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MAGNETIC FIELD CALCULATIONS IN AN IRREGULAR TRIANGLE NESH 

·Alan M. Winslow 

Lawrence Radiation Laboratory, University of California 

Livermore, California 

August 23, 1965 

ABSTRACT 

A method is described for the numerical solution of the non-linear magneto-

static equation for the vector potential over an arbitrary polygonal region using a 

distorted triangle mesh. ·The equations are solved by successive overrelaxation with 

automatic optimization of the overrelaxation parameter. Based on this method, a 

general .. purpose two-dimensionf!-J,.rnagnet" code has been developed which will ca.lcu-
< 

late magnetic fields in any plane arrangement of air, iron, and currents, with speed 

and accuracy comparable.to that obtained with rectangular meshes. 

I. INTRODUCTION 

The use of an irr.egular triangle mesh for the numerical solution of partial 

differential equations in two dimensions was first proposed by Courant1 in 1943. 

In 1953 MacNeal
2 

employed it for the solution of the Poisson equation using an 
. . 3 

electrical mesh analogue computer, and in 1958 Leith independ~ntly reinvented 

the method for a digital computer and used it to solve parabolic equations. Simi

lar methods have been used by others.
4' 5 •6 •7 This work, a revisio~ of an .earlier 

report, 8 ·i.s based on that of Leith. 

In the following sections the basic assumptions are stated, the difference 

equations are derived, numerical methods of solution are discussed, and some ex-

amples of results are given. 
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II. DESCRIPTION OF THE METHOD 

The equation to be solved is the generalized Poisson equation 

( 1) 

over a region R where A is a function of the rectangular coordinates x,y and rnay 

also depend on ~. and S is a prescribed function of x,y. If A depends on ~' it is 

considered to be a function of x 9 y when performing the differentiations indicated 

in (1); for example, if A= A(¢), then (A~ ) = A 1 ~2 +A~ and 
. X X . X XX 

so on. 

The boundary conditions are assumed to be of the form a¢ + b ~ ~ 0 where 
a . 
~is the normal derivative and a,b are prescribed constants that may take on 

different values (not both zero) over different portions of the boundary. The 

dependent variable ~ is assumed to be continuous. 'I'he quantities A ,S are assumed . 

to be continuous over sub-regions of R, so that there may be internal interfaces 

·at.which A and S are discontinuous. At such interfaces, A 1; is assumed to be 

continuous. 

The basic assumptions of the finite difference method are: 

(1) the boundaries and interfaces of the region R are approximated by straight 

line ·segments 

(2) ·the region is triangulated 

(3) the values of¢ are defined at triangle vertices, and ¢ is assumed to 

vary linearly over each triangle 

(4) A and S are assumed to be constant over each triangle. 

The type of triangulation used here is topologically regular; that is, it is 

topologically equivalent to an equilateral triangle array in which six triangles 

meet at every interior mesh point. The triangulation is carried out by an aux-

iliary calculation involving the numerical solution of another boundary value 

problem (see Appendix). 
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Since any polygonal region can be triangulated, the method can be applied 

t~ regions of any shape,_and will produce a mesh in which boundaries and inter-

faces lie entirely on mesh lines. This causes a considerable simplification in 

the finite difference equations and in the specification of boundary conditions. 

It also permits a linear approximation to the dependent variable, and thereby 

makes it easier t'o derive the finite difference equations, to whic·h we now turn. 

III. DERIVATION OF THE DIFFEREl'·TCE EQ.UA'fiONS 

TWo derivations of the ~nme finite difference equations, based on the 

assumptions of section II, will now be given, in order to establish different 

properties :of the equations. 

(1} Integral derivation 3 

Instead of equation (1), let us consider the non-liriear diffusion equation 

c !t = v.pJcp} + s at (2) 

where the positive coefficient c, like ~, may be a function of cp. For a steady state, 

(2) reduces to (1). 

