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ABSTRACT

The multiplicity distribution at high energy in the multiperipheral
model for the q:a theory is shown to ba identical to the grand canonicel
ensemble distribution of a particular one=dimensional gas with only repulsive
forces, which con be decomposed into two=body, three=body and other mulfi-
body forces. The specific form of these forces and the comresponding virial
expansion of the gas system are discussed,

An alfernative systematic expansion method is devaloped, which is
different from the virial series but appears to be of a greater practical valye

for this particular closs of physical problems,
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ABSTRACT

The multiplicity distribution ot high energy in the multiparipheral
modal for the 153 theory is shown to be identical to the grand canonical
ensemble distribution of a particular one=dimensianal gaos with only repulsive
Forces, which can be decomposed into two=body, three-bedy and other multi-
body forces, The specific form of these forces and the corresponding virial
expansion of the gas system are discussed,

An olternative systematic exponsion method is developed, which is
different from the virial series but appears to be of a greater practical value

for this particuler ¢lass of physical problems,



1. Introduction

In this paper, we shall discuss the exact gas-analeg problem in statistical

mechanics that correspands to the multiplicity distribution at high energy in the
o ———

multiperipharal model of Amati, Fubini and Slunghellinil for the ¢3 theary

-
(hereafter referred to either as the ¢3—mulriperipheml model, er simply as the

multiperipheral model), The interaction Lagrangian is assumed to be

3

3V 'mge (1)

where ¢ is g scolar field, m denotes its moss, and g is the dimensionless

coupling constant. In the @3-mulﬁperip|1aru| model, the two-body elastic scat=

tering is given simply by the sum of gll t-chonnel lodder diograms; the corresponding
chsorptive parts give then the multiplicity distribution. Such a sum of ladder diagroms
is of interest since as is well known, it represents on the one hand the sum of ol
“leading " diagrams in a perturbation expansion of the q;a theory at high energy, and
on the othar hand, it gives the simplest prototype of field~theoretic models that ex=
hibit the Regge behavier for elastic s:ul‘ieringz, end o Ins dependence for mulriplicilyl.
There exists already quite a sizable |H‘4=r1|:|1'un=':3‘h6 which discusses the similarity between
the meson distribution in a multiperipheral type mode] ond the ensemble distribution

of a gas system in stotisticol mechanics. Howaver, as yet, the precise formulation

and the explicit interaction of the gas-analog system have nof been given, The

-

purpose of this nota is to provide this needed information in order to complets the

connection between these two different types of physical problem.




I section 2, the cpa-mulriparipharul model is briefly raviewed. The squiv-
alence between the multiperipheral model and its one-dimensional gas-analog is
discussed in ssction 3 {and proved in Appendix A). As we shall see, in the gas-analog
the potential energy Un between N atoms of the gos is 2 0 everywhers; it can
be decompesed inte o sum of a two-body potential A between only the nearest
neighbors, a three=body potential Va between only the nearest end the next nearest
neighbors, etc,, -

UN =V2+V3+V4+n- .

The explicit forms of VZ ; "JE . "+, ara given and the corresponding viriol serias -
discussed.

In section 4, an alternative systematic exponsion method is developed, which
is differant from the virial series, but appears to be of a greater proctical volue,
especial ly if the gos pressure p is not teo small, In the first approximation of this
new expansion method, we set the potential U, to consist of only the two-body
potentials

UH E’VZ = Evtxi}

where x. is the distonce betwean the ith and the {i +1,'Ilﬂ'l atoms. The corresponding

equation of state 1s shown to be given by the simpla formola
-1 h
27 = f dx exp [~vix}-px] (2)
(1]

where z is the fugacity. By using the functional dependence of p on z, one con
readily determine the multiplicity distribution, The subsequent appreximations of

including also the three=body cofential V

5+ ond then the four=body potential V, ,

F



etc. are discussed in the same section {ond also in Appendix €}, The method devel-
opad is of a rather general character, not restricted fo the specific ¢3—mullip¢riphemt
model, [t islsuggasted that expressions such as (2) may be used to analyse phenomen-
ologically the meson multiplicity problem in reglistic cases of high energy collisions,
From the chserved multiplicity distributions {in the soe=called "central region”), one
can de;i‘ennine an effective "potential", which may be partly ottractive and partly
repulsive; by using the some potential, one can then calculste the mabody correlation

functions and compare the results with measurements on various inclusive reactions.




2. Multiperipheral Model

For definiteness, let us consider the Lagrangian (1) and discuss the physical

process of producing {(N+1) mesons

¢ + ¢} ~ (N+1)¢

where N may vary fram 1 to @, and o and b denote respactively tha two initicl
4-momenta, In the ¢3-mullipariph=rnl model,. the rate of this reaction is determined
by anly one Faynman diagram, which is given by {A) of Figure 1; in this diagram
Gy s G0 v gy dencte respectively the 4=momenta of the finel mesons, and
kl , l-:2 Ay kN the 4-momento of the N virtual meson fines, The Feyaman ampli-
fude of diagram (A} is

N

~1
= TkZem?) 3)
1

M+

and the corresponding cross=section is

_ N+ -1
opy = e by mg P TR M, 1P v [{ww3} quﬂ:qi}u]
4 N+1
X 8( 1 q-a-b) (4)

1
where the subscript 0 denotes the energy-component, v is the relative velocity
between the two initiol mesons, and s is the square of their center-of=mass energy.

