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ABSTRACT
A method is described for the numericel solution of the non-linear magneto-
statig equation for the vector potential over an arbitrary polygonal region using s
diﬁtorted tri;ngle mesh. "The equations are solved by successive overrelaxation with
automatic optimizatioﬂ of the overrelaxation pafameter. Based on this method, a
general .purpose two-dimensionql'magnet.code has been developed which will calcu-
1a£e'magnetic fields in any plane arrangement of air, iron, and currents, with speed

and accuracy comparable to that obtained with rectangular meshes.

I. INTRODUCTION
The use of an irregular triangle mesh for the numerical solution of partial
’ differential'equétions iﬁ twvo dimensions was first proposed by Coﬁrant1 in 1943,
In 1953 MacNeal2 employed it for the solution of the Poisson equation using an
electrical meéh analogue computer, and in 1958 Léith3 independently reinvented
the.method for a digital computer and used it to solve parabolic equations. Simi-

lar methods have been used by others,h’5’6’7

This work, a'fevisiog of an earlier
report,8 is based on that of Leith.
In the following sections the basic assumptions are stated, the difference

Aequations are derived, numerical methods of solution are discussed, and some ex-

amples of results are given.




II.

DESCRIPTION OF THE METHOD

The equation to be solved is the generalized Poisson equation

PO

Ve (AVs) + S = 0 (1)

over a region R where A is a function of the rectangular coordinates x,y and may
also depend on ¢, and S is a prescribed function of x,y. If A dependé on ¢, it is
considered to be a function of x,y when performing the differentiations indicated
in (1); for example, if A = A(¢), then (A¢x)x = Af¢i + A¢xx and so on,
The ﬁoundary conditions are assumed to be of the férm a¢ + b %§-= 0 where
%%,is fhe normal derivative and a,b are prescribed constants that may take on
- different values (nbt both zero) over different portions of the boundary. The
dependent variable ¢ is assumed to be continuous. The quanti?ies A,S are assﬁmed.
to be continuous over sub-regions of R, so that there may be internal interfaces
at which A and S are discontinuous. At such interfaces, A gﬁ- is assumed to be
continuoﬁs. |
The basic assumptions of the finite difference method are:
(1) the boundaries and interfaceslof the region R are approximated by straight
line segments
(2) ‘the region is triangulated
(3) the values of ¢ are defined at triangle vertices, and ¢ is assumed to
vary linearly over each triangle
(h) A and S are assumed to be constant over each triangle.
The type of triangulation used here is topologically regular; thaf is, it is
. topologically equivalent to an equilateral triangle array in which six triangles
meet at every interior mesh point. The triangﬁlation is carried out by an aux-

iliary calculation involving the numerical solution of another boundary value

problem (see Appendix).
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Since any pol&gonal region can be triangulated, the method can be applied

w to regions of any shape, and will sroduce a mesh in which boundaries and inter-
faces lie entirely on mesh lines., This causes & considerable simplification in

~ the finite difference equatiohé and in the specification of boundary conditions.

It aelso permits a linear approximation to the dependent variable, and thereby

makes it easier to derive the finite difference equations, to which we now turn.

III, DERIVATION OF THE DIFFERENCE EQUATIONS
Two derivations of the same finite difference equations, based on the
assumptions of section II; will now he given, in order to establish different

properties .of the equations.
3

(1) Integral derivation

Instead of equation (1), let us consider the non-linear diffusion equation

c%—%:%-(ﬁqg) +S (2)

where'the‘positive coefficient ¢, like A, may be & function of ¢. .For a steady state,
A(2) reduces to (1).

Consider an interior mesh point in a triangle mesh in which the assumptions
of sectioﬁ IT hold. Associated with the primary triangle mesh we define a secon-
dary mesh of 12-sided figures whose vertices are alternately the centroids of the
six adjacent triangles and the midpoints of the six adjacent-sides. This is shown
in Fig. 1, in vhich 2 single such figure is shaded. Thg secondary ﬁésh element
surr&hnding a given vertex includes oné-third of the area of each of the six pri-
mary mesh triangles sharing that vertex, so that each triangle of area A is divided
.into three equal quadrilaterals of area a = é-.

