@os

multiplicity distribution in the multiperipheral model

 AND A ONE - DIMENSIONAL GAS-T. D. Lee
Columbia University, New York, N. Y.

This research was supported in part by the U. 5. Atomic Energy Commission.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereot, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Abstract

The multiplicity distribution at high energy in the multiperipheral model for the ϕ^{3} theory is shown to be identical to the grand canonicel ensemble distribution of a particular one-dimensional gas with only repulsive farces, which can be decomposed into two-body, three-body and other multibody forces. The specific form of these forces and the corresponding virial expansion of the gas system are discussed.

An alternative systematic expansion method is developed, which is different from the virial series but appears to be of a greater practical value for this particular class of physical problems.

Abstract

The multiplicity distribution ot high energy in the multiperipheral model for the ϕ^{3} theory is shown to be identical to the grand canonical ensemble distribution of a particular one-dimensianal gas with only repulsive Forces, which can be decomposed into two-body, three-body and other multibody forces. The specific form of these forces and the corresponding virial expansion of the gas system are discussed.

An olternative systematic expansion method is developed, which is different from the virial series but appears to be of a greater practical value for this particular class of physical problems.

1. Introduction

In this paper, we shall discuss the exact gas-analog problem in statistical mechanics that corresponds to the multiplicity distribution at high energy in the multiperipheral model of Amati, Fubini and Stanghellini for the ϕ^{3} theary
 multiperipheral model). The interaction Lagrangian is assumed to be

$$
\begin{equation*}
(3:)^{-1} \mathrm{mg}^{3} \tag{l}
\end{equation*}
$$

where ϕ is a scolar field, m denotes its moss, ond g is the dimensionless coupling constant. In the ϕ^{3}-multiperipheral model, the two-body elastic scattering is given simply by the sum of all t-channel lodder diagrams; the corresponding obsorptive parts give then the multiplicity distribution. Such a sum of ladder diagrams is of interest since as is well known, it represents on the one hand the sum of all "leading" diagrams in a perturbation expansion of the ϕ^{3} theory at high energy, and on the other hand, it gives the simplest prototype of field-theoretic models that exhibit the Regge behovior for elastic scattering ${ }^{2}$, and a In s dependence for multiplicity ${ }^{1}$. There exists already quite a sizable literoture ${ }^{3-6}$ which discusses the similarity between the mesan distribution in a multiperipheral type madel and the ensemble distribution of a gas system in statistical mechonies. However, as yet, the precise formulation and the explicit interaction of the gas-analog system have not been given. The purpose of this note is to provide this needed information in order to complete the connection between these two different types of physical problem.
ln section 2, the ϕ^{3}-multiperipheral model is briefly reviewed. The equivalence between the multiperipheral model and its one-dimensional gas-analog is discussed in section 3 (and proved in Appendix A). As we shall see, in the gas-analog the porential energy U_{N} between N atoms of the gas is $\geqq 0$ everywhers; it can be decomposed into a sum of a two-body potential V_{2} between only the nearest neighbors, a three-body porential V_{3} between only the nearest and the next nearest neighbors, etc.,

$$
U_{N}=V_{2}+V_{3}+V_{4}+\cdots
$$

The explicit forms of V_{2}, V_{3}, \cdots, are given and the corresponding virial series . discussed.

In section 4, an alternative systematic expansion method is developed, which is different from the virial series, but appears to be of a greater practical value, especially if the gas pressure p is not too small. In the first approximation of this new expansion method, we set the potential U_{N} to consist of only the two-body porentials

$$
U_{N} \cong \cdot V_{2}=\Sigma v\left(x_{i}\right)
$$

where x_{i} is the distonce between the $i^{\text {th }}$ and the $(i+1)^{\text {th }}$ atoms. The corresponding equation of state is shown to be given by the simple formula

$$
\begin{equation*}
z^{-1}=\int_{0}^{\infty} d x \exp [-v(x)-p x] \tag{2}
\end{equation*}
$$

where z is the fugacity. By using the functional dependence of p on z, one can readily determine the multiplicity distribution. The subsequent approximations of including also the three-body porential V_{3}, and then the four-body potential V_{4},
etc. ore discussed in the same section (and also in Appendix C). The method developed is of a rather general character, not restricted to the specific ϕ^{3}-multiperipheral model. It is suggested that expressions such as (2) may be used to analyse phenomenologically the meson multiplieity problem in realistic cases of high energy collisions. From the observed multiplicity distributions (in the soecalled "central region"), one can deiermine on effective "potential", which may be partly attractive and partly repulsive; by using the same potential, one can then calculate the m-bady correlation functions and compare the results with measurements on various inclusive reactions.

2. Multiperipheral Model

For definiteness, let us consider the Lagrangian (1) and discuss the physical process of producing $(N+1)$ mesons

$$
\phi(\mathrm{a})+\phi(\mathrm{b}) \rightarrow(N+1) \phi
$$

where N moy vary from 1 to m, and a and b denote respectively the two initiol 4-momento. In the ϕ^{3}-multiperipheral model, the rate of this reaction is determined by only one Feynmon diagrem, which is given by (A) of Figure l; in this diagram $q_{1}, q_{2}, \cdots q_{N+1}$ denote respectively the 4-momenta of the final mesons, and $k_{1}, k_{2}, \ldots k_{N}$ the 4-momento of the N virtual meson lines. The Feynman amplitude of diagram (A) is

$$
\begin{equation*}
M_{N+1}=\prod_{1}^{N}\left(k_{i}^{2}+m^{2}\right)^{-1} \tag{3}
\end{equation*}
$$

and the corresponding cross-section is.

$$
\begin{align*}
{ }_{0} N+1
\end{align*}=4 \pi^{4}\left(a_{0} b_{0} v\right)^{-1}(m g)^{2 N+2} f\left|M_{N+1}\right|^{2} \prod_{1}^{N+1}\left[\left(16 \pi^{3}\right)^{-1} d^{3} q_{j} /\left(q_{j}\right)\right]
$$

where the subscript 0 denotes the energy-component, v is the relative velocity between the two initial mesons, and s is the square of their center-of-mass energy. The sum of $\sigma_{\mathrm{N}+1}$ gives the total cross-section

$$
\begin{equation*}
\sigma_{\text {lotal }}=\sum_{N=1}^{\infty} \sigma_{N+1} \tag{5}
\end{equation*}
$$

Throughout the paper, we are interested in the meson multiplicity problem only in the limit $\ln s \rightarrow \infty$. In this limit, as is well-known ${ }^{2}$ (and as will also be proved by using the gas-analog discussed in the next section), the total cross-section exhibits a Regge-pole behavior:

$$
\begin{equation*}
\sigma_{\text {total }} \sim s^{n-1} \tag{6}
\end{equation*}
$$

It is convenient to use the laboratory frame $\Sigma_{\text {lab }}$ in which $\Phi(0)$ is of rest; i.e.,

$$
a_{0}=m \quad \text { and } \quad b_{0}=(2 m)^{-1} s-m
$$

Let us introduce a set of N positive variables $x_{1}, x_{2}, \cdots{ }_{N}$, defined by

$$
\left(k_{1}\right)_{0}=b_{0} e^{-x_{1}}
$$

and for $1<; \leqq N$

$$
\begin{equation*}
\left(k_{i}\right)_{0}=\left(k_{i-1}\right)_{0} e^{-x_{i}} \tag{7}
\end{equation*}
$$

where the subscript 0 denotes the energy-component of the relevant 4-momenta in $\Sigma_{\text {lab }}$. The energy of the final mesons in $\Sigma_{\text {lab }}$ is then given by

$$
\left(q_{1}\right)_{0}=b_{0}\left(1-e^{-x_{1}}\right)
$$

and for $1<i \leqq N$

$$
\begin{equation*}
\left(q_{i}\right)_{0}=b_{0}\left(1-e^{-x_{i}}\right) \exp \left(-\frac{i-1}{1} x_{j}\right) . \tag{8}
\end{equation*}
$$

In the integration (4), one may trivially eliminate the $d^{3} q_{N+1}$ integration by
using the three-dimensional δ-function; the remaining δ-function of energy conservation becomes simply

$$
\delta\left[\left(q_{N+1}\right)_{0}-m-b_{0} \exp \left(-\sum_{1}^{N} x_{i}\right)\right]
$$

Since $k_{N}=q_{N+1}-a$, one finds

$$
\begin{equation*}
\left(q_{N+1}\right)_{0}=(2 m)^{-1}\left[k_{N}^{2}+m^{2}-q_{N+1}^{2}\right] \tag{10}
\end{equation*}
$$

Because of the square of the Feynmon propogator $\left(k_{i}^{2}+m^{2}\right)^{-2}$, in the integral (4) the value of any $\mathbf{k}_{\mathbf{i}}{ }^{2}$, including $\mathbf{k}_{\mathrm{N}}^{2}$, is on the average $O\left(\mathrm{~m}^{2}\right)$. Therefore, the on-mass-shell condition $q_{N+1}^{2}+m^{2}=0$, logether with (10), implies that the value of $\left(q_{N+1}\right)_{0}$ is on the average $O(m)$.

To carry out the gas-analog, it is more convenient to impase the on-massshell condition

$$
q_{i}^{2}+m^{2}=0
$$

only for $1 \leqq i \leqq N$. For the $(N+1)^{\text {th }}$ meson, we shall replace its on-mass-shell condition by

$$
\begin{equation*}
\left(q_{N+1}\right)_{0}=(1+\lambda) m \tag{11}
\end{equation*}
$$

where λ is a positive constant, independent of s. In the integral (4), on account of (10), the important integration region now becomes one in which $q_{\mathrm{N}+1}^{2} \sim \mathrm{O}\left(\mathrm{m}^{2}\right)$ [instead of $\left\langle q_{N+1}\right\rangle_{0} \sim O(m)$ and $\left.q_{N+1}^{2}=-m^{2}\right]$. The δ-function (9) becomes then

$$
\begin{equation*}
b_{0}^{-1} \underset{1}{N} \underset{1}{\exp \left(x_{i}\right) \delta\left(\sum_{1} x_{i}-L\right)} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
L=\ln \left[b_{0} /(\lambda m)\right] \rightarrow \ln \left(5 / m^{2}\right) \tag{13}
\end{equation*}
$$

as $\ln -s \rightarrow \infty$. The limiting value of L is therefore independent of λ. []f one wishes, one may choose λ so that $\left\langle q^{2}+\mathrm{m}^{2}\right\rangle_{\mathrm{Av}}=0$ where $\left\rangle_{\mathrm{Av}}\right.$ denotes some suitably defined average.]

