The data for  the sulfide compounds and the metal l ic  solution 

CuAu were  analyzed along the l ines mentioned above. F r o m  the resu l t s  

given in Table IV (Sec. VII) we notice that the sum of atomic-capture 

probabili t ies for  compounds adds up to  nearly unity, while in the case  

of GUS, i t  i s  0.78, which i s  f a r  f rom unity. Our suspicions a r o s e  about 

the purity of the t a rge t s .  Therefore,  we had a l l  the t a rge t s  chemically 

analyzed. 



. . .The chemical compo.slti:on~~of the CuS and PbS samples  was, found to be : 

c u s  PbS 

In PbS 

No. of oxygen atoms 
= 1.364 

No. of copper atoms 
No. of oxygen atoms = 0.28 
No. of lead atoms 

All  the other ta rge ts  were  found to be 99.870pure. The ta rge t  mater ia l s  

used were  presumed to be reagent quality, so we do not know the cause 

of impuri t ies  in these. t a rge t s .  

To est imate the correct ion for  the fraction of p- -meson atomic 

captures  in oxygen in copper sulfide, we f i r s t  found the proportion of 

oxygen a toms to a toms of copper in the compound on the bas is  of the 

above chemical  analysis .  This rat io  was found to be 1.364. F r o m  our 

experimental resul t  for  CuO (Sec. VII, Table V) ,  ; we know that the rat io  

i s  CO/CCu = 0.163, where C i s  the atomic-capture probability. This 

i s  based on the fact that the rat io  of oxygen to copper a toms in  the com-  

pound C u O i s  unity. But in  our  CuS ta rge t ,  i t  i s  1.364. Therefore ,  . :  

multiplying 1.364 by 0.163 we es t imate  the rat io  of captures  in oxygen 

to that in Cu in our CuS ta rge t .  This number is' 0.222. F r o m  the ex-  
. . 

perimental  resul t  for  CuS, we know that about 5 170 of the captures  take 

place in Cu. So, multiplying 0.5 1 by 0.2.22 gives about 0.11, which i s  

approximately the captures  in  oxygen. This simple argument accounts 
- .  

for  about 11% of the missing p -meson captures .  The effect of hydrogen, 

i f  any, i s  ignored. Applying this cor rec t ion  br ings the s u m  of atomic-  

capture probability f r o m  0.76 to about 0.87. To bring the sum c loser  

to  unity, we have to  account for  about 137omore p-mesons .  The resu l t s  

of Sens e t  a l .  indicate that the captures  in oxygen a r e  enhanced by a 

factor of two in the case  of light oxide compounds. This i s  an experi-  

mental finding that has  received no explanation. Using this  fact,  we can 

account for  another 1170 of the missing mesons .  



. Similar ly,  it was found that for PbS about 5% of the p- captures  

take place in oxygen, owing to the presence of sulfate':.; ions.  When 

this'  ;or rection was applied, the s u m  of , atomic . -capture probabili t ies 

changed f r o m  0.89 to  0.94. 

The data  analysis  for oxide compounds needs a separa te  considera-  

tion. We t r i e d  to  separate  the yield of neutrons f r o m  oxygen but it was 

found to be statist ically insignificant. This i s  probably due to  the .' 

following reasons .  F i r s t ,  si~lct: uxygeu llas an a t o n ~ i c  numbor of eight, 

only about 2570 of the p- mesons reaching the mes ic  K shel l  in  oxygen 

a r e  captured by the nucleus. Second, the. yield .from oxygen was d i s t r i -  

buted over a"much l a rge r  number of channels than f r o m  the heavier 

e lement .  F o r  example,  consider the case 'of  CuO. The mean lifetime . 

of the p- meson in  oxygen is about ten t imes  that in Cu (163 nsec) .  The 

number of channels used in data analysis  was about th ree  mean  life- 

t i m e s  in Cu.  This range of channels i s  equivalent to only three- tenths  

.of the mean lifetime in  oxygen. Third,  the low neutron multiplicity in  

oxyge,g, a l so  reduces the neutron yield. Therefore,  it i s  reasonable that 

we did not observe any yield of neutrons f rom oxygen. Since the s u m  of 

atomic -capture probabili t ies should equal unity, we obtained the atomic - 
capture probability in oxygen by subtracting f r o m  unity the atomic - 
capture probability of the element in  the oxide compound, 

The data for  AgLi were  analyzed in the s a m e  way a s  was  done,for  
- 

oxides.  Examples of the l ifetime distribution of neutrons f r o m  p -meson 

captures  in different  compounds and elements  a r e  sllown in  F igs .  8 ': ..:i ; 

through 20. The constituent elements in  the compounds (sulfides and 

CuAu) have been peeled off a s  shown. 