3

- : Consider the triangle 1 + 1/2 defined by the two side vectors ;i’ 19 with

-.)
5.4
values ¢i’ ¢i+l’ ¢ at the respective vertices as shown in Fig. 2. Since ¢ is

sessumed to be & linear function of position, each such triangle has a vector

$¢i+1/2 assoclated with it, which satisfies the equation
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IR Do i e
oy =0+ 30,0 =i, 10 (3)

and is given by
_V’¢ - (¢i-¢)sai+l - (¢i+l_¢)g‘i '
i+1/2 z, (L)
i7i+l

wvhere the vector & represents the vector ; rotated clockwise by an angle /2,

Within each triangle the flux of the diffusing quantity is given by

>

Fie1/2 = 2

>
i+1/2 %4172 °

The conservation law can be expressed through Gauss' theorem by equating the

surface integral of the left side of Eq. (2) over the secondary mesh element to

the integral of the normal component of F over the boundary of the secondary
mesh element, added to the surface integral of S.

The flux contribution R from the triangle i+1/2 shown in Fig., 2 to the

i+1/2

rate of change R in the secondary mesh element is
Rivija = Fian/o® O+
IS i TN
i+1/2 2 2

s."1+1"

o,

=i

=-l_u
2

R

141/2" i)

Summing around the vertex and using the central vertex value ¢ as the average

‘vaiue over the dodecagon, we obtain

% Ty, 6
l"'l ? é AQ - o-];.
ggﬁ Ci+1/2 T Bt “i+1/2 T &t £;1Ci+1/2ai+1/2 ) éé; Fin1/2'5 e oAy)

6
* £§£“1+1/2a1+1/2

or

o]

6
_*
At ;gﬁ Fipajo * 5 (Fi=%y) +S
Ay = — = . (5)




where

6
“ . 6= 12;1 i+1/2%141/2
- (6)
5
o 5= {31 Sis1/0%441/2
Using (4), and letting ¥, = ¢, - ¢, Ve can express the flux sum in Eq. (5) as
1 Mar/2(iFieg = ¥y %y) ¢ By, - A
Feg L +
+ SE ' §i+1
-+ > -+ -+ -+ >
Ly Marsz ViBia1 " (S5ap = Sg) 08y 0 (8 -s5,)
) > .
i . 8 o8

i i+l
where wve have made use of the relatibns

I S Y G 4

QWedosadev.,

Since the sum is cyclic, ve cah reduce the index by one in the second term,

obtaining
A A
.1 i+l/2 -+ . (2 -»> i-1/2 -+ .2 -
=3 Zl: R 11 * (854775;) Y e .2 fi-l (552755 | ¥
i i+l ’ i-1 i

* ; w (o, = 6) .

“The coefficient of wi in (7) is called the coupling coefficient for the line jbin-
ing the vertex i and the center. It depends only on the nature of the two triangles
‘having this as a common side, and can be written

' =+
- v =3 (Ai+1/2 cot ei+l/2 + 5i-1/2 cot 61_1/2) . i (8)

where'the angles ei lie opposite the side i,

£1/2

We note that the coupling between two points x and x is symmetric, so that

lel A 2’y2
Yi2 T Vo1 ¢ (9)
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can be positive, negative, or zero, but the sum of the couplings

Moreover, w

i
- around a given point is positive:
6 A,
. ‘ z }’i = :Il.‘_ Al+l/2 ("’i+l _ ;i)? . (10)
. ' i=1 i i+1/2

-

since 5}'0 8i41 = 2Ai+l/2 .

Thus, Eq. (2) can be written in finite difference approximation

6
ol E;-' wilog = @)+ 8] (11)

go that for a steady state the finite difference analogue of (1) is

Lv (6, -0)+85=0 ' (12)
1

The continuity properties of the finite difference solution are: (a)'($¢)t
continuous, (b) (A$¢)n continuouss where t and n refer to tangential and normal comn-
ponents respectively. Statement (a) follows directly from the expression (4) for
¥6. Statement (b) is a consequence of our derivation by means of Gauss' theorem
together‘ﬁith (#) vhich shows that the normal components of the fluxes have been
replaced by mesh currents Qi(¢i-¢) flowing along mesh lines. Conservation of
these currents is guaranteed by (9).

