

AEC RESEARCH AND DEVELOPMENT REPORT

FLANGE II (Version 71-1)

A CODE TO PROCESS THERMAL NEUTRON DATA FROM AN ENDF/B TAPE

H. C. HONECK D. R. FINCH

C O P Y

DO NOT RELEASE FROM FILE

Savannah River Laboratory

Aiken, South Carolina

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Printed in the United States of America Available from National Technical Information Service U. S. Department of Commerce 5285 Port Royal Road Springfield, Virginia 22151 Price: Printed Copy \$3.00; Microfiche \$0.95

DP-1278 ENDF-152

Mathematics and Computers (TID-4500, UC-32)

FLANGE II (Version 71-1)

A CODE TO PROCESS THERMAL NEUTRON DATA FROM AN ENDF/B TAPE

by

Henry C. Honeck Donald R. Finch

Approved by

H. C. Honeck, Research Manager Computer Applications Division

October 1971

E. I. DU PONT DE NEMOURS & COMPANY SAVANNAH RIVER LABORATORY AIKEN, S. C. 29801

CONTRACT AT(07 - 2) - 1 WITH THE UNITED STATES ATOMIC ENERGY COMMISSION

ABSTRACT

The FLANGE II (Version 71-1) computer code processes data for smooth cross sections, resonance parameters, angular distributions, and thermal scattering law from an ENDF/B-II or ENDF/B-III data tape for use in thermal spectrum calculations. Options are available in the code to produce pointwise or group-averaged cross sections for up to 200 energy points or groups, and Legendre angular distributions up to P_5 order. Resonance contributions in the thermal region are computed as infinitely dilute, Doppler broadened values. This report describes the theory, methods, application, and utilization of FLANGE II in creating thermal cross sections from ENDF/B-II and ENDF/B-III library data.

ACKNOWLEDGMENT

The original FLANGE II code was developed in 1966 by H. C. Honeck at the U. S. Atomic Energy Commission in Washington, D. C. with the assistance of Y. D. Naliboff and Dale Houston of Gulf General Atomics Corporation, San Diego, California. Several modifications and corrections to the original code were made by D. R. Finch between 1967 and 1970. Version 71-1 of FLANGE II contains new features by D. R. Finch with theoretical guidance for the short collision time approximation by G. M. Borgonovi of Gulf Energy & Environmental Systems, Inc.

5. •

CONTENTS

-

.

* - X - X

	Ē	age
1.	Introduction	1-1
2.	Description of the Physics	2-1
	2.1 Nomenclature	2-1
	2.2 ENDF/B Input Tape	2-2
	2.3 Input Energy Mesh	2-4
	2.4 Cross Sections	2-4
	2.5 Angular Distributions	2-5
	2.6 Scattering Kernels	2-7
3.	Numerical Procedures	3-1
	3.1 Tabulated Functions	3-1
	3.2 Interpolation Procedures	3-2
	3.3 Energy Averaging of Cross Sections	3-3
	3.4 α Mesh for S(α , β)	3-4
	3.5 α Integration of S(α , β)	3-5
	3.6 Final Energy Integration of the Kernel	3-7
4.	Description of Code	4-1
	4.1 General Structure and Operation	4-1
	4.2 Tape Assignments	4-1
	4.3 Error Stops	4-2
5.	Input/Output Description	5-1
	5.1 Problem Definition Input	5-1
	5.2 Input Energy Mesh	5 - 4
	5.3 Output	5-11

- 5 -

 $(1,2^{-1},1,1,2^{-1},1,1,2^{-1},1,2^{$

		<u>P</u>	age
6.	Deta	iled Description of Link 1	5-1
	6.1	Overall Operation • • • • • • • • • • • • • • • • • • •	5-1
	6.2	File 1 Processing	ó - 6
	6.3	File 2 Processing • • • • • • • • • • • • • • • • • • •	5-7
	6.4	File 3 Processing	5-12
	6.5	File 4 Processing	5-13
	6.6	Completing the Cross Section Set	5-15
7.	Deta	iled Description of Link 2	7-1
	7.1	Overall Operation	7-1
	7.2	Storage Allocation	7-2
	7.3	Calculation of the Scattering Kernels	7-12
	7.4	Cross Section Calculation	7-24
8.	Auxi	liary Code KERINT	3-1
	8.1	Introduction 8	3-1
	8.2	Temperature Dependence of Cross Sections and	
		Kernel Elements	3-2
	8.3	Interpolation Codes 8	3-4
	8.4	Description of KERINT 8	3-6
	8.5	Input/Output Description 8	3-9
9.	Refe	rences	9-1
Арр	endix	A - FLANGE II Sample Problems	x-1
Арр	endix	B - KERINT Sample Problem	8-1

•

.

- 6 -

1. INTRODUCTION

This report describes the code FLANGE II (Version 71-1) developed to process data for thermal neutron cross sections, resonance parameters, angular distributions, and scattering law from the ENDF/B-II or ENDF/B-III library into multigroup cross sections and scattering kernels. Sections 1 through 5 of this report give a brief description of the code, the physical and numerical theory, and operating instructions. Sections 6 and 7 describe in detail the numerical procedures. Section 8 describes an auxiliary code for use with FLANGE II.

FLANGE II is written in FORTRAN IV and is designed for use on a computer with about 40K of fast core storage and 3 tapes (plus systems tapes). Larger core storages or disk memories can be easily used to increase the speed of the code. The code is designed to handle up to 200 energy groups and Legendre moments up to P_5 .

The input data on the ENDF/B tape can be summarized as follows (only data needed for thermal calculations are listed here):

- ν (neutrons/fission), radioactive decay data, fission product yields.
- Cross sections of the form $\sigma^{X}(E,T)$, where E is the neutron energy, T is the material temperature, and x denotes elastic, inelastic, scattering (elastic and inelastic), absorption, fission, total, or (n,γ) .
- Angular distributions of the form $\sigma^{\mathbf{x}}(\mathbf{E},\mu,\mathbf{T})$, where μ is the cosine of the scattering angle, and \mathbf{x} denotes elastic, inelastic, or scattering.
- The thermal neutron scattering law, $S(\alpha,\beta,T)$, which is represented as a tabulated part plus analytic parts of the free gas or diffusive motion form.
- Resolved resonance parameters in the single or multilevel Breit-Wigner representation.

The user of FLANGE II supplies a group structure (energy mesh) and the desired temperature of the material. FLANGE II then computes, prints, and punches

where ℓ denotes the order of the Legendre expansion; E_i and E_j are points on the user's energy mesh; y denotes absorption, fission, total, or transport; x denotes elastic, inelastic, or scattering; and in denotes inelastic. The cross sections $\sigma^{Y}(E_i)$ and $\sigma^{X}_{\ell}(E_i)$ may be either evaluated at the points in the input energy mesh or averaged over the input group structure. The scattering kernels $\sigma^{1n}_{\ell}(E_i \rightarrow E_j)$ are evaluated only at the input energy points. The diagonals of the kernels can be adjusted so that when they are integrated to yield a cross section. If $\sigma^{1n}_{\ell}(E)$ is not given on the ENDF/B input tape, a high accuracy integration can be done to compute it directly from the scattering law.

The code computes only Legendre moments of angular distributions. The code is written in the form of separate links, and additional links can be conveniently added. Later extensions of the code could be links to handle point angular distributions, special links to produce results of direct interest to experimentalists, and links for compressing large scattering kernels to few group kernels via a B_{ϱ} calculation.

2. DESCRIPTION OF THE PHYSICS

2.1 NOMENCLATURE

Symbol	Definition	Unit
E	Neutron energy	ev
E',E	Initial and final neutron energies	ev
Ei	Characteristic energy of the i th energy group	ev
E ^b i	Lower energy boundary of the i th energy group	ev
W _i	Integration weight for the i th energy group	ev
σ(E)	Cross section	barns
dσ∕dΩ	Differential cross section	barns/steradian
d²σ/dΩdE	Differential cross section	barns/steradian-ev
μ	Cosine of the scattering angle in the laboratory system	
σ(Ε,μ)	Differential cross section defined by $\sigma(E,\mu) = 2\pi d\sigma/d\Omega$	barns
σ(E'→E,μ)	Differential cross section defined by $\sigma(E' \rightarrow E, \mu) = 2\pi d^2 \sigma / d\Omega dE$	barns/ev
t,a,s,f,in, el,tr,γ	Superscripts denoting total, absorp scattering, fission, inelastic, ela transport, and (n,γ)	otion, astic,
l	Subscript denoting the Legendre or	ler
Ρ _ℓ (μ)	Legendre polynomial of order ℓ	
Т	Material temperature	°K
kT	Material temperature, k = 0.86166 x 10 ⁻⁴ ev/°K	ev
Т _о	Reference temperature = 293.62°K	
kT ₀	Reference temperature = $0.0253 \text{ ev}/3$	°К
f _l (E)	Coefficient in a Legendre expansion	n
p(E,µ)	Angular scattering probability	
S(α,β)	Thermal scattering law	

2-1

2.2 ENDF/B INPUT TAPE

The quantities contained on the ENDF/B input tape are described briefly in this section and in more detail in the specification of the ENDF/B formats.¹

The ENDF/B tape is organized by material, file, and section. For a particular material, the file numbers run from 1 to 7, and each file contains a particular type of information.

File Type of Information

- 1 Description of the material, comments, V (neutrons/fission), fission yields, and radioactive decay data
- 2 Resolved and unresolved resonance parameters
- 3 Smooth cross sections, $\sigma(E,T)$
- 4 Angular distributions, $p(E,\mu,T)$, expressed as tabulations or Legendre expansions
- 5 Secondary energy distributions, $p(E' \rightarrow E,T)$
- 6 Secondary energy angle correlations, $p(E' \rightarrow E, \mu, T)$
- 7 Thermal scattering law, $S(\alpha,\beta,T)$

The dependence of the above quantities on the material temperature is also included where appropriate. Files 5 and 6 are intended primarily for high energy data, and are not used by FLANGE II.

Each file is divided into sections. The sections which may occur in File 1 are:

Section	Description			
451	Hollerith comment cards describing the data and material			
452	v(E) (neutrons/fission) expressed as a tabulation or polynomial in E			
453	Radioactive decay constants for this isotope and neutron-induced reaction products of this isotope			
454	Fission product yield data			

All of the above quantities (if present on the tape) are processed by FLANGE II. v(E) is evaluated at E = 0 and stored for later use.

File 2 contains resolved resonance parameters from which contributions to capture, fission, and elastic scattering are computed where applicable.

Files 3, 4, and 7 are divided as follows:

Section	File 3	File 4	File 7
1	σ ^t (F T)		-
-	el	el	
2	σ (E,T)	· p (Ε,μ,Τ)	-
4	$\sigma^{II}(E,T)$	p ^{1Π} (E,μ,Τ)	S(α,β,Τ)
18	$\sigma^{t}(E,T)$		-
29	$\sigma^{s}(E,T)$	p ^s (Ε,μ,Τ)	-
102	σ ^γ (Ε,Τ)	-	-

Here, scattering (superscript s) means elastic plus inelastic. The $p(E,\mu,T)$ are defined by

 $\frac{d\sigma(E,\mu,T)}{d\Omega} = \frac{\sigma(E,T)}{2\pi} p(E,\mu,T)$

and $p(E,\mu,T)$ may be represented by a tabulation or a Legendre expansion. The scattering law on File 7 is represented as a tabulation and/or analytic terms of the free gas or diffusion type. The short collision time approximation is used to extend tabular values to higher energies.

The table above contains the maximum amount of data of use for thermal calculation which could be given on the tape. In most cases, many of the items will be missing. When sufficient data are given, FLANGE II can compute items not given on the tape. For example, $\sigma^{in}(E,T)$ and $p^{in}(E,\mu,T)$ can be computed from $S(\alpha,\beta,T)$; $\sigma^{s}(E,T)$ can be computed from $\sigma^{e1}(E,T)$ and $\sigma^{in}(E,T)$; and $\sigma^{t}(E,T)$ can be computed from $\sigma^{s}(E,T)$ and $\sigma^{a}(E,T)$. The tape should contain sufficient information to allow computation of all required quantities. The user must be aware of what quantities are actually given on the tape and then instruct FLANGE II what quantities are to be derived.

2.3 INPUT ENERGY MESH

The user must supply a description of the neutron energy space in which the calculations are to be done. Three sets of numbers are required. Let i denote a region of energy (group).

- E_i^b Lower energy boundary (ev) of the ith group
- $\begin{array}{c} E_{i} \\ i \end{array} \begin{array}{c} \text{Characteristic energy (ev) of the i}^{\text{th}} \text{ group lying} \\ \text{between the lower boundary (E}_{i}^{\text{b}}) \text{ and the upper boundary} \\ (E_{i+1}^{\text{b}}) \text{ of the group} \end{array}$
- W_i Integration weight (ev) for the ith group such that the integral of a function f(E) over the group is well approximated by $f(E_i)W_i$

Several methods may be used to specify these numbers. For example, the user may:

- Give an arbitrary list of the E_i
- Give an arbitrary list of the E_i^b
- Specify energy regions in which the E_i^b will be assigned on the basis of equal spacing in energy or lethargy (ln E)
- Use the above methods but change the word energy to reduced velocity, $x = \sqrt{E/kT_0}$

2.4 CROSS SECTIONS

The user specifies the cross section desired and whether the cross section is to be read from the input ENDF/B tape or to be derived from other cross sections. The user specifies the material temperature, and as the appropriate cross section $\sigma(E,T)$ is read from the ENDF/B tape, it is automatically evaluated at the desired temperature. Thus, the temperature dependence has been removed, and the resulting cross section is denoted by $\sigma(E)$. Resolved resonance contributions are included where required as infinitely dilute values. Doppler broadening is included in the resonance calculations.

A series of test numbers are used as input to describe how a specific cross section is to be obtained. One test number for each type of cross section is illustrated in the following table:

	Value of	the Test Number	
Cross Section	1	2	3
σ ^t (E)	ENDF/B tape	$\sigma^{s}(E) + \sigma^{a}(E)$	-
σ ^{e1} (E)	ENDF/B tape	$\sigma^{s}(E) - \sigma^{in}(E)$	-
$\sigma^{in}(E)$	ENDF/B tape	$\sigma^{s}(E) - \sigma^{e1}(E)$	S(α,β)
σ [±] (Ε)	ENDF/B tape	-	-
σ ^a (E)	$\sigma^{f}(E) + \sigma^{\gamma}(E)$ ($\sigma^{\gamma}(E)$ from ENDF/B tape)	$\sigma^{t}(E) - \sigma^{s}(E)$	-
σ ^s (E)	ENDF/B tape	$\sigma^{e1}(E) + \sigma^{in}(E)$	-

If the test number is 1, the cross section is read from the ENDF/B tape; if it is 2, the cross section is computed from other cross sections; and if it is 3 (inelastic only), it is computed from $S(\alpha,\beta)$.

A second series of test numbers are input by the user to describe the averaging and output procedures. If the test is positive, the cross section will be printed and punched; if negative, only printing will occur. If the absolute value of the test is 1, the cross section will be evaluated on the input energy mesh, so that the output will be the numbers $\sigma_i = \sigma(E_i)$. If the absolute value of the test is 2, the cross section will be averaged over the input energy group, so that the output will be the numbers

$$\overline{\sigma}_{i} = \int_{E_{i}^{b}}^{E_{i+1}^{b}} dE\sigma(E)/(E_{i+1}^{b} - E_{i}^{b})$$

This latter feature is essential for elastic cross sections of crystalline materials. Group averaging of the inelastic cross section can be done if it is read from the ENDF/B tape, but not if it is computed from the scattering law.

A transport cross section (with or without absorption) can also be computed, printed, and punched. For fissionable isotopes, the quantities n_i and α_i are also computed and printed.

2.5 ANGULAR DISTRIBUTIONS

The present version of FLANGE II computes Legendre moments of the angular distribution (up to P_5) from $S(\alpha,\beta)$, and accepts Legendre moments or tabulated distributions from the ENDF/B tape.

The data given on File 4 of the ENDF/B tape are $p(E,\mu,T)$ in the Legendre expansion form

$$p(E,\mu,T) = \sum_{\ell=0}^{LX} \frac{2\ell+1}{2} f_{\ell}(E,T)P_{\ell}(\mu)$$

or as tabular values of $p(E,\mu,T)$. As before, as each $f_{\ell}(E,T)$ is read from the tape or obtained by fitting the tabular values, it is evaluated at the desired temperature to obtain $f_{\ell}(E)$. The appropriate cross section, $\sigma(E)$, is obtained from File 3. FLANGE II processes these data into Legendre cross sections, $\sigma_{\ell}(E)$, defined by

$$\frac{d\sigma(E,\mu)}{d\Omega} = \frac{1}{2\pi} \sigma(E,\mu)$$
$$\sigma(E,\mu) = \sum_{\ell=0}^{LX} \frac{2\ell+1}{2} \sigma_{\ell}(E) P_{\ell}(\mu)$$
$$\sigma_{\ell}(E) = \sigma(E) f_{\ell}(E)$$

The same series of test numbers used for cross sections are used here with their same meaning.

Legendre	Value	of the Test Numbe	r
Cross Section	1	2	3
$\sigma_{\ell}^{e1}(E)$	ENDF/B tape	$\sigma_{\ell}^{s}(E) - \sigma_{\ell}^{in}(E)$	-
$\sigma_{\ell}^{in}(E)$	ENDF/B tape	$\sigma_{k}^{s}(E) - \sigma_{k}^{e1}(E)$	S(α,β)
$\sigma_{\ell}^{s}(E)$	ENDF/B tape	$\sigma_{\varrho}^{e1}(E) + \sigma_{\varrho}^{in}(E)$	

If resonance parameters are defined that overlap the input energy mesh, these contributions are added to the elastic scattering if the test number is 1. An option allows this contribution to be calculated from the resonance formulas or taken as only the potential scattering term.

The second test number again indicates the desired printing, punching, and averaging procedure. Thus, the computed quantities may be either $\sigma_{li} = \sigma_{l}(E_{i})$, or

$$\overline{\sigma}_{\ell i} = \int_{E_{i}}^{E_{i+1}^{b}} dE \sigma_{\ell}(E) / (E_{i+1}^{b} - E_{i}^{b})$$

The product $\sigma(E)f_{\ell}(E) = \sigma_{\ell}(E)$ is averaged over the group, rather than $f_{\ell}(E)$.

As mentioned in Section 2.4, a transport cross section can be computed from either

$$\sigma_{i}^{tr} = \sigma_{0i}^{s} - \sigma_{1i}^{s}$$

 \mathbf{or}

$$\sigma_{i}^{tr} = \sigma_{i}^{a} + \sigma_{oi}^{s} - \sigma_{ii}^{s}$$

where the σ_{li}^s and σ_i^a are the cross sections defined above and may be either point or averaged numbers.

2.6 SCATTERING KERNELS

The present version of FLANGE II computes Legendre moments of the scattering kernel (up to P_5) from the scattering law on File 7 on the ENDF/B tape.

The scattering law contained on the ENDF/B tape consists of a fully tabulated $S(\alpha,\beta)$ plus the parameters needed to specify analytic terms to be added to the tabulated scattering law. FLANGE II will handle the tabulation and analytic terms of the free gas or diffusive type. The tabulation may be extended to higher energy transfers using the short collision time approximation.² The effective temperature of the scatterer must be specified to use this feature. The scattering kernel is related to the scattering law by

$$\frac{d^2 \sigma^{\text{in}}(E^{\,\prime} \rightarrow E, \mu, T)}{d\Omega dE} = \frac{\sigma_b}{4\pi kT} \sqrt{\frac{E}{E^{\,\prime}}} e^{-\beta/2} S(\alpha, \beta, T)$$

where $\alpha = (E' + E - 2\mu\sqrt{EE'})/AkT$ $\beta = (E - E')/kT$

The Legendre moments of the kernel, $\sigma_{\ell}^{in}(E' \rightarrow E)$, are defined by

$$\sigma^{\text{in}}(E' \rightarrow E, \mu) = 2\pi \frac{d^2 \sigma^{\text{in}}(E' \rightarrow E, \mu)}{d\Omega dE}$$
$$= \sum_{\ell=0}^{LX} \frac{2\ell+1}{2} \sigma_{\ell}^{\text{in}}(E' \rightarrow E) P_{\ell}(\mu)$$

$$\sigma_{\ell}^{\text{in}}(E^{\prime} \rightarrow E) = \frac{\sigma_{b}}{2kT} \sqrt{\frac{E}{E^{\prime}}} e^{-\beta/2} \int_{-1}^{1} d\mu P_{\ell}(\mu) S(\alpha, \beta)$$

FLANGE II computes these integrals and the kernels

 $\sigma_{\text{lij}}^{\text{in}} = \sigma_{\text{l}}^{\text{in}}(E_{i} \rightarrow E_{j})$

for $0 \leq \ell \leq 5$, and the E_i and E_j refer to the input energy mesh.

The inelastic cross sections can be computed from

$$\sigma_{\ell i}^{in} = \sigma_{\ell}^{in}(E_i) = \int_0^\infty dE \sigma_{\ell}^{in}(E_i \rightarrow E)$$

The E_i refers to the input energy mesh, but the integration over final energies E is independent of the input energy mesh.

It is often desirable to renormalize the kernels by adjusting the diagonal terms so that when integrated, they will give some desired cross section. Let σ_{ki}^* be the cross section obtained from the kernel before adjustment:

$$\sigma_{li}^{\star} = \sum_{j} \sigma_{lij}^{in} W_{j}$$

Let σ_{li}^{x} be the cross section used for normalization, and σ_{lij}^{x} be the kernel after normalization:

$$\sigma_{\text{lij}}^{\mathbf{X}} = \sigma_{\text{lij}}^{\text{in}} + \delta_{\text{ij}}(\sigma_{\text{li}}^{\mathbf{X}} - \sigma_{\text{li}}^{*})/W_{\text{i}}$$

The following renormalizations are allowed:

$$\sigma_{li}^{x} = \sigma_{li}^{*}$$
 No renormalization
= σ_{li}^{in} Normalized to the computed or input inelastic cross section

= σ_{li}^{s} Normalized to the input elastic plus the computed or input inelastic cross section

3. NUMERICAL PROCEDURES

The numerical procedures used in FLANGE II are described briefly in this section. A more detailed description is given in Sections 6 and 7.

3.1 TABULATED FUNCTIONS

Nearly all data stored on an ENDF/B tape are in the form of a tabulated function, y(x), which might represent $\sigma(E)$, $\sigma_{g}(E)$, or $S(\alpha,\beta)$ at a particular β . The quantities used to represent the function are:

- X(N)- List of values of x (or E)
- Y(N) - List of values of y (or σ) evaluated at X(N)
- NP - Number of values of x (and y) given
- NBT(M) Breakpoint table giving the upper N value associated with the Mth region of x
- JNT(M) Interpolation code used in the Mth region of x
- NR - Number of interpolation regions of x

The following sketch illustrates the use of these tabulated functions.

Let the Nth panel be the space between X(N) and X(N+1). Then, in the sketch above, panels N₁, N₁+1, ..., N₂-1 belong to region M. A region is defined as a consecutive set of panels in which the same interpolation method is used in each panel. The interpolation code JNT(M) indicates how intermediate values are to be obtained. For simplicity, let (x_1,y_1) and (x_2,y_2) denote the end points of a panel.

JNT	Interpolation Formula		
1	$y = y_1$		
2	$y = y_1 + (y_2 - y_1)(x - x_1)/(x_2 - x_1)$		
3	$y = y_1 + (y_2 - y_1) \ln(x/x_1) / \ln(x_2/x_1)$		
4	$\ln(y) = \ln(y_1) + \ln(y_2/y_1)(x-x_1)/(x_2-x_1)$		
5	$\ln(y) = \ln(y_1) + \ln(y_2/y_1)\ln(x/x_1)/\ln(x_2/x_1)$		

3.2 INTERPOLATION PROCEDURES

In certain cases, the interpolation code given may be correct for the original data, but subsequent manipulation of the data makes the interpolation code ambiguous. For example, in the calculation of Legendre cross sections, the original data for $\sigma(E)$ may specify ln-ln interpolation, and the original data for $f_{\ell}(E)$ may specify linear interpolation. Since $\sigma_{\ell}(E) = \sigma(E)f_{\ell}(E)$, a decision must be made as to what E mesh and interpolation are to be used. Since $\sigma(E)$ probably varies more rapidly than $f_{\theta}(E)$, the E mesh and interpolation are used for $\sigma(E)$, and $f_{\ell}(E)$ is evaluated on this mesh. The fg(E) may be negative or zero, and logarithmic interpolation is meaningless. The code automatically senses such conditions and will change the interpolation code in an appropriate manner. Thus, if JNT = 4 or 5, and y_1 or y_2 is negative or zero, Codes 3 or 4 will automatically be used. If JNT = 3 or 5, and x_1 or x_2 is negative or zero, Codes 2 or 4 will be used. All interpolations and the logic described above are in subroutine TERP1, which interpolates a single point.

As indicated in the illustration above, it is often necessary to compute an entire table by interpolation in another table. Subroutine TERP2 is used for this purpose. The procedure would be trivial were it not for the possibility of discontinuities in y(x) (indicated by two successive values of y with the same value of x). Such discontinuities appear in thermal elastic scattering cross sections for crystalline materials, and at the end points of energy regions described by resonance parameters. TERP2 will look for such discontinuities and treat them properly.

Tabular $S(\alpha,\beta)$ data cannot be interpolated accurately as a function of temperature using the two-point interpolation formulas described in Section 3.1. A four-point Lagrangian interpolation formula is used in these cases and is discussed in detail in Section 7.2.1.

3.3 ENERGY AVERAGING OF CROSS SECTIONS

As indicated in Section 2, the cross sections $\sigma_{\ell}(E)$ may be either evaluated at points of the input energy mesh or averaged over an input energy group. For this latter case, integration formulas are needed. Since the data to be averaged will always be tabulated, the required formulas are integrals over a portion of a panel. The integral of a group is then found from the sum of integrals over appropriate panels or parts of panels.

Let (x_3, y_3) and (x_4, y_4) be the end points of a panel, and x_1 and x_2 be the integration limits. The integrals are then given by

$$B = \int_{x_1}^{x_2} y(x) dx$$

Interpolation Code 1

 $B = (x_2 - x_1)y_3$

Interpolation Code 2

$$B = (x_2 - x_1) \left[a + \frac{1}{2} b(x_2 + x_1) \right]$$
$$b = (y_4 - y_3) / (x_4 - x_3)$$
$$a = y_3 - bx_3$$

Interpolation Code 3

$$B = (x_2 - x_1) \left[y_3 + b \ln \frac{x_1}{x_3} \right] + b x_1 \left[1 + \frac{x_2}{x_1} \left(\ln \frac{x_2}{x_1} - 1 \right) \right]$$

$$b = (y_{4} - y_{3})/\ln \frac{x_{4}}{x_{3}}$$

$$\left[1 + \frac{x_{2}}{x_{1}} (\ln \frac{x_{2}}{x_{1}} - 1)\right] = \frac{1}{2} z^{2} \left[1 - \frac{1}{3} z + \frac{1}{6} z^{2} - \frac{1}{10} z^{3}\right], \quad |z| \leq 0.15$$

$$z = (x_{2} - x_{1})/x_{1}$$

Interpolation Code 4

$$B = e^{a+bx_1} (e^{z}-1)/b, \qquad |z| > 0.1$$

$$B = e^{a+bx_1} (x_2-x_1) (1 + \frac{1}{2} z + \frac{1}{6} z^2) \qquad |z| \le 0.1$$

$$b = \ln \frac{y_4}{y_3}/(x_4-x_3)$$

$$a = \ln(y_3) - bx_3$$

$$z = (x_2-x_1)b$$

Interpolation Code 5

$$B = y_{3}x_{1}\left(\frac{x_{1}}{x_{3}}\right)^{b} \frac{1}{b+1} \left[\left(\frac{x_{2}}{x_{1}}\right)^{b+1} - 1\right]$$

$$b = \ln \frac{y_{4}}{y_{3}} / \ln \frac{x_{4}}{x_{3}}$$

$$\frac{1}{b+1} \left[\left(\frac{x_{2}}{x_{1}}\right)^{b+1} - 1\right] = \ln \frac{x_{2}}{x_{1}} (1 + \frac{1}{2}z + \frac{1}{6}z^{2}), \qquad |z| \leq 0.1$$

$$z = (b+1)\ln(x_{2}/x_{1})$$

3.4 α MESH FOR S(α , β)

The scattering law data on the ENDF/B tape are arranged in the following way. For the first value of β_1 (= 0), there is a table of S(α , β_1) versus α . Next, there is a table of S(α , β_2) versus α , and so forth. In general, the α mesh used to describe S is different for each value of β . The procedure used is

to define a "fine" α mesh and to evaluate S by interpolation on this fine α mesh. All calculations are then done with the S calculated on the fine α mesh, and it is assumed that $\ln(S)$ is linear in α between tabulated values.

