DP-1278

ENDF-152

FLANGE II (Version 71-1)

A CODE TO PROCESS THERMAL NEUTRON DATA FROM AN ENDF/B TAPE

Savannah River Laboratory
Aiken, South Carolina

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Printed in the United States of America Available from

National Technical Information Service

U. S. Department of Commerce

5285 Port Royal Road
Springfield, Virginia 22151
Price: Printed Copy $\$ 3.00$; Microfiche $\$ 0.95$

FLANGE II (Version 71-1)

A CODE TO PROCESS THERMAL NEUTRON DATA FROM AN ENDF/B TAPE

by
Henry C. Honeck
Donald R. Finch

Approved by
H. C. Honeck, Research Manager
Computer Applications Division

October 1971
E.I. DU PORT DE NEMOURS \& COMPANY

SAVANNAH RIVER LABORATORY
AIKEN, S. C. 29801
CONTRACT AT (07.2).1 WITH THE
united states atomic energy commission

Abstract

The FLANGE II (Version 71-1) computer code processes data for smooth cross sections, resonance parameters, angular distributions, and thermal scattering law from an ENDF/B-II or ENDF/BIII data tape for use in thermal spectrum calculations. Options are available in the code to produce pointwise or group-averaged cross sections for up to 200 energy points or groups, and Legendre angular distributions up to P_{5} order. Resonance contributions in the thermal region are computed as infinitely dilute, Doppler broadened values. This report describes the theory, methods, application, and utilization of FLANGE II in creating thermal cross sections from ENDF/B-II and ENDF/B-III library data.

ACKNOWLEDGMENT

The original FLANGE II code was developed in 1966 by H. C. Honeck at the U. S. Atomic Energy Commission in Washington, D. C. with the assistance of Y. D. Naliboff and Dale Houston of Gulf General Atomics Corporation, San Diego, California. Several modifications and corrections to the original code were made by D. R. Finch between 1967 and 1970. Version 71-1 of FLANGE II contains new features by D. R. Finch with theoretical guidance for the short collision time approximation by G. M. Borgonovi of Gulf Energy \& Environmental Systems, Inc.

CONTENTS

Page

1. Introduction 1-1
2. Description of the Physics 2-1
2.1 Nomenclature 2-1
2.2 ENDF/B Input Tape 2-2
2.3 Input Energy Mesh 2-4
2.4 Cross Sections 2-4
2.5 Angular Distributions 2-5
2.6 Scattering Kernels 2-7
3. Numerical Procedures 3-1
3.1 Tabulated Functions 3-1
3.2 Interpolation Procedures 3-2
3.3 Energy Averaging of Cross Sections 3-3
3.4α Mesh for $S(\alpha, \beta)$ 3-4
3.5α Integration of $S(\alpha, \beta)$ 3-5
3.6 Final Energy Integration of the Kernel. 3-7
4. Description of Code 4-1
4.1 General Structure and Operation 4-1
4.2 Tape Assignments 4-1
4.3 Error Stops 4-2
5. Input/Output Description 5-1
5.1 Problem Definition Input 5-1
5.2 Input Energy Mesh 5-4
5.3 Output 5-11
Page
6. Detailed Description of Link 1 6-1
6.1 Overall Operation 6-1
6.2 File 1 Processing 6-6
6.3 File 2 Processing 6-7
6.4 File 3 Processing 6-12
6.5 File 4 Processing 6-13
6.6 Completing the Cross Section Set 6-15
7. Detailed Description of Link 2 7-1
7.1 Overa11 Operation 7-1
7.2 Storage Allocation 7-2
7.3 Calculation of the Scattering Kernels 7-12
7.4 Cross Section Calculation 7-24
8. Auxiliary Code KERINT 8-1
8.1 Introduction 8-1
8.2 Temperature Dependence of Cross Sections and Kernel Elements 8-2
8.3 Interpolation Codes 8-4
8.4 Description of KERINT 8-6
8.5 Input/Output Description 8-9
9. References 9-1
Appendix A - FLANGE II Sample Problems A-1
Appendix B - KERINT Sample Problem B-1

1. INTRODUCTION

This report describes the code FLANGE II (Version 71-1) developed to process data for thermal neutron cross sections, resonance parameters, angular distributions, and scattering law from the ENDF/B-II or ENDF/B-III library into multigroup cross sections and scattering kernels. Sections 1 through 5 of this report give a brief description of the code, the physical and numerical theory, and operating instructions. Sections 6 and 7 describe in detail the numerical procedures. Section 8 describes an auxiliary code for use with FLANGE IT.

FLANGE II is written in FORTRAN IV and is designed for use on a computer with about 40 K of fast core storage and 3 tapes (plus systems tapes). Larger core storages or disk memories can be easily used to increase the speed of the code. The code is designed to handle up to 200 energy groups and Legendre moments up to P_{5}.

The input data on the ENDF/B tape can be summarized as follows (only data needed for thermal calculations are listed here):

- v (neutrons/fission), radioactive decay data, fission product yields.
- Cross sections of the form $\sigma^{x}(E, T)$, where E is the neutron energy, T is the material temperature, and x denotes elastic, inelastic, scattering (elastic and inelastic), absorption, fission, total, or (n, γ).
- Angular distributions of the form $\sigma^{X}(E, \mu, T)$, where μ is the cosine of the scattering angle, and x denotes elastic, inelastic, or scattering.
- The thermal neutron scattering law, $S(\alpha, \beta, T)$, which is represented as a tabulated part plus analytic parts of the free gas or diffusive motion form.
- Resolved resonance parameters in the single or multilevel Breit-Wigner representation.

The user of FLANGE II supplies a group structure (energy mesh) and the desired temperature of the material. FLANGE II then computes, prints, and punches

$$
\begin{aligned}
& \sigma^{y}\left(E_{i}\right) \\
& \sigma_{\ell}^{x}\left(E_{i}\right) \\
& \sigma_{\ell}^{i n}\left(E_{i}+E_{j}\right)
\end{aligned}
$$

where ℓ denotes the order of the Legendre expansion; E_{i} and E_{j} are points on the user's energy mesh; y denotes absorption, fission, total, or transport; x denotes elastic, inelastic, or scattering; and in denotes inelastic. The cross sections $\sigma^{Y}\left(E_{i}\right)$ and $\sigma_{l}^{X}\left(E_{i}\right)$ may be either evaluated at the points in the input energy mesh or averaged over the input group structure. The scattering kernels $\sigma^{1 n}\left(E_{i} \rightarrow \mathrm{E}_{\mathfrak{j}}\right)$ are evaluated only at the input energy points. The diagonals of the kernels can be adjusted so that when they are integrated to yield a cross section, they yield the inelastic or elastic plus inelastic cross section. If $\sigma_{l}^{i n}(E)$ is not given on the ENDF/B input tape, a high accuracy integration can be done to compute it directly from the scattering law.

The code computes only Legendre moments of angular distributions. The code is written in the form of separate links, and additional links can be conveniently added. Later extensions of the code could be links to handle point angular distributions, special links to produce results of direct interest to experimentalists, and links for compressing large scattering kernels to few group kernels via a B_{ℓ} calculation.

2. DESCRIPTION OF THE PHYSICS

Symbol	Definition	Unit
E	Neutron energy	ev
E^{\prime}, E	Initial and final neutron energies	ev
E_{i}	Characteristic energy of the $i^{\text {th }}$ energy group	ev
$E_{i}^{\text {b }}$	Lower energy boundary of the $\mathrm{i}^{\text {th }}$ energy group	ev
W_{i}	Integration weight for the $i^{\text {th }}$ energy group	ev
σ (E)	Cross section	barns
$\mathrm{d} \sigma / \mathrm{d} \Omega$	Differential cross section	barns/steradian
$\mathrm{d}^{2} \sigma / \mathrm{d} \Omega \mathrm{dE}$	Differential cross section	barns/steradian-ev
μ	Cosine of the scattering angle in the laboratory system	
$\sigma(E, \mu)$	Differential cross section defined by $\sigma(E, \mu)=2 \pi d \sigma / d \Omega$	barns
$\sigma\left(\mathrm{E}^{\prime} \rightarrow \mathrm{E}, \mu\right)$	Differential cross section defined by $\sigma\left(E^{\prime} \rightarrow E, \mu\right)=2 \pi d^{2} \sigma / d \Omega d E$	barns/ev
$\begin{aligned} & \mathrm{t}, \mathrm{a}, \mathrm{~s}, \mathrm{f}, \mathrm{in}, \\ & \mathrm{e} 1, \mathrm{tr}, \gamma \end{aligned}$	Superscripts denoting tota1, absorpt scattering, fission, inelastic, elas transport, and (n, γ)	tion, stic,
ℓ	Subscript denoting the Legendre order	
$P_{\ell}(\mu)$	Legendre polynomial of order ℓ	
T	Material temperature	${ }^{\circ} \mathrm{K}$
kT	Material temperature, $\mathrm{k}=0.86166 \times 10^{-4} \mathrm{ev} /{ }^{\circ} \mathrm{K}$	ev
To	Reference temperature $=293.62^{\circ} \mathrm{K}$	
kT 0	Reference temperature $=0.0253 \mathrm{ev} /{ }^{\circ} \mathrm{K}$	
$\mathrm{f}_{\ell}(\mathrm{E})$	Coefficient in a Legendre expansion	
$\mathrm{p}(\mathrm{E}, \mu)$	Angular scattering probability	
$S(\alpha, \beta)$	Thermal scattering law	

2.2 ENDF/B INPUT TAPE

The quantities contained on the ENDF/B input tape are described briefly in this section and in more detail in the specification of the ENDF/B formats. ${ }^{1}$

The ENDF/B tape is organized by material, file, and section. For a particular material, the file numbers run from 1 to 7 , and each file contains a particular type of information.

File Type of Information
1 Description of the material, comments, ν (neutrons/fission), fission yields, and radioactive decay data

2 Resolved and unresolved resonance parameters
3 Smooth cross sections, $\sigma(E, T)$
4 Angular distributions, $p(E, \mu, T)$, expressed as tabulations or Legendre expansions
5 Secondary energy distributions, $p\left(E^{\prime} \rightarrow E, T\right)$
6 Secondary energy angle correlations, $p\left(E^{\prime} \rightarrow E, \mu, T\right)$
7 Thermal scattering law, $\mathrm{S}(\alpha, \beta, T)$
The dependence of the above quantities on the material temperature is also included where appropriate. Files 5 and 6 are intended primarily for high energy data, and are not used by FLANGE II.

Each file is divided into sections. The sections which may occur in File 1 are:

Section Description
451 Hollerith comment cards describing the data and material
$452 \quad \nu(E)$ (neutrons/fission) expressed as a tabulation or polynomial in E
453 Radioactive decay constants for this isotope and neutron-induced reaction products of this isotope
454 Fission product yield data

All of the above quantities (if present on the tape) are processed by FLANGE II. $v(E)$ is evaluated at $E=0$ and stored for later use.

File 2 contains resolved resonance parameters from which contributions to capture, fission, and elastic scattering are computed where applicable.

Files 3, 4, and 7 are divided as follows:

| Section | File 3 | File 4 | File 7 |
| ---: | :---: | :---: | :---: | :---: |
| 1 | $\sigma^{t}(E, T)$ | - | - |
| 2 | $\sigma^{e l}(E, T)$ | $p^{e l}(E, \mu, T)$ | - |
| 4 | $\sigma^{i n}(E, T)$ | $p^{i n}(E, \mu, T)$ | $S(\alpha, \beta, T)$ |
| 18 | $\sigma^{f}(E, T)$ | - | - |
| 29 | $\sigma^{s}(E, T)$ | $p^{s}(E, \mu, T)$ | - |
| 102 | $\sigma^{\gamma}(E, T)$ | - | - |

Here, scattering (superscript s) means elastic plus inelastic. The $p(E, \mu, T)$ are defined by

$$
\frac{d \sigma(E, \mu, T)}{d \Omega}=\frac{\sigma(E, T)}{2 \pi} p(E, \mu, T)
$$

and $p(E, \mu, T)$ may be represented by a tabulation or a Legendre expansion. The scattering law on File 7 is represented as a tabulation andor analytic terms of the free gas or diffusion type. The short collision time approximation is used to extend tabular values to higher energies.

The table above contains the maximum amount of data of use for thermal calculation which could be given on the tape. In most cases, many of the items will be missing. When sufficient data are given, FLANGE II can compute items not given on the tape. For example, $\sigma^{i n}(E, T)$ and $p^{i n}(E, \mu, T)$ can be computed from $S(\alpha, \beta, T) ; \sigma S(E, T)$ can be computed from $\sigma e l(E, T)$ and $\sigma^{i n}(E, T)$; and $\sigma^{t}(E, T)$ can be computed from $\sigma S(E, T)$ and $\sigma^{a}(E, T)$. The tape should contain sufficient information to allow computation of all required quantities. The user must be aware of what quantities are actually given on the tape and then instruct FLANGE II what quantities are to be derived.

2.3 INPUT ENERGY MESH

The user must supply a description of the neutron energy space in which the calculations are to be done. Three sets of numbers are required. Let i denote a region of energy (group).
$E_{i}^{b} \quad$ Lower energy boundary (ev) of the $i^{\text {th }}$ group
$E_{i} \quad$ Characteristic energy (ev) of the $i^{\text {th }}$ group lying between the lower boundary ($\mathrm{E}_{\mathrm{i}}^{\mathrm{b}}$) and the upper boundary ($\mathrm{E}_{\mathrm{i}+1}^{\mathrm{b}}$) of the group
$W_{i} \quad$ Integration weight (ev) for the $i^{\text {th }}$ group such that the integral of a function $f(E)$ over the group is well approximated by $f\left(E_{i}\right) W_{i}$

Several methods may be used to specify these numbers. For example, the user may:

- Give an arbitrary list of the E_{i}
- Give an arbitrary list of the E_{i}^{b}
- Specify energy regions in which the E_{i}^{b} will be assigned on the basis of equal spacing in energy or lethargy (1n E)
- Use the above methods but change the word energy to reduced velocity, $x=\sqrt{E / k T_{o}}$

2.4 CROSS SECTIONS

The user specifies the cross section desired and whether the cross section is to be read from the input ENDF/B tape or to be derived from other cross sections. The user specifies the material temperature, and as the appropriate cross section $\sigma(E, T)$ is read from the ENDF/B tape, it is automatically evaluated at the desired temperature. Thus, the temperature dependence has been removed, and the resulting cross section is denoted by $\sigma(E)$. Resolved resonance contributions are included where required as infinitely dilute values. Doppler broadening is included in the resonance calculations.

A series of test numbers are used as input to describe how a specific cross section is to be obtained. One test number for each type of cross section is illustrated in the following table:

Cross Section	Value of the Test Number		
	-	2	3
$\sigma^{t}(E)$	ENDF/B tape	$\sigma^{s}(E)+\sigma^{\text {a }}(\mathrm{E})$	-
$\sigma^{\text {el }}$ (E)	ENDF/B tape	$\sigma^{s}(E)-\sigma^{\text {in }}(E)$	-
$\sigma^{\text {in }}(E)$	ENDF/B tape	$\sigma^{s}(E)-\sigma^{\text {el }}(E)$	$S(\alpha, \beta)$
$\sigma^{f}(E)$	ENDF/B tape	-	-
$\sigma^{\text {a }}$ (E)	$\begin{aligned} & \sigma^{f}(E)+\sigma^{\gamma}(E) \\ & (\sigma \gamma(E) \text { from } \\ & \text { ENDF/B tape }) \end{aligned}$	$\sigma^{t}(E)-\sigma^{s}(E)$	-
$\sigma^{\text {S }}$ (E)	ENDF/B tape	$\sigma^{\mathrm{el}}(\mathrm{E})+\sigma^{\text {in }}(\mathrm{E})$	-

If the test number is 1 , the cross section is read from the ENDF/B tape; if it is 2 , the cross section is computed from other cross sections; and if it is 3 (inelastic only), it is computed from $S(\alpha, \beta)$.

A second series of test numbers are input by the user to describe the averaging and output procedures. If the test is positive, the cross section will be printed and punched; if negative, only printing will occur. If the absolute value of the test is 1 , the cross section will be evaluated on the input energy mesh, so that the output will be the numbers $\sigma_{i}=\sigma\left(E_{i}\right)$. If the absolute value of the test is 2 , the cross section will be averaged over the input energy group, so that the output will be the numbers

$$
\bar{\sigma}_{i}=\int_{E_{i}^{b}}^{E_{i+1}^{b}} \operatorname{dE\sigma }(E) /\left(E_{i+1}^{b}-E_{i}^{b}\right)
$$

This latter feature is essential for elastic cross sections of crystalline materials. Group averaging of the inelastic cross section can be done if it is read from the ENDF/B tape, but not if it is computed from the scattering law.

A transport cross section (with or without absorption) can also be computed, printed, and punched. For fissionable isotopes, the quantities η_{i} and α_{i} are also computed and printed.

2.5 ANGULAR DISTRIBUTIONS

The present version of FLANGE II computes Legendre moments of the angular distribution (up to P_{5}) from $S(\alpha, \beta)$, and accepts Legendre moments or tabulated distributions from the ENDF/B tape.

The data given on File 4 of the ENDF/B tape are $p(E, \mu, T)$ in the Legendre expansion form

$$
p(E, \mu, T)=\sum_{\ell=0}^{L X} \frac{2 \ell+1}{2} f_{\ell}(E, T) P_{\ell}(\mu)
$$

or as tabular values of $p(E, \mu, T)$. As before, as each $f_{\ell}(E, T)$ is read from the tape or obtained by fitting the tabular values, it is evaluated at the desired temperature to obtain $f_{\ell}(E)$. The appropriate cross section, $\sigma(E)$, is obtained from File 3. FLANGE II processes these data into Legendre cross sections, $\sigma_{\ell}(E)$, defined by

$$
\begin{aligned}
& \frac{d \sigma(E, \mu)}{d \Omega}=\frac{1}{2 \pi} \sigma(E, \mu) \\
& \sigma(E, \mu)=\sum_{\ell=0}^{L X} \frac{2 \ell+1}{2} \sigma_{\ell}(E) P_{\ell}(\mu) \\
& \sigma_{\ell}(E)=\sigma(E) f_{\ell}(E)
\end{aligned}
$$

The same series of test numbers used for cross sections are used here with their same meaning.

Legendre	Value of the Test Number		
Cross Section	1	2	3
$\sigma_{\ell}^{e 1}(E)$	ENDF/B tape	$\sigma_{\ell}^{s}(E)-\sigma_{\ell}^{\text {in }}(E)$	-
$\sigma_{\ell}^{i n}(E)$	ENDF/B tape	$\sigma_{l}^{s}(E)-\sigma_{l}^{e l}(E)$	$S(\alpha, \beta)$
$\sigma_{\ell}^{\mathbf{s}}$ (E)	ENDF/B tape	$\sigma_{\ell}^{e l}(E)+\sigma_{\ell}^{\text {in }}(E)$	\cdots

If resonance parameters are defined that overlap the input energy mesh, these contributions are added to the elastic scattering if the test number is 1. An option allows this contribution to be calculated from the resonance formulas or taken as only the potential scattering term.

The second test number again indicates the desired printing, punching, and averaging procedure. Thus, the computed quantities may be either $\sigma_{\ell i}=\sigma_{\ell}\left(E_{i}\right)$, or

$$
\bar{\sigma}_{\ell i}=\int_{E_{i}^{b}}^{E_{i+1}^{b}} d E \sigma_{\ell}(E) /\left(E_{i+1}^{b}-E_{i}^{b}\right)
$$

The product $\sigma(E) f_{\ell}(E)=\sigma_{\ell}(E)$ is averaged over the group, rather than $f_{\ell}(E)$.

As mentioned in Section 2.4, a transport cross section can be computed from either

$$
\sigma_{i}^{\operatorname{tr}}=\sigma_{0 i}^{s}-\sigma_{1 i}^{s}
$$

or

$$
\sigma_{i}^{t r}=\sigma_{i}^{a}+\sigma_{0 i}^{s}-\sigma_{1 i}^{s}
$$

where the $\sigma_{l i}^{s}$ and σ_{i}^{a} are the cross sections defined above and may be either point or averaged numbers.

2.6 SCATTERING KERNELS

The present version of FLANGE II computes Legendre moments of the scattering kernel (up to P_{5}) from the scattering law on File 7 on the ENDF/B tape.

The scattering law contained on the ENDF/B tape consists of a fully tabulated $S(\alpha, \beta)$ plus the parameters needed to specify analytic terms to be added to the tabulated scattering law. FLANGE II will handle the tabulation and analytic terms of the free gas or diffusive type. The tabulation may be extended to higher energy transfers using the short collision time approximation. ${ }^{2}$ The effective temperature of the scatterer must be specified to use this feature.

The scattering kernel is related to the scattering law by

$$
\frac{d^{2} \sigma^{i n}\left(E^{\prime} \rightarrow E, \mu, T\right)}{d \Omega d E}=\frac{\sigma_{b}}{4 \pi k T} \sqrt{\frac{E}{E^{\prime}}} e^{-\beta / 2} S(\alpha, \beta, T)
$$

where $\alpha=\left(E^{\prime}+E-2 \mu \sqrt{E E^{\prime}}\right) / A k T^{\prime}$

$$
\beta=\left(E-E^{\prime}\right) / k T
$$

The Legendre moments of the kerne1, $\sigma_{\ell}^{i n}\left(E^{\prime} \rightarrow E\right)$, are defined by

$$
\begin{aligned}
\sigma^{i n}\left(E^{\prime} \rightarrow E, \mu\right)= & 2 \pi \frac{d^{2} \sigma^{i n}\left(E^{\prime} \rightarrow E, \mu\right)}{d \Omega d E} \\
& =\sum_{\ell=0}^{L X} \frac{2 \ell+1}{2} \sigma_{\ell}^{i n}\left(E^{\prime} \rightarrow E\right) P_{\ell}(\mu) \\
\sigma_{\ell}^{i n}\left(E^{\prime} \rightarrow E\right) & =\frac{\sigma_{b}}{2 k T} \sqrt{\frac{E}{E^{\prime}}} e^{-\beta / 2} \int_{-1}^{1} d \mu P_{\ell}(\mu) S(\alpha, \beta)
\end{aligned}
$$

FLANGE II computes these integrals and the kernels
$\sigma_{\ell i j}^{i n}=\sigma_{\ell}^{i n}\left(E_{i}+E_{j}\right)$
for $0 \leqslant \ell \leqslant 5$, and the E_{i} and E_{j} refer to the input energy mesh.
The inelastic cross sections can be computed from
$\sigma_{\ell i}^{i n}=\sigma_{\ell}^{i n}\left(E_{i}\right)=\int_{0}^{\infty} d E \sigma_{\ell}^{i n}\left(E_{i} \rightarrow E\right)$
The E_{i} refers to the input energy mesh, but the integration over final energies E is independent of the input energy mesh.

It is often desirable to renormalize the kernels by adjusting the diagonal terms so that when integrated, they will give some desired cross section. Let $\sigma_{l i}^{*}$ be the cross section obtained from the kernel before adjustment:

$$
\sigma_{\ell i}^{*}=\sum_{j} \sigma_{\ell i j}^{i n} W_{j}
$$

Let $\sigma_{l i i^{x}}^{x}$ be the cross section used for normalization, and $\sigma_{l i j}^{x}$ be the ${ }^{l i}$ kernel after normalization:

$$
\sigma_{\ell i j}^{\mathrm{x}}=\sigma_{\ell i j}^{\mathrm{in}}+\delta_{i j}\left(\sigma_{\ell \mathrm{i}}^{\mathrm{x}}-\sigma_{\ell \mathrm{i}}^{*}\right) / W_{\mathrm{i}}
$$

The following renormalizations are allowed:

$$
\left.\begin{array}{rl}
\sigma_{\ell i}^{\mathrm{x}} & =\sigma_{\ell i}^{*} \quad \\
& =\sigma_{\ell i}^{\mathrm{in}}
\end{array} \quad \begin{array}{l}
\text { No renormalization } \\
\text { cross section to computed or input inelastic }
\end{array}\right] \begin{array}{ll}
& =\sigma_{\ell i}^{s} \quad \begin{array}{l}
\text { Normalized to the input elastic plus the } \\
\text { computed or input inelastic cross section }
\end{array}
\end{array}
$$

3. NUMERICAL PROCEDURES

The numerical procedures used in FLANGE II are described briefly in this section. A more detailed description is given in Sections 6 and 7.