--- ---- -------- 
Background 1 

Channel number 

Fig .  8. Lifetime distribution of y -  mesons in CuAu (background 
included). The curve has  been peeled off for y-  meson life- 
t ime in the constituent elements in the compound (background 
subtracted).  The dotted line indicates the background. 
P ( ~ ~ )  = 0.705.  



Fig.  9 .  Lifetime distribution of mesons in CuS 
(background included). The curve has  been peeled - 
off for  meson lifetime in the constituent elements 
in the compound (background subtracted).  The dotted 
line indicates the background. P ( ~ ~ )  = 0.755 
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- 
Fig .  10. Lifetime distribution of p mesons in SbZS 

(background included). The curve has been pee?ed 
off for p meson lifetime in the constituent elements 
in the compound (background subtracted).  The dotted 
line indicates the background. P ( ~ ~ )  = 0.343. 



0 10 20 30 40 50 
Channel number 

- 
Fig .  11. Lifetime distribution of p,- mesons in PbS 

. ,  . (background - .included). The curve has  been peeled 
off for p, meson lifetime in the constituent elements 

. ' i r i  t h e  compound (background subtracted).  The dotted 
, .. 

,- . line indicates the background. P ( ~ ~ . )  = 0 .274 .  
, _ L . . .  . . 
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F i g .  12. L i fe t ime  d i s t r ibu t ion  of p. mesons  i n  AgLi  

(background included).  T:he dotted l ine ind ica tes  
t h e  background.  P ( X 2 )  = 0.283. 
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F i g .  13.  Life t ime dis t r ibut ion of p-  mesons  i n  CuO 
. (background included . The  dotted l ine indicates  L the  background. P(x ) = 0.391. 
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Fig .  14. Lifetime distribution of t . ~ -  mesons in Sb203  
(background included). The dotted line indicates 
the background. P ( X 2 )  = 0.444. 
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- 
Fig .  15. Lifetim,e distribution of p. mesons in PbO 

(background included : 'The dotted line indicates 
!2 the background. P(x ) = 0 .903 .  
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Fig .  16. Lifetime distribution of p,- mesons  in  Sulfur 
(background included). T,he dotted line indicates 
the background. P ( ~ ' )  = 0.352.  
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Fig .  17.  Life t ime dis t r ibut ion of IJ. mesons  in  C u  

(background included).  The dotted line indicates  
the  background. P ( ~ ~ )  = 0.597.  
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. F i g .  18. , Lifet ime dis t r ibut ion of t ~ -  m e s o n s  in Sb 
(background included '. T:he dotted l ine ind ica tes  1 the  background.  P(x ) = 0.348. 
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Fig .  19. Lifetime distribution of p mesons in Au 

(background included . The dotted line indicates i the background. P(x ) = 0.773. 
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F i g .  2 0 .  ~ i f e t i k e d i s t r i b u t i o n  of t . ~ -  mesons  in  P b  
, (background includ'ed :' The  dotted line indicates  
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VI. CORREC TIONS 

A. Geometric Correct ion 

An effort  was  made to have the compound and elemental  ta rge ts  

of . the same  density and thickness.  Some of the compound ta rge ts  were  - 
available i n  powder form; therefore,  to match the low density of these 

t a rge t s ,  the metal l ic  t a rge t s  were  a l so  made in powder fo rm;  Infsp i te  

of th is ,  we had slightly different thicknesses fo r  Ihe t a r g e t s .  D i f l e r c i ~ t  

solid' angles w e r e  subtended a t  the neutron counter by different sections 

of the ta rge t .  A correc t ion  was applied in the following way. 

In a separa te  experiment,  the muons were  stopped in  a n  Au target  

approx 0.15 in.  thick. This Au ta rge t  was  thin compared with the other 

t a rge t s  used in  the experiment.  At f i r s t  the ta rge t  was placed touching 

the anti-counter. A; which was against  the neutron counter N. The 

number of neutrons detected, p e r  muon stopping in the ta rge t  in this  

position was  then recorded by the neutron counter.  The Au piece was 

then moved to different positions a t  distances Xi with respec t  to  the 

neutron counter.  The number of neutrons detected per  muon stoppirig 

was  recorded for each ta rge t  position. The numbers  of neutrons pe r  

muon stopping in different positions were  norma'lized to the number 

measured  when the Au piece was touching the anti-counter.  Let u s  cal l  

i t  g(Xi). This function, which gives the solid-angle effect, is plotted 

on Fig .  2 1. To find the geometr ic  correct ion,  a numerical  integration 

was  made over the thickness of the t a rge t .  

Suppose MAX is the muon stoppings in  the ta rge t  thickness AX. 

If g(X) i s  the corresponding solid-angle effect a s  found f rom the curve,  

then the geometr ic  cor rec t ion  to  be applied i s  

The summation extends over the whole ta rge t  thickness .  The e f -  

fec t  of neutron attenuation has  been shown i n  Sec. VI. B. This was 



X (in.) 