Consider an interior mesh point in a triangle mesh in which the assumptions 

of section II hold. Associated with the primary triangle mesh we define a secon-

dary mesh of 12-sided figures whose vertices are alternately the centroids of the 

six adjacent triangles and the midpoints of the six adjacent sides. This is shown 

in Fig. 1, in which a single such figure is shaded. The secondary niesh element 

surrounding a given vertex includes one-third of the area of each of the six pri-

mary mesh triangles sharing that vertex, so that each triangle of area A is divided 

A into three equal quadrilaterals of area a = 3 . 
-~ -+ 

Consider the triangle i + 1/2 defined by the two side vectors si' si+l' with 

values cpi' cpi+l' cp at the respective vertices as shown in Fig. 2. Since cp is 

assumed to be a linear function of position, each such triangle has a vector 

v~i+l/2 associated with it, which satisfies the equation 
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j = i, i+l (3) 

and is given by 

(4) 

... 
where the vector .;i' represents the vector s rotated clockwise by an angle 'IT /2. 

Within each triangle the flux of the diffusing quantity is given by 

-+ -+ 

Fi+l/2 = -Ai+l/2V~i+l/2 • 

The conservation law can be expressed through Gauss' theorem by equating the 

sur.face integral of the left side of Eq. ( 2) over the secondary mesh element to 

-+ 
the integral of the normal component of F over the boundary of the secondary 

mesh element, added to the surface integral of s. 

The flux contribution Ri+l/2 from the triangle i+l/2 shown in Fig. 2 to the 

rate of change R in the secondary mesh element is 

Summing around the vertex and using the central vertex value ~ as the ·average 

. value over the dodecagon, we obtain 

6 
+ i~l 8 

i + l/2ai + 1/2 

or 

6 

.L ci+l/2ai+l/2 = 
~=1 

-+ 1 
F i+l/2 • 2 (i'i+l-i'i) 

G 
(5) 
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where 
6 

G = 1": ci+l/2ai+l/2 
' i=l (6) 

6 
L: s = 8i+l/2ai+l/2 . i=l 

Using (4), and letting ~i = ~i- ~'we can express the flux sum in Eq. (5) as 

.>..i+l/2(~ig'i+l - ~. + ,.s". ) • (i' i + 1 - .i'i ) 
F 

1 2: 1 - 1 = 2 -+ i .s"i • 8 i+l 

-+ -+ 
;i) 

-+ -+ -+ 

.>..i+l/2 ~.s.+l • (si+l + tjli+l 8 i • (si - 6 i+l) 1 I: 1 1. = 2 -+ i .s'i • 8 i•-l 

where we have made use of the relations 

-+ -+ 
Jf•X'=u•v 

Since the sum is cyclic, we can reduce the index by one in the second term, 

obtaining 

F =; L 
i 

(7) 

':· .. 
The coefficient of tP1 in (7) is called the coupling coefficient for the line join

ing the vertex i and the center. It depends only on the nature of the two triangles 

having this as a common side 9 and can be written 

wi = ~ (~1+1/2 cot 6i+1/2 + ~i-1/2 cot 6i-1/2)' 

where the angles eitl/2 lie opposite the side i. 

(8) 

We note that the coupling between two points x
1

,y
1 

.and x
2

,y2 is symmetric, so that 

( 9) 
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Moreover, wi can be positive, negative, or zero, but the sum of the couplings 

·~· around a given point is positive: 

(10) 

Thus, Eq. (2) can be written in finite difference approximation 

~ = 1-[t· v.($.- cP) + s] 
6t. G i 1 1 

(11) 

' so that for a_steady state the finite difference analogue of (1) is 

L: w. < ~. - ~) + s = o < 12 > 
i 1 1 

.. 
The continuity properties of the finite difference solution are: (a) (V~)t 

continuous, (b) 0. V¢>) continuous,, where t and n refer to tangential and normal com
n 

ponents respectively. Statement (a) follovs directly from the expression (!1) for 

+ 
v~. St~tement (b) is a consequence of our derivation by means of Gauss' theorem 

together·vith (7) which shows that the normal components of the fluxes have been 

replaced by mesh currents ~ i ( 4> 1-<P) flmdng along mesh lines. Conservation of 

these currents is guaranteed by (9). 