3.1 TABULATED FUNCTIONS

Nearly all data stored on an ENDF/B tape are in the form of a tabulated function, $y(x)$, which might represent $\sigma(E), \sigma_{\ell}(E)$, or $S(\alpha, \beta)$ at a particular β. The quantities used to represent the function are:

$\mathrm{X}(\mathrm{N})$	- List of values of x (or E)
$\mathrm{Y}(\mathrm{N})$	- List of values of y (or σ) evaluated at $X(N)$
NP	- Number of values of x (and y) given
NBT (M)	- Breakpoint table giving the upper N value associated with the Mth region of x
JNT (M)	- Interpolation code used in the $M^{\text {th }}$ region of x
NR	- Number of interpolation regions of x
The tions.	llowing sketch illustrates the use of these tabulated

Let the $N^{\text {th }}$ panel be the space between $X(N)$ and $X(N+1)$. Then, in the sketch above, panels $N_{1}, N_{1}+1, \ldots, N_{2}-1$ belong to region M. A region is defined as a consecutive set of panels in which the same interpolation method is used in each panel. The interpolation code JNT (M) indicates how intermediate values are to be obtained. For simplicity, let (x_{1}, y_{1}) and (x_{2}, y_{2}) denote the end points of a panel.

JNT	Interpolation Formula
	$y=y_{1}$
2	$y=y_{1}+\left(y_{2}-y_{1}\right)\left(x-x_{1}\right) /\left(x_{2}-x_{1}\right)$
3	$y=y_{1}+\left(y_{2}-y_{1}\right) \ln \left(x / x_{1}\right) / \ln \left(x_{2} / x_{1}\right)$
4	$\ln (y)=\ln \left(y_{1}\right)+\ln \left(y_{2} / y_{1}\right)\left(x-x_{1}\right) /\left(x_{2}-x_{1}\right)$
5	$\ln (y)=\ln \left(y_{1}\right)+\ln \left(y_{2} / y_{1}\right) \ln \left(x / x_{1}\right) / \ln \left(x_{2} / x_{1}\right)$

3.2 INTERPOLATION PROCEDURES

In certain cases, the interpolation code given may be correct for the original data, but subsequent manipulation of the data makes the interpolation code ambiguous. For example, in the calculation of Legendre cross sections, the original data for $\sigma(E)$ may specify $\ln -1 n$ interpolation, and the original data for $f_{\ell}(E)$ may specify linear interpolation. Since $\sigma_{\ell}(E)=\sigma(E) f_{\ell}(E)$, a decision must be made as to what E mesh and interpolation are to be used. Since $\sigma(E)$ probably varies more rapidly than $f_{\ell}(E)$, the E mesh and interpolation are used for $\sigma(E)$, and $f_{\ell}(E)$ is evaluated on this mesh. The $f_{\ell}(E)$ may be negative or zero, and logarithmic interpolation is meaningless. The code automatically senses such conditions and will change the interpolation code in an appropriate manner. Thus, if $J N T=4$ or 5 , and y_{1} or y_{2} is negative or zero, Codes 3 or 4 will automatically be used. If JNT $=3$ or 5 , and x_{1} or x_{2} is negative or zero, Codes 2 or 4 will be used. All interpolations and the logic described above are in subroutine TERP1, which interpolates a single point.

As indicated in the illustration above, it is often necessary to compute an entire table by interpolation in another table. Subroutine TERP2 is used for this purpose. The procedure would be trivial were it not for the possibility of discontinuities in $y(x)$ (indicated by two successive values of y with the same value of x). Such discontinuities appear in thermal elastic scattering cross sections for crystalline materials, and at the end points of energy regions described by resonance parameters. TERP2 will look for such discontinuities and treat them properly.

Tabular $S(\alpha, \beta)$ data cannot be interpolated accurately as a function of temperature using the two-point interpolation formulas described in Section 3.1. A four-point Lagrangian interpolation formula is used in these cases and is discussed in detail in Section 7.2.1.

3.3 ENERGY AVERAGING OF CROSS SECTIONS

As indicated in Section 2, the cross sections $\sigma_{\ell}(E)$ may be either evaluated at points of the input energy mesh or averaged over an input energy group. For this latter case, integration formulas are needed. Since the data to be averaged will always be tabulated, the required formulas are integrals over a portion of a panel. The integral of a group is then found from the sum of integrals over appropriate panels or parts of panels.

Let $\left(x_{3}, y_{3}\right)$ and (x_{4}, y_{4}) be the end points of a pane1, and x_{1} and x_{2} be the integration limits. The integrals are then given by

$$
B=\int_{x_{2}}^{x_{2}} y(x) d x
$$

Interpolation Code 1

$$
B=\left(x_{2}-x_{1}\right) y_{3}
$$

Interpolation Code 2

$$
\begin{aligned}
& B=\left(x_{2}-x_{1}\right)\left[a+\frac{1}{2} b\left(x_{2}+x_{1}\right)\right] \\
& b=\left(y_{4}-y_{3}\right) /\left(x_{4}-x_{3}\right) \\
& a=y_{3}-b x_{3}
\end{aligned}
$$

Interpolation Code 3

$$
B=\left(x_{2}-x_{1}\right)\left[y_{3}+b \ln \frac{x_{1}}{x_{3}}\right]+b x_{1}\left[1+\frac{x_{2}}{x_{1}}\left(\ln \frac{x_{2}}{x_{1}}-1\right)\right]
$$

$$
\begin{aligned}
& b=\left(y_{4}-y_{3}\right) / \ln \frac{x_{4}}{x_{3}} \\
& {\left[1+\frac{x_{2}}{x_{1}}\left(\ln \frac{x_{2}}{x_{1}}-1\right)\right]=\frac{1}{2} z^{2}\left[1-\frac{1}{3} z+\frac{1}{6} z^{2}-\frac{1}{10} z^{3}\right], \quad|z| \leqslant 0.15} \\
& z=\left(x_{2}-x_{1}\right) / x_{1}
\end{aligned}
$$

Interpolation Code 4

$$
\begin{aligned}
& B=e^{a+b x_{1}}\left(e^{z}-1\right) / b, \quad|z|>0.1 \\
& B=e^{a+b x_{1}}\left(x_{2}-x_{1}\right)\left(1+\frac{1}{2} z+\frac{1}{6} z^{2}\right) \quad|z| \leqslant 0.1 \\
& b=\ln \frac{y_{4}}{y_{3}} /\left(x_{4}-x_{3}\right) \\
& a=\ln \left(y_{3}\right)-b x_{3} \\
& z=\left(x_{2}-x_{1}\right) b
\end{aligned}
$$

Interpolation Code 5

$$
\begin{aligned}
& B=y_{3} x_{1}\left(\frac{x_{1}}{x_{3}}\right)^{b} \frac{1}{b+1}\left[\left(\frac{x_{2}}{x_{1}}\right)^{b+1}-1\right] \\
& b=\ln \frac{y_{4}}{y_{3}} / \ln \frac{x_{4}}{x_{3}} \\
& \frac{1}{b+1}\left[\left(\frac{x_{2}}{x_{1}}\right)^{b+1}-1\right]=\ln \frac{x_{2}}{x_{1}}\left(1+\frac{1}{2} z+\frac{1}{6} z^{2}\right), \quad|z| \leqslant 0.1 \\
& z=(b+1) \ln \left(x_{2} / x_{1}\right)
\end{aligned}
$$

3.4α MESH FOR $S(\alpha, \beta)$

The scattering law data on the ENDF/B tape are arranged in the following way. For the first value of $\beta_{1}(=0)$, there is a table of $S\left(\alpha, \beta_{1}\right)$ versus α. Next, there is a table of $S\left(\alpha, \beta_{2}\right)$ versus α, and so forth. In general, the α mesh used to describe S is different for each value of β. The procedure used is
to define a "fine" α mesh and to evaluate S by interpolation on this fine α mesh. All calculations are then done with the S calculated on the fine α mesh, and it is assumed that $\ln (S)$ is linear in α between tabulated values.

The fine α mesh, α_{i}, is defined by

$$
\alpha_{i}=\alpha_{0} \rho_{0}^{i-1}, \quad 1 \leqslant i \leqslant \operatorname{IALX}
$$

where $\rho_{0}=1.03$ and IALX $=300$ are preset constants. If $E_{\text {max }}$ is the largest energy in the input energy mesh, and A is the mass used to calculate α, then $\alpha_{\text {max }}=4 \mathrm{E}_{\text {max }} / \mathrm{AkT}$ is the largest α that will be needed. α_{o} is computed so that the largest α in the fine mesh will be less than $\alpha_{\max }$.

$$
\alpha_{0}=\alpha_{\max } / \rho_{0}^{\text {IALX }-2}
$$

If $\mathrm{E}_{\max }=1.0 \mathrm{ev}, \mathrm{kT}=0.025 \mathrm{ev}, \mathrm{A}=1$, and $\alpha_{\max }=160$, then $\alpha_{0}=0.024$.

Definition of the fine α mesh in this manner has two advantages. First, the S for all β are evaluated on the same α mesh so that interpolation in β is greatly simplified. Second, the use of a constant expansion ratio ρ_{0} permits large savings in computation time through the use of fast table look-up procedures for the α integrations.

Generally the tabulated α mesh for large β values will not span the entire range of the fine mesh α 's. This can lead to ignoring some scattering contributions for large energy transfers. The required $S(\alpha, \beta)$ values for these large β 's may be added using the short collision form of the $S(\alpha, \beta)$.

3.5α INTEGRATION OF $s(\alpha, \beta)$

In the calculation of Legendre moments, integrations over μ can be transformed into integrations over α.

$$
\sigma_{\ell}\left(E^{\prime} \rightarrow E\right)=\frac{A \sigma_{b}}{4 E^{\prime}} e^{-\beta / 2} \int_{\alpha}^{\alpha} d \alpha S(\alpha, \beta) \sum_{n=0}^{\ell} W_{\ell n} \alpha^{n}
$$

The $W_{\ell n}$ are expansion coefficients of $P_{\ell}(\mu)$ in powers of α and depend on E and E^{\prime}. The main calculation is that of the a moments
of $S(\alpha, \beta)$; since the limits α_{L} and α_{H} include many tabulated points, the moments can be expressed as the sum of contributions from each "panel," or the region between two tabulated points.

Consider one panel bounded by the points $\left(\alpha_{3}, y_{3}\right)$ and $\left(\alpha_{4}, y_{4}\right)$, where $y=1 n(S)$. Let α_{1} and α_{2} denote the end points of the integration for this panel. Since it is assumed that $\ln (S)(=y)$ is linear in α between tabulated points,

$$
\begin{aligned}
& y=a+b \alpha \\
& b=\left(y_{4}-y_{3}\right) /\left(\alpha_{4}-\alpha_{3}\right) \\
& a=y_{3}-b \alpha_{3}
\end{aligned}
$$

and the required integral is

$$
h_{n}=\int_{\alpha_{1}}^{\alpha_{2}} d \alpha \alpha^{n} e^{a+b \alpha}
$$

By suitable transformation,

$$
h_{n}=S_{1} \alpha_{1}^{n+1} G_{n}(c, p)
$$

where $G_{n}(c, \rho)=\left(\frac{\rho+1}{2}\right)^{n+1}\left[\gamma F_{0}(c)+n \gamma^{2} F_{1}(c)+\frac{1}{2} n(n-1) \gamma^{3} F_{2}(c)\right]$

$$
\begin{aligned}
& F_{k}(c)=\frac{e^{c}}{c^{k+1}} \int_{-c}^{c} d y y^{k} e^{y} \\
& \rho=\alpha_{2} / \alpha_{1} \\
& c=b \gamma\left(\alpha_{1}+\alpha_{2}\right) / 2 \\
& \gamma=(\rho-1) /(\rho+1)
\end{aligned}
$$

This formula can be used for starting panels ($\alpha_{1}=\alpha_{L}, \alpha_{2}=\alpha_{4}$), intermediate panels $\left(\alpha_{1}=\alpha_{3}, \alpha_{2}=\alpha_{4}\right)$, and end panels ($\alpha_{1}=\alpha_{3}$, $\alpha_{2}=\alpha_{H}$). For intermediate panels, $\rho=\rho_{0}$ which is a constant for all panels, and $c=1 / 2\left(y_{4}-y_{3}\right)$. The function $G_{n}\left(c, \rho_{0}\right)$ depends only on c, and can be tabulated for fast evaluation.

Several numerical approximations are used to speed up the evaluation of the α integrals. They have been selected to be accurate to a relative precision of 3.3×10^{-5}.

3.6 FINAL ENERGY INTEGRATION OF THE KERNEL

Legendre inelastic cross sections are obtained from

$$
\sigma_{l}^{i n}\left(E^{\prime}\right)=\int_{0}^{\infty} d E \sigma_{l}^{i n}\left(E^{\prime} \rightarrow E\right)
$$

The E^{\prime} refer to the input energy mesh, but the final energy integration is completely independent of the input energy mesh and depends only on the β mesh given for the scattering law. Two successive β points (β_{L} and β_{H}) are selected; the region between β_{L} and βH is a panel. The integral given above is then the sum of integrals over each panel. A downscattering part ($E<E^{\prime}$) and upscattering part ($E>E^{\prime}$) must be considered for each panel, and three different types of panels are considered.

The panel $\beta_{L}=0$ contributes heavily to the cross section and may contain a singularity. A variable y is proportional to the neutron velocity and is scaled to be zero at $\beta=\beta_{L}$ and unity at $\beta=\beta_{H}$. The kernel is evaluated at the points $y_{1}=1 / 8$, $y_{2}=1 / 4, y_{3}=1 / 2$, and $y_{4}=1$. The resulting values of the kernel are denoted by H_{1}, H_{2}, H_{3}, and H_{4}. These four values are fit to the function

$$
H(y)=\frac{a}{\ln \frac{1}{2}} \ln (y)+b+c y+d y^{2}
$$

and $H(y)$ is then integrated over the panel.

$$
\begin{aligned}
I= & \int_{E^{\prime}}^{E^{\prime}+\mathrm{kTR}_{\mathrm{H}}} \mathrm{dEH}(\mathrm{E})=2 \mathrm{kT} \mathrm{\Delta} \int_{0}^{1} \mathrm{dy}\left(\mathrm{x}_{0}+y \Delta\right) \mathrm{H}(\mathrm{y}) \\
= & 2 \mathrm{kT} \Delta \mathrm{x}_{0}\left(0.58791 \mathrm{H}_{1}-0.58440 \mathrm{H}_{2}+0.84776 \mathrm{H}_{3}+0.14873 \mathrm{H}_{4}\right) \\
& +2 \mathrm{kT}^{2}\left(0.07291 \mathrm{H}_{1}-0.12758 \mathrm{H}_{2}+0.39712 \mathrm{H}_{3}+0.15755 \mathrm{H}_{4}\right) \\
x_{0}= & \sqrt{\mathrm{E}^{\prime} / \mathrm{kT}} \\
\Delta= & x_{4}-x_{0} \\
x_{4}= & \sqrt{\beta_{H}+E^{\prime} / \mathrm{kT}}
\end{aligned}
$$

The above equation is used for upscattering. For downscattering, Δ is redefined to be positive, and the sign of the second term of the integral is set negative.

For intermediate values of β, three points equally spaced in velocity in the panel are used. Again y is proportional to the velocity and scaled so that $y_{1}=0$ at $\beta=\beta_{L}, y_{3}=1$ at $\beta=\beta_{H}$, and $y_{2}=1 / 2\left(y_{1}+y_{3}\right)$. The corresponding values of the kernel are $\mathrm{H}_{1}, \mathrm{H}_{2}$, and H_{3}. These three values are fit to the function

$$
H(y)=a+b y+c y^{2}
$$

and $H(y)$ is then integrated over the panel.

$$
\begin{aligned}
& I=\frac{1}{3} k T \Delta x_{1}\left(H_{1}+4 H_{2}+H_{3}\right)+\frac{1}{3} k T \Delta^{2}\left(2 H_{2}+H_{3}\right) \\
& x_{1}=\sqrt{\beta_{L}+E^{\prime} / k T} \\
& \Delta=x_{3}-x_{1} \\
& x_{3}=\sqrt{\beta_{H}+E^{\prime} / k T}
\end{aligned}
$$

The above equation is used for upscattering. For downscattering, Δ is redefined to be positive, and the sign of the second term of the integral is set negative.

For large values of β, only the end points of the panel, H_{1} and H_{2} are used, and it is assumed that the function is exponential in character. Thus,

$$
\begin{aligned}
& I=\int_{E_{1}}^{E_{2}} d E H(E)=\left(E_{2}-E_{1}\right)\left(H_{2}-H_{1}\right) / \ln \frac{H_{2}}{H_{1}} \\
& E_{1}=E^{\prime}+k T \beta_{L} \quad E_{2}=E^{\prime}+k T \beta_{H}
\end{aligned}
$$

Many special cases to the above formulas are considered in detail in a later section. For example, downscattering will have to be terminated when $E=0$, which may occur in the middle of a panel. Also, Legendre moments may change sign so that terms involving logarithms must be changed.

4. DESCRIPTION OF CODE

4.1 GENERAL STRUCTURE AND OPERATION

FLANGE II is written in ASA Standard FORTRAN (FORTRAN IV) and is designed to be used on a computer with at least 40 K of available fast storage plus three tapes. It has been written as a main program plus large subprograms which can easily be made links of a chain or overlay program. The subprograms will be referred to as links here. The various parts of the FLANGE II code are:

Main Program - Processes the input data, sets up the input energy mesh, and controls the calling of the links listed below.

Link 1 - Processes Files 1, 2, 3, and 4 from the ENDF/B input tape. Cross sections and angular distributions are evaluated (or averaged) on the input energy mesh, Legendre components are computed, and the results (if complete) are printed and punched. The results are also stored on tape NSTA for use in Link 2.

Link 2 - Processes File 7 from the ENDF/B input tape. The scattering law is integrated to form Legendre components of the scattering kernel, the inelastic cross sections are computed, the cross sections from tape NSTA are read (and completed if necessary), and the scattering kernels are printed and punched.

4.2 TAPE ASSIGNMENTS

The following tapes are used. The tape numbers are symbolic and are stored in CØMM $/$ /BLØCK1/. The values are assigned at the start of the main program.

```
NIN - Systems input tape
NØUT - Systems print output tape
NPUN - Systems punch output tape
LIB - ENDF/B library tape, modes 1, 2, or 3
NSTA - Scratch tape used to transmit cross sections
        from Link 1 to Link 2. Disk storage should be
        used in place of this tape if available.
```

NSTB - Scratch tape used in Link 2 to store the scattering kernels in the order calculated. Disk storage should be used in place of this tape if available.

4.3 ERROR STOPS

Errors are signaled on the output by a message "FLANGE II ERRØR STøP NUMBER xxx," where xxx is a three-digit integer describing the error. The list of these numbers, the subroutine in which the error occurred, and a description of the error are given below.

Number	Subroutine	Description
21	EMESH	NEG larger than 200
22	EMESH	NEVT not 1 or 2
23	EMESH	METH not 1, 2 , or 3
24	EMESH	KX not in range 1-20
25	EMESH	Zero groups/region specified
26	EMESH	NEG not equal to the sum of groups specified for each region
27	EMESH	Energy range breakpoint table out of order
99	RREC	Library tape data set not defined
100	RREC	Record type called for not valid
101	RREC	Library tape mode not 1,2 , or 3
102	RREC	T not in range of specified data
103	RREC	Interpolation table too long or of zero length
104	RREC	List length too long or of zero length
105	RREC	Data length too long or less than 2 points
106	RREC	Improper temperature dependence
107	RREC	MAT, MF, MT incorrect for List, TAB1, TAB2, or Hollerith records
110	ECSI	Wrong interpolation code given
120	ACS	Zero group width specified
122	ACS	Interpolation table incorrect
130	TERP2	x table not in increasing order

Number	Subroutine	Description
131	TERP2	x table not in increasing order
132	TERP2	Interpolation table incorrect
133	TERP1	Interpolation table incorrect
134	TERP1	Zero or negative value cannot be interpolated by logs
135	SRCH	Section not on library, or library out of order
136	PRØF4	Angular data given in CM (center of mass) system
138	PRØF4	Internal tape error on NSTA
139	PRøF4	E interpolation table incorrect on File 4
200	SRCH7	No File 7 on library
223	REATS	Temperature out of range given on library
224	REATS	Improper T dependence, lists different lengths
225	REATS	More than $1000 \mathrm{~S}(\alpha, \beta)$ given for one β
226	REATS	More than 100 entries in α interpolation table
230	PRØF7	Improper β interpolation table
231	PRØF 7	Scattering law not given
232	KERC	Improper β interpolation table
233	KERC	$S(\alpha, \beta)$ not integrable at small α
234	KERA	Analytic $S(\alpha, \beta)$ not specified
235	KERA	$S(\alpha, \beta)$ not integrable at low α

5. INPUT/OUTPUT DESCRIPTION

The following section describes the input and output data for FLANGE II. The input data consist of the ENDF/B library tape (Mode 1, 2, or 3) and two decks of cards (the problem definition input and the input energy mesh).

5.1 PROBLEM DEFINITION INPUT

All input data are read by the main program. The problem definition input is read by subroutine INPUT. The input data are listed below, and are stored in СФММФN/ВLФСК3/.