The fine α mesh, α_i , is defined by

$$\alpha_i = \alpha_0 \rho_0^{i-1}, \qquad 1 \le i \le IALX$$

where $\rho_0 = 1.03$ and IALX = 300 are preset constants. If E_{max} is the largest energy in the input energy mesh, and A is the mass used to calculate α , then $\alpha_{max} = 4E_{max}/AkT$ is the largest α that will be needed. α_0 is computed so that the largest α in the fine mesh will be less than α_{max} .

$$\alpha_0 = \alpha_{max} / \rho_0^{IALX-2}$$

If E_{max} = 1.0 ev, kT = 0.025 ev, A = 1, and α_{max} = 160, then α_{o} = 0.024.

Definition of the fine α mesh in this manner has two advantages. First, the S for all β are evaluated on the same α mesh so that interpolation in β is greatly simplified. Second, the use of a constant expansion ratio ρ_0 permits large savings in computation time through the use of fast table look-up procedures for the α integrations.

Generally the tabulated α mesh for large β values will not span the entire range of the fine mesh α 's. This can lead to ignoring some scattering contributions for large energy transfers. The required $S(\alpha,\beta)$ values for these large β 's may be added using the short collision form of the $S(\alpha,\beta)$.

3.5 α INTEGRATION OF S(α , β)

In the calculation of Legendre moments, integrations over μ can be transformed into integrations over α .

$$\sigma_{\ell}(E' \rightarrow E) = \frac{A\sigma_{b}}{4E'} e^{-\beta/2} \int_{\alpha_{L}}^{\alpha_{H}} d\alpha S(\alpha, \beta) \sum_{n=0}^{\ell} W_{\ell n} \alpha^{n}$$

The W_{ln} are expansion coefficients of $P_l(\mu)$ in powers of α and depend on E and E'. The main calculation is that of the α moments

of $S(\alpha,\beta)$; since the limits α_L and α_H include many tabulated points, the moments can be expressed as the sum of contributions from each "panel," or the region between two tabulated points.

Consider one panel bounded by the points (α_3, y_3) and (α_4, y_4) , where $y = \ln(S)$. Let α_1 and α_2 denote the end points of the integration for this panel. Since it is assumed that $\ln(S) (= y)$ is linear in α between tabulated points,

$$y = a+b\alpha$$

 $b = (y_4-y_3)/(\alpha_4-\alpha_3)$
 $a = y_3-b\alpha_3$

and the required integral is

$$h_n = \int_{\alpha_1}^{\alpha_2} d\alpha \ \alpha^n e^{a+b\alpha}$$

By suitable transformation,

$$h_n = S_1 \alpha_1^{n+1} G_n(c, \rho)$$

where $G_n(c,\rho) = \left(\frac{\rho+1}{2}\right)^{n+1} \left[\gamma F_0(c) + n\gamma^2 F_1(c) + \frac{1}{2}n(n-1)\gamma^3 F_2(c)\right]$

$$F_{k}(c) = \frac{e^{c}}{c^{k+1}} \int_{-c}^{c} dy y^{k} e^{y}$$

$$\rho = \alpha_{2}/\alpha_{1}$$

$$c = b\gamma(\alpha_{1}+\alpha_{2})/2$$

 $\Upsilon = (\rho - 1)/(\rho + 1)$

This formula can be used for starting panels $(\alpha_1 = \alpha_L, \alpha_2 = \alpha_4)$, intermediate panels $(\alpha_1 = \alpha_3, \alpha_2 = \alpha_4)$, and end panels $(\alpha_1 = \alpha_3, \alpha_2 = \alpha_H)$. For intermediate panels, $\rho = \rho_0$ which is a constant for all panels, and $c = 1/2(y_4-y_3)$. The function $G_n(c,\rho_0)$ depends only on c, and can be tabulated for fast evaluation.

Several numerical approximations are used to speed up the evaluation of the α integrals. They have been selected to be accurate to a relative precision of 3.3 x 10⁻⁵.

3.6 FINAL ENERGY INTEGRATION OF THE KERNEL

Legendre inelastic cross sections are obtained from

$$\sigma_{\ell}^{in}(E') = \int_{0}^{\infty} dE \sigma_{\ell}^{in}(E' \rightarrow E)$$

The E' refer to the input energy mesh, but the final energy integration is completely independent of the input energy mesh and depends only on the β mesh given for the scattering law. Two successive β points (β_L and β_H) are selected; the region between β_L and β_H is a panel. The integral given above is then the sum of integrals over each panel. A downscattering part (E<E') and upscattering part (E>E') must be considered for each panel, and three different types of panels are considered.

The panel $\beta_L = 0$ contributes heavily to the cross section and may contain a singularity. A variable y is proportional to the neutron velocity and is scaled to be zero at $\beta = \beta_L$ and unity at $\beta = \beta_H$. The kernel is evaluated at the points $y_1 = 1/8$, $y_2 = 1/4$, $y_3 = 1/2$, and $y_4 = 1$. The resulting values of the kernel are denoted by H_1 , H_2 , H_3 , and H_4 . These four values are fit to the function

$$H(y) = \frac{a}{\ln \frac{1}{2}} \ln(y) + b + cy + dy^{2}$$

and H(y) is then integrated over the panel.

$$I = \int_{E_{1}}^{E_{1}^{*} + kT\beta_{H}} dEH(E) = 2kT\Delta \int_{0}^{1} dy (x_{0} + y\Delta)H(y)$$

= 2kT\Delta x_{0} (0.58791H_{1} - 0.58440H_{2} + 0.84776H_{3} + 0.14873H_{4})
+ 2kT\Delta^{2} (0.07291H_{1} - 0.12758H_{2} + 0.39712H_{3} + 0.15755H_{4})
x_{0} = \sqrt{E_{1}^{*}/kT}
$$\Delta = x_{4} - x_{0}$$

x_{4} = $\sqrt{\beta_{H}} + E_{1}^{*}/kT$

The above equation is used for upscattering. For downscattering, Δ is redefined to be positive, and the sign of the second term of the integral is set negative.

For intermediate values of β , three points equally spaced in velocity in the panel are used. Again y is proportional to the velocity and scaled so that $y_1 = 0$ at $\beta = \beta_L$, $y_3 = 1$ at $\beta = \beta_H$, and $y_2 = 1/2(y_1+y_3)$. The corresponding values of the kernel are H₁, H₂, and H₃. These three values are fit to the function

$$H(y) = a + by + cy^2$$

and H(y) is then integrated over the panel.

$$I = \frac{1}{3} kT\Delta x_{1} (H_{1} + 4H_{2} + H_{3}) + \frac{1}{3} kT\Delta^{2} (2H_{2} + H_{3})$$

$$x_{1} = \sqrt{\beta_{L}} + \frac{E'}{kT}$$

$$\Delta = x_{3} - x_{1}$$

$$x_{3} = \sqrt{\beta_{H}} + \frac{E'}{kT}$$

The above equation is used for upscattering. For downscattering, Δ is redefined to be positive, and the sign of the second term of the integral is set negative.

For large values of β , only the end points of the panel, H_1 and H_2 are used, and it is assumed that the function is exponential in character. Thus,

$$I = \int_{E_1}^{E_2} dEH(E) = (E_2 - E_1)(H_2 - H_1)/\ln \frac{H_2}{H_1}$$
$$E_1 = E' + kT\beta_L \qquad E_2 = E' + kT\beta_H$$

Many special cases to the above formulas are considered in detail in a later section. For example, downscattering will have to be terminated when E = 0, which may occur in the middle of a panel. Also, Legendre moments may change sign so that terms involving logarithms must be changed.

4. DESCRIPTION OF CODE

4.1 GENERAL STRUCTURE AND OPERATION

FLANGE II is written in ASA Standard FORTRAN (FORTRAN IV) and is designed to be used on a computer with at least 40K of available fast storage plus three tapes. It has been written as a main program plus large subprograms which can easily be made links of a chain or overlay program. The subprograms will be referred to as links here. The various parts of the FLANGE II code are:

- Main Program Processes the input data, sets up the input energy mesh, and controls the calling of the links listed below.
 - Link 1 Processes Files 1, 2, 3, and 4 from the ENDF/B input tape. Cross sections and angular distributions are evaluated (or averaged) on the input energy mesh, Legendre components are computed, and the results (if complete) are printed and punched. The results are also stored on tape NSTA for use in Link 2.
 - Link 2 Processes File 7 from the ENDF/B input tape. The scattering law is integrated to form Legendre components of the scattering kernel, the inelastic cross sections are computed, the cross sections from tape NSTA are read (and completed if necessary), and the scattering kernels are printed and punched.

4.2 TAPE ASSIGNMENTS

The following tapes are used. The tape numbers are symbolic and are stored in COMMON/BLOCK1/. The values are assigned at the start of the main program.

NIN - Systems input tape
NØUT - Systems print output tape
NPUN - Systems punch output tape
LIB - ENDF/B library tape, modes 1, 2, or 3
NSTA - Scratch tape used to transmit cross sections from Link 1 to Link 2. Disk storage should be used in place of this tape if available.

NSTB - Scratch tape used in Link 2 to store the scattering kernels in the order calculated. Disk storage should be used in place of this tape if available.

4.3 ERROR STOPS

Errors are signaled on the output by a message "FLANGE II ERRØR STØP NUMBER xxx," where xxx is a three-digit integer describing the error. The list of these numbers, the subroutine in which the error occurred, and a description of the error are given below.

Number	Subroutine	Description		
21	EMESH	NEG larger than 200		
22	EMESH	NEVT not 1 or 2		
23	EMESH	METH not 1, 2, or 3		
24	EMESH	KX not in range 1-20		
25	EMESH	Zero groups/region specified		
26	EMESH	NEG not equal to the sum of groups specified for each region		
27	EMESH	Energy range breakpoint table out of order		
99	RREC	Library tape data set not defined		
100	RREC	Record type called for not valid		
101	RREC	Library tape mode not 1, 2, or 3		
102	RREC	T not in range of specified data		
103	RREC	Interpolation table too long or of zero length		
104	RREC	List length too long or of zero length		
105	RREC	Data length too long or less than 2 points		
106	RREC	Improper temperature dependence		
107	RREC	MAT, MF, MT incorrect for List, TAB1, TAB2, or Hollerith records		
110	ECSI	Wrong interpolation code given		
120	ACS	Zero group width specified		
122	ACS	Interpolation table incorrect		
130	TERP2	x table not in increasing order		

Number	Subroutine	Description
131	TERP2	x table not in increasing order
132	TERP2	Interpolation table incorrect
133	TERP1	Interpolation table incorrect
134	TERP1	Zero or negative value cannot be interpolated by logs
135	SRCH	Section not on library, or library out of order
136	PRØF4	Angular data given in CM (center of mass) system
138	PRØF4	Internal tape error on NSTA
139	PRØF4	E interpolation table incorrect on File 4
200	SRCH7	No File 7 on library
223	REATS	Temperature out of range given on library
224	REATS	Improper T dependence, lists different lengths
225	REATS	More than 1000 S(α,β) given for one β
226	REATS	More than 100 entries in α interpolation table
230	PRØF7	Improper β interpolation table
231	PRØF7	Scattering law not given
232	KERC	Improper β interpolation table
233	KERC	$S(\alpha,\beta)$ not integrable at small α
234	KERA	Analytic $S(\alpha,\beta)$ not specified
235	KERA	$S(\alpha,\beta)$ not integrable at low α

.

. .-

4-3

•

and a state of the

5. INPUT/OUTPUT DESCRIPTION

The following section describes the input and output data for FLANGE II. The input data consist of the ENDF/B library tape (Mode 1, 2, or 3) and two decks of cards (the problem definition input and the input energy mesh).

5.1 PROBLEM DEFINITION INPUT

All input data are read by the main program. The problem definition input is read by subroutine INPUT. The input data are listed below, and are stored in CØMMØN/BLØCK3/.

Card	Columns	Format	Symbol	Description
1	1-72	18A4	(TITLE(N) N=1,18)	72-character Hollerith descrip- tion of the calculation
2	1-10	110	LABEL	Label that is supposed to appear at the ENDF/B tape. If LABEL = 0, label will not be checked.
	11-20	I10	MAT	Material number to be processed from the ENDF/B tape
	21-30	E10.0	FID	Seven-digit integer (written in floating point) used to identify the punched output for this material
	31-40	E10.0	Т	Desired temperature (°K)
	41-50	E10.0	TEFF	Effective temperature for short collision time approximation (°K)
	51-60	I10	MØDE	Tape mode (1, 2, or $3 - defaults$ to 3)
3	1-10	110	LINK1	Flag indicating whether Link 1 is to be used or not; 0 = no, l = yes
	11-20	I10	LINK2	Same as above, but for Link 2
4	1-10	110	LX	Maximum Legendre order (0-5) desired
	11-20	110	LMESH	<pre>= 0, read new energy mesh = 1, use energy mesh of previous problem</pre>

Card	Columns	Format	Symbo1	Description
4	21-30	I10	LRSCT	<pre>= 0, if material is not to be treated as a resonance scat- terer, = 1 otherwise</pre>
	31-50	20X	-	
	51-60	110	LPDD	= 1, print and punch decay data = 0, ignore = -1, print decay data
	61-70	110	LPFP	 = 1, print and punch fission product yields = 0, ignore = -1, print fission product yields
5	1-10	110	LABS	= 0, ignore $\sigma^{a}(E)$
				= 1, read $\sigma^{\gamma}(E)$ from ENDF/B tape and compute $\sigma^{a}(E) = \sigma^{\gamma}(E) + \sigma^{f}(E)$
				= 2, compute $\sigma^{a}(E) = \sigma^{t}(E) - \sigma^{s}(E)$
	11-20	I10	LPABS	= -2, print group avg $\sigma^{a}(E)$
				= -1, print $\sigma^{a}(E)$
				= 0, ignore
				= 1, print and punch $\sigma^{a}(E)$
				= 2, print and punch group avg σ ^a (E)
	21-30	I10	LFISS	= 0, ignore $\sigma^{f}(E)$
				= 1, read $\sigma^{f}(E)$ from ENDF/B tape
	31-40	110	LPFIS	= -2, print group avg $\sigma^{f}(E)$
				= -1, print $\sigma^{f}(E)$
				= 0, ignore
				= 1, print and punch $\sigma^{f}(E)$
				= 2, print and punch group $\sigma^{f}(E)$
	41-50	I10	LPTØT	= 0, ignore $\sigma^{t}(E)$
				= 1, read $\sigma^{t}(E)$ from ENDF/B tape
				= 2, compute $\sigma^{t}(E) = \sigma^{a}(E) + \sigma^{s}(E)$
	51-60	I10	lptøt	= -2, print group avg σ ^t (E)
				= -1, print $\sigma^{t}(E)$

5-2

Card	Columns	Format	Symbol	Description
5	51-60	I10	lptøt	= 0, ignore
				= 1, print and punch $\sigma^{t}(E)$
				= 2, print and punch group avg σ ^t (E)
	61-70	I10	LPTR	= -2, compute and print $\sigma^{tr}(E) = \sigma^{a}(E) + \sigma_{0}^{s}(E) - \sigma_{1}^{s}(E)$
				= -1, compute and print $\sigma^{tr}(E) = \sigma_0^{s}(E) - \sigma_1^{s}(E)$
				= 0, ignore
				= 1, compute, print and punch $\sigma^{tr}(E) = \sigma_0^{s}(E) - \sigma_1^{s}(E)$
				= 2, compute, print, and punch $\sigma^{tr}(E) = \sigma^{a}(E) + \sigma_{0}^{s}(E) - \sigma_{1}^{s}(E)$
6	1-10	110	LELAS	= 0, ignore σ ^{el} (E)
				= 1, read $\sigma_{\ell}^{e1}(E)$ and $p_{\ell}^{e1}(E,\mu)$ from ENDF/B tape
				= 2, compute $\sigma_{\ell}^{e1}(E) = \sigma_{\ell}^{s}(E) - \sigma_{\ell}^{in}(E)$
	11-20	110	LPEL	= -2, print group avg $\sigma_{\ell}^{e1}(E)$
				= -1, print $\sigma_{\ell}^{e1}(E)$
				= 0, ignore
				= 1, print and punch $\sigma_{\ell}^{el}(E)$
				= 2, print and punch group avg $\sigma_{o}^{e1}(E)$
	21-30	I10	LINEL	= 0, ignore $\sigma_{\ell}^{in}(E)$
				= 1, read $\sigma_{\ell}^{in}(E)$ and
				p ⁱⁿ (E,µ) from ENDF/B
				= 2, compute
				$\sigma_{\ell}^{1n}(E) = \sigma_{\ell}^{s}(E) - \sigma_{\ell}^{e1}(E)$
				= 3, compute $\sigma_{\ell}^{1n}(E)$ from $S(\alpha,\beta)$
	31-40	I10	LPIN	= -2, print group avg $\sigma_{\ell}^{1n}(E)$
				= -1, print $\sigma_{\ell}^{m}(E)$
				= 0, ignore

Card	Columns	Format		Description
6	31-40	I10	LPIN	= 1, print and punch $\sigma_{\ell}^{in}(E)$
				= 2, print and punch group / avg $\sigma_{\ell}^{in}(E)$
	41-50	110	LSCAT	= 0, ignore $\sigma_{\ell}^{S}(E)$
				= 1, read $\sigma_{\ell}^{S}(E)$ and $p_{\ell}^{S}(E,\mu)$ from ENDF/B
				= 2, compute
				$\sigma_{\ell}^{s}(E) = \sigma_{\ell}^{in}(E) + \sigma_{\ell}^{e1}(E)$
	51-60	110	LPSC	= -2, print group avg $\sigma_{\ell}^{s}(E)$
				= -1, print $\sigma_{\ell}^{s}(E)$
				= 0, ignore
				= 1, print and punch $\sigma_0(E)$ = 2, print and punch group
				avg $\sigma_{\ell}^{S}(E)$
7	1-10	110	LTSL	= 0, ignore scattering kernels
				= 3, compute scattering kernels
				= 4, compute scattering kernels and normalize to exact σ_{l}^{in}
				= 5, compute scattering kernels and normalize to $\sigma_{\ell}^{S}(E)$
	11-20	110	LPTSL	= -2, print scattering kernels
				= 0, ignore print and punch
				<pre>= 1, punch scattering kernels = 2, print and punch kernels</pre>
	21-30	I10	LBND	Signal to compute only bound
				divides of by its value. i.e
				$\sigma_{\rm b} = \sigma_{\rm b}/\rm LBND.$

5.2 INPUT ENERGY MESH

Text Symbol	Code Symbol	Description
i	I	Index numbering energy groups
NEG	NEG	Number of energy groups
E _i	E(I)	Characteristic energy of the i th group(ev)
E [*] i	EB(I)	Lower energy limit of the i th group

5-4

Text Symbol	Code Symbol	Description
vi	V(I)	Reduced characteristic velocity of the i^{th} group $v_i = \sqrt{E_i}/0.0253$
v*i	VB(I)	Lower reduced velocity limit of the i th group $v_i^* = \sqrt{E_i^*}/0.0253$
Wi	W(I)	Energy integration weight for the i th group
Δ_{i}	DEL(I)	Group width used for both energy and velocity calculations
k	К	Index numbering regions to be subdivided into groups
К	КХ	Number of regions
$M_{\mathbf{k}}$	МК	Number of groups to be distributed in the k th region
$B_{\mathbf{k}}$	BPT(K)	Upper boundary of the k th region

The mesh can be specified in any one of six ways:

- 1. The mesh is computed from an input table of energy regions and number of groups to be assigned per region.
- 2. Energy group widths are read in and the characteristic energies are computed as being at the center of each group.
- 3. Energy group widths and characteristic energies are read in and artificial group boundaries are computed.
- 4. Same as 1 but using velocity.
- 5. Same as 2 but using velocity.
- 6. Same as 3 but using velocity.

Current practice at GGA is to use 2 (but 3 was used in the past), and at BNL and SRL to use 5. Two tests are used:

In all cases a complete energy and velocity mesh will be computed and stored. The six cases will be described separately.

NEVT = 1, METH = 1

The energy range of interest is divided in K regions numbered 1, 2, ..., k, ..., K. Let B_k be the upper bound of the k^{th} region, and M_k the number of groups to be distributed in the k^{th} region. If $M_k > 0$, a constant mesh spacing is used within the region. If $M_k < 0$, the group boundary expands by a factor for each successive group in the region.

To illustrate the procedure, let k be the region under consideration, and let i denote the last group boundary computed. Thus, E_1^* is the upper limit of the k-1st range and the lower limit of the kth range. For $M_k > 0$, compute

$$\Delta_{k} = (B_{k} - B_{k-1})/M_{k}$$

$$E_{i}^{*} = B_{k-1}$$

$$E_{i+1}^{*} = E_{i}^{*} + \Delta_{k}$$

$$E_{i+2}^{*} = E_{i}^{*} + 2\Delta_{k}$$

$$\vdots$$

$$E_{i+M_{k}}^{*} = E_{i}^{*} + M_{k}\Delta_{k} = B_{k}$$

For $M_k < 0$, set $M_k = -M_k$, and compute

$$\Delta_{k} = (B_{k}/B_{k-1})^{1/M_{k}}$$

$$E_{i}^{*} = B_{k-1}$$

$$E_{i+1}^{*} = \Delta_{k}E_{i}^{*}$$

$$E_{i+2}^{*} = \Delta_{k}^{2}E_{i}^{*}$$

$$\vdots$$

$$E_{i+M_{k}}^{*} = \Delta_{k}^{M_{k}}E_{i}^{*} = B_{k}$$

The $|M_k|$ must add up to NEG, the total number of energy groups.

The group boundaries are established, and the characteristic energy, integration weight, and reduced velocities are computed from:
$$E_{i} = \frac{1}{2} (E_{i}^{*} + E_{i+1}^{*})$$

$$W_{i} = E_{i+1}^{*} - E_{i}^{*}$$

$$v_{i}^{*} = \sqrt{E_{i}^{*}}/0.253$$

$$v_{i} = \sqrt{E_{i}^{-}}/0.0253$$
NEVT = 1, METH = 2

A low energy cutoff (EVL) and the group widths $W_{\rm i}$ (taken to be the same as the integration weights) are read in. The group boundaries are computed from

$$E_1^* = EVL$$

 $E_i^* = E_{i-1}^* + W_{i-1}$

The remaining quantities are computed from

$$E_{i} = \frac{1}{2} (E_{i}^{*} + E_{i+1}^{*})$$

$$v_{i}^{*} = \sqrt{E_{i}^{*}}/0.0253$$

$$v_{i} = \sqrt{E_{i}}/0.0253$$
NEVT = 1, METH = 3

The characteristic energies E_i and integration weights are read in. Presumably, the weights were selected for some high accuracy integration scheme and may not resemble group widths. Group boundaries are required to average simple cross sections. Group boundaries (arbitrarily) are selected as the midpoint between characteristic energies. Thus

$$E_{i}^{*} = \frac{1}{2} (E_{i-1} + E_{i})$$

$$E_{1}^{*} = EVL$$

$$E_{NEG+1}^{*} = \frac{3}{2} E_{NEG} - \frac{1}{2} E_{NEG-1}$$

$$v_i = \sqrt{E_i}/0.0253$$

 $v_i^* = \sqrt{E_i^*}/0.0253$

 $\underline{\text{NEVT}} = 2, \underline{\text{METH}} = 1$

The method is the same as for NEVT = 1, METH = 2 except that all quantities (including EVL, $B_{\rm k}$) refer to reduced velocity. Thus for $M_{\rm k}$ > 0

$$\Delta_{k} = (B_{k} - B_{k-1})/M_{k}$$

$$v_{i}^{*} = B_{k-1}$$

$$v_{i+1}^{*} = v_{i}^{*} + \Delta_{k}$$

$$v_{i+2}^{*} = v_{i}^{*} + 2\Delta_{k}$$

$$\vdots$$

$$v_{i+M_{k}}^{*} = v_{i}^{*} + M_{k}\Delta_{k} = B_{k}$$

For $M_k < 0$, set $M_k = -M_k$,

$$\Delta_{k} = (B_{k}/B_{k-1})^{1/M_{k}}$$

$$v_{i}^{*} = B_{k-1}$$

$$v_{i+1}^{*} = \Delta_{k}v_{i}^{*}$$

$$v_{i+2}^{*} = \Delta_{k}^{2}v_{i}^{*}$$

$$\vdots$$

$$v_{i+M_{k}}^{*} = \Delta_{k}^{M_{k}}v_{i}^{*} = B_{k}$$

$$v_{i} = \frac{1}{2}(v_{i}^{*} + v_{i+1}^{*})$$

$$E_{i} = 0.0253v_{i}^{2}$$

Solar Statistics

$$E_{i}^{*} = 0.0253v_{i}^{*2}$$

 $W_{i} = E_{i+1}^{*} - E_{i}^{*}$
NEVT = 2, METH = 2

The method is the same as for NEVT = 2, METH = 1 except that all quantities (EVL, W_i) refer to reduced velocity. Thus

$$v_{1}^{*} = EVL$$

$$v_{1}^{*} = v_{i-1}^{*} + W_{i-1}$$

$$v_{i} = \frac{1}{2}(v_{i}^{*} + v_{i+1}^{*})$$

$$E_{i} = 0.0253v_{i}^{2}$$

$$E_{i}^{*} = 0.0253v_{i}^{*2}$$

$$W_{i} = E_{i+1}^{*} - E_{i}^{*}$$

 W_i read in refers to velocity but is recomputed to refer to energy. NEVT = 2, METH = 3

The method is the same as for NEVT = 1, METH = 3 except that all quantities (including EVL and W_i) refer to velocity.

$$v_{i}^{*} = EVL$$

$$v_{i}^{*} = \frac{1}{2} (v_{i-1} + v_{i})$$

$$v_{NEG+1}^{*} = \frac{3}{2} v_{NEG} - \frac{1}{2} v_{NEG-1}$$

$$E_{i} = 0.0253 v_{i}^{2}$$

$$E_{i}^{*} = 0.0253 v_{i}^{*2}$$

$$W_{i} = 0.0506 v_{i} W_{i} (input)$$

 \mathtt{W}_{i} on input refers to velocity but is recomputed to refer to energy.

The following cards are used to describe the input energy mesh. These cards follow the problem definition cards.