The ssm of ¢ 1 gives the total cross-iaction

N+t

TN+t )




Throughout the paper, we are interested in the meson multiplicity preblem only in
the limit Ins—o . I thislimit, asis welleknown’ {and as will also be proved by
wsing the gas-analog discusted in the next section), the total cross-section exhibits

a Regge~pole behavior:

o=1
T otal P . &)

. 1t is convenient to use the laboratory frume Lok in which ¢ (o) s ot rest;

@ = m ad by - m) Vs-m L

Let us introduze o set of N positive variables JVRIVRAR N defined hy

ondfor 1<i SN

) e o)

k) = 0

I'p =]
where the subscript 0 denotes the energy=component of the relevant 4=momenta

in zlab . The energy of the Final masons in Elah is then given by

X
1

(@), = Byl =D

andfor 1 <i SN -

i=1

= u{l-e-xi}exp{- I %) . @®)

(q,) L%,

0

In the integration (4), one moy trivially eliminate the da L integration by




using the three-dimensional &-funchion; the remaining 5=function of energy conser- -

vation bacomes simply

N
8 Tlagy )y m e -1 x)] ®)

Since kN =qN4q - Qe ONO finds

(aner)y = @7 Dol ] oo

-2

Bacause of the square of the Feynmon propagator { ki2 + m2] in the integral (4)

the value of any kiz, including qu . is on the average C‘!{mz} . Therefore, the
on~mass~thell condition q'?q 1 + rn.2 = 0, together with {10), implias that the velus of
{qH+ " }D is on the average Q(m}).

To coany out the gas=analey, it is more convenient to impose the an-mass—

shell condition

only for 1 S i £ N. For the {N+1 }ﬂ-' meson, we shall replace its on-mass—shell
condition by

(a4l = (¥ 2 )

where X is a positive constant, indepandent of s, In the integral (4), on account of

~ O(m?)

{10), the important integration region now becemes one in which qﬁl .l

[insteucl of {qN_l_I}D ~ {m) and q|*2~1+] = - mz] . The B-function {9} bacomes

then N N

bi;]exp{Ix;}EfIxi-L] (12}
] i



whara

L = In [By/Gm)] = In (s/m°) (13)

as Ins = . The limiting value of L is therefore independent of A . [!f one
wishes, one may choose A so that < q2 + m2 > Av = 0 where < > A denotes
some suitably defined averoge. ]

It is clear that the above modification dees not alter the multiplicity distri=

bution in tha Ins = @ limit.




3. A One-Dimensional Gas

Next, we consider a one=dimensional classical Boltzmaonn gas of N identical
but distinguishable ctoms on < ring of length L. Let LJM be the potential energy,
For our purposa, we need only consider isothemms; therefore, the natural unit for
energy is

kT = 1

where k is the Boltzmann constont ond T tha absolute tamperative, To evaluate

the partition function QH , it is only necessary fo consider an ordered ssl‘a, say

atoms 1, 2, -+ N distributed in a strictly sequential order with x, o tha absolute

distonce batween atoms 1 and 2, %, that betwesn atoms 2 and 3, etc., os
illustrated by diogram (B} of Figure 1. One has
N N

= fﬁ{ﬁxi-l.}enp{-u”}‘l"lrdxi (14)

AN

where x. 2 0. The grond partition function & is given by

2 = IZHQ
N

N {15}

whare z denotas the fugacity, The thermodynamical pressure of the system is

related to & by

P =Lm L In &
L= O

By ysing the dependence of the pressure p on the fugacity z, ona can com-

pute disectly the ensemble distribution of N as L=+ ; e.g., the density p is




given by

-ﬁﬁ_z =p = Llm L"'eN>

L= o

the number fluctuation < N> - < N »? is given by
2

T 2
—_— = Lim L [<N°>-<N>"] ,
dilnz) L = @

ete, Since the relative probubility of finding N particles ot a given length L
is zN QH , as L becomes large the relative probability approaches asymptotical by

the product of zN multiplied by

{Eﬁ)-l ¥ L N+D L, - (18}

where the contour can be any counter—clockwise small closed curve around the origin
in tha complex z-plane. [For a finite L, (16) helds if p is replaced by
o, = L7 In 2, without raking the limit L~ ao ]

As we shall prove 'n Appendix &, the multiplicity distribution in the ¢3-rnulﬂ-
peripheral model s identical to the above number distribution in the grand canonical

snsemble, provided that the potential 1 is of 2 specific form [dafem'tinad by Eq. (Ald)

N
in Appendix A ] . We may decompose

UN=V2+V3+V4+-¢¢ (l?}

where VE is a sum of snly two=body nearest neighbor patentials

N
v, = I v, (18)
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V, isasumof three=body potentiols between only the nearest and the next nearest

neighbors N

Va = 151 Va b e Xy (19}

and ¥V, isa sum of four=body potentials between only the nearest and the next two

nearest neighbors, etc. The explicit form for the two-body patential is given by

- -2
- B t+te | +e

1 - e & - a-ix =X =2 |
exp -V} = — [H - h{e -e }] (20}

L

where x = x, denotes the absolute valye of the distance between any two nearest

neighbor atoms, say i end i+ 1. The threecbody potential between any three

neighboring atems, say i, (+1 ond i+2, isgiven by

op [-vytn )] = [ivetnp5 77 Dt in i)

2
{1+e)h e €A €A
c [1+3In T+ +e)A + e(1-A)ln EXRRES] In T+{1+€)A @n
where
- -2
e = e =@ i
I-eTx+e_2x
-xi -le ]
. e @
€ = -3 2w !
l-¢ +e
A o= (e'fe)e T,
x =x. is the absolute volue of the distance between atems { ond i+ 1, and

]

Ko=) s that between atoms 1+ 1 and i +2 . Tha general axpression of v

is somewhat complicated, and will ke discussed in Appendix A.

-




1.