. .  . 
. . 

Fig. 21 .  Curve showing the relative solid-angle effect 
with respect  to  Au. . . 



done to show separately the effects of geometry and neutron attenuation. 

The M(Xi) was found f r o m  the differential range curve .  Since the 

differential range information was obtained with the CH2 absorber  in- 

c r e a s e d  by 1/4-in. increments ,  a convenient differential  ta rge t  thidkness 

to use  for this  numerical  integration was the thickness equivalent in  

stopping power to  114 in.  of CH2* This differential thickness for most  

t a rge t s  was  l e s s  then 1/8 in.  

li Y i  re i j resents  the tldcklless equivalent t e  GI-12, thon X, i c  to 
1 

be replaced by Y .  in  the above expression for G. 
1 

To i l lus t ra te  the above, we take a specific exarrlple of P b  t a r g e t .  

The p- stoppings per  monitor for this  ta rge t  a r e  known f r o m  experi-  - .  '; 

ment .  Using this  and the integral  range curve (Fig .  22), we  can find 

the thickne:~ s %of P b  equivalent to  CH2.  This equivalent t a rge t  thick- 

ness  (Yi )  i s  then divided into different pieces of 1/4-in. thickness.  Using 

the differential  range curve (Fig .  2 3 ) ,  we can  find the muons stoppings 

in  each  1/4 in.  of CH2. This gives M(Yi). Therefore , .  G can  be ca1cu:-: 

lated,. since other quantities;l.are also. k n ~ . ~ n .  . - 

The relat ive geometr ic  fac tors  of different compound t a rge t s  with 

respec t  to the elemental  t a rge t s  a r e :  

CUS/CU (powder) = 1.00 CUO/CU (powder) = 0.95 

CUS/S, = 1.11 Sb 2 3 thin fbthin = 0.97 

CUS/S,, = 0.990 Sb 2 0 3 t h i ~ k / ~ ~ t h i c k  = 0 -92 

P ~ S / P ~  (powder) = 0.88 
thin/Sbthic k 

Sb203 
= 1.06 

P~S/S, = 1 .05 Sb203 thickkbthin = 0s84 

P~s/s,, = 0-940 P ~ O / P ~  ,(powder) = 0.98 

CUAU/CU (solid) = 0.97 



CH2 (in.) added a t  12.25- in. absorber 

Fig .  22. In tegra l  stopping r a t e  i n  CH2. 
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CH2 (in.) added at  12.25-in. absorber 

Fig .  2 3 .  Differential  stopping r a t e  i n  1/4-in. CH 
2 ' 



The SI and SII a r e  two pressed- .  sulfur ta rge ts  of different dens i t ies .  

Among the oxides, the Sb 0 targe ts  were  of two different densi t ies .  
2 3 

We var ied  the densit ies to see  i f  the l a r g e r  amount of oxygen in the 

ta rge t  attenuated the neutrons more  and thus affected the neutron emis -  

sion. The Sb203 was  chosen because the stoichometric rat io  , in .it was 

higher than in our. 0the.r oxide compounds. The neutrons emitted per  
- 

p -meson stopping for  both the thin and thick SbZ03 ta rge ts  were  iden- 

t ical  within s tat is t ical  e r r o r s .  This indicated that the .presence  of 

oxygen caus.ed,no special  attenuation problem, which i s  a l so  supported 

by the neutron-attenuation measurements  for these  ta rge ts  made with 
2 

a mock f i ss ion  .squrce.  The.neutro3 attenuaiion p,er g/cm . for  both the 

thin and thick ta rge ts  was the same  ( see  Table . ,III,..Sec. . VI. B). The 
. . 

r e s u l t s  given in  Tables I V  and V (Sec. VJX) aS.e.th& , .average . of the r e -  . '  

sul ts  for  the two t a rge t s .  

B. Neutron Attenuation in Targe ts  
' . 

- 
The neutrons f r o m  p -meson capture a r e  produced throughout 

the volume of the ta rge t .  ~ h k s e  neutrons undergo 'different amounts of 

attenuation depending upon their  places  of origin.  This attenuation 

resu l t s  in decreasing the yield of the neutrons.  

TO c o r r e c t  for  this  neutron attenuation effect in  different ta rge ts  

we performed a separa te  experiment with a mock-fission neutron source .  

It was  assumed that the neutron spec t rum f r o m  this  source  r e sembles  

an evaporation spec t rum with respec t  to both average .energy  and shape. 