Card	<u>Columns</u>	<u>Format</u>	Symbol	Description	
8	1-10	110	NEG	Number of energy groups (<200)	
	11-20	110	NEVT	<pre>= 1, mesh input in energy units = 2, mesh input in reduced veloc- ity units</pre>	
	21-30	110	METH	 = 1, region data are input = 2, group widths are input = 3, group widths and character- istics are input 	
	31-40	I10	NPNT	<pre>= 0, ignore = 1, print energy mesh = 2, print and punch energy mesh</pre>	
	41-50	E10.5	EVL	Low energy (if NEVT = 1) or veloc- ity (in NEVT = 2) cutoff	
	51-70	5A4	(HØL(N) N=1,5)	20-character description of the energy mesh. See description of the punching.	

The remaining cards depend on the values of METH and NEVT.

NEVT = 1, METH = 1

.

Card	Columns	Format	Symbol	Description
9	1-10	I10	КХ	Energy of energy regions (≤ 20)
	11-20	I10	MINT(1)	Number of groups in Region 1. If MINT(1) > 0, equal energy spacing. If MINT(1) < 0, equal lethargy spacing.
	21-30	E10.5	BPT(1)	Upper energy limit of Region l
	31-40	110	MINT(2)	Same as above, but for Region 2
	41-50	E10.5	BPT(2)	Same as above, but for Region 2
	• •	•	• •	:

The pattern above is repeated until all KX regions have been specified. The second and remaining cards start in Column 11.

5-10

and the second second

NEVT = 1, METH = 2

Card	Columns	Format	Symbol	Description
9	-	7E10.5	(W(I),I=1 NEG)	List of energy group widths (ev) in order of increasing group number
	-	7E10.5	(E(I),I=1 NEG)	List of characteristic group energies (ev) in increasing order
	-	7E10.5	(W(I),I=1 NEG)	Integration weights (ev)

Cards for NEVT = 2 follow the same description as for NEVT = 1, except the word "energy" is changed to read "reduced velocity."

5.3 OUTPUT

The printed output (on tape NØUT) is clearly labeled and will not be described here.

There are three types of punched output: energy mesh, scattering kernels, and cross sections.

The energy mesh is punched if the input number is NPNT = 2. Two decks of cards are obtained. If NEVT = 1 (energy mesh), the first deck is the energy points E_i , and the second deck the integration weights, W_i . If NEVT = 2 (velocity mesh), the first deck is the velocity points v_i , and the second deck is the velocity integration weights defined by $W_i/0.0506v_i$. The punching of one deck is done in subroutine PUNCH3. Each card of the deck has the same structure.

Columns	Format	Description
1-70	7F10.7	Seven values of the data
73-76	A4	First four characters of the Hol- lerith description of the mesh. See input description.
77-78	12	<pre>Integer describing the data = 1, energy points = 2, energy integration weights = 3, velocity points = 4, velocity integration weights</pre>
79-80	12	Sequence number

The punched card format for scattering kernels was devised by John Suich at SRL and is used at GGA, SRL, and BNL. A card is divided into 11 fields.

Field	Columns	Format	Description	
1	1	I1	Legendre order (0-9)	
2	2-4	13	Final energy group index (J) of the first data word on this card	
3	5-7	13	Initial energy group index of the data on this card	
4	8	-	Blank	
5	9-20	E12.4	σ _ℓ (I→J)	
6	21-32	E12.4	σ _ℓ (I→J+1)	
7	33-44	E12.4	σ _ℓ (I→J+2)	
8	45-56	E12.4	σ _ℓ (I→J+3)	
9	57-68	E12.4	σ _ℓ (I→J+4)	
10	69-76	F8.0	Isotopic or material designation, FID	
11	77-80	14	Deck sequence number	

The zero values will not be read from the above cards, but the array will be cleared prior to loading the kernel deck. It is only necessary to punch the non-zero values of the kernel on these cards. Each card is uniquely identified as to its location in the array.

Each deck is headed by a card in the format given above. The fields on this card are:

<u>Field</u>	Description
1	Same as before
2	Smallest group index = 1
3	Largest group index = NEG
4	Same
5	Temperature (°K)
6-9	Not used
10	Same as before
11	Same as before

With a slight modification, the above card format is also used to punch cross sections and Legendre moments. The character "c" punched in Field 4 signals this type of data. Field 2 is used to denote the type of cross section data given, and the number is the same as the MT (reaction type) number given on the ENDF/B tape.

6. DETAILED DESCRIPTION OF LINK 1

6.1 OVERALL OPERATION

Link 1 is divided into five major sections (subroutines PRØF1, PRØF2, PRØF3, PRØF4, and PLEAT). The operation of these sections are described generally here and in detail in later sections. The five major sections perform the following operation:

- PRØF1 Prints documentation information, decay data, and fission product yield data. Evaluates v (neutrons/ fission) at E = 0.0 ev.
- PRØF2 Calculates infinitely dilute (Doppler broadened) capture fission, and scattering cross sections from resolved resonance parameters. Group averages are produced as required.
- PRØF3 Group averages or interpolates all smooth cross sections specified by test numbers to be taken from the ENDF/B tape.
- PRØF4 Combines smooth cross sections and Legendre moments taken from the ENDF/B tape and produces group-averaged or interpolated Legendre cross sections for elastic, inelastic, and total scattering.
- PLEAT Completes the cross sections based on the set of test numbers described in Section 2.4. This operation is performed only if Link 2 is not to be executed.

Cross sections to be printed or punched are done so in this routine.

6.1.1 Internal Energy Mesh

To properly generate the contributions to elastic, inelastic, and total scattering from File 3 cross sections with possible contributions from File 2 resonance parameters, an internal energy mesh is defined. This mesh contains energy points at which Files 3 and 2 cross sections are evaluated. Interpolation between points is assumed ln-ln, but may be easily changed if required. The number of points is chosen to enable the sharp Bragg peaks in some crystalline moderator material to be adequately represented. The mesh contains IENX points (= 1000) equally spaced in lethargy between the low and high energies of the input mesh. The lethargy increment is defined from

$$\Delta u = \ln \left(\frac{\frac{E_{\text{NEG}+1}^{*}}{E_{1}}}{E_{1}} \right) / (\text{IENX-1})$$

and the points from

$$E_{i}' = E_{NEG+1}^{*} \exp\left[-\ln\left(\frac{E_{NEG+1}^{*}}{E_{1}^{*}}\right) + (i-1)\Delta u\right]$$
 $i = 1, IENX$

In PRØF2, contributions to elastic scattering cross sections from resonances are generated on the internal energy mesh and written to tape NSTA. In PRØF3, cross sections for elastic, inelastic, and total scattering are generated and written on tape NSTA. Tape NSTA is read in PRØF4 and the cross sections used to generate the Legendre cross sections for each reaction.

6.1.2 Common Storage

Common storage is divided into five named blocks designated BLØCK1, BLØCK2, ..., BLØCK5. BLØCK1, BLØCK3, and BLØCK4 are the same throughout the code. BLØCK2 common changes throughout the code to provide temporary storage as required. BLØCK5 is the same within each link of the code and is used for cross section storage. The details of each common block are given below for Link 1.

BLØCK1

NIN	Input data set number			
NØUT	Output data set number			
NPUN	Punch data set number			
LIBØ	Not presently used. Data set number of inter- faced library for output.			
LIB	Data set number of ENDF/B tape			
NSTA	Data set number of scratch tape A			
NSTB	Data set number of scratch tape B			

MØDE	<pre>Mode of ENDF/B tape = 1, binary standard format = 2, binary alternate format = 3, BCD format</pre>
DUMA(2)	Not used
LINK1	Flag to indicate execution of Link 1 (0 - no; 1 - yes)
LINK2	Flag to indicate execution of Link 2 (0 - no; 1 - yes)
LINK3	Not used
LINK4	Not used
LINK5	Not used
LINK6	Not used
LINK7	Not used
DUMB(33)	Not used

BLØCK3

LABEL	ENDF/B tape label requested
MATS	ENDF/B material number
Т	Temperature (°K) at which cross sections are required
TEV	kT = temperature (ev) at which cross sections are required
LX	Highest Legendre scattering order requested (≤ 5)
LXPØ	LX + 1
FID	Floating point output identification number for numbered output
TITLE(18)	72-character description and page heading
LPDD	Test flag on decay data (453)
LPFP	Test flag on fission product yield data (454)
LABS	Test flag for processing absorption cross section
LPABS	Test flag for printing, punching, and group averaging in absorption cross section
LFISS	Test flag for processing fission cross sections
LPFIS	Test flag for printing, punching, and group averaging fission cross sections

	LTØT	Test flag for processing total cross sections
	lptøt	Test flag for printing, punching, and group averaging total cross sections
	LPTR	Test flag defining transport cross sections
	LELAS	Test flag for processing elastic scattering cross sections
	LPEL	Test flag for printing, punching, and group averaging elastic scattering cross sections
	LINEL	Test flag for processing inelastic scattering cross section
	LPIN	Test flag for printing, punching, and group averaging inelastic scattering cross sections
	LSCAT	Test flag for processing total scattering cross sections
	LPSC	Test flag for printing, punching, and group averaging total scattering cross sections
	LTSL	Test flag for computing and normalizing thermal scattering matrices
	LPTSL	Test flag for printing and punching thermal scattering matrices
	LMESH	Test flag indicating whether to read new energy mesh or use old mesh (0 - yes; 1 - no)
	VNU	Value of v at E = 0.0 from Section 452 of File 1
	LSTRP	Not used
	LBND	Test flag indicating only the bound principal scatterer is to be calculated from $S(\alpha,\beta)$ data
	LSCØL	Test flag indicating short collision time approximation to $S(\alpha,\beta)$ is used (0 - no; 1 - yes)
	TEFF	Effective temperature (°K) to be used in short collision time equations
	LRP	Test flag showing presence of resolved reso- nance parameters for a material (0 - no; 1 - yes)
	LRSCT	Test flag indicating scattering should be com- puted from resonance formula (0 - no; 1 - yes)
	DUMC(31)	Not used
BL	ØCK4	

NEGNumber of energy groups in meshE(200)Characteristic energy of each group (ev)

6-4

alexistence and

EB(201)	Lower boundary energy of each group (ev)
V(200)	Characteristic reduced velocity of each group (m/sec)
VB(201)	Lower boundary reduced velocity for each group (m/sec)
W(200)	Integration weight for each group
IENX	Number of points in internal energy mesh
BLØCK5	
ZA	ENDF/B ZA designation for material
AWR	Atomic mass ratio of material to neutron mass
L1H	Test flag L1 in ENDF/B record
L2H	Test flag L2 in ENDF/B record
N1H	Test flag N1 in ENDF/B record
N2H	Test flag N2 in ENDF/B record
NBT(100)	Interpolation breakpoint table in ENDF/B record
INT(100)	Interpolation code table in ENDF/B record
X(4000)	Independent variable table in ENDF/B tabular record
Y(4000)	Dependent variable table in ENDF/B tabular record
B(4000)	ENDF/B LIST record table
XA(200)	Absorption cross section for each group (barns)
XF(200)	Fission cross section for each group (barns)
XT(200)	Total cross sections for each group (barns)
XTR(200)	Transport cross sections for each group (barns)
XRC(200)	Resonance contribution to capture cross section for each group (barns)

- XRF(200) Resonance contribution to fission cross section for each group (barns
- XRS(200) Resonance contribution to elastic scattering cross section for each group (barns)

XSE(200,6) Elastic scattering cross section for each group and Legendre order (barns/ev)

- XSI(200,6) Inelastic scattering cross section for each group and Legendre order (barns/ev)
- XSS(200,6) Total scattering cross section for each group and Legendre order (barns/ev)

BLØCK2 - Normal

TSA(2000)Temporary storageTSB(200,5)Temporary storageTSC(1000)Temporary storageTSD(1000)Temporary storageTSE(2500)Temporary storage

BLØCK2 - PRØF1

TSA(2000)	Temporary	storage
TSB(200,5)	Temporary	storage

BLØCK2 – PRØF2

TSA(1000)	Temporary	storage
TSB(1000)	Temporary	storage
TSC(1000)	Temporary	storage
TSD(1000)	Temporary	storage

BLØCK2 - PRØF4

XSEC (1000)	Cross section on internal energy mesh (barns)
EN(1000)	Energies of internal energy mesh (ev)

- TMP(1000,5) Legendre cross section on internal energy mesh (l = 1, ..., 5)
- TM(400) Transformation matrix from CM to LAB (center of mass to laboratory coordinate systems) for Legendre coefficients
- BS(10) Temporary storage of Legendre coefficients

6.2 FILE 1 PROCESSING

Subroutine PRØF1 processes data from File 1 of the ENDF/B tape. These consist of documentation (451), neutron yield/fission (452), radioactive decay data (453), and fission product yield data (454). For all of these reactions except neutron yield/ fission, the only operation is to print the information and/or punch cards for input to another program. Documentation (451) is always printed, and test numbers are specified for decay data (453) and fission yield data (454) to determine what is done.

The total neutrons/fission (452) may be specified by one of two representations on the ENDF/B tape. Either a series expansion of the form

$$v(E) = \sum_{n=1}^{NC} C_n E^{n-1}$$

or as a tabular array of v(E) versus E. FLANGE II evaluates the thermal v as that value that occurs at E = 0. This corresponds to C_0 in the above expansion or the value of v(E) that occurs at the lowest energy in a tabulation.

6.3 FILE 2 PROCESSING

Thermal cross sections are often represented by resolved resonance parameters rather than as tabular cross sections. This method is economical in terms of the volume of numbers required to represent a cross section. Subroutine PRØF2 calculates the contributions to capture, fission, and elastic scattering cross sections from resolved resonances. This calculation is restricted to single level Breit-Wigner resonance parameters, and may contain the interference scattering term. All cross sections produced are infinitely dilute and contain Doppler broadening for the specified temperature.

The method used is to generate the cross sections on the internal energy mesh described in Section 6.1.1 using the equations in Section 6.3.1. The resulting cross sections are interpolated or group averaged, as specified by test flags, and added to the capture, fission, and elastic scattering cross sections as specified. The scattering component may be calculated under one of two assumptions specified by test flag LRSCT.

- The scattering is represented by its potential scattering cross section which is the normal case for heavy isotopes (LRSCT = 0).
- The scattering is represented by the cross sections calculated from the resonance formulas which is more normal for light isotopes (LRSCT ≠ 0).

The scattering cross section on the internal mesh is written to scratch tape NSTA for transfer to File 4. It is identified by a negative reaction-type number to indicate it is to be added to the elastic scattering cross section.

6.3.1 Resonance Formulas Without Doppler Broadening

The equations^{1,3} used to calculate cross sections from Breit-Wigner parameters at 0° K are those recommended for use by the Resonance Region Subcommittee of the Cross Section Evaluation Working Group. The cross sections for scattering, capture, and fission are given as follows for a single level representation.

$$\sigma_{s}(E) = \sum_{\ell=0}^{l \text{ states}} \left\{ \frac{4\pi (2\ell+1)\sin^{2}\phi_{\ell}}{k^{2}} + \frac{\pi}{k^{2}} \sum_{J=1}^{\text{All Number}} g_{J} \sum_{r=1}^{\text{Number}} g_{J} \sum_{r=1}^{$$

$$\times \frac{\Gamma_{nr}^{2} \cos 2\phi_{\ell} - 2\Gamma_{nr}(\Gamma_{\gamma r} + \Gamma_{fr}) \sin^{2}\phi_{\ell} + 2(E - E_{r}') \sin 2\phi_{\ell}}{(E - E_{r}')^{2} + (\frac{\Gamma_{r}}{2})^{2}} \bigg\}$$

$$\sigma_{\gamma}(E) = \sum_{\ell=0}^{\text{A11}} \frac{\prod_{j=1}^{\text{A11}} \prod_{j=1}^{\text{A11}} g_{j}}{\sum_{j=1}^{\text{resonances}} g_{j}} \frac{\prod_{r=1}^{\text{resonances}} \prod_{j=1}^{\frac{\Gamma_{nr}}{\Gamma_{\gamma r}}} \frac{\prod_{r=1}^{\Gamma_{rr}} \prod_{j=1}^{\Gamma_{rr}} g_{j}}{(E-E_{r}^{i})^{2} + (\frac{\Gamma_{rr}}{2})^{2}}$$

$$\sigma_{\mathbf{f}}(\mathbf{E}) = \sum_{\ell=0}^{\text{All}} \frac{\pi}{\mathbf{k}^2} \sum_{\mathbf{J}}^{\text{All}} \mathbf{g}_{\mathbf{J}} \sum_{\mathbf{r}=1}^{\text{All}} \frac{\pi}{(\mathbf{E}-\mathbf{E}_{\mathbf{r}}^{\mathsf{T}})^2 + (\frac{\Gamma_{\mathbf{r}}}{2})^2}$$

where

E = energy at which cross section is evaluated (ev)

$$E_{r} = resonance energy (ev)$$

$$g_{J} = \frac{2J+1}{2(2I+1)}$$

$$I = target nuclear spin$$

$$J = compound nuclear spin$$

$$\Gamma_{nr} = P_{\ell}(E)\Gamma_{nr}(|E_{r}|)/P_{\ell}(|E_{r}|)$$

$$\Gamma_{nr}(|E_{r}|) = neutron width (ev)$$

 P_{ℓ} = penetration factor

$$P_0 = \rho$$

$$P_1 = \frac{\rho^3}{1 + \rho^2}$$

$$P_2 = \frac{\rho^5}{9 + 3\rho^2 + \rho^4}$$

 $\rho = ka$

a = channel radius $(10^{-12} \text{ cm}) = \frac{1.23(A)^{1/3} + 0.8}{10}$

A = atomic mass ratio of target nucleus to neutron

$$k = 2.196771 \frac{A}{A+1} \sqrt{E} \times 10^{-3}$$

$$\Gamma_{\mathbf{r}} = \Gamma_{\mathbf{nr}}(\mathbf{E}) + \Gamma_{\mathbf{\gamma r}} + \Gamma_{\mathbf{fr}}$$

 $\Gamma_{\gamma \mathbf{r}}$ = radiation width (ev)

 Γ_{fr} = fission width (ev)

$$\mathbf{E}_{\mathbf{r}}' = \mathbf{E}_{\mathbf{r}} + \frac{\mathbf{S}_{\ell}(|\mathbf{E}_{\mathbf{r}}|) - \mathbf{S}_{\ell}(\mathbf{E})}{2\mathbf{P}_{\ell}(|\mathbf{E}_{\mathbf{r}}|)} \Gamma_{\mathbf{nr}}(|\mathbf{E}_{\mathbf{r}}|)$$

$$S_{l} = shift factor$$

 $S_{0} = 0$ $S_{1} = \frac{-1}{1 + \rho^{2}}$ $S_{2} = \frac{-18 - 3\rho^{2}}{9 + 3\rho^{2} + \rho^{4}}$

 \emptyset_{ℓ} = phase shift

 \hat{a} = effective scattering radius (10⁻¹² cm)

If multilevel Breit-Wigner parameters are provided, the following term is added to the $\sigma_s(E)$ to include level-level interference:

6.3.2 Resonance Formulas with Doppler Broadening

The formulas used when a non-zero temperature is specified are the same as used in the MC^2 program.⁴ These formulas do not include the level-level terms as used in Section 6.3.1; however, the interference term with potential scattering is included. The cross sections for scattering, capture, and fission are given as follows.

$$\sigma_{s}(E) = \sum_{\ell=0}^{A11} \left\{ \frac{4\pi}{k^{2}} (2\ell+1) \sin^{2} \phi_{\ell} \right\}$$

+
$$4\pi \hat{a} \frac{A+1}{ak_0} \sum_{J}^{A11} g_J \sum_{r=1}^{A11} \frac{f_{nr}(|E_r|)}{\Gamma_r(|E_r|)} \chi(\xi,x) \right\}$$

$$\sigma_{\gamma}(E) = \sum_{\ell=0}^{A11} \frac{4\pi}{k_0^2} \left(\frac{A+1}{A}\right)^2 \sum_{J}^{A11} \frac{A11}{resonances}$$

$$\sigma_{\gamma}(E) = \sum_{\ell=0}^{A11} \frac{4\pi}{k_0^2} \left(\frac{A+1}{A}\right)^2 \sum_{J}^{J} \frac{g_J}{r_{r=1}} \sum_{r=1}^{r=1} \frac{4\pi}{k_0^2} \left(\frac{|E_r|}{E}\right)^{1/2} \frac{\Gamma_{nr}(|E_r|)\Gamma_{\gamma r}(|E_r|)}{\Gamma_r^2(|E_r|)} \Psi(\xi,x)$$

$$\sigma_{\mathbf{f}}(\mathbf{E}) = \sum_{\substack{\ell=0 \\ k \in \mathbf{I}}}^{A11} \frac{4\pi}{\mathbf{k}_{0}^{2}} \left(\frac{\mathbf{A}+1}{\mathbf{A}}\right)^{2} \sum_{\substack{J \text{ states } \\ J}}^{A11} \mathbf{g}_{J} \sum_{\substack{\text{resonances } \\ \mathbf{resonances } \\ \mathbf{g}_{J}} \sum_{\mathbf{r}=1}}^{A11} \left(\frac{|\mathbf{E}_{\mathbf{r}}|}{\mathbf{h}}\right)^{1/2} \frac{\Gamma_{\mathbf{nr}}(|\mathbf{E}_{\mathbf{r}}|)\Gamma_{\mathbf{fr}}(|\mathbf{E}_{\mathbf{r}}|)}{\Gamma_{\mathbf{r}}^{2}(|\mathbf{E}_{\mathbf{r}}|)} \Psi \xi_{J} \mathbf{x}$$

where

E = energy at which cross section is evaluated (ev) $E_r = resonance energy (ev)$ $g_J = \frac{2J+1}{2(2I+1)}$ = statistical spin factor I = target nucleus spin J = compound nucleus spin $\Gamma_{nr}(|E_r|) = neutron width (ev)$ $\Gamma_{\gamma r}(|E_r|) = radiation width (ev)$ $\Gamma_{fr}(|E_r|)$ = fission width (ev) $\Gamma_{r}(|E_{r}|) = \Gamma_{nr} + \Gamma_{\gamma r} + \Gamma_{fr}$ A = atomic mass ratio of target nucleus to neutron mass $k = 2.196771 \left(\frac{A}{A+1}\right) \sqrt{E} \times 10^{-3}$ $k_0 = 2.196771 \left(\frac{A}{A+1}\right) \sqrt{E_r} \times 10^{-3}$ ϕ_{l} = phase shift $\phi_2 = \hat{\rho} - \tan^{-1} \frac{3\hat{\rho}}{3 - \hat{\rho}^2}$ $\hat{\rho} = k\hat{a}$

 \hat{a} = spin dependent scattering length (10⁻¹² cm)

$$\Psi(\xi, \mathbf{x})$$
 = Doppler broadened line shape functions $\chi(\xi, \mathbf{x})$

$$\xi = \left(\frac{A\Gamma_{\mathbf{r}}^{2}}{4|E_{\mathbf{r}}|T}\right)^{1/2} = \frac{\Gamma_{\mathbf{r}}}{\Delta}$$

$$\Delta = \text{Doppler width (ev)} = \left(\frac{4|E_{\mathbf{r}}|T}{A}\right)^{1/2}$$

$$T = \text{temperature (ev)}$$

$$x = \frac{2(E - E_{\mathbf{r}})}{\Gamma_{\mathbf{r}}}$$

The Doppler line shape functions are evaluated using the complex probability integral function W. 5 These quantities are related through the expressions

$$\Psi(\xi, \mathbf{x}) = \frac{\xi\sqrt{\pi}}{2} \operatorname{ReW}(\frac{\xi\mathbf{x}}{2}, \frac{\xi}{2})$$
$$\chi(\xi, \mathbf{x}) = \xi\sqrt{\pi} \operatorname{ImW}(\frac{\xi\mathbf{x}}{2}, \frac{\xi}{2})$$

The probability integral function is evaluated directly from convergent series and asymptotic expansions given in Reference 5.

6.4 FILE 3 PROCESSING

Subroutine PRØF3 performs interpolation or group averaging of smooth components of cross sections contained in ENDF/B File 3. The reactions considered are:

Reaction	Section		
$\sigma^{t}(E,T)$ total	1		
$\sigma^{el}(E,T)$ elastic	2		
$\sigma^{in}(E,T)$ inelastic	4		
$\sigma^{f}(E,T)$ fission	18		
$\sigma^{s}(E,T)$ total scattering	29		
$\sigma^{\gamma}(E,T)$ (n, γ)	102		

A call is made to subroutine PRØF3 for each reaction shown in the table. PRØF3 first examines the test flags to determine whether to process the section, then returns or continues. If it continues, it first searches the tape for the required cross section. If not found, error stop 135 occurs. If found, the cross section is interpolated for the correct temperature. If the specified temperature is outside the range of the data, error stop 102 occurs.

When the required data are attained, they are stored as an ENDF/B TAB1 record in /BLØCK5/ common. The cross section may be interpolated at the characteristic energies of each group or averaged over the energy range of each group as specified by the test flags. Interpolation is performed by subroutine TERP2, and group averaging is performed by subroutine ACS.

If the cross section is elastic, inelastic, or total scattering the cross sections are interpolated on the internal energy mesh using subroutine TERP2. These cross sections are then written to tape NSTA with the section number as an identifier for use in File 4.

6.5 FILE 4 PROCESSING

Subroutine PRØF4 calculates Legendre cross sections up to order P_5 using smooth cross sections passed to it from PRØF2 and PRØF3 and angular distribution data from File 4 of the ENDF/B tape. Elastic, inelastic, or total scattering is calculated depending on the test flags specified in input.

When a scattering cross section is to be processed, the first step is to locate and read the P_0 order cross sections tabulated on the internal energy mesh from tape NSTA. These tabulations were written in PRØF3. For elastic scattering, a further search of tape NSTA is made to locate possible contributions from resonance scattering which are added to the smooth cross sections from PRØF3. The cross sections are stored in BLØCK2 in array XSEC(N) with the corresponding internal energy mesh in BLØCK2 array EN(N).

The probability that a neutron with energy E and temperature T will scatter through an angle whose cosine is μ for a particular scattering process is given in File 4 of the ENDF/B tape as either an expansion in Legendre polynomials in the form

$$p(E,\mu,T) = \sum_{\ell=0}^{LX} \frac{2\ell+1}{2} f_{\ell}(E,T)P_{\ell}(\mu)$$

or a tabular table of $p(E,\mu_i,T)$ versus μ_i . The desired Legendre cross sections $\sigma_{\varrho}(E)$ are given by

$$\sigma_{o}(E) = \sigma(E) f_{o}(E)$$

where $\sigma(E)$ is the P₀ cross section and $f_{\ell}(E)$ is the Legendre coefficient of order ℓ . The differenctial angular cross section for scattering is related to $\sigma_{\ell}(E)$ by

$$\frac{d\sigma(E,\mu)}{d\Omega} = \frac{1}{2\pi} \sum_{\ell=0}^{L\chi} \frac{2\ell+1}{2} \sigma_{\ell}(E) P_{\ell}(\mu)$$

In File 4 of the ENDF/B tape the angular distribution may be specified in either the center of mass (CM) system or the laboratory (LAB) system. The required cross sections are for the LAB system: hence whenever possible a transformation is made, otherwise an error stop occurs. Normally a transformation matrix is given for eleastic Legendre moments when specified in the CM system. The LAB moments are related to the CM moments by the following equation.¹

$$f_{\ell}^{1ab}(E) = \sum_{m=0}^{NM} u_{\ell m} f_{m}^{CM}(E)$$

where the u_{Lm} are the elements of the transformation matrix and are stored in array TM(400) in BLØCK2.