From 20) and {21), one con establish that both vy ond vy are repulsive;
e, vz{x} 2 0 atarbitrary x 2 0, ond vafx, )2 0 ot abitrary x 2 0
and x' 2 0. In Appendix A, it is shown that the total potential LIN is alse

repulsive; we Find

u. 2 0 {22)

for arbitrary X, 20, and U™ @ osany single xj-v 0. From (20) and (21),
one also sees that Yy and vy Fepresent short=range forces; i.e., vE{x} -0
exponentially as x— @, and va (%, x')~ 0 exponentiolly as either x— a or
x'= . [n Appendix A, as will be shown by Eq. (AZ2), similar short~-ronge proper-
ties hold for other vm'i as well, provided that m is finite, independent of N .

For m ~ O (N), the corresponding m=body force is clearly long ronge. As will also

be shown in Appendix A [Eq. {A28) ] . fot configurations neor the average one:

X.I = Kz = == = XN = LJ’;N ’
the total potential UN has on upper bound given by
UN = 'v'z + ‘u’a + v 4 VN < N - constork 23)

where the constant denctes o finite function of the averoge interatomic distance L/ N,
Because this uppar bound is linear in N, the presance of long-ronge interactions

such as VN . VN-I , *++ does not jecpardize the thermodynamical limit, We

note that due to the one-dimensional character of the gas and the pure repulsive

nature of the farces, there shouvld not be any phose tronsition for this porticulor system.

The detailed correspondence between this one-dimensienal gas and the multi-
¥+
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peripheral medel is given in Table 1. For the gas system, the average number of
particles is clearly proportional to the length L of large L. By using Takle 1, or
Eq. {13), one derives the familiar cesult! that the averoge mewoh multiplicity in the
multiperipheral model increases linearly with Ins ot large s, For the gas system,
In & isalo proportional to L ot large L, By using Toble 1, or Eq. {A13) in
Appendix A, one obtains Eq. {6} which gives the Regge behavior for the multiper-
ipherol model.

The explicit form of V., , Va ; + + enobles che to directly evalyate the

virial series

®
P =I|:£z ¢ (24)
1

by using the well-known cluster expansion techniquae, develeped by Mayer ond Muyerg.

For example,

0
by = J Fod)x {25)
0
whare
fog = o2
m a @
by = bg'f s F()ex + f dx f ox' Fix, x'} {25)
0 0 0
where

Fix x) = [1+F] [1+F60] (¥ 007




13.

and o on. For the specific vzfx} given by (20), one finds

by = - ?m"zginf”.g'.'.) = - 1.5626 (27)
<l ic I
in which the sum equals the Clausen's in’ragrulm f(@) of 9 =n/3. Similarly, h&
catt be evalvated, and the approximate numerical valus ish!
b, = 19573 - (28)

3

in which the ratic between the contribution of the three=body potential v, and that of

the two-body potential v, is ~= V4.,

From Toble 1, one may derive the dependence of the Regge-pole power o

on g2 for the qa-multiperipheml mode] from the virial expansion:

2 4 5
a = =1+ (F) + by () +53{39;) T (29)

g 2 g A 2,12
The coefficients of (;G} and [H] have been calculated in the literature”*

and of course they ogree with the above virial expansion results.




.,

4, An Altemative Expansion Method

a=1

For most applications, since at high energy o 5 =~ constant,

total
one is interested in multiplicity problems in which o & 1; this corresponds to a
gas system with its pressure p 22 . At such high pressure, the virial series

p=L bﬂ, ;E does not offer the most practical method for evaluating the function

p =p{z) . As we sholl see, for the clats of problems in which the potential UN is
asum U = \.-"2 + Vo 4+ where V, consists of only two=bedy interactions
between the nearest neighbors and VS only three-body inteructions between the
nearest and the next nearest neighbors, »+., there exists an elternative new syste-
matic expansion method, different from the virial series, but which appeors to be
more vseful for practical opplications, This new systematic exponsion method is
applicable ho any one=dimensicnal gas with such a potentiol, not restricted to the
specific multiperipheral model discussed in the previous two sections,

We observe thot for Jumge values of L and N, the function 8 ([ X, = L)

in (14} moy be replaced hyla

exp [-B(Ix,-1)] . (30)

The partition function C!N con then be written os

QN = Em‘ hNI @31}

whera h is o function of B ond N, given by

hN = f exp I:- UN-ﬁIxi] 1Td:ti [2)

in which each X, s integrated independently from 0 to e, Correspondingly,



13.

the grand partition funetion bacomes

c 8= 1 Pl @3)
N

where B must be regarded as o function of N and L, determined by

(ﬂa.'.’éﬂ)N = oNTL 34)

In the grond cononical ensemble, the relative probability distribution {zh}H eBL

has @ maximum at N = N{L), which com be obtained by setting the derivative of

the relative probability with respect to N fo be zero. One finds that ot N = N{L),
h = z . 35

As L= @, on account of (33) and (35), the value of B, evaluated at N =N(L},
opproaches the themodynamical pressure p . Thus, by taking the logarithm of {35,

we derive the basic equation

, N
sz o= Lm NI fem [-U-p Ix] Wdx, (6)
N—=m ]

in which, asin {32), all x, ore integroted independently from 0 1o @ .
The new expansion methad consists of first neglecting oll intaractions, then
incloding only Vs then only Vyt Vg, et
1. In the zercth approximation, we set

Uy = 9 .«

The system satisfies the perfect gas law
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From (16), it follows that the number distribution is given by the fomiliar Poisson
formula.  For the ¢3-mu|ﬁp=ripharal model, since UH is positive, this zercth

approximation is also an wpper bound; i, a., with the inclusion of LIN 20

P S z 67)
urM, by using Takle 1,

a & o+ (.3.9;;5 (38)
whare the equolity halds only in the weck coupling limir, N

2. The First approximation is to set
N
LIN = V? = ? “g{xi) . 3%
By wsing (36), we find for arbitrary two=body p-nteni"iu’l vi.,['x)
-1 @
1o J e oo ex] #0)