This experiment ,  however,  gave only an  upper l imit  to the attenuation 

ef fec t ,  since the neutron source  was  a t  the surface of the ta rge t  fa r thes t  

f r o m  the neutron counter .  But 'the neutrons r e  sult.kng.:fr:olt.1:p-..m.eson 

capture ar'e nonlocalized in the ta rge t .  To .find the .effect of nonlocaliza- 

tion, i t  i s  necessa ry  to consider  the distribution of the neutrons inside 

the ta rge t  a s  wel l  a s  the neutron attenuation, iii different sections of the 

ta rge t .  It was  a s sumed  that the distribution of neutrons in each section 

of the ta rge t  was  proportional to  the distribution of .t5e p- -meson beam 

inside the ta rge t .  



F i r s t ,  the attenuation was ,measured  with the source  position a t  

the surface of the t a rge t .  This was then used to  calculate the total  
-nay  

cr.oss section a f r o m  the formula P/P, = 1 - e , where P/P, i s  the 

fract ion of par t ic les  not t ransmit ted through the ta rge t ,  n i s ' t h e  number 

of a toms pe r  unit volume in the ta rge t ,  a i s  the tota3 c r o s s  section, 

and.Y i s  the ta rge t  thickness .  When a was known, the attenuatiu.11 Iactor 

.A(Y)  = 1 - e could bk found for  each differential  th icknessYi  of the 

' l d lge t .  

To find the net n'eutron attenuation,. a numerical  integration was  

made  over the  thickness of the ta rge t .  

Suppose' M i s  the number of ..p,--meson stoppings in  the ta rge t  

thickness AYi. If g(Y) i s  the corresponding solid-angle effect, then 

the net neutron attenuation i s  
C1 

The method for  finding M(Yi) and g(Yi) has  already been outlined 

in  Sec.. ,VI.. A. 
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Table  111. Resu l t s  f o r  neu t ron  a t tenuat ion in  va r ious  t a r g e t s  

E l e m e n t s  ,. . 
A 1  .. . . . 

A 2 .  . A3 

. . , . . I  . - . . . . .  

.. - : . , SI, .. . . . .  13.34*0.75 . 

, . .. . .  . S~~ ., . 8.28* 0.47 
. . 

% ,. . Cu(So1id) . 13.92*0.87 

. . .  Cy(powder)  . . 13.08* 0.82 

- . A g  . .  . . .. . ,8.00*0.76 

Sb (Thin)  6.08*0.38 

. , Sb (Thick)  . .. . . . .12 *92*0.82 

. A u . . .  . . 
8.47*0.,80 . ,  

. .  . ~b . . :.; . . 10.61a 0180 

Oxides 

c u o  

Sb203  (Thin)  7.05* 0.5 P 2,06*0.15 3.6 1*0.26 

S b 2 0 3  (Thick)  i0.7 l* 0.78 2.06* 0 J .5  6.06*0.44 

P b O  8.54*0.77 1.22*0.11 4.96* 0.45 

Sulfides 

C ~ S  ( P o w d e r )  16.07* 0.77 3.85* 0.20 9.39k0.49 

CuS (Gake) 20.4'!* 1.06 3.85*0.20 9,39*0.49 

Sb2S3 

PbS 

Metal l ic  solut ions  

Ag Li 7.79* 1.04 1.43*0.19 4.10*0.56 

C u A u ,  13.3 1* 1.2.5 1.60*0.15 7.92*0.74 

A l  i s  t he  neu t ron  a t tenuat ion ( i n  pe r cen t )  when t he  neu t ron  s o u r c e  is 

at the  ' surface  of the  t a r g e t .  A2 i s  t he  s a m e  neu t ron  a t tenuat ion ex- 

p r e s s e d  in  pe r cen t  p e r  g/crn2. A)  is t he  ne t  neu t ron  a t tenuat ion ( in  

pe r cen t )  when the  neu t ron  s o u r c e  is d i s t r ibu ted  in the  t a r g e t .  



VII. RESULTS 
. . 

This section desc r ibes  the resu l t s  for the atomic-capture prob- 

abili t ies of p,-mesons in the constituents of the compounds a s  given in 

Table IV. The C1 and C2 represent  the atomic-capture probabilities 
1 

in the higher- and the lower-Z constittient in  the compound, respectively.  

The rat io  c 1 / ~ 2  i s  the relat ive atdmic-capture probability. The s u m  

C + C2 rep resen t s  the s u m  of the atomic-capture probabilities and 

should equal unity. The resu l t s  have been cor rec ted  for  both the geo- 

m e t r i c  effect and neutron attenuation. 

The summary  of resu l t s  i s  given in  Table V. Assuming. the  

atomic-capture probability goes a s  zn (n  being any positive o r  neg- 

ative number) ,  we have calculated n for  each compound. These a r e  

a l so  given in Table V. 



a 

. ' Table  IV. '  . ,  Resu l t s  . for ' ,atomic- 'capturk probabi l i ty  i n  the  
const i tuents  of the  compounds 

~. . .  . . . 
Compound 

1 . . C2 

Sb2S3 0.59* 0.015 0.36* 0.020 1.64*0.10 0.95* 0.026 
I 

~ b s t  0.66* 0.019 0.23* 0.027 2.871t0.35 0.8% 0.033 

CuO 0.86*0.019 0.14*0.019 6.14*0.85 - 
. .  . 