Card	Columns	Format	Symbol	Description
1	1-72	18A4	$\begin{aligned} & \text { (TITLE }(N) \\ & N=1,18) \end{aligned}$	72-character Hollerith description of the calculation
2	1-10	110	LABEL	Label that is supposed to appear at the ENDF/B tape. If LABEL = 0 , label will not be checked.
	11-20	I10	MAT	Material number to be processed from the ENDF/B tape
	21-30	E10.0	FID	Seven-digit integer (written in floating point) used to identify the punched output for this material
	31-40	E10.0	T	Desired temperature (${ }^{\circ} \mathrm{K}$)
	41-50	E10.0	TEFF	Effective temperature for short collision time approximation (${ }^{\circ} \mathrm{K}$)
	51-60	I10	MøDE	```Tape mode (1, 2, or 3-defaults to 3)```
3	1-10	I10	LINK1	Flag indicating whether Link 1 is to be used or not; $0=$ no, $1=$ yes
	11-20	I10	LINK2	Same as above, but for Link 2
4	1-10	I10	LX	Maximum Legendre order (0-5) desired
	11-20	I 10	LMESH	$=0$, read new energy mesh $=1$, use energy mesh of previous problem

Card	Columns	Format	Symbol	Description
4	21-30	110	LRSCT	$=0$, if material is not to be treated as a resonance scatterer, $=1$ otherwise
	31-50	20x	-	
	51-60	110	LPDD	$\begin{aligned} & =1, \text { print and punch decay data } \\ & =0, \text { ignore } \\ & =-1, \text { print decay data } \end{aligned}$
	61-70	I10	LPFP	$\begin{aligned} &= 1, \text { print and punch fission } \\ & \text { product yields } \\ &= 0 \text {, ignore } \\ &=-1, \text { print fission product } \\ & \text { yields } \end{aligned}$
5	1-10	110	LABS	$=0$, ignore $\sigma^{\text {a }}(\mathrm{E})$
				$\begin{aligned} = & 1, \text { read } \sigma^{\gamma}(E) \text { from ENDF/B } \\ & \text { tape and compute } \\ & \sigma^{\mathrm{a}}(\mathrm{E})=\sigma^{\curlyvee}(\mathrm{E})+\sigma^{f}(\mathrm{E}) \\ = & 2, \text { compute } \\ & \sigma^{\mathrm{a}}(\mathrm{E})=\sigma^{t}(\mathrm{E})-\sigma^{s}(\mathrm{E}) \end{aligned}$
	11-20	I10	LPABS	$\begin{aligned} = & -2 \text {, print group avg } \sigma^{\mathrm{a}}(\mathrm{E}) \\ = & -1, \text { print } \sigma^{\mathrm{a}}(\mathrm{E}) \\ = & 0 \text {, ignore } \\ = & 1 \text {, print and punch } \sigma^{\mathrm{a}}(\mathrm{E}) \\ = & 2 \text {, print and punch group avg } \\ & \sigma^{\mathrm{a}}(\mathrm{E}) \end{aligned}$
	21-30	I10	LFISS	$\begin{aligned} & =0, \text { ignore } \sigma^{f}(E) \\ & =1, \text { read } \sigma^{f}(E) \text { from ENDF/B tape } \end{aligned}$
	31-40	110	LPFIS	$\begin{aligned} & =-2, \text { print group avg } \sigma^{f}(E) \\ & =-1, \text { print } \sigma^{f}(E) \\ & =0 \text {, ignore } \\ & =1 \text {, print and punch } \sigma^{f}(E) \\ & =2 \text {, print and punch group } \sigma^{f}(E) \end{aligned}$
	41-50	I10	LPTøT	$\begin{aligned} = & 0, \text { ignore } \sigma^{t}(\mathrm{E}) \\ = & 1, \text { read } \sigma^{t}(\mathrm{E}) \text { from ENDF/B tape } \\ = & 2 \text { compute } \\ & \sigma^{t}(E)=\sigma^{\mathrm{a}}(\mathrm{E})+\sigma^{s}(\mathrm{E}) \end{aligned}$
	51-60	I10	LPTØT	$\begin{aligned} & =-2, \text { print group avg } \sigma^{t}(E) \\ & =-1, \text { print } \sigma^{t}(E) \end{aligned}$

Card	Columns	Format	Symbol	Description
5	51-60	I10	LPTØT	$\begin{aligned} = & 0, \text { ignore } \\ = & 1, \text { print and punch } \sigma^{t}(E) \\ = & 2 \text {, print and punch group avg } \\ & \sigma^{t}(E) \end{aligned}$
	61-70	110	LPTR	$\begin{aligned} = & -2, \text { compute and print } \\ & \sigma^{\operatorname{tr}}(\mathrm{E})=\sigma^{\mathrm{a}}(\mathrm{E})+\sigma_{0}^{\mathrm{S}}(\mathrm{E})-\sigma_{1}^{\mathrm{S}}(\mathrm{E}) \\ = & -1, \text { compute and print } \\ & \sigma^{\operatorname{tr}}(\mathrm{E})=\sigma_{0}^{\mathrm{S}}(\mathrm{E})-\sigma_{1}^{\mathrm{s}}(\mathrm{E}) \\ = & 0, \text { ignore } \\ = & 1, \text { compute, print and punch } \\ & \sigma^{\operatorname{tr}}(\mathrm{E})=\sigma_{0}^{\mathrm{S}}(\mathrm{E})-\sigma_{1}^{\mathrm{S}}(\mathrm{E}) \\ = & \underset{\sigma^{2}}{\operatorname{tr}}(\mathrm{E})=\sigma^{\mathrm{a}}(\mathrm{E})+\sigma_{0}^{\mathrm{S}}(\mathrm{E})-\sigma_{1}^{\mathrm{S}}(\mathrm{E}) \end{aligned}$
6	1-10	110	LELAS	
	11-20	I10	LPEL	$\begin{aligned} = & -2, \text { print group avg } \sigma_{l}^{\mathrm{el}}(\mathrm{E}) \\ = & -1, \text { print } \sigma_{l}^{\mathrm{el}}(\mathrm{E}) \\ = & 0, \text { ignore } \\ = & 1 \text {, print and punch } \sigma_{l}^{\mathrm{e} 1}(E) \\ = & 2 \text {, print and punch group avg } \\ & \sigma_{l}^{\mathrm{el}}(\mathrm{E}) \quad \text { in. } \end{aligned}$
	21-30	I10	LINEL	$\begin{aligned} =0, & \text { ignore } \sigma_{l}^{11}(E) \\ = & 1, \\ & \operatorname{read} \sigma_{l}^{i n}(E) \text { and } \\ =2, & \operatorname{compute}_{l}^{\text {in }}(E, \mu) \text { from ENDF/B } \\ & \sigma_{l}^{i n}(E)=\sigma_{l}^{\mathrm{s}}(E)-\sigma_{l}^{\mathrm{e}}(E) \\ =3, & \operatorname{compute} \sigma_{l}^{i n}(E) \text { from } S(\alpha, B) \end{aligned}$
	31-40	I10	LPIN	$\begin{aligned} & =-2, \text { print group avg } \sigma_{\ell}^{\text {in }}(E) \\ & =-1, \text { print } \sigma_{\ell}^{\text {in }}(E) \\ & =0, \text { ignore } \end{aligned}$

Card	Columns	Format		Description
6	31-40	I10	LPIN	$\begin{aligned} & =1 \text {, print and punch } \sigma_{l}^{\mathrm{in}}(\mathrm{E}) \\ & =2 \text {, print and punch group } \\ & \text { avg } \sigma_{\ell}^{i n}(\mathrm{E}) \end{aligned}$
	41-50	I10	LSCAT	$\begin{aligned} = & 0, \text { ignore } \sigma_{l}^{\mathrm{S}}(\mathrm{E}) \\ = & 1, \text { read } \sigma_{l}^{\mathrm{S}}(\mathrm{E}) \text { and } p_{l}^{\mathrm{s}}(\mathrm{E}, \mu) \\ & \text { from ENDF } /_{\mathrm{B}} \\ = & 2, \text { compute } \\ & \sigma_{l}^{\mathrm{S}}(\mathrm{E})=\sigma_{l}^{\mathrm{in}}(\mathrm{E})+\sigma_{l}^{\mathrm{el}}(\mathrm{E}) \end{aligned}$
	51-60	110	LPSC	$\begin{aligned} = & -2, \text { print group avg } \sigma_{l}^{\mathrm{s}}(\mathrm{E}) \\ = & -1, \text { print } \sigma_{l}^{\mathrm{S}}(\mathrm{E}) \\ = & 0, \text { ignore } \\ = & 1, \text { print and punch } \sigma_{l}^{\mathrm{s}}(\mathrm{E}) \\ = & 2, \text { print and punch group } \\ & \text { avg } \sigma_{l}^{\mathrm{s}}(\mathrm{E}) \end{aligned}$
7	1-10	110	LTSL	$=0$, ignore scattering kernels $=1$, ignore scattering kernels $=3$, compute scattering kernels $=4$, compute scattering kernels and normalize to exact $\sigma_{l}^{i n}$ $=5$, compute scattering kernels and normalize to $\sigma_{\ell}^{S}(E)$
	11-20	110	LPTSL	$=-2$, print scattering kernels $=-1$, ignore print and punch $=0$, ignore print and punch $=1$, punch scattering kernels $=2$, print and punch kernels
	21-30	110	LBND	Signal to compute only bound component of molecule. Also divides σ_{b} by its value, i.e., $\sigma_{b}=\sigma_{b} /$ LBND.

5.2 INPUT ENERGY MESH

Text Symbol	Code Symbol	Description
NEG	I	Index numbering energy groups E_{i}
NEG	Number of energy groups	
E_{i}^{*}	$E B(I)$	Characteristic energy of the $i^{\text {th }}$ group(ev)
	Lowergy limit of the $i^{\text {th }}$ group	

Text Symbol	Code Symbol	Description
v_{i}	$V(\mathrm{I})$	Reduced characteristic velocity of the $i^{\text {th }}$ group $v_{i}=\sqrt{E_{i}} / 0.0253$
v_{i}^{*}	VB (I)	Lower reduced velocity limit of the $i^{\text {th }}$ group $v_{i}^{*}=\sqrt{E_{i}^{*}} / 0.0253$
W_{i}	W(I)	Energy integration weight for the $i^{\text {th }}$ group
Δ_{i}	DEL (I)	Group width used for both energy and velocity calculations
k	K	Index numbering regions to be subdivided into groups
K	KX	Number of regions
M_{k}	MK	Number of groups to be distributed in the $\mathrm{k}^{\text {th }}$ region
B_{k}	BPT (K)	Upper boundary of the $\mathrm{k}^{\text {th }}$ region
The mesh can be specified in any one of six ways:		
The mesh is computed from an input table of energy regions and number of groups to be assigned per region.		
Energy group widths are read in and the characteristic energies are computed as being at the center of each group.		
Energy group widths and characteristic energies are read in and artificial group boundaries are computed.		
Same as 1 but using velocity.		
Same as 2 but using velocity.		
Same as 3 but using velocity.		
rent practice at GGA is to use 2 (but 3 was used in the past), at BNL and SRL to use 5. Two tests are used:		
NEVT $=1$, energy input		
METH	1, regi 2 , group 3, group (vel	and groups per region input widths input widths and characteristic energy ity) input
11 c store	a comp The si	te energy and velocity mesh will be computed cases will be described separately.

The energy range of interest is divided in K regions numbered $1,2, \ldots, k, \ldots$. . K. Let B_{k} be the upper bound of the k th region, and M_{k} the number of groups to be distributed in the $k^{\text {th }}$ region. If $M_{k}>0$, a constant mesh spacing is used within the region. If $M_{k}<0$, the group boundary expands by a factor for each successive group in the region.

To illustrate the procedure, let k be the region under consideration, and let i denote the last group boundary computed. Thus, E_{i}^{*} is the upper limit of the $k-1^{\text {St }}$ range and the lower limit of the k th range. For $M_{k}>0$, compute

$$
\begin{aligned}
& \Delta_{k}=\left(B_{k}-B_{k-1}\right) / M_{k} \\
& E_{i}^{*}=B_{k-1} \\
& E_{i+1}^{*}=E_{i}^{*}+\Delta_{k} \\
& E_{i+2}^{*}=E_{i}^{*}+2 \Delta_{k} \\
& \vdots \\
& E_{i+M_{k}}^{*}=E_{i}^{*}+M_{k} \Delta_{k}=B_{k}
\end{aligned}
$$

For $M_{k}<0$, set $M_{k}=-M_{k}$, and compute

$$
\Delta_{\mathrm{k}}=\left(\mathrm{B}_{\mathrm{k}} / \mathrm{B}_{\mathrm{k}-1}\right)^{1 / M_{k}}
$$

$$
E_{i}^{*}=B_{k-1}
$$

$$
E_{i+1}^{*}=\Delta_{k} E_{i}^{*}
$$

$$
E_{i+2}^{*}=\Delta_{k}^{2} E_{i}^{*}
$$

$$
\vdots
$$

$$
E_{i+M_{k}}^{*}=\Delta_{k}^{M_{k}} E_{i}^{*}=B_{k}
$$

The $\left|M_{k}\right|$ must add up to NEG, the total number of energy groups.
The group boundaries are established, and the characteristic energy, integration weight, and reduced velocities are computed from:

$$
\begin{aligned}
& E_{i}=\frac{1}{2}\left(E_{i}^{*}+E_{i+1}^{*}\right) \\
& W_{i}=E_{i+1}^{*}-E_{i}^{*} \\
& v_{i}^{*}=\sqrt{E_{i}^{*}} / 0.253 \\
& v_{i}=\sqrt{E_{i}} / 0.0253
\end{aligned}
$$

$\underline{\mathrm{NEVT}}=1, \mathrm{METH}=2$
A low energy cutoff (EVL) and the group widths W_{i} (taken to be the same as the integration weights) are read in. The group boundaries are computed from

$$
\begin{aligned}
& E_{1}^{*}=E V L \\
& E_{i}^{*}=E_{i-1}^{*}+W_{i-1}
\end{aligned}
$$

The remaining quantities are computed from

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{i}}=\frac{1}{2}\left(\mathrm{E}_{\mathbf{i}}^{*}+\mathrm{E}_{\mathrm{i}+1}^{*}\right) \\
& \mathrm{v}_{\mathbf{i}}^{*}=\sqrt{\mathrm{E}_{\mathbf{i}}^{*}} / 0.0253 \\
& \mathrm{v}_{\mathbf{i}}=\sqrt{\mathrm{E}_{\mathbf{i}}} / 0.0253
\end{aligned}
$$

$\underline{\text { NEVT }}=1$, METH $=3$
The characteristic energies E_{i} and integration weights are read in. Presumably, the weights were selected for some high accuracy integration scheme and may not resemble group widths. Group boundaries are required to average simple cross sections. Group boundaries (arbitrarily) are selected as the midpoint between characteristic energies. Thus

$$
\begin{aligned}
& E_{i}^{*}=\frac{1}{2}\left(E_{i-1}+E_{i}\right) \\
& E_{1}^{*}=E V L \\
& E_{N E G+1}^{*}=\frac{3}{2} E_{N E G}-\frac{1}{2} E_{N E G-1}
\end{aligned}
$$

$$
\begin{aligned}
& v_{i}=\sqrt{E_{i}} / 0.0253 \\
& v_{i}^{*}=\sqrt{E_{i}^{*}} / 0.0253
\end{aligned}
$$

NEUT $=2$, METH $=1$
The method is the same as for NEVT $=1, \mathrm{METH}=2$ except that all quantities (including EVL, B_{k}) refer to reduced velocity. Thus for $\mathrm{M}_{\mathrm{k}}>0$

$$
\begin{aligned}
& \Delta_{k}=\left(B_{k}-B_{k-1}\right) / M_{k} \\
& \mathrm{v}_{\mathrm{i}}^{*}=\mathrm{B}_{\mathrm{k}-1} \\
& v_{i+1}^{*}=v_{i}^{*}+\Delta_{k} \\
& v_{i+2}^{*}=v_{i}^{*}+2 \Delta_{k} \\
& : \\
& v_{i+M_{k}}^{*}=v_{i}^{*}+M_{k} \Delta_{k}=B_{k} \\
& \text { For } M_{k}<0 \text {, set } M_{k}=-M_{k} \text {, } \\
& \Delta_{k}=\left(B_{k} / B_{k-1}\right)^{1 / M_{k}} \\
& v_{i}^{*}=B_{k-1} \\
& v_{i+1}^{*}=\Delta_{k} v_{i}^{*} \\
& v_{i+2}^{*}=\Delta_{k}^{2} v_{i}^{*} \\
& \vdots \\
& v_{i+M_{k}}^{*}=\Delta_{k}^{M_{k}} v_{i}^{*}=B_{k} \\
& v_{i}=\frac{1}{2}\left(v_{i}^{*}+v_{i+1}^{*}\right) \\
& E_{i}=0.0253 v_{i}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& E_{i}^{*}=0.0253 v_{i}^{* 2} \\
& W_{i}=E_{i+1}^{*}-E_{i}^{*}
\end{aligned}
$$

NEVT $=2$, METH $=2$
The method is the same as for NEVT $=2$, METH $=1$ except that all quantities (EVL, W_{i}) refer to reduced velocity. Thus

$$
\begin{aligned}
& v_{1}^{*}=E V L \\
& v_{1}^{*}=v_{i-1}^{*}+W_{i-1} \\
& v_{i}=\frac{1}{2}\left(v_{i}^{*}+v_{i+1}^{*}\right) \\
& E_{i}=0.0253 v_{i}^{2} \\
& E_{i}^{*}=0.0253 v_{i}^{* 2} \\
& W_{i}=E_{i+1}^{*}-E_{i}^{*}
\end{aligned}
$$

W_{i} read in refers to velocity but is recomputed to refer to energy.
$\underline{\text { NEVT }}=2$, METH $=3$
The method is the same as for NEVT $=1, \mathrm{METH}=3$ except that all quantities (including EVL and W_{i}) refer to velocity.

$$
\begin{aligned}
& v_{i}^{*}=E V L \\
& v_{i}^{*}=\frac{1}{2}\left(v_{i-1}+v_{i}\right) \\
& v_{N E G+1}^{*}=\frac{3}{2} v_{N E G}-\frac{1}{2} v_{N E G-1} \\
& E_{i}=0.0253 v_{i}^{2} \\
& E_{i}^{*}=0.0253 v_{i}^{* 2} \\
& W_{i}=0.0506 v_{i} W_{i} \text { (input) }
\end{aligned}
$$

W_{i} on input refers to velocity but is recomputed to refer to energy.

The following cards are used to describe the input energy mesh. These cards follow the problem definition cards.

Card	Columns	Format	Symbol	Description
8	1-10	110	NEG	Number of energy groups ($\leqslant 200$)
	11-20	I10	NEVT	$=1$, mesh input in energy units $=2$, mesh input in reduced velocity units
	21-30	I10	METH	```= 1, region data are input = 2, group widths are input = 3, group widths and character- istics are input```
	31-40	I10	NPNT	$\begin{aligned} & =0, \text { ignore } \\ & =1, \text { print energy mesh } \\ & =2, \text { print and punch energy mesh } \end{aligned}$
	41-50	E10.5	EVL	Low energy (if NEVT $=1$) or velocity (in NEVT = 2) cutoff
	51-70	5A4	$\begin{gathered} \left(H \not L^{\prime}(N)\right. \\ N=1.5) \end{gathered}$	20-character description of the energy mesh. See description of the punching.

The remaining cards depend on the values of METH and NEVT. $\mathrm{NEVT}=1, \mathrm{METH}=1$

Card	Columns	Format	Symbol	Description
9	1-10	I10	KX	Energy of energy regions ($\leqslant 20$)
	11-20	I10	MINT (1)	Number of groups in Region 1. If MINT(1) > 0 , equal energy spacing. If MINT (1) < 0, equal lethargy spacing.
	21-30	E10.5	BPT(1)	Upper energy limit of Region 1
	31-40	I10	MINT (2)	Same as above, but for Region 2
	41-50	E10.5	BPT (2)	Same as above, but for Region 2
	:	:	:	:

The pattern above is repeated until all KX regions have been specified. The second and remaining cards start in Column 11.
$\underline{\text { NEVT }=1, ~ M E T H=2}$

Card	Columns	Format	Symbol	Description
9	-	7E10.5	$\begin{aligned} & (W(I), I=1 \\ & \text { NEG }) \end{aligned}$	List of energy group widths (ev) in order of increasing group number
	-	7E10.5	$\begin{aligned} & (E(I), I=1 \\ & \text { NEG) } \end{aligned}$	List of characteristic group energies (ev) in increasing order
	-	7E10.5	$\begin{aligned} & (W(I), I=1 \\ & \text { NEG }) \end{aligned}$	Integration weights (ev)

Cards for NEVT $=2$ follow the same description as for NEVT $=1$, except the word "energy" is changed to read "reduced velocity."

5.3 OUTPUT

The printed output (on tape $\mathrm{N} \emptyset \mathrm{UT}$) is clearly labeled and will not be described here.

There are three types of punched output: energy mesh, scattering kernels, and cross sections.

The energy mesh is punched if the input number is NPNT $=2$. Two decks of cards are obtained. If NEVT $=1$ (energy mesh), the first deck is the energy points E_{i}, and the second deck the integration weights, W_{i}. If NEVT $=2$ (velocity mesh), the first deck is the velocity points v_{i}, and the second deck is the velocity integration weights defined by $W_{i} / 0.0506 v_{i}$. The punching of one deck is done in subroutine PUNCH3. Each card of the deck has the same structure.

Columns	Format	Description
1-70	7F10.7	Seven values of the data
73-76	A4	First four characters of the Hollerith description of the mesh. See input description.
77-78	12	Integer describing the data $=1$, energy points $=2$, energy integration weights $=3$, velocity points $=4$, velocity integration weights
79-80	I2	Sequence number

The punched card format for scattering kernels was devised by John Suich at SRL and is used at GGA, SRL, and BNL. A card is divided into 11 fields.

Field	Columns	Format	Description
1	1	I1	Legendre order (0-9)
2	2-4	13	Final energy group index (J) of the first data word on this card
3	5-7	13	Initial energy group index of the data on this card
4	8	-	Blank
5	9-20	E12.4	$\sigma_{\ell}(\mathrm{I} \rightarrow \mathrm{J})$
6	21-32	E12.4	$\sigma_{\ell}(\mathrm{I} \rightarrow \mathrm{J}+1)$
7	33-44	E12.4	$\sigma_{\ell}(\mathrm{I}+\mathrm{J}+2)$
8	45-56	E12.4	$\sigma_{\ell}(\mathrm{I}+\mathrm{J}+3)$
9	57-68	E12.4	$\sigma_{\ell}(\mathrm{I} \rightarrow \mathrm{J}+4)$
10	69-76	F8.0	```Isotopic or material designation, FID```
11	77-80	14	Deck sequence number

The zero values will not be read from the above cards, but the array will be cleared prior to loading the kernel deck. It is only necessary to punch the non-zero values of the kernel on these cards. Each card is uniquely identified as to its location in the array.

Each deck is headed by a card in the format given above. The fields on this card are:

Field	Description
1	Same as before
2	Smallest group index = 1
3	Largest group index = NEG
4	Same
5	Temperature (${ }^{\circ} \mathrm{K}$)
6-9	Not used
10	Same as before
11	Same as before

With a slight modification, the above card format is also used to punch cross sections and Legendre moments. The character "c" punched in Field 4 signals this type of data. Field 2 is used to denote the type of cross section data given, and the number is the same as the MT (reaction type) number given on the ENDF/B tape.

6. DETAILED DESCRIPTION OF LINK 1

6.1 OVERALL OPERATION

Link 1 is divided into five major sections (subroutines PR $\emptyset F 1, P R \emptyset F 2, P R \emptyset F 3, P R \emptyset F 4$, and PLEAT). The operation of these sections are described generally here and in detail in later sections. The five major sections perform the following operation:

PRØF1 Prints documentation information, decay data, and fission product yield data. Evaluates v (neutrons/ fission) at $E=0.0 \mathrm{ev}$.

PRØF2 Calculates infinitely dilute (Doppler broadened) capture fission, and scattering cross sections from resolved resonance parameters. Group averages are produced as required.

PRØF3 Group averages or interpolates all smooth cross sections specified by test numbers to be taken from the ENDF/B tape.

PRØF4 Combines smooth cross sections and Legendre moments taken from the ENDF/B tape and produces group-averaged or interpolated Legendre cross sections for elastic, inelastic, and total scattering.

PLEAT Completes the cross sections based on the set of test numbers described in Section 2.4. This operation is performed only if Link 2 is not to be executed.

Cross sections to be printed or punched are done so in this routine.

6.1.1 Internal Energy Mesh

To properly generate the contributions to elastic, inelastic, and total scattering from File 3 cross sections with possible contributions from File 2 resonance parameters, an internal energy mesh is defined. This mesh contains energy points at which Files 3 and 2 cross sections are evaluated. Interpolation between points is assumed $1 n-1 n$, but may be easily changed if required. The number of points is chosen to enable the sharp Bragg peaks in some crystalline moderator material to be adequately represented.

The mesh contains IENX points $(=1000)$ equally spaced in lethargy between the low and high energies of the input mesh. The lethargy increment is defined from

$$
\Delta \mathrm{u}=\ln \left(\frac{\mathrm{E}_{\mathrm{NEG}+1}^{*}}{\mathrm{E}_{1}^{*}}\right) /(\operatorname{IENX}-1)
$$

and the points from

$$
E_{i}^{\prime}=E_{N E G+1}^{*} \exp \left[-\ln \left(\frac{E_{N E G+1}^{*}}{E_{1}^{*}}\right)+(i-1) \Delta u\right] \quad i=1 \text {, IENX }
$$

In PRøF2, contributions to elastic scattering cross sections from resonances are generated on the internal energy mesh and written to tape NSTA. In PRØF3, cross sections for elastic, inelastic, and total scattering are generated and written on tape NSTA. Tape NSTA is read in PRøF4 and the cross sections used to generate the Legendre cross sections for each reaction.

6.1.2 Common Storage

Common storage is divided into five named blocks designated BLØCK1, BLØCK2, ..., BLØCK5. BLØCK1, BLØCK3, and BLØCK4 are the same throughout the code. BLøCK2 common changes throughout the code to provide temporary storage as required. BLØCK5 is the same within each link of the code and is used for cross section storage. The details of each common block are given below for Link 1.