It is clear that the above modification does not alter the multiplicity distribution in the $\mathrm{In}_{5} \rightarrow \infty$ limit.

3. A One-Dimensional Gas

Next, we consider a one-dimensional classieal Boltzmann gas of N identical but distinguishable atoms on oring of length L. Let U_{N} be the potential energy. For our purpose, we need anly consider isotherms; therefore, the natural unit for energy is ${ }^{7}$

$$
\mathbf{k T}=1
$$

where \mathbf{k} is the Boltzmann constant and \mathbf{T} the absolute temperature. To evaluate the partition function Q_{N}, it is only necessary to consider an ordered set ${ }^{8}$, say atoms 1, 2, . N distributed in a strictly sequential order with x_{1} as the absolute distonce between atoms 1 and $2, x_{2}$ that between atoms 2 and 3, etc., as illustrated by diagram (B) of figure 1. One has

$$
Q_{N}=f \delta\left(\sum_{1}^{N} x_{i}-L\right) \exp \left(-U_{N}\right) \stackrel{N}{\Pi} d x_{1}
$$

where $x_{i} \geq 0$. The grand partition function 2 is given by

$$
\begin{equation*}
Z=\sum_{N} z^{N} Q_{N} \tag{15}
\end{equation*}
$$

where z denotes the fugacity. The themodynamical pressure of the system is related to 2 by

$$
P=\operatorname{Lim}_{L \rightarrow \infty} L^{-1} \ln 2
$$

By using the dependence of the prossure p on the fugacity z, one con compute directly the ensemble distribution of N as $L \rightarrow \infty$; e.g., the density ρ is
9.
given by

$$
\frac{d p}{d \ln z}=p=\lim _{L \rightarrow \infty} L^{-1}\langle N\rangle
$$

the number fluctuation $\left\langle N^{2}\right\rangle=\langle N\rangle^{2}$ is given by

$$
\frac{d^{2} p}{d(\ln z)^{2}}=\operatorname{Lim}_{L \rightarrow \infty} L^{-1}\left[\left\langle N^{2}\right\rangle-\langle N\rangle^{2}\right]
$$

etc. Since the relative probability of finding \mathbf{N} particles at a given length L is $z^{N} Q_{N}$, as L becomes large the relative probability approaches asymptotically the product of z^{N} multiplied by

$$
\begin{equation*}
(2 \pi i)^{-1} \mathscr{y} z^{-(N+1)} e^{p l} d z \tag{16}
\end{equation*}
$$

where the contour can be any counter-alockwise small closed curve around the origin in the complex z-plane. [For a finite L, (16) holds if p is replaced by $P_{L}=L^{-1} \ln 2$, without taking the limit $\left.L \rightarrow \infty.\right]$

As we shall prove in Appendix A, the multiplicity distribution in the ϕ^{3}-multiperipheral model is identical to the above number distribution in the grand canonical ensemble, provided that the potential U_{N} is of a specific form [determined by Eq. (A14) in Appendix A]. We may decompose

$$
\begin{equation*}
U_{N}=V_{2}+V_{3}+V_{4}+\cdots \tag{17}
\end{equation*}
$$

where V_{2} is a sum of only two-body nearest neighbor potentials

$$
\begin{equation*}
v_{2}=\sum_{i=1}^{N} v_{2}\left(x_{i}\right) \tag{18}
\end{equation*}
$$

10.

V_{3} is a sum of three-body potentials between only the nearest and the next nearest neightors

$$
\begin{equation*}
V_{3}=\sum_{i=1}^{N} v_{3}\left(x_{i}, x_{i+1}\right) \tag{19}
\end{equation*}
$$

and V_{4} is a sum of four-bocty potentials between only the nearest and the next two nearest neighbors, etc. The explicit form for the two-body patential is given by

$$
\begin{equation*}
\exp \left[-v_{2}(x)\right]=\frac{1-e^{-x}}{1-e^{-x}+e^{-2 x}}\left[1+\frac{e^{-x}-e^{-2 x}}{1-e^{-x}+e^{-2 x}} \ln \left(e^{-x}-e^{-2 x}\right)\right] \tag{20}
\end{equation*}
$$

where $x=x_{i}$ denotes the absolute value of the distance between any two nearest neighbor aroms, say i and $i+1$. The three-body potential between any three neighboring atoms, say $i, i+1$ and $i+2$, is given by

$$
\begin{align*}
& \exp \left[-v_{3}\left(x, x^{\prime}\right)\right]=\left[1+e \ln \frac{\epsilon}{1+\varepsilon}\right]^{-1}\left[1+e^{\prime} \ln \frac{\varepsilon^{\prime}}{1+\epsilon}\right]^{-1} \\
& \cdot\left[1+\lambda \ln \frac{(1+\epsilon) \lambda}{1+(1+\varepsilon) \lambda}+e(1-\lambda) \ln \frac{\epsilon}{1+e}+\frac{\epsilon \lambda^{2}}{1+\lambda} \ln \frac{\epsilon \lambda}{1+(1+\epsilon) \lambda}\right] \tag{21}
\end{align*}
$$

where

$$
\begin{aligned}
& \varepsilon=\frac{e^{-x}-e^{-2 x}}{1-e^{-x}+e^{-2 x}}, \\
& \varepsilon^{\prime}=\frac{e^{-x^{\prime}}-e^{-2 x^{\prime}}}{1-e^{-x^{\prime}}+e^{-2 x^{\prime}}}, \\
& \lambda=\left(\epsilon^{\prime} / \varepsilon\right) e^{-x}
\end{aligned}
$$

$x=x_{i}$ is the absolute volue of the distance between aroms i and $i+1$, and $x^{\prime}=x_{i+1}$ is thet between otoms $i+1$ and $i+2$. The general expression of v_{m} is somewhat complicated, and will be discussed in Appendix A.

From (20) and (21), one con establish that both v_{2} and v_{3} are repulsive; i.e., $v_{2}(x) \geqq 0$ at arbitrary $x \geqq 0$, and $v_{3}\left(x, x^{\prime}\right) \geqq 0$ at arbitrary $x \geqq 0$ and $x^{\prime} \geqq 0$. In Appendix $A_{\text {, }}$ it is shown that the total potential U_{N} is also repulsive; we find

$$
\begin{equation*}
U_{N} \geqq 0 \tag{22}
\end{equation*}
$$

for abitrary $x_{i} \geqq 0$, and $U_{N} \rightarrow \infty$ as any single $x_{j} \rightarrow 0$. From (20) and (2i), one also sees that v_{2} and v_{3} represent short-range forces; i.e., $v_{2}(x)-0$ exponentially as $x \rightarrow \infty$, and $v_{3}\left(x, x^{\prime}\right) \rightarrow 0$ exponentially as either $x-\infty$ or $x^{2} \rightarrow \infty$. In Appendix A, as will be shown by Eq. (A22), similar short-range properties hold for other v_{m} 's as well, provided that m is finite, independent of N. For $m \sim 0(N)$, the corresponding m-body force is clearly long range. As will also be shown in Appendix A [Eq. (A28)], for configurations near the average one:

$$
x_{1}=x_{2}=\cdots=x_{N}=L / N,
$$

the total potential U_{N} has an upper bound given by

$$
\begin{equation*}
U_{N}=V_{2}+V_{3}+\cdots+V_{N}<N \cdot \text { constant } \tag{23}
\end{equation*}
$$

where the constant denotes ofinite function of the averoge interatomic distonce L / N. Because this upper bound is tinear in N, the presence of long-range interactions such as V_{N}, V_{N-1}, \cdots does not jeopardize the thermodynamical limit. We note that due to the one-dimensional character of the gas and the pure repulsive nature of the farces, there should not be any phase transition for this porticular system.

The detailed correspondence between this one-dimensional gas and the multi-
peripheral model is given in Table 1. For the gas system, the average number of particles is clearly propartional to the length L at lange L. By using Table 1 , or Eq. (13), one derives the familiar result ${ }^{1}$ that the overage meson multiplicity in the multiperipheral model increases linearly with In s af large s. For the gas system, In \mathbb{L} is also proportional to L of large L. By using table 1 , or Eq. (A13) in Appendix A, one obtains Eq. (6) which gives the Regge behavior for the multiperipheral model.

The explicit form of V_{2}, V_{3}, \ldots endbles one to directly evaluate the virial series

$$
\begin{equation*}
P=\sum_{l}^{\infty} b_{Q} z^{q} \tag{24}
\end{equation*}
$$

by using the well-known cluster expansion technique, developed by Mayer and Mayer? For example,

$$
\begin{align*}
& b_{1}=1 \\
& b_{2}=\int_{0}^{\infty} f(x) d x \tag{25}
\end{align*}
$$

where

$$
\begin{gather*}
f(x)=e^{-v_{2}(x)}-1, \\
b_{3}=b_{2}^{2}-\int_{0}^{\infty} \times f(x) d x+\int_{0}^{\infty} d x \int_{0}^{\infty} d x^{t} f\left(x, x^{\prime}\right) \tag{26}
\end{gather*}
$$

where

$$
F\left(x, x^{\prime}\right)=[1+f(x)]\left[1+f\left(x^{\prime}\right)\right]\left[e^{-v} 3\left(x, x^{\prime}\right)-1\right]
$$

and so on. For the specific $v_{2}(x)$ given by (20), one finds

$$
\begin{equation*}
b_{2}=-\frac{8}{3 \sqrt{3}} \sum_{1}^{\infty} m^{-2} \sin \left(\frac{m \pi}{3}\right)=-1.5626 \tag{27}
\end{equation*}
$$

in which the sum equals the Clausen's integral ${ }^{10} f(\theta)$ of $\theta=\pi / 3$. Similarly, b_{3} can be evaluated, and the approximate numerical value is 11

$$
\begin{equation*}
b_{3}=1.9573 \tag{28}
\end{equation*}
$$

in which the ratio between the contribution of the three-body potential v_{3} and that of the two-body potential v_{2} is $\sim=1 / 4$.