Boundary points are treated in the same manner as interior points except that 

the_,coefficient A of material -outside the boundary is set equal to zero. If the·· 

outvard normal gradient a¢~/an is prescribed at a boundary, we add an external 

current· Ij at each surface point j given by 
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1 
where 2 (sj-l/2 + si+l/2 ) is the length of boundary associated with the bound~~ 

point and .AJ*l/2 are the coefficients of the associated triangles. 

(2) . 4 5, 8 Variational derivation ' 

Consider the integral 

I(.p) = ~ JJ [A(Q~P) 2 
. . R 

- 2SIP ]dxdy (13) 

where ~,A and S satisfY the conditions of section II. Using a restricted variation15 

in which A is held fixed, equation (1) is just the Euler equation9 for (13) 9 so .~ha~ 

~(~) will be minimized if IP satisfies (1). 

Given a triangulation of the region over which $ is to be found, we can derive 

the finite difference equations from (13) by an adaption of the Ritz variational 

method. Let a(x,y) be a so-called pyramid function6 which takes on the value 1 at 

the mesh point x,y, the value zero at the nearest neighbor mesh points, and varies 

linearly with position. Then if ui(xi,yi) is the value of u at the mesh point x1 ,y
1 

u = (14) 

is a continuous, piecewise linear function which takes on the values u(x,y) at 

mesh points and satisfies the assumptions of section II. Substituting u for ~ in· 

ar (13), we minimize I(u) by setting au= 0 at each mesh point. This gives us a set 

of simultaneous equations for the unknown ui, one equation for each mesh point. 

From the first term in (13) we find 

Making use of· (4) and 

-+ 1 
\7ai+l/2 = 2Ai+l/

2 
(,i'i - ~+1) 

ar we get as the contribution to au from the first term 
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where the wi are. the same coupling coefficients as before, and the last sum is 

over the nearest neighbors of a given mesh point. 

From the second term in (13) we obtain 

1 - - 3 
(15) 

Setting ( ;~)1 + ( :~t = 0 ve finally get 

~ wi (ui-u) + t ~ 8i+l/2Ai+l/2 = O (16) 

as before (Eq. (12)). 

We note from (15) that the assignment of one-third of the area of a triangle 

to each source density Si+l/2 is the consequence of our assumption of linearity 

for u, .rather than appearing as a result of an arbitrary partitioning of each 

triangle as in-the previous derivation. 

From (13) we see that the matrix corresponding to the couplings w1 is positive 

definite, since the first term in (13) is > 0 when <P = u. Since the matrix is 

symmetric as well, we would have the necessary and sufficient conditions for the 

convergence of the method of successive overrelaxation applied to the equations 

(16) if they were linear: that.is, if the wi were independent of u. In the 

next section we discuss the solution of (16) and the problems created by the 

non-linearity of the w .• 
~ 

IV. NUMF..RICAL SOLUTION OF Tlri!: DIFFEHENCE EQUATIONS 

10 We make use of the well-known iterative method of successive overrelaxation 

to obtain a numerical solution of the equations (16). Two versions have been con-

sidered, which differ in the manner in which they deal with the non-linearity of 

the equations. 
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(1) Linearized overrelaxation 

-· Let us first assume that the problem is linear, so that the method of successive 

overre1axation will converge. Solving (16) for u at a given mesh point, we get 

for the (n+l)st iteration 

Lw. . l. 

n+l 
u = (17) 

l. 

where the denominator is positive by (10}. Introducing the overrelaxation parameter 

w(O < (jJ < 2) ve hi.\Ve 

( 
' . L n,n+l S u) n+l n · i wi ui + 

u = u + (jJ' - .. . , L: w. 
. l . l. 

.or 

n+l n + (jJ [ L ( n,n+l - un} + s] (18) u = u w. u. 

L: "'· 
l. l. 

i l. i 

n,n+l n+l 
The nearest.neighbor values u. represent u. if it has already been calcu-

l. l. 

n lated, otherwise u1 • 

In reality, A is often a function of u or of its derivatives, at least in 

parts of the region, so that thew. are functions of u. Depending on the rate of 
l 

change of A with u, the equations (18) can become unstable. 