If one wishes, one may olso expond p os a power series of z ;

i

p = [bmz

From the cbove closed expression @0), it follows directly that I:-,I =1, h2 is given
by (25} and b.'.'-l is given by (28) with F =0, etc. Atlarge z, cnly the value of

axp I:- vE{x}] near x =0 is of importance. Wa may expand

exp [- “2{“}] = gy tagx +oeer
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Equation {40} implies that ’

If the potential is infinitely repultive ot « =0, as is the cose in the q:s-mulﬁ-
peripheral medel, then oy = 0. As z—, |:|~---|[l:|1 z:f"'E . For the q:a-mulﬂper-

ipheral medel, vz{u} is given by (20) which gives q, =1, and therafore

p

p =~ 2z as z - o

As will be shown in Apgendix A [ Eq. (A34)], for the @3-mulﬁperipheml
medel the inclusion of oll other Va . V4 ¢ v+ »  Forces always increqses the valus

of the repulsive potential, i.e.,

Therefore the pressure P determined by the first approximation {where the subscript
1 is added for clarity} also forms an upper bound for the rigorous pressure o, which
is calculated with the entire UN without any opproximation; we derive then ot any

given z2 0, the inequality
P opy(z) *0

where, according to (20) and (40), p]{z} is given by
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The inequality (d1) is, of course, o better inequality than 37). As z—+ e, {42)

gives p, ~ z% , ond therefore (41} implies

p 2 Z% as T - @ , (43)
or, by using Table 1,
a % {411]-1 g in the strong coupling limit, (44)

in ogreement with the bound derived by Tikropoulos and Treiman "

3. In the second approximation, we eguate

N
g ¥ Vy = L Lvpbed + val; s % )] - (45)

It i+ convenient to consider a Hilbert space of base-vectors lFI{x} ' i#E[x} . lra{x} T

which satisfy the usual orthonomal relation

| .
S o) e)dx = 5. . (46)
o ' )
Among these, "FI(x} is chosen to be
Vb = {zlfl‘ GXP{-% [vztx}ﬂu]} (47}

where z, is the normalizotion constant, defined by

-1 b
2 = J{;dxexp[_-vzix}-px] ; {48)
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the other base-vectors ?2(:-:} : % (x), ¢+ - + can be atbitrary real functions thot

satisfy (46) and, tagether with F.I (x), the completeness theorem. Let us define two

real matrices ¢ and Hq in this Hilbert space;

@ o -
. i L F e <xlely> v . @)
‘ 0 o . !
xfely> = %60 [0 1706, (50)
{H.;.}" = 61
and
{Hn}« = 0 for all other i ond j . =2}

Thus, the intagral in 36} bacomas

N -N N
J exp I:- UN-p %xi]ﬂdxi =z, tace (H°+£} . (53}

The logarithm of (53), at fixed N, con be readily avaluated as a power series in € |

By using (3&) ond toking the limit N~ @ , one can verify directly that
_ yi 3 2
iz o= ez b gy (T - g ley)
3 2 10 3
+{'E ]'” '4[“ }”EII'I'T(‘”} +"""'{5‘)

Since 2 and

L ]

no= SRl ly> wrddy

(ez}” J ‘P.I{'x]{x]t. ]y><y|= lz?‘ 'ﬁ{z]dxdydz .

etc., are functions of p, Eq. (54) determines z = zfp) ,




Equation {54) can also be derived by o simpler method, without any direct
caleulations. Wae observe that the general form of the series {54) is independent of
whether the motrix € i3 symmatric or not. Thus, we may consider the special case
of a symmetric three-body potential Va (¢ ¥) =v3{y, x}), aad therafors . i = Eji .

Let A =A{p} be the lorgest eigenvalue of Hﬂ +¢ ., By using (36) ond (53}, we find

the closed expression

Aip) = z]_.fz . (35)

The series expansion con then be obtained by noting that H_ has only cne eigen-
volue = |, while all its other gigenvolues are 0, Thus, as e~ 0, h—+1 and (55)
reduces ta 40). For ¢ A0, the power series exponsion of A is given by the familiar

perturbation formula

-1 -2
A= lte v I NleLe t I Nie e €. +ooo
MR £ TR (£ Ehiueﬂ

i#1
which, together with (55}, leads te (54).
The higher order approximations including Vv, , "u"5 ; ++~ can be carried

out in o similor manner, The details are given in Appendix C .

Remarks:

As noted sarlier, the method developed in this section is of o rother general
character, not restricted io the specific multiperipheral model discussed in the previous
two sections, For practical applications, it seems reosonabla to try first the approxi=

mation of only two=body nearest neighbor forces, Equation @0} can be wied phenomenc-




2L

logically to determine an effective two-body potentiol vo(x) from the observed meson
multiplicity distributions in high energy collisions, provided that In (yinz} is suf=
ficiently lasge ond that the average mulkiplicity and its fluetuation are indeed linear

in bn{ sfi'nE} » Within this opproximation, one may opply the tome effective "potential”
to evaluate the mbody correlation functions, which can then be compared with various

inclusive reactions,
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Appendix A

To derive the explicit potentiol of the gas system, we start with Eq. @)

far the Feynman diagrom {A} in Figure 1. In the laboratory frome, lot Ei I be

the unit vector porallel to the three-momentum of the virtual meson line k., '
- [ L

The three-momentum Ei of the ;th final meson can be written as
- =1 2 = ~
9 = B+ Lia) - Ha) (" +80] K, (A1)

where gi 1 l:i-l ; and the energy {q;}ﬂ is assumed o be  »» lﬂ2 and Ef . Since,
or noted before, k? is of the order of m® . {ki}ﬂ may be assumed to be >3 | l::i2 r} .