From Table 1, one may derive the dependence of the Regge-pole power a on g^{2} for the ϕ^{3}-multiperipheral model from the virial expansion:

$$
\begin{equation*}
a=-1+\left(\frac{g}{4 \pi}\right)^{2}+b_{2}\left(\frac{g}{4 \pi}\right)^{4}+b_{3}\left(\frac{g}{4 \pi}\right)^{6}+\cdots . \tag{29}
\end{equation*}
$$

The coefficients of $\left(\frac{g}{4 \pi}\right)^{2}$ and $\left(\frac{g}{4 \pi}\right)^{4}$ have been calculated in the literature ${ }^{2,12}$ and of course they agree with the above virial expansion results.

4. An Altemative Expansion Method

For most applicotions, since at high energy $\sigma_{\text {total }} \sim s^{\alpha-1} \sim$ constant, one is interested in multiplicity problems in which $\leq \cong 1$; this corresponds to a gas system with its pressure $\mathbf{p} \cong 2$. At such high pressure, the virial series $P=\Sigma b_{\ell} z^{\ell}$ does not offer the most practical method for evaluating the function $p=P(z)$. As we shall see, for the class of problems in which the potential U_{N} is a sum $U_{N}=V_{2}+V_{3}+\cdots$ where V_{2} consists of only two-body interactions between the nearest neighbors and V_{3} only three-brody interactions between the nearest and the next nearest neighbors, \ldots, there exists an alternative new systematic expansion method, different from the virial series, but which appears to be more useful for proctical applicarions. This new systematic exponsion method is applicable to any one-dimensional gas with such a potential, not restricted to the specific multiperipheral model discussed in the previous two sections.

We observe that for large values of L and N, the function $\delta\left(\Sigma x_{i}-L\right)$ is (14) may be replaced by ${ }^{13}$

$$
\begin{equation*}
\exp \left[-\beta\left(\Sigma x_{i}-L\right)\right] \tag{30}
\end{equation*}
$$

The partition function Q_{N} can then be written as

$$
\begin{equation*}
Q_{N}=e^{\beta L} h^{N} \tag{3}
\end{equation*}
$$

where h is a function of β and N, given by

$$
\begin{equation*}
h^{N}=f \exp \left[-U_{N}-\rho \Sigma x_{i}\right] \pi d x_{i} \tag{32}
\end{equation*}
$$

in which each x_{i} is integrated independently from 0 to $\boldsymbol{\infty}$. Correspondingly,
the grand partition function becomes

$$
\begin{equation*}
Q=\sum_{N}(z h)^{N} \beta L \tag{33}
\end{equation*}
$$

where β must be regarded as a function of N and L, determined by

$$
\begin{equation*}
\left(\frac{\partial \operatorname{In} h}{\partial \beta}\right)_{N}=-N^{-1} L \tag{34}
\end{equation*}
$$

In the grond conenical ensemble, the relative probability distribution (zh) ${ }^{\mathrm{N}} \mathrm{e}^{\beta \mathrm{L}}$ has a maximum at $N=\bar{N}(L)$, which can be obtained by selting the derivative of the relative probability with respect to N to be zero. One finds thot of $\mathrm{N}=\overline{\mathrm{N}}(\mathrm{L})$,

$$
\begin{equation*}
h=z^{-1} \tag{35}
\end{equation*}
$$

As $L \rightarrow \infty$, on account of (33) and (35), the value of β, evaluated at $N=\bar{N}(L)$, approcaches the themodynomical pressure P. Thus, by taking the logarithm of (35), we derive the bosic equation

$$
\begin{equation*}
-\ln z=\operatorname{Lim}_{N \rightarrow \infty} N^{-1} \ln f \exp \left[-U_{N}-p \sum_{1}^{N} x_{i}\right] \pi d x_{i} \tag{36}
\end{equation*}
$$

in which, as in (32), all x_{i} are integroted independently from 0 to ∞.
The new expansion meihod consists of first neglecting all interactions, then including only V_{2}; then only $V_{2}+V_{3}$, etc.:

1. In the zeroth approximation, we set

$$
U_{N}=0
$$

The system satisfies the perfect gas law

$$
P \equiv z=\rho .
$$

16.

From (16), it follows that the number distribution is given by the familiar Poisson formula. For the ϕ^{3}-multiperipheral model, since U_{N} is positive, this zeroth approximation is also an upper bound; i, e., with the inclusion of $U_{N} \geqslant 0$

$$
\begin{equation*}
p \leqq z \tag{37}
\end{equation*}
$$

or ${ }^{14}$, by using Table 1 ,

$$
\begin{equation*}
a \leqq-1+\left(\frac{9}{4 \pi}\right)^{2} \tag{38}
\end{equation*}
$$

where the equality holds only in the weak coupling limit.
2. The first approximation is to set

$$
\begin{equation*}
U_{N}=v_{2}=\sum_{1}^{N} v_{2}\left(x_{i}\right) . \tag{39}
\end{equation*}
$$

By using (36), we find for arbitrary two-body potential $v_{2}(x)$

$$
\begin{equation*}
z^{-1}=\int_{0}^{\infty} d x \exp \left[-v_{2}(x)-p x\right] \tag{40}
\end{equation*}
$$

If one wishes, one moy also expand p as a power series of \mathbf{z} :

$$
p=\Sigma b_{\ell} z^{2} .
$$

From the above closed expression (40), it follows directly that $b_{1}=1, b_{2}$ is given by (25) and b_{3} is given by (26) with $f=0$, etc. At large z, only the value of $\exp \left[-\mathrm{v}_{2}(\mathrm{x})\right]$ near $\mathrm{x}=0$ is of importance. We may expand

$$
\exp \left[-v_{2}(x)\right]=o_{0}+o_{1} x+\cdots .
$$

Equation (40) implies that

$$
z^{-1}=a_{0} p^{-1}+a_{1} p^{-2}+\cdots
$$

If the potential is infinitely repulsive of $x=0$, as is the case in the ϕ^{3}-multiperipheral model, then $o_{0}=0$. As $z \rightarrow \infty, p \rightarrow\left(a_{1} z\right)^{\frac{1}{2}}$. For the ϕ^{3}-multiperipheral model, $v_{2}(x)$ is given by (20) which gives $a_{1}=1$, and therefore

$$
p \rightarrow z^{\frac{1}{2}} \quad \text { as } \quad z \rightarrow \infty
$$

As will be shown in Appendix A [Eq. (A34)], for the ϕ^{3}-multiperipheral model the inclusion of all other $\mathrm{V}_{3}, \mathrm{~V}_{4}, \ldots$ forces always increases the value of the repulsive potential, i.e.,

$$
U_{N} \geqq V_{2}
$$

Therefore the pressure P_{1} determined by the first approximation (where the subscript 1 is added for clarity) also forms on upper bound for the rigorous pressure p, which is calculated with the entire U_{N} without any approximation; we derive then at any given $z \geq 0$, the inequality

$$
\begin{equation*}
p \leqq p_{1}(z) \tag{4}
\end{equation*}
$$

where, actording to (20) and (40), $P_{1}(z)$ is given by

$$
\begin{equation*}
z^{-1}=\int_{0}^{\infty} \frac{1-e^{-x}}{1-e^{-x}+e^{-2 x}}\left[1+\frac{e^{-x}-e^{-2 x}}{1-e^{-x}+e^{-2 x}} \ln \left(e^{-x}-e^{-2 x}\right)\right] e^{-p} 1^{x} d x \tag{42}
\end{equation*}
$$

18.

The inequality (41) is, of course, a better inequality than (37). As $z \rightarrow \infty$, (42) gives $p_{1}-z^{\frac{1}{2}}$, and therefore (41) implies

$$
\begin{equation*}
P \leqq z^{\frac{1}{2}} \quad \text { as } \quad z-\infty \tag{43}
\end{equation*}
$$

or, by using Table i,

$$
\begin{equation*}
a \leqq(4 \pi)^{-1} g \text { in the strong coupling limit, } \tag{44}
\end{equation*}
$$

in agreement with the bound derived by Tikropoulos and Treiman ${ }^{14}$.
3. In the second approximation, we equate

$$
\begin{equation*}
U_{N}=V_{2}+V_{3}=\sum_{i=1}^{N}\left[v_{2}\left(x_{i}\right)+v_{3}\left(x_{i}, x_{i+1}\right)\right] . \tag{45}
\end{equation*}
$$

It is convenient to consider a Hilbert space of base-vectors $\psi_{1}(x), \psi_{2}(x), \phi_{3}(x), \cdots$, which satisfy the usual orthonormal relation

$$
\begin{equation*}
\int_{0}^{\infty} \phi_{i}(x) \psi_{j}(x) d x=\delta_{i j} \tag{46}
\end{equation*}
$$

Among these, $\$_{1}(x)$ is chosen to be

$$
\begin{equation*}
\psi_{1}(x)=\left(z_{1}\right)^{\frac{1}{2}} \exp \left\{-\frac{1}{2}\left[v_{2}(x)+p x\right]\right\} \tag{47}
\end{equation*}
$$

where z_{1} is the normalization constant, defined by

$$
\begin{equation*}
z_{1}^{-1}=\int_{0}^{\infty} d x \exp \left[-v_{2}(x)-p x\right] \tag{48}
\end{equation*}
$$