Boundary points are treated in the same manner as interior points except that
thevcoefficient A of material outside the boundary is set equal to zero. If the
outward normal gradient 3¢/9n is prescribed at a boundary, we add an external

current I, at each surface point j given by

J

= [3¢) 1 o
g (an)a 5 (Ay_izo®so1/2 * Xye1/0%541/2)
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1 .
where 5'(SJ_1/2 + si+1/2) is the length pf boundary associated with the boundary

point and A are the coefficients of the associated triangles,

Jt1/2
(2) vVariational derivationh' 5, 8

Consider the integrsal

1(4) = % ﬁ [A(T4)? - 28¢)axdy . (13)
: . R
15

vhere ¢,A and S satisfy the conditions of section II. Using a restricted variation

J for (13), so .that

in which X is held fixed, equation (1) is just the Euler equation
I(¢) will be minimized if ¢ satisfies (1).

Given a triangulation of the region over which ¢ is to be foﬁnd, we can derive
fhe finite difference equations from (13) by an adaption of the Ritz variational
mgfhod. Let a(x,y) be a so-called pyramid function6 which takes on the value 1 at
the mesh point x,y, the value zero at the nearest neighbor mesh points, and vafies
lingarly with position. Then if ui(xi,yi) is the value of u at the mesh point XgaYy

w= Y e gy Juy (xgyy) | o ()

all 1 , ‘

is a continuous, piecewise linear function which takes on the values u(x,y) at
mesh'points and satisfies the assumptions of section iI. Substituting u for ¢ in-
(13), we minimize I(u) by setting %%-= 0 at each mesh point. This gives us é set

of simultaneous equations for the unknown u, , one equation for each mesh point.

From the first term in (13) we find
1l 29 6 2 >
o — A = o ¥ .
> o (Vu) Va u

Making use of- (L) and

> 1
Va“ - Y (i‘ - ﬂ )
i+1/2 7 B, L T i

we get as the contribution to'%é-from the first term
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AT\ [, = & :
(-5-:)1 = };JJ ()\Va°§u)i+l/2dxdy — - igl wi(ui-u)

5 are. the same coupling coefficients as before, and the last sum is

over the nearest neighbors of a given mesh point.

From the second term in (13) we obtain

: ’ 6 ‘

3T\ __ T .1
(au 2 514172 jf“id"dy T L Statiare (15)
Y2 i i=1

Setting' a) ., (ﬁl = 0 we finally get
. Ju 1 du o
1 ' -
;"’i(“‘i'“) *3 §51+1/2A1+1/2 =0 (16)

as before (Eq. (12)).

We note from (15) that the assignment of one-third of the area of a triangle

to each source density S is the consequence of our assumption of linearity

i+1/2
for u,,rather‘than appearing as a result of an arbitrary partitioning of each
triangle as in-the preVious derivation,

i is positive

definite, since the first term in (13) is > O when ¢ = u., Since the matrix is

From (13) we see that the matrix corresponding to the couplings w

.symmetric as well, we would have the necessary and sufficient conditions for the .

convergence of the method of successive overrelaxation applied to the equations
(16) irf they were linear: that is, if the w, were independent of u. In the
next section we discuss the solution of (16) and the problems created by the

non=linearity of the Vi

IV, NUMERICAL SOLUTION OF THI DIFFERENCE EQUATIONS
We meke use of the well-known iterative method of successive overrelaxationlo
to obtain a numerical solution of the equations (16). Two versions have been con-
sidered, which differ'in the menner in which they deal Qith the non-linearity of

the equations.




e

(1) Linearized overrelaxation
Let us first assume that the problem is linear, so tﬂ;t the method of successive
overrelaxation will converge. Solving (16) for u at a given mesh point, we get

for the {n+l)st iteration’

n
5: w.,u, + S

ntl _ 1 "i7i
u =

(17)

i
i

where the denominator is positive by (10). Introducing the overrelaxation parameter

w(0 < w < 2) we have

n.,n+l
+
ntl _ n Yily S
u = u + -
L
=~ i
i
.or .
+ +
" 1. ut o+ = [z w, (u?? L u?) + s (18)
z: it
Vi i
i
n,n+l n+tl .. .
The nearest neighbor values u, represent u, if it has already been calcu-

lated, otherwise u?.

In reality, A is often a function of u or of its derivatives, at least in
parts of fbe_region, so that the wi are functions of u. Depending on the rate of
change of X with u, the equations (18) can become unstable.