By using ki = ki-—l- q; and {7}, one hos

e =l - -
ki2+m2 = {I'-e-x‘} L53+m2+kilex'“-e Hi:l] (AZ)

where ki2 E ic-iz - {kijz . Through induction, (A2) con be written as
0 .

- =1 i
K2t m? = (1-e7%) [z' A B4 mzn.:l (A3)
1 G=T| 'a a []
where
A o= 1,
11
— —-%3 i
o= (1-e70) (1) exp [. : x.:, (44)
j=a+
for a <1, ond
B2 I A {)-eay g2
| [ [= ]

a=|
The usuol porametric form of Feynmon propogator gives

-

m {kf + mz}-i = fetm(1-e™ }2 2. de; (AS)
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where each £. varies independently from 0 o @, ond

N
I RB
j=\ 11

N 2 N 2
E = I 8( ¢ 8.A. }+m
1 o

u -+
a=] J=a

The integration of {(AS} over TT ‘:lziii is on elementary one, One finds

N 2 N 5 N N

STk +nY) d%, = AN T - S (1 8 A e ag
i=1 i=1 a=) jeg 1 ¥ 9@ @
5 N
X exp(-m” I 2.B) . (A&}
i=1

It is convenient to change the \turinhlas from EI ’ 12 R T -

5-[: ‘Ezr . gN ; defined b}'

- - =1
{I—ax"+eh“] £, =m

8. A . (A7)

Tharefore,

m- YR B = LE . (AB)
[ ]‘ 1

From (A4}, one can readily estgblish Aqb Abc = Aun: for abitrary o, b ond ¢
that satisfy a2 b2 c. The inverse tronsformation from £ to g is

) opnr =1
mE g = (1N 4 ¢ XN

N 3y ~

and 5

_ =% -2% -1
m Eu = (l-e te ) {‘Ea'huﬂ 'IE-'.:|+1:l (A9)

for a=1, 2, - =, N=1, where

- - - oy
A I LT Sihad =g+ o 0 . (A0)
a+l -Xgq ) =Xg+] s =2% 0t
- 2

L]
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By using @), (12), (A8) and -

N A T
TT{q) g = W(l-e 1) o Tax d
_'l ﬂ J H I

2
Ei,

]

one finds that, opart from a mufﬁ-plicuri'\;eIcnn.stnnt. indépendenr of N and 5, the

cress=section o o in the ¢3-m_ulﬁperipheml'm_ndu’l is given by

+1 |
2N 2N N N (I-e-xi}dx.l
ONep ® %z Q= szl Sl Etﬁx-ufl]_exuefhi
(A11)

where z = l}ﬂ-t]-z 92 and A is a function c:ff' .xl P Xg ot Xy tl:lefi.n;dll;'uy the
integral

. | | .

S R WS TENS W SRR TR W T T e dg

| A1)
in which the integration domain extends over £ 2 Ay Eil, b 2 '\3 YR

Ei 2 1“1 'Ei+l ;' , and %NZ 0 . On account of (A11), usl Ins=eo, the
total cross=section ¢, . ., sabisfies
: - ratgl
Ina +2s ~ In a (A13)
where
2 =1 zN GH-"
N ’

The function QN denctes the pontition Fum:l.'linn of the gas-analog, and 2 i
the corrasponding grond partition function. Upan eomparing (Al11) with (14), we

find the potential Uns for the gas system to be
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-,
Nl s l-e

e N - m - (AW)

-
l=-2 14+a

To derive the two~hody potential 2 {xi) , we need only consider, ot o fixed
Xy the limit of oll other X, [ Te avoid problems with the boundary, we
choose T #1. _] In this [imit, all three=body forces, four-body forcas, etc., are,

by definition, zaro; therefore,

On tha othar hand, in the some |imit, according te (A10),

}..i - 0 for all | £ i
and
\ _ P 8 E-in (Al)
., =~ ¢, = .
i i 1- e-xi + E-Exi
Thue,
-1
-ﬁ =] 'Ii 'Ei-l -]
e = Sy [ s Ll s ee g, m8)
i
= 1+ Ei In T:'E_ {A]?}

which, together with (A14) and (A15), lead ro the explicit two=bady force given

To derive the three=body potentiol, we keep x; and x, + fixed (where

i #£1), ond then consider the Jimit of ol othes X~ @. In this limit, by definition,

U = valgd + vl ) + valey s %) (A18)
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According to {A10), in the same limit ?'I.i+.l remains fixed, hi e, which is given

by (A)8), and all other hj — 0 ; therefore, the integral {(A12) becomes

1

e e p 6 e ) (- Ay )

where the integration domain is

£

2 e, £, g.zhmem and £ . 2 0

+] =

By using (A 14), (A1B) and (A 19), ene obtains the explicit fsrm (21} for Vq {xi P

i+]
In a similor manner, we can derive explicitly the four-body interaction, the five-body

interaction, etc,

I goneral, to derive the m=body potential vm(xi TP Y,

x fixed (where i £ 1), and consider the limit of

+#1* "7 Mirme2

all other xj-*an . In this limit, h;—*ei which is given by (16}, h‘|+l JUTEE hi-!-m«?

we keep LT

remain unchonged, and oll sther th -~ 0. The potential Ung becomes

i+ m=2 i+tm=3
UN T Ul St Xiamg? 5 B 000 T Y00 )
O L Y vmfxi, xi*l*l’ " . . xi-}m_z) ’_
(A20)
and

=A
e = S B Ny ) 7 g T Aiema2 Fieme2? Sieme2

i+m=2
X i
k=j=1

=1

e o kdy ,  (A2)
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where the integration extends over the domain

> ..
gi" g €, E» L ﬁi = J\._I_-l §i+l"

[ I
:

I
b
Lo

and &

ii+m—3 }‘u‘+m-2 ‘Ei+m-2 +m=2 -

3

The explicit form of v, <on then be derived by using (A14), {A20) and (A21), We
note that if x. = co, then ¢. =0 exponentially; therefore

T

Unl% e Xty e o Xipmaa? ™ Yt ®r e v Xipmaz!