If the angular distribution is tabular, the Legendre moments may be derived by integrating the tabular distribution for a specified number of Legendre polynomials. These moments are given by

 $\mathbf{f}_{\ell}(\mathbf{E}) = \int_{-1}^{+1} \mathbf{p}(\mathbf{E}, \boldsymbol{\mu}) P_{\ell}(\boldsymbol{\mu}) d\boldsymbol{\mu}$

This definition is valid for both the LAB and CM systems.

PRØF4 will process angular distributions in either Legendre expansion or tabular form in the LAB system. Only the Legendre expansion form is acceptable for CM data and the transformation matrix must be supplied. Any data not meeting these restrictions will lead to an error stop.

After the required P_0 cross sections are retrieved from tape NSTA the angular distribution at the first energy is read, converted into LAB system Legendre moments, and stored. The calculation of the Legendre cross sections is arranged so that the angular distribution data are read only once. At any time two distributions corresponding to E_{high} and E_{10W} are maintained in core. Legendre moments for each energy on the internal mesh between E_{high} and E_{10W} are obtained by interpolation. After Legendre cross sections are tabulated at all energy points between E_{high} and E_{10W} the distribution at E_{10W} is moved to E_{high} and a new E_{10W} distribution is read. The process continues until Legendre cross sections are obtained for all orders and all energy points on the internal mesh. These Legendre cross sections will be array TMP (1000,5) in BLØCK2 common.

The Legendre cross sections are now interpolated or group averaged as specified by the test flags to obtain the final cross sections.

6.6 COMPLETING THE CROSS SECTION SET

Subroutine PLEAT is executed only if LINK2 of the code is not executed. Its function is to complete the cross sections specified by the test flags as being derived from other cross sections. If LINK2 of the code is being executed, all cross sections computed and stored in BLØCK5 common are written as tape NSTA for transfer. A second subroutine PLEAT2 in LINK2 will then perform the operations necessary to complete the cross sections.

The test flags and computing operations performed by PLEAT are described in detail in Section 2.4. Any mutually exclusive set of test flags will lead to an error stop.

After the operations necessary to complete the cross sections are performed, PLEAT then prints and/or punches all cross sections as indicated by the second set of test flags.

7. DETAILED DESCRIPTION OF LINK 2

7.1 OVERALL OPERATION

Link 2 is divided into three sections (subroutines PRØF7, PLEAT2, and REKØN). Operation of each section is described below, and a flow diagram for PRØF7 is given here.

Flow Diagram for PRØF7

It is assumed that on entering Link 2, Link 1 has been executed and the resulting cross sections are stored on tape NSTA. Link 2 then operates as follows:

memory if room is available, or dumped onto tape NSTB. Analytic terms are also evaluated and added to the results from the tabulated $S(\alpha,\beta)$. The short collision approximation is used to extend the tabular $S(\alpha,\beta)$ table when requested.

- PLEAT2 If all required cross sections were obtained in Link 1, they are read in from tape NSTA and stored for use in normalizing the scattering kernels. If the inelastic cross section was computed in Link 2 (and not read in Link 1), the cross sections are read from tape NSTA and the inelastic cross section is added to complete the set. The cross sections are then printed, punched, and stored for use in normalizing the scattering kernels.
- REKØN The scattering kernels (in the order in which they were computed) are brought in from core or tape storage, re-ordered, normalized, printed, and punched.

7.2 STORAGE ALLOCATION

7.2.1 Storage of $S(\alpha,\beta,T)$

The scattering law, $S(\alpha,\beta,T)$, is stored on the library tape in the following manner.

- 1. Heading record giving the test LAT.
- 2. Record giving σ_b and A for the tabulated law, and the constants for the analytic laws.
- 3. Record giving the number of β values given (NBETA) and a table telling how to interpolate between values of β .
- 4. Record giving pairs of α , S(α , β , T) for the first β and the first temperature, and a table telling how to interpolate between values of α .
- 5. Record giving values of $S(\alpha,\beta,T)$ for the first β and the second temperature (same α and interpolation as for the first temperature).
- 6. Repeat of Item 5 until all temperatures are given.
- 7. Repeat of Items 4 and 5 until all temperatures and all β are given.

The first three records are read and processed in PRØF7. The remaining records are read and processed in REATS.

The calculation is arranged so that the $S(\alpha,\beta,T)$ is read from the library tape only once. Since the entire array probably cannot be fit into core storage, only two consecutive values of β are stored at one time. The data for the first two values of β are read in, and all computations of kernels and cross sections that involve this range of β are done. The data for the high value of β are then moved to the area used to store data for the low value of β , and a new set of data for the next β are read from the library. The computations involving this β range are done, and the process is repeated until all β have been processed. This logic is contained in PRØF7.

Consider the steps involved in reading the data for one β from the library. Since the α mesh for one value of β may be different from the α mesh for another value of β , it is convenient to evaluate the scattering law on a single α mesh for all β . This common α mesh is called the "fine" α mesh and is computed in the following manner. Let IALX (= 300) be the number of points in the "fine" α mesh, and ρ_0 (= 1.03) be an expansion ratio. Denote the "fine" α mesh by α_i .

$$\alpha_{i} = \alpha_{0} \rho_{0}^{i-1}$$

The α_0 is selected by requiring that $\alpha_{IALX} < \alpha_{max}$, where $\alpha_{max} = 4E_{max}/AT$, and E_{max} is the largest energy in the input energy mesh. Then

$$\alpha_0 = \alpha_{max} / \rho_0^{IALX-2}$$

For $E_{max} = 1$ ev, kT = 0.025 ev, A = 1, $\rho_0 = 1.03$, and IALX = 300, then $\alpha_{max} = 160$, and $\alpha_0 = 0.024$.

Let β_H and β_L denote the high and low values of β contained in storage. Define

$$SA(I) = S(\alpha_{i}, \beta_{L}, T)$$

$$ASA(I) = \ln S(\alpha_{i}, \beta_{L}, T)$$

$$SB(I) = S(\alpha_{i}, \beta_{H}, T)$$

$$ASB(I) = \ln S(\alpha_{i}, \beta_{H}, T)$$

$$ALP(I) = \alpha_{i}$$

where T denotes the input temperature.

The first step in subroutine REATS is to move SB+SA, ASB+ASA, and $\beta_{H}+\beta_{L}$. The next step is to read a record containing the new $\beta = \beta_{H}$, pairs of $[\alpha_{n}, S(\alpha_{n}, \beta, T)]$, and a table for interpolating between the α_{n} . The α_{n} is the α mesh contained on the library tape of this β . These data are stored in

 $TSA(N) = \alpha_n$

 $TSB(N) = S(\alpha_n, \beta, T)$

The temperature used to define α and β on the library tape may have been the actual temperature (LAT = 0) or a constant equal to 0.0253 ev. (LAT = 1). If the latter, the β and α_n are scaled by the factor 0.0253/kT to achieve the proper β and α_n at temperature T.

The $S(\alpha_n,\beta,T)$ are now interpolated on the "fine" α mesh and stored in array TSD(I,4) and T4 is set equal to T. Because the α_n mesh in TSA(N) for a temperature T may not span the same range as the "fine" α mesh, the option is available to use the short collision approximation to supply the additional non-zero $S(\alpha_i,\beta,T)$ values on the "fine" α mesh. If the short collision approximation is not used, then "fine" α mesh interpolation is performed by subroutine TERP2. If the short collision approximation is used, the effective temperature for the short collision approximation equation

$$S_{sc}(\alpha_{i},\beta,T,T_{eff}) = \frac{\frac{\beta}{2} e^{-\frac{T}{4\alpha_{i}T_{eff}}(\alpha_{i}+\beta)^{2}}}{\sqrt{4\pi\alpha_{i}T_{eff}/T}}$$

is supplied, and the interpolation is performed by subroutine TERP3. The values in TSD(I,4) are tested and set to values >1.0 \times 10⁻³³.

Temperature T4 is now compared to the requested temperature. If equal, the values of $S(\alpha_i, \beta, T)$ stored in TSD(I,4) are stored in SB(I) and the natural log in ASB(I). If the requested temperature is greater than T4, the values in the TSD(I,K) array are all moved back one position, and the temperature is stored backwards as

TSD(I,1) = TSD(I,2) T1 = T2 TSD(I,2) = TSD(I,3) T2 = T3 TSD(I,3) = TSD(I,4) T3 = T4

A new set of $S(\alpha_n, B, T)$ are now read into TSB(N) at a new temperature T. T4 is set to T and the α_n mesh is corrected for the new temperature as $\alpha_n = \alpha_n T3/T4$. The $S(\alpha_n, \beta, T)$ are again interpolated on the "fine" α mesh as described above. The process is continued until four sets of $S(\alpha_1, \beta, T)$ are stored in array TSD(I,K) corresponding to four temperatures T1 through T4. If possible, the requested temperature is made to be in the range T2 < T < T3. If T equals any of the four temperatures, it is accepted as interpolated and stored in SB(I) as described above.

A four-point Lagrangian interpolation is now performed to obtain the $S(\alpha_i,\beta,T)$ required according to

 $SB(I) = A_1 TSD(I,1) + A_2 TSD(I,2) + A_3 TSD(I,3) + A_4 TSD(I,4)$

where

 $A_{1} = (T-T2) (T-T3) (T-T4) / (T1-T2) (T1-T3) (T1-T4)$ $A_{2} = (T-T1) (T-T3) (T-T4) / (T2-T1) (T2-T3) (T2-T4)$ $A_{3} = (T-T1) (T-T2) (T-T4) / (T3-T1) (T3-T2) (T3-T4)$ $A_{4} = (T-T1) (T-T2) (T-T3) / (T4-T1) (T4-T2) (T4-T3)$

If only three temperatures are available in the data, a threepoint Lagrangian interpolation is used according to

 $SB(I) = A_2 TSD(I,2) + A_3 TSD(I,3) + A_4 TSD(I,4)$

where

 $A_2 = (T-T3)(T-T4)/(T2-T3)(T2-T4)$

 $A_3 = (T-T2)(T-T4)/(T3-T2)(T3-T4)$

 $A_{4} = (T-T2)(T-T3)/(T4-T2)(T4-T3)$

If only two temperatures are available in the data, the standard two-point interpolation codes are used with subroutine TERP1.

The final step is to store the natural log of SB(I) in array ASB(I).

The method of interpolation described here is designed to provide as exact a method of temperature interpolation as is possible over the entire range of values of $S(\alpha,\beta,T)$. Generally as β becomes large (>10) the $S(\alpha,\beta,T)$ changes with temperature by factors as large as 100/°K while simultaneously becoming smaller in magnitude. At some value of β the entire interpolation scheme will break down due to the large-scale factors on temperature. This effect is computer dependent and typically occurs between β values of 30 to 40. Once such a limit is reached it is no longer possible to generate accurate $S(\alpha,\beta)$ tables at intermediate temperatures between the tabulated temperatures. This restriction does not, however, apply to the temperatures at which the $S(\alpha,\beta)$ are tabulated since no interpolation is done beyond transforming to the "fine" α mesh. A method of circumventing the restrictions produced by these interpolation errors is described in Section 8.

7.2.2 Cross Section Storage

Manipulation of cross sections is done by subroutine PLEAT2. Cross sections processed by Link 1 are stored on tape NSTA. These are read into the storage block SBB, completed, printed, punched, and the appropriate cross section for the normalization of the kernels is computed and stored. The completing, printing, and punching are identical to that described previously for Link 1.

This process occurs following the computation of the kernels and inelastic cross sections in PRØF7, and prior to reorganization of the kernels in REKØN. The exact inelastic cross section is obtained from Files 3 and 4 of the library tape or computed from $S(\alpha,\beta)$. It is stored in XSI(N,L). An approximate cross section is computed during the computation of the kernels.

$$\sigma_{\ell}^{*}(E_{i}) = \sum_{j=1}^{NEG} \sigma_{\ell}(E_{i} \rightarrow E_{j})W_{j}$$

where W_j is the integration weight for the jth group. This approximate cross section is stored in XINA(N,L). The test LTSL is used to indicate how the kernels are to be normalized. The array XINE(N,L) is to be set up with the cross section wanted to normalize the kernels.

- LTSL = 3 No renormalization desired XINE(N,L) = XINA(N,L)
- LTSL = 4 Normalize to the inelastic cross section XINE(N,L) = XSI(N,L)
- LTSL = 5 Normalize to the total (Elastic + inelastic) cross section XINE(N,L) = XSS(N,L)

When the ordered kernel is set up by REKØN, the diagonal element will be changed by adding.

[XINE(N,L) - XINA(N,L)]/W(N)

7.2.3 Storage of the Scattering Kernel

Allowance is made for a large input energy mesh (<200 points). A single kernel might require 20,100 entries, and six Legendre components might require 120,600 entries. A fast and efficient method is needed to transfer data between fast core storage and bulk storage. Two one-dimensional arrays (SBA and SBB) are used for this purpose, and subroutine STØRK handles all transfers between core storage and tape.

If NEG is the number of energy groups, a full kernel requires NEG*NEG storage locations. Because of the detailed balance condition, only the upper half matrix (downscattering plus diagonal terms) is required, or NEG*(NEG+1)/2 storage locations.

Since the kernels are calculated in the order of increasing β and since all of the data may not be contained in fast core storage, the data are collected and stored in array SBA as the data are calculated. If LX is the maximum Legendre order, and LXPØ = LX+1, then LXPØ locations are needed for each term of the kernel. Let I denote the initial energy group, J denote the final energy group, and S(L) denote the kernel. Combine the I and J into C = 1000J+I. The string of numbers

 $C, S(1), S(2), \dots, S(LXP\emptyset)$

is stored sequentially in SBA(K). Since there are LXPØ+1 numbers in the string, K is incremented by LXPØ+1 after storage of the string. SBA is presently dimensioned for 4623 locations. The following table gives the largest value of NEG which can be held in SBA.

LX	LXPO+1	Max Number of (I,J) Entries	Max NEG
0	2	2311	67
1	3	1541	55
2	4	1155	47
3	5	924	42
4	6	770	38
5	7	660	35

If the actual NEG does not exceed the values given in the above table, all kernels can be contained in fast core storage and tapes are not used.

If NEG exceeds the values given in the table, the array SBA will automatically be dumped onto tape NSTB whenever the array is full. Thus, if LX = 5, and NEG = 200 (the maximum problem), 120,600 entries are required which would use 26 full arrays and 1 partial array. 27 blocks would be dumped on tape NSTB, and end-of-file written, and the tape rewound.

Frequently, many off-diagonal terms are very small and can be ignored. A criterion EPSK $(=10^{-8})$ is used to reject these terms. This rejection is done in STØRK and all Legendre components must be less than EPSK for the terms to be rejected.

Next the kernels are brought back into core storage, properly ordered, normalized, printed, and punched. These operations are done in subroutine REKØN which uses STØRK to fetch numbers from tape or core storage. The properly ordered kernel is contained in array SBB which is dimensioned at 5151. Only one Legendre moment kernel is stored in SBB at one time. The kernel is a twodimensional array, and SBB is a one-dimensional array. Consider the following diagram (illustrated for NEG = 7).

and including column I is 1/2[I(I+1)], and the number of entries between and including columns IA and IB is

KX = 1/2[IB(IB+1) - IA(IA-1)]

If NEG \leq 101, 1/2[NEG(NEG+1)] \leq 5151, and the entire kernel will fit into SBB. If NEG > 101, several passes are made. For example, suppose NEG = 200. Four passes are required:

Pass	IA	IB	KX (Storage Used)
1	1	101	5151
2	102	143	5145
3	144	175	5104
4	176	200	4700

The location K for a particular combination I,J is given by

K = 1/2[I(I-1)] - 1/2[IA(IA-1)] + J

Thus, I = 127, J = 53 would require Pass 2, IA = 102, and K = 2903.

The calculation proceeds in the following manner. The entire tape NSTB is read, block by block, into SBA. The P_o components are extracted and stored in SBB. If NEG \leq 101, the entire kernel will fit into SBB. If NEG > 101, only the terms for I \leq 101 are stored. The contents of SBB are normalized, printed, and punched, and tape NSTB is rewound. If NEG > 101, the tape is again read, and the P_o components for 102 \leq I \leq 143 are stored in SBB. These are normalized, printed, punched, and NSTB is rewound. This is repeated until the entire P_o kernel has been processed. The entire operation is repeated for the P₁ component, and so forth. The following table gives the number of times tape NSTB will be read.

Range of Maximum Legendre Component Requested

NEG	Po	<u>P1</u>	<u>P2</u>	<u>P 3</u>	<u>P4</u>	<u>P 5</u>	
1-35	0	0	0	0	0	0	
36-38	0	0	0	0	0	6	
39-42	0	0	0	0	5	6	
43-47	0	0	0	4	5	6	
48-55	0	0	3	4	5	6	
56-67	0	2	3	4	5	6	
68-101	1	2	3	4	5	6	
102-143	2	4	6	8	10	12	
144-175	3	6	9	12	15	18	
176-200	4	8	12	16	20	24	

7-9

7.2.4 Common Storage

Labeled common storage is used and designated by BLØCK1, BLØCK2, ..., BLØCK5. BLØCK1, BLØCK3, and BLØCK4 are the same as in Link 1.

BLØCK2

TSA(1000)	Temporary storage
TSB(1000)	Temporary storage
TSD(300,4)	Temporary storage
BLØCK 5	
BETL	β_L , the lower β value of the two currently in storage (see PRØF7, REATS)
ВЕТН	$\beta_{H},$ the higher β value of the two currently in storage (see PRØF7, REATS)
EPSK	Test $(=10^{-8})$ used to reject terms in the kernels (see Section 7.2.3)
LAT	Test indicating whether the actual temperature (LAT = 0) or the value 0.0253 ev (LAT = 1) was used on the library tape to define α and β
AMASS	A, the mass ratio used to compute α for a tabulated scattering law
SIGB	σ_b , the bound atom cross section (barns) used with the tabulated scattering law. If $\sigma_b = 0$, no tabulation is given, only analytic terms are given.
IALX	= 300, the number of α used for the fine α mesh. This should correspond to the dimensions of ALP, SA, ASA, SB, ASB.
RHØ	$\rho_0,$ the expansion ratio (= 1.03) for the fine α mesh (see 7.2.3)
ARH Ø	ln ρ_0 , (see 7.2.3)
ALPHØ	$\alpha_0,$ first α value in the fine α mesh (see 7.2.3)
XINE(200,6)	XINE(N,L), the exact inelastic scattering cross section $\sigma_{\ell}^{\text{in}}$ (E _H), L = ℓ +1, computed from S(α , β) (see PRØF7)

- XINA(200,6) XINA(N,L), an approximate inelastic scattering cross section $\sigma_0^*(E_N)$, L = l+1, computed from the calculated kernél (see 7.2.2 and PRØF7)
- KMXA = 4623, the length of array SBA
- KMXB = 5151, the length of array SBB
- SBA(4623) Storage block (see 7.2.3)
- SBB(5151) Storage block (see 7.2.3)
- ALP(300) ALP(I) contains α_i (see 7.2.1)
- SA(300) SA(I) contains $S(\alpha_i,\beta_L)$ (see 7.2.1)
- ASA(300) ASA(I) contains $\ln S(\alpha_i, \beta_L)$ (see 7.2.1)
- SB(300) SB(I) contains $S(\alpha_i, \beta_H)$ (see 7.2.1)
- ASB(300) ASB(I) contains $\ln S(\alpha_i, \beta_H)$ (see 7.2.1)
- SBC(200,6) SBC(N,L), the inelastic scattering kernel $\sigma \ell(E_N \rightarrow E_N + \beta_L)$, L = $\ell + 1$, used in the calculation of the inelastic cross section (see FEINT)

Cross sections computed and defined in Link 1

which are transmitted from Link 1 to Link 2 via

tape NSTA. See Section 6 for their definition and PLEAT2 for the way they are used in Link 2.

- XSE(200,6) XSI(200,6) XSS(200,6)
- XA (200) XF (200) XT (200)
- XTR (200)

:

Many of these arrays are equivalent to SBB. The following table summarizes this equivalence.

SBB(1)	=	ALP	=	XA
SBB(301)	±	SA	=	XF
SBB(601)	H	ASA	=	ХT
SBB(901)	8	SB	m	XTR
SBB(1201)	3	ASB		
SBB(1501)	=	SBC	=	XSE
SBB(2701)	=	SBD	n	XSI
SBB(3901)	=		z	XSS

7.3 CALCULATION OF THE SCATTERING KERNELS

7.3.1 General Method

The scattering kernels are calculated from

$$\sigma_{\ell}(E' \rightarrow E) = \frac{\sigma_{b}}{4\pi kT} \sqrt{\frac{E}{E'}} e^{-\beta/2} \int_{-1}^{1} d\mu S(\alpha,\beta) P_{\ell}(\mu)$$

$$\alpha = (E + E' - 2\mu\sqrt{EE'})/AkT$$

This equation is rewritten so that the integration is over α instead of μ_*

$$\sigma_{\ell}(E' \rightarrow E) = \frac{A\sigma_{b}}{4E'} e^{-\beta/2} \int_{\alpha_{L}}^{\alpha_{H}} d\alpha S(\alpha, \beta) P_{\ell}(\mu)$$

 $\alpha_{\rm L} = (E + E' - 2\sqrt{EE'})/AkT$

 $\alpha_{\rm H} = (E + E' + 2\sqrt{EE'})/AkT$

 $P_{\ell}(\mu)$ is expanded in powers of α .

$$P_{\ell}(\mu) = \sum_{n=0}^{\ell} W_{\ell n} \alpha^{n}$$

The final expression for the kernel is then

$$\sigma_{\ell}(E' \rightarrow E) = \frac{A\sigma_{b}}{4E'} e^{-\beta/2} \sum_{n=0}^{\ell} W_{\ell n} H_{n}$$

$$H_{n} = \int_{\alpha_{L}}^{\alpha_{H}} d\alpha \ \alpha^{n} S(\alpha, \beta)$$

7.3.2 Coefficients W_{ln}

The coefficients $W_{\mbox{ln}}$ can be obtained straightforward by expanding $P_{\mbox{l}}(\mu)$ in a power series.

$$P_{\ell}(\mu) = \sum_{k=0}^{\ell} a_{k}^{\ell} (\gamma_{0} - \gamma_{1} \alpha)^{k}$$

$$\mu = \gamma_{0} - \gamma_{1} \alpha, \qquad \gamma_{0} = (E' + E)/2\sqrt{EE'}, \qquad \gamma_{1} = AkT/2\sqrt{EE'}$$
The a_{k}^{ℓ} satisfy the recursion formulas
$$a_{0}^{\ell+1} = -\frac{\ell}{\ell+1} a_{0}^{\ell-1}$$

$$a_{k}^{\ell+1} = \frac{2\ell+1}{\ell+1} a_{k-1}^{\ell} - \frac{\ell}{\ell+1} a_{k}^{\ell-1}, \qquad 1 \le k \le \ell-1$$

$$a_{\ell}^{\ell+1} = \frac{2\ell+1}{\ell+1} a_{\ell-1}^{\ell}$$

$$a_{\ell+1}^{\ell+1} = \frac{2\ell+1}{\ell+1} a_{\ell}^{\ell}$$

k	0	1	2	3	4	5
0	1					
1	0	1				
2	-1/2	0	3/2			
3	0	-3/2	0	5/2		
4	3/8	0	-30/8	0	35/8	
5	0	15/8	ο	-70/8	0	63/8

The a_k^{ℓ} for $\ell \leqslant 5$ are given in the following table:

Next use the binomial expansion to obtain

$$(\gamma_0 - \gamma_1 \alpha)^k = \sum_{m=0}^k {k \choose m} \gamma_0^k (-\gamma_1)^{m-k} \alpha^{m-k}$$

Change index and insert

$$W_{\ell n} = (-\gamma_1)^n \sum_{j=0}^{\ell-n} b_{jn}^{\ell} \gamma_0^j$$

$$b_{jn}^{\ell} = {\binom{j+n}{n}} a_{j+n}^{\ell}$$

7-14

the second second

l	n n	0	1	2	3	4	5
0	0	1	,				
1	0 1	0 1	1				
2	0 1 2	-1/2 0 3/2	0 3	3/2			
3	0 1 2 3	0 -3/2 0 5/2	-3/2 0 15/2	0 15/2	5/2		
4	0 1 2 3 4	3/8 0 -15/4 0 35/8	0 -15/2 0 35/2	-15/4 0 105/4	0 35/2	35/8	
5	0 1 2 3 4 5	0 15/8 0 -35/4 0 63/8	15/8 0 -105/4 0 315/8	0 -105/4 0 315/4	-35/4 0 315/4	0 315/8	63/8

The b_{jn}^{ℓ} for $\ell \leq 5$ are given in the following table:

7.3.3 Tabulated $S(\alpha,\beta)$

The method of calculating the α moments is discussed in detail. The representation of $S(\alpha,\beta)$ is given in this section for a tabulated function and in Section 7.3.4 for an analytic function.

Assume that $S(\alpha,\beta)$ for two consecutive values of β are in storage. Denote the lower value of β by β_L , and the upper by β_H . Also given are initial and final energies, E' and E, such that $\beta = |E' - E|/kT$ lies between β_L and β_H . For both the upper and lower values of β , the scattering law $S(\alpha,\beta)$ and $y = ln[S(\alpha,\beta)]$ are evaluated on an α mesh defined by
$$\alpha_i = \alpha_0 \rho_0^{i-1}, \quad 1 \le i \le IALX$$

where ρ_0 , and IALX are preset constants. If E_{max} is the largest energy in the input and A is the mass used to define α , then α_0 is computed from

$$\alpha_{max} = 4E_{max} / AkT < \alpha_{IALX} = \alpha_0 \rho_0^{IALX-1}$$
$$\alpha_0 = \alpha_{max} / \rho_0^{IALX-2}$$

If $E_{max} = 1 \text{ ev}$, kT = 0.025 ev, IALX = 300, $\rho_0 = 1.03$ and A = 1, then $\alpha_{max} = 160$ and $\alpha_0 = 0.024$.

The upper and lower integration limits are computed from

 $\alpha_{L} = (E' + E - 2\sqrt{EE'})/AkT$ $\alpha_{H} = (E' + E + 2\sqrt{EE'})/AkT$

A low index, IL, is computed from

 $IL = 1 + \ln(\alpha_{\rm L}/\alpha_{\rm 0})/\ln(\rho_{\rm 0})$

so that $\alpha_{IL} \leq \alpha_L < \alpha_{IL+1}$. A value IL = 0 implies that $\alpha_L < \alpha_0$.

Similarly, a high index is computed from

IH = Smaller of [IALX-1, 1 + $\ln(\alpha_H/\alpha_0)/\ln(\rho_0)$]

so that $\alpha_{TH} \leq \alpha_H < \alpha_{TH+1}$, but does not fall outside the table.