Stability can be regained by underrelaxing the wi and by using a smaller 

value of w in non~linear regions. If un.ew l.'s a 1 1 1 t d 1 1 t ft new y-ea cu a e va ue, we e 
l. 

n+l · new n 
wi .= pw. + (1-p)w. 

l l. (19) 

where p is a positive fraction less than one. The value of p is obtained by 

·trial; it may be less than 0.1 (see below). 

The value of w used in non-linear regions is usually close to one, for reasons 

of stability. In linear regions, however it is important to choose w to optimize 

the convergence rate n, defined as 



n 
n = 

~( n+l n)2 
Lui - ui . 
i 
~ ( n _ n-1 )2 
L u. ui 
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(20) 

summed over the whole mesh. According to the theory of the method of successive 

.overrelaxation, the optimum value w t is given by op 

2 w. = 
opt l+l./ l->..2 

where, for a given ·w and the resulting n, we can obtain >.. from the relation . ' 

>.. = w+n-1 
w-v; 

(21) 

(22) 

We have been able to combine (20) 9 (21), and (22) into a satisfactory automatic 

scheme for optimizing w by recalculating it every cycle in the following way •. 

Given wn and nn, we have 

). = 
n n w +n -1 

wnw 
I 

w = . opt 
2 

(23) 

n+l • n w = a w· + (1-S)w opt 

The constant (/Jo ~ .• 01 is useful in non-linear problems to prevent w from becoming 

too large. The constant a ~ .05 underrelaxes w so that its changes do not appre-

ciably perturb n. Occasionally n may be >1; we then hold w constant until n has 

been < 1 for a certain number ('115-15) of cycles, after which we resume the auto-

matic optimization. 

The dimensionless quantity 

\ ( n+l_ n)2 L. u1 u. 
i l 

£ = 
, ( n+l )2 
1 ui 
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summed over all i, is used to test for convergence. He require E: < E: 0 , where 
/ 

usually E:O = 10-6 or 10-7. 

(2) Non-linear overrelaxation(ll) 

The set of simultaneous equations (16) 

F ( u
1

, u
2 

••• ) = L w. ( u
1 
-u) + S = 0 

i 1 

can be solved by iteration using Newton's method, which explicitly takes account 

i . n Tt'( n n ) i of the non-linear ty. GJ. ven an estimate F = .' u
1

, u
2 8 • • • , we can mprove it by 

writing, at R vertex u(x,y); 

~n+l _ Fn ( n+l n) (~F)n 
~ - + u -u - + au 

Neglecting off-diagonal terms we get 

n+l n Fn 
u = u 

\ n+l n · aF · 6 ( J. i~l (ui -ul) aui + ••• = 0 

and introducing the overrelaxation parameter w in the usual way to accelerate con-

vergence we have 

·n+l n 
u ::: u - w (24) 

For the equations (16), 

(25) 

The method of non-linear overrelaxation is based on immediate replacement ·or 

n+l n n ( ~Fu)n new values u1 for u1 in the terms F and a Thus we have 

... ) 
( 26 )· 
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· Using ( 25), ( 24) becomes 

n+l 
u 

n = u + 

Ltv. + . ~ 
~ 
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w 

Clw. ( )ln,n+l 
~ u-u. -- ~ Clu 

(26) 

(con' t.) 

. 12 13 For magnetostatic problems ~t can be shovn ' that the added term in the denom-

inat~r of (27) is positive, so that its effect is equivalent to reducing the over-

relaYation parameter in non-linear regions, thus stabilizing the equations without 

the necessity of underrelaxing the w
1

• Concus has also found
12 

that equations 

·( 26) converge more rapidly than the linearized equations. 
Clv .. 

For the linear case, Clu~ = 0 and equations (26) or (27) reduce to (18). 