19.

the other base-vectors $\$_{2}(x), \varphi_{3}(x), \cdots$, can be arbitrary real functions that satisfy (46) and, together with $\phi_{1}(x)$, the completeness theorem. Let us define two real matrices e and H_{0} in this Hilbert space:

$$
\begin{align*}
& \epsilon_{i j} \equiv \int_{0}^{\infty} d x f_{0}^{\infty} d y \psi_{i}(x)\langle x| \in|y\rangle \psi_{j}(y), \tag{49}\\
& \langle x| \in|y\rangle=\psi_{1}(x)\left[e^{-v_{3}(x, y)}-1\right] \psi_{1}(y), \tag{50}\\
& \left(H_{0}\right)_{11} \equiv 1 \tag{51}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\mathrm{H}_{\mathrm{o}}\right)_{\mathrm{ij}} \equiv 0 \quad \text { for all other } \mathrm{i} \text { and } j . \tag{52}
\end{equation*}
$$

Thus, the integral in (36) becomes

$$
\begin{equation*}
\int \exp \left[-U_{N}-p \sum_{1}^{N} x_{i}\right] \pi d x_{i}=z_{1}^{-N} \operatorname{trace}\left(H_{0}+\epsilon\right)^{N} . \tag{53}
\end{equation*}
$$

The logarithm of (53), at fixed N, can be readily evaluated as a power series in ϵ. By using (36) and taking the limit $N \rightarrow \infty$, one can verify directly that

$$
\begin{aligned}
-\ln z=-\ln z_{1}+ & \epsilon 11+\left(\varepsilon^{2}\right)_{11}-\frac{3}{2}(\varepsilon, 1)^{2} \\
& +\left(\epsilon^{3}\right)_{11}-4\left(\varepsilon^{2}\right)_{11} \varepsilon 11+\frac{10}{3}\left(\epsilon_{11}\right)^{3}+\ldots(54)
\end{aligned}
$$

Since z, and

$$
\begin{aligned}
e_{11} & =\int \psi_{1}(x)\langle x| \epsilon|y\rangle \psi_{1}(y) d x d y \\
\left(\epsilon^{2}\right)_{11} & =\int \psi_{1}(x)\langle x| e|y\rangle\langle y| e|z\rangle \psi_{1}(z) d x d y d z
\end{aligned}
$$

etc., are functions of p, Eq. (54) determines $\mathbf{z = 2}(\mathrm{p})$.
20.

Equarion (54) can also be derived by a simpler method, without any direct calculations. We observe that the general form of the series (54) is independent of whether the matrix ϵ is symmetric or not. Thus, we may consider the special case of a symmetric three-body patential $v_{3}(x, y)=v_{3}(y, x)$, and therefore $\epsilon_{i j}=\varepsilon_{j i}$. Let $\lambda=\lambda(\mathrm{p})$ be the largest eigenvalue of $\mathrm{H}_{0}+\epsilon$. By using (36) and (53), we find the closed expression

$$
\begin{equation*}
\lambda(p)=z 1 / z \tag{55}
\end{equation*}
$$

The series expansion can then be abtained by noting that H_{0} has only one eigenvalue $=1$, while all its other eigenvalues are 0 . Thus, as $\epsilon \rightarrow 0, \lambda \rightarrow 1$ and (55) reduces to (40). For $\epsilon \neq 0$, the power series expansion of λ is given by the familiar perturbation formula

$$
\lambda=1+\epsilon_{11}+\sum_{i \neq 1} \lambda^{-1} \epsilon_{1 i} \epsilon_{i j}+\sum_{\substack{i \neq 1 \\ j \neq 1}} \lambda^{-2} \varepsilon_{i i^{\epsilon}}{ }_{i j} \epsilon_{j]}+\cdots
$$

which, together with (55), leads to (54).
The higher order opproximations including V_{4}, V_{5}, \ldots can be carried out in a similor manner. The derails are given in Appendix C.

Remarks:
As noted earlier, the method developed in this saction is of a rather general character, not restricted to the specific multiperipheral model discussed in the previous two sections. For practical applications, it seems reasonable to try first the approximation of only two-body nearest neighbor forces. Equation (40) can be used phenomeno-
logically to determine an effective two-body potential $v_{2}(x)$ from the observed meson multiplicity distributions in high energy collisions, provided thot $\ln \left(s / m^{2}\right)$ is suffiejently large and that the averoge multiplicity and its fluctuation are indeed linear in $\ln \left(\$ / m^{2}\right)$. Within this opproximation, ane may apply the some effective "potential" to evaluate the m-body correlation functions, which can then be compared with various inclusive reactions.

Acknowledgement

I wish to thank A. Mueller for giving me seme lectures on topics related to the multiperipheral model. A major part of this work was done when I was visiting the Scesla Narmale Superiore, Piso, ltaly in the early summer of 1972; I wish to thank G. Bernordini and L. A. Radicoti for their kind hospitality.

Appendix A

To derive the explicit potential of the gas system, we start with Eq. (4) for the Feynman diagram (A) in Figure 1. In the laboratory frame, let $\hat{\boldsymbol{k}}_{\mathbf{i}-1}$ be the unit vector parallel to the three-momentum of the virtual meson line $\mathbf{k}_{\mathbf{i - 1}}$. The three-momentum \vec{q}_{i} of the $i^{\text {th }}$ final meson can be written as

$$
\begin{equation*}
\vec{q}_{i}=\vec{\delta}_{i}+\left[\left(q_{i}\right)_{0}-\frac{1}{2}\left(q_{i}\right)_{0}^{-1}\left(m^{2}+\vec{\delta}_{i}^{2}\right)\right] \hat{k}_{i-1} \tag{Al}
\end{equation*}
$$

where $\vec{\delta}_{i} \perp \hat{k}_{i-1}$, and the energy $\left\langle q_{i}\right)_{0}$ is assumed to be $\gg m^{2}$ and $\vec{\delta}_{j}^{2}$. Since, os noted before, k_{i}^{2} is of the order of $m^{2},\left\langle k_{i}\right\rangle_{0}$ may be assumed to be $\gg\left\{\left.k_{i}^{2}\right|^{\frac{1}{2}}\right.$. By using $k_{i}=k_{i-1}-q_{i}$ and (7), one has

$$
\begin{equation*}
k_{i}^{2}+m^{2}=\left(1-e^{-x_{i}}\right)^{-1}\left[\vec{\delta}_{i}^{2}+m^{2}+k_{i=1}^{2} e^{-x_{i}}\left(1-e^{-x_{i}}\right)\right] \tag{AZ}
\end{equation*}
$$

where $k_{i}^{2} \equiv \vec{k}_{i}^{2}-\left(k_{i}\right)_{0}^{2}$. Through induction, (A2) can be written as

$$
\begin{equation*}
k_{i}^{2}+m^{2}=\left(1-e^{-x_{i}}\right)^{-1}\left[\sum_{a=1}^{i} A_{i a} \delta_{a}^{2}+m^{2} B_{i}\right] \tag{AB}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{i i}=1, \\
& A_{i q}=\left(1-e^{-x_{0}}\right)^{-1}\left(1-e^{-x_{i}}\right) \exp \left[-\sum_{j=a+i}^{i} x_{j}\right] \tag{AA}
\end{align*}
$$

for $a<i$, and

$$
B_{i}=\sum_{a=1}^{i} A_{i a}\left(1-e^{-x_{a}}+e^{-2 x_{a}}\right) \text {. }
$$

The usual parametric form of Feynman propagator gives

$$
\begin{equation*}
\prod_{i}\left(k_{i}^{2}+m^{2}\right)^{-2}=f e^{-E} \Pi_{i}\left(1-e^{-x_{i}}\right)^{2} l_{i} d l_{i} \tag{AS}
\end{equation*}
$$

23.

where each ℓ_{i} varies independently from 0 to ∞, and

$$
E=\sum_{a=1}^{N} \vec{\delta}_{a}^{2}\left(\sum_{j=a}^{N} \ell_{j} A_{j a}\right)+m^{2} \sum_{j=1}^{N} \ell_{j} B_{j}
$$

The integration of (A5) over $\Pi d^{2} \delta_{i}$ is an elementary one. One finds

$$
\begin{align*}
\int \prod_{i=1}^{N}\left\langle k_{i}^{2}+m^{2}\right)^{-2} d^{2} \delta_{i}= & N_{i=1}^{N} \prod_{i}^{N}\left(1-e^{-x_{i}}\right)^{2} \int_{a=1}^{N}\left(\sum_{j=a}^{N} \ell_{j} A_{j 0}\right)^{-1} \ell_{a} d \ell_{a} \\
& \times \exp \left(-m^{2} \sum_{i=1}^{N} \ell_{i} B_{i}\right) . \tag{A6}
\end{align*}
$$

It is convenient to change the variables from $\ell_{1}, \ell_{2}, \cdots \ell_{N}$ to $\xi_{1}, \xi_{2}, \cdots{ }^{5} \mathrm{~N}$, defined by

$$
\begin{equation*}
\left(1-e^{-x_{a}}+e^{-2 x_{a}}\right)^{-1} \xi_{a} \equiv m^{2} \sum_{j=a}^{N} \ell_{j} A_{j a} \tag{AT}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
m^{2} \sum_{i} R_{i} B_{i}=\sum_{i} \xi_{i} . \tag{AB}
\end{equation*}
$$