Stability can be regained by underrelaxing the Wy and by using a smaller

new

~ value of w in non<linear regions. If wi is a newly-calculated value, we let

n+l .  new n ‘ ‘
wy .= oewy ¥ (l-p)wi . (19)

where p is a positive fraction less than one. The value of p is obtained by

trial; it may be less than 0.1 (see below),

The value of w used in non-linear regions is usually close to one, for reasons

" of stability. In linear regions, however it is important to choose w to optimize

the cdhvergence rate n, defined as



e

E(unﬂ. - u;x)2 _

Coan i 1
i i i

(20)

summed over the whole mesh., According to the theory of the method of successive

.overrelaxétion, the optimum value wop

2
W, T e————m——
Pt 14 V1-)3

where, for a gliven

.

L. win-l

wVn

is given by

w and the resulting n, we can obtain A from the relation

(21)

(22)

‘We have been able to combine (20), (21), and (22) into a satisfactory automatic

scheme for.optimizing w by recalqulating it every cycle in the félloWing'way.A

n
Given w and nn, we have

n. . n

- ‘. A= U +n -1
wn wlnn
v 2

W = — ()

.opt 1+ 1-)2 0

n+l K n
= . + -

w B wopt (1 ?)w

(23)

The constant w. ~ .01 is useful in non-linear problems to prevent w from becoming

0o~

‘too large. The constant 8 i +05 underrelaxes w so that its changes do not appre-

clably perturb n, Occasionally n may be >1; we then hold w constant until n has

been f 1 for a certain number (~5-15) of cycles, after‘which we resume the auto-

matic optimization.

The dimensionless quantity
ntl n,2
/Z (uy “euy)

i
€=-\; X n+1,2
T (ui )
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summed over all i, is used to test for convergence. Wé require e < €09 where

usgally € = 10"6 or 10"7.

(11)

(2) Non-linear overrelaxation

The set of simultaneous equations (16)

Fu,,u, ses) = Z:wi(ui-u) +8=0

i

can be solved by iteration using Newton's method, which explicitly takes account

1°°2

of the non-linearity. GCiven an estimate F. = F(u;,ug, «es), We can improve it by
" writing, at a vertex u(x,y),

ph¥l _opn o ( n+l ny gg_" + ﬁ% ( n+l N AV, =0

i u u ™ 2 uy 1) |5y, “os

Neglecting off-diagonal terms we get
' n n
un+l = u” - F -, (gg) £ 0
ar
3u

and introducing the overrelaxation parameter w in the usual way to accelerate con-

vergence we have

dn+l =y - w . (24)

For the equations (16),

I
i

» ow
oF i
R R S @)

The method of non-linear overrelaxation is based on immediate replacement of

n+l
new values ui

n
for u; in the terms Fnland (%E) in (24)., Thus we have

F(u;,ug, ves)

n+l .
Yy YWY . non
'5"6 (ul,ug, o.c)
L, n+l n (26)
n+l n 1'(ul Yo veo)
2 "~ Y T YIF o+l n
(u con)
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F(un+l un+l R )
un+l = ul - L2 3 T T (26)
3 3 or (un+l un+l 0 ) . g
Y 9 ® » s e e * D 1]
P du -1 ? 3 k_) (con't,)
- Using (25), (24) becomes
n+l _ n w n,n+l, n,n+l n (27)
u = u + ey morYS) Z:wi (ui -u'} + S
E:[ i (u—u.)] i
w, + oT— 1
1 i du

12, 13 that the added term in the denom-

For magnetostatic problems it can be shown
inator of (27) is positive, so that its effect is equivealent to reducing the over-
relaxation parameter in non=linear regions, thus stabilizing the equations without
the necessity of underrelaxing the Wi Concus has also found12 that eéuations
“(26) converge more rapidly than the linearized equations.

w. . :
For the linear case, =—— = O and equations (26) or (27) reduce to (18).
Ju

V. APPLICATION TO MAGNETOSTATIC PROBLEMS
We now show that plane magnetostatic problems can be put in the form of
equation (1), Consider an arbitrary distribution of infinite straight parellel
conductors carrying consﬂant‘currents parallel to the z axis. The magnetic field
fi(x,y) and the magnetic induction B(x,y) have components only in the x,y plane
while the current density 3 and magnetic vector potential X nave only z components
which Qe label simply J(x,y) and A(x,y).

From the relations
B=yfi =¥ xR}

Vx = hnd

where u(x,y,|§|) is the magnetic permeability, we obtain
Y
¥

Because of the single-component nature of X ana §, (28) reduces to

- >

VX (=Vx3R) =un] (28)




Voo (YVA) = ~Lmj (29)
‘_l :

where vy = U

The dependence of Y on |§| can be expressed by considering it to be a function

of B2. Then equation (29) written out in full becomes
(Y+27'A2)A + Ly'AAA  + (Y+2y'A2‘)A + bhny =0 .,
X' xx XYy Xy Yy vy

Equation (29) is equivalent to (1) with the current density playing the role

of source term. Its finite difference approximation in a triangle mesh is

therefore (16):

L wy(A=R) + hnI = 0 | (30)
. i .