' s b Z o 3  0.65* 0.0 12 0.35* 0.012 ' 1..86* 6.096 - 
_ .. . 

. . .  
. " P b O '  0 .8 i*  0.020 0.18* 0:020 ' 4.56* 0.53 - 

. . T h e  s u m  C + C 2  h a s  not been  indicated fo r  AgLi  . and  . t h e  oxide c o m -  
pounds because ,  in  t h e s e  cases. ,  C2 w a s  calcula ted f r o m  C 2  ,= 1 - C . . 

' and not independently as i n  CuAu and  sulf ide 'compounds... . 

' Af te r  the- a t omic  t a p t u r e i  i n o x y g e n  d r e  kkt imated,  t he  s u m  i s  about 

0.98 i n  CuS. The  r a t i o  C1/C2 r e m a i n s  unchanged.  In t he  c a s e  of 

PbS, the  s u m  changes  f r o m  0.89 to  0.94 a f t e r  e s t imat ion  of the  

c o r r e c t i o n  f o r  c ap tu r e s  in  bxygen. The r a t i o  c 1 / ~ 2  aga in  r e m a i n s  

' . the  s a m e  .: ':For .de'tail:s.,se'e t ex t  (Sec .  V. C ) .  . 



- 
Table V. S u m m a r y  of r e s u l t s .  Rela t ive  number  of p. mesons  

reaching t he  m e s i c  K she l l  i n  the  const i tuents  of a chemica l  . . 

. . compound . . 

' Compound Rat io  Observed  P red i c t ed ,  ' Atomic n 

. . . F e r m i  r a t i o  - .  
and  Te l l e r  

CuS c U/S 1.89*0.18 1.81 1 1,07* 0.16 

PbS  P ~ / S  2.87* 0.35 5.12 1 0.65*0.0'76 

CuO CU/O 6.14*0.85 . 3.62 1 1.41*0.11 

P b O  P ~ / O  4.56*-0.53, 10.25 ' 1 0 . 6 5 ~ 0 . 0 5 0  
% ,  

~ ~ ~ i ' a n d  CuAu a r e  meta l l i c  solut ions .  AgLi  h a s  10% of L i  by 
weight. CuAu h a s  36% of Au by weight.  . .  . . . . . 



VIII. DISCUSSION AND CONCLUSIONS 

Suppose the atomic-capture probability for  a binary compound i s  

given by C 1 / ~ 2  = n 1 / n ~ ( z  l /Z2)n,  where C and C2 a r e  the  atomic-cap- 

tu re  probabilities for the two constituents of a compound with their  

atomic concentrations n l  and n respectively,. ' ,Z. and Z2 a r e  the 
2 '  1 ' 

atomic numbers ,  and n i s  any number that can take positive a s  well  a s  

negative values. F o r  the case  considered by F e r m i  and Tel le r ,  n i s  

e q u a l t o  unity. We have plotted, in Fig.  24, n2cl /nlCZ ve r sus  z l h 2  
f o r  the res'ults obtained f r o m  our experiment a s  wel l  a s  f rom previous 

experiments . 7-13 The resu l t s  f r o m  our experiment fal l  between 

n = 2/3 and 1.4 over the plot. 

Sens et a l .  r e m a r k  that their  resu l t s  follow m o r e  closely the 

simple atomic rat ios  unweighted by the atomic numbers;  in fac t ,  a 

plot of these  resu l t s  shows an inverse Z relationship for the capture 

p rocess .  

Among the metall ic compounds examined we notice that AgLi i s  

consistent with n = 1 (Fe rmi -Te l l e r ) .  Lathrop e t  a l .  tes ted an  AgZn 

alloy in  which they showed an .agreement  of their  resul t  with n = 1.  A 

recent measurement  of the CuA12 alloy shows that the atomic p---meson 

capture in Cu occurs  at  a ra te  higher than the Z law would predict .  

The resu l t  of Lathrop et  a l .  for AgZn, though compatible with the . .  . 

Z law behavior, i s  not in disagreement  with the CuA12 resu l t .  F r o m  

the  plot, we see  that both these resu l t s  a r e  in agreement  with n = 1.5 

Therefore,  the conclusion of Lathrop et .  a l .  that the Fe rmi -Te l l e r  

Z law i s  valid in metall ic compounds seems  to be an oversimplification. 

This i s  fur ther  supported by our resu l t  for  CuAu, which i s  n = 213. 