BLØCKI
NIN Input data set number
NøUT Output data set number
NPUN Punch data set number
LIB $\emptyset \quad$ Not presently used. Data set number of interfaced library for output.
LIB Data set number of ENDF/B tape
NSTA Data set number of scratch tape A
NSTB Data set number of scratch tape B

MøDE	$\begin{aligned} & \text { Mode of ENDF/B tape } \\ & =1 \text {, binary standard format } \\ & =2 \text {, binary alternate format } \\ & =3 \text {, BCD format } \end{aligned}$
DUMA (2)	Not used
LINK1	Flag to indicate execution of Link 1 (0 - no; l - yes)
LINK2	Flag to indicate execution of Link 2 (0 - no; 1-yes)
LINK3	Not used
LINK4	Not used
LINK5	Not used
LINK6	Not used
LINK7	Not used
DUMB (33)	Not used
BLØCK3	
LABEL	ENDF/B tape label requested
MATS	ENDF/B material number
T	Temperature (${ }^{\circ} \mathrm{K}$) at which cross sections are required
TEV	$\mathrm{kT}=$ temperature (ev) at which cross sections are required
LX	Highest Legendre scattering order requested ($\leqslant 5$)
LXPФ	$L X+1$
FID	Floating point output identification number for numbered output
TITLE (18)	72-character description and page heading
LPDD	Test flag on decay data (453)
LPFP	Test flag on fission product yield data (454)
LABS	Test flag for processing absorption cross section
LPABS	Test flag for printing, punching, and group averaging in absorption cross section
LFISS	Test flag for processing fission cross sections
LPFIS	Test flag for printing, punching, and group averaging fission cross sections

LTøT	Test flag for processing total cross sections
LPTǿT	Test flag for printing, punching, and group averaging total cross sections
LPTR	Test flag defining transport cross sections
LELAS	Test flag for processing elastic scattering cross sections
LPEL	Test flag for printing, punching, and group averaging elastic scattering cross sections
LINEL	Test flag for processing inelastic scattering cross section
LPIN	Test flag for printing, punching, and group averaging inelastic scattering cross sections
LSCAT	Test flag for processing total scattering cross sections
LPSC	Test flag for printing, punching, and group averaging total scattering cross sections
LTSL	Test flag for computing and normalizing thermal scattering matrices
LPTSL	Test flag for printing and punching thermal scattering matrices
LMESH	Test flag indicating whether to read new energy mesh or use old mesh (0 - yes; 1 - no)
vNU	Value of ν at $E=0.0$ from Section 452 of File 1
LSTRP	Not used
LBND	Test flag indicating only the bound principal scatterer is to be calculated from $S(\alpha, \beta)$ data
LSCøL	Test flag indicating short collision time approximation to $S(\alpha, \beta)$ is used ($0-$ no; 1-yes)
TEFF	Effective temperature (${ }^{\circ} \mathrm{K}$) to be used in short collision time equations
LRP	Test flag showing presence of resolved resonance parameters for a material (0 - no; 1 - yes)
LRSCT	Test flag indicating scattering should be computed from resonance formula (0 - no; 1 - yes)
DUMC (31)	Not used
LøСК4	
NEG	Number of energy groups in mesh
E (200)	Characteristic energy of each group (ev)
	6-4

EB(201)	Lower boundary energy of each group (ev)
V (200)	Characteristic reduced velocity of each group ($\mathrm{m} / \mathrm{sec}$)
VB(201)	Lower boundary reduced velocity for each group ($\mathrm{m} / \mathrm{sec}$)
W(200)	Integration weight for each group
IENX	Number of points in internal energy mesh
BLøCK5	
ZA	ENDF/B ZA designation for material
AWR	Atomic mass ratio of material to neutron mass
L1H	Test flag L1 in ENDF/B record
L2H	Test flag L2 in ENDF/B record
N 1 H	Test flag N1 in ENDF/B record
N 2 H	Test flag N2 in ENDF/B record
NBT (100)	Interpolation breakpoint table in ENDF/B record
INT (100)	Interpolation code table in ENDF/B record
X (4000)	Independent variable table in ENDF/B tabular record
Y (4000)	Dependent variable table in ENDF/B tabular record
B(4000)	ENDF/B LIST record table
XA (200)	Absorption cross section for each group (barns)
XF (200)	Fission cross section for each group (barns)
XT (200)	Total cross sections for each group (barns)
XTR(200)	Transport cross sections for each group (barns)
XRC (200)	Resonance contribution to capture cross section for each group (barns)
XRF (200)	Resonance contribution to fission cross section for each group (barns
XRS (200)	Resonance contribution to elastic scattering cross section for each group (barns)
XSE $(200,6)$	Elastic scattering cross section for each group and Legendre order (barns/ev)

```
    XSI(200,6) Inelastic scattering cross section for each
    group and Legendre order (barns/ev)
    XSS (200,6) Total scattering cross section for each group
    and Legendre order (barns/ev)
BL\emptysetCK2 - Normal
    TSA(2000) Temporary storage
    TSB(200,5) Temporary storage
    TSC(1000) Temporary storage
    TSD(1000) Temporary storage
    TSE(2500) Temporary storage
BL\emptysetCK2 - PRØF1
    TSA(2000) Temporary storage
    TSB(200,5) Temporary storage
BL\emptysetCK2 - PR\emptysetF2
    TSA(1000) Temporary storage
    TSB(1000) Temporary storage
    TSC(1000) Temporary storage
    TSD(1000) Temporary storage
BL\emptysetCK2 - PRØF4
    XSEC(1000) Cross section on internal energy mesh (barns)
    EN(1000) Energies of internal energy mesh (ev)
    TMP(1000,5) Legendre cross section on internal energy
        mesh ( l = 1, ..., 5)
TM(400) Transformation matrix from CM to LAB (center
        of mass to laboratory coordinate systems)
        for Legendre coefficients
    BS(10) Temporary storage of Legendre coefficients*
```


6.2 FILE 1 PROCESSING

Subroutine PRøFl processes data from File 1 of the ENDF/B tape. These consist of documentation (451), neutron yield/fission (452), radioactive decay data (453), and fission product yield data (454). For all of these reactions except neutron yield/ fission, the only operation is to print the information and/or punch cards for input to another program. Documentation (451) is
always printed, and test numbers are specified for decay data (453) and fission yield data (454) to determine what is done.

The total neutrons/fission (452) may be specified by one of two representations on the ENDF/B tape. Either a series expansion of the form
$\nu(E)=\sum_{n=1}^{N C} C_{n} E^{n-1}$
or as a tabular array of $V(E)$ versus E. FLANGE II evaluates the thermal v as that value that occurs at $E=0$. This corresponds to C_{0} in the above expansion or the value of $V(E)$ that occurs at the lowest energy in a tabulation.

6.3 FILE 2 PROCESSING

Thermal cross sections are often represented by resolved resonance parameters rather than as tabular cross sections. This method is economical in terms of the volume of numbers required to represent a cross section. Subroutine PR \emptyset F2 calculates the contributions to capture, fission, and elastic scattering cross sections from resolved resonances. This calculation is restricted to single level Breit-Wigner resonance parameters, and may contain the interference scattering term. All cross sections produced are infinitely dilute and contain Doppler broadening for the specified temperature.

The method used is to generate the cross sections on the internal energy mesh described in Section 6.1.1 using the equations in Section 6.3.1. The resulting cross sections are interpolated or group averaged, as specified by test flags, and added to the capture, fission, and elastic scattering cross sections as specified. The scattering component may be calculated under one of two assumptions specified by test flag LRSCT.

- The scattering is represented by its potential scattering cross section which is the normal case for heavy isotopes (LRSCT $=0$).
- The scattering is represented by the cross sections calculated from the resonance formulas which is more normal for light isotopes (LRSCT $\neq 0$).

The scattering cross section on the internal mesh is written to scratch tape NSTA for transfer to File 4. It is identified by a negative reaction-type number to indicate it is to be added to the elastic scattering cross section.

6.3.1 Resonance Formulas Without Doppler Broadening

The equations ${ }^{1,3}$ used to calculate cross sections from BreitWigner parameters at $0^{\circ} \mathrm{K}$ are those recommended for use by the Resonance Region Subcommittee of the Cross Section Evaluation Working Group. The cross sections for scattering, capture, and fission are given as follows for a single level representation.

$$
\left.\times \frac{\Gamma_{n r}^{2} \cos 2 \phi_{\ell}-2 \Gamma_{n r}\left(\Gamma_{\gamma r}+\Gamma_{f r}\right) \sin ^{2} \phi_{\ell}+2\left(E_{-E_{r}^{\prime}}^{\prime}\right) \sin 2 \phi_{\ell}}{\left(E-E_{r}^{\prime}\right)^{2}+\left(\frac{\Gamma_{r}}{2}\right)^{2}}\right\}
$$

where

$$
\begin{aligned}
& E=\text { energy at which cross section is evaluated (ev) } \\
& E_{r}=\text { resonance energy }(\mathrm{ev}) \\
& \mathrm{g}_{J}=\frac{2 J+1}{2(2 I+1)} \\
& I=\text { target nuclear spin } \\
& J=\text { compound nuclear spin } \\
& \Gamma_{n r}=P_{\ell}(E) \Gamma_{n r}\left(\left|E_{r}\right|\right) / P_{\ell}\left(\left|E_{r}\right|\right) \\
& \Gamma_{n r}\left(\left|E_{r}\right|\right)=\text { neutron width }(e v)
\end{aligned}
$$

$P_{\ell}=$ penetration factor

$$
\begin{aligned}
& P_{0}=\rho \\
& P_{1}=\frac{\rho^{3}}{1+\rho^{2}} \\
& P_{2}=\frac{\rho^{5}}{9+3 \rho^{2}+\rho^{4}} \\
& \rho=k a \\
& a=\text { channel radius }\left(10^{-12} \mathrm{~cm}\right)=\frac{1.23(\mathrm{~A})^{1 / 3}+0.8}{10} \\
& A=\text { atomic mass ratio of target nucleus to neutron } \\
& \mathrm{k}=2.196771 \frac{\mathrm{~A}}{\mathrm{~A}+1} \sqrt{\mathrm{E}} \times 10^{-3} \\
& \Gamma_{r}=\Gamma_{n r}(E)+\Gamma_{\gamma r}+\Gamma_{f r} \\
& \Gamma_{\gamma \mathbf{r}}=\text { radiation width (ev) } \\
& \Gamma_{f r}=\text { fission width (ev) } \\
& E_{r}^{\prime}=E_{r}+\frac{S_{\ell}\left(\left|E_{r}\right|\right)-S_{\ell}(E)}{2 P_{\ell}\left(\left|E_{r}\right|\right)} \Gamma_{n r}\left(\left|E_{r}\right|\right) \\
& S_{\ell}=\text { shift factor } \\
& S_{0}=0 \\
& S_{1}=\frac{-1}{1+\rho^{2}} \\
& S_{2}=\frac{-18-3 \rho^{2}}{9+3 \rho^{2}+\rho^{4}} \\
& \emptyset_{\ell}=\text { phase shift } \\
& \phi_{0}=\hat{\rho} \\
& \emptyset_{1}=\hat{\rho}-\tan ^{-1} \hat{\rho} \\
& \phi_{2}=\hat{\rho}-\tan ^{-1} \frac{3 \hat{\rho}}{3-\hat{\rho}^{2}} \\
& \hat{\rho}=k \hat{a} \\
& \hat{a}=\text { effective scattering radius (} 10^{-12} \mathrm{~cm} \text {) }
\end{aligned}
$$

If multilevel Breit-Wigner parameters are provided, the following term is added to the $\sigma_{S}(E)$ to include level-level interference:

6.3.2 Resonance Formulas with Doppler Broadening

The formulas used when a non-zero temperature is specified are the same as used in the MC^{2} program. ${ }^{4}$ These formulas do not include the level-level terms as used in Section 6.3.1; however, the interference term with potential scattering is included. The cross sections for scattering, capture, and fission are given as follows.

A11

$$
\sigma_{s}(E)=\sum_{\ell=0}^{\ell \text { states }}\left\{\frac{4 \pi}{k^{2}}(2 \ell+1) \sin ^{2} \emptyset_{\ell}\right.
$$

Al1
A11 J

$$
+\frac{4 \pi}{k^{2}}\left(\frac{A+1}{\bar{A}}\right)^{2} \sum_{J}^{\text {J states }} g_{J} \sum_{r=1}^{\text {resonances }} \Gamma_{n r}\left(\left|E_{r}\right|\right), ~ \Gamma_{r}\left(\left|E_{r}\right|\right) \quad \Psi(\xi, x)
$$

A11
All J
$\left.+4 \pi \hat{a} \frac{A+1}{a k_{0}} \sum_{J}^{J \text { states }} g_{J} \sum_{r=1}^{\text {resonances }} \frac{\Gamma_{n r}\left(\left|E_{r}\right|\right)}{\Gamma_{r}\left(\left|E_{r}\right|\right)} \chi(\xi, x)\right\}$

A11
ℓ states
$\sigma_{\gamma}(E)=$
$\sum_{\ell=0} \frac{4 \pi}{k_{0}^{2}}\left(\frac{A+1}{A}\right)^{2}$
$\times\left(\frac{\left|E_{r}\right|}{E}\right)^{1 / 2} \frac{\Gamma_{n r}\left(\left|E_{r}\right|\right) \Gamma_{\gamma r}\left(\left|E_{r}\right|\right)}{\Gamma_{r}^{2}\left(\left|E_{r}\right|\right)} \Psi(\xi, x)$

$$
\begin{aligned}
& \text { All } \\
& \text { A11 } \\
& \text { A11 J } \\
& \text { \& states } \\
& \sigma_{f}(E)= \\
& \text { \& states } \\
& \sum_{\ell=0} \frac{4 \pi}{k_{0}^{2}}\left(\frac{A+1}{A}\right)^{2} \\
& \text { J states } \\
& \text { resonances } \\
& \sum_{J} \\
& g_{J} \quad \sum_{r=1} \\
& \left.\times\left(\frac{\left|E_{r}\right|}{E}\right)^{1 / 2} \frac{\Gamma_{n r}\left(\left|E_{r}\right|\right) \Gamma_{f r}\left(\left|E_{r}\right|\right)}{\Gamma_{r}^{2}\left(E_{r}\right)} \Psi \xi, x\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{E}=\text { energy at which cross section is evaluated (er) } \\
& \mathrm{E}_{\mathrm{r}}=\text { resonance energy (av) } \\
& \mathrm{g}_{\mathrm{J}}=\frac{2 \mathrm{~J}+1}{2(2 \mathrm{I}+1)}=\text { statistical spin factor } \\
& \text { I = target nucleus spin } \\
& J=\text { compound nucleus spin } \\
& \Gamma_{n r}\left(\left|E_{r}\right|\right)=\text { neutron width (er) } \\
& \Gamma_{\gamma r}\left(\left|E_{r}\right|\right)=\text { radiation width (er) } \\
& \Gamma_{f r}\left(\left|E_{r}\right|\right)=\text { fission width (er) } \\
& \Gamma_{r}\left(\left|E_{r}\right|\right)=\Gamma_{n r}+\Gamma_{\gamma r}+\Gamma_{f r} \\
& \mathrm{~A}=\text { atomic mass ratio of target nucleus to neutron mass } \\
& \mathrm{k}=2.196771\left(\frac{\mathrm{~A}}{\mathrm{~A}+1}\right) \sqrt{\mathrm{E}} \times 10^{-3} \\
& k_{0}=2.196771\left(\frac{\mathrm{~A}}{\mathrm{~A}+1}\right) \sqrt{\mathrm{E}_{\mathrm{r}}} \times 10^{-3} \\
& \emptyset_{\ell}=\text { phase shift } \\
& \emptyset_{0}=\hat{\rho} \\
& \phi_{1}=\hat{\rho}-\tan ^{-1} \hat{\rho} \\
& \phi_{2}=\hat{\rho}-\tan ^{-1} \frac{3 \hat{\rho}}{3-\hat{\rho}^{2}} \\
& \hat{\rho}=k \hat{a}
\end{aligned}
$$

$$
\hat{a}=\operatorname{spin} \text { dependent scattering length }\left(10^{-12} \mathrm{~cm}\right)
$$

$\left.\begin{array}{l}\Psi(\xi, x) \\ \chi(\xi, x)\end{array}\right\}=$ Doppler broadened line shape functions

$$
\begin{aligned}
& \xi=\left(\frac{A \Gamma_{r}^{2}}{4\left|E_{r}\right| T}\right)^{1 / 2}=\frac{\Gamma_{r}}{\Delta} \\
& \Delta=\text { Doppler width (ev) }=\left(\frac{4\left|E_{r}\right| T}{A}\right)^{1 / 2} \\
& T=\text { temperature (ev) } \\
& x=\frac{2\left(E-E_{r}\right)}{\Gamma_{r}}
\end{aligned}
$$

The Doppler line shape functions are evaluated using the complex probability integral function W. ${ }^{5}$ These quantities are related through the expressions

$$
\begin{aligned}
& \Psi(\xi, x)=\frac{\xi \sqrt{\pi}}{2} \operatorname{ReW}\left(\frac{\xi x}{2}, \frac{\xi}{2}\right) \\
& X(\xi, x)=\xi \sqrt{\pi} \operatorname{ImW}\left(\frac{\xi x}{2}, \frac{\xi}{2}\right)
\end{aligned}
$$

The probability integral function is evaluated directly from convergent series and asymptotic expansions given in Reference 5.

6.4 FILE 3 PROCESSING

Subroutine PRØF3 performs interpolation or group averaging of smooth components of cross sections contained in ENDF/B File 3. The reactions considered are:

Reaction
Section

$$
\sigma^{t}(E, T) \text { total } 1
$$

$\sigma^{e l}(E, T)$ elastic 2
$\sigma^{i n}(E, T)$ inelastic 4
$\sigma^{f}(E, T)$ fission 18
$\sigma^{s}(E, T)$ total scattering 29
$\sigma^{\gamma}(E, T) \quad(n, \gamma)$ 102
 table. PRØF3 first examines the test flags to determine whether to process the section, then returns or continues. If it continues, it first searches the tape for the required cross section. If not found, error stop 135 occurs. If found, the cross section is interpolated for the correct temperature. If the specified temperature is outside the range of the data, error stop 102 occurs.

When the required data are attained, they are stored as an ENDF/B TAB1 record in /BLØCK5/ common. The cross section may be interpolated at the characteristic energies of each group or averaged over the energy range of each group as specified by the test flags. Interpolation is performed by subroutine TERP2, and group averaging is performed by subroutine ACS.

If the cross section is elastic, inelastic, or total scattering the cross sections are interpolated on the internal energy mesh using subroutine TERP2. These cross sections are then written to tape NSTA with the section number as an identifier for use in File 4.

6.5 FILE 4 PROCESSING

Subroutine PRØF4 calculates Legendre cross sections up to order P_{5} using smooth cross sections passed to it from PR $\varnothing \mathrm{F} 2$ and PRØF3 and angular distribution data from File 4 of the ENDF/B tape. Elastic, inelastic, or total scattering is calculated depending on the test flags specified in input.

When a scattering cross section is to be processed, the first step is to locate and read the P_{0} order cross sections tabulated on the internal energy mesh from tape NSTA. These tabulations were written in PRØF3. For elastic scattering, a further search of tape NSTA is made to locate possible contributions from resonance scattering which are added to the smooth cross sections from PR $\varnothing F 3$. The cross sections are stored in BLØCK2 in array $\operatorname{XSEC}(\mathrm{N})$ with the corresponding internal energy mesh in BL $\emptyset C K 2$ array $\mathrm{EN}(\mathrm{N})$.

The probability that a neutron with energy E and temperature T will scatter through an angle whose cosine is μ for a particular scattering process is given in File 4 of the ENDF/B tape as either an expansion in Legendre polynomials in the form

$$
p(E, \mu, T)=\sum_{\ell=0}^{L X} \frac{2 \ell+1}{2} f_{\ell}(E, T) P_{\ell}(\mu)
$$

or a tabular table of $p\left(E, \mu_{i}, T\right)$ versus μ_{i}. The desired Legendre cross sections $\sigma_{\ell}(E)$ are given by

$$
\sigma_{\ell}(E)=\sigma(E) f_{\ell}(E)
$$

where $\sigma(E)$ is the P_{0} cross section and $f_{\ell}(E)$ is the Legendre coefficient of order ℓ. The differenctial angular cross section for scattering is related to $\sigma_{\ell}(E)$ by

$$
\frac{\mathrm{d} \sigma(\mathrm{E}, \mu)}{\mathrm{d} \Omega}=\frac{1}{2 \pi} \sum_{\ell=0}^{L X} \frac{2 \ell+1}{2} \sigma_{\ell}(E) P_{\ell}(\mu)
$$

In File 4 of the ENDF/B tape the angular distribution may be specified in either the center of mass (CM) system or the laboratory (LAB) system. The required cross sections are for the LAB system: hence whenever possible a transformation is made, otherwise an error stop occurs. Normally a transformation matrix is given for eleastic Legendre moments when specified in the CM system. The LAB moments are related to the $C M$ moments by the following equation. ${ }^{1}$

$$
f_{\ell}^{1 a b}(E)=\sum_{m=0}^{N M} u_{\ell m} f_{m}^{C M}(E)
$$

where the $u_{l m}$ are the elements of the transformation matrix and are stored in array $\mathrm{TM}(400)$ in BLøCK2.

If the angular distribution is tabular, the Legendre moments may be derived by integrating the tabular distribution for a specified number of Legendre polynomials. These moments are given by

$$
f_{\ell}(E)=\int_{-1}^{+1} p(E, \mu) P_{\ell}(\mu) d \mu
$$

This definition is valid for both the LAB and CM systems.
PRøF4 will process angular distributions in either Legendre expansion or tabular form in the LAB system. Only the Legendre expansion form is acceptable for CM data and the transformation matrix must be supplied. Any data not meeting these restrictions will lead to an error stop.

After the required P_{0} cross sections are retrieved from tape NSTA the angular distribution at the first energy is read, converted into LAB system Legendre moments, and stored. The calculation of the Legendre cross sections is arranged so that the angular distribution data are read only once. At any time two distributions corresponding to Ehigh and $E_{10 w}$ are maintained in core. Legendre moments for each energy on the internal mesh between $\mathrm{E}_{\mathrm{hi} \text { gh }}$ and $\mathrm{E}_{\text {low }}$ are obtained by interpolation. After Legendre cross sections are tabulated at all energy points between $E_{\text {high }}$ and $E_{l o w}$ the distribution at $E_{10 w}$ is moved to $E_{\text {high }}$ and a new $E_{10 w}$ distribution is read. The process continues until Legendre cross sections are obtained for all orders and all energy points on the internal mesh. These Legendre cross sections will be array TMP $(1000,5)$ in BLめCK2 common.

The Legendre cross sections are now interpolated or group averaged as specified by the test flags to obtain the final cross sections.

6.6 COMPLETING THE CROSS SECTION SET

Subroutine PLEAT is executed only if LINK2 of the code is not executed. Its function is to complete the cross sections specified by the test flags as being derived from other cross sections. If LINK2 of the code is being executed, all cross sections computed and stored in BLøCK5 common are written as tape NSTA for transfer. A second subroutine PLEAT2 in LINK2 will then perform the operations necessary to complete the cross sections.

The test flags and computing operations performed by PLEAT are described in detail in Section 2.4. Any mutually exclusive set of test flags will lead to an error stop.

After the operations necessary to complete the cross sections are performed, PLEAT then prints and/or punches all cross sections as indicated by the second set of test flags.

7. DETAILED DESCRIPTION OF LINK 2

7.1 OVERALL OPERATION

Link 2 is divided into three sections (subroutines PRøF7, PLEAT2, and REKøN). Operation of each section is described below, and a flow diagram for $P R \emptyset F 7$ is given here.

Flow Diagram for PRØF7

It is assumed that on entering Link 2, Link 1 has been executed and the resulting cross sections are stored on tape NSTA. Link 2 then operates as follows:

PRØF7 - The tabulated scattering law $S(\alpha, \beta)$ is read one β at a time from the ENDF/B tape. Two successive β values form a panel, and the scattering kernels and cross sections are computed for each panel as it is read in. These results are stored in the fast
memory if room is available, or dumped onto tape NSTB. Analytic terms are also evaluated and added to the results from the tabulated $S(\alpha, \beta)$. The short collision approximation is used to extend the tabular $S(\alpha, \beta)$ table when requested.

PLEAT2 - If all required cross sections were obtained in Link 1 , they are read in from tape NSTA and stored for use in normalizing the scattering kernels. If the inelastic cross section was computed in Link 2 (and not read in Link 1), the cross sections are read from tape NSTA and the inelastic cross section is added to complete the set. The cross sections are then printed, punched, and stored for use in normalizing the scattering kernels.

REKØN - The scattering kernels (in the order in which they were computed) are brought in from core or tape storage, re-ordered, normalized, printed, and punched.

7.2 STORAGE ALLOCATION

7.2.1 Storage of $S(\alpha, \beta, T)$

The scattering law, $S(\alpha, \beta, T)$, is stored on the library tape in the following manner.

1. Heading record giving the test LAT.
2. Record giving σ_{b} and A for the tabulated law, and the constants for the analytic laws.
3. Record giving the number of β values given (NBETA) and a table telling how to interpolate between values of β.
4. Record giving pairs of $\alpha, S(\alpha, \beta, T)$ for the first β and the first temperature, and a table telling how to interpolate between values of α.
5. Record giving values of $S(\alpha, \beta, T)$ for the first β and the second temperature (same α and interpolation as for the first temperature).
6. Repeat of Item 5 until all temperatures are given.
7. Repeat of Items 4 and 5 until all temperatures and all β are given.