From ($A 4$), one con readily establish $A_{a b} A_{b c}=A_{a c}$ for arbitrary a, b and c that satisfy $a \geqq b \geqq c$. The inverse transformation from ξ_{i} to Q_{i} is

$$
m^{2} \ell_{N}=\left(1-e^{-x} N+e^{-2 x} N\right)^{-1} \xi_{N}
$$

and

$$
\begin{equation*}
m^{2} \varepsilon_{a}=\left(1-e^{-x_{a}}+e^{-2 x_{a}}\right)^{-1}\left(\xi_{a}-\lambda_{a+1} \xi_{a+1}\right) \tag{AP}
\end{equation*}
$$

for $a=1,2, \cdots, N=1$, where

$$
\begin{equation*}
\lambda_{a+1}=\left(\frac{e^{-x_{a+1}}-e^{-2 x_{a+1}}}{1-e^{-x_{a}}}\right)\left(\frac{1-e^{-x_{a}}+e^{-2 x_{a}}}{1-e^{-x_{a}+1}+e^{-2 x_{a+1}}}\right) . \tag{ADO}
\end{equation*}
$$

By using (4), (12), (A6) and

$$
\prod_{j=1}^{N}\left(q_{j}\right)_{0}^{-1} d^{3} q_{j}=\prod_{i}\left(1-e^{-x_{i}}\right)^{-1} e^{-x_{i}} d x_{i} d^{2} \delta_{i}
$$

one finds that, apart from a multiplicative constant ixciependent of \mathbf{N} and 5 , the cross-section ${ }^{\sigma} N+1$ in the ϕ^{3}-multiperipheral model is given by

$$
\begin{equation*}
\sigma_{N+1} \propto \quad s^{-2} z^{N} Q_{N}=s^{-2} z^{N} \cdot f e^{-\Delta} \delta\left(\sum_{i}^{N} x_{i}-L\right) \prod_{i=1}^{N} \frac{\left(1-e^{-x_{i}}\right) d x_{i}}{1-e^{-x_{i}}+e^{-2 x_{i}}} \tag{All}
\end{equation*}
$$

where $z=(4 \pi)^{-2} g^{2}$ and Δ is a function of x_{1}, x_{2}, x_{N}, defined by the integral

$$
\begin{equation*}
e^{-\Delta}=f\left(\xi_{1}-\lambda_{2} \xi_{2}\right)\left(\xi_{2}-\lambda_{3} \xi_{3}\right) \cdots\left(\xi_{N-1}-\lambda_{N}{ }_{N}\right)^{\prime} \xi_{a=1}^{N} \prod_{a}^{-1} e^{-\xi_{a}} d \xi_{a} \tag{A12}
\end{equation*}
$$

in which the integration domain extends over $\xi_{1} \geqq \lambda_{2} \xi_{2}, \xi_{2} \geqq \lambda_{3} \xi_{3}, \ldots$ $\xi_{i} \geqq \lambda_{i+1} \xi_{i+1}$, ., and $\xi_{N} \geqq 0$. On account of (A11), as In st, the total cross-section. total satisfies

$$
\begin{equation*}
\ln \sigma_{\text {total }}+2 \ln s \rightarrow \ln g \tag{AlB}
\end{equation*}
$$

where

$$
Q=\Sigma_{N} z^{N} Q_{N}
$$

The function Q_{N} denotes the partition function of the gas-anolog, and 2 is the corresponding grand partition function. Upon comparing (A11) with (14), we find the potential U_{N} for the gas system to be
25.

$$
\begin{equation*}
e^{-U} N=e^{-\Delta} \prod_{i} \frac{1-e^{-x_{i}}}{1-e^{-x_{i}}+e^{-2 x_{i}}} \tag{A14}
\end{equation*}
$$

To derive the twombody polential $\mathbf{v}_{2}\left(x_{i}\right)$, we need only consider, at a fixed x_{i}, the limit of all other $x_{j} \rightarrow \infty$. [To avoid problems with the boundary, we choose $i \neq 1$.] In this limit, all three-body forces, four-body forces, etc., are, by definition, zero; therefore,

$$
\begin{equation*}
\mathrm{U}_{\mathrm{N}} \rightarrow \mathrm{v}_{2} \rightarrow \mathrm{v}_{2}\left(\mathrm{x}_{\mathrm{i}}\right) \tag{A15}
\end{equation*}
$$

On the orher hand, in the some limit, according to (A10),

$$
\lambda_{j} \rightarrow 0 \quad \text { for all } j \neq i
$$

and

$$
\begin{equation*}
\lambda_{i} \rightarrow e_{i} \equiv \frac{e^{-x_{i}}-e^{-2 x_{i}}}{1-e^{-x_{i}}+e^{-2 x_{i}}} \tag{A16}
\end{equation*}
$$

Thus,

$$
\begin{align*}
e^{-\Delta} & \rightarrow \int_{0}^{\infty} d \xi_{i-1} \int_{0}^{\epsilon_{i}^{-1} \xi_{i-1}} d \xi_{i} \xi_{i-1}^{-1}\left(\xi_{i-1}-\epsilon_{i} \xi_{i}\right) \exp \left(-\xi_{i-1}-\xi_{i}\right) \\
& =1+\epsilon_{i} \ln \frac{\epsilon_{i}}{1+\epsilon_{i}} \tag{A17}
\end{align*}
$$

which, together with (A14) and (A15), lead to the explicit two-body force given by (20).

To derive the three-body potential, we keep x_{i} and x_{i+l} fixed (where $i \neq 1)$, and then consider the limit of all other $x_{j} \rightarrow \infty$. In this limit, by definition,

$$
\begin{equation*}
U_{N} \rightarrow v_{2}\left(x_{i}\right)+v_{2}\left(x_{i+1}\right)+v_{3}\left(x_{i}, x_{i+1}\right) \tag{A18}
\end{equation*}
$$

26.

According to ($A 10$), in the same limit λ_{i+1} remains fixed, $\lambda_{i} \rightarrow \epsilon_{i}$ which is given by (A16), and all other $\lambda_{j} \rightarrow 0$; therefore, the integral (A12) becomes

$$
\begin{align*}
& e^{-\Delta} \rightarrow \int\left(\xi_{i-1} \xi_{i}\right)^{-1}\left(\xi_{i-1}-\epsilon_{i} \xi_{i}\right)\left(\xi_{i}-\lambda_{i+1} \xi_{i+1}\right) \\
& x \exp \left(-\xi_{i-1}-\xi_{i}-\xi_{i+1}\right) d \xi_{i-1} d \xi_{i} d \xi_{i+1} \tag{A19}
\end{align*}
$$

where the integration domain is

$$
\xi_{i-1} \geqq \epsilon_{i} \xi_{i}, \quad \xi_{i} \geqq \lambda_{i+1} \xi_{i+1} \quad \text { and } \quad \xi_{i+1} \geqq 0 .
$$

By using (A 14), (A 1B) and (A 19), one obtains the explicit form (21) for $v_{3}\left(x_{i}, x_{i+1}\right)$. In a similar manner, we can derive explicitly the four-body interaction, the five-body interaction, etc.

In general, to derive the m-body potential $v_{m}\left(x_{i}, x_{i+1}, \cdots, x_{i+m-2}\right)$, we keep $x_{i}, x_{i+1}, \cdots, x_{i+m-2}$ fixed (where $i \neq 1$), and consider the limit of all other $x_{j} \rightarrow \infty$. In this limit, $\lambda_{i} \rightarrow \epsilon_{i}$ which is given by $(A 16), \lambda_{i+1}, \cdots, \lambda_{i+m+2}$ remain unchonged, and all other $\lambda_{j} \rightarrow 0$. The parential U_{N} becomes

$$
\begin{align*}
u_{N} \rightarrow u_{m}\left(x_{i}, x_{i+1}, \ldots, x_{i+m-2}\right) \equiv & \sum_{k=i}^{i+m-2} v_{2}\left(x_{k}\right)+\sum_{k=i}^{i+m-3} v_{3}\left(x_{k}, x_{k+1}\right) \\
& +\cdots+v_{m}\left(x_{i}, x_{i+1}, \cdots, x_{i+m-2}\right) \tag{A2O}
\end{align*}
$$

and

$$
\begin{array}{r}
e^{-\Delta} \rightarrow f\left(\xi_{i-1} \rightarrow \epsilon_{i} \xi_{i}\right)\left(\xi_{i}-\lambda_{i+1} \xi_{i+1}\right) \cdots\left(\xi_{i+m-3}-\lambda_{i+m-2} \xi_{i+m-2}\right) \xi_{i+m-2} \\
 \tag{A21}\\
x \prod_{k=i-1}^{i+m-2} \xi_{k}^{-1} e^{-\xi_{k}} d \xi_{k}, \quad(A 21)
\end{array}
$$

where the integration extends over the domain

$$
\begin{aligned}
& \xi_{i-1} \geqq \xi_{i} \xi_{i}, \quad \xi_{i} \geqq \lambda_{i+1} \xi_{i+1}, \cdots \\
& \xi_{i+m-3} \geqq \lambda_{i+m-2} \xi_{i+m-2} \text { and } \xi_{i+m-2} \geqq 0 .
\end{aligned}
$$

The explicit form of v_{m} can then be derived by using (A14), (A20) and (A21). We note that if $x_{i}-\infty$, then $\varepsilon_{i}-0$ exponentially; therefore

$$
U_{m}\left(x_{i}, x_{i+1}, \cdots x_{i+m-2}\right)-U_{m-1}\left(\dot{x}_{i+1}, \cdots, \dot{x}_{i+m-2}\right) \cdots
$$

Similarly, if $x_{i+s} \rightarrow \infty(s \geqq 1)$, then $\lambda_{i+s} \rightarrow 0$ exponentially, and therefore

$$
U_{m}\left(x_{i}, x_{i+1}, \cdots x_{i+m-2}\right) \rightarrow U_{s+1}\left(x_{i}, \cdots x_{i+5-1}\right) U_{m-s-1}\left(x_{i+s+1}, \cdots, x_{i+m-2}\right)
$$

Together, these relations imply the short-range nature of v_{m} :

$$
\begin{equation*}
v_{m}\left(x_{i}, x_{i+1}, \cdots x_{i+m-2}\right) \rightarrow 0 \text { exponentially } \tag{AZ}
\end{equation*}
$$

as any single $x_{k} \rightarrow \infty$ where $i \geqq k \geqq i+m-2$, provided that m is finite, independent of N.