Sens et  a l .  point out in their  paper that the prediction by F e r m i  

and Tel ler  was based only on their  calculation for the energy loss  for 

meta ls .  It had been indicated by F e r m i  and Tel le r ,  themselves,  that 

the energy loss  for  insulators  might be different for meta ls  because 

the Bril louin gap does not allow a rb i t r a r i ly  smal l  amounts of energy to 

be t r a n s f e r r e d  f r o m  the p,- meson to the electrons of the insulator.. 



. . . . 

. . .. . * . . , . . .  :.. . - n2C 1 z1 
Fig'. 24. Plot of VS - . ..  . 

1 2  z2 



When the resu l t s  of . . Sens et  a l . ,  in the case  of insulators ,  showed a 

disagreement  with the Z law behavior, they pointed out that this may 

be one of the reasons f o r  the breakdown of the prediction by F e r m i  and 
. .  . 

Tel le r .  On the bas is  of the resu l t s  for  metall ic solutions and al loys,  . .'. 

which a lso  show a departure  f rom the predictions of F e r m i  and Tel le r ,  

, it appears  that, besides the Bri l louingap,  the re  . . a r e  other fea tures  

that influence the capture process .  

An interesting point to look into would be the possibility that the 
- 

latt ice s t ruc ture  of these compounds has  something to do with the p - 

meson captures .  The CuAu tested in this experiment had 18% by weight 
. . 

of Au. The metall ic solution had a face-centered cubic s t ruc ture  in the 

d isordered  s ta te .  In the CuAu. s t .s tems,  for moTe  than '187'0 and l e s s  than 

47% Au, a superlat t ice  i s  form'ed which gibes r i s e  to  a fa=e-centered 

cubic s t ruc ture  in the ordered  s tate  with Au atoms going to  the cube 

co rne r s  and Cu a toms to the face cen te r s .  2 6  F o r  the atomic percentage 

between 47 and 53, a tetragonal s t ruc ture  i s  formkd. 26 It might be 

interesting to study how the capture rat io  i s  affected by a change in the 

latt ice s t ruc tu re  for the same  compound. In other words,  the problem 

would be to find i f  the manner  in which the different kind of a toms a r e  

bound together in the latt ice affects the capture rat io .  We then might 

know something about possible energy los ses  of p-  mesons to  the la t t ice .  

Such energy los ses ,  i f  any, a r e  unknown. 

F r o m  the plot i t  i s  seen that the resu l t s  for PbO and PbS a r e  

descr ibed by about the s a m e  value of nz2/3, while those for CuO.and 

CuS a r e  distributed about n = 5/4. It s eems  to  indi=ate that the corn,- 

pounds that have the same  atomic binding may behave in a s imi lar  

fashion so  f a r  a s  p-  captures  a r e  concerned. We might then expect 

the same  behavior for  SbZ03 and Sb2S3, but they have l a rge  deviations 

about an average  value of n z 2/3. F r o m  Tab1e.V i't i s  seen that the 

resu l t s  for  Sb 0 and SbZS3 have sma l l  s ta t is t ical  e r r o r s  whereas  the 
- 2 3  

other compounds have l a rge r  e r r o r s .  It may be that t he re  a r e  some  

systematic  effects in  Sb203 %and Sb2S3 that make the s tat is t ical  e r r o r s  

sma l l  and, therefore ,  imply a significant deviation between the n values 

for these two compounds 



In conclusion, we can say that our experimental resu l t s  for the 

relat ive atomic -capture probability of t . ~ -  mesons in the constituents of 

a compound 'fall approx'imately in the range between n = 2/3 and n = 1.4. ' 

There  i s  thus a positive correlat ion between the atomic-capture rat io  

and Z ,  but not exactly the same a s  F e r m i  and Tel ler  predicted. ' It 

s e e m s  that fur ther  theoret ical  and experimental investigation has to  be 
. . ,  

done before we can ar i ive a t  any definite conclusion. 
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APPENDICES 

A.  T a r g e t s  

W e  ha.ve d e s c r i b e d  in  Sec .  I .  C, th.e r e a s o n s  f&'r chnosjng t he  

d i f fe ren t  t a r g e t s  u sed  i n  t h i s  exper iment .  H e r e  we  give in format ion  

re levan t  t o  t he  speci f ic  t a r g e t s .  

Target Thickne 6 6 Thicknc s s 
( g/cm2 ( c m )  

E l e m e n t s  

S 3.6 and 5.8 

F e  5.9 

C u ( p o w d e r )  5.45 

Cu(so1id)  5.8 

Ag 6 .9  

Sb 3.2. and 6.8 

Metal l ic  so lu t ions  

AgLi  

Insula t ing Compounds 

A .  Sulfides 

C u s  

Sb2S3 
PbS 

3 shee t s  of 
50 m i l  = 7.3 

4.18 and 5.3 

6.7 

6.0 

2.0 and, 2 .9  

2 .o 
2 .o 
0.645 

0 -66 

1.0 and 1.6 

2.0 and 2.0 

2 .o 
2.5 

B. Oxides 

c u o  7 -5  2.0 

Sb203 3.42 and 5.2 1.5 and  2.5 

PbO 7.0 1.5 



B., Capture Rates of p- Mesons in Elements  

Wheeler showed,. on the bas is  of phenomenological arguments ,  

that the capture r a t e  of negative muons i s  proportional to  the muon 
2 8  

density at  the position of the nucleus; i. e . ,  
. . 