4

where Ai’A nov stand for the vector potentisl, and

6

L= igl dis1/0%141/2 (31)

is the total éurrent through the secondary mesh dodecagon surrounding the vertex
x,y at which A is defined. The coefficients v, in (30) are calculated by (8) using
Yy in place of A,

The boundary conditions for the magnetic field require that at an interface

the normal component of ﬁ, ﬁn’ énd the tangential component of ﬁ, ﬁ be continuous,

t s
N + . .
Because A has only a z component, its gradient and curl are equal in magnitude and

orthogonal to each other. Thus

-

Hy = (B) = (vOxd), = (vPA)
apd'
-+ -+ -
B_ = '(Vxx)n = (VA),
wvhich we have already showﬁ to be continuous (section III).
On external boundaries we assume a condition of no leakage of magnetic flux,
so that A=0, For magnets thét are symmetric about a median plane, we need to cal-
culate only one-half of the magnet ﬁnd set the normal derivative of A equal to zero

on the median plane. We can easily accomplish this by setting equal to zero all




]l

external coupling coefficients on the median plane. For quadrupole magnets the

same procedure can be followed on two boundaries. ‘
VI, RESULTS

A code (named TRIM) has been written for the IBM 7094 which uses the equaﬁions
developed above (witﬁ linearized overrelaxation) to solve plane magnetostatic prob-
- lems. Starting values of the vector potential are taken to be zero everywhere.

I; Figures'3-16 we shovw some results obtained by the TRIM code for a CERN proton
'cynchroton C-magnet and for an H-magnet. Equipotentials (which are also lines of
force) have been drawn in by linear interpolation.

The principal advantages of TRIM are simplicity and generality. Every mesh
point is treated in the same way, so that the code is quite short. Any triangle
‘can carry a current of any magnitﬂde and can be composed of air, iron, or other
materials, so that material interfaces may occur aqywhere in tﬁe mesh. Permeabil-
{ties are stored aé tables of Y(BQ), and space is provided for several different
'kinds of iron in the same problem. It has proved possible to calculate a variety
of two-dimensional magnets, such as C- and H-magnets with andlwithout median plane
symﬁetry, quadrupole, and sextupole magnets. With a 32768 woré mémory, the calcu-
lation is memory-contained for meshes up to 1600 points (3200 triéngles)..

Using linearized overrelaxation, the calculating time with an IBM 7094 is 3
milliséconds per mesh point per cycle for points in iron, and 0.6 ms for points not
in iron. The optimized overrelaxation parameter ususlly lies between 1.90 and 1.96.
‘The number of cyclés requifed for convergence in a 4LOxh0 mesh usually lies between
200 and 800; some problems may require somewhat more. Thus typical finite-mu probe-
lemé with 1600 mésh points také 15-30 minutes to converge;'infinite-mu problems
run about five times faster., LNon-linear overrelaxation would take two to three
‘times more celculating time (in iron) but might reduce the number of iterations

substantially. -
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Extreme distortion-of the mesh has been found to slow up convergence con-
siderably in one magnet, but so far this problem has been encpuntered only once,
and was eliminated by'rezoning. In some problems, a relatively long period is
required for the vectof potential to converge in the_iron. Use of a perimeter

line integral to accelerate convergence in such problems is being considered.

VII. ACCURACY OF THE NUMERICAL SOLUTION

As in any megnetostatic code based on é;%, ve ére interested not in the solu-
tion itself, but in its derivatives, particularly the first ana second derivatives,
which are the components of the magnetic field and their gradients. wé have.found
that, by requiring regular zoning in the region where the derivatives are to be
" obtained, we are able to get about 1% accuracy in both first and sécond derivatives
in a hOth mesh, calculating second derivatives by using values at three adjacent
collinegr mesh points., This accuracy is comparable to that obtainable with rectan-
gular meshes using about the same number of zones. A method for constructing a
.smooth interpolating:polynomial_in two dimenéions to approximate the solution for
purposes of numerical differentiation is now being developed which may make it
possible to relax these zoning restrictions. |

Use of an interpolating polynomiel is equivalent to adding higher-order terms
while retaining the simplicity of the difference equations. A related technique
which might be used to increase the accuracy is_the method of difference correctionle,
in which a higher ,order correction term based on the converged numerical solution
is- added to the differehce equations at each mesh point and the equations are
'then solved again. Application of this method to a'triangle mesﬂ has not yet been
investigated.