V. APPLICATION '!'0 li.AGNETOSTATIC PROBLFJ-!S 

We nov show that plane magnetoeto.tic problems can be put in the form of 

equation (1). Consider an arbitrary distribution of infinite straight parallel 

co~ductors carrying constant currents parallel to the z axis. The magnetic field 

H(x,y) and the.magnetic induction B(x,y) have components only in the x,y.plane 

while the current density j a~d magnetic vector potential A have only z components 

which we label simply j{x,y) and A(x,y). 

From the relations 

V ?<. H = 4nJ 
where JJ(x,y,l~l) is the magnetic permeability, we obtain 

+ 1 + + + 
V X (- V X A) = 4nj 

IJ 

Because of the single-component nature of A and J, (28) reduces to 

(28) 
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(29) 

where y 
-1 

- ll 

The dependence of y on lEI can be expressed by considering it to be a function 

of B2 • ·Then equation ( 29) written out in full becomes 

(y+2y 1A2 )A + 4y 1A A A + (y+2y'A2 )A + 4nj = 0 • 
XXX xyxy YYY 

_Equation (29) is equivalent to (1) with the current density playing the role 

of source term. Its finite difference approximation in a triangle mesh is 

therefore ( 16): 

L wi (AcA) + 4tri = 0 
i 

where Ai,A nov stand for the vector potential, and 

(30) 

( 31) 

is the total current through the secondary mesh dodecagon surrounding the vertex 

x,y at which A is defined. The coefficients w
1 

in (~U) are calculated by (8) using 

y in place of ).. 

The boundary conditions for the magnetic field require that at an interface 

the normal component of B, Bn' ~nd the tangential component of H, Ht' be continuous. 

-+ 
Because A has only a z component, its gradient and curl are equal in magnitude and 

orthogonal to each other. Thus -.. 

H = (yB) = {y~xA)t = (y~A) 
t - t · n 

and 

which we have already shoWn to be continuous (section III). 

On external boundaries we assume a condition of no leakage of magnetic flux, 

so that A=O. For magnets that are symmetric about a median plane, we need to cal-

culate only one-half of the magnet and set the normal derivative of A equal to zero 

on the median· plane. We can easily accomplish this by setting equal to zero all 
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external coupling coefficients on the median plane. For quadrupole magnets the 

same procedure can be followed on two boundaries. 

VI. RESULTS 

A code (named TRIM) has been vritten for the IBM 7094 which uses the equations 

developed above (with linearized overrelaxation) to solve plane magnetostatic prob-

. lems. Starting values of the vector potential are taken to be zero eve~ihere. 

In Figures 3-16 we shm~ some results obtained by the TRIM code for a CERN proton 

cynchroton C-magnet and for an H-magnet. Equipotentials (which are also lines of 

force) have been drawn ln by linear interpolation. 

The principal advantages of TRIN are simplicity and generality. Every mesh 

point is treated in the same way~ so that the code is quite short. Any triangle 

can carry a current of any magnitude and can be composed of air, iron, or other 

materials, so that material interfaces may occur anywhere in the mesh. Permeabil

ities are stored as tables of y(B2), and space is provided for several different 

kinds of iron in the same problem. It has proved possible to calculate a variety 

of two-dimensional magnets, such as C- and H-magnets with and without median plane 

symmetry, quadrupole, and sextupole magnets. With a 32768 word memory, the calcu

lation is memory-contained for meshes up to 1600 points (3200 triangles). 

Using linearized overrelaxation, the calculating time •Ii th an IBM 70911 is 3 

milliseconds per mesh point per cycle for points in iron, and 0.6 ms for points not 

in iron. The optimized overrelaxation parameter usually lies between 1.90 and 1.96. 

The number of cycles required for convergence in a 40x40 mesh usually lies between 

200 and BOO; some problems may require somewhat more. Thus typical finite-mu prob

lems with 1600 mesh points take 15-30 minutes to converge; infinite-mu problems 

run about five times faster. Non-linear overrelaxation would take two to three 

·times more calculating time (in iron) but might reduce the number of iterations 

substantiallY.-
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Extreme distortion-of the mesh has been found to slow up convergence con-

siderably in one magnet, but so far this problem has been encountered only once, 

and was eliminated by rezoning. In some problems, a relatively long period is 

required for the vector potential to converge in the iron. Use of a perimeter 

linP. integral to accelerate convergence in such problems is being considered. 