The first three records are read and processed in PRØF7. The remaining records are read and processed in REATS.

The calculation is arranged so that the $S(\alpha, \beta, T)$ is read from the library tape only once. Since the entire array probably cannot be fit into core storage, only two consecutive values of β are stored at one time. The data for the first two values of β are read in, and all computations of kernels and cross sections that involve this range of β are done. The data for the high value of β are then moved to the area used to store data for the low value of β, and a new set of data for the next β are read from the library. The computations involving this β range are done, and the process is repeated until all β have been processed. This logic is contained in PRØF7.

Consider the steps involved in reading the data for one β from the library. Since the α mesh for one value of β may be different from the α mesh for another value of β, it is convenient to evaluate the scattering law on a single α mesh for all β. This common α mesh is called the "fine" α mesh and is computed in the following manner. Let IALX $(=300)$ be the number of points in the "fine" α mesh, and $\rho_{0}(=1.03)$ be an expansion ratio. Denote the "fine" α mesh by α_{i}.

$$
\alpha_{i}=\alpha_{0} \rho_{0}^{i-1}
$$

The α_{0} is selected by requiring that $\alpha_{\text {IALX }}<\alpha_{\max }$, where $\alpha_{\max }=4 \mathrm{E}_{\max } / \mathrm{AT}$, and $\mathrm{E}_{\max }$ is the largest energy in the input energy mesh. Then

$$
\alpha_{0}=\alpha_{\max } / \rho_{0}^{\text {IALX }-2}
$$

For $\mathrm{E}_{\max }=1 \mathrm{ev}, \mathrm{kT}=0.025 \mathrm{ev}, \mathrm{A}=1, \rho_{0}=1.03$, and $\operatorname{IALX}=300$, then $\alpha_{\max }=160$, and $\alpha_{0}=0.024$.

Let β_{H} and β_{L} denote the high and low values of β contained in storage. Define

$$
\begin{aligned}
& \operatorname{SA}(I)=S\left(\alpha_{i}, \beta_{L}, T\right) \\
& \operatorname{ASA}(I)=\ln S\left(\alpha_{i}, \beta_{L}, T\right) \\
& S B(I)=S\left(\alpha_{i}, \beta_{H}, T\right) \\
& \operatorname{ASB}(I)=\ln S\left(\alpha_{i}, \beta_{H}, T\right) \\
& \operatorname{ALP}(I)=\alpha_{i}
\end{aligned}
$$

where T denotes the input temperature.

The first step in subroutine REATS is to move $\mathrm{SB} \rightarrow \mathrm{SA}, \mathrm{ASB} \rightarrow \mathrm{ASA}$, and $\beta_{H} \rightarrow \beta_{\mathrm{L}}$. The next step is to read a record containing the new $\beta=\beta_{H}$, pairs of $\left[\alpha_{n}, S\left(\alpha_{n}, \beta, T\right)\right]$, and a table for interpolating between the α_{n}. The α_{n} is the α mesh contained on the library tape of this β. These data are stored in

TSA $(N)=\alpha_{n}$
$T S B(N)=S\left(\alpha_{n}, \beta, T\right)$
The temperature used to define α and β on the library tape may have been the actual temperature (LAT $=0$) or a constant equal to 0.0253 ev . (LAT = 1). If the latter, the β and α_{n} are scaled by the factor $0.0253 / \mathrm{kT}$ to achieve the proper β and α_{n} at temperature T.

The $S\left(\alpha_{n}, \beta, T\right)$ are now interpolated on the "fine" α mesh and stored in array TSD $(1,4)$ and T 4 is set equal to T . Because the α_{n} mesh in TSA(N) for a temperature T may not span the same range as the "fine" α mesh, the option is available to use the short collision approximation to supply the additional non-zero $S\left(\alpha_{i}, \beta, T\right)$ values on the "fine" α mesh. If the short collision approximation is not used, then "fine" α mesh interpolation is performed by subroutine TERP2. If the short collision approximation is used, the effective temperature for the short collision approximation equation

$$
S_{s c}\left(\alpha_{i}, \beta, T, T_{e f f}\right)=\frac{e^{\frac{\beta}{2}} e^{-\frac{T}{4 \alpha_{i} T_{e f f}}}\left(\alpha_{i}+\beta\right)^{2}}{\sqrt{4 \pi \alpha_{i} T_{e f f} / T}}
$$

is supplied, and the interpolation is performed by subroutine TERP3. The values in $\operatorname{TSD}(1,4)$ are tested and set to values $>1.0 \times 10^{-33}$.

Temperature T 4 is now compared to the requested temperature. If equal, the values of $S\left(\alpha_{i}, \beta, T\right)$ stored in $\operatorname{TSD}(I, 4)$ are stored in $\operatorname{SB}(I)$ and the natural \log in $A S B(I)$. If the requested temperature is greater than T4, the values in the TSD (I, K) array are all moved back one position, and the temperature is stored backwards as

$$
\begin{array}{ll}
\operatorname{TSD}(\mathrm{I}, 1)=\operatorname{TSD}(\mathrm{I}, 2) & \mathrm{T}=\mathrm{T} 2 \\
\operatorname{TSD}(\mathrm{I}, 2)=\operatorname{TSD}(\mathrm{I}, 3) & \mathrm{T} 2=\mathrm{T} 3 \\
\operatorname{TSD}(\mathrm{I}, 3)=\operatorname{TSD}(\mathrm{I}, 4) & \mathrm{T} 3=\mathrm{T} 4
\end{array}
$$

A new set of $S\left(\alpha_{n}, B, T\right)$ are now read into $T S B(N)$ at a new temperature T. T4 is set to T and the α_{n} mesh is corrected for the new temperature as $\alpha_{n}=\alpha_{n} T 3 / T 4$. The $S\left(\alpha_{n}, \beta, T\right)$ are again interpolated on the "fine" α mesh as described above. The process is continued until four sets of $S\left(\alpha_{i}, \beta, T\right)$ are stored in array TSD (I,K) corresponding to four temperatures T1 through T4. If possible, the requested temperature is made to be in the range $\mathrm{T} 2<\mathrm{T}<\mathrm{T} 3$. If T equals any of the four temperatures, it is accepted as interpolated and stored in $\mathrm{SB}(\mathrm{I})$ as described above.

A four-point Lagrangian interpolation is now performed to obtain the $S\left(\alpha_{i}, \beta, T\right)$ required according to

$$
\operatorname{SB}(I)=A_{1} \operatorname{TSD}(I, 1)+A_{2} \operatorname{TSD}(I, 2)+A_{3} \operatorname{TSD}(I, 3)+A_{4} \operatorname{TSD}(I, 4)
$$

where

$$
\begin{aligned}
& \mathrm{A}_{1}=(\mathrm{T}-\mathrm{T} 2)(\mathrm{T}-\mathrm{T} 3)(\mathrm{T}-\mathrm{T} 4) /(\mathrm{T} 1-\mathrm{T} 2)(\mathrm{T} 1-\mathrm{T} 3)(\mathrm{T} 1-\mathrm{T} 4) \\
& \mathrm{A}_{2}=(\mathrm{T}-\mathrm{T} 1)(\mathrm{T}-\mathrm{T} 3)(\mathrm{T}-\mathrm{T} 4) /(\mathrm{T} 2-\mathrm{T} 1)(\mathrm{T} 2-\mathrm{T} 3)(\mathrm{T} 2-\mathrm{T} 4) \\
& \mathrm{A}_{3}=(\mathrm{T}-\mathrm{T} 1)(\mathrm{T}-\mathrm{T} 2)(\mathrm{T}-\mathrm{T} 4) /(\mathrm{T} 3-\mathrm{T} 1)(\mathrm{T} 3-\mathrm{T} 2)(\mathrm{T} 3-\mathrm{T} 4) \\
& \mathrm{A}_{4}=(\mathrm{T}-\mathrm{T} 1)(\mathrm{T}-\mathrm{T} 2)(\mathrm{T}-\mathrm{T} 3) /(\mathrm{T} 4-\mathrm{T} 1)(\mathrm{T} 4-\mathrm{T} 2)(\mathrm{T} 4-\mathrm{T} 3)
\end{aligned}
$$

If only three temperatures are available in the data, a threepoint Lagrangian interpolation is used according to

$$
\operatorname{SB}(I)=A_{2} \operatorname{TSD}(I, 2)+A_{3} \operatorname{TSD}(I, 3)+A_{4} \operatorname{TSD}(I, 4)
$$

where

$$
\begin{aligned}
& \mathrm{A}_{2}=(\mathrm{T}-\mathrm{T} 3)(\mathrm{T}-\mathrm{T} 4) /(\mathrm{T} 2-\mathrm{T} 3)(\mathrm{T} 2-\mathrm{T} 4) \\
& \mathrm{A}_{3}=(\mathrm{T}-\mathrm{T} 2)(\mathrm{T}-\mathrm{T} 4) /(\mathrm{T} 3-\mathrm{T} 2)(\mathrm{T} 3-\mathrm{T} 4) \\
& \mathrm{A}_{4}=(\mathrm{T}-\mathrm{T} 2)(\mathrm{T}-\mathrm{T} 3) /(\mathrm{T} 4-\mathrm{T} 2)(\mathrm{T} 4-\mathrm{T} 3)
\end{aligned}
$$

If only two temperatures are available in the data, the standard two-point interpolation codes are used with subroutine TERP1.

The final step is to store the natural \log of $\mathrm{SB}(\mathrm{I})$ in array ASB (I).

The method of interpolation described here is designed to provide as exact a method of temperature interpolation as is possible over the entire range of values of $S(\alpha, \beta, T)$. Generally as β becomes large (>10) the $S(\alpha, \beta, T)$ changes with temperature by factors as large as $100 /{ }^{\circ} \mathrm{K}$ while simultaneously becoming
smaller in magnitude. At some value of β the entire interpolation scheme will break down due to the large-scale factors on temperature. This effect is computer dependent and typically occurs between β values of 30 to 40 . Once such a limit is reached it is no longer possible to generate accurate $S(\alpha, \beta)$ tables at intermediate temperatures between the tabulated temperatures. This restriction does not, however, apply to the temperatures at which the $S(\alpha, \beta)$ are tabulated since no interpolation is done beyond transforming to the "fine" α mesh. A method of circumventing the restrictions produced by these interpolation errors is described in Section 8.

7.2.2 Cross Section Storage

Manipulation of cross sections is done by subroutine PLEAT2. Cross sections processed by Link 1 are stored on tape NSTA. These are read into the storage block SBB, completed, printed, punched, and the appropriate cross section for the normalization of the kernels is computed and stored. The completing, printing, and punching are identical to that described previously for Link 1.

This process occurs following the computation of the kernels and inelastic cross sections in PR $\emptyset F 7$, and prior to reorganization of the kernels in REKØN. The exact inelastic cross section is obtained from Files 3 and 4 of the library tape or computed from $S(\alpha, \beta)$. It is stored in XSI (N,L). An approximate cross section is computed during the computation of the kernels.

$$
\sigma_{\ell}^{*}\left(E_{i}\right)=\sum_{j=1}^{N E G} \sigma_{\ell}\left(E_{i} \rightarrow E_{j}\right) W_{j}
$$

where W_{j} is the integration weight for the $j^{\text {th }}$ group. This approximate cross section is stored in XINA(N,L). The test LTSL is used to indicate how the kernels are to be normalized. The array XINE (N, L) is to be set up with the cross section wanted to normalize the kernels.

```
LTSL = 3 No renormalization desired
    XINE (N,L) = XINA (N,L)
LTSL = 4 Normalize to the inelastic cross section
    XINE (N,L) = XSI (N,L)
LTSL = 5 Normalize to the total (Elastic + inelastic)
    cross section XINE (N,L) = XSS (N,L)
```

When the ordered kernel is set up by REK $\varnothing \mathrm{N}$, the diagonal element will be changed by adding.

$$
[\operatorname{XINE}(N, L)-\operatorname{XINA}(N, L)] / W(N)
$$

7.2.3 Storage of the Scattering Kernel

Allowance is made for a large input energy mesh ($\leqslant 200$ points). A single kernel might require 20,100 entries, and six Legendre components might require 120,600 entries. A fast and efficient method is needed to transfer data between fast core storage and bulk storage. Two one-dimensional arrays (SBA and SBB) are used for this purpose, and subroutine STøRK handles all transfers between core storage and tape.

If NEG is the number of energy groups, a full kernel requires NEG*NEG storage locations. Because of the detailed balance condition, only the upper half matrix (downscattering plus diagonal terms) is required, or NEG* (NEG+1)/2 storage locations.

Since the kernels are calculated in the order of increasing β and since all of the data may not be contained in fast core storage, the data are collected and stored in array SBA as the data are calculated. If LX is the maximum Legendre order, and LXP $\emptyset=L X+1$, then LXP \varnothing locations are needed for each term of the kernel. Let I denote the initial energy group, J denote the final energy group, and $S(L)$ denote the kernel. Combine the I and J into $\mathrm{C}=1000 \mathrm{~J}+\mathrm{I}$. The string of numbers

$$
C, S(1), S(2), \ldots, S(L X P \emptyset)
$$

is stored sequentially in SBA (K). Since there are LXP $\varnothing+1$ numbers in the string, K is incremented by LXP $\varnothing+1$ after storage of the string. SBA is presently dimensioned for 4623 locations. The following table gives the largest value of NEG which can be held in SBA.

LX	LXPO+1	Max Number of (I,J) Entries	Max NEG
0	2	2311	67
1	3	1541	55
2	4	1155	47
3	5	924	42
4	6	770	38
5	7	660	35

If the actual NEG does not exceed the values given in the above table, all kernels can be contained in fast core storage and tapes are not used.

If NEG exceeds the values given in the table, the array SBA will automatically be dumped onto tape NSTB whenever the array is full. Thus, if $L X=5$, and $N E G=200$ (the maximum problem), 120,600 entries are required which would use 26 fu1l arrays and 1 partial array. 27 blocks would be dumped on tape NSTB, and end-of-file written, and the tape rewound.

Frequently, many off-diagonal terms are very small and can be ignored. A criterion EPSK ($=10^{-8}$) is used to reject these terms. This rejection is done in $S T \emptyset R K$ and all Legendre components must be less than EPSK for the terms to be rejected.

Next the kernels are brought back into core storage, properly ordered, normalized, printed, and punched. These operations are done in subroutine REK $\varnothing \mathrm{N}$ which uses STøRK to fetch numbers from tape or core storage. The properly ordered kernel is contained in array SBB which is dimensioned at 5151. Only one Legendre moment kernel is stored in SBB at one time. The kernel is a twodimensional array, and SBB is a one-dimensional array. Consider the following diagram (illustrated for NEG $=7$).

I (Initial Group)

Each point shown above represents an element of the kernel which is stored. Let K denote the location in array SBB. The number by each point is this value of K. The number of entries up to
and including column I is $1 / 2[I(I+1)]$, and the number of entries between and including columns IA and IB is

$$
K X=1 / 2[I B(I B+1)-I A(I A-1)]
$$

If NEG $\leqslant 101,1 / 2[\mathrm{NEG}(\mathrm{NEG}+1)] \leqslant 5151$, and the entire kernel will fit into $S B B$. If NEG >101, several passes are made. For example, suppose $N E G=200$. Four passes are required:
pass IA IB KX (Storage Used)

1	1	101	5151
2	102	143	5145
3	144	175	5104
4	176	200	4700

The location K for a particular combination I, J is given by

$$
K=1 / 2[I(I-1)]-1 / 2[I A(I A-1)]+J
$$

Thus, $I=127, J=53$ would require Pass $2, I A=102$, and $K=2903$.

The calculation proceeds in the following manner. The entire tape NSTB is read, block by block, into SBA. The P_{o} components are extracted and stored in SBB. If NEG $\leqslant 101$, the entire kernel will fit into SBB. If NEG > 101, only the terms for $I \leqslant 101$ are stored. The contents of SBB are normalized, printed, and punched, and tape NSTB is rewound. If NEG >101, the tape is again read, and the P_{0} components for $102 \leqslant I \leqslant 143$ are stored in SBB. These are normalized, printed, punched, and NSTB is rewound. This is repeated until the entire P_{0} kernel has been processed. The entire operation is repeated for the P_{1} component, and so forth. The following table gives the number of times tape NSTB will be read.

Range NEG	Maximum							Legendre	Component	Requested
	$\underline{P_{0}}$	$\underline{P_{1}}$	$\underline{P_{2}}$	$\underline{P_{3}}$	$\underline{P_{4}}$	$\underline{P_{5}}$				
$1-35$	0	0	0	0	0	0				
$36-38$	0	0	0	0	0	6				
$39-42$	0	0	0	0	5	6				
$43-47$	0	0	0	4	5	6				
$48-55$	0	0	3	4	5	6				
$56-67$	0	2	3	4	5	6				
$68-101$	1	2	3	4	5	6				
$102-143$	2	4	6	8	10	12				
$144-175$	3	6	9	12	15	18				
$176-200$	4	8	12	16	20	24				

7.2.4 Common Storage

Labeled common storage is used and designated by BLØCK1, BLøCK2,, BLøCK5. BLøCK1, BLøCK3, and BLøCK4 are the same as in Link 1.

BLØCK2

TSA (1000)	Temporary storage
TSB (1000)	Temporary storage
$\operatorname{TSD}(300,4)$	Temporary storage

BLØCK 5

BETL $\quad \beta_{L}$, the lower β value of the two currently in storage (see PRøF7, REATS)

BETH $\quad \beta_{H}$, the higher β value of the two currently in storage (see PRØF7, REATS)

EPSK Test $\left(=10^{-8}\right)$ used to reject terms in the kernels (see Section 7.2.3)

LAT Test indicating whether the actual temperature (LAT $=0$) or the value 0.0253 ev (LAT $=1$) was used on the library tape to define α and β

AMASS A, the mass ratio used to compute α for a tabulated scattering law

SIGB $\quad \sigma_{b}$, the bound atom cross section (barns) used with the tabulated scattering law. If $\sigma_{b}=0$, no tabulation is given, only analytic terms are given.

IALX $\quad=300$, the number of α used for the fine α mesh. This should correspond to the dimensions of ALP, SA, ASA, SB, ASB.

RHø $\quad \rho_{0}$, the expansion ratio (=1.03) for the fine α mesh (see 7.2.3)

ARHØ $\quad \ln \rho_{0}$, (see 7.2.3)
$A L P H \varnothing \quad \alpha_{0}$, first α value in the fine α mesh (see 7.2.3)
$\operatorname{XINE}(200,6) \quad \operatorname{XINE}(N, L)$, the exact inelastic scattering cross section $\sigma_{\ell}^{i n}\left(E_{H}\right), L=\ell+1$, computed from $S(\alpha, \beta)$ (see PRØF7)

XINA $(200,6)$	XINA(N,L), an approximate inelastic scattering cross section $\sigma_{\ell}^{*}\left(E_{N}\right), L=\ell+1$, computed from the calculated kernél (see 7.2.2 and PRøF7)
KMXA	$=4623$, the length of array SBA
KMXB	$=5151$, the length of array SBB
SBA (4623)	Storage block (see 7.2.3)
SBB (5151)	Storage block (see 7.2.3)
ALP (300)	ALP (I) contains α_{i} (see 7.2.1)
SA(300)	SA(I) contains $\mathrm{S}\left(\alpha_{i}, \beta_{\mathrm{L}}\right)$ (see 7.2.1)
ASA (300)	ASA(I) contains ln $S\left(\alpha_{i}, \beta_{L}\right)$ (see 7.2.1)
SB (300)	SB(I) contains $S\left(\alpha_{i}, \beta_{H}\right)$ (see 7.2.1)
ASB (300)	ASB(I) contains in $\mathrm{S}\left(\alpha_{i}, \beta_{\mathrm{H}}\right)$ (see 7.2.1)
$\operatorname{SBC}(200,6)$	$\operatorname{SBC}(\mathrm{N}, \mathrm{L})$, the inelastic scattering kernel $\sigma \ell\left(E_{N} \rightarrow E_{N}+\beta_{L}\right), L=\ell+1$, used in the calculation of the inelastic cross section (see FEINT)
SBD (200,6)	SBD (N, L), the inelastic scattering kernel $\sigma_{\ell}\left(E_{N} \rightarrow E_{N}-\beta_{L}\right), L=\ell+1$, used in the calculation of the inelastic cross section (see FEINT)
$\begin{aligned} & \operatorname{XSE}(200,6) \\ & \operatorname{XSI}(200,6) \end{aligned}$	
XSS $(200,6)$	Cross sections computed and defined in Link 1 which are transmitted from Link 1 to Link 2 via
$\mathrm{XA}(200)$ $\mathrm{XF}(200)$	tape NSTA. See Section 6 for their definition and PLEAT2 for the way they are used in Link 2.
XT (200)	
XTR (200)	

Many of these arrays are equivalent to SBB. The following table summarizes this equivalence.
$\operatorname{SBB}(1)=\mathrm{ALP}=\mathrm{XA}$
$\operatorname{SBB}(301)=\mathrm{SA}=X F$
$\operatorname{SBB}(601)=\mathrm{ASA}=X T$
$\operatorname{SBB}(901)=\mathrm{SB}=\mathrm{XTR}$
$\operatorname{SBB}(1201)=A S B$
$\operatorname{SBB}(1501)=\mathrm{SBC}=\mathrm{XSE}$
$\operatorname{SBB}(2701)=\operatorname{SBD}=X S I$
$\operatorname{SBB}(3901)=\quad=X S S$

7.3 CALCULATION OF THE SCATTERING KERNELS

7.3.1 General Method

The scattering kernels are calculated from
$\sigma_{\ell}\left(E^{\prime} \rightarrow E\right)=\frac{\sigma_{b}}{4 \pi k T} \sqrt{\frac{E}{E^{\prime}}} e^{-\beta / 2} \int_{-1}^{1} \mathrm{~d} \mu \mathrm{~S}(\alpha, \beta) P_{\ell}(\mu)$
$\alpha=\left(E+E^{\prime}-2 \mu \sqrt{E E^{\prime}}\right) / A k T$

This equation is rewritten so that the integration is over α instead of μ.
$\sigma_{\ell}\left(E^{\prime} \rightarrow E\right)=\frac{A \sigma_{b}}{4 E^{\prime}} e^{-\beta / 2} \int_{\alpha_{L}}^{\alpha_{H}} d \alpha S(\alpha, \beta) P_{\ell}(\mu)$
$\alpha_{L}=\left(E+E^{\prime}-2 \sqrt{E E^{\prime}}\right) / A k T$
$\alpha_{H}=\left(E+E^{\prime}+2 \sqrt{E E^{\prime}}\right) / A k T$
$P_{\ell}(\mu)$ is expanded in powers of α.

$$
P_{\ell}(\mu)=\sum_{n=0}^{\ell} W_{\ell n} \alpha^{n}
$$

The final expression for the kernel is then

$$
\begin{aligned}
& \sigma_{\ell}\left(E^{\prime} \rightarrow E\right)=\frac{A \sigma_{b}}{4 E^{\top}} e^{-\beta / 2} \sum_{n=0}^{\ell} W_{\ell n} H_{n} \\
& H_{n}=\int_{\alpha_{L}}^{\alpha_{H}} d \alpha \alpha^{n} S(\alpha, \beta)
\end{aligned}
$$

7.3.2 Coefficients $W_{l n}$

The coefficients $W_{l n}$ can be obtained straightforward by expanding $P_{\ell}(\mu)$ in a power series.

$$
\begin{aligned}
& P_{\ell}(\mu)=\sum_{k=0}^{\ell} a_{k}^{\ell}\left(\gamma_{0}-\gamma_{1} \alpha\right)^{k} \\
& \mu=\gamma_{0}-\gamma_{1} \alpha, \quad \gamma_{0}=\left(E^{\prime}+E\right) / 2 \sqrt{E E^{\prime}}, \quad \gamma_{1}=A k T / 2 \sqrt{E E^{\prime}} \\
& \text { The } a_{k}^{\ell} \text { satisfy the recursion formulas } \\
& a_{0}^{\ell+1}=-\frac{\ell}{\ell+1} a_{0}^{\ell-1} \\
& a_{k}^{\ell+1}=\frac{2 \ell+1}{\ell+1} a_{k-1}^{\ell}-\frac{\ell}{\ell+1} a_{k}^{\ell-1}, \quad 1 \leqslant k \leqslant \ell-1 \\
& a_{\ell}^{\ell+1}=\frac{2 \ell+1}{\ell+1} a_{\ell-1}^{\ell} \\
& a_{\ell+1}^{\ell+1}=\frac{2 \ell+1}{\ell+1} a_{\ell}^{\ell}
\end{aligned}
$$

The a_{k}^{ℓ} for $\ell \leqslant 5$ are given in the following table:

k	0	1	2	3	4	5
0	1					
1	0	1				
2	$-1 / 2$	0	$3 / 2$			
3	0	$-3 / 2$	0	$5 / 2$		
4	$3 / 8$	0	$-30 / 8$	0	$35 / 8$	
5	0	$15 / 8$	0	$-70 / 8$	0	$63 / 8$

Next use the binomial expansion to obtain

$$
\left(\gamma_{0}-\gamma_{1} \alpha\right)^{k}=\sum_{m=0}^{k}\left(\begin{array}{l}
k
\end{array}\right) \gamma_{0}^{k}\left(-\gamma_{1}\right)^{m-k} \alpha^{m-k}
$$

Change index and insert

$$
\begin{aligned}
& w_{\ell n}=\left(-\gamma_{1}\right)^{n} \sum_{j=0}^{\ell-n} b_{j n}^{\ell} \gamma_{0}^{j} \\
& b_{j n}^{\ell}=\binom{j+n}{n} a_{j+n}^{\ell}
\end{aligned}
$$

The $b_{j n}^{\ell}$ for $\ell \leqslant 5$ are given in the following table:

ℓ	n	0	1	2	3	4	5
0	0	1					
1	0	0	1				
	1	1					
2	0	$-1 / 2$	0	$3 / 2$			
	1	0	3				
	2	$3 / 2$					
3	0	0	$-3 / 2$	0	$5 / 2$		
	1	$-3 / 2$	0	$15 / 2$			
	2	0	$15 / 2$				
	3	$5 / 2$					
4	0	$3 / 8$	0	$-15 / 4$	0	$35 / 8$	
	1	0	$-15 / 2$	0	$35 / 2$		
	2	$-15 / 4$	0	$105 / 4$			
	3	0	$35 / 2$				
	4	$35 / 8$					
5	0	0	$15 / 8$	0	$35 / 4$	0	$63 / 8$
	1	$15 / 8$	0	$-105 / 4$	0	$315 / 8$	
	2	0	$-105 / 4$	0	$315 / 4$		
	3	$-35 / 4$	0	$315 / 4$			
	4	0	$315 / 8$				
	5	$63 / 8$					

7.3.3 Tabulated $S(\alpha, \beta)$

The method of calculating the α moments is discussed in detail. The representation of $S(\alpha, \beta)$ is given in this section for a tabulated function and in Section 7.3.4 for an analytic function.