Inequalities:

1. We note that while the range of v_{m} is short for any finite m, for m of the order of N (therefore, also of the order of L) the corresponding m-body force has to be long range. In order to establish a well-defined thermodynamical limit, we shall show that, at a constant density N / L and for regions near the average configuration
2.

$$
\begin{equation*}
x_{1}=x_{2}=\cdots=x_{N}=L / N \tag{A23}
\end{equation*}
$$

the total potential energy U_{N} has an upper bound which increases linearly with N. For the configuration (A23), ane hos, on account of (A10),

$$
\begin{equation*}
\lambda_{2}=\lambda_{3}=\cdots=\lambda_{N} \equiv \lambda=\exp \left[-N^{-1} L\right]<1 ; \tag{A24}
\end{equation*}
$$

furthermore, because of the inequality

$$
\begin{gather*}
\xi^{-1}>e^{-\xi} \tag{A25}\\
e^{-\Delta}>\int\left(\xi_{1}-\lambda \xi_{2}\right)\left(\xi_{2}-\lambda \xi_{3}\right) \cdots\left(\xi_{N-1}-\lambda \xi_{N}\right) \xi_{N} \pi e^{-2 \xi_{i}} d \xi_{;} \tag{A26}
\end{gather*}
$$

The right-tand side of (A26) can be readily evaluated. By reking the logarithm of (A26), one obtains

$$
\begin{equation*}
\frac{1}{N} \Delta<2 \ln 2-2 \ln (1-\lambda)+\frac{2}{N} \underset{m=1}{N} \ln \left(1-\lambda^{m}\right) \tag{A27}
\end{equation*}
$$

Since $0<\lambda<1, \sum_{m=1}^{N} \ln \left(1-\lambda^{m}\right)$ is larger than $(1-\lambda)^{-1} \ln (1-\lambda)$ but less than 0 .
One finds, as $N \rightarrow \infty$,

$$
\frac{1}{N} \sum_{1}^{N} \ln \left(1-\lambda^{m}\right)-0
$$

Because of (A14), (A27) con be written as (for $N \gg 1$)

$$
\begin{equation*}
\frac{1}{N} U_{N}<2 \ln 2-3 \ln (1-\lambda)+\ln \left(1-\lambda+\lambda^{2}\right) \tag{A28}
\end{equation*}
$$

The inequality (A28) can be easily extended to any configuration $x_{1}, x_{2}, \cdots x_{N}$ in which x_{i} 's con be unequal, but the maximum value $\lambda_{\text {max }}$ of the corresponding $\lambda_{2}, \lambda_{3}, \cdots, \lambda_{N}$ is less thon 1. From (A12), one con verify that, keeping $\lambda_{j \neq i}$ fixed,

$$
\begin{equation*}
\frac{\partial \Delta}{\partial \lambda_{i}}>0 \tag{A29}
\end{equation*}
$$

Consequently, Δ sotisfies the same inequality ($\mathbf{A} 27$), provided that λ is replaced by $\lambda_{\text {max }}$. We note that the inequality (A.25) can be easily improved since $\xi^{-1}>e^{-\xi}\left[1+\frac{1}{2!} \xi+\frac{1}{3!} \xi^{2}+\cdots\right] ;$ therefore, the upper bound (A28) can also be improved.
2. Since $\xi_{a}^{-1}\left(\xi_{a}-\lambda_{a+1} \xi_{a+1}\right) \leqq 1$, (A12) implies the inequality

$$
\begin{equation*}
e^{-\Delta} \leqq 1 \tag{A30}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
e^{-U_{N}} \leqq \prod_{i} \frac{1-e^{-x_{i}}}{1-e^{-x_{i}}+e^{-2 x_{i}}} \tag{A31}
\end{equation*}
$$

Because the right-hand side of $(A 3 D)$ is $\leqq 1$, we establish the repulsive nature of $U_{N} ; i . e_{1}$, for obitrary $x_{i} \geqq 0$,

$$
\begin{equation*}
U_{N} \geqq 0 \tag{A32}
\end{equation*}
$$

Furthermore, as any single $x_{i} \rightarrow 0$, the right-hand side of (A31) appraaches zero, and therefore $U_{N} \rightarrow \infty$.
30.
3. The inequalities (A30) and (A32) can be readily improved. We shall show that

$$
\begin{equation*}
e^{-\Delta} \leqq \pi \pi_{i}\left[1+\frac{e^{-x_{i}}-e^{-2 x_{i}}}{1-e^{-x_{i}}+e^{-2 x_{i}}} \ln \left(e^{-x_{i}}-e^{-2 x_{i}}\right)\right] \tag{A33}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
U_{N} \geqq V_{2} \tag{A34}
\end{equation*}
$$

where V_{2} is the iwo-body interaction, given by (18) and (20).

Proof. From (A 10), it follows that

$$
\begin{equation*}
\lambda_{a} \geqq \varepsilon_{a}=\frac{e^{-x_{a}}-e^{-2 x_{a}}}{1-e^{-x_{a}}+e^{-2 x_{a}}} \tag{A35}
\end{equation*}
$$

which, rogether with (A29), implies

$$
\begin{equation*}
e^{-\Delta} \leq F \tag{A36}
\end{equation*}
$$

where

$$
F \equiv \int_{\Omega}\left(\xi_{1}-\epsilon_{2} \xi_{2}\right)\left(\xi_{2}-\epsilon_{3} \xi_{3}\right) \cdots\left(\xi_{N-1}-{ }^{\xi} N^{\xi_{N}}\right) \xi_{N} \prod_{a=1}^{N} \xi_{a}^{-1} e^{-\xi_{a} d \xi_{a}}
$$

(A37)
and the integration volume Ω extends over

$$
\begin{align*}
& \xi_{2} \leqq \epsilon_{2}^{-1}{ }_{\xi_{1}}, \quad \xi_{3} \leqq \epsilon_{3}^{-1} \xi_{2}, \cdots \\
& { }_{N-1} \leqq{ }_{N-1}^{-1} \cdot{ }_{N-2} \quad \text { and } 0 \leqq \xi_{N} \leqq{ }^{e} N^{-1} \xi_{N-1} . \tag{A38}
\end{align*}
$$

31.

It is useful to define

$$
\begin{equation*}
H\left(\varepsilon_{2}, \varepsilon_{3}, \cdots, \epsilon_{N}\right) \equiv \equiv^{\prime}\left[F-\prod_{i=2}^{N} f\left(\epsilon_{i}\right)\right] \prod_{j=2}^{N} \epsilon_{j}-1 \tag{A39}
\end{equation*}
$$

where

$$
\begin{equation*}
f(\epsilon) \equiv 1+\epsilon \ln \frac{\epsilon}{1+\epsilon} \tag{A40}
\end{equation*}
$$

By a straightforward calculation, one can verify that

$$
\frac{\partial}{\partial e^{-1}}\left[e^{-1} f(\epsilon)\right]=(1+\epsilon)^{-1}
$$

and

$$
\begin{aligned}
\frac{\partial^{N-1}}{\Pi_{\partial \epsilon_{i}}^{-1}}\left[F \Pi e_{j}^{-1}\right]= & \left(1+\epsilon_{2}\right)^{-1}\left(1+\epsilon_{3}+\epsilon_{3} \epsilon_{2}\right)^{-1}\left(1+\epsilon_{4}+\varepsilon_{4} \epsilon_{3}+\epsilon_{4} \epsilon_{3} \epsilon_{2}\right)^{-1} \\
& \cdots\left(1+\epsilon_{N}+\epsilon_{N} N_{-1}+\cdots+\epsilon_{N} \epsilon_{N-1} \cdots \epsilon_{2}\right)^{-1}
\end{aligned}
$$

where the subscripts \mathbf{i} and \mathbf{j} vary independently from 2 to N. Consequently,

$$
\begin{equation*}
D_{N-1} H \equiv \frac{\partial^{N-1}}{\left(\partial \epsilon_{2}^{-1}\right)\left(\partial \epsilon_{3}^{-1}\right) \cdots\left(\partial \epsilon_{N}^{-1}\right)} H \leqq 0 \tag{AI}
\end{equation*}
$$

in the entire physical region $e_{i} \geq 0$. As $\varepsilon_{2}^{-l} \rightarrow 0, f\left(c_{2}\right) \rightarrow 0$ and the integration volume (A38) - 0 ; therefore,

$$
D_{N-2} H E \frac{\partial^{N-2}}{\partial\left(\epsilon_{3}^{-1}\right) \partial\left(\epsilon_{4}^{-1}\right) \cdots \partial\left(\epsilon_{N}^{-1}\right)} H=0 \quad \text { at } \epsilon_{2}^{-1} x 0
$$

which, together with (A4 1), implies

$$
D_{N-2} H \leq 0
$$

in the entire physical region. Similarly, one shows that

$$
D_{N-3} H \equiv \frac{\partial^{N-3}}{\partial\left(\varepsilon_{4}^{-1}\right) \cdots \partial\left(e_{N}^{-1}\right)} H=0 \quad \text { of } \quad \epsilon_{3}^{-1}=0
$$

and therefore in the entire physical region

$$
D_{N-3} H \leqq 0
$$

By induction, one finds, for arbitrary $\epsilon_{i} \geqslant 0$,

$$
\begin{equation*}
H \leqq 0, \tag{A42}
\end{equation*}
$$

which, together with (A36) and (A39), leads to

$$
\begin{equation*}
e^{-\Delta} \leqq F \leqq \prod_{i=2}^{N} f\left(e_{i}\right) \tag{A43}
\end{equation*}
$$

Thus, we complete the proof for (A33) and (A34). [The fact that the foctor $f\left({ }_{\mathrm{E}}\right.$,) is absent from the above product is relevant only to the boundary condition of $\mathbf{i}=1$; it has no effect on any of the thermodynamical properties that we are interested in.]