VII. ACCUBACY OF THE Nut4ERICAL SOLUTION 

As in any magn~~ostatic code based on ~~we ~re interested not in the solu-

tion itself& but in its derivatives, particularly the first and second derivatives, 

which are the components of the magnetic field and their gradients. We have .found 

that, by requiring regular zoning in the region where the derivatives are to be 

obtained t we are able to get about 1% accuracy in both first and second derivatives 

in a 40x40 mesh, calculating second derivatives by using values at three adjacent 

collinear mesh points. This accuracy is comparable to that obtainable with rectan-

gular meshes using about the same number of zones. A method for constructing a 

.smooth interpolating polynomial. in two dimensions to approximate the solution for 

purposes of numerical differentiation is now being developed which may make it 

possible to relax these zoning restrictions. 

Use of an interpolating polynomial is equivalent to adding higher-order terms 

while retaining the simplicity of the difference equations. A related technique 

which might be used to increase the accuracy is the method of difference corrections17 , 

in which a higher ,order correction term based on the converged numerical solution 

is added to the difference equations at each mesh point and the equations are 

then solved again. Application of this method to a triangle mesh has not yet been 

investigated. 

In the absence of exact solutions or experimental measurements, it would be 

desirable to have a priori estimates of the accuracy of the results based on the 

size and shape of the triangle zones and on the method of numerical differentiation 
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applied to the converged solution. At present we make use instead of a posteriori 

estimates based on observing the effect o.f varying the zone spacing and shape. 

Mean square convergence of the numerical solution to the solution of the differ-

4 14 ential equation has been proved for certain special meshes ' but not yet for an 

arbitra:ry triangle mesh. Failure of the difference equations to converge in general 

2 4 to the differential equation at a point hns also been shown ' • Since the method is 

based on integration over a linear approximating function rather than on a Taylor's 

series expansion, this behavior is perhaps to be expected. This error, which appears 

in the form of too large or too small P.n area of the secondary mesh element asso-

ciated with a mesh point (see Fig. 1) cancels when summed over the vlhole mesh due 

·to the conservation law from which the equations are derived. It leads to lack of 

convergence of the second derivatives as the mesh size is reduced. However since 

the solution itself converges, these derivatives can be obtained by numerical 

differentiation as descrlbed above. 

Negative coupling coefficients, due to triangles with obtuse angles, may lead 

to difficulties in certain cases. It is well-knovn that a solution to Laplace's 

2 
equation V u = 0 cannot have a maximum or minimum in the interior of the region, 

but only on the boundary. The numerical. solution of the corresponding finite 

u =[wiu./Lw. 
. l • l 
l l 

·difference equation L w1 (u.-u) = 
• 1. 
1 

0 can be written at each mesh point 

is clear that min u. < u <max ui. 
l- -

However if and if all wi are non-negative it 

some of the w. are negative this may no longer be true, so that a finite differ
l 

ence solution with u = 0 on the boundary but u ~ 0 in the interior miP.~t conceivably 

exist. This non-zero solution of the finite difference Laplace equation could be 

added to the solution of the finite difference Poisson equation (12) with an ampli-

tude which would depend on the function used to begin the iteration. It is not 

known at present whether such a non-zero solution can exist. Obtuse triangles 

have been used freely, and an error of this type has not been observed. 
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VIII. EXTENSION TO PROBLEf.18 WITH CYLINDRICAL SYMNETRY 

'·The diffusion equation (2) and the magnetic field equation (29) with 

.cylindrical symmetry can be treated in cylindrical coordinates r, z, e by trans-

forming to Cartesian coordina~es. 

(a) Diffusion Equation 

Let $ = ~(r,z), independent of e, and let V,V represent the del operator in 
c 

Cartesian coordinates and cylindrical coordinates respectively. Then for any 

. ··vector f~c.tiori f whleh iS independent of e we have 

9 • 1 = l V • (rf) c r 

Hence Eq·. ( 2) becomes 

= c 

or 

Thus we see that by replacing >. by r>., and c by rc, we can treat the cylindrical 

·coordinates z ,r as if they were Cartesian coordinates x,y respectively. 