Finally the values of $S(\alpha,\beta)$ for $\alpha_{IL} \leq \alpha \leq \alpha_{IH+1}$ and for the specific β are obtained by interpolation between the values given at β_{L} and β_{H} . Let ICØDE denote the interpolation code.

$$\begin{split} & \text{IC} \not \text{ODE} = 1, \ \text{S}(\alpha, \beta) = \text{S}(\alpha, \beta_{\text{L}}) \\ & \text{IC} \not \text{ODE} = 2, \ \text{S}(\alpha, \beta) = \text{S}(\alpha, \beta_{\text{L}}) + (\beta - \beta_{\text{L}})[\text{S}(\alpha, \beta_{\text{H}}) - \text{S}(\alpha, \beta_{\text{L}})]/(\beta_{\text{H}} - \beta_{\text{L}}) \\ & \text{IC} \not \text{ODE} = 3, \ \text{S}(\alpha, \beta) = \text{S}(\alpha, \beta_{\text{L}}) + \ln(\beta/\beta_{\text{L}})[\text{S}(\alpha, \beta_{\text{H}}) - \text{S}(\alpha, \beta_{\text{L}})]/\ln(\beta_{\text{H}}/\beta_{\text{L}}) \\ & \text{IC} \not \text{ODE} = 4, \ \ln[\text{S}(\alpha, \beta)] = \ln[\text{S}(\alpha, \beta_{\text{L}})] + (\beta - \beta_{\text{L}})\ln[\text{S}(\alpha, \beta_{\text{H}})/\text{S}(\alpha, \beta_{\text{L}})]/(\beta_{\text{H}} - \beta_{\text{L}}) \end{split}$$

 $IC\emptyset DE = 5, \ln[S(\alpha,\beta)] = \ln[S(\alpha,\beta_L)] + \ln(\beta/\beta_L)\ln[S(\alpha,\beta_H)/S(\alpha,\beta_L)]/\ln(\beta_H/\beta_L)$

If ICØDE = 3 or 5, and β_L = 0, ICØDE is automatically changed to 2.

The equations and logic given above are contained in subroutine KERC, statements 10-220.

7.3.4 Analytic $S(\alpha,\beta)$

Analytic formulas for the free gas or diffusive motion laws may be used to calculate $S(\alpha,\beta)$. The procedure is to evaluate the formulas on an α mesh so that the same numerical integration procedures can be used as are used for tabulated functions.

Let A' be the mass associated with the analytic formula. Then

 $\alpha_{\rm L} = (E' + E - 2\sqrt{EE'})/A'kT$ $\alpha_{\rm H} = (E' + E + 2\sqrt{EE'})/A'kT$

Define a new lower α mesh limit

$$\alpha_0^{\dagger} = \alpha_0 A / A^{\dagger}$$

and let

 $\alpha_1^{\dagger} = \text{Larger of } (\alpha_0^{\dagger}, \alpha_1)$

Define a new α mesh from

$$\alpha_i' = \alpha_0' \rho_0^{i-1}, \quad 1 \le i \le IALX$$

The analytic formulas are then evaluated on this mesh.

$$S(\alpha,\beta) = \frac{1}{\sqrt{4\pi\alpha}} \exp\left[-\frac{\alpha^2 + \beta^2}{4\alpha}\right]$$
 (Free Gas)

$$S(\alpha,\beta) = \frac{2d\alpha}{\pi} \left[c^2 + \frac{1}{4}\right] e^{2dc\alpha} K_1(x)/x$$
 (Diffusion)

$$x = \left[\left(c^2 + \frac{1}{4}\right) (\beta^2 + 4d^2\alpha^2)\right]^{1/2}$$

The equations and logic given above are contained in subroutine KERA, statements 10-290.

7.3.5 Short Collision Time Approximation to $S(\alpha,\beta)$

It is sometimes of interest to treat scattering systems accounting for scattering to energies of 3 to 5 ev. The analytic formulas of Section 7.3.4 may be used directly for these cases; however, the tabular $S(\alpha,\beta)$ scatterer rarely exceeds β values corresponding 1 to 2 ev energy transfers; hence it is not possible to generate scattering components to the higher energies. Provision is made to allow the tabular $S(\alpha,\beta)$ for a scatterer to be extended to larger energy transfers using the short collision time approximation.²

The utilization of the short collision time approximation requires specification of an effective moderator temperature for the scatterer. This temperature is defined by the equation

$$\frac{kT}{\hbar} = 1/2 \int_{0}^{\infty} f(\omega)\omega \coth \frac{\hbar\omega}{2kT} d\omega$$

where $f(\omega)$ is the generalized frequency spectrum, and $\hbar \omega = E_0 - E$ is the energy gained by the scattering system.

When the effective temperature for the scatter is specified, the short collision time approximation to $S(\alpha,\beta)$ is given by

$$S(\alpha,\beta,T,T_{eff}) = \frac{\frac{\beta}{e^2} - \frac{T}{4\alpha T_{eff}} (\alpha+\beta)^2}{\sqrt{4\pi\alpha T_{eff}/T}}$$

A mesh is chosen for β that spans the region between the maximum tabular β and that β value required to account for all energy transfers for the input energy mesh. If an effective temperature for the scatterer is not specified, the $S(\alpha,\beta)$ is assumed zero for all β above the maximum tabulated β .

The short collision time approximation is quite useful in extending the range of a scattering kernel to higher energies. There are, however, limitations in the range of energies over which it may be used. These are computer dependent limitations related to the number of significant digits a particular machine can carry, and to the type of interpolation that is used.

Examination of the short collision time approximation to $S(\alpha,\beta)$ above shows that for large β (\approx 200) the amplitude of $S(\alpha,\beta)$ for fixed α , T, and T_{eff} is small. Further, as β becomes

larger the $S(\alpha,\beta)$ can change by orders of magnitude for a fractional change in β . This leads to errors in interpolating between tabular sets of $S(\alpha,\beta)$ at β_L and β_H . Not only is the interpolation used important, but for a given interpolation method the machine word significance limits the accuracy. Ultimately these factors limit the energy range over which the short collision time approximation can be used, the exact limitations being computer dependent.

The best method for interpolation of the $S(\alpha,\beta)$ table generated at high β values would be a three- or four-point Lagrangian interpolation similar to that described in Section 7.2.1. However, the short collision time approximation is only used to extend the tabular (α,β) table and does not justify the more difficult interpolation that would be required to use the Lagrangian method. Instead an interpolation code of ICØDE = 4 is used as described in Section 7.3.3 as the better of the several two-point interpolation schemes. This allows the integration over α to be performed in the same manner as for the tabular $S(\alpha,\beta)$; however, the accuracy of the interpolation method places an upper limit on the energy to which it may be applied.

7.3.6 Basic α Integration

The integral extends from α_L to α_H , and since $S(\alpha,\beta)$ is tabulated, this α range extends over many tabulated points or panels. In this section integration over one panel is described, and in later sections how the results are to be summed over all panels is indicated.

A schematic of a typical panel is given below.

Let $y = \ln(S)$, and hence y is linear in α in the panel whose end points are (α_3, y_3) , (α_4, y_4) . The desired range of integration is (α_1, α_2) . If this panel were the starting panel, $\alpha_1 = \alpha_L$, $\alpha_2 = \alpha_4$; if it were a full panel, $\alpha_1 = \alpha_3$, $\alpha_2 = \alpha_4$; and if it were the last panel, $\alpha_1 = \alpha_3$, $\alpha_2 = \alpha_H$. Let

$$y = a + b\alpha$$

 $b = (y_4 - y_3)/(\alpha_4 - \alpha_3)$
 $a = y_3 - b\alpha_3$

and the required integral becomes

$$h_n = \int_{\alpha_1}^{\alpha_2} d\alpha \ \alpha^n e^{a+b\alpha}$$

Let

$$\overline{\alpha} = (\alpha_1 + \alpha_2)/2, \qquad x = (\alpha - \overline{\alpha})/\overline{\alpha}$$

 $\rho = \alpha_2/\alpha_1, \qquad \gamma = (\rho - 1)/(\rho + 1)$

Expand

$$\alpha^{n} = \overline{\alpha}^{n} (1+x)^{n} = \overline{\alpha}^{n} \left[1 + nx + \frac{1}{2} n(n-1)x^{2} + \frac{1}{6} n(n-1)(n-2)x^{3} + \dots \right]$$

Neglect the last term (and higher terms). The error involved is summarized in the following table.

Relative Error ($\times 10^5$)

<u>n</u>	$\rho = 1.02$	$\rho = 1.03$	$\rho = 1.04$	$\rho = 1.05$
3	0.1	0.3	0.8	1.6
4	0.4	1.4	3.2	6.2
5	1.0	3.4	8.0	15.6
6	2.0	6.8	16.0	31.2

Since the limitations $\rho \leqslant 1.03$ and $n \leqslant 5$ are used in the code, the accuracy is $3.4\,\times\,10^{-5}$.

Define $y = b\overline{\alpha}x$

 $c = b\overline{\alpha}\gamma$

$$\begin{split} h_n &:= S_1 \alpha_1^{n+1} G_n(c, \rho) \\ G_n(c, \rho) &= \left(\frac{\rho+1}{2}\right)^{n+1} \left[\gamma F_0(c) + n \gamma^2 F_1(c) + \frac{1}{2} n(n-1) \gamma^3 F_2(c) \right] \\ F_k(c) &= \frac{e^c}{c^{k+1}} \int_{-c}^{c} dy \ y^k e^y \\ F_0(c) &= \frac{1}{c} \left(e^{2c} - 1\right) \\ &= 2e^c \left(1 + \frac{1}{6} c^2\right), \quad c \leqslant 0.20 \\ F_1(c) &= \frac{1}{c} \left(e^{2c} + 1\right) - \frac{1}{c} F_0(c) \\ &= \frac{2}{3} ce^c \left(1 + \frac{1}{10} c^2\right), \quad c \leqslant 0.20 \\ F_2(c) &= \frac{1}{c} \left(e^{2c} - 1\right) - \frac{2}{c} F_1(c) \\ &= \frac{2}{3} e^c \left(1 + \frac{3}{10} c^2\right), \quad c \leqslant 0.20 \end{split}$$

Then

where the approximate expression is accurate to 3.3×10^{-5} if $c \le 0.20$.

Two subroutines are used to calculate $G_n(c,\rho)$. GNCR calculates $G_n(c,\rho)$ from the above formulas and is used to calculate end panels. For intermediate panels $\rho = \alpha_4/\alpha_3 = \rho_0$, which is a constant for all intermediate panels. Thus, $G_n(c,\rho_0)$ is actually a function only if c and ρ_0 can be tabulated for rapid evaluation. Subroutine GNC sets up tables of $G_n(c,\rho_0)$ at c' = ±0.04(k-1), k = 1, 100. Three-point quadratic interpolation is used to obtain intermediate values. The combination of three-point quadratic interpolation and $\Delta c = 0.04$ leads to an error less than 3×10^{-5} (the error is approximately $1/2 ~ (\Delta c)^3$).

7.3.7 Summation of the α Moments

.

The quantities needed in Section 7.3.1 to calculate the kernels are the moments

$$H_{n} = \int_{\alpha_{I}}^{\alpha_{H}} d\alpha \ \alpha^{n} S(\alpha, \beta)$$

where $S(\alpha,\beta)$ and $y = \ln[S(\alpha,\beta)]$ at fixed β are tabulated at the points α_i . The region between tabulated points is called a "panel."

Formulas for the integrals over one panel were developed in Section 7.3.6. These formulas are applied to the panels shown in the illustration above. Thus, the summation for all panels is

$$H_n = \sum_{I=IL}^{IH} h_n^I$$

The following cases are to be considered.

Starting Panel (I = IL)

$$h_{n}^{IL} = S_{IL}^{b(\alpha_{L} - \alpha_{IL})} \alpha_{L}^{n+1} G_{n}^{(c,\rho)}$$

$$\rho = \alpha_{IL+1} / \alpha_{L}$$

$$b = (y_{IL+1} - y_{IL}) / (\alpha_{IL+1} - \alpha_{IL})$$

$$c = \frac{1}{2} b (\alpha_{IL+1} - \alpha_{L})$$

If IL = 0, α_L lies below the limits of the table. In this region $S(\alpha,\beta)$ is assumed to vary like α^k , where k and the constant of proportionality are determined from the first two tabulated points.

$$S(\alpha,\beta) = S_1(\alpha/\alpha_0)^k, \quad k = (y_2 - y_1)/\ln(\rho_0)$$
$$h_n^0 = \frac{S_1}{n+k+1} \left[\alpha_x^{n+k+1} - \alpha_L^{n+k+1} / \alpha_0^k \right]$$

where α_X is the smaller of α_0 and α_H .

Intermediate Panel

$$h_{n}^{I} = S_{I} \alpha_{I}^{n+1} G_{n}(c, \rho_{0})$$

 $c = \frac{1}{2} (y_{I+1} - y_{I})$

End Panel

$$h_{n}^{I} = S_{IH} \alpha_{IH}^{n+1} G_{n}(c, \rho)$$

$$\rho = \alpha_{H} / \alpha_{IH}$$

$$b = (y_{IH+1} - y_{IH}) (\alpha_{IH+1} - \alpha_{IH})$$

$$c = \frac{1}{2} b (\alpha_{H} - \alpha_{IH})$$

The equations and logic described above are contained in subroutines KERC and KERA, statements 300-450.

7.4 CROSS SECTION CALCULATION

7.4.1 General Method

The cross sections are defined by

$$\sigma_{\ell}(E') = \int_{0}^{\infty} dE \sigma_{\ell}(E' \rightarrow E)$$

The final energy integration mesh is determined by the β mesh used to tabulate $S(\alpha,\beta)$ and is independent of the input energy mesh. Again, the E space is represented by a discrete set of points and the region between points is called a "panel." Three different types of panels are considered.

7.4.2 Method for Small β

The region near $\beta = 0$ contributes most heavily to the cross section and may contain a singularity. Consider the panel bounded by $\beta_L = 0$ and β_H for the case where the neutron gains energy (upscattering).

In this region of small β the scattering law varies like α^k , where $k \approx 1$ for bound motion, $k \approx -1/2$ for gas motion, and $k \approx -1$ for diffusive motion. The P_g(μ) can be expanded in powers of α so that the scattering kernel will contain terms like

$$I = \int_{\alpha_{L}}^{\alpha_{H}} d\alpha \quad \alpha^{k+\ell} = \frac{1}{k+\ell+1} \left[\alpha_{H}^{k+\ell+1} - \alpha_{L}^{k+\ell+1} \right], \quad k+\ell+1 \neq 0$$

=
$$\ln(\alpha_{\rm H}/\alpha_{\rm L})$$
, $k+\ell+1 = 0$

Define a dimensionless velocity $x = \sqrt{E/kT}$. Then

$$\alpha_{\rm L} = \frac{1}{\rm A} (x - x')^2$$
$$\alpha_{\rm H} = \frac{1}{\rm A} (x + x')^2$$

and the integral above will be proportional to

$$I_{m} = \frac{1}{m} [(x+x')^{m} - (x-x')^{m}]$$

m = 2(k+l+1), m \neq 0

or

$$I_0 = \ln \left| \frac{x + x^{\dagger}}{x - x^{\dagger}} \right|, m = 0$$

Considering the possible values of k and ℓ , the possible values of m are m = 0, 1, 2, 3,

Referring to the above diagram, let

$$x_{0} = \sqrt{E'/kT}$$

$$x_{4} = \sqrt{\beta_{H} + E/kT}$$

$$\Delta = x_{4} - x_{0} \qquad y = (x-x_{0})/\Delta$$

$$x_{1} = x_{0} + 1/8\Delta \qquad y_{1} = 1/8 \qquad y_{0} = 0$$

$$x_{2} = x_{0} + 1/4\Delta \qquad y_{2} = 1/4 \qquad y_{4} = 1$$

$$x_{3} = x_{0} + 1/2\Delta \qquad y_{3} = 1/2$$

Let H(E) represent $\sigma_{\ell}(E' \rightarrow E)$ for a fixed E' and L, and H_1 , H_2 , H_3 , H_4 represent H(E) at the points x_1 , x_2 , x_3 , x_4 . The approximation to the true function is

$$H(y) = \frac{a}{\ln \frac{1}{2}} \ln(y) + b + cy + dy^{2}$$

which corresponds to taking m = 0, 1, 2, 3 in the discussions above. The coefficients are selected by fitting H(y) to the points H_1 , H_2 , H_3 , H_4 . The results are:

$$d = \frac{32}{9} (-2H_1 + 5H_2 - 4H_3 + H_4)$$

$$c = 4(4H_1 - 9H_2 + 6H_3 - H_4)$$

$$b = \frac{1}{9} (-80H_1 + 164H_2 - 88H_3 + 13H_4)$$

$$a = \frac{1}{3} (8H_1 - 14H_2 + 7H_3 - H_4)$$

Next calculate the integral over the panel.

$$I = \int_{E'}^{E'+Tk\beta_{H}} dEH(E) = 2Tk\Delta \int_{0}^{1} dy (x_{0} + y\Delta)H(y)$$

= $2kT\Delta x_{0} \left(\frac{a}{1n \ 2} + b + \frac{1}{2}c + \frac{1}{3}d\right)$
+ $2kT\Delta^{2} \left(\frac{a}{4 \ 1n \ 2} + \frac{1}{2}b + \frac{1}{3}c + \frac{1}{4}d\right)$
= $2kT\Delta x_{0} (0.58791H_{1} - 0.58440H_{2} + 0.84776H_{3} + 0.14873H_{4})$
+ $2kT\Delta^{2} (0.07291H_{1} - 0.12758H_{2} + 0.39712H_{3} + 0.15755H_{4})$

In the case where the neutron loses energy (downscattering) redefine $\Delta = x_0 - x_4$ so that Δ and y is positive. The integration formula can again be used by changing the sign of the second term. If $E'-Tk\beta_H < 0$, x_4 and H_4 are set to 0.

7.4.3 Method for Intermediate β

A second type of integration scheme is used for intermediate values of $\beta.$ Again, consider upscattering.

Using the same notation as before,

Xì	$= \sqrt{\beta_L + E'/kT}$	Уı	=	0
Х 3	= $\sqrt{\beta_{\rm H} + E'/kT}$	У2	Ħ	1/2
X2	$= x_1 + 1/2\Delta$	Уз	=	1
Δ	$= x_3 - x_1$	у	=	$(x-x_1)/\Delta$

Assume that

$$H(y) = a + by + cy^2$$

where the coefficients are obtained by fitting H(y) to the points H_1 , H_2 , and H_3 . Thus,

 $a = H_1$ $b = -3H_1 + 4H_2 - H_3$ $c = 2(H_1 - 2H_2 + H_3)$

Calculate the integral over the panel.

$$I = \int_{E'+kT\beta_{L}}^{E'+kT\beta_{H}} dEH(E) = 2kT\Delta \int_{0}^{1} dy(x_{1} + y\Delta)H(y)$$

= $2kT\Delta x_{1}(a + \frac{1}{2}b + \frac{1}{3}c) + 2kT\Delta^{2}(\frac{1}{2}a + \frac{1}{3}b + \frac{1}{4}c)$
= $\frac{1}{3}kT\Delta x_{1}(H_{1} + 4H_{2} + H_{3}) + \frac{1}{3}kT\Delta^{2}(2H_{2} + H_{3})$

In the downscattering case, redefine $\Delta = x_1 - x_3$ so that Δ and y are positive. The integration formula given above can again be used by changing the sign of the second term. If E'-kT β_L < 0, the integral is ignored. If E'-kT β_H < 0, x_3 and H_3 are set to zero.

7.4.4 Method for Large β

A third type of integration scheme is used for large values of β . Again consider upscattering.

Assume that

$$H(E) = e_{g}^{a+bE}$$

$$b = \ln(H_{2}/H_{1})/(E_{2} - E_{1})$$

$$a = \ln(H_{1}) - bE_{1}$$

The integral over the panel is given by

$$I = \int_{E_1}^{E_2} dEH(E) = (E_2 - E_1) (H_2 - H_1) / \ln(H_2 / H_1)$$

If $\varepsilon = (H_2 - H_1)/H_1$ and $|\varepsilon| \leq 0.05$, use

I =
$$(E_2 - E_1)H_1/(1 + \frac{1}{2}\varepsilon + \frac{1}{3}\varepsilon^2)$$

which is accurate to 3.3×10^{-5} .

In the downscattering case, reverse E_1 and E_2 . If $E_2 < 0$, set $E_2 = 0$, assume H(E) is linear, and

 $I = \frac{1}{2} E_1 H_1$

Difficulties may arise with this third type of integration scheme since Legendre moments may be negative. If both H_1 and H_2 are negative, exponential integration is used with $|H_1|$ and $|H_2|$, and the answer set negative. If H_1 and H_2 are of opposite sign, a linear form is used.

$$I = \frac{1}{2} |E_2 - E_1| (H_1 + H_2)$$

The equations and logic described in this section are contained in subroutines FEINT and FEINA.

7.4.5 Tabulated $S(\alpha,\beta)$

All three of the preceding integration formulas are used for tabulated $S(\alpha,\beta)$ in subroutine FEINT. The β limits are those specified in the tabulation. The first formula (log + quadratic) is used in the first panel (β near zero). The second formula (quadratic) is used in the next three panels, and the last formula (experimental) is used in the remaining panels. It would be better to provide an automatic switch between the quadratic and exponential formulas, but a suitable switching criterion has yet to be found. If switching on the value of β rather than the panel number is desired, statement 200 in FEINT should be changed.

Since the tabulated scattering law may lead to structure in the kernel, it is not safe to apply a convergence criterion to stop the integration. Therefore, all panels specified for the tabulation are used.

7.4.6 Analytic $S(\alpha,\beta)$

Only the first (log + quadratic) and third (exponential) integration formulas are used for analytic scattering law in subroutine FEINA since the behavior is nearly exponential except near $\beta = 0$. The panel limits are selected in the following way. If $x = \sqrt{E/kT}$, it has been found in practice that a $\Delta x = 0.1$ is a reasonable mesh spacing for integrating a hydrogen gas kernel. A characteristic multiplier of x in the free gas kernel is $2\sqrt{A}/(A+1)$, and starting Δx is

 $\Delta x = 0.2\sqrt{A}/(A+1)$

where A is the mass associated with the analytic law. This value is used for both free gas laws and diffusive motion laws, but its adequacy for the latter case has yet to be established.

If $x' = \sqrt{E'/kT}$, the limits of the first panel are then

 $x' \leq x \leq x' + \Delta x$ (Upscattering)

 $x' \ge x \ge x' - \Delta x$ (Downscattering)

and the first (log + quadratic) integration formula is used.

For the remaining panels, the width is uniformly expanded by 5%. If k is the panel number, Δx_k is the width and x_k is the lower bound,

$$\Delta x_{k} = 1.05 \Delta x_{k-1}$$
$$x_{k} = x_{k-1} + \Delta x_{k-1}$$

The third (exponential) integration formula is used for these panels.

Since the analytic functions are monotonically decreasing on either side of the peak at $\beta = 0$, a convergence criterion can be specified and the integration terminated. Consider first the upscattering part of the isotropic kernel which will be decaying exponentially for large β .

Assume that the panel shown above is the last calculated and that the current value of the integral is I. If

$$b = \ln (H_2/H_1)/(E_2 - E_1)$$

then the integral from E_2 to infinity is estimated to be

$$I_{1} - I = -H_{2}/b$$

If $|H / bI| \leq 10^{-5}$, and if b < 0, the integral is assumed to have converged, the quantity H_2/b is added to the integral, and the integration terminated. This test is not made until the fifth panel has been done. The integration is also terminated if more than 200 panels are required to integrate the upscattering part.

The same method is applied to the downscattering part, but here b > 0.

TEST PROBLEM 2

Problem 2 is an example of generating a scattering kernel for H bound in H_2O using the short collision approximation to extend the tabular $S(\alpha,\beta)$ mesh to 3.5 ev. The energy mesh for this problem contains 15 groups and was chosen to provide a short illustrative problem rather than for physical reasons. Input cards and printed output are shown below.

TEST PROBLEM 2 INPUT CARDS

H BOUND I	N H20 - 29	6 DEG K -	ENERGY MES	H TO 3.5 E	۷		TST2	10
6007	1002	123456.	296.0	1440.0	3	ļ	TST2	20
1	1	0	0	0	0	0	TST2	30
5	0	0	0	C	0		TST2	40
0	0	l o	0	· 2	-1	-1	TST2	50
0	0	3	-1	2			T ST 2	60
4	-2	2				l	TST2	70
15	1	1 1	1	0.00005	MESH TO 3.5	EV	TST 2	80
1	15	3.5				[TST2	90

A-7

1. A. A. A.

TEST PROBLEM 2 OUTPUT

FLANGE	II (VERSION	71-1)				
F BUUN	D IN H20 - 29	O DEG K - EN	ERGY MESH TO	3.5 EV		
TAPE LA	BELED 6C07	ENCF/8 NG	. 10C2	CUTPLT FID	123456. 108 SHORT CELLISION 14	AS ASTRENTING
IEMPERA	IUKE 296.000 SEC (0≖NG. 1:	TKELVINJ TYFS)	EPPECIIVE IE	MPERAIURE F	-OR SHORT CELEISION 14	40.0JINELVINI
LINKI	LINK2 LINK3	LINK4 LINK	5 LINK6 LI	NK7		
1 MAX LEG EATA RE	ENDRE ORDER	= 5 0	0	0		
	LPDD =	0				
LAHS	= 01111 = 0 1045	0				
L FISS	= C LPAUS=	0				
LTCT	= 2 LPTUT=	-1				
	LPTR =	-1				
LELAS	= O LPEL =	U LRSCT= 0	1			
1 50 41	.= 3 LPIN = [= 2 (PSC ==	-1				
LTSL	= 4 LPTSL=	-2 LENC = 2				
ENERGY	AND VELUCITY	MESH - MESH	TC 3.5 EV			
NEG≕ GROUP	15 NEVT=1	METH=1 EV	L≂ C₂0C00500 ⊾∈I6⊬T - F) - BEUNEARV	V BOUNDARY	
				0.0000500	0.0444554	
1	0.1167149	2.1478443	C.2333299	0 2222700	3 6371057	<i>2.</i>
2	0.3500448	3.7196455	C.2333300	0.2333799	5.0511051	
_				0.4667099	4.2949991	
3	0.5833745	4.8019028	0.2333300			
4	0 9167049	5 6916106	0 2223300	0.1000398	5.2601852	
-	010101040	210010170	0.23333000	0.9333698	6.0738840	
5	1.0500345	6.4423075	C.2333297			
,		7 17:2004	6 2222200	1.1666994	6.7907724	
6	1.2833643	1.1222086	6.2333298	1-4000292	7.4388914	
7	1.5166941	7.7426338	0.2333298	204000272	10.000014	
				1.6333590	8.0349007	
8	1.7500238	8.3169041	0.2333298	1 6444007	9 5994530	
9	1.9833536	8.8540049	0.2333298	1.0000000	0.0090000	
				2.1000135	9.1106892	
10	2.2166834	9.3603382	0.2333298			
3.1	2 4500132	0 8464525	0 2222209	2.3333483	9.6034994	
**	2.400132	3.0400222	0.2333290	2.5666780	10.0722246	
12	2.6833429	10.2985907	0.2333298			
• •				2.8000078	10.5200872	
13	2.9166727	10.7370148	C.2333298	2 0222274	10 0496460	
14	3.1500025	11.1582270	0.2333298	31055516	19 • 77 7070V	
				3.2666674	11.3629780	
15	3.3833332	11.5641069	0.2333326	2 5000000	11 7417000	
				3.5000000	TT*10T1282	

A-8

والكناء فمخ بالغرار

LIBRARY TAPE LABELED 6007 SCATTERING LAW AND CRCSS SECTIONS FOR H20(1002) AND D20(1004)

MATERIAL DESCRIPTION THERMAL SCATTERING LAW CATA COMPUTED AT BNL USING GA CODE GASKET USING INCOFERENT APPROX WITH EXPERIMENTAL ROTATIONAL FREQUENCY BAND ACCORDING TO FAYNCOD FLUS TWO DISCRETE VIBRATIONAL MODES. DATA TABULATED FOR 8 TEMPERATURES \$296,350,400,450,500,600,800, 1000 DEG K