L 
a l l  protons . . 

where  a. i s  the muon Bohr radius and 6 (0)  the K-orbit  wave func- 
P 

t ion for..the muon at the origin: The appro.ximation of the hydrogenic 
I, j I 

wave function i s  not co r rec t  for high-Z nuclei, for  which the radius of ! 

muon orbi t  i s  comparable to the nuclear radius .  F o r  high-Z nuclei, ' 

the capture r a t e  i s  proportional to Z 
a ..'. ,: . .. , * . 

where eff2 . . .  

. . + 
where 4 ( r  ) i s  the muon wave function normal i i ed - so  that . .  . 

3 -+ 16 ( r ) d r  = na ,  , and p ( r  ) i s  the dbnsity function of protons in  the 
-+ + I. nucleus normalized s o  that j" p ( r  )dr  = Z. Assuming a uniform nuclear-  

. . 

charge distribution, Wheeler obtained the following interpolation formula 

This  formula  has  been improved by H i l l a s  2 9  Using the recent values 

I . .  . 
5 -'of. muon m a s s ,  nuclear radi i ,  and the proton-density distribution a s  

.. . . . 
given by Hill and Ford ,  30 he a r r ived  at 



4 
Sens has  recalculated Zeff for var ious nuclei by using the : , . -. 

' 4  

nuclear-charge.distributions determin'ed f r o m  elektrbn-scat ter ing . 

measurements .  The values of Z a s  calculated by Sens a r e  in  good 
ef f. 

agreement  with those given by Hillas. 

Wlieelelqs rheury pr'edicls l a lgc i  liitcraetion ratoo for  high Z 

than the experimental  values.  Primakoff has  explained that this  dis - 
agreement  i s  due  to  the neutron excss s in  heavy elenlents,  which r s -  

duces the number of momentum states  in which the emitted neutron can 

be accommodated. Using a c losure  approximation to s u m  over the 

final s ta tes ,  Primakoff obtained, for  the capture ra te ,  

, . A-Z 
A c (A, Z)  = (Zeff14 ( (q)a)2 (272 s e c - l )  R (1  - 6) 9 (B- 1) 

where  ( q  )a is the kinematical factor averaged over the final s ta tes ,  

R i s  the rat io  of assumed p- capture coupling constants to  the coupling 

constant for  the p decay of the neutron, (A - z ~ ) / ~ A  represents  a de- 

c r e a s e  in the capture r a t e  due t o  the presence of the neutrons in  the 

nucleus occupying final s ta tes  into which the proton wishes to  go, and 

6 i s  a nucleon-correlation parameter  est imated f r o m  nuclear data 

( i t s  value i s  3.0) .  
4 Sens has  made a leas t - squares  fit of his experimental  data  t o  

the Primakoff formula.  He finds good agreement  between theory and 

experiment .  F r o m  the leas t  - squares  fit, Sens obtained 

- 1 ((17 ) a)2 '(272 s e c - I )  R = 188 sec  (experimental)  

- 1 
= 16 1 sec  ( theoret ical) .  (B-2)  

Th i s  provides support for the combination of basic  assumptions.on which 

the theory i s  founded. If the  assumption of conserved vector  cur rent  

i s  abandoned in  PrimakoffP s theory, then 
2 

( ( q  ) )  (272 S ~ C - l )  R = 137 S ~ C - l  (theoretiCa1). , (B-3 )  



So it appears  that there  is  a better agreement between theory and ex-  

periment if the assumption of conserved vector cur rent  i s  retained. 
. + - The agreement  between the theoret ical  and. experimental 'values 

in (B-2)  only te l l s  about the equzlity of coupling strengths in the two 

.: , processe.s but does not reveal  anything about the detailed nature of the 

interaction. It should be pointed out that the Primakoff formula (B - 1) 

gives only a gene ra l . fo rm of the dependence of the interaction ra te  on . . 

. . , . .  . . . . 

C .  Measurement of Lifetimes and-the C ip tu re  Rate  of p- in Elements  
.. . . . . . . . . :  . .  , . 