Assume that $S(\alpha, \beta)$ for two consecutive values of β are in storage. Denote the lower value of β by β_{L}, and the upper by B_{H}. Also given are initial and final energies, $E \prime$ and E, such that $\beta=\left|E^{\prime}-E\right| / k T$ lies between β_{L} and β_{H}. For both the upper and lower values of β, the scattering law $S(\alpha, \beta)$ and $y=\ln [S(\alpha, \beta)]$ are evaluated on an α mesh defined by

$$
\alpha_{i}=\alpha_{0} \rho_{0}^{i-1}, \quad 1 \leqslant i \leqslant \operatorname{IALX}
$$

where ρ_{0}, and IALX are preset constants. If $E_{\text {max }}$ is the largest energy in the input and A is the mass used to define α, then α_{0} is computed from

$$
\begin{aligned}
& \alpha_{\max }=4 \mathrm{E}_{\max } / \mathrm{AkT}<\alpha_{\mathrm{IALX}}=\alpha_{0} \rho_{0}^{\text {IALX }-1} \\
& \alpha_{0}=\alpha_{\max } / \rho_{0}^{I A L X-2}
\end{aligned}
$$

If $E_{\max }=1 \mathrm{ev}, \mathrm{kT}=0.025 \mathrm{ev}, \operatorname{IALX}=300, \rho_{0}=1.03$ and $\mathrm{A}=1$, then $\alpha_{\max }=160$ and $\alpha_{0}=0.024$.

The upper and lower integration limits are computed from

$$
\begin{aligned}
& \alpha_{L}=\left(E^{\prime}+E-2 \sqrt{E E^{\prime}}\right) / A k T \\
& \alpha_{H}=\left(E^{\prime}+E+2 \sqrt{E E^{i}}\right) / A k T
\end{aligned}
$$

A low index, IL, is computed from

$$
I L=1+\ln \left(\alpha_{L} / \alpha_{0}\right) / \ln \left(\rho_{0}\right)
$$

so that $\alpha_{I L} \leqslant \alpha_{L}<\alpha_{I L+1}$. A value $I L=0$ implies that $\alpha_{L}<\alpha_{0}$.

Similarly, a high index is computed from
IH $=$ Smaller of $\left[\operatorname{IALX}-1,1+\ln \left(\alpha_{H} / \alpha_{0}\right) / \ln \left(\rho_{0}\right)\right]$
so that $\alpha_{I H} \leqslant \alpha_{H}<\alpha_{I H+1}$, but does not fall outside the table.

Finally the values of $S(\alpha, \beta)$ for $\alpha_{I L} \leqslant \alpha \leqslant \alpha I H+1$ and for the specific β are obtained by interpolation between the values given at β_{L} and β_{H}. Let ICøDE denote the interpolation code.
$\operatorname{IC\emptyset DE}=1, S(\alpha, \beta)=S\left(\alpha, \beta_{L}\right)$
$\operatorname{IC\emptyset DE}=2, S(\alpha, \beta)=S\left(\alpha, \beta_{L}\right)+\left(\beta-\beta_{L}\right)\left[S\left(\alpha, \beta_{H}\right)-S\left(\alpha, \beta_{L}\right)\right] /\left(\beta_{H}-\beta_{L}\right)$
$\operatorname{IC\emptyset DE}=3, S(\alpha, \beta)=S\left(\alpha, \beta_{L}\right)+\ln \left(\beta / \beta_{L}\right)\left[S\left(\alpha, \beta_{H}\right)-S\left(\alpha, \beta_{L}\right)\right] / \ln \left(\beta_{H} / \beta_{L}\right)$
$\operatorname{IC} \emptyset D E=4, \ln [S(\alpha, \beta)]=\ln \left[S\left(\alpha, \beta_{L}\right)\right]+\left(\beta-\beta_{L}\right) \ln \left[S\left(\alpha, \beta_{H}\right) / S\left(\alpha, \beta_{L}\right)\right] /\left(\beta_{H^{-}} \beta_{L}\right)$
$\operatorname{IC} \varnothing \mathrm{DE}=5, \ln [\mathrm{~S}(\alpha, \beta)]=\ln \left[\mathrm{S}\left(\alpha, \beta_{\mathrm{L}}\right)\right]+\ln \left(\beta / \beta_{\mathrm{L}}\right) \ln \left[\mathrm{S}\left(\alpha, \beta_{\mathrm{H}}\right) / \mathrm{S}\left(\alpha, \beta_{\mathrm{L}}\right)\right] / \ln \left(\beta_{\mathrm{H}} / \beta_{\mathrm{L}}\right)$
If $I C \emptyset D E=3$ or 5 , and $\beta_{L}=0$, $I C \emptyset D E$ is automatically changed to 2 .
The equations and logic given above are contained in subroutine KERC, statements 10-220.

7.3.4 Analytic $S(\alpha, \beta)$

Analytic formulas for the free gas or diffusive motion laws may be used to calculate $S(\alpha, \beta)$. The procedure is to evaluate the formulas on an α mesh so that the same numerical integration procedures can be used as are used for tabulated functions.

Let A^{\prime} be the mass associated with the analytic formula. Then
$\alpha_{L}=\left(E^{\prime}+E-2 \sqrt{E^{\prime}}\right) / A^{\prime} k T$
$\alpha_{H}=\left(E^{\prime}+E+2 \sqrt{E^{\prime}}\right) / A^{\prime} k T$

Define a new lower α mesh limit
$\alpha_{0}^{\prime}=\alpha_{0} A / A^{\prime}$
and let
$\alpha_{1}^{\prime}=$ Larger of $\left(\alpha_{0}^{\prime}, \alpha_{L}\right)$

Define a new α mesh from

$$
\alpha_{i}^{\prime}=\alpha_{0}^{\prime} \rho_{0}^{i-1}, \quad 1 \leqslant i \leqslant \operatorname{IALX}
$$

The analytic formulas are then evaluated on this mesh.

$$
\begin{align*}
& S(\alpha, \beta)=\frac{1}{\sqrt{4 \pi \alpha}} \exp \left[-\frac{\alpha^{2}+\beta^{2}}{4 \alpha}\right] \quad \text { (Free Gas) } \tag{FreeGas}\\
& S(\alpha, \beta)=\frac{2 \mathrm{~d} \alpha}{\pi}\left[c^{2}+\frac{1}{4}\right] e^{2 d c \alpha} K_{1}(x) / x \\
& x=\left[\left(c^{2}+\frac{1}{4}\right)\left(\beta^{2}+4 d^{2} \alpha^{2}\right)\right]^{1 / 2}
\end{align*}
$$

The equations and logic given above are contained in subroutine KERA, statements 10-290.

7.3.5 Short Collision Time Approximation to $S(\alpha, \beta)$

It is sometimes of interest to treat scattering systems accounting for scattering to energies of 3 to 5 ev . The analytic formulas of Section 7.3 .4 may be used directly for these cases; however, the tabular $S(\alpha, \beta)$ scatterer rarely exceeds β values corresponding 1 to 2 ev energy transfers; hence it is not possible to generate scattering components to the higher energies. Provision is made to allow the tabular $S(\alpha, \beta)$ for a scatterer to be extended to larger energy transfers using the short collision time approximation. ${ }^{2}$

The utilization of the short collision time approximation requires specification of an effective moderator temperature for the scatterer. This temperature is defined by the equation

$$
\frac{k T}{\frac{e f f}{\hbar}}=1 / 2 \int_{0}^{\infty} f(\omega) \omega \operatorname{coth} \frac{\hbar \omega}{2 k T} d \omega
$$

where $f(\omega)$ is the generalized frequency spectrum, and $\hbar \omega=E_{0}-E$ is the energy gained by the scattering system.

When the effective temperature for the scatter is specified, the short collision time approximation to $S(\alpha, \beta)$ is given by

$$
S\left(\alpha, \beta, T, T_{e f f}\right)=\frac{e^{\frac{\beta}{2}} e^{-\frac{T}{4 \alpha T_{e f f}}(\alpha+\beta)^{2}}}{\sqrt{4 \pi \alpha T_{e f f} / T}}
$$

A mesh is chosen for β that spans the region between the maximum tabular β and that β value required to account for all energy transfers for the input energy mesh. If an effective temperature for the scatterer is not specified, the $S(\alpha, \beta)$ is assumed zero for all β above the maximum tabulated β.

The short collision time approximation is quite useful in extending the range of a scattering kernel to higher energies. There are, however, limitations in the range of energies over which it may be used. These are computer dependent limitations related to the number of significant digits a particular machine can carry, and to the type of interpolation that is used.

Examination of the short collision time approximation to $S(\alpha, \beta)$ above shows that for large $\beta(\cong 200)$ the amplitude of $S(\alpha, \beta)$ for fixed α, T, and $T_{\text {eff }}$ is small. Further, as β becomes
larger the $S(\alpha, \beta)$ can change by orders of magnitude for a fractional change in β. This leads to errors in interpolating between tabular sets of $S(\alpha, \beta)$ at β_{L} and β_{H}. Not only is the interpolation used important; but for a given interpolation method the machine word significance limits the accuracy. Ultimately these factors limit the energy range over which the short collision time approximation can be used, the exact limitations being computer dependent.

The best method for interpolation of the $S(\alpha, \beta)$ table generated at high β values would be a three- or four-point Lagrangian interpolation similar to that described in Section 7.2.1. However, the short collision time approximation is only used to extend the tabular (α, β) table and does not justify the more difficult interpolation that would be required to use the Lagrangian method. Instead an interpolation code of ICØDE $=4$ is used as described in Section 7.3 .3 as the better of the several two-point interpolation schemes. This allows the integration over α to be performed in the same manner as for the tabular $S(\alpha, \beta)$; however, the accuracy of the interpolation method places an upper limit on the energy to which it may be applied.

7.3.6 Basic a Integration

The integral extends from α_{L} to α_{H}, and since $S(\alpha, \beta)$ is tabulated, this α range extends over many tabulated points or panels. In this section integration over one panel is described, and in later sections how the results are to be summed over all panels is indicated.

A schematic of a typical panel is given below.

Let $y=\ln (S)$, and hence y is linear in α in the panel whose end points are $\left(\alpha_{3}, y_{3}\right),\left(\alpha_{4}, y_{4}\right)$. The desired range of integration is $\left(\alpha_{1}, \alpha_{2}\right)$. If this panel were the starting pane1, $\alpha_{1}=\alpha_{L}, \alpha_{2}=$ α_{4}; if it were a full panel, $\alpha_{1}=\alpha_{3}, \alpha_{2}=\alpha_{4}$; and if it were the last panel, $\alpha_{1}=\alpha_{3}, \alpha_{2}=\alpha_{H}$. Let

$$
\begin{aligned}
& y=a+b \alpha \\
& b=\left(y_{4}-y_{3}\right) /\left(\alpha_{4}-\alpha_{3}\right) \\
& a=y_{3}-b \alpha_{3}
\end{aligned}
$$

and the required integral becomes

$$
h_{n}=\int_{\alpha_{1}}^{\alpha_{2}} d \alpha \alpha^{n} e^{a+b \alpha}
$$

Let

$$
\begin{array}{ll}
\bar{\alpha}=\left(\alpha_{1}+\alpha_{2}\right) / 2, & x=(\alpha-\bar{\alpha}) / \bar{\alpha} \\
\rho=\alpha_{2} / \alpha_{1}, & \gamma=(\rho-1) /(\rho+1)
\end{array}
$$

Expand

$$
\alpha^{n}=\alpha^{n}(1+x)^{n}=\bar{\alpha}^{n}\left[1+n x+\frac{1}{2} n(n-1) x^{2}+\frac{1}{6} n(n-1)(n-2) x^{3}+\ldots\right]
$$

Neglect the last term (and higher terms). The error involved is summarized in the following table.

Relative Error $\left(\times 10^{5}\right)$

\underline{n}	$\rho=1.02$		$\rho=1.03$	$\rho=1.04$	
3	0.1	0.3		0.8	1.6
4	0.4	1.4		3.2	6.2
5	1.0	3.4	8.0	15.6	
6	2.0	6.8		16.0	31.2

Since the limitations $\rho \leqslant 1.03$ and $n \leqslant 5$ are used in the code, the accuracy is 3.4×10^{-5}.

Define $y=b \bar{\alpha} x$
$c=b \bar{\alpha} \gamma$

Then

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{n}}=S_{1} \alpha_{1}^{n+1} G_{n}(c, \rho) \\
& G_{n}(c, \rho)=\left(\frac{\rho+1}{2}\right)^{n+1}\left[\gamma F_{0}(c)+n \gamma^{2} F_{1}(c)+\frac{1}{2} n(n-1) \gamma^{3} F_{2}(c)\right] \\
& F_{k}(c)=\frac{e^{c}}{c^{k+1}} \int_{-c}^{c} d y y^{k} e^{y} \\
& F_{0}(c)=\frac{1}{c}\left(e^{2 c}-1\right) \\
& \\
& = \\
& F_{1}(c)=\frac{1}{c}\left(e^{c}\left(1+\frac{1}{6} c^{2}\right), \quad c \leqslant 0.20\right. \\
& \\
& =
\end{aligned}
$$

where the approximate expression is accurate to 3.3×10^{-5} if $c \leqslant 0.20$.

Two subroutines are used to calculate $G_{n}(c, p)$. GNCR calculates $G_{n}(c, p)$ from the above formulas and is used to calculate end panels. For intermediate panels $\rho=\alpha_{4} / \alpha_{3}=\rho_{0}$, which is a constant for all intermediate panels. Thus, $G_{n}\left(c, \rho_{0}\right)$ is actually a function only if c and ρ_{0} can be tabulated for rapid evaluation. Subroutine GNC sets up tables of $G_{n}\left(c, \rho_{0}\right)$ at $c^{\prime}= \pm 0.04(k-1), k=1$, 100. Three-point quadratic interpolation is used to obtain intermediate values. The combination of three-point quadratic interpolation and $\Delta c=0.04$ leads to an error less than 3×10^{-5} (the error is approximately $\left.1 / 2(\Delta c)^{3}\right)$.

7.3.7 Summation of the α Moments

The quantities needed in Section 7.3.1 to calculate the kernels are the moments

$$
H_{n}=\int_{\alpha_{L}}^{\alpha_{H}} d \alpha \alpha^{n_{S}} S(\alpha, \beta)
$$

where $S(\alpha, \beta)$ and $y=\ln [S(\alpha, \beta)]$ at fixed β are tabulated at the points α_{i}. The region between tabulated points is called a "panel."

Formulas for the integrals over one panel were developed in Section 7.3.6. These formulas are applied to the panels shown in the illustration above. Thus, the summation for all panels is

$$
H_{n}=\sum_{I=I L}^{I H} h_{n}^{I}
$$

The following cases are to be considered.

Starting Panel ($I=I L$)

$$
h_{n}^{I L}=S_{I L} e^{b\left(\alpha_{L}-\alpha_{I L}\right)} \alpha_{L}^{n+1} G_{n}(c, \rho)
$$

$$
\begin{aligned}
& \rho=\alpha_{I L+1} / \alpha_{L} \\
& b=\left(y_{I L+1}-y_{I L}\right) /\left(\alpha_{I L+1}-\alpha_{I L}\right) \\
& c=\frac{1}{2} b\left(\alpha_{I L+1}-\alpha_{L}\right)
\end{aligned}
$$

If $I L=0, \alpha_{L}$ lies below the limits of the table. In this region $S(\alpha, \beta)$ is assumed to vary like α^{k}, where k and the constant of proportionality are determined from the first two tabulated points.

$$
\begin{aligned}
& \mathrm{S}(\alpha, \beta)=\mathrm{s}_{1}\left(\alpha / \alpha_{0}\right)^{\mathrm{k}}, \quad \mathrm{k}=\left(y_{2}-y_{1}\right) / \ln \left(\rho_{0}\right) \\
& h_{\mathrm{n}}^{0}=\frac{S_{1}}{\mathrm{n}+\mathrm{k}+1}\left[\alpha_{\mathrm{x}}^{\mathrm{n}+\mathrm{k}+1}-\alpha_{\mathrm{L}}^{\mathrm{n}+\mathrm{k}+1} / \alpha_{0}^{k}\right]
\end{aligned}
$$

where α_{x} is the smaller of α_{0} and α_{H}.

Intermediate Panel

$$
\begin{aligned}
& h_{n}^{I}=S_{I} \alpha_{I}^{n+1} G_{n}\left(c, \rho_{0}\right) \\
& c=\frac{1}{2}\left(y_{I+1}-y_{I}\right)
\end{aligned}
$$

End Panel

$$
\begin{aligned}
& h_{n}^{I}=S_{I H} \alpha_{I H}^{n+1} G_{n}(c, \rho) \\
& \rho=\alpha_{H} / \alpha_{I H} \\
& b=\left(y_{I H+1}-y_{I H}\right)\left(\alpha_{I H+1}-\alpha_{I H}\right) \\
& c=\frac{1}{2} b\left(\alpha_{H}-\alpha_{I H}\right)
\end{aligned}
$$

The equations and logic described above are contained in subroutines KERC and KERA, statements 300-450.

7.4 CROSS SECTION CALCULATION

7.4.1 General Method

The cross sections are defined by

$$
\sigma_{\ell}\left(E^{\prime}\right)=\int_{0}^{\infty} \mathrm{dE} \sigma_{\ell}\left(E^{\prime} \rightarrow E\right)
$$

The final energy integration mesh is determined by the β mesh used to tabulate $S(\alpha, \beta)$ and is independent of the input energy mesh. Again, the E space is represented by a discrete set of points and the region between points is called a "panel." Three different types of panels are considered.

7.4.2 Method for Small β

The region near $\beta=0$ contributes most heavily to the cross section and may contain a singularity. Consider the panel bounded by $\beta_{L}=0$ and β_{H} for the case where the neutron gains energy (upscattering).

In this region of small β the scattering law varies like α^{k}, where $k \approx 1$ for bound motion, $k \approx-1 / 2$ for gas motion, and $k \approx-1$ for diffusive motion. The $\mathrm{P}_{\ell}(\mu)$ can be expanded in powers of α so that the scattering kernel will contain terms like

$$
\begin{aligned}
I=\int_{\alpha_{L}}^{\alpha_{H}} \mathrm{~d} \alpha \alpha^{k+\ell} & =\frac{1}{k+\ell+1}\left[\alpha_{H}^{k+\ell+1}-\alpha_{L}^{k+\ell+1}\right], k+\ell+1 \neq 0 \\
& =\ln \left(\alpha_{H} / \alpha_{L}\right), \quad k+\ell+1=0
\end{aligned}
$$

Define a dimensionless velocity $x=\sqrt{E / k T}$. Then

$$
\begin{aligned}
& \alpha_{L}=\frac{1}{A}\left(x-x^{\prime}\right)^{2} \\
& \alpha_{H}=\frac{1}{A}\left(x+x^{\prime}\right)^{2}
\end{aligned}
$$

and the integral above will be proportional to

$$
\begin{aligned}
& I_{m}=\frac{1}{m}\left[\left(x+x^{\prime}\right)^{m}-\left(x-x^{\prime}\right)^{m}\right] \\
& m=2(k+\ell+1), m \neq 0
\end{aligned}
$$

or

$$
I_{0}=\ln \left|\frac{x+x^{\prime}}{x-x^{\prime}}\right|, m=0
$$

Considering the possible values of k and ℓ, the possible values of m are $m=0,1,2,3, \ldots$.

Referring to the above diagram, let

$$
\begin{array}{rlr}
x_{0} & =\sqrt{E^{\prime} / k T} & \\
x_{4} & =\sqrt{\beta_{H}+E / k T} & \\
\Delta & =x_{4}-x_{0} & y=\left(x-x_{0}\right) / \Delta \\
x_{1} & =x_{0}+1 / 8 \Delta & y_{1}=1 / 8 \\
x_{2} & =x_{0}+1 / 4 \Delta & y_{2}=1 / 4
\end{array} \quad y_{0}=0
$$

Let $H(E)$ represent $\sigma_{\ell}\left(E^{\prime} \rightarrow E\right)$ for a fixed E^{\prime} and ℓ, and H_{1}, H_{2}, H_{3}, H_{4} represent $H(E)$ at the points $x_{1}, x_{2}, x_{3}, x_{4}$. The approximation to the true function is

$$
H(y)=\frac{a}{\ln \frac{1}{2}} \ln (y)+b+c y+d y^{2}
$$

which corresponds to taking $m=0,1,2,3$ in the discussions above. The coefficients are selected by fitting $H(y)$ to the points $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{4}$. The results are:

$$
\begin{aligned}
& d=\frac{32}{9}\left(-2 \mathrm{H}_{1}+5 \mathrm{H}_{2}-4 \mathrm{H}_{3}+\mathrm{H}_{4}\right) \\
& c=4\left(4 \mathrm{H}_{2}-9 \mathrm{H}_{2}+6 \mathrm{H}_{3}-\mathrm{H}_{4}\right) \\
& b=\frac{1}{9}\left(-80 \mathrm{H}_{1}+164 \mathrm{H}_{2}-88 \mathrm{H}_{3}+13 \mathrm{H}_{4}\right) \\
& a=\frac{1}{3}\left(8 \mathrm{H}_{1}-14 \mathrm{H}_{2}+7 \mathrm{H}_{3}-\mathrm{H}_{4}\right)
\end{aligned}
$$

Next calculate the integral over the panel.

$$
\begin{aligned}
I= & \int_{E^{\prime}}^{E^{\prime}+T k \beta_{H}} \mathrm{dEH}(\mathrm{E})=2 \mathrm{Tk} \Delta \int_{0}^{1} \mathrm{dy}\left(\mathrm{x}_{0}+y \Delta\right) \mathrm{H}(y) \\
= & 2 \mathrm{kT} \Delta \mathrm{x}_{0}\left(\frac{\mathrm{a}}{\ln 2}+\mathrm{b}+\frac{1}{2} \mathrm{c}+\frac{1}{3} \mathrm{~d}\right) \\
& +2 \mathrm{kT} \Delta^{2}\left(\frac{a}{4 \ln 2}+\frac{1}{2} b+\frac{1}{3} c+\frac{1}{4} d\right) \\
= & 2 \mathrm{kT}_{\mathrm{T}} \mathrm{~d} \mathrm{x}_{0}\left(0.58791 \mathrm{H}_{1}-0.58440 \mathrm{H}_{2}+0.84776 \mathrm{H}_{3}+0.14873 \mathrm{H}_{4}\right) \\
& +2 \mathrm{kT} \Delta^{2}\left(0.07291 \mathrm{H}_{1}-0.12758 \mathrm{H}_{2}+0.39712 \mathrm{H}_{3}+0.15755 \mathrm{H}_{4}\right)
\end{aligned}
$$

In the case where the neutron loses energy (downscattering) redefine $\Delta=x_{0}-x_{4}$ so that Δ and y is positive. The integration formula can again be used by changing the sign of the second term. If $E^{\prime}-T k \beta_{H}<0, x_{4}$ and H_{4} are set to 0 .