123456. H BOUND IN H20 - 296 CEG K - ENERGY MESH TO 3.5 EV

CROSS SECTIONS AT T= 296.CO K

GRP	E(EV)	ABSORPTION	INELASTIC	ELASTIC	SCATTER ING	TOTAL	TRANSPORT
1	0.116715	0.0	0.32463E 02	0.0	0.32463E 02	0.32463E 02	0.213418 02
2	C.350C45	0.0	0.24720E C2	0.0	0.24720E 02	0.247208 02	0.13107E 02
3	0.583375	0.0	0.22214E 02	0.0	0.22214E 02	0.222145 02	0.107528 02
4	0.816705	0.0	C.21425E C2	0.0	0.21425E 02	C.21425E C2	0.96716E 01
5	1.050035	0.0	0.20995E 02	0.0	0.20995E 02	0.20995E 02	0.897858 01
6	1.283364	0.0	0.20815E 02	0.0	0.20815E 02	0.20815E 02	3.86260 € 01
7	1.516694	0.0	C.20542E 02	0.0	0.20542E 02	0.20542E 02	0.82242E 01
8	1.750024	0.0	0.20591E 02	0+0	0.20591E 02	C.20591E 02	0.81999E 01
9	1.983354	0.0	C.20352E C2	0.0	0.203528 02	0.20352E 02	0.763538 01
10	2.216683	0.0	C.20347E 02	0.0	0.20347E 02	0.20347E 02	0.76733E 01
11	2.450013	0.0	0.20323E C2	0.0	0.20323E 02	0.20323E 02	0.7575dE 01
12	2.683343	0.0	0.20325E 02	0.0	0.20325E 02	C.20325E 02	0.754425 01
13	2.916673	0.0	C.20325E 02	0.0	0.20325E 02	0.20325E 02	0.75160E 01
14	3.150002	0.0	0.20325E 02	0.0	0.20325E 02	C.20325E 02	0.74859E 01
15	2.383333	0.C	C.20323E 02	0.0	0.20323E 02	0.20323E 02	0.7 45538 01

123456. H BOUND IN H20 - 296 DEG K - ENERGY MESH TO 3.5 EV

INELASTIC LEGENDRE CROSS SECTIONS AT T= 296.00 K

GRP	E(EV)	SIGMA C	SIGMA 1 (MU-BAR)	SIGMA 2	SIGMA 3	SIGMA 4	SIGMA 5
1	0.116715	0.32463E J2	0.11122E 02 (0.34260)	0.28390E 01	0.639238 00	0.15849E 00	0.642288-01
2	0.350045	0.24720E 02	C.11613E C2 (0.46977)	0.39132E 01	0.95205E 00	0.15079E 00	0.47613E-01
З	0.583375	0.22214E 02	0.11462E C2 (0.51597)	0.42402E 01	0.11940E Čl	0.218285 00	-0.108595-01
4	G.E16705	0.21425E C2	C.11753E C2 (0.54858)	0.45927E 01	0.13231E 01	0.26467E 00	-0.97763E-02
5	1.050035	0.20995E 02	0.12016E 02 (0.57235)	0.47720E 01	0.13444E C1	0.214125 00	-0.272548-01
6	1.283364	0.20815E 02	0.12189E 02 (0.58560)	0.49465E 01	0.13274E 01	0.139248 00	-0.14367E 00
7	1.516694	0.205428 02	0.12318E C2 (0.59964)	0.50379E 01	0.12853E 01	0.67272E-31	-0.12482E 01
8	1.750024	0.20591E 02	C.12391E 02 (0.60178)	0.50937E 01	0.12697E 01	-0-92039E-03	-0.19073E 00
9	1.983354	0.20352E 02	0.12517E 02 (0.61501)	0.51268E 01	0.12256E 01	-0.60116E-01	-0.222215 00
10	2.216683	0.20347E 02	0.12674E C2 (0.62288)	0.523548 01	0.11819E 01	-0.109485 00	-0.22411E 00
11	2.450013	0.20323E 02	0.12748E 02 (0.62724)	0.53383E 01	0.11364E 01	+0.23651E 00	-0.30276E 00
12	-2-683343	0.20325E 02	C.12780E 02 (0.62882)	C.53839E 01	0.11239E 01	-0.33067E 00	-0.369935 00
13	2,916673	0.20325E 02	C.128C9E C2 (0.63022)	0.53837E 01	0.11122E 01	-0.38896E 00	-0.444835 0)
14	3.150002	0.20325E 02	0.12839E 02 (0.63168)	C.53744E 01	0.10921E C1	-0.42362E 00	-0.49651E 00
15	2.383333	0.20323E C2	C.12867E 02 (0.63315)	0.53718E 01	0.106518 01	-0.44801E 00	-0.515755 00

123456. H BOUND IN H20 - 296 DEG K - ENERGY MESH TO 3.5 EV

LEGENDRE SCATTERING CROSS SECTIONS AT T= 296.00 K

GRP	E(EV)	SIGMA O	SIGMA 1 (MU-BAR)	SIGMA 2	SIGMA 3	SIGMA 4	SIGMA 5
1	0.116715	0.32463E 02	0.11122E 02 (0.34260)	0.28390E 01	0.63923E CO	0.15849E 00	0.642285-01
2	0.350045	0.24720E 02	0.11613E C2 (0.46977)	0.39132E 01	0.95205E 00	0.15079E 00	0.47613E-01
3	C.583375	0.22214E 02	0.11462E C2 (0.51597)	0.42402E 01	0.11940E C1	0.21828E 00	-0.108595-01
4	0.816705	0.21425E 02	C.11753E O2 (0.54858)	0.45927E 01	0.13231E 01	0.26467E 00	+0.97763E+32
5	1.050035	0.20995E 02	C.12016E 02 (0.57235)	0.47720E 01	0.13444E C1	0.21412E 00	-0.272546-01
6	1.283364	0.2C815E 02	0.12189E C2 (0.58560)	0.49465E 01	0.13274E 01	0.13924E 00	-0.14360E 00
7	1.516694	0.20542E 02	0.12318E C2 (0.59964)	0.500798 01	0.12853E 01	0.672725-01	-0.12482E 00
8	1.750024	0.20591E 02	C.12391E 02 (0.6C178)	0.509378 01	0.12697E 01	-0.920398-03	-0.19073E 00
9	1.983354	0.20352E 02	0.12517E C2 (0.61501)	0.51268E 01	0.12256E 01	-0.60116E-01	-0.222218 00
10	2.216683	0.20347E 02	0.12674E 02 (0.62288)	0.52354E 01	0.11819E 01	-0.10948E 00	-0.22411E 03
11	2.450013	0.20323E 02	C.12748E 02 (0.62724)	0.53383E 01	0.11364E 01	-0.23651E 00	-0.30276E 00
12	2.683343	0.20325E 02	0.12780E 02 (0.62882)	0.53839E 01	0.11239E 01	-0.33067E 00	-0.36993E 00
13	2.916673	0.20325E 02	0.12809E 02 (0.63022)	0.53837E 01	0.111228 01	-0.38896E 00	-0.44483E 00
14	3.150002	0.20325E 02	C.12839E 02 (0.63168)	0.53744E 01	0.10921E 01	-0.42362E 00	-0.49651E 00
15	3.383333	0.20323E 02	C.12867E 02 (0.63315)	0.53718E 01	0.10651E 01	-0.44801E 00	-0.515755 00

52,515

123456. H BOUND IN H2C - 296 DEG K - ENERGY MESH TO 3.5 EV L= O SCATTERING KERNEL NORMALIZED TO SIGMA INELASTIC GROUP 1 INITIAL E= 0.1167149 L= 0 1 C.13911E 03 GROUP 2 INITIAL E= 0.3500448 L= C 1 0.54962E 02 2 C.50976E C2 L= 0 GROUP 3 INITIAL E= 0.5833745 1 C.28683E 02 2 C.36392E 02 3 0.30126E 02 4 INITIAL E= C.8167048 L= C 0.20947E 02 2 0.237C7E C2 GROUP 3 C.26C51E 02 4 0.21113E 02 1 0.20947E 02 GROUP 5 INITIAL E= 1.05CC345 UP 5 INITIAL E= 1.05CC345 L= 0 1 0.16349E 02 2 0.18904E C2 3 0.18704E 02 4 0.2C265E 02 5 0.15754E 02 GROUP 6 INITIAL E= 1.2833643 L= 0 2 0.15431E C2 3 0.15630E 02 4 0.15390E 02 5 0.16581E 02 6 0.12865E 02 1 0.13312E 02 INITIAL E= 1.5166941 GROUP 7 1.5166941 L= C 2 C.13060E C2 1 0.11184E 02 7 C.10258E C2 3 0.13183E 02 4 0.13259E 02 5 0.13063E 02 6 0.14031E 02 GROUP 8 INITIAL E= 1.7500238 L= 0 2 0.11290E C2 3 0.11449E 02 4 0.11452E C2 5 C.11503E 02 6 0.11343E G2 8 C.94305E 01 1 C.96221E G1 7 C.12160E O2 P 9 INITIAL E= 1.9833536 L= 0 1 0.83133E 01 2 0.98956E C1 3 0.10078E 02 4 0.10130E 02 5 0.10115E 02 6 0.101555 02 7 C.10021E 02 8 C.10730E C2 9 0.77872E 01 GROUP E= 2.2166834 L= C 2 0.86389E C1 8 C.69738E C1 GROUP 10 INITIAL E= 2.2166834 3 0.89597E 01 4 0.90387E 01 5 0.90738E 01 6 0.90552E 01 9 0.96002E 01 10 0.71567E 01 1 C.76169E 01 7 C.90883E 01 GROUP 11 IP 11 INITIAL E= 2.4500132 L= C 1 0.68895E 01 2 C.81592E C1 3 0.79112E 01 4 C.81250E 01 5 C.81848E 01 6 0.82141E 01 7 C.81954E 01 8 0.82240E 01 9 0.81242E 01 10 C.86859E 01 11 0.63878E 01 INITIAL E= 2.4500132 GROUP 12 INITIAL E= 2.6833429 1 0.62890E 01 2 0.74476E C1 3 0.75662E 01 4 0.72410E 01 5 0.74246E 01 6 0.74756E 01 7 C.75020E 01 8 0.74843E 01 9 0.75096E 01 10 0.74211E 01 11 0.79306E 01 12 0.58143E 01 GROUP 13 2.9166727 L= 0 2 0.68503E 01 3 0.69589E 01 4 0.69740E 01 5 0.66673E 01 6 0.68331E 01 8 0.69030E 01 9 0.68865E 01 10 0.69093E 01 11 0.68298E 01 12 0.72962E 01 INITIAL E= 2.9166727 1 0.57848E 01 0.68789E 01 13 C.53376E 01 GROUP 14 INITIAL E= 3.1500025 L= C 1 0.53555E 01 2 C.63416E C1 3 0.64420E 01 4 0.64556E 01 5 0.64590E 01 6 0.61756F 01 7 0.63281E 01 8 0.63655E C1 9 0.63523E 01 10 0.63770E 01 11 0.63977E 01 12 0.63257E 01 13 G.67558E 01 14 C.49302E C1 GROUP 15 INITIAL E= 3.3833532 L= C 1 C.49855E 01 2 C.59033E 01 3 C.59965E 01 4 C.60089E 01 5 C.60118E 01 6 C.60137E 01 7 C.57506E 01 8 C.58923E C1 9 C.59509E 01 10 C.59519E 01 11 C.59376E 01 12 C.59567E 01 13 C.589C7E 01 14 C.62898E 01 15 0.45793E 01

A-10

123456. H BOUND IN H20 - 296 DEG K - ENERGY MESH TO 3.5 EV L= 1 SCATTERING KERNEL NORMALIZED TO SIGMA INELASTIC GROUP 1 INITIA 1 0.47663E 02 1 INITIAL E= C.1167149 L= 1 GROUP 2 INITIAL E= 0.3500448 L= 1 1 0.77751E 01 2 C.41991E C2 GROUP 3 INITIAL E= 0.5833745 L= 1 1 0.18757E 01 2 C.18846E C2 3 0.28398E 02 GRBUP 4 INITIAL 1 C.18054E 01 INITIAL E= 0.8167048 L= 1 054E 01 2 C.98100E C1 3 0.17600E 02 4 0.21154E 02 GROUP 5 INITIAL E= 1.0500345 L= 1 2 C.71220E C1 3 0.10912E 02 4 0.15312E 02 5 0.16815E 02 1 0.13369E 01 GROUP 6 INITIAL 1 G.94828E 00 6 INITIAL E= 1.2833643 L= 1 2 C.52089E C1 3 0.83541E 01 4 0.10400E 02 5 0.13327E 02 6 0.14032E ^2 GROUP 7 INITIAL E= 1.5166941 1.5166941 L= 1 2 C.40385E C1 3 0.64444E 01 4 0.83011E 01 5 0.95869E 01 6 0.11730E 02 1 0.73688E 00 7 C.11953E 02 GROUP 1 0.60130E 00 7 C.10447E 02 3 0.52078E 01 4 0.66499E 01 5 0.78964E 01 6 0.87807E 01 GROUP 9 INITIAL E= 1.9833536 L= 1 2 C.26864E C1 3 0.43142E 01 4 0.55269E 01 5 0.65045E 01 6 0.74094E 01 8 C.54045E C1 9 0.51817E 01 1 0.56208E 00 7 0.80535E 01 GROUP 10 INITIAL E= 2.2166834 1 0.84568E 00 2 0.22971 L= 1 2 0.22971E C1 3 0.36289E 01 4 0.46697E 01 5 0.55216E 01 6 0.62367E 01 8 0.74152E C1 9 0.85453E 01 10 0.82294E 01 7 C.69269E 01 GROUP 11 INITIAL 1 C.72739E 00 2.450C132 L= 1 2 0.21157E C1 3 0.31057E 01 4 0.39948E C1 5 0.47407E 01 6 0.53830E 01 8 0.64775E C1 9 0.68589E 01 10 0.78259E 01 11 0.74716E 01 INITIAL E= 2.4500132 7 0.59315E 01 E= 2.6833429 L= 1 2 0.18451E 01 3 0.27937E 01 4 0.34456E 01 5 0.41110E 01 6 0.46835E 01 8 0.56248E 01 9 0.60687E 01 10 0.63734E 01 11 0.72162E 01 12 0.67880E 01 GROUP 12 INITIAL E= 2.6833429 1 C.63431E 00 7 0.51896E 01 GROUP 13 INITIAL E= 2.5166727 L= 1 1 0.55949E 00 2 0.16277E 01 3 0.24644E 01 4 0.31315E 01 5 0.35752E 01 6 0.41076E 01 7 0.45658E 01 8 0.49772E 01 9 0.53313E 01 10 0.56999E 01 11 0.59479E 01 12 0.66932E 01 13 C.62166E 01 GROUP 14 INITIAL E= 3.15CC025 L= 1 1 C.49837E 00 Z 0.14498E C1 2 0.14498E C1 3 0.21951E 01 4 0.27893E 01 5 0.32885E 01 6 0.35998E 01 8 0.44207E C1 9 0.47629E 01 10 0.50567E 01 11 0.53582E 01 12 0.55730E 01 7 C.40430E C1 13 C.62400E 01 14 0.57379E C1 GRDUP 15 INITIAL E= 3.3633332 1 C.44762E 00 2 C.13022 E= 3.3633332 L= 1 2 0.13022E C1 3 0.19714E 01 4 0.25050E C1 5 0.29533E 01 6 0.33454E 01 8 0.39468E C1 9 0.42649E 01 10 0.45548E 01 11 0.48026E 01 12 0.50695E 01 7 0.35679E 01 14 C.58437E C1 15 0.53313E 01 13 0.52408E 01

مرجع والمراجع المتحد المتحد فأعرار المتحد والمتحدي

. . .

H BOUND IN H2C - 296 DEG K - ENERGY MESH TO 3.5 EV 123456. L= 2 SCATTERING KERNEL NORMALIZED TO SIGMA INELASTIC GROUP 1 INITIAL E= 0.1167149 L= 2 1 0.12170E 02 GROUP 2 INITIAL E= 0.2500448 L= 1 -C.68511E 01 2 0.23622E C2 L= 2 GROUP 3 INITIAL E= 0.5833745 L= 2 1 -C.36062E 01 2 0.15064E C1 3 0.20271E 02 GROUP 4 INITIAL E= 0.8167048 = 0.8167048 L= 2 2 -C.16166E C1 3 0.64396E 01 4 0.16943E 02 1 -0.20838E 01 1.0500345 L= 2 2 -0.17853E C1 3 0.18335E 01 4 0.79253E 01 5 0.14184E 02 GROUP 5 INITIAL E= 1.0500345 1 -G.17072E 01 GROUP 6 INITIAL E= 1.2833643 L= 2 1 -0.14625E 01 2 -0.20437E 01 3 0.45500E 00 4 0.36415E 01 5 0.81438E 01 6 0.12405E 02 GROUP 7 INITIAL E= 1.5166941 = 1.5166941 L= 2 2 -0.20194E C1 3 -0.46395E C0 4 C.19777E C1 5 0.44696E C1 6 0.79089E 01 1 -C.12334E 01 7 C.10823E 02 JP 8 INITIAL E= 1.7500238 L= 2 1 -C.10637E 01 2 -C.18945E 01 3 -O.88187E 00 4 C.82607E 00 5 0.28552E 01 6 0.48012E 01 7 C.75200E 01 8 0.96672E C1 GROUP INITIAL E= 1.9833536 L= 2 29E 00 2 -0.17796E C1 3 -0.10832E 01 4 C.18443E 00 5 0.16794E 01 6 0.33355E 01 109E 01 8 C.70931E C1 9 C.85901E 01 GROUP 9 1 -C.92929E 00 7 C.48809E 01 GROUP 10 INITIAL E= 2.2166834 2.2166834 L= 2 2 -0.16689E C1 3 -0.11904E 01 4 -0.21440E C0 5 0.95758E 00 6 0.22190E 01 8 0.48314E C1 9 0.66743E 01 10 0.78927E 01 1 -0.70540E 00 7 0.35811E 01 GROUP 11 2.4500132 L= 2 2 -0.13422E 01 3 -0.11676E 01 4 -0.47523E 00 5 0.46505E 00 6 0.14896E 01 8 0.36671E C1 9 0.47159E 01 10 0.62813E 01 11 0.73235E 01 INITIAL E= 2.4500132 1 -0.65132E 00 7 C.25522E 01 2.6833425 L= 2 2 -0.12898E 01 3 -0.11150E 01 4 -0.58291E 00 5 0.11949E 00 6 0.96306E 00 8 0.27510E C1 9 0.37090E 01 10 0.45685E 01 11 0.59197E 01 12 0.67859E 01 GROUP 12 INITIAL E= 2.6833429 1 -0.6C477E 00 7 C.18496E 01 GROUP 13 E= 2.9166727 L= 2 2 -0.12367E 01 3 -0.11349E 01 4 -0.67659E 00 5 -0.75545E-01 6 0.57691E 00 8 C.20899E 01 9 0.22615E 01 10 0.36802E 01 11 0.44075E 01 12 0.55896F 01 INITIAL E= 2.9166727 1 -0.56440E 00 7 0.13213E 01 13 0.62341E 01 INITIAL E= 3.1500025 L= 2 846E 00 2 -0.11846E C1 3 -0.11372E 01 4 -0.76467E C0 5 -0.24718E 00 6 0.32862E 00 096E 00 6 0.15767E C1 9 0.22469E 01 10 0.29136E 01 11 0.36208E 01 12 0.42434E 01 894E 01 14 0.57547E C1 GROUP 14 1 -0.52846E 00 7 C.92096E 00 13 C.52894E 01 E= 3.2833332 L= 2 2 -C.11343E 01 3 -O.11280E 01 4 -O.82305E 00 5 -O.38473E 00 6 0.11926E 07 8 C.11776E C1 9 0.17571E 01 10 0.23455E 01 11 0.29265E 01 12 0.35435E 01 14 0.50164E 01 15 0.53793E 01 GROUP 15 INITIAL E= 3.3833332 1 -0.49701E 00 7 C.64265E 00 13 C.4C817E 01

A-12

123456. H BOUND IN H2C - 296 DEG K - ENERGY MESH TO 3.5 EV L= 3 SCATTERING KERNEL NORMALIZED TO SIGMA INELASTIC GROUP 1 INITIA 1 0.27410E 01 INITIAL E= 0.1167149 L= 3 GROUP 2 INITIAL E= 0.3500448 L= 3 1 -0.34601E 01 2 C.75416E C1 GROUP 3 INITIAL E= 0.5833745 L= 3 1 -C.65714E 00 2 -0.55816E C1 3 0.11356E 02 1 -C.65714E 00 = 0.8167048 L= 3 2 -0.37313E 01 3 -0.15628E 01 4 0.11385E 02 GROUP 4 INITIAL E= 0.8167048 1 -C.41955E 00 5 INITIAL E= 1.0500345 GROUP 1 -0.43312E 00 GROUP 6 INITIAL E= 1.2833643 L= 2 1 -0.34192E CO 2 -0.23953E C1 3 -0.28946E 01 4 -0.12474E 01 5 0.29067E 01 6 0.96609E 01 GROUP 7 INITIAL E= 1.5166941 L= 3 1 -0.25539E 00 7 C.874C8E 01 2 -0.19624E 01 3 -0.25522E 01 4 -0.19891E 01 5 0.76413E-01 6 0.37495E 01 0P 8 INITIAL E= 1.7500238 L= 3 1 -0.20641E 00 2 -0.16170E 01 3 -0.25808E 01 4 -0.23592E 01 5 -0.10106E 01 6 0.10059E 01 7 0.41675E 01 8 0.80418E 01 GROUP 8 GROUP 9 INITIAL E= 1.9823536 L= 3 1 -0.18156E 00 2 -0.13751E C1 3 -0.22959E 01 4 -0.23711E 01 5 -0.16442E 01 6 -0.19981E 00 7 0.16312E 01 8 0.43459E C1 9 0.73465E 01 GROUP 10 2.2166834 L= 3 2 -0.11982E 01 8 G.20440E C1 INITIAL E= 2.2166834 3 -0.20575E 01 4 -0.22735E 01 5 -0.18785E 01 6 -0.96907E ^0 9 0.43879E 01 10 0.68493E 01 1 -0.26151E 00 7 C.42189E 00 GROUP 11 INITIAL 1 -0.22578E 00 2.4500132 L= 2 2 -0.11465E 01 3 -0.18307E 01 4 -0.21409E 01 5 -0.19483E 01 6 -0.13470E 01 6 0.88520E 00 9 0.23115E 01 10 0.43518E 01 11 0.63617E 01 INITIAL E= 2.450C132 7 -C.40134E 00 2.6833429 L= 3 2 -0.102488 01 8 0.557748-C1 GROUP 12 INITIAL E= 2.6833429 3 -0.16741E 01 4 -0.19616E 01 5 -0.19353E 01 6 -0.15400E 01 9 0.12261E 01 10 0.24798E 01 11 0.42711E 01 12 0.59809E 01 1 -C.19906E 00 7 -C.86239E 00 GROUP 13 INITIAL E= 2.5166727 L= 3 2 -C.92428E CC 3 -0.15362E 01 4 -0.18316E 01 5 -0.18334E 01 6 -0.16251E 01 9 0.41703E 00 10 0.14750E 01 11 0.25801E 0112 0.41658E 01 1 -0.178C8E 00 7 -C.11379E 01 8 -0.44744E CO 13 C.56423E 01 L= 3 GROUP 14 INITIAL E= 3.1500025 2 -0.83815E CC 3 -0.14146E 01 4 -0.17231E 01 5 -0.17719E 01 6 -0.15985E 01 8 -0.77455E CC 9 -0.1C193E 00 10 C.70038E 00 11 0.16550E 0112 0.26332E 01 1 -0.15803E 00 7 -0.12956E 01 13 C.40479E 01 14 G.53202E C1 GROUP 15 INITIAL E= 3.3833332 L= 3 2 -0.76368E 0C 3 -0.13060E 01 4 -0.16192E 01 5 -0.17085E 01 6 -0.16051E 01 8 -C.98303E CO 9 -C.45876E 00 10 0.18192E 00 11 0.92081E 0012 0.17837E 01 1 -0.14359E 00 8 -C.\$8303E CO 9 -C.45876E OO 14 C.39246E C1 15 0.50204E 01 7 -0.13320E 01 13 0.26535E 01

A-13

H BOUND IN H20 - 296 CEG K + ENERGY MESH TO 3.5 EV 123456. L= 4 SCATTERING KERNEL NORMALIZED TO SIGMA INELASTIC GROUP 1 INITIAL E= 0.1167149 L= 4 1 0.67952E 00 GROUP 2 INITIAL E= 0.3500448 L= 4 1 -0.22943E 00 2 0.87675E CC GROUP 1 0.51937E 00 GROUP 4 INITIAL E≠ C.8167048 C.8167048 L= 4 2 -C.13017E C1 3 -C.45023E 01 4 0.68063E 01 1 0.13253E 00 GROUP 5 INITIAL E= 1.0500345 L= 4 1 0.34614E-01 2 -0.78632E 00 3 -0.28542E 01 4 -0.26079E 01 5 0.71317E 01 INITIAL E= 1.2833643 L= 4 067E-01 2 -0.57052E CC 3 -0.21773E 01 4 -0.28171E 01 5 -0.91757E 00 6 0.70201E 01 GROUP 6 1 0.59067E-01 GROUP INITIAL E= 1.5166941 7 - 1.5166941 L= 4 2 -C.29068E CC 3 -0.17268E 01 4 -0.26242E 01 5 -0.21642E 01 6 0.31578E 00 1 0.70161E-01 C.67082E 01 INITIAL E= 1.7500238 1.75CC238 L# 4 2 -0.132C8E CC 8 G.63455E C1 GROUP 8 1 0.64205E-01 7 C.11665E 01 3 -0.12518E 01 4 -0.23373E 01 5 -0.24451E 01 6 -0.14140E 01 1.9833536 L= 4 2 -C.43994E-C1 3 -0.91891E 00 4 -0.19187E 01 5 -0.24249E 01 6 -0.20164E 01 8 C.17416E C1 9 0.6CC01E 01 GROUP 9 INITIAL E= 1.9833536 0.65486E-01 7 -C.74213E 00 GROUP 10 INITIAL E= 2.2166834 L≖ 4 1 -0.12828E-01 2 -0.51132E-C2 3 -0.67999E 00 4 -0.15671E 01 5 -0.21712E 01 6 -0.22289E 01 7 -0.15316E 01 8 -C.18867E CC 9 0.21256E 0110 0.57904E 01 GROUP 11 INITIAL E= 2.4500132 2.4500132 L= 4 2 -C.20008E 0C 3 -0.52531E 00 4 -0.12777E 01 5 -0.18987E 01 6 -0.21488E 01 8 -0.10723E C1 9 0.25162E 00 10 0.23780E 01 11 0.53872E 01 1 0.95343E-02 7 -0.19134E 01 GROUP 12 INITIA 1 0.81808E-02 INITIAL E= 2.6833429 L= 4 2 -0.13258E 00 3 -0.66538E 00 4 -0.16599E 01 5 -0.16405E 01 6 -0.19862E 01 8 -0.15659E 01 9 -0.66693E 0010 0.59632E 0011 0.25394E 0112 0.50754E 01 7 -0.19793E 01 GROUP 13 INITIAL E= 1 0.10554E-01 2.5166727 L= 4 2 -0.89321E-C1 3 -0.47731E 00 4 -0.10060E 01 5 -0.14136E 01 6 -0.17950E 01 8 -0.17433E C1 9 -0.12285E 0110 -0.32097E 00 11 0.86409E 0012 0.26374E 01 INITIAL E= 2.9166727 7 -0.19231E 01 13 C.48179E 01 GROUP 14 INITIAL 1 0.21356E-01 7 +G.18072E 01 INITIAL E= 3.150C025 L= 4 1356E-01 2 -0.52344E-C1 3 -0.37835E DD 4 -0.84459E 00 5 -0.12998E C1 6 -0.15948E 01 8072E 01 8 -0.17777E C1 9 -0.14863E 0110 -0.91930E 0011 -0.30812E-C112 0.10707E 01 13 C.269C8E 01 14 0.45924E 01 GROUP 15 INITIAL E= 3.3833332 1 0.13175E-01 2 -0.23712 l≖ 4 2 -0.23712E-01 3 -0.25685E 00 4 -0.71056E 00 5 -0.11342E 01 6 -0.14749E 01 8 -C.17321E C1 9 -0.15931E 01 10 -C.12326E 01 11 -0.64430E 00 12 0.21027E 00 14 C.27129E 01 15 0.44058E 01 7 -0.16496E 01 13 C.12296E 01