In finite difference form ,.,e have in place of (6) and (8) respectively 

where ri+l/2' the average radius of triangle i+l/2, is given by 

and ~i+l/2 .1s the average radius of a quadrilateral at vertex r given by 
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··(b) .. Magrieti·~ Fi~ld. ·Equation 

For a vector function f(r,z) which has only a e component we have 

~ X f = l ~ X (rf) • 
c r 

-+ 
For a vector function g(r,z) which has only r and z components 

... 

~ X + 
c g =~X g. 

Since A(r,z) and J(r,z) have only e components, 

B = v X A = l v X (rA) • c r 

Since B has only r and z components, 

Thus (29) becomes 

~ • [;~(rA)] = -4trj. 

-+ 
4trj • 

We see that y/r replaces y, rA replaces A, and rB replaces B. 

~· 

For a current loop, A ~ r for small r, A ~ l/r2 for large r. Therefore 

·the boundary conditions on rA are lim(rA) = lim(rA) = 0. 
r+O r-+«> 

For computational purposes (32) may be written 

V • {y~A) = -4trj - a 1~) . ar\r 

(32) 

A finite difference approximation to the second term on the right may be obtained 

by the line integral method. 
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Fig. l. Relation of secondary to primary mesh 

<!>. 
l 

Fig. 2. Vectors used for flux calculation. 

Primary mesh lines 
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Fig. 3. C-magnet showing material interfaces. 
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Fig. 5. C-magnet showing triangle zones. 

Fig, 6. C-magnet showing e~uipotentials. 
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Fig. 8. Fi gure 7 with out zone 1' . 1nes 
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Iron 

Coil 
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Air 
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Fig. 11. H-magnet showing mate rial interfaces . 

Fig. 12. H-magnet showing triangle zones. 
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Fig. 14. Enlarged view of H-magnet. 



·---........ -........ -......... --.. ---...._ ...... --... """' .... 
····----···----- ..... __ ··-...... .. ... .. ......__, 

'\, 
-·--... ......... _ ....... . _ ........... ... 

-.. .. 

' ' '· \ 
\ 
1 
I .. ,,"" 

\ 
'I 

\ ' \ \ 

j 

t 
I 
I 
l 

I 

\ 
I 

\ 
I 
I 

I 
l 
I 
t 
i 
; 
I 

I 

I 

\ 
\ 

\ 
'i 
t 
I 

: 
I 

l 

'· 

; 
1 

' I I 
I 

I I 
I 

' I 

I 
I 

t 

' 1 

I 
r 

Fi8 . 

I 

I 
I 

I 
i 

\ 
I 
I 

15 . 

/ 
I 

I 
I 

I 

I 
I 

\ 
I 
I 

I 
\ 
l 
\ 

Figure 

l 

-29-

i 
( 
; 
i 
I 

i 
} 

t' 
.I 

/ 

,.· . .1 
,.,.--·· .,.# .... - · - ··--.. ··-·· ·--............ . . _ ·· ···· -··-·· · · · ·· ··-·~·-- . ... _ .. 

I 

I 
j 

I 
i 
I 

' I 

i 
' . 
i 
I 

/ 
! 

..... ~ ....•.. -·· ......... --· ··----· ··--·-----·· 
... .. · 

I 
i 
f 

,~· 

I 

.. · , •.. ~ ....... ~· · 

.. ..... ....................... _. .. ·-·-·· ·-·· 
... ..... ,- ... ..... ----_ ...... _ .. -· ... 

/ 
( 
I 

I 
I 
I 
I 
i 
I 

I 
; 
I 
! 

,, .. ···' 

' I 

.~ 

I 

r 
I 

f 
t 

! 

\ 

\ 

/ 

,..,··· .......... ·--··--·. 
...,, . ~ ·.,_- .. .--· 

/' 
,/ 

I 
I 

I 
I 
l 
\ 
\ 

(' 

( 
\ 

..... ~--·· ... -... ,. 