As noted in section 4, the inequality (A34) implies (4 1) :

$$
\begin{equation*}
p \leqq p_{1}(z) \tag{A44}
\end{equation*}
$$

where $p_{1}(z)$ is given by (42).
4. It may be of inferest to compare the above inequality with one derived by Tiktopoulos and Treiman ${ }^{14}$ for the multiperipheral model. We note that, on account of (20), the two-body potential V_{2} sotisfies

$$
\begin{equation*}
e^{-v_{2}} \leqq \prod_{i}\left(1-e^{-x_{i}}\right), \tag{A45}
\end{equation*}
$$

which implies, vio (A34),

$$
\begin{equation*}
e^{-U_{N}} \leqq \prod_{i}\left(1-e^{-x_{i}}\right\} \tag{A46}
\end{equation*}
$$

Now, let us consider a hypothetical case ${ }^{15}$ in which the corresponding function $e^{-L} N$ is this upper bound $\Pi\left(j-e^{-x_{i}}\right)$. By using (40), one finds that the gas pressure p^{\prime} of the hypothetical case is related to the fugacity \mathbf{z} by

$$
z^{-1}=\int_{0}^{\infty}\left(1-e^{-x}\right) e^{-P^{4} x} d x
$$

or

$$
p^{t^{2}}+p^{t}-z=0
$$

Thus, we obtain

$$
\begin{equation*}
P \leqq p^{\prime}(z)=\frac{1}{2}\left[(1+4 z)^{\frac{1}{2}}-1\right] \text {. } \tag{A47}
\end{equation*}
$$

By using Table 1, one can also write (A47) in the form given by Tikropoulos and Treiman ${ }^{14}$

$$
\begin{equation*}
a \leqq-\frac{3}{2}+\left[\frac{1}{4}+\left(\frac{9}{4 \pi}\right)^{2}\right]^{\frac{1}{2}} . \tag{A48}
\end{equation*}
$$

Because of (A45), one hos

$$
\begin{equation*}
p_{1}(z) \leqq \rho^{\prime}(z) \tag{AA9}
\end{equation*}
$$

therefore, the inequality (A44) is a betrer one than (A47). As $z \rightarrow \infty$, borh inequalities reduce to (43): $p \leqq z^{\frac{1}{2}}$. As $z-0$,

$$
P_{1}(z)=z-1.5626 z^{2}+O\left(z^{3}\right)
$$

34.

while

$$
p^{\prime}(z)=z-z^{2}+O\left(z^{3}\right)
$$

As expected, the second virial b_{2} is correctly given by $p_{1}(z)$, but not by $p^{\prime}(z)$.

Appendix B

In section 4, the partition function Q_{N} is evaluated after the replacement

$$
\delta\left(\underset{1}{N} x_{i}-L\right) \rightarrow \exp \left[-\beta\left(\begin{array}{c}
N \\
1 \tag{B1}
\end{array} x_{i}-L\right)\right]
$$

If is well-known that such a replacement leads to the correct thermadynamical limit; i, e., it gives the correct $O(N)$ tem in $\ln Q_{N}$, as $N \rightarrow \infty$ at a fixed finite density N / L. In this Appendix, we shall show how this method may be extended to derive the correction term, which will turn out to be $O(\ln N)$. Since, on account of (All), $s^{-2} Q_{N}$ is proportional to the crossusection σ_{N+1} in the multiperipheral model, this correction term is related to the question of $\ln s$ dependence of the cross-section. For simplicity, we shall consider only two-body forces. The total potential U_{N} is assumed to be

$$
\begin{equation*}
U_{N}=\sum_{1}^{N} v\left(x_{i}\right) \tag{B2}
\end{equation*}
$$

The partition function $Q_{N}(L)$ is given by (14) :

$$
\begin{equation*}
Q_{N}(L)=f e^{-U} N \delta\left(\Sigma x_{i}-L\right) \pi d x_{i} \tag{B3}
\end{equation*}
$$

where, as before, each x_{i} is $\geqq 0$. From (B3), one obtains the recursion formula

$$
\begin{equation*}
Q_{N+1}(L)=\int_{0}^{\infty} e^{-v(x)} Q_{N^{\prime}}(L-x) d x \tag{B4}
\end{equation*}
$$

Theoren \quad For $N \gg 1$, but $(N / L) \sim O(1)$,

$$
\begin{equation*}
\ln Q_{N}(L)=N \ln h(\beta)+L \beta=\frac{1}{2} \ln N+O(1) \tag{B5}
\end{equation*}
$$

where

$$
\begin{equation*}
h(\beta)=\int_{0}^{\infty} e^{-v(x)-\beta x} d x \tag{B6}
\end{equation*}
$$

and β is a function of L / N, determined by

$$
\begin{equation*}
-\frac{d \operatorname{lnh}(\beta)}{d \beta}=\frac{L}{N} . \tag{B7}
\end{equation*}
$$

We note that the replocement (B1) leads directly to the first two terms on the right hand side of (B5), both of which ore $O(N)$. The theorem gives also the correction term $-\frac{1}{2} \ln N$. As we shall see, by following the proof given below, one can systematically calculate the remaining $O(1)$ term as well.

Proof Let us define a and y to be the solutions of β at

$$
\begin{equation*}
-\left[\frac{d \ln h(\beta)}{d \beta}\right]_{\beta=a}=\frac{L}{N+T} \tag{88}
\end{equation*}
$$

and

$$
\begin{equation*}
-\left[\frac{d \operatorname{lnh}(\beta)}{d \beta}\right]_{\beta=y}=\frac{L-x}{N} \equiv \eta \tag{B9}
\end{equation*}
$$

and assume $Q_{N}(L)$ to be of the form

$$
\begin{equation*}
Q_{N}(L)=[h(\beta)]^{N} e^{\beta L} A_{N} \tag{B10}
\end{equation*}
$$

where A_{N} is to be determined. It is convenient to introduce the Fourier transform of $e^{-v(x)}$ in the physical region $x \geqq 0$:

$$
\begin{equation*}
e^{-v(x)}=\int_{-\infty}^{\infty} C_{\omega} e^{i \omega x} d \omega \tag{B11}
\end{equation*}
$$

[The behovior of the fourier integral in the unphysical region $x<0$ is immaterial
to our discussion.] Equation (B4) can then be written as

$$
\begin{equation*}
[h(a)]^{N+1} e^{\alpha L} A_{N+1}=N A_{N} \int_{-\infty}^{\infty} C_{\omega} e^{i \omega L} d \omega \int_{0}^{N^{-1} L}\left[H_{\omega}(\eta)\right]^{N} d \eta \tag{B12}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{\omega}(\eta)=h(\gamma) e^{(\gamma-i \omega)_{\eta}} \tag{B13}
\end{equation*}
$$

and $\gamma=\gamma(\eta)$ is defined by (B9).
Let β be defined by (B7). It is straightforword to expand a around β :

$$
\alpha=\beta+\left[\frac{d^{2} \operatorname{lnh}(\beta)}{d \beta^{2}}\right]^{-1} \frac{L}{N(N+1)}+\cdots \cdot
$$

The logarithan of the left-hand side of (B12) is then given by

$$
\begin{equation*}
(N+1) \ln h(\beta)+\beta L+\ln A_{N+1}=\frac{1}{2 N}\left(\frac{d^{2} \operatorname{lnh}(\beta)}{d \beta^{2}}\right)^{-1}\left(\frac{L}{N}\right)^{2}+O\left(\frac{1}{N^{2}}\right) \tag{814}
\end{equation*}
$$

To evaluate the right-hand side, we use the relation

$$
\begin{equation*}
\int H_{\omega}^{N} d_{\eta}=\frac{H_{w}^{N+1}}{N+1} \frac{d_{\eta}}{d H_{w}}-\frac{H_{\omega}^{N+2}}{(N+1)(N+2)} \frac{d}{d H_{\omega}}\left(\frac{d_{\eta}}{d H_{w}}\right)+\cdots \tag{B15}
\end{equation*}
$$

Since $e^{-v(x)}$ is regular of the origin, as $\beta \rightarrow \infty$, both $h(\beta) \rightarrow 0$ and $\frac{d \ln h(\beta)}{d \beta}-0$. By using (B9), one sees that as $\eta \rightarrow 0, y \rightarrow \infty$ and $H_{\omega} \rightarrow 0$. Let us consider the definite integral (B15) from $\eta=0$ to $\eta=N^{-1} L$. The right-hard side of ($(15$) is zero of the lower limit $\eta=0$; by substituting its value or the upper limit $\eta=N^{-1} L$ to the right-hand side of (B12), we find, e.g., the first term $(N+1)^{-1} H_{w}^{N+1}\left(d_{\eta} / d H_{w}\right)$
in (B15) leads to

$$
\begin{equation*}
\frac{N A_{N}}{N+1}[h(\beta)]^{N} e^{\beta L} \int_{-\infty}^{\infty} \frac{C_{\omega} d \omega}{\beta-i \omega}=\frac{N A_{N}}{N+1}[h(\beta)]^{N+1} e^{\beta L} . \tag{B16}
\end{equation*}
$$

By carrying out the same operation for the remaining term, one can verify that the logarithm of the right-hand side of (B12) is

$$
\begin{equation*}
(N+1) \ln h(\beta)+\beta L+\ln A_{N}-\frac{1}{2 N h(\beta)}\left(\frac{d^{2} \ln h(\beta)}{d \beta^{2}}\right)^{-1} \frac{d^{2} h(\beta)}{d \beta^{2}}+O\left(\frac{1}{N^{2}}\right) . \tag{B17}
\end{equation*}
$$