In the absence of exact solutions'or experimental measurements, it would be
desirable to have a priori estimetes of the accuracy of the results based on the

size and shape of the triangle zones and on the method of numerical differentiation
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applied to the converged solution. At present we make use instead of a posteriori
estimates based on observing the effect of varying the zone spacing and shape.
Mean square convergence of the numerical solution to the solution of the differ-

ential equation has been proved for certain special meshes 14 but not yet for an

-arbitrqry triangle mesh, Failure of the difference equations to converge in general
to the differential equation at a pcint has also beén shownz’h. Since the method is
- based on inﬂegration over a linear approximating function rather than on a Taylor's
series expansion, this behayior is perhaps to be expected. This error, which appeafs
in the form of too large or too small an area of the secondary meshvelement ass0-
clated with a mesh point (see Fig., 1) cancels when summed over the whole mesh due
"to the conservation law from which the equations are derived. It leads to lack of
con?ergence of the second derivatives as the mesh size is reduced. However since

tﬂe solution itself converges, these derivatives can be obtained by numerical
differentiation as described above,

Negative coupling coefficients, due to triangles with obtuse angles, may lead
to difficulties in certain cages; It is well-known ihat a solution to Laplace's
equation V2u = 0 cannot have a maximum or minimum in the interior of the region,

* but only.on the boundéry. The numerical solution of the corresponding finite
-difference equation Z:w&(ui-u) = 0 can be written af each mesh ﬁoiht u =§;wiui/§;4i R
i

1

are non-negative it is clear that min u, < u < max u,. However if

and if all wi 5 N

some of the wi are negative this may no longer be true, so that a finite differ—
ence solution with u = 0 on the boundary but u # 0 in the interior might conceivably
exist. This non-zero solution of the finite difference Laplace equation'could be
added to the solution of the finite difference Poisson equation (12) with an ampli-
tude which would depend on the function used to begin the iteration. It is not
.known at present whether such a non-zero solution can exist, Obtuse triangles

have been used freely, and an error of this type has not been observed.
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© VIII. EXTENSION TO PROBLEMS WITH CYLINDRICAL SYMMETRY
"The diffusion equation (2) and the magnetic field equation (29) with
.eylindrical symmetry can be treated in cylindrical coordinates r, z, 9 by trans-

forming to Cartesian coordinates.

(a) Diffusion Equation
Let ¢ = ¢(r,z), independent of 8, and let 3,30 represent the del operator in

Cartesian coordinates and cylindrical coordinates respectively. Then for any
" ‘vedtor function T which is independent of 8 we have
v '¥=-]*§7"(rf)
c r
Hence Eq. (2) becomes
%‘-6. (rA.V’¢)=c.§£

or

v . (rk§¢) = rc %%- .

Thus we see that by replacing A by riA, and c by rc, we can treat the cylindrical
'coordlnates Z,r asg if they vere Cartesian coordinates x,y respectlvely.

In finite difference form we have in place of (6) and (8) respectively

§:c1+1/2ri+1/281+1/2

cot 6 + A cot ©

(Ai+1/2ri+l/2 i+1 i-1/2T1-1/2

w, = &
2

i i-l) ?

where ;i+1/2’ the average'radius of triangle i+1/2, is given by '

= -;— (r+r, +r )

Tis1/2 1"Fi41

and ;i+l/2'is the average radius 6f a quadrilateral at vertex r given by

z S - 2
Tis1/2 12 Fie1/2 * 12 T
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“(b)  Magnetic Field Equation

For a vector function ?(r,z) which has only & 6 component we have
¥x F=19 x (P
c r

. ->
For a vector function g(r,z) which has only r and z components

3cx§=3x’é.