\ 

\ 
\ 

\ 
\ 

\ ' 0 

14 without zone lines. 



16 

-14 
lJ 
~ 

Q 12 
~ 
~ 
r;:; 10 

~ z 
8 -< 

~ 
0.. 
z 6 
<r; ,_, 
Q 
~ 4 
~ 

2 

0 

. -

• ' 

12 1 5 

·-30-

e R. CHRISTIAN 1S CODE (CURVE) 
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MEDIAN PLANE POSITION (ern) 

Fig. 16. Median plane field vs position for H-magnet . 
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APPENDIX 

II . 16 "Equipotential Zoning . 

. -· The triaii"gle mesh we have described can be mapped into a regular equilateral 

triangle array composed of three ·sets of straight lines intersecting each other 

at 60°. · One of these sets is redundant, and we may consi.der the mesh to be de-

fined by the remaining two sets. 

\tle nmr regard each of these sets as the "equipotentials" of a boundary value 

problem. Let one set be associated with a function x(x,y) and the other set with 

a function ~(x,y) which satisfY the equations 

(33) 

over the region and boundary conditions determined by the boundary zoning. 

Then if.we can solve (33), the intersecting lines x =constant and 1jJ =constant 

together with the third set drawn through the intersection points, will be the 

desired triangle mesh. Because of the well-known averaging property of solutions 

t_o Laplace's equation, we might expect a mesh constructed in this way to be, in 

some sense, smooth. Of course, by using some other equations in place of (33) 

we could 'obtain a different mesh. 

We first invert equations (33) and write them in terms of x(x,~). and y(x,ljl). 

Using the relations 

1 
1 XX = -:JYIJI ljJX c-y 
J X 

5£. 
ljJY 

1 Xy= = --X J J X 

where the Jacobian J = xwyx- xxyiJI, we find that (33) are transformed into 

= 0 

• (34) 
~y - 2Sy + yy 

XX XljJ ljl$ 
= 0 

provided that J ~ 0. Here a,B,y are the quadratic functions 
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a = 2 + 2 
xlJJ Y.ljJ 

.~· (35) 

.-: 

The solutions of equations ( 3l1) give the coordinates of a ei ven equipotential directly. 

Finite difference expressions for the derivatives in (34) and (35) can be ob-

tained by the line integral method. We use a path of inteeration around a given 

vertex which passes through the six neip.~boring points for the first derivatives, 

and which follmrs the dodecagon in Fig. 1 for the second derivatives~ In so doing 

we assign values to x and 1jJ which differ by unity on adjacent lines, and vary 

+inearly with position in x,ljJ space. In this way we find 

(36) 

and similarly for the derivatives of y, where x,y is the center point and we 

have identified x with the lines 2-1," 3-6~ 4-5, etc. and lJi with the lines 2-3, 

1-4, 6-5, etc. (Fig. 10). 

vle thus ·ob.tain for .the finite difference analogues of ( 311) 

~ . ( 37) 
6 
L c.(y.-y) = 0 

i=J.,· J. J. 
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Although the coefficient matrix c
1 

in equations (37) is not symmetric, and 
. . 
we have not been able to prove positive definiteness, nevertheless '"e have found 

that the equatJons converge rapidly vhen solved by non-linear overrelaxation using 
.-· 

a.utomatic optimization as described in section IV with separate overrelaxation 

parameters for the x and y coordi.nates. Figures 5 and /~ show typical :results 

obtained by this zoning method applied to sub-regions of the problem. By the use 

of linear interpolation on boundaries and interfaces, only a··relati vely few points 

. need be specified in the problem input (see Fig. 4.). 

The triangles produced by this method tend to be equilateral far away from 

boundaries. By redefining ~ to be a vertical zigzag line, a different set of 

ight b f d h . h d d i h . 1 16 
.we . s ci_can e oun w 1c ten to pro uce r g t tr1ang es • 

\ 
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Fig~ 10. A vertex and its six neighbors in $,x space. 
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