By using (B14) $=(B 17)$, we obtain, for $N \gg 1$ and neglecting the $O\left(N^{-2}\right)$ terms,

$$
\frac{d \ln A_{N}}{d N}=-\frac{1}{2 N}
$$

or

$$
\begin{equation*}
A_{N}=N^{-\frac{1}{2}} \times \text { constant } \tag{B18}
\end{equation*}
$$

which completes the proof.
Remarks: In the sum for the grand partition function $2=\Sigma z^{N} Q_{N}$, the maximal value of $z^{N_{Q}}{ }_{N}$ occurs at $N=\bar{N}$, determined by

$$
\begin{equation*}
\frac{\partial \ln Q_{N}}{\partial N}+\ln z=0 \quad \text { at } N=\bar{N} . \tag{B19}
\end{equation*}
$$

Therefore, as $L \rightarrow \infty$ of a constant \bar{N} / L, (B19) reduces to (40):

$$
z^{-1}=\int_{0}^{\infty} e^{-v(x)-p x} d x
$$

where

$$
\begin{equation*}
P=\beta \text { evaluated ar } L^{-1} N=L^{-1} \bar{N} . \tag{B20}
\end{equation*}
$$

In terms of the maximal value, one may write

$$
\begin{equation*}
z^{N_{Q_{N}}} \cong z^{\bar{N}_{Q_{N}}} \exp \left[-(N-\bar{N})^{2} / \Lambda^{2}\right] \tag{B21}
\end{equation*}
$$

where Λ^{2} denotes the fluctuation. Thus,

$$
2 \cong \int_{z}^{N} Q_{N} d N=z^{\bar{N}} Q_{N} \wedge \pi^{\frac{1}{2}}
$$

or, since Λ^{2} is proportional to \bar{N},

$$
\begin{equation*}
\ln 2=\bar{N} \ln z+\ln Q_{\bar{N}}+\frac{1}{2} \ln \bar{N}+O(1) \tag{B22}
\end{equation*}
$$

By using the theorem and (820), one finds

$$
\begin{equation*}
\ln 2=p L+O(1) \tag{B23}
\end{equation*}
$$

The $-\frac{1}{2} \ln N$ term in (B5) is cancelled by the $+\frac{1}{2} \ln \bar{N}$ term in (B22). From Table 1 , one sees that the total cross-section $\sigma_{\text {total }}$ is proportional to $\mathbf{s}^{\mathrm{am}} \mathbf{3}$. [Without the $-\frac{1}{2} \ln N$ term in (B5), one would obtain an incorrect multiplicative factor $\ln s$ for $\left.\sigma_{\text {total }} \cdot\right]$
40.

Appendix C

To illustrate how the method developed in section 4 con be generalized to include four-body, five-body, . . , forces, let us assume the total potential energy U_{N} to be

$$
\begin{equation*}
u_{N}=v_{2}+v_{3}+v_{4} \tag{Ci}
\end{equation*}
$$

where $V_{2}+V_{3}$ is given by (45), and

$$
\begin{equation*}
V_{4}=\sum_{i} v_{4}\left(x_{i}, x_{i+1}, x_{i+2}\right) \tag{Cz}
\end{equation*}
$$

We define the matrix $\left\langle x_{i}, x_{i+1}\right| H\left|x_{i+2}, x_{i+3}\right\rangle$ by

$$
\begin{equation*}
\left\langle x_{i}, x_{i+1}\right| H\left|x_{i+2}, x_{i+3}\right\rangle \equiv \exp \left(-\varphi_{0}-\phi_{1}\right) \tag{CB}
\end{equation*}
$$

where

$$
\begin{align*}
\varphi_{0}= & \frac{1}{3}\left(x_{i}+2 x_{i+1}+2 x_{i+2}+x_{i+3}\right) p \\
& +\frac{1}{3}\left[v_{2}\left(x_{i}\right)+2 v_{2}\left(x_{i+1}\right)+2 v_{2}\left(x_{i+2}\right)+v_{2}\left(x_{i+3}\right)\right] \tag{CA}
\end{align*}
$$

and

$$
\begin{align*}
\varphi_{1}=\frac{1}{2} & {\left[v_{3}\left(x_{i}, x_{i+1}\right)+2 v_{3}\left(x_{i+1}, x_{i+2}\right)+v_{3}\left(x_{i+2}, x_{i+3}\right)\right] } \\
& +v_{4}\left(x_{i}, x_{i+1}, x_{i+2}\right)+v_{4}\left(x_{i+1}, x_{i+2}, x_{i+3}\right) \tag{Cs}
\end{align*}
$$

The integral in (36) then becomes

$$
\begin{equation*}
f \exp \left[-U_{N}-P \sum_{1}^{N} x_{i}\right] \pi d x_{i}=\text { trace } H^{N / 2} \tag{Cb}
\end{equation*}
$$

where any power of the matrix H is defined according to the usual rule:

$$
\left.\left.\langle x, y| H^{m}|s, t\rangle \equiv \int_{0}^{\infty} d u \int_{0}^{\infty} d v\langle x, y| H^{m-1}\right\} u, v\right\rangle\langle u, v| H|s, t\rangle .
$$

To evaluate the trace of $\mathrm{H}^{\mathrm{N} / 2}$, we may separate

$$
H=H_{0}+e
$$

where the matrix element of H_{0} is equal to $\exp \left(-\varphi_{0}\right)$ and that of 6 is equal to $\left[\exp \left(-\phi_{1}\right)-1\right] \exp \left(-\phi_{0}\right)$. With only minor changes, the discussion following Eq. (53) in section 4 can be directly applied to the present case. Similarly, one can extend the method to five-body, six-body, . , forces.

TABLE 1

Gas System	$=$	Multiperipheral Model (ϕ^{3} theory)
fugacity z	$=$	$\left(\frac{g}{4 \pi}\right)^{2}$
pressure p	$a+1$	
grand partition function 2	\sim	$s^{2} \sigma_{\text {total }}$
length L	\sim	$\ln \frac{s}{m^{2}}$
$L \frac{d p}{d \ln z}$	\sim	overage multiplicity $\langle N\rangle$
$L \frac{d^{2} p}{d \ln z^{2}}$	\sim	$\left\langle N^{2}\right\rangle-\langle N\rangle^{2}$

Table 1. Correspondence between the one-dimensional gas and the multiperipheral madel in the high energy limit [where $s=$ (center-of-mass energy 2 ond $a=$ Regge-pole power for forward elastic scottering].

References

1. D. Amati, S. Fubini and A. Stanghellini, Nuovo Cimento 26, 8% (1962).

See also G. F. Chew and A. P. Pignotti, Phys, Rev. 176, 2112 (1988).
2. B. W. Lee and R. F. Sowyer, Phys. Rev. 127, 2866 (1962). See also
J. C. Polkinghome, J. Moth. Phys. 4, 503 (1963).
3. R. P. Feynman (unpublished). K. Wilson, Comell University Preprint CLNS-13 t, 1970 (unpublished).
4. A. H. Mueller, Phys. Rev. D4, 150 (1971). M. Bonder, University of California, Iiving, Preprint 71-33 (to be published).
5. D. K. Campbell and S. J. Chang, Phys, Rev. D4, 1151 (1971). S. J. Chang, T. M. Yan and Y. P. Yac, Phys. Rev. D4, 3012 (1971). 5. S. Shei and 1. M. Yan, Cornell University Preprint CLNS-182 (to be published). D. K. Compbeli, University of Illinois Preprint (to be published).
6. R. C. Arneld, Phys, Rev. D5, 1724 (1972). R. C. Arnold and J. Steirhoff, Argonne National Laboratory Preprint ANL/HEP 7219 (to be published). For further related work, see other seferences quoted in these popers.
7. Usually, a themodynamical system has three extensive variables: the number of particles N, the length (or volume) L and the energy E; corresponding to these three extensive variables, there are three intensive variables; the fugacity \mathbf{z}, the pressure. \mathbf{P} and the temperature \mathbf{T}, in the present case, there are only two extensive variables; N and $L \sim \ln \left(5 / \mathrm{m}^{2}\right)$; correspondingly, there are also only two intensive variables: z and p. Hence, $k T$ can be chosen ta be unity.
8. The permutation due to different ordering of these particles is cancelled by the usual $[(N-1)!]^{-1}$ factor due to Boltzmonn stotistics. [if the length L has ends, then the Bolfzmann factor is $\left.(N:)^{-1} \cdot\right]$
9. See, e..g., f.E. Mayer and M. G. Moyer, Statistital Mechanics (John Wiley and Sons, New York, 1940).
10. See Table 27.8 in Handbook of Math Functions, Applied Math Series, vol. 55, ed. by M. Abramowitz and 1. A. Stegun, National Bureai of Standards (1964).
11. I wish to thank $M . Y$. Chen for kindly checking the numerical integration for b_{3}.
12. See T. L. Trueman and T. Yoo, Phys. Rev. 132, 2741 (1963); and S. 'J. Chang, T. M. Yan and Y. P. Yoo, loc. cit.
13. That such a replacement gives the correct themodynamical limit, as E and $\mathrm{N} \rightarrow \boldsymbol{\infty}$, is well known. In Appendix B, we shall show how this method can be extended to obtain also the correction term, when L and N are large but not infinite.
14. The upper bounds (38) and (A48) hove been derived by G. Tiktopoulos and S. B. Treiman, Phys. Rev. 135 B, 711 (1964). For a still better upper bound, see (41) and (42). [See also G. Tiktopoulos and S. B. Treiman, Phys. Rev. 137 B; 1597 (1965) for diseussions on lower bounds for models involving zero-mass particles.]
15. If there were only one spoce dimension, instead of three, in the ϕ^{3}-multiperipheral model, then the corresponding two-body potential would be $1-e^{-x}$. This expression follows directly from the result of D. K. Compbell and S. J. Chang, loc. cit.; it can also be derived by using arguments similar to thase given in Appendix A.

Figure Caption

Figure 1 (A) Feynmon diagram for $N+1$ meson emission in the ϕ^{3}-multiperipheral model.
(B) Corresponding diagram for N atoms on a ring in the one-dimensional gas model.

$$
=-q_{N+1} \quad a_{N} \quad a_{i} \quad a_{3} \quad a_{2} \quad q_{1}
$$
 $$
\mid
$$

(A)
(B)