Similarly, if X @ (s2 1}, then liﬂ-*ﬂ exponentiafly, and therefore

Um{xi r xi+‘| £ 0 xi+m-2} - Us+1{xi' tr JI';i+s-lllum-sf-l{""i-lrs-bl e "t xi+m-2}

Together, these relations imply the short=range nature of Yo

vm{xi, Xep1s T xi+m-2} - {1 exponenkially (A22)

as any single X 0 whare i2 k2 i+m-2, provided that m is finite, independent

of N,

Inequalities:

1. We note that while the range of v is shest for any finite m , for m of
the arder of N (therefore, olso of the ordar of L) the corresponding m=bedy force
has to be long range.  In order to establish a well-defined thenno;:lynumicul limit,
we tholl show that, ot a constant density N/ L and for regions near the average

configuration
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x'l = xz = s o= oy = KN - L;N ’ (ﬂa]

the total potential energy Uy has an upper bound which increases linearly with N,

For the configuration (A23), one has, on account of (A10),

R2=R3=--=LNEJ\-—-MP£-N‘]L]<1;
(A24)

furthermore, becouse of the inequality

> o- . (A25)

TE S Sl M (5 - M) Ly - M) Sy T e, L (A26)

The right=hand side of (A 26) can be readily evaluated. By teking the logorithm of

(A28}, one obtains

N
1 2
A < 22 - 2In(0-0) + mz=1 In (1-2") . (A2
™ =1
Sincge 0< A< 1, I In{1-AT) islarger than (1=X)" In(1=X) but less then O.
m=1

One finds, as N—~ @,

| N
Tl In(1=A") = D
1

Because of (A14), (A27) con be written as (for N >> 1}

1

AUy < 202 - 3In(1-)) + In(1-A+A%) (AZ8)

N
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The inequality (A28) can be easily extended to ony configuration Xir Xgs * Xy
in which x.l's con be unequal, but the maximom vajue J"mux of the corresponding
).2 ’ )‘3' sy Ay felessthon 1. From (A12), one con verify that, keeping hj;éi

fixed,

g_;ii:: o . (A29)

Consequently, A satisfies the same inequality {A27), provided that M is replaced

by A

may © Ve note that the inequality (425} can be easily improved since

g-l P e-'ﬁ [1+:LE + -;-,. EE +- - .J; therefore, the upper bound (AZ8) can

also be improved.

-1

2. Since £r.'l {ga B hﬂ-!-'l $a+‘|

}E 1, (A12) implies the inequality

-4
e

I

(A30)

and therefore
-X
=kl - i
e N € l-e . (431)

i 1= e'xi + e-hi

Because the right=hand side of (A3 is £ 1, we establish the repulsive

nature of UN; i.e,, for orbitrary . 20,

Uy 20 ; ' (A32)

Furthermora, as any single X, = 0, the right-hand side of (A31) approaches zero,

and therefore UN - @,



. 30,

3. The inequalities (A30) ond (A32) can be readily improved, We shall show that

eyt -2

1] [1 s+ & "¢ zlr n{e i - a'hi]] (A33)
i 1 !

- -
- '+e

]
>
[ Fal

and therefore

u, 2 Vv (A34)
where Vo is the hwo~body inferaction, given by (18) and {20},

Proof, From (A10), it follows that

-3 2%
A, 2o, = 2l (A35)
(I
which, togsther with {A29), implies
e_ﬂ' < F (A5}

where .
N R
F = é{fl'ezgg}(gg'eﬂgs}"{gm_‘l"ﬁm‘fm]fwa]llﬁu 2 udga )
{A37)
and the integration volume Q extends over
¢ =1 -1
b S ks by S by,
e 3ot T 0By Feg iy - @439
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It iz useful to define

N N,
H(Ez: Eaf .. 'EN] = [F'E‘I—IE f{‘i}] jl:?Ej (M?)

where
— . (A40)

Fle) = T4eln e

By a stroightforward calculation, ona con verify that

= (1+e)!

= [ 7]
S

and
! -1 -1 1 : ' 1
____.Tnal_ [F'ITej ] = (1+e,) {|+e3+..3¢2}' {I+¢4+:4e3+e4e3ez}-

i
e -
{I+=H+ ENIH-] + e +ENEN-I Ez}

whare the subscripts i ond j vary independently from 2 to N, Consequently,

™!
D H = H
N (@e; Yae ) - (3e] )

{Ad1)

A
=]

itn the entire physical region . 20, At :51-11 , F (.'.2 J=0 ond the integration

volume (A38) =0 ; therefore,

N=-2
-1 0

g
(¥ H = H =0 o
N-2 3{53-1}3“4-1]__ a{am"] 2

which, togather with (841), impliés

PN B 20
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in the entire physical region, Similarly, one shows that

o aN-B
-1 -1
3{:4 }..E{eN }

N-ElH_‘

H =0 a!%ﬁﬂ,

ond therefore in the entire physical region

<
DN_3H=U.