7.4.3 Method for Intermediate β

A second type of integration scheme is used for intermediate values of β. Again, consider upscattering.

Using the same notation as before,

$$
\begin{array}{ll}
x_{1}=\sqrt{\beta_{L}+E^{\prime} / k T} & y_{1}=0 \\
x_{3}=\sqrt{\beta_{H}+E^{\prime} / k T} & y_{2}=1 / 2 \\
x_{2}=x_{1}+1 / 2 \Delta & y_{3}=1 \\
\Delta=x_{3}-x_{1} & y=\left(x-x_{1}\right) / \Delta
\end{array}
$$

Assume that

$$
H(y)=a+b y+c y^{2}
$$

where the coefficients are obtained by fitting $H(y)$ to the points $\mathrm{H}_{1}, \mathrm{H}_{2}$, and H_{3}. Thus,
$\mathrm{a}=\mathrm{H}_{1}$
$\mathrm{b}=-3 \mathrm{H}_{1}+4 \mathrm{H}_{2}-\mathrm{H}_{3}$
$c=2\left(\mathrm{H}_{1}-2 \mathrm{H}_{2}+\mathrm{H}_{3}\right)$

Calculate the integral over the panel.

$$
\begin{aligned}
I & =\int_{E^{\prime}+k T \beta_{L}}^{E^{\prime}+k T \beta_{H}} d E H(E)=2 k T \Delta \int_{0}^{1} d y\left(x_{1}+y \Delta\right) H(y) \\
& =2 k T \Delta x_{1}\left(a+\frac{1}{2} b+\frac{1}{3} c\right)+2 k T \Delta^{2}\left(\frac{1}{2} a+\frac{1}{3} b+\frac{1}{4} c\right) \\
& =\frac{1}{3} k T \Delta x_{1}\left(H_{1}+4 H_{2}+H_{3}\right)+\frac{1}{3} k T \Delta^{2}\left(2 H_{2}+H_{3}\right)
\end{aligned}
$$

In the downscattering case, redefine $\Delta=x_{1}-x_{3}$ so that Δ and y are positive. The integration formula given above can again be used by changing the sign of the second term. If $E^{\prime}-k T \beta_{L}<0$, the integral is ignored. If $E^{\prime}-k T B_{H}<0, x_{3}$ and H_{3} are set to zero.

7.4.4 Method for Large β

A third type of integration scheme is used for large values of β. Again consider upscattering.

Assume that

$$
\begin{aligned}
H(E) & =e_{6}^{a+b E} \\
b & =\ln \left(H_{2} / H_{1}\right) /\left(E_{2}-E_{1}\right) \\
a & =\ln \left(H_{1}\right)-b E_{1}
\end{aligned}
$$

The integral over the panel is given by

$$
I=\int_{E_{1}}^{E_{2}} \operatorname{dEH}(E)=\left(E_{2}-E_{1}\right)\left(H_{2}-H_{1}\right) / \ln \left(H_{2} / H_{1}\right)
$$

If $\varepsilon=\left(H_{2}-H_{1}\right) / H_{1}$ and $|\varepsilon| \leqslant 0.05$, use

$$
I=\left(E_{2}-E_{1}\right) H_{1} /\left(1+\frac{1}{2} \varepsilon+\frac{1}{3} \varepsilon^{2}\right)
$$

which is accurate to 3.3×10^{-5}.
In the downscattering case, reverse E_{1} and E_{2}. If $\mathrm{E}_{2}<0$, set $E_{2}=0$, assume $H(E)$ is linear, and

$$
I=\frac{1}{2} E_{1} H_{1}
$$

Difficulties may arise with this third type of integration scheme since Legendre moments may be negative. If both H_{1} and H_{2} are negative, exponential integration is used with $\left|\mathrm{H}_{1}\right|$ and $\left|\mathrm{H}_{2}\right|$, and the answer set negative. If H_{1} and H_{2} are of opposite sign, a linear form is used.

$$
I=\frac{1}{2}\left|E_{2}-E_{1}\right|\left(H_{1}+H_{2}\right)
$$

The equations and logic described in this section are contained in subroutines FEINT and FEINA.

7.4.5 Tabulated $S(\alpha, \beta)$

All three of the preceding integration formulas are used for tabulated $S(\alpha, \beta)$ in subroutine FEINT. The β limits are those specified in the tabulation. The first formula (log + quadratic) is used in the first panel (β near zero). The second formula (quadratic) is used in the next three panels, and the last formula (experimental) is used in the remaining panels. It would be better to provide an automatic switch between the quadratic and exponential formulas, but a suitable switching criterion has yet to be found. If switching on the value of β rather than the panel number is desired, statement 200 in FEINT should be changed.

Since the tabulated scattering law may lead to structure in the kernel, it is not safe to apply a convergence criterion to stop the integration. Therefore, all panels specified for the tabulation are used.

7.4.6 Analytic $S(\alpha, \beta)$

Only the first (log + quadratic) and third (exponential) integration formulas are used for analytic scattering law in subroutine FEINA since the behavior is nearly exponential except near $\beta=0$. The panel limits are selected in the following way. If $x=\sqrt{E / k T}$, it has been found in practice that a $\Delta x=0.1$ is a reasonable mesh spacing for integrating a hydrogen gas kernel. A characteristic multiplier of x in the free gas kernel is $2 \sqrt{A} /(A+1)$, and starting Δx is

$$
\Delta x=0.2 \sqrt{\mathrm{~A}} /(\mathrm{A}+1)
$$

where A is the mass associated with the analytic law. This value is used for both free gas laws and diffusive motion laws, but its adequacy for the latter case has yet to be established.

If $x^{\prime}=\sqrt{E^{\prime} / k T}$, the limits of the first panel are then

```
\mp@subsup{x}{}{\prime}\leqslantx\leqslant x'+\Deltax (Upscattering)
x'\geqslantx\geqslant x'-\Deltax (Downscattering)
and the first (log + quadratic) integration formula is used.
```

For the remaining panels, the width is uniformly expanded by 5%. If k is the panel number, $\Delta \mathrm{x}_{\mathrm{k}}$ is the width and x_{k} is the lower bound,

$$
\begin{aligned}
\Delta x_{k} & =1.05 \Delta x_{k-1} \\
x_{k} & =x_{k-1}+\Delta x_{k-1}
\end{aligned}
$$

The third (exponential) integration formula is used for these panels.
Since the analytic functions are monotonically decreasing on either side of the peak at $\beta=0$, a convergence criterion can be specified and the integration terminated. Consider first the upscattering part of the isotropic kernel which will be decaying exponentially for large β.

Assume that the panel shown above is the last calculated and that the current value of the integral is I. If
$\mathrm{b}=\ln \left(\mathrm{H}_{2} / \mathrm{H}_{1}{ }^{\prime}\right) /\left(\mathrm{E}_{2}-\mathrm{E}_{1}\right)$
then the integral from E_{2} to infinity is estimated to be
$I_{\infty}-I=-H_{2} / b$
If $|\mathrm{H} / \mathrm{bI}| \leqslant 10^{-5}$, and if $\mathrm{b}<0$, the integral is assumed to have converged, the quantity $\mathrm{H}_{2} / \mathrm{b}$ is added to the integral, and the integration terminated. This test is not made until the fifth panel has been done. The integration is also terminated if more than 200 panels are required to integrate the upscattering part.

The same method is applied to the downscattering part, but here $\mathrm{b}>0$.

TEST PROBLEM

2

Problem 2 is an example of generating a scattering kernel for H bound in $\mathrm{H}_{2} \mathrm{O}$ using the short collision approximation to extend the tabular $S(\alpha, \beta)$ mesh to 3.5 ev . The energy mesh for this problem contains 15 groups and was chosen to provide a short illustrative problem rather than for physical reasons. Input cards and printed output are shown below.

TEST PROBLEM 2 INPUT CARDS

TEST PROBLEM 2 OUTPUT

Fiange il (Versiun 7i-1)													
 r BUUND IN H2O - 2SO DEG K - ENERGY MESH TO 3.5 EV													
TAPE LAEELED 6CJ7 ENCF/E NC. IOC2 CUTPLTFID 123456													
TEMPEKATURE 290.00(KELVIN) EFFECTIVE TEMPERATURE FOR SHCRT CCLLISIUN 1440.03(KELVIN)													
LINKS LSEC ($0=$ NO, $1=Y$ CS)													
LINK1 LINK2 LINK		LINK4 LINK5	LINKG L	LINK7									
LPOD $=0$													
	LPFP $=$												
LAES $=0$ LPAES $=0$													
LFISS $=0$ LPFIS $=0$													
LTCT $=2 \quad$ LPTUT $=-1$													
	$\angle P T R=$												
LELAS $=0 \quad$ LPEL $=0 \quad$ LRSCT $=0$													
LINEL $=3 \quad \mathrm{LPIN}=-1$													
LSCAT $=2 \quad$ LPSC $=0$													
LTSL $=4$ LPTSL=-2 \quad LENE $=2$													
ENERGY ANC VELUCITY MESHNEG15NEVT													
GROUP	ENERGY	VELOCITY n	neIfrt	E BCUNCARY	\checkmark BOUNDARY								
				0.0600500	0.0444554								
1	0.1167149	2.1478443 C	C. 233229 ¢			\therefore							
				0.2333799	3.0371857								
2	0.3500448	3.71¢6455 C	C. 2332300										
				0.4667099	4.2949991								
3	0.5833745	4.80150280	0.2333300										
				0.7000398	5.2601852								
4	0.8167048	5.68161960.	0.2333300										
				0.9233698	6.0738840								
5	1.0500345	6.4423075	C. 2333297										
				1.1666994	6.7907724								
6	1.2833643	7.1222086 C	C. 2333298										
				1.4000292	7.4388914								
7	1.5166941	7.7426338 0	0.2333298										
				1.6333590	8.0349007								
8	1.7500238	8.3169041	0.2332298										
				1. $8 \in 66887$	8.5896530								
s	1.9833536	8.8540049	C. 2333298										
				2.1000185	9.1106892								
10	2.2166834	$9.36 C 3382$ 3	J. 2332298										
				2.3233483	9.6034994								
11	2.4500132	9.84C6525 Co	C.2333298										
				2.5666780	10.0722246								
12	2.6833429	10.2¢85907	0.2332298										
				2.8000078	10.5200872								
13	2.9166727	10.7370148	C. 2332298										
				3.0333376	10.9496460								
14	3.1500025	11.1582270	0.2332298										
				3.2660674	11.3629780								
15	3.3833332	11.56410690	0.2323326										
				3.5000000	11.7617989								

LIGRARY TAPE LABËLED 6CO7
SCATTERING LAW AND CRCSS SECTICNS FOR H2O（1002）AND D2C（1304）

```
- mATERIal DESCRIPTICN
    thermal scattering law cata ccmputec at bNl using ga coce gasket
    USING INGULERENT AFPROX WITH EXPERINENTAL ROTATIONAL FREQUENCY
    BANO ACCOROING TC FAYNCGD FLLS TWO CISCRETE VIBRATIONAL MUDES.
        DATA TABULATED FOR 8 TEMPERATURES %296,350,40J,450,500,60C,800,
        1OCO DEG Kく
    123456. H BQUNU IN H2O - 296 LEG K - ENERGY MESH TO 3.5 EV
```

CROSS SECTIONS AT $T=296 . C O K$

GRP	E（EV）	AUSORPTIUN	InElastic	ELASTIC	SCATtERING	rotal	UR
1	0.116715	0.0	0.324 E3E O2	0.0	$0.32463 E 02$	0.32463 E O2	$3.21341 E 32$
2	C． 350045	0.0	$0.24720 E C 2$	0.0	0.24720 E 02	C．2472JE C 2	3．13197E 22
3	0.583375	0.0	$0.22214 E 02$	0.0	$0.22214 \mathrm{E} \quad 02$	0.22214502	0.10752 O
4	0.816705	0.0	C． 21425 E C2	0.0	$0.21425 E 02$	C．21425E 02	O．96710E 21
5	1．C50C35	0.0	$0.20555 E 02$	0.0	0.20595 E 02	0.20995 E	0.89705 S 21
6	1.283364	0.0	$0.20815 \mathrm{E} ~ 22$	0.0	0.20815 E 02	$0.20815 E$ U 2	J．862005 01
7	1． 510694	0.0	C． 20542 E 02	0.0	$0.23542 E 02$	$0.20542 E 02$	O． 32242 E ？ 1
8	1.750024	0.0	$0.20591 E 02$	0.0	$0.20591 E 02$	C．20591E 02	0．319CSE ： 1
9	1．983354	0.0	C．20352E C2	0.0	$0.20352 E 02$	$0.20352 \mathrm{E} \mathrm{C2}$	0．7と353E 01
10	2.216083	0.0	C． 20347 E C2	0.2	0.20347 E 02．	0.20347 E O2	－． 76733 E 01
11	2.450013	0.0	0.20323 E C2	0.0	$0.20323 E 02$	0.20323 E 02	$0.7575 \mathrm{dE} \mathrm{O1}$
12	2.683343	0.0	$0.20325 E 02$	0.0	0.20325 E 02	C． 20325 E 02	3．754425 01
13	2.916673	0.0	C．20325E 02	0.0	0.20325 E C2	0.20325 E 0	0．7516）E O1
14	3.150002	0.0	$0.20325 E 02$	0.0	$0.20325 E 02$	C．20325E 02	0.74859 E 21
15	2． 283333	0.0	C．20323E 02	0.0	$0.20323 E 02$	$0.20323 E 02$	J．74553E 91

123456．H BUUNO IN H2O－2SE CEGK－ENERGY MESH TC 3.5 EV
INELASTIC LEGENDRE CROSS SECTICNS AT $T=296.00 \mathrm{~K}$

GRP	E（EV）	SIGMA C	SI	R）	2	SJMA	SIGMA 4	SHGM
1	0.116715	0.32463 E U2	$0.11122 E C 2$	（0．342 0 （ ）	0.28390 EO	0.63923800	0.15849 E 00	0．64223E－01
2	0.350045	$0.24720 E 02$	C．11613E C2	（0．46977）	0.39132 E Ol	0.95205 E 00	O．L5079E 30	3．47613E－？
3	0.583375	0． $12<144$ E 02	0.114 E2E C2	（0．51597）	0.42402 E Oi	0.11940 ECl	0.21828509	－9．138
4	c． 616765	$0.21425 E C 2$	C．11753E C2	（0．54858）	$0.45927 E 01$	$0.13231 \mathrm{E}^{01}$	$0.26467 E 00$	－0．97763E－02
5	1．050035	$0.2 C 995 E 02$	$0.12016 E 02$	（0．57235）	0.47720 E O1	0.13444 ECl	？．21412E 30	－0．27254E－01
6	1.283364	0． $2 C 815 E 02$	0.12189 C	（0．58560）	$0.49465 E 01$	0.13274 E OL	$0.13924 E 00$	－0．14367E 9
7	1.516694	$0.20542 E 02$	0.12318 C C2	（0．59964）	0.50379 E O1	0.12853 E OL	0．67272E－J1	－0．12482E
8	1.750024	$0.2 C 551 E 02$	C．12391E 02	（0．60178）	$0.50937 \mathrm{E} \mathrm{O1}$	J．12697E 01	－0．92939E－03	－ 3.190735
9	1．983354	0.20352 E 02	0.12517 E 02	（0．61501）	0.51268 E 01	0.12256 E 01	－0．6）116E－01	－0．222215
10	2.216683	0.20347 E 02	$0.12674 \mathrm{E} \mathrm{C2}$	（0．62288）	0.52354 E OL	0.11819 O	－0．109485 30	－0．22411E
11	2.450013	$0.20323 E 02$	0.12748 E 02	（0．62724）	0.53383801	0.11364 E 01	－0．23651E 00	－0．30276E 3
12	2.683343	$0.20325 E 02$	C．12780E 02	（0．62882）	C．53839E O1	0.11239 E 01	－3．33067E 20	－J．36993E
13	2． 516673	$0.60325 E 02$	C．128CSE 02	(0.63022)	$0.53837 E$ O1	0.11122 E O1	－0．38396E 00	－0．444835
14	3.1500 C 2	$0.26325 E 02$	C．12339E 02	（0．63268）	C．53744E O1	0.10921 ECl	－0．42362E 32	－0．49651E
15	2． 283333	0． $20323 E C 2$	C．12867E 02	(0.62315)	0.53718 E O1	0.10651 El	－0．44801E 30	－0．51575E

123456.

H BOUND IN H2O－ $2 与 \operatorname{CEG} \mathrm{~K}$－ENERGY MESH TO 3.5 EV
LEGENLRE SCATTERING CROSS SECTIONS AT $T=296.00 \mathrm{~K}$

GRP	erev）	0	A	（ MU－BAR）
1	0.110715	0.32463 E 02	0.11122 E 02	（0．34260）
2	0.350045	$0.247 \mathcal{C O E ~} 02$	$0.11613 \mathrm{EC2}$	（0．46977）
3	C． 583375	$0.22214 E 02$	0.11462 CL	（0．51597）
4	0.816705	0.21425 E 02	C．11753E C2	（0．54858）
5	1．C50C35	$0.20995 E 02$	C．12016E 02	（0．57235）
6	1．283364	$0.2 C 815 E 02$	0．121\＆SE C2	（0．58560）
7	1.516694	$0.2 C 542 E 02$	0.12318 E C2	（0．59964）
8	1.750024	0.20551202	C．123¢1E 02	（0．6C178）
9	1．983354	$0.20352 E 02$	0.12517 E C2	（0．61501）
10	2.216083	$0.20347 E 02$	0.12674 E 02	（0．62288）
11	2.450013	0.20323 E 02	C．12748E 02	（0．62724）
12	2．tç3343	$0.20325 E 02$	C．12780E 02	（0．62882）
13	－．¢16673	$0.20325 E 02$	$0.128 C 9 E 02$	（0．63022）
14	2.150002	$0.2 \mathrm{C} 325 \mathrm{E} ~ 02$	C．12839E 02	（0．63168）
15	2． 383333	0.20323 E 02	C．12EE7E 02	（0．63315）

SIGMA 2		SIGMA 4	$\text { SIGMA } 5$
01	63923E CO	$0.15849 E 00$	642285－3
． 39132 E 01	0.95205 E 00	0.15079 E 20	2．47613E－01
0.42402 E 01	0.11940 ECl	0.21828 E 00	－0．108505－91
0.45927 E O1	$0.13231 E 01$	$0.26467 E 00$	－0．97763E－32
0.47720 E 01	0.13444 E Cl	0.21412 E 0	－0．27254E－01
0.49465 E 01	$0.13274 \mathrm{E}^{\text {O }}$ OL	0.13924 E 00	－0．14360E OO
0.50079 Ol	0.12853 E Ol	0．672725－01	－0．12482E On
0.50937 E OL	0.12697 E 01	－0．92239E－33	－9．19073E 03
$0.51268 \mathrm{E}^{01}$	0.12256 ECl	$0.63116 E-J 1$	－0．22221E 0．
$0.52354 \mathrm{E} \mathrm{O1}$	0.11819 E O1	－0．17948E 00	－0．22411E 02
$0.53383 \mathrm{E} \mathrm{O1}$	0.11364 E 01	－0．23651E 00	－0．3n276E 0 ）
0.53839 E OL	0.11239 El	－0．33067E 00	－0．36993E 09
$0.53837 \mathrm{E} \mathrm{O1}$	0.11122 E O1	－0．38896E 00	－0．44483E 03
0.53744 E O1	0.10921 E 01	－0．42362E 00	－0．49651E 03
0.53718 E 01	0.10651 E	O1E	5

123456. H BOUNE IN H2C - 256 CEG K - ENERGY MESH TO 3.5 EV
$L=0$ SCATTERING KERNEL NORMALILED TO SIGMA INELASTIC
```
GROUP I INITIAL E=0.11\epsilon7149 L=C
    C.13911E 03
GROUP 2 INITIAL E= 0.3500448 L=C
    1 0.54962E 02 2 C.50976E C2
GROUP 3 INITIAL E=0.5&33745 L=0
    1 C.28683E 02 2 C.36392E 02 3 0.30126E O2
GROUP 4 INITIAL E=C.81E7048 L=C
```



```
GROUP 5 INITIAL E= 1.05CC345 L=0
```



```
GROUP 7 INITIALE = 1.EIEES41 LI C
```



```
    C.10258E C2
GROUP 8 INITIAL E=1.7500238 L= C
    1 C.SG22IE O1 2 0.11290E C2 3 0.1144OE 02 4 0.11452E C2 5 C.11503E 02 6 0.11343E O2
    C.12160E O2 & C.94305E O1
GROUP 9 INITIAL E=1.S&33536 L= 0
```



```
    7 C.1002lE 02 8 C.10730E C2 G 0.77872E OL
GROUP 10 INITIAL E=2.2166834 L=C
    1 C.76169E O1 < < 0.86389E C1 3 0.85597E 01 4 4 0.90387E 01 5 0.90738E 01 0 0.9]552E 01
    TOUP INITIAL E= 2.4500132 L C
    0.688G5E O1 2 C.E15S2E Cl
```



```
ROUP 12 INITIALE=2.6833429 L=C
    1 0.62890E O1 2 0.74476E C1 3 0.75662E 01 4 0.72410E 01 5 0.74246E Ol & O.74758E Ol
    7 C.75020E O1 & O 0.74843E OL g 0.75C96E O1 10 0.74211E O1 11 0.79306E O1 12 0.59143E O1
GROUP 13 INITIAL E=2.9IEE727 L=C
```



```
    13 C.53376E O1
GROUP 14 INITIAL E= =.1500025 L=C
```



```
    0.632&1E O1 & 0.t36GGE CI G 0.t3S23E 01 10 0.63770E O1 11 0.63977E 01 12 0.63257E O1
    13 0.67550E O1 14 C.49302E Cl
GROUP 15 INITIAL E= 3. #833332 L= C
```



```
123456. H BOLND IN H2O - 25t CEG K - ENERGY MESH TO 3.5 EV
```


L. $=1$ SCATTERING KERNEL NORMALIZED TC SIGMA INELASTIC

```
GROUP I INITIAL E=C.1167149 L= 1
    0.47663E 02
GROUP 2 INITIAL E=0.3500448 L= 1
GROUP 3 INITIAL E= 0.5823745 L= 1
    0.18757E O1 2 C.18846E C2 3 0.28398E 02
```



```
GROUP 7 INITIAL E= 1.5160941 L= 1
    10.73688E 00 < C.40385E C1 3 0.64444E 01 4 0.83911E 01 5 0.95869E 01 6 0.1173?E 0.2
    C.11953E 02
GROUP & INITIAL E=1.7500238 L= l
    0.60130E 00 2 0.32624E O1 3 0.52078E O1 4 0.66499E 01 5 0.78954E 01 6 0.878J7E Ol
    C.10447E 02 % C.10261E 02
GROUP g INITIAL E= 1.9823536 L= 1
    1 0.56208E 00 < C.26864EC1 3 0.43142E 01 4 0.55269E 01 5 0.6504SE Ol 6 0.74C94E O1
    7 0.80535E O1 8 C.S404SE C1 O O.S1817E OL
```



```
GROUP 11 INITIAL E=2.450C132 L= 1
```



```
GRGUP 12 INITIALE = 2.6833425 L= I
    C.63431E OO L C.18451E O1 3 0.27S37E O1 4 0.34456E O1 3 0.41110E 0.1 6 0.45835E O1
    0.518G6E O1 & 0.56248E O1 G 0.60687E 01 10 0.65734E 01 11 0.72162E 01 12 0.6783OF O1
GROUP 13 INITIAL E= 2.\subseteq@166727 L= 1
    1 0.55949E 0O 2 0.16277E 01 3 0.24644E 01 4 0.31315E 01 5 0.35752E 01 6 0.41076E O1
    7 0.45658E 01 % & C.49772E C1 O 0.53313E 01 10 0.50999E O1 1L C.59479E OL 12 0.66S32E O1
    13 C.62i66E OL
GROUP 14 INITIAL E= 3.15CCO25 L= 1
```



```
    7 C.40430E CL G 0.44207E Cl G 0.47629E OL 10 0.50507E Ol ll C.53682E O1 12 0.55730E N1
GROUP 15 INITIAL E= 3.ミ&33332 L= 1
```



```
    13 0.52408E 01 14 C.58437E Cl 15 0.53313E O1
```