123456. H BOUND IN H20 - 296 DEG K - ENERGY MESH TO 3.5 EV L= 5 SCATTERING KERNEL NORMALIZED TO SIGMA INELASTIC GROUP 1 INITIAL E= 0.1167149 L= 5 1 0.27528E 00 GROUP 2 INITIAL E= 0.3500448 L= 5 0.22507E 00 2 -C.20508E-01 1 0.22507E 00 GROUP 3 INITIAL E= 0.5833745 = 0.5833745 L= 5 2 -0.19852E Cl 3 0.17025E 01 1 0.23697E 00 4 INITIAL E= 0.8167048 GROUP JP 4 INITIAL E= 0.8167048 L= 5 1 -0.42617E-02 2 C.5398CE CC 3 -0.38746E 01 4 0.32978E 01 GROUP 5 INITIAL E= 1.0500345 L= 5 1 G.17644E-01 2 0.26773E CC 3 -0.94176E 00 4 -0.36975E 01 5 0.42375E 01 GROUP 6 1 0.13150E-01 GROUP 7 INITIAL E= 1.5166941 L= 5 0.15668E-01 2 C.32190E CC 3 -0.16702E 00 4 -0.13954E 01 5 -0.22860E 01 6 -0.18150E 01 7 C.47911E 01 GROUP 8 INITIAL E= 1.7500238 1 0.42361E-01 7 -C.96716E 00 1.9833536 L= 5 2 0.28606E CO 8 -C.28494E CC GROUP 9 INITIAL E= 1.9833536 3 0.24981E 00 4 -0.44800E 00 5 -0.14856E 01 6 -0.20937E 01 9 0.45518E 01 0.58354E-01 7 -0.18260E 01 GROUP 10 INITIAL E= 2.2166834 2.2166834 L= 5 2 0.26530E CC 3 0.32415E 00 4 -0.16944E 00 5 -0.10105E 01 6 -0.18098E 01 8 -0.14454E C1 9 0.24738E 0010 0.47050E C1 1 -C.35715E-01 7 -C.20315E 01 INITIAL E= 2.4500132 GROUP 11 L= 5 0.65480E-01 2 0.157C9E CC 8 -C.18471E C1 **3** 0.34450E 00 4 0.24568E-01 5 -0.65991E 00 6 -0.14059E 01 9 -0.10716E 01 10 0.65719E 00 11 0.43606E 01 7 -C.19227E 01 GROUP 12 INITIAL E= 2.6833429 2.6833429 L= 5 2 C.17636E 00 1 0.27658E-01 3 0.17991E 00 4 0.12750E 00 5 -0.38932E 00 6 -0.10599E 01 7 -C.16282E 01 8 -C.18951E C1 9 -0.16085E 01 10 -C.73080E 00 11 0.97069E 00 12 0.42440E 01 2.9166727 L= 5 2 0.16079E 00 8 -0.17153E C1 GROUP 13 INITIAL E= 2.9166727 3 0.22637E 00 4 0.20386E-01 5 -0.21581E 00 6 -0.76654E 00 9 -0.17836E 0110 -0.13547E 0111 -0.43140E 0012 0.12094E 01 1 0.34557E-01 7 -0.13309E 01 13 C.40403E 01 INITIAL E= 3.1500025 L= 5 7747E-01 2 C.16118E CO 0537E 01 8 -0.14859E C1 GROUP 14 INITIAL 1 0.57747E-01 3 0.24731E 00 4 0.11578E 00 5 -0.23033E 00 6 -0.55396E 00 9 -0.17087E 01 10 -0.16271E 01 11 -0.11066E 01 12 -0.17364E 00 7 -0.10537E 01 13 C.13903E 01 14 0.38396E C1 GROUP 15 INITIAL E= 3.3833332 1 0.16474E-02 2 C.15289 L= 5 2 C.15289E CC 3 0.262CCE 00 4 0.18381E 00 5 -0.92698E-01 6 -0.49364E 00 8 -0.12467E CL 9 -0.15513E 0110 -0.16418E 0111 -0.14506E 0112 -0.67466E 00 14 0.15266E CL 15 0.37983E 01 7 - 0.830228 00 13 C.45866E-01

APPENDIX B - KERINT SAMPLE PROBLEM

A sample problem for the KERINT code is shown below. The problem is based on four-group scattering kernels up to P_3 Legendre order. Kernels are input at temperatures of 296, 350, and 400 degrees Kelvin. One output kernel is generated at a temperature of 320 degrees Kelvin using Lagrangian interpolation between the input temperature points. Input cards, printed output, and punched output are shown below.

KERINT TEST PROBLEM INPUT CARDS

			3 1	3	6	- 296	••0 3	50.0	400.0		
	320	•0									
0	1	4	296.0000							100.	1
0	1	1	1.5336E 03	0.0	0.0		0.0		0.0	100.	2
0	1	2	2.4722E 02	1.8678E 02	0.0		0+0		0.0	100.	3
0	1	3	2.9186E 01	'5.2174E 01	6.7203E	C 1	0.0		0.0	100.	4
0	1	4	1.9236E 01	3.2982E 01	3.7361E	01	4.8618	E 01	0.0	100.	5
8											
1	1	4	296.0000							100.	1
1	L	1	2.9430E 02	0.0	0.0		0.0		0.0	100.	2
1	1	2	-1.2089E 01	7.6304E 01	0.0		0.0		0.0	100.	3
1	1	3	-1.0711E 00	2.62998 00	4.9£55E	C1	0.0		0.0	100.	4
1	1	4	-1.3521E-01	2.0590E 00	2.2205E	01	3.59968	E 01	0.0	100.	5
8											
2	1	4	296.0000							100.	1
2	1	1	4.5001E 01	0.0	0.0		0.0		0.0	100.	2
2	1	2	-1.2712E 01	2.03558 01	0.0		0.0		0.0	100.	3
2	1	3	-6.4969E-01	-5.1351E 00	2.2647E	C1	0.0		0.0	100.	4
2	1	4	-4.8521E-01	-3.0207E 00	4.8136E	00	2.2087	E 01	0.0	100.	5
8											
3	1	4	296.0000							100.	1
3	1	1	7.4199E 00	0.0	0.0		0.0		0.0	100.	2
3	1	2	-2.8404E 00	4.2747E CO	0.0		0.0		0.0	100	3
3	1	3	1.1826E-01	-4.4959E-01	5.7110E	00	0.0		0.0	100.	4
3	1	4	-2.3636E-02	-6.2900E-01	-6.4328E	C C	1.53968	E 01	0.0	100.	5
a											

Ľ,

0	1	4	350+0000							100.	1
0	1	1	1.4080E 03	0.0	0.0		0.0		0.0	100.	2
0	1	2	2.4653E 02	1.8770E 02	C.C		0.0		0.0	100.	3
0	1	3	2.9252E 01	5.1996E 01	6.7547E	C1	0.0		0.0	100.	4
Ô.	ĩ	4	1.9211E 01	3.2953E 01	3.7650E	C1	4.8550E	01	0.0	100.	5
8											
ī	1	4	350.0000							100.	1
1	1	1	3.0660E 02	0.0	0.0		0.0		0.0	100.	2
ī	ĩ	-2	-1.1184E 01	7.6351E 01	0.0		0.0		0.0	100.	3
ī .	1	3	-1-0129E CO	2.6801E 60	4 . 9 E E BE	01	0.0		0.0	100.	4
ī	ī	4	-1.2940F-01	2.0733E 00	2.2170E	01	3.6067E	01	0.0	100	5
8	-	•		2000320 00				• -			
5	1	4	350,0000							100.	1
2	ī	i	5.4561E 01	0.0	0.0		0.0		0.0	100	2
2	î	2	-1.26865 01	2.0603E 01	0.0		0.0		0.0	100.	3
2	÷.	~	-6 00105-01	-5 1577E 00	2 24675	61	0.0		0.0	100.	4
2	Ť	6	-4.9544E-01	-3.0007E 00	4.9056F	00	2.1570E	01	2.0	100	5
4	*			· J.COUIL 00	1170300	00	2427101	.	2.0	1001	-
2	,		360 0000							100	1
2	1	7	1 06145 01	0.0	с с		0.0		0.0	1001	2
2	4	<u>.</u>	-2 92005 00	. V.U. 			0.0		0.0	100.	3
2	4	4	-2.83996 00	4.4041E UU	5 01035	00	0.0		0.0	100.	4
3	Ť	\$	9+6219E-02	-5.84300-01	2+8183E	00	0.0	~ 1	0.0	100	5
3	i	4	-1.95906-02	-0-31CAF-01	-0.30010	00	1+22020	01	0.0	100.	20
8										100	,
0	1	4	400.0000		~ ~					100.	1
0	ł	*	1.2827E 03	0.0	0.0		0.0		0.0	100.	2
0	1	2	2.4612E 02	1.8852E GZ	0.0		0.0		0.0	100.	د ،
0	1	3	Z.9270E 01	5.1778E 01	6.7862E	01	0.0		0.0	100.	4
0	1	4	1.9135E 01	3.2840E 01	3.7893E	01	4.84835	01	0.0	100.	2
8		_								1.00	
1	1	4	400+0000							100.	1
1	1	1	3.1859E 02	0.0	0.0		0.0		0.0	100.	2
1	1	2	-1.0127E 01	7.6318E 01	0.0		0.0		0.0	100.	3
1	1	3	-9.5205E-01	2.749CE 00	4.9E42E	C1	C C		0.0	100.	4
1	1	4	-1.1753E-01	2.0884E 00	2+2136E	01	3.6082E	01	0.0	100.	5
8											_
2	1	4	400+0000							100.	1
Ž.	1	1	6.4641E C1	0.0	0.0		0.0		0.0	100.	2
2	1	2	-1.2385E 01	2.0786E 01	0.0		0.0		0.0	100.	3
2	1	3	-7.2571E-01	-5.1586E 00	2•2726E	C1	0.0		0.0	100.	- 4
2	1	4	-4.8469E-01	-2.9712E 00	4.9812E	00	2.1855E	01	0.0	190.	5
8											
3	1	4	400.0000							100.	1
3	1	1	1.3269E 01	0.0	0.0		0.0		0.0	100.	2
3	1	2	-2.8343E 00	4.5947E 00	0.0		0.0		0.0	100.	3
3	1	3	7.3984E-02	-7.0395E-01	5.9C89E	00	0.0		0.0	100.	4
3	1	4	-2.7226E-02	-6.3372E-01	-6.1643E	00	1.5117E	01	0.0	100.	5
8											
9											

B-2

PRINTED OUTPUT FROM KERINT

9

ų,

L = 0 SCATTERING KERNEL FOR ZA = 100. AT T = 320.00 DEG K GROUP 1 L = 01 C.14790E 04 GROUP 2 L = 0 1 0.24688E 03 2 C.18719E 03 GROUP 3 L = 01 0.29221E 02 2 0.52102E C2 3 0.67356E 02 GROUP 4 L = 0 2 0.32981E 02 3 0.37493E 02 4 0.48588E 02 1 0.19232E 02 L = 1 SCATTERING KERNEL FOR ZA = 100. AT T = 320.00 DEG K GROUP 1 L = 1 1 C.29968E 03 $GROUP \quad 2 \quad L = 1$ 1 -C.11717E 02 2 0.76335E C2 $\mathsf{GROUP} = 3 \quad \mathsf{L} = 1$ 1 -0.10462E 01 2 C.26491E C1 3 0.49866E 02 $GROUP \quad 4 \quad L = 1$ 1 -0.13353E 00 2 0.20651E C1 3 0.22190E 02 4 0.36035E 02 L = 2 SCATTERING KERNEL FOR ZA = 100. AT T = 320.00 DEG K GROUP 1 L = 2 1 C.49080E 02 GROUP 2 L = 2 1 -0.12597E 02 2 C.2C472E C2 GROUP 3 L = 21 -0.66796E 00 2 -0.51479E C1 3 0.226728 02 GROUP 4 L = 2' 1 -0.48545E 00 2 -C.30133E 01 3 0.48558E 01 4 0.22036E 02 L = 3 SCATTERING KERNEL FOR ZA = 100. AT T = 320.00 DEG K GROUP 1 L = 3 1 0.88117E 01 GROUP 2 L = 3 1 -C.28409E 01 2 0.43651E 01 GROUP 3 L = 31 0.10872E 00 2 -C.51016E CC 3 0.57599E 01 GROUP 4 L = 31 -0.20262E-01 2 -0.62983E CO 3 -0.63799E 01 4 0.15341E 02

B-3

•

PUNCHED OUTPUT FROM KERINT

0	1	4	0.3200E 03							100.	1	
* 0	1	1	1.4790E 03	0.0	0.0		0.6		0.0	100.	2	
0	1	2	2.4688E 02	1.8719E 02	0.0		0.0		0.0	100.	3	
0	1	3	2.9221E 01	5.2102E 01	6.7356E	01	0.0		0.0	100.	4	
0	1	4	1.9232E 01	3.2981E 01	3.7493E	01	4 8588E	01	0.0	100.	5	
1	1	4	0.3200E 03							100.	1	
ī	ī	1	2.9968E 02	0.0	0.0		0.0		0.0	100.	2	
ī	1	2	-1.1717E 01	7.6335E 01	0.0		0.0		0.0	100.	3	
1	ī	3	-1.0462E 00	2.6491E 00	4.9866F	01	0.0		0.0	100.	4	
ī	ĩ	4	-1.3353E-01	2.0651E 00	2.2190E	01	3.6035E	01	0.0	100.	5	a.
2	ī	4	0.3200E 03		2022000	**	5400552	••		100	ĩ	
2	ī	i	4.9080E 01	0.0	0.0		0 - 0		0.0	100.	2	
2	ī	2	-1.2597F 01	2.0472E_01	0.0		0.0		0.0	100.	4	
2	î	2	-6.67965-01	-5 14766 00	2 24 125	01	0.0		0.0	100	Ĩ.	
5	1	1	-0.01901-01	-3 01335 00	2 0 2 0 72L	00	0.0	~1	0.0	100	Ţ	
2	-	~	-4+0040E-01	-3*01325 00	4.00000	00	2.20305	01	0.0	100.	2	
3		- 41	0.3200E 03							100 -	*	
3	1	1	8.8117E 00	0.0	0.0		0.0		0.0	100.	2	
3	1	2	-2.8409E 00	4.3651E 00	0.0		0.0		0.0	100.	3	
3	1	3	1.0872E-01	-5.1016E-01	5.7599E	00	0.0		0.0	100.	4	
3	1	4	-2.0262E+02	-6.2983E-01	-6.3759E	00	1.5341E	01	0.0	100.	5	

* U. S. GOVERNMENT PRINTING OFFICE: 1971-745546/3003

.

B-4

8. AUXILIARY CODE KERINT

8.1 INTRODUCTION

In Section 7.2.1 limitations on the temperature interpolation of $S(\alpha,\beta,T)$ were described. These restrictions were based on inaccuracies that arise in temperature interpolation due to rapidly changing values of $S(\alpha,\beta,T)$ and computer word length. Generally these restrictions allow accurate interpolations at any temperature only for energy meshes whose maximum energy transfer is <0.85 ev at room temperature. An example of such a dependence is shown in the following table for moderator H₂O (ENDF/B MAT = 1002).

Temperature,	Energy, ev						
<u> </u>	1.0	0.625	0.1	0.025			
296 ^a	46.141	47.718	71.485	111.53			
300	57,309	47.736	7 1.50 1	111.60			
310	62.153	47.767	71.546	111.80			
320	56.912	47.784	71.589	112.00			
330	51.536	47.796	71.633	112.20			
340	48.035	47.809	71.674	112.40			
350^{α}	46.235	47.823	71.718	112.61			

 P_0 Total Scattering Cross Section (barns) for Moderator H_2O (MAT = 1002)

 \overline{a} . A temperature at which $S(\alpha,\beta)$ is tabulated.

Some materials however have tabular $S(\alpha,\beta)$ data that correspond to larger energy transfer ($\cong 2 \text{ ev}$) at room temperature. For these materials the temperature interpolation methods used in FLANGE II will lead to significant errors in kernels and cross sections for energy group with energies >0.85 ev and temperatures between the tabulated temperature on the ENDF/B tape.

An alternative method of obtaining kernels at intermediate temperature is provided by the code KERINT. The restrictions on temperature interpolation do not apply to temperatures at which the $S(\alpha,\beta)$ are tabulated on the ENDF/B tape and it is possible to generate kernels with energy transfers limited only by the accuracy that can be maintained in the short collision time approximation (generally \cong 4.0 ev at room temperature). Several scattering kernels may be generated, therefore, at the temperature at which the $S(\alpha,\beta)$ is tabulated, then code KERINT will interpolate

the kernel directly at intermediate temperatures. Two-point and three-point temperature interpolations are provided with a choice of interpolation methods.

8.2 TEMPERATURE DEPENDENCE OF CROSS SECTIONS AND KERNEL ELEMENTS

Unlike the $S(\alpha,\beta)$, the scattering cross sections and kernel elements are smooth functions of temperature. A diagram of the temperature dependence of the P₀ scattering cross section for molecular H₂O (MAT = 1002) as a function of temperature for several energies is given below.

8-2

Similarly a diagram of the differential scattering cross section for scattering from 0.625 to 0.025 ev is shown below as a function of Legendre scattering order.

8-3

From these diagrams it is clear that two-point temperature interpolation of the kernels should be sufficient for molecular H_2O . Three-point temperature interpolation is probably better, however, for cases where Bragg scattering peaks may shift as a function of temperature (as is the case for ZrH, Be, BeO, and graphite).

8.3 INTERPOLATION CODES

Several possible interpolation codes are built into KERINT for both two- and three-point temperature interpolations. The two-point interpolation codes are described in Section 3.1 and summarized below and identified by flag ICODE.

8.3.1 Two-Point Interpolation Codes

ICØDE=1 $\sigma(T)$ linear in T

 $\sigma(T) = \sigma(T_1) + [\sigma(T_2) - \sigma(T_1)] [(T - T_1)/(T_2 - T_1)]$

 $ICØDE=2 \ln[\sigma(T)]$ linear in T

 $\sigma(T) = \sigma(T_1) + [\sigma(T_2) - \sigma(T_1)] [\ln(T/T_1)/\ln(T_2/T_1)]$

ICØDE=3 $\sigma(T)$ linear in ln(T)

 $\ln[\sigma(T)] = \ln[\sigma(T_1)] + \ln[\sigma(T_2)/\sigma(T_1)] [(T - T_1)/(T_2 - T_1)]$

 $ICØDE=4 \ln[\sigma(T)]$ linear in ln(T)

 $\ln[\sigma(T)] = \ln[\sigma(T_1)] + \ln[\sigma(T_2)/\sigma(T_1)] [\ln(T/T_1)/\ln(T_2/T_1)]$

Two three-point interpolation codes are available described below and identified by flag ICODE.

8.3.2 Three-Point Interpolation Codes

ICODE=5 Three-point least squares fit to form $\sigma(T) = Ae^{BT}$

$$\ln \sigma(T) = \frac{\left(\sum_{i=1}^{3} T_{i}^{2} - T \sum_{i=1}^{3} T_{i}\right) \left(\sum_{i=1}^{3} \ln[(\sigma(T_{i})]\right)}{\left(3 \sum_{i=1}^{3} T_{i}^{2}\right) - \left(\sum_{i=1}^{3} T_{i}\right)^{2}} + \frac{\left(3T - \sum_{i=1}^{3} T_{i}\right) \left(\sum_{i=1}^{3} T_{i} \ln[\sigma(T_{i})]\right)}{\left(3 \sum_{i=1}^{3} T_{i}^{2}\right) - \left(\sum_{i=1}^{3} T_{i}^{2}\right)^{2}}$$

<u>ICODE=6</u> Three-point Lagrangian to polynomial form $\sigma(T) = A + BT + CT^2$

$$\sigma(T) = (T-T_2) (T-T_3) \sigma(T_1) / (T_1-T_2) (T_1-T_3)$$

+ (T-T_1) (T-T_3) $\sigma(T_2) / (T_2-T_1) (T_2-T_3)$

+ $(T-T_1)(T-T_2)\sigma(T_3)/(T_3-T_1)(T_3-T_2)$

A comparison of the six interpolation codes is made in the next table for molecular H_2O (MAT = 1002) at E = 0.625 ev and T = 320°K. The values may be compared to the exact value of 47.784 barns shown in the table of Section 8.1. Temperatures at which kernels were generated were 296, 350, and 400°K.

ICODE	σ ₂ at 0.625 ev and 320°K	$\frac{\text{Correct-Interpolated}}{\text{Correct}} \times 100$
1	47.7647	0.040
2	47,7668	0.036
3	47.7647	0,040
4	47.7668	0.036
5	47.7636	0.042
6	47.7671	0.035

8.4 DESCRIPTION OF KERINT

KERINT contains a main program and four subroutines. The main program is divided generally into three functions: reading and checking input, reading and storing kernels using one scratch tape NSTA if required, and interpolating and punching the interpolated kernel.

8.4.1 Data Set Assignments

The following data sets are used and their values are stored in CØMMØN/TAPES/. Numbers are assigned in the main program.

NIN - System input = 5
NØUT - System output = 6
NPUN - System punch = 7
NTSA - Scratch data set (disk, drum, or tape) = 3

8.4.2 Error Stops

Errors are handled by subroutine ERR \emptyset R which prints a full message. These are the following:

- 1. "THE NUMBER OF INPUT TEMPERATURES IS LE O" Check the input cards and specify what temperature kernels will be read into the code.
- "THE NUMBER OF OUTPUT TEMPERATURES IS LE 0" No temperatures have been specified for kernels to be generated. Check input cards.
- 3. "NUMBER OF OUTPUT TEMPERATURES GT 20" Kernels may be generated at only 20 temperatures on output.
- 4. "INTERPOLATION CODE LE 0 OR GT 6" An incorrect interpolation code is specified in the input.
- 5. "END OF FILE OCCURRED ON THE READER BEFORE END OF INPUT" -More input kernels were expected than were in the input deck.
- "KERNELS HAVE INCONSISTENT NUMBERS OF GROUPS" A kernel was read specifying a different number of groups than the previous kernels.
- 7. "A KERNEL HAS A TEMPERATURE DIFFERENT FROM THE SPECIFIED TABULATED TEMPERATURES" - A kernel was read with a temperature that did not agree with those specified.

8. "TWO TEMPERATURES ARE IDENTICAL" - Two kernels specified as tabulated temperatures are identical.

8.4.3 Kernel Storage

Storage of a kernel for interpolation purposes presents a data handling problem. FLANGE II generates scattering kernels for emerginely meshes up to 200 points; however, because it generates only the downscattering part of the kernel this corresponds to 20,100 transfer elements for each Legendre order and temperature. For interpolation purposes it is desirable to store kernels for all Legendre orders and temperatures simultaneously to obtain all desired output temperatures from a single pass through the code. The storage necessary to do this for a 200-group energy mesh, P_5 Legendre kernels, and three-point temperature interpolation is 361,800 single precision words. This amount of fast core storage is not available; hence a system utilizing a single scratch data set (NSTA) is used.

All data are stored in a singly indexed array. This array gives values of the initial and final energy groups for which transfer elements are given. The array values are defined as

IN(I) = 1000*NI+NF (I=1,NUMB)

where IN(I) is the array value, NI is the initial group index, NF is the final group index, and NUMB is the number of array values for a given set of transfer matrices. The maximum value of NUMB is 20,100.

The transfer elements for a set of matrices by Legendre order and temperature are stored in pages of data, each page containing a fixed number of entries. If the Legendre order specified is LØRD and there are NKT temperatures (=2, or 3) a typical entry is diagrammed below.

For each entry in the IN(I) array there will be a segment of a data page as diagrammed above for the indicated initial to final group transfers. These are stored sequentially in the data pages starting with the first entry IN(1) to the last entry, IN(NUMB) each having length NOENT = (L \emptyset RD+1)*NKT. Each page of data can store JMAX(= 9600) words of data; hence, each page can store N \emptyset PP = JMAX/N \emptyset ENT entries.

The procedure to store the kernels then is the following: The IN(I) array and NUMB are set to zero. NSTA is rewound, data page NPAGE is set to 1, and the page values X(J) are set to zero. The first kernel is read in the format that FLANGE II punches. As each element is read, array IN(I) is checked to see if this transfer element has been read. If it has not been read, a new entry in IN(I) is created, the appropriate area is reserved in X(J), and data for the particular transfer element are stored by temperature and Legendre order. As each data page is filled up it is written to NSTA with the page number attached. The first kernel must reserve all data space, and care must be taken to assure that new transfer elements do not occur in subsequent kernels.

After the first kernel is read NSTA is rewound. Each subsequent kernel element is then read, the appropriate location in the data pages is determined, and data are stored by temperature and Legendre order. The method of location is as follows:

- Array IN(I) is searched until the proper initial and final energy groups are found. Designate this value IX.
- The page number on which the data entry resides is determined from IPAGE = IX/NØPP+1 where NØPP is the number of data entries/page.
- The proper page is brought into core from NSTA.
- The position of the entry on the page is determined from IPT = IX-(IPAGE-1)*NØPP.
- The first word of the entry on the page is determined from IWD = (IPT-1)*NØENT+1 where NØENT = (LØRD+1)NKT.

Each kernel element is stored in the above manner as it is read from a card.

8-8

8.5 INPUT/OUTPUT DESCRIPTION

8.5.1 Input

The input to KERINT contains 1 to 4 input cards plus scattering kernels for each Legendre order and temperature specified. The required data are as follows.

Number	<u>Columns</u>	Format	Mnemonic	Description
1	1-10	I10	NKT	Number of temperatures at which kernels are input (= 2 or 3)
	11-20	110	NT	Number of temperatures at which kernels will be interpolated (≤ 20)
	21-30	I10	LØRD	Highest Legendre order con- tained in input kernels (≼5)
	31-40	I10	ICØDE	Interpolation code (Section 8.3)
si	41-50	E10.0	T1	Temperature (°K) of first set of kernels
	51-60	E10.0	T2	Temperature (°K) of second set of kernels
	61-70	E10.0	Τ3	Temperature (°K) of third set of kernels
2-4		8E10.0	T(I)	NT temperatures at which kernels will be interpolated (°K)

The above cards are followed by $(L\emptyset RD+1)$ *NKT scattering kernels each corresponding to one Legendre order at one temperature (T1, T2, or T3). Each kernel is followed by a blank card with an 8-punch in Column 1 to signal the end of a kernel.