Since K(r,z) and ](r,z) have only 6 components,

P=9Y X A= %-V X (rK

Since B has only r and z components,

-5

Vc X (Yg) =¥ X (Y'ﬁ) = '\5x[¥-'¥7 x (rxﬂ = )_;nj .
Thus (29) becomes
7 . [}‘\im)] = -hnj , (32)

’ -> - >
We see that y/r replaces v, rK replaces A, and rB replaces B,
For a current loop, A v r for small r, A 1/r2 for large r, Therefore
‘the boundary conditions on rA are lim(rA) = lim(rA) = O.

r-+0 T-beo
For computational purposes (32) may be written

« (YVA) = by - ——(l->

A finite difference approximation to the second term on the right may be obtained

by the line integral method.
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Fig., 9. n vs r for CERN protoﬁ

synchrotron magnet (open sector). (n = IRO/BD %§| . RO = 70,079 m.)
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APPENDIX

"o : . 1" 3 16
Fquipotential” Zoning

The triaﬂgle mesh we have described can be mepped into a regular equilateral
triangle array composed of three sets of straight lines intersecting each other
at 60°. One of these sets is redundant, and we may consider the mesh to be de=-
fined by the remaining two sets.

We now regard each of these sets as the "equipotentials" of a boundary value

problem, Let one set be associated with a function x(x,y) and the other set with

a function ¥(x,y) which satisfy the equations

V2x=0
. : (33)
V2w =0 ; »

over the . region and boundary conditions determined by the boundary zoning. -

Then if'we‘can solve (33), the intersecting lines x = constant and ¢ = constant

- together with the third set drawn through the intersection points, will be the
desiféd triangle mesh. Because of the well-known averaging property of solutions
- to Laplace's equation, we might expect a mesh constructed in this way to be, in
some sense, smooth, Of course, by using some other equations in place of (33)

we could obtain a different mesh.

We first invert equations (33) and write them in terms of x(x,¥) and y(x,¢).

Using the relations

X, = -~y 1

x - J¢ wx = 3'yx
e 2y -1

X © 37 - Yy T 0T %

vhere the Jacobian J = xwyx - X Y , We find that (33) are transformed into

X'V

+yx, =0

a -2
X Bxx 14Y]

XX b

oy -2 + =0
Y yx BYXw Wy

provided that J # 0. Here a,B,y are the quadratic functions
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‘2 2

@I XTIy

- ‘ (35)
B= XXy Yy

: 2

~ = +
Y=xX *y

The solutioné of equations (34) give the coordinates of a given equipotential directly.
Finite difference expressions for the derivatives in (34) and (35) can be ob-

tained by the line integral method. We use a path of.integration around a given

vertex which passes through the six neighboring points for the first derivatives,

and which follows the dodecagon in Fig. 1 for the second derivatives. In so doing

we assign values to x and ¢ which differ by unity on adjacent 1lines, and vary

linearly with position in X»¥ space. In this way'we find

xx = %-[(x2+2xl+x6) - (x3+2xh+x V]

xw = % [(xl+2x6+x5) - (x2+2x3+xh)]

: (36)
xXx = xl-2x+xh ‘ \
_ 1
xxw = 5-[(xl+x6+x3+xh)_- (x2+x5+2x)]
xww = x:6--2x+xl

" and similarly for the derivatives of y, where x,y is the center point and we
have identified x with the lines 2-1; 3-6, b-5, etc. ‘and ¢y with the lines 2-3,
1-4, 6-5, etc. (Fig. 10).

We thus obtain for‘the finite difference analogues of (34)

f .
/ c,({x.-x) =0
| = 11 |
. - (37)
| ;
c.(y.-y) =0
= 1
where ¢; = ¢) = a=8, ¢, = cg = B, and ¢y = g =y~B.
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Although the coefficient matrix c, in equations (37) is not symmetric, and

i
we have not been able to prové positive definiteness, nevertheless we have found
that the equat}ons converge rapidly when solved by non—lineaf overrelaxation using
autoﬁatic optimization as described i;ﬂsection IV with separate overrelaxation
paraméters for the x and y coordinates. TFigures 5 and /2 show typical results

obtained by this zoning method applied to sub-regions of the problem., By the use

of linear intefpolation on boundaries and interfaces, only &a-relatively few points

. need be specified in the problem input (see Fig. k.).

The triangles produced by this method tend to be equilateral far away from

boundaries, By redefining ¢ to be a vertical zigzag line, a different set of

.welghts ci_cah be found which tend to produce right trianglesl6.

\ Lines of constant ¢

/

‘i ) \
\ \ . \ ‘
\ \
A 6 /
\

\ \ \ y

Lines of constant
X

~

Fig. 10. A vertex and its six neighbors in ¥,x space.
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