By induction, one finds, for arbitrary e, o,
H£o, (A42)

which, together with (A36) and {A39), leads to
A N
e S F & T fle) . (A43)

i=2

Thus, we complete the proof for (A33) and (A34). [:Tl'ua fact that the factor (e 1]l
is absent from the above product is relevant only to the baundary condition at i=1;
it has no effect on any of the thermodynamical properties that we are interested in, |

As noted in section 4, the inequality (A34) implies @1):
p S ez} | (add)

where p](z} is given by @ 2),

4. [t may be of interest to compare the gbove inequality with one derived by
Tiktopoukos and Treiman W for the muli‘iperipherul medel. We note that, on account

of {20), the two=body potential VE /Sgtizfies

V2 < W(-e) (AdS)
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which implies, via (AJ4),
"N g =i
s = TM{l1=-e 71}, (Adc)
i
Now, let us consider a hypothetical case 15 in which the coresponding funclion

e "N s this upper bound Tl (J=e 1), By using @0), one finds that the gos

pressure p' of the hypothetcal case is related to the fugacity z by

=1 © =%, =p'x
z = f {(1-e }eP dx
0

p"?‘l'P"-Z:ﬂ.

Thus, we obtain

p £ p'z) = %[(t+4z}*-1] ‘ (A7)

By using Table 1, one can abso write (Ad7) in the form given by Tiktopoulos ond Trei-

W
mar

a £ -7 4+ [%4'{19;]2]’; . (M8)
Because of (Ad43), one has
p(z) S p'(2) ; (a49)

therefore, the inequality (Ad4) is a bettes one than (Ad7). As z -~ o, both

inequalities reduce to #3); p £ z% . As z— 0, "

pilz) = z- 1.56262% + O(2%)
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while

pz) = z = 22 + O(D).

As expected, the second viriol l:'2 is corcectly given by plfz] , but nok by p'(z).



Appendix B

In section 4, the partition function QN is evalvated after the replocement

N N
st}{'ai-u ~ exp [-B( Ex*'u] : (1)

It is well-known that such o replocement leods to the correct thermodynamical limit;

i, 0., it gives the correct O{N) tam in InQ as N~ m at afixed finite density

N '
N/L . In this Appendix, we shall show how this method may be extended 1o derive

the correction term, which will tum out ko be Ofln N) . Since, on account of (All),

s - @, is proportional to the crossesection o in the multiperipherol model, this

N

correction termn is related to the quastion of In ¢ dependence of the cross-section.

M+

For simplicity, we shall consider only two=body forces, The total potential

UH is assumed to be

N

UN = };.v{x;} ' (B2)

The partition function Q) (L) is given by (14) :
-ty ‘
Q) = S e E(Ex.l-L}'lexi {83)

where, as before, each X is 20, From (B3), one obtains the recursion formula
w

O = L e¥aq (Lox)dx . @)

Theoram For N>> 1, but {N/L)~O(1},

In@ (L) = Ninh{g} + Lp -3 lnN +O(1) (85)




where

o
he = 7 eI Pr g (86)
and B is a Function of L/ N, determined by

_dlnh(E)  _ L -

We note that the replocement (B1) leads directly to the first two terms on
the right hand side of (B5), both of which are O{N}. The theorem gives also the
correction termm =% In N, As we shall see, by following the proof given below,

one can systematically calculate the remaining O (1) tarm as wall,

Proof Let us define a ond y lo be the selutions of f at

) [dlnh{ﬂ}] L (3)
—dp B=a N+T

ongd

] [dunh{m ]ﬁ Slxa )

=¥
and assume QN{L} to be of the form
QW = [h@]" Pay o)

where AN is ko be determined. It is convenient to intraduce the Fourier transform of

e-ﬂx} in the physicol region x2 0
=v{x) i ¥ i
e = f C e do . (1Y)
- -

[Th: behavior of the Fourier integral in the unphysical region x < 0 is immaterial
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o our discussion, ] Equotion (B4) can then be written as

0 . N 'L
Th) N et = Na S cue'“LmJ; [H ()N ay
-
(Bi2)
where
Hyin) = hen {71000 - ew)

and y=y{yn) is defined by (B%).

Let B be defined by (B7), It is straightforword to expand o arownd P

q=ﬁ+[d2lnh{p}T] L ..

dpe N(N+1)

The logarithm of the left~hand side of {812) is then given by

2 |
1 fdInh{p) L }
(N+1}Inh(B) + BL + InAy . - - ( d“ﬂfi)- (ﬁj+ D(?}{BHJ

To evaluate the right-hand side, we use the relation

M H N2

suNg, = 2 | “ ( ) .. (818)
w N+1 dH, {N+1}) (N+2) dl-lu

Since E-\r{x] is regular ot the origin, as f—w , both h{f)—~ 0 and EI-!%E—-{E-—} - 0
By using (B9), one seesthatas =0, y-~o ond H - 0. Letusconsider the
definite integral (B15) from 5 =0 to 5 = N™'L. The right=hand side of (B15) is

zero of the lower limit 5 = 0; by substituting ils volue of the upper limit 4 = N

te tha right<hand side of (B12), we find, e.g., the first term (N +1 }'I I-iN"'I (d,-,;”d I-t“}
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in {815} leads to

cn C du NA
N+ 1 -un B ~iw N+

By carrying out the same operation for the remoining term, one con verify that the

logarithm of the right=hand side of {812) s

(N€1)Inh(B) + BL + In A, - 2Hhﬂ3) (“2'“'1”3 & hiﬁ? +D(—§)

(B17)