123456. H BUULND IN H2C - 256 DEG K - ENERGY MESH TO 3.5 EV
```
L=2 SCATTERING KERNEL NORNALIZED TO SIGMA INELASTIC
GROUP i INITIALE=0.1167149 L= z
    I 0.12170E 02
GROUN 2 INITIAL E=0. 2500448 L= 2
    1-C.68511E OL 2 0.23622E CZ
GROUP 3 INITIALE=0.5833745 L= 2
```



```
GROUP IN INITIAL E=0.8167048 L=2
    1-0.20838E Gi 2-C.16166E CI < 3 0.64396E 01 4 0.16943E 02
```



```
GROUP 6 INITIAL E=1.2833643 L= z
    1-0.14625E O1 2-C.20437E O1 3 0.4550CE OJ 4 0.3E415E O1 5 0.81439E O1 b O.12405E \2
GROUP 7 INITIAL E= 1.5Iteg41 L= 2
    1-C.12334E O1 2-0.20ig4E Cl 3-0.46395E OO 4 0.19777E Cl j O.44676E C1 6 0.79C89E O1
    7 C.10823E O2
GROUP & INITIAL E= 1.7500238 L= 2
    1-C.10637E O1 2-C.18945E 01 3-0.88187E 00 4 C.82007E 0J 5 0. 28552E 01 5 0.48012E 01
    C.75200E OL & 0.96672E Cl
GROUP 9 INITIAL E= 1.&833536 L= 2
    1-C.S2929E OO 2-C.177GEE C1 3 -0.1C832E O1 4 C.18443E 00 5 0.107S4E 01 0 0.33355E Ol
    7 C.488C9E O1 & C.70931E C1 O C.859O1E O1
GROUP 10 INITIAL E=2.2166834 L= 2
```



```
    0.35811E OI & 0.48314E Cl g 0.66743E 01 10 0.78927E Ol
GROUP Il INITIAL E= 2.4500132 L= 2
```



```
    7 C.25522E O1 & 0.36E71E Cl % 0.47159E O1 10 0.62813E 01 11 0.73235E 01
GROUP 12 INITIAL E=2.683342S L= 2
    1-0.60477E 00 2-0.12898E 01 3-0.11150E 01 4 -0.58291E 00 5 0.11949E 00 6 0.96326E 00,
    7 C.18490E OL & 0.27510E C1 G 0.37090E OL10 0.45685E OL 1L J.59197E O1 12 O.67859E OI
GROUP 13 INITIAL E= 2.SIEE727 L= 2
    1-0.56440E 00 2-C.12367E O1 3-0.11349E 01 4-0.67659E 00 5-0.75545E-01 6 0.57691E OO
    7 0.1321jE 01 & C.20899E 01 9 0.2&615E 01 10 0.36802E 01 11 0.44075E 01 12 0.55896F 01
    13 0.62341E 01
GROUP 14 INITIAL E= 3.1500C25 L= 2
    1-0.52846E OO 2-0.1184GE C1 3-0.11372E O1 4-0.76467E CO 5-0.24718E 00 b O.32862E OO
    7 C.92096E OO & 0.15767E Cl G 0.2246GE O1 10 0. O9136E 01 11 0.362J8E 01 12 0.42434E O1
    13 C.528S4E O1 14 0.57547E C1
GROUP 1E INITIAL E= 3.3833332 L= 2
```



```
    C.64265E 00 % 0.11776E G1 9 0.17571E 01 10 0.23455E 01 ll J.29265E 0l 12 J.35435E Cl
    13 C.4C8LTE O1 14 0.50164E O1 15 0.53793E Ol
```

```
12345t. H BOUND IN R2C - 25E [EG K - ENEREY MESH TO 3.5 EV
L=3 SCATTERING KERNEL NORMALIZED TC SIGMA INELASTIC
```



```
GROUP 
GROUP 11 INITIAL E=2.450CI32 L= 3
```



```
    7-C.40134E OO & 0.88520E 00 & 0. 23115E 01 10 0.43518E 01 11 0.63617E O1
GROUP 12 INITIAL E= 2.6E32429 L= 三
```



```
    7-C.E6239E 0O & 0.55774E-C1 & 0.12261E 0110 0.24798E 01 11 0.42711E 0112 0.59809E 01
GROUP 13 INITIAL E=2.S160727 L= Z
    1-0.178C8E OO E= 2-C.S2428E CC 3-0.15362E 01 4 -0.18316E 01 5 -0.0.18334E 01 6-0.16251E O1
    7-C.11379E O1 & -0.44744E CO O 0.41703E OO 10 0.14750E Ol 11 0.25801E O112 0.41658E O1
    13 C.56423E C1
GROUP 14 INITIAL E= 3.1500025 L= =
```



```
        7-C.12956E 01 6-0.77455E CC S-0.1C193E 00 10 C.70CJ8E 0011 0.16530E O1 L2 0.26332E O1
    13 C.40479E 01 14 6.53202E Cl
GROUP 15 INITIAL E= 3.3E33332 L= #
    1-0.14359E OO 2-0.76368E OC 3-0.13060E O1 4 -0.16192E 01 5-0.17985E 01 6 - 0.16051E O1
    7-0.13320E O1 &-C.S8303E CO g-C.45&76E OO 10 0.18192E OO11 O.92081E CO12 O.17837E O1
    13 0.26535E O1 14 C.39246E Cl 15 0.50204E 01
```

123456. H BQUND IN H2O - 296 CEGK - ENERGY MESH TO 3.5 EV
```
L=4 SCATTERING KERNEL NORMALILED TC SIGMA INELASTIC
GROUP I INITIAL E=0.1167149 L=4
    1 0.67952E 00
GROUP 2 INITIALE = 0.3500448 L= 4
    1-0.22943E OC 2 0.87675E CC
```



```
GROUP 7 INITIAL E=1.5j66941 L= 4
    0.70161E-01 2-C.29068E CG 3-0.17Z68E O1 4-0.26242E O1 5 -0.21642E Ol 6 0.31575E OO
    C.67082E O1
GROUP 8 INITIAL E=1.75CC238 L=4
    0.64205E-01 2-0.132C8E CC 3-0.12518E O1 4 -0.23373E 01 5 -0.24451E 01 6 -0.1414CE O1
    C.11605E 01 8 G.63455E Cl
GROUP S INITIALE = 1.9833536 L=4
    1 0.65486E-01 2-C.43S¢4E-C1 3-0.91891E 0J 4 -0.19187E 01 5-0.24249E 01 6 - 0. 20164E OI
    7-C.74213E 00 & C.17416E C1 & 0.6CCOIE 01
GROUP 10 INITIAL E= 2.2lte834 L= 4
    -0.12828E-01 2-0.51132E-02
    7-0.15316E O1 & C.18E67E CC 9 0.21256E O110 0.57904E O1
GROUP 11 INITIAL E=2.4500132 L= 4
    0.55343E-02 2-C.20008E OC 3-0.52531E 0J 4-0.12777E 01 5-0.18987E 01 6 - 0. 21488E 01
    7-C.19134E 01 8-0.10723E Cl g 0.2E162E 00:0 0.23780E 01 11 0.53872E 01
GROUP 12 INITIAL E= 2.683342G L= 4
    0.81808E-02 2-0.13258E 00 3-0.6C538E 00 4-0.1C599E 01 5 -0.16405E 01 6 -0.19E62E 01
    7-0.19793E O1 &-C.15059E C1 g-0.t\in693E 0J10 0.59632E OJ 11 G. O5394E 0112 0.5J754E O1
GROUP 13 INITIAL E=2.5166727 L= 4
    1 0.1C554E-01 2-0.89321E-C1 3-0.47731E 00 4-0.10060E Ol 5-0.14136E 01 6 - 0.17050E C1
    7-C.19231E OI &-0.17433E CI S -0.12285E Ol 10-0.32097E 0011 0.864JOE 0012 0.26374E O1
    13 C.4817SE OI
GROUP 14 INITIAL E=3.150C025 L= 4
    0.21350E-01 2-0.52344E-C1 3-0.37835E JJ 4-0.84459E 00 5 -0.12998E 01 6 - - 0.15948E N1
    8-0.17777E C1
    13 0.269C8E O1 14 0.45924E Ol
GROUP 15 INITIAL E= 3. ミ833332 L=4
    0.13175E-01
    7-0.164G6E O1 &-C.1732LE CI G-0.15931E O110-C.12326E OL 11 -0.6443OE OJ 12 O.21O27E ON
    13 C. 122G6E 01 14 C.27129E O1 15 0.44058E Cl
```

```
123456. H BOUND IN H2O - 29E LEG K - ENERGY MESH TO 3.5 EV
```

L $=5$ SCATTERING KERNEL MORNALIZED TO SIGMA INELASTIC

APPENDIX B - KERINT SAMPLE PROBLEM

A sample problem for the KERINT code is shown below. The problem is based on four-group scattering kernels up to P_{3} Legendre order. Kernels are input at temperatures of 296, 350, and 400 degrees Kelvin. One output kernel is generated at a temperature of 320 degrees Kelvin using Lagrangian interpolation between the input temperature points. Input cards, printed output, and punched output are shown below.

KERINT TEST PROBLEM INPUT CARDS

		31	3	6	286	. 350	. 0			
320.0										
0	14	296.0000							100.	1
0	11	1.5336E C3	0.0	0.0		0.0		0.0	100.	2
0	12	2.4722 E	1.8678 E 02	0.0		0.0		0.0	100.	3
0	13	2.5186E 01	-5.2174E O1	$6.7203 E$	Cl	O. 0		0.0	100.	4
0	14	1.9236E O1	$3.2982 E 01$	3.7361 E	Cl	4.8618 E		0.0	100.	5
8										
1	14	296.0000							100.	1
1	11	2.9430E 02	0.0	0.0		O.C		0.0	100.	2
1	12	-1.2089E 01	7.6304 E 01	0.0		0.0		0.0	100.	3
1	13	-1.C711E 00	$2.6299 E 00$	4. SE55E	01	0.0		0.0	100.	4
1	14	-1.3521E-01	2.0590 EO	2.2205E	01	$3.5996 E$	01	0.0	100.	5
2	14	296.0000							100.	1
2	11	4.5001601	0.0	0.0		0.0		0.0	100.	2
2	12	-1.2712E 01	2.0355 E C1	0.0		0.0		0.0	100.	3
2	13	-6.4969E-01	-5.1351E 00	$2.2647 E$	C1	0.0		0.0	100.	4
2	14	-4.8521E-01	-3.0207E 00	$4.8136 E$	00	$2.2087 E$	01	0.0	100.	5
.8136 00 2.2087 01 0.0.										
3	14	296.0000							100.	1
3	11	7.4199 EO	0.0	0.0		0.0		0.0	100.	2
3	12	-2.8404E 00	$4.2747 E$ CO	0.0		0.0		0.0	100.	3
3	13	1.1826E-01	-4.4959E-01	5.7110 E	00	0.0		0.0	100.	4
3	14	-2.3636E-C2	-6.2900E-01	-6.4328E	cc	$1.5396 E$	01	0.0	100.	5

1	4	350.CUCO							100.
1	1	1.4 CBOE 03	0.0	O.C		O.C		0.0	100.
1	2	2.4653t 02	1.8770E C2	C.C		0.0		0.0	100.
1	3	2.9252E 01	$5.1956 E 01$	$6.7547 E$	Cl	0.0		0.0	100.
1	4	1.9211E 01	3.2953E 01	3.7650e	Cl	4.8550 E	01	0.0	100.
1	4	350.00 CC							100.
1	1	3.0660E 02	0.0	0.0		O.C		0.0	100.
1	2	-1.1184E 02	$7.6351 E 01$	0.6		0.0		0.0	100.
1	3	-1.0129E CO	2.6801ECO	4.set BE	01	O.C		0.0	100.
1	4	-1.2940E-01	2.0733 E OO	2.2170 E	01	3.6067E	01	0.0	100.
1	4	$350.00 C 0$							100.
1	1	5.4561E O1	0.0	0.0		O.C		0.0	100.
1	2	-1.2486E 01	2.0403 E 01	O.C		0.0		0.0	100.
1	3	-6.9019E-01	-5.1577E 00	2.26c7E	01	0.0		0.0	100.
1	4	-4.8544E-01	-3.cocte co	4.9C56E	00	$2.1570 E$	01	0.0	100.
1	4	350.0000							100.
1	1	1.0516E O1	0.0	C.C		0.0		0.0	100.
1	2	-2.8399E OC	4.4641 ECO	0.0		0.0		0.0	100.
1	3	9.6219E-02	-5.8430E-01	5.8183E	00	0.0		0.0	100.
1	4	-1.9590E-02	-6.31C9E-01	-t.3C61E	00	1.5265E	01	0.0	100.
1	4	400.0000							100.
1	1	1.2827E 03	0.0	C. 0		0.0		0.0	100.
1	2	2.4612 E 02	1.8852 E 02	0.0		C.C		0.0	100.
1	3	2.9270E 01	$5.1778 \mathrm{E} \mathrm{O1}$	6.7862 E	01	$0 . C$		0.0	100.
1	4	1.9135 E OL	3.2840 E 01	3.78¢3E	01	4.8483E	01	0.0	100.
1	4	400.00 CC							100.
1	1	3.1859E 02	0.0	0.0		0.0		0.0	100.
1	2	-1.C127E 01	7.6318 E 01	0.0		0.0		0.0	100.
1	3	-9.5205E-C1	$2.745 C E C O$	4.SE42E	01	O.C		0.0	100.
1	4	-1.1753E-01	2.0884 EO	$2.2136 E$	01	3.6682 E	01	0.0	100.
1	4	400.0000							100.
1	1	$6.4641 E \mathrm{Cl}$	0.0	O.C		0.0		0.0	100.
1	2	-1.2385E 01	2.0786 El	0.0		0.0		0.0	100.
1	3	-7.2571E-C2	-5.1586E 00	$2.2726 E$	C1	0.0		0.0	100.
1	4	-4.8469E-01	-2.9712E 00	4.9812 E	00	$2.1855 E$	01	0.0	100.
1	4	400.0000							100.
1	1	1.3269E O1	0.0	0.0		0.0		0.0	100.
1	2	-2.8343E CO	4.5947 E 00	0.0		0.0		0.0	100.
1	3	$7.3984 \mathrm{E}-02$	-7.0395E-01	5.9C89E	00	0.0		0.0	100.
1	4	-2.7226E-C2	-6.3372E-01	-6.1643E	00	1.5117 E	01	0.0	100.

```
L = O SCATTERING KERNEL FGR ZA = 100. AT T = 320.00 DEG K
GROUP l L = 0
    C.14790E 04
GROUP 2 L = 0
    1 0.24688E 03 2 C.18719E O2
GROUP 3 L =0
    0.29221E 02 2 0.52102E C2 3 0.67356E 02
GROUP
L = I SCATTERING KERNEL FOR ZA = 100. AT T = 320.00 DEG K
GROUP l L = l
    C.29968E 03
GROUP 2 L = 1
    1 -C.11717E 02 2 0.76335E C2
GROUP 3 L = 1
    1-0.10462E
    2 C.26491E C1 3 0.45866E 02
GROUP 4 L = 1
        1-0.13353E 00 2 0.20651E C1 3 0.22190E 02 < < 0.36035E 02
L=2 SCATTERING KERNEL FOR ZA = 100. AT Y = 320.00 DEG K
GROUP 1 L = 2
    L C.49080E 02
GROUP 2 L = 2
    1 -0.12557E O2 2 C.2C472E CZ
GROUP 3 L = 2
    1 -0.66796E 00 2-C.S147SE Cl 3 0.2ि2672E 02
GROUP 4 L = 2
    1-0.48545E 00 2-C.30133E C1 3 0.48558E 01 4 0.22036E 02
L = 3 SCATTERING KERNEL FCR ZA = 10C. AT T = 320.00 DEG K
GROUP 1 L = 3
    C.88117E 01
GROUP 2 L = 3
    1-C.28409E 01 < 0.43651E Cl
GROUP 3 L = 3
    1 0.10872E 00 2-C.51016E CC 3 0.57599E O1
GRUUP 4 L = 3
    1-0.20262E-01 2-0.62983E CO 3-0.63799E 01 4 0.15341E 02
```


PUNCHED OUTPUT FROM KERINT

0	1	4	$0.3200 E 03$								100.	1
\bigcirc	1	1	1.4790803	0.0		0.0		0.0		0.0	100.	2
0	1	2	2.4688E 02	1.8719 E	02	0.0		0.0		0.0	100.	3
0	1	3	2.9221E 01	5.2102 E	01	6.7356 E	01	0.0		0.0	100.	4
0	1	4	1.9232E 01	$3.2981 E$	01	3.7493E	01	4.8588 E	01	0.0	100.	5
1	1	4	0.3200 E 03								100.	1
1	1	1	2.9968E 02	0.0		0.0		0.0		0.0	100.	2
1	1	2	-1.1717E O1	7.6335 E	01	0.0		C.C		0.0	100.	3
1	1	3	-1.0462E OC	$2.6491 E$	00	4.9866E	01	0.0		0.0	100.	4
1	1	4	-1.3353E-01	2.0651 E	00	$2.2190 E$	01	$3.6035 E$	01	0.0	100.	5
2	1	4	0.3200 E O3								100.	1
2	1	1	4.9080 E 01	O.C		0.0		O.C		0.0	100.	2
2	1	2	-1.2597E 01	2.0472 E	C1	0.0		0.0		0.0	100.	3
2	1	3	-6.6796E-01	-5.1479E	co	2.2672 E	01	0.0		0.0	100.	4
2	1	4	-4.8545E-01	-3.0133E	00	4.8558 E	00	$2.2036 E$	01	0.0	100.	5
3	1	4	$0.3200 \mathrm{E} \quad 03$								100.	1
3	1	1	8.8117E 00	0.0		0.0		0.C		0.0	100.	2
3	1	2	-2.8409E 00	$4.3651 E$		0.6		0.0		0.0	100.	3
3	1	3	1.0872E-01	-5.1016E-	01	5.7559 E	00	0.0		0.0	100.	4
3	1	4	-2.0262E-02	-6.2983E-	01	-6.37¢9E	00	1.5341E	01	0.0	100.	5

8. AUXILIARY CODE KERINT

8.1 INTRODUCTION

In Section 7.2.1 limitations on the temperature interpolation of $S(\alpha, \beta, T)$ were described. These restrictions were based on inaccuracies that arise in temperature interpolation due to rapidly changing values of $S(\alpha, \beta, T)$ and computer word length. Generally these restrictions allow accurate interpolations at any temperature only for energy meshes whose maximum energy transfer is $<0.85 \mathrm{ev}$ at room temperature. An example of such a dependence is shown in the following table for moderator $\mathrm{H}_{2} \mathrm{O}$ (ENDF/B MAT = 1002).

> | P_{0} Total Scattering Cross Section (barns) for |
| :--- |
| Moderator $\mathrm{H}_{2} \mathrm{O}$ (MAT $=1002$) |

Temperature ${ }_{0} \mathrm{~K}$	Energy, ev				
	$\frac{1.0}{196^{\alpha}}$		$\frac{0.625}{46.141}$	47.718	
300		71.485		111.53	
310		62.153	47.767	71.546	111.80
320		47.912	47.784	71.589	112.00
330		51.536	47.796	71.633	112.20
340	48.035	47.809	71.674	112.40	
350^{α}	46.235	47.823	71.718	112.61	

a. A temperature at which $S(\alpha, \beta)$ is tabulated.

Some materials however have tabular $S(\alpha, \beta)$ data that correspond to larger energy transfer ($\cong 2 \mathrm{eV}$) at room temperature. For these materials the temperature interpolation methods used in FLANGE II will lead to significant errors in kernels and cross sections for energy group with energies $>0.85 \mathrm{ev}$ and temperatures between the tabulated temperature on the ENDF/B tape.

An alternative method of obtaining kernels at intermediate temperature is provided by the code KERINT. The restrictions on temperature interpolation do not apply to temperatures at which the $S(\alpha, \beta)$ are tabulated on the ENDF/B tape and it is possible to generate kernels with energy transfers limited only by the accuracy that can be maintained in the short collision time approximation (generally $\cong 4.0 \mathrm{ev}$ at room temperature). Several scattering kernels may be generated, therefore, at the temperature at which the $S(\alpha, \beta)$ is tabulated, then code KERINT will interpolate
the kernel directly at intermediate temperatures. Two-point and three-point temperature interpolations are provided with a choice of interpolation methods.

8.2 TEMPERATURE DEPENDENCE OF CROSS SECTIONS AND KERNEL ELEMENTS

Unlike the $S(\alpha, \beta)$, the scattering cross sections and kernel elements are smooth functions of temperature. A diagram of the temperature dependence of the P_{0} scattering cross section for molecular $\mathrm{H}_{2} \mathrm{O}$ (MAT $=1002$) as a function of temperature for several energies is given below.

Similarly a diagram of the differential scattering cross section for scattering from 0.625 to 0.025 ev is shown below as a function of Legendre scattering order.

From these diagrams it is clear that two-point temperature interpolation of the kernels should be sufficient for molecular $\mathrm{H}_{2} \mathrm{O}$. Three-point temperature interpolation is probably better, however, for cases where Bragg scattering peaks may shift as a function of temperature (as is the case for $\mathrm{ZrH}, \mathrm{Be}, \mathrm{BeO}$, and graphite).

8.3 INTERPOLATION CODES

Several possible interpolation codes are built into KERINT for both two- and three-point temperature interpolations. The two-point interpolation codes are described in Section 3.1 and summarized below and identified by flag ICODE.

8.3.1 Two-Point Interpolation Codes

$\underline{I C \emptyset D E}=1 \sigma(T)$ linear in T
$\sigma(\mathrm{T})=\sigma\left(\mathrm{T}_{1}\right)+\left[\sigma\left(\mathrm{T}_{2}\right)-\sigma\left(\mathrm{T}_{1}\right)\right]\left[\left(\mathrm{T}-\mathrm{T}_{1}\right) /\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)\right]$

ICøDE=2 $\ln [\sigma(T)]$ linear in T
$\sigma(\mathrm{T})=\sigma\left(\mathrm{T}_{1}\right)+\left[\sigma\left(\mathrm{T}_{2}\right)-\sigma\left(\mathrm{T}_{1}\right)\right]\left[\ln \left(\mathrm{T} / \mathrm{T}_{1}\right) / \ln \left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)\right]$

ICØDE $23 \sigma(T)$ linear in $\ln (T)$
$\ln [\sigma(\mathrm{T})]=\ln \left[\sigma\left(\mathrm{T}_{1}\right)\right]+\ln \left[\sigma\left(\mathrm{T}_{2}\right) / \sigma\left(\mathrm{T}_{1}\right)\right]\left[\left(\mathrm{T}-\mathrm{T}_{1}\right) /\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)\right]$
$\underline{I C \varnothing D E=4} \ln [\sigma(T)]$ linear in $\ln (T)$
$\ln [\sigma(\mathrm{T})]=\ln \left[\sigma\left(\mathrm{T}_{1}\right)\right]+\ln \left[\sigma\left(\mathrm{T}_{2}\right) / \sigma\left(\mathrm{T}_{1}\right)\right]\left[\ln \left(\mathrm{T} / \mathrm{T}_{1}\right) / \ln \left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)\right]$

Two three-point interpolation codes are available described below and identified by flag ICODE.

8.3.2 Three-Point Interpolation Codes

IOQDE=5 Three-point least squares fit to form $\sigma(T)=A e^{B T}$

$$
\begin{aligned}
\ln \sigma(T) & =\frac{\left(\sum_{i=1}^{3} T_{i