In connection with the experiment for testing the. Fe rmi -Te l l e r  
. . . ,  

. . -.. . , ; Z law, ..it was n e c e s s a r y , t o  .measure  thk l ifetimes iq a number of e le -  
i . . . . ? .. . . . . . .  .. . 

ments ,  . namely, . .. . St F e ,  Cu, Ag,  Sb, A?, and Pb .  T h e s e m e a s u r e d  .:: 

l i fe t imes a r e  of s ta t is t ical  accuracy comparable to  o r  g r e a t e r  than the 
3,4? 5 ( A U  measurements  previously reported by other exper imenters  

has  not been measured  before) .  We measured  the l ifetimes by detect-  

ing the capture-product neutrons.  F o r  elements with Z > 10, the yield 

f o r  capture products exceeds the decay products.  The re  a r e  ve ry  few, 

if any, background effects  caused by mesons stopping in  the counter o r  

the container walls.  All  the ea r l i e r  measurements  have been made by 

detecting the decay-prod.uct e lectrons.  Therefore ,  the presence of any 

low-Z mate r i a l  in  the immediate  neighborhood i s  a source  of relatively 

large numbers  of e lectrons.  

The measured  l i fe t imes have been used to  calculate the capture . . '  

r a t e s  in different e lements .  The total. disappearance r a t e  of the p- i s  
- 

given by 

where A i s  the total  disappearance ra te ,  Ad the  decay probability, 
t 

and Ac the capture probability. 



In our  experiment,  we determined A by detecting neutrons,  a s  t 
mentioned in'Sec. IV. The data analysis for  A has  already been dis-  

t 
cussed  in Sec. V. B.  . The values of Ad were  calculated'from a theo- 

re t ica l  formula, given by Huff. The  capture ra te  was calculated f rom 

= At - The capture ralrs have been fitted to  Primakoff:.'s formula.  c d o  
B-I. The values obtained f rom the fit a r e .  

and 

" - (Cq )a)2 (272 sec  l )  R = 198.2 * 5.3 

Fi = 3,14.* 9.0005. 

These  values a r e  in  agreement  with t'he theory. and' a l so  with the resu l t s  
4 

of Sens.  F igure  25 shows a plot of h (A, Z) /Z  eff ve r sus  A - z / ~ A .  
cap 

The  straight line i s  a leas t - squares  fit to  the observed data correspond- 

ing to  the p a r a m e t e r s  in  (B-4) .  The resu l t s  a r e  given in  Table VI. 



Table  VI. Average  l i fe t imes .  for  different  e lements  and  t h e i r  c ap tu r e  r a t e s  

E l emen t  Ave rage  No. of 2 Average  l i fe t ime h t x ~ o - ~  A , X ~ O - ~  .A ~ 1 0 - ~  
l i fe t ime m e a s u r e -  y, ~ ( y , ~ )  a f t e r  e r r o r  c 

(n sec )  men t  s ad jus tment  ( s e c - 1 )  ( s e c  ) ( s e c - ' )  
(-nsec) 

'Ag 84..4*0..97 5 1.13 0.90 84.4* 1 . O  118.48* 1.40 4.16 .1:14.:3* 1.4 

The values  of Ad have been t aken  f r o m  a paper  by Huff. 
3 1 



n 
capture (A,  Z) A - Z  Fig..25. Plot of '  

4 
vs - . The line i s  

. . 
. .'eff 2 A  

a leas t - squares  fit to the observed data.  



Tab le  VII .  F o r  t he  sake  of compar i son ,  the  l i fe t imes  of t . ~ -  

mesons  i n  different  e lements ,  f r o m  previous  w o r k e r s  a s  well 

a s  f r o m  our  exper iment ,  a r e  given below. 

E l emen t  Life t ime ( n s e c )  Re fe r ence  

S 4 9 8 * l.7 UCRL- 1 0 2 9 7 ~ ~  
4 540 *20 Sens .  

610 *40 T enner  
5 

700:Y:40 Alber ig i -  Quaranta  ei; a l .  
3 

162'.6 * 1.9 UCRL- 1 0 . 2 9 7 ~ ~  

160 *4 Sens  4 

Ho l s t rom and Keuffel 
5 

As tbury  e t  al. 
5 

Gilboy and Tennent 
5 

172 1 8  Meyer  
5 

84.4 1.0 UCRL- 1 0 2 9 7 ~ ~  

85 *3  Sens  
4 

84 * 4  ' Meyer  
5 

UCRL- 102.97 
32 .,. 

Sb 91,3 * 3 -4 

Keuffel e t  al. 
3 

99 *..l.l 
32 

68.6 * 1.3 UCRL- 10297 

74.1 * 1.0 UCRL- 1 0 2 9 7 ~ ~  

82 *5 Sens  
4 

75 *3  Meyer  
5 

74.2 k'5.6 UCRL- 0 0 2 9 7 ~ ~  

" ' F o r  t h e s e  nucle i ,  t he  indication of nuc lear  c ap tu re  w a s  a f i s s i on  

f r agmen t  r a t h e r  than  a neutron.  
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