The last card of a problem is a blank card with a 9-punch in Column 1.

An example of an input deck for KERINT is shown in Appendix B.

8-9

8.5.2 Output

For each temperature T(I) specified on input a kernel for each Legendre order $P_0 \rightarrow P_{LØRD}$ will be punched in the format described in Section 5.3 for scattering kernels. A printout similar to that for FLANGE II will be produced for each kernel at each temperature. An example of this printout is shown in Appendix B.

9. REFERENCES

- Data Formats and Procedures for the ENDF Neutron Cross Section Library. Edited by M. K. Drake, Brookhaven National Lab., Upton, N. Y. USAEC Report BNL 50274 (T-601) (ENDF 102, Vol. I) (1970).
- 2. G. M. Borgonovi. Neutron Scattering Kernel Calculations at Epithermal Energies. USAEC Report GA-9950, General Atomic, Inc., San Diego, Calif. (1970).
- 3. J. E. Lynn. The Theory of Neutron Resonance Reactions. Chapter VII, Clarendon Press, Oxford (1968).
- B. J. Toppel, A. L. Rago, and D. M. O'Shea. MC² A Code to Calculate Multigroup Cross Sections. USAEC Report ANL-7318, Argonne National Lab., Ill. (1967).
- 5. D.M. O'Shea and H.C. Thacher. "Computation of Resonance. Line Shape Functions." Trave Am. Nucl. Soc. 6, 36 (Sime 1963).

EQN/bch/mp

APPENDIX A - FLANGE II SAMPLE PROBLEMS

Two sample problems are shown for use in checking the code and as illustrations of its use.

TEST PROBLEM 1

Problem 1 is an example of obtaining group-averaged cross sections with no scattering matrices being generated. The energy mesh for this problem is the standard 30-group THERMØS code mesh. The material is uranium-235 taken from ENDF/B-II (MAT = 1102 from tape 201). Input cards and printed output are shown below.

U-235	AT 0 201 1 1	DEG	K - M 1102 0 C	AT 1102 0.0	0	GRCUP 0.0	AVE	RAGED	CRCS	S SECTIONS 3			TST1 TST1 TST1 TST1 TST1	10 20 30 40
	1 0 30		-2 -2 0 2		002	1	-2 0 1	0.05	1 2	-1 -2 THERMOS V	MESH	- 2 1 1	FST1 FST1 FST1	60 70 80
0.1 0.1 0.1 0.19 0.50	,	0.1 0.1 0.22 0.57		0+1 0+1 0+12 0+255		0.1 0.1 0.13 0.25	5	0.1 0.1 0.14 0.34		0.1 0.1 0.145 0.39	0.1 0.1 0.165 0.445	1	TST1 TST1 FST1 FST1 FST1 TST1	90 100 110 120 130

TEST PROBLEM 1 INPUT CARDS

TEST PROBLEM 1 OUTPUT

.

FLANCE II (VERSION 71-1) *** U-235 AT O DEG K - MAT 1102 - GROUP AVERAGED CROSS SECTIONS ENDF/8 NU. 1102 GUTPUT FID ο. TAPE LABELED 201 TEMPERATURE 0.0 (KELVIN) EFFECTIVE TEMPERATURE FOR SHORT COLLISION 0.0 (KELVIN) LINKS LSED (O=NO, 1=YES) LINKI LINKZ LINK3 LINK4 LINK5 LINK6 LINK7 1 0 0 0 0 0 0 0 0 0 MAX LEGENDRE ORDER = 1 CATA REQUESTED -----LPDD = 0LPFP = 0LABS = 1LPABS=-2 LFISS = 1LPFIS=-2 LPTOT=+1 LPTR =-2 LTOT = 1 LELAS= 1 LPEL =-2 LRSCT= 0 LINEL= 0 LPIN ≠ G LSUAT= 2 LPSC =-2 LTSL = 0LPTSL= 0 LENC = 0 ENERGY AND VELOCITY MESH - THERMOS V MESH NEG# 30 NEVT=2 METH=2 EVL= C.0500000

GROUP	ENERGY	VELOCITY	WEIGHT	E BOUNDARY	V BOUNDARY
				0.0000632	0.0500000
1	0.0002530	0.0999999	0.005060	0.0005692	0.1499959
2	0.0010120	0.1999999	0.0010120		
з	0.0022770	0.2999998	0.0015180	0.0015812	0.2499999
,	0.00/0/00	0.3000000	0.000000	0.0030992	0.3499998
4	0.0040480	0.3444440	0.0020240	0.0051232	0.4499958
5	0.0063250	0.4999998	0.0025300	0.0076532	0.5499958
6	0.0091080	0.5999994	C.C030360		000477770
7	0.0123970	0.6999993	0.0035420	C.01C6892	0.6499997
0	0.01(1000	A. 70.0000	0.00/0/00	0.0142312	0.7499997
8	0.0161920	0.7999992	0.0040480	0.0182792	0.8499997
9	0.0204930	0.8999996	0.0045540	0 0000100	0 8409004
10	0.0253000	0.5999990	0.0050600	0.0220332	0.3499996
11	0.0306129	1.0000085	0-0055660	0.0278932	1.0499992
**	0.0300127			0.0334592	1.1499987
12	0.0364319	1.1999979	0.0060720	0.0395311	1,2499981
13	0.0427568	1.2999973	0.0065779		
14	0.0495878	1.3999968	C.CC7C839	0.0461091	1.3499975

	4			0.0531930	1.4499969
15	0.0569247	1.4999962	0.0075900	0.0607830	1.5499964
16	0.0651730	1.6049957	0.0089334	0.00000000	
17	0.0748471	1.7159555	0.0104437	0.0697163	1.6599960
1 0	0 0041314	1 64400EE	0 0101343	0.0801601	1.7799959
10	0.0001214	1.04499999	0.0121909	0.0522964	1.9099951
19	0.0991855	1.5755548	0.0140262	0.1063226	2.0499945
20	0.1139759	2.1224937	0.0155727	0.1010053	2.10/00/0
21	0.1312305	2.2774535	C.C190148	0.1218955	2.1949940
2.2	0 1524020	3 4546632	0.0236022	0.1409101	2.3599939
~ ~	0.1324023	207273732	0.0250022	0.1645123	2.5499935
23	0.1790117	2.6599932	0.0256110	0.1941233	2.7699928
24	0,2124051	2.8974924	0.0373862	0 11 5005	3.0260030
25	0.2546369	3.1724911	0.0473557	0.2313095	3.0249920
34	0 2021548	2 4966902	0.0600616	0.2788652	3.3199911
20	0.3081348	3.4033702	0.0000410	0.3389068	3.6599903
27	0.3759819	3.8549900	0.0760740	0.4149808	4.0499897
28	0.4618304	4.2724895	0.0962037	0.51110/4	
29	0.5702278	4.7474890	0.1213123	0.5111840	4.4747874
30	0 7066566	5.2840994	0.1524296	0.6324969	4.9999886
20	0.1000000	202043004	001927290	0.7849265	5,5699883

LIERARY TAPE LABELED 201 ENDF/B TAPE 201 (5/13/70)

MATERIAL DESCRIPTICN U-235 CSENG EVAL-SEP69 LECNARD,ALTER,LUBITZ %RE-EVAL AI-AEC-MEMU-12916 CIST-JANTO REV-APRTO * * * * * * URANIUM-235 VARIOUS INDIVIDUALS CONTRIBUTED TO TE EVALUATION OF THE CROSS SECTIONS FOR THIS MATERIAL

> B.R..LEGNARD 2BAW<- CROSS SECTIONS BELOW 1.0 EV H.ALTER AND C.L.DUNFORD- CROSS SETIONS ABOVE 15 KEV C.LUBITZ- THE ORIGINAL DATA SET 2MAT#1044< E.PENNINGTON- UNRESOLVED RESONANCE PARAMETERS AND THE FISSILE AND FERTILE TASK FORCE #JUNE-AUG.,1969<

MAT#1102 IS A PARTIAL RE-EVALUATION OF DATA IN MAT#1044 THE TOTAL AND ALL PARTIAL CROSS SECTIONS FOR NEUTRON ENERGIES BELOW 1.0 EV WERE PROVEDIED BY B.R.LECNARD, JR.&UNPUBLISHED MEMO TO CSEWG#AUG.1969<.

THE PARTIAL X-SEC WERE OBTAINED BY STARTING WITH DATA GIVEN IN MATH1044 AND MODIFYING THE SHAPE AND MAGNITUDE OF THESE DATA TO CONFORM TO THE 22CO M/SEC PARAMETERS %INCLUDING G FACTORS< THAT WERE OBTAINED DURING THE 1969 IAEA EVALUATION GROUP #SEE- HANNA ET AL, ATCMIC ENERGY REVIEW, VOL VII, NC.4, 1969<.

THE 2200 M/SEC PARAMETERS ARE TOTAL # 694.276 ELASTIC# 15.776 FISSICN# 580.200 N.GAMMA# 98.300 2.423 TOTAL #DELAYED PLUS PROMPT< NU # ALPHA # 0.16942 EΤΑ # 2.07196 sir. BELOW 1.0 EV DATA GIVEN IN FILE 3 % SMOOTH X-SEC<. BETWEEN 1.0 AND 64.5 DATA GIVEN AS SLEW RESOLVED RESONANCE PARAMETER PLUS BACKGROUND X-SEC IN FILE 3. BETWEEN 64.5 EV AND 24.8 KEV ALL DATA GIVEN IN FILE 2 %LRF#2, Energy dependent reduced neltron widths and fission widths<. 24.8 KEV ALL DATA GIVEN IN FILE 3. ABOVE * * BELCH 0.4 EV FISSION X-SEC BASED ON DATA OF B.R.LEONARDEFROM SCISRS TAPES AND THAT OF C.D.BOWMAN ET AL&UCRL-14605. N.GAMMA BASED ON ALPHA*FISSIUN, WHERE ALPHA TAKEN FROM GRAPH IN BNL-325 PAGE 92-235-33 #FOR ENERGIES BETWEEN 0.07 TO 0.4 EV<. BETWEEN 0.4 EV AND 3.0 KEV THE CAPTURE AND FISSION X-SEC BASED ON DATA OF G.DESAUSSURE ET AL%GRNL-RPI,1966<. FROM 3.0 KEV TO 15 KEV CAPTURE AND FISSION BASED ON EVAL. BY SCHMIDT&KFK-120, PART-II, 1962<. ABOVE 15 KEV ALL PARTIAL CROSS SECTIONS BASED ON EVAL. BY ALTER AND DUNFORCHAIS, #AI-AEC-MEMO-12916, JAN. 19705 *** NOTE* FISSION CROSS FROM EVAL. BY DAVEY 2N.S.E. 26,14521966< AND N.S.E. 32,35%1968<<..*** RESOLVED RESONANCE PARAMETERS OBTAINED BY SIMULTANEOUS FIT TO CAPTURE AND FISSIGN CROSS SECTION &CRNL-RPI,1966 DATA< A POTENTIAL SCATTERING X-SEC UF 10 BARNS WAS USED IN FIT. ×. * RECOMMEND KAPL CATA %NOT MAT#1044 DATA<, ENERGY DEPENDENT AVERAGE RESONANCE PARAMETERS WERE OBTAINED AND ARE INCLUDED IN FILE 2 AS LRU# 2, LRF # 2. * ENERGY DEPENDENCE OF NU TAKEN FROM KFK-120 PART-1 SIMPLE FISSION SPECTRUM USED T# 1.30 MEV AT THERMAL T%E< FRUM FURMULA BY TERRELL 3/2*T%E<#0.75 &0.65%NU%E<&1.0<**.5 YIELUS NORMALIZED FOR A SUM # 2.0000 * * ANGULAR DISTRIBUTIONS FOR ELASTIC SCATTERING FROM EVAL. BY #AIK MT#251,252,253 CALC. FRCM ANG. DISTR CATA ANG. DISTR. OF NEUTRONS FROM INELASTIC SCAT ASSUMMED TO BE ISOTROPIC IN C.M. SYSTEM DATA MUDIFIED TO CONFORM TO ENDF/B-II FORMATS #APRIL, 1970< INFINITE DILUTION RESONANCE INTEGRALS #ABOVE 0.5 EV< FISSIEN # 298.40 BARNS N,GAMMA # 142.40 EARNS ELASTIC # 165.60 BARNS INELASTIC LEVEL CROSS SECTION FROM EVAL. BY PARKER #AWRE C-82/63< * * * NOTE NOTE NCTE NOTE CROSS SECTION SHOULD BE COMPLTED FROM RESOLVED RESONANCE PARAMETERS IN FIVE EV INTERVALS, O TO 5, 5 TO 10, ETC. IN EACH INTERVAL USE ONLY RESONANCES IN THE ENCLOSING FIFTEN VOLT INTERVAL, I.E., -5 TO IC, O TO 15, 5 TO 20, ETC. USING ANY OTHER RECIPE PRODUCES SMALL INCENSISTENCY WITH DATA ON WHICH RESONANCE PARAMETERS ARE BASED. REXCEPTION--- USE NEGATIVE ENERGY RESONANCE UP TO 10 EV.< -----_ _ _ _ ----____

0. U-235 AT 0 DEG K - MAT 1102 - GROUP AVERAGED CROSS SECTIONS

NU=2+4	2300 T=	= 0.0 K	ζ.		
GRP	E(EV)	SIGMA AE	S SIGMA F	ISS ALPHA	ETA
1 0	·C00253	G.72417E	04 0.61593E	C4 0.17574	2.06084
20	.001012	0.36154E	04 0.30752E	04 0.17567	2.06095
з С	.002277	0.23995E	04 0.20414E	04 0.17545	2.06134
4 0	•CC4048	0.17930E	04 0.15256E	C4 0.17526	2.06167
5 C	.006325	0.14262E	04 0.12139E	04 0.17488	2.06234
60	.09108	0.11803E	04 0.100508	C4 0.17435	2.06327
7 0	.612397	0.10025E	04 0.85462E	03 0.17306	2.06554
8 C	.016192	0.86826E	03 0.741C9E	03 0.17161	2.06810
9 C	.020493	0.76308E	03 0.65197E	03 0.17042	2.07020
10 C	.025300	0.67835E	03 C.580C6E	03 0.16945	2.07191
11 0	.030613	0.6C859E	03 0.52070E	03 0.16879	2.07308
12 C	.036432	0.55C12E	03 0.47078E	C3 0.16855	2.07351
-13 C	.042757	0.50041E	03 0.42818E	0.16870	2.07325
14 C	.049588	0.45756E	03 0.39136E	03 0.16916	2.07243
15 0	.056925	0.42025E	03 0.359258	03 0.16979	2.07131
16 0	.C65173	0.38606E	03 0.32976E	C3 0.17073	2.06965
17 0	• 674847	0.35370E	03 0.30178E	C3 0.17204	2.06733
18 0	.086121	0.32352E	03 0.27594E	03 0.17389	2.06407
19 0	.099186	0.25682E	03 0.25230E	03 0.17644	2.05959
20 C	.113976	0.27283E	03 0.23079E	03 0.18217	2.04962
21 0	.131230	0.25C91E	03 0.21115E	C3 0.18831	2.03902
22 0	.152483	0.23251E	03 C.19397E	03 0.19871	2.02134
23 0	.179012	0.21943E	03 C.18C94E	C3 0.21270	1.99801
24 C	.212405	0.21772E	03 0.17636E	03 0.23449	1.96275
25 C	.254637	0.23265E	03 0.18648E	03 0.24759	1.94214
26 G	.308155	0.22448E	03 0.18155E	03 0.23651	1.95954
27 0	.375982	0.15344É	03 C.130C5E	63 0.17983	2.05368
28 C	.461830	0.10425E	03 0.92413E	02 0.12805	2.14795
29 0	.570228	0.78664E	02 C.71009E	02 0.10779	2.18723
30 C	.706657	0.65119E	02 0.59294E	02 0.09824	2.20625
	o. u	1-235 AT 0	DEG K - MAT	1102 - GROUP	AVERAGED CR
conss	SECTIONS	AT T C			

OSS SECTIONS

CRUSS SECTIONS AT T= 0.0 K

.

GRP	E(EV)	ABSORPTION	INELASTIC	ELASTIC		SCATTERI	NG	TOTAL		TRANSPOR	11
1	0.000253	0.72417E 04	0.0	0.1591CE 0	12	0.15910E	02	0.72573E	04	0.72576E	04
2	C.001012	0.36154E 04	0.0	0.15905E 0	2	0.15905E	02	0.36336E	04	0.36313E	04
з	0.002277	0.23995E 04	0.0	0.15898E 0	2	0.15898E	02	0.24153E	04	0.24154E	04
4	0.004048	0.17930E 04	0.0	0.15888E 0.	2	0.15888E	C2	C.18088E	04	0 .1808 8E	04
5	0.006325	0.14262E 04	0.0	0.15876E 0.	2	0.15876E	02	0.14420E	04	0.14421E	04
6	0.009108	0.11803E 04	C.O	0.15861E 0	2	0.15861E	02	0.11962E	04	0.11961E	04
7	C.C12397	0.1C025E 04	0.0	0.15844E 0.	2	0.15844E	02	0.10133E	04	0.10183E	04
8	0.016192	0.86826E 03	0.0	0.15824E 0	2	0.15824E	02	C.88411E	03	0.88404E	03
9	C.020493	0.76308E 03	0.0	0.15801E 0.	12	0.15801E	02	0.77900E	03	0.77884E	03
10	0.025300	0.57835E 03	C.O	0.15776E 0.	12	0.15776E	02	C.69428E	03	0∙69408E	03
11	0.030613	0.60859E 03	0.0	0.15749E 0	2	0.15749E	02	0.62439E	03	0.62429E	03
12	0.036432	0.55C12E 03	0.0	0.15719E 0	12	0.15719E	02	0.56586E	03	0.56580E	03
13	0.642757	0.50041E 03	0.0	0.15686E 0	2	0.15686E	02	0.51609E	03	0.51605E	03
14	0.049588	0.45756E 03	0.0	0.15652E 0	2	0.15652E	02	0.47324E	03	0.47317E	03
15	0.056925	0.42025E 03	0.0	0.15614E 0.	2	0.15614E	02	0.43587E	03	0.43582E	03
16	0.065173	0.38606E 03	G.G	0.15573E 0.	Z	0.15573E	02	0.40165E	03	0.40159E	03
17	C.C74847	0.35370E 03	0.0	0.15525E 0	2	0.15525E	02	C.36911E	03	0.36918E	03
18	C.C86121	0.32392E 03	0.0	0.15469E 0.	2	0.15469E	02	0.33936E	03	0.33935E	03
19	0.099186	0.29682E 03	0.0	0.15406E 0.	12	0.154C6E	02	0.31219E	03	0.31218E	03
20	0.113976	0.27283E 03	0.0	0.15336E 0.	2	0.15336E	02	0.28815E	03	0.28812E	03
21	0.131230	0.25091E 03	0.0	0.15253E 0.	2	0.152538	02	0.26606E	03	0.26612E	03
22	0.152483	0.23251E 03	0.0	0.15154E 0	2	0.15154E	02	0.24756E	03	0.24762E	03
23	0.179012	0.21943E 03	C.O	0.15032E 0	12	0.15032E	02	0.233528	03	0.234428	03
24	C.212405	0.21772E 03	0.0	0.14889E 0.	2	0.14889E	02	0.23203E	03	0.23256E	03
25	0.254637	0.23265E 03	0.0	0.14771E C.	2	0.14771E	02	0.247508	03	0.247376	03
26	C.308155	0.22448E 03	0.0	0.14753E 0	2	0.14753E	02	0.24465E	03	0.23920E	03
27	0.375982	0.15344E 03	0.0	0.14599E 0.	2	0.14599E	02	0.16695E	03	0.16799E	03
28	0.461830	0.10425E 03	0.0	0.14300E 0.	12	0.14300E	02	C.11760E	03	0.11851E	03
29	0.570228	0.78664E 02	0.0	0.13967E 0.	12	0.13967E	02	0,92230E	02	0.92591E	92
30	0.706657	0.65119E 02	0.0	0.13606E 0	2	0.13606E	02	0.78391E	02	0.78686E	02

0. U-235 AT O DEG K - MAT 1102 - GROUP AVERAGED CRUSS SECTIONS

ELASTIC LEGENDRE CRESS SECTIONS AT T= 0.0 K

GRP	E(EV)	SIGMA O	SIGMA 1	(MU-BAR)	SIGMA 2	SIGMA 3	SIGMA 4	SIGMA 5
1	0.000253	0.15910E 02	0.45517E-C1	(0.00286)	0.0	0.0	0.0	0.0
2	0.001012	0.159C5E C2	0.455C3E-01	(0.00286)	0.0	0.0	0.0	0.0
3	6.002277	0.15898E 02	C.45483E-01	(0.00286)	0.0	0.0	0.0	0.0
4	0.004048	0.15888E 02	0.45456E-01	(0.00286)	0.0	0.0	0.0	0.0
5	0.006325	0.15876E 02	0.454218-01	(0.00286)	0.0	0.0	0.0	0.0
6	0.09108	0.15861E 02	C.45378E-C1	(0.00286)	0.0	0.0	0.0	0.0
7	C.012397	0.15844E 02	0.45328E-01	(0.00286)	0.0	0.0	0.0	0.0
8	0.016192	0.15824E 02	0.45271E-C1	(0.00286)	0.0	0.0	0.0	0.0
9	0.020493	0.15801E 02	0.45207E-01	(0.00286)	0.0	0.0	0.0	0.0
10	0.025300	0.15776E 02	0.451358-01	(0.00286)	0.0	0.0	0.0	0.0
11	C.030613	0.15749E 02	0.45056E-01	(0.00286)	0.0	0.0	0.0	0.0
12	C.C36432	0.15719E 02	C.44970E-C1	(0.00286)	0.0	0.0	0.0	0.0
13	C.C42757	0.15686E 02	C.44877E-01	(0.00286)	0.0	0.0	0.0	0.0
14	0.049588	0.15652E C2	0.44778E-C1	(0.00286)	0.0	0.0	0.0	0.0
15	C.056925	0.15614E 02	0.44672E-01	(0.C0286)	0.0	0.0	0.0	0.0
16	0.065173	0.15573E C2	C.44553E-C1	(0.00286)	0+0	0.0	0.0	0.0
17	C.C74847	0.15525E 02	0.44417E-01	[0.00286]	0.0	0.0	0.0	0.0
18	0.086121	0.15469E 02	0.442578-01	(0.00286)	0.0	0.0	0.0	0.0
19	C.C99186	0.154C6E 02	C.44076E-01	10.002861	0.0	0.0	0.0	0.0
20	0.113976	0.15336E 02	C.43874E-C1	(0.00286)	0.0	0.0	0.0	0.0
∠1	0.131230	0.15253E 02	0.43638E-C1	(0.00286)	0.0	0.0	0.0	0.0
22	C.152483	0.15154E C2	C.43353E-C1	(0.(0286)	0.0	0.0	0.0	0.0
23	0.179012	0.15032E 02	0.43005E-01	(0.00286)	0.0	0.0	0.0	0.0
24	C.212405	0.14889E 02	0.425968-01	(0.00286)	0.0	0.0	0.0	0.0
25	C.254637	0.14771E 02	0.422588-01	(0.0286)	0.0	0.0	0.0	0.0
26	C.3C8155	0.14753E C2	0.422C6E-01	(0.00286)	0.0	0.0	0.0	0.0
27	0.375982	0.14599E 02	0.41768E-C1	(0.00286)	0.0	0.0	0.0	0.0
28	0.461830	0.14300E 02	0.40911E-01	(0.00286)	0.0	0.0	0.0	0.0 %
29	0.570228	0,13967E 02	C.39959E-C1	(0.00286)	0.0	0.0	0.0	0.0
30	C.7C6657	0.13606E 02	C.38926E-C1	(0.00286)	0.0	0.0	0.0	0.0

0. U-235 AT 0 DEG K - MAT 1102 - GROUP AVERAGED CROSS SECTIONS

LEGENLRE SCATTERING CROSS SECTIONS AT T= 0.0 K

GRP	E(EV)	SIGMA O	\$1GMA 1	(MU-BAR)	SIGMA 2	SIGMA 3	SIGMA 4	SIGMA 5
1	0.00253	0.15910E 02	C.45517E-C1	10.00236)	0.0	0.0	0.0	0.0
2	C.CG1C12	0.15905E 02	0.45503E-01	(0.0286)	0.0	0.0	0.0	0.0
3	0.002277	0.15858E 02	C.45483E-C1	(0.00286)	0.0	0.0	0.0	0.0
4	C.CC4048	0.15888E 02	0.45456E-01	(0.00286)	0.0	0.0	0.0	0.0
5	0.006325	0.15876E 02	0.45421E-C1	[0.00286]	0.0	6.0	0.0	0.0
6	0.009108	0.15861E 02	0.453788-01	(0.00236)	0.0	0.0	0.0	0.0
7	C.012397	0.158446 02	C.45328E-C1	(0.00286)	0.0	0.0	0.0	0.0
8	0.016192	0.15824E 02	0.45271E-01	(0.00286)	0.0	0.0	0.0	0.0
9	C.020493	0.158C1E 02	0.452C7E-01	(0.00286)	0.0	0.0	0.0	0.0
10	0.025300	0.15776E 02	0.45135E-01	(0.00286)	0.0	0.0	0.0	0.0
11	C.030613	0.15749E 02	0.45056E-C1	(0.00286)	0.0	0.0	0.0	0.0
12	C.C36432	0.15719E 02	0.44970E-01	(0.00286)	0.0	0.0	0.0	0.0
13	C.042757	0.15686E 02	C.44877E-C1	(0.00286)	0.0	0.0	0.0	0.0
14	0.049588	0.15652E 02	0.447788-01	(0.00286)	0.0	0.0	0.0	0.0
15	0.056925	0.15614E 02	C.44572E-C1	(0.00286)	0.0	0.0	0.0	0.0
16	0.065173	0.15573E C2	0.44553E+C1	[0.0286]	0.0	0.0	0.0	0.0
17	0.074847	0.155256 02	0.44417E-01	(0.00286)	0.0	0.0	0.0	0.0
18	0.686121	0.15469E 02	0.44257E-C1	(0.00286)	0.0	0.0	0.0	0.0
19	0.099186	0.154C6E 02	C.44076E-C1	(0.00286)	0.0	0.0	0.0	0.0
20	0.113976	0.15336E 02	C.43674E-01	(0.00286)	0.0	0.0	0.0	0.0
21	C+131230	0.15253E 02	0.43638E-01	(0.00286)	0.0	0.0	9.0	0.0
22	0.152483	0.15154E 02	0.43353E+C1	(0.00286)	0.0	0.0	0.0	0.0
23	0.179012	0.15032E 02	0.43005E-01	(0.00286)	0.0	0.0	0.0	0.0
24	C.212405	0.14889E 02	C.42596E-01	(0.00286)	0.0	0.0	0.0	0.0
25	0.254637	0.14771E 02	0.42258E-C1	(0.00286)	0.0	0.0	0.0	0.0
26	C.308155	0.14753E C2	C.422C6E-01	[0.00286]	0.0	0.0	0.0	0.0
27	C.375982	0.14599E 02	C.41768E-C1	(0.00286)	0.0	0.0	0.0	0.0
28	0.461830	0.14300E C2	0.40911E-01	(0.CC286)	0.0	0.0	0.0	0.0
29	C.570228	0.13967E 02	0.39959E-01	[0.00286]	0.0	0.0	0.0	0.0
30	0.706657	0.13606E 02	0.38926E-01	[0.0286]	0.0	0.0	0.0	0.0