By using {B14) = (B17), we obtain, for N3>> 1 and neglecting the D{N‘E} terms,

dIn AN _ ..]_
dM ZN
or
A, = NP X B
N S constant (1 )

which completes the procof,

Ramarks:  In the sum for the grand partition function 2 =1 ZNQN , the maximal

value of ZNGN occurs at N = I:I, determined by

aanN —
+Ilnz = 0 at H = N, {B19)

aN

Therefore, as L— @ ot o constant I:l,a'"L , (B19) reduces to @0): .

o
1-1 = f E-?{IJ-PK dx
0

where ) -1 -
p = B evaluatedat L"'N = L N . (B20)
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In terms of the maximal value, one may write

MNa = Nag ee [-(N-R)Y/ A7) (21)

where hz denotes the fluctuation, Thus,

N

2 SroQdN = zHGﬁhni

ng

or, since nz is proportional to ﬁ,

in @ = Ninz + nQg + ¥ In N+ 0Q1) . (822)
By using the theorem and (B20), one finds

m& = oL + 01 . {B23)

The =% In N term in (B5) is cancelled by the +% In N term in (822). From

-1

Toble 1, one sees that the total cross-section o, . | is proportional to s,

[Withuur the -3 In N tem in (B5), one would obtain an incorrect multiplicative

tor | f -
factor In s for Y\ otal ]




Appendix C

Te illustrate how the mathod developed in saction 4 con be generalized

to include four-body, five=body, . « , forces, let us assume the fotal potential

engrgy UN to be

v, =V

N + ¥ +V¢

2 3

where V, * ‘u"a is given by {#5), ond
Y4 T EI TR REEINI
We define the matrix  <x., x. | H |Ki+2’ *iq> by

Sxexp Mg %02 = op gy - #y)

where

6 = Flq o T2, a)p

+3 [vglbod + rglo ) + vl 9) + voliyyg) ]
and

" T RN X ¥ Dy X) tovals o %) ]
Fovgloe X R ol Mg N
The integrul in (36} then becomes

N
2
S exp |:- UN-p}I: xi] T[dxi = truce HW

(€Y)

{C2)

(C3)

{C4)

{C5)

(Cé)
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where any power of the matrix H is defined occording to the wsual rule:

€ €O
<xy |[HM 51> = I _Edv'tix,y]Hm-]]u,v} <uv PH|s5t> .

To evaluate the trace of I'IN"’F2 , ‘We may separate

H = Ho + ¢
where the matrix elament of HO is equal to exp (- qsu} and that of ¢ is aqual to
[axp {-¢|I) - 'I] exp {-qaﬂ} . With only minor changes, the discussion following
Eq. (53) in section 4 can be directly applied to the present case, Similarly, one can

extend the method to five=body, six=body, « +, forces,
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TABLE
3
Gas System Multiperipheral Modsl (¢~ theory)
. _ g 2
fugacity z = ’ {3}7}
pressure = o + 1
rand partition function & - 52 o
grand p yotal
length L ~ In —
: me
L F'E:_z_ ~ average multiplicity <N 2>
':l2 p 2 2
L —— ~ <N > - <N>»
dinz

Table 1. Cormaspondence between the one~dimensional gas ond the
multiperipheral madel in the high energy limit Ewhere
s = [center-of-mass energy}z ord o = Regge-pole power

for forword elostic su:oﬂering] .
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Usually, a themmodynamical system has three extensive variobles: the number of
particles N, the length {or volume) L and the energy E; correspending to
these three extensive variobles, there are three infensive variobles; the fugacity
z, the pressure p ond the temperature T, In the present case, there are only
two extensive variobles; N and L~In{ 5fm2) ; correspondingly, rhere are also

only two intensive variables: z and p. Hence, kT can be chosen to be unity,
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The parmutation due to different ordering of these particles is cancelled by the
wsual ]:fN- 1) ]'] factor due to Boltzmonn statistics. {If the length L

has ends, then the Boltzmann factor is (N ]"] :[

See, 2.g., L £ Mayar and M. G. Mayer, Statistical Mechanies (Joha Wil\-&y
and Sons, New York, 1940}, |

Sea Table 27,8 in Hondbook of Math Functions, Applied Math Series, vel. 55,
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T wish to thank M. Y. Chen for kindly chec’kiﬁg the numerical integration for b3 .
See T. L. Trueman and T. Yoo, Phys, Rev. 132, 2741 (1963); ond S. J. Chong,

T. M. Yan and Y. P. Yoo, I_E'.":‘ cit,
That such a replacement gives the correct thermodynamical limit, as L and N = m ;
iswell known., In Appendix B, we shall shaw haw this method con be extended

to obtain dlso the cotrection term, when L and N are large but not infinite,
The weper bounds {38) and (A48} hove been dérived by G, Tikhﬁulos and

S. B. Treiman, Phys.Rev. 135 B, 711 {1964). For a still better upper

bound, see @1) and @2). [ See also G. Tiktopoulos and 5. B. Treiman,

Phys, Rev, EB,‘ 1597 (1?65} for dia&ussiurgs on lower bounds for modals

invelving zerd-mass particles, ]

- If there were only ¢ne spoce dimension, instead of three, in the ¢3-mu|ﬂp=ripheml

modal, then the corresponding two=body potential would be 1 - ™~ .. This ex=
pression follows directly from the result of D. K. Compbell and 5. J. Chong, L?E.

. ¢it,; . it can also be derived by using arguments similar to those given in Appendix A,
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- Figure Caption

Figura 1 {A) Feyﬁmnn diagram for N + 1 meson emission in the ¢3-rnultiperipherul

model.

(B} Corresponding diogram for N atoms on a ring in the cne=dimensional

gas medel,



.

.u.l g e £
Y
o S —
or
L B0
N o
oo
sl
x
) R4
o
-
=
or
=
— -
+
_v

e+

(B)

(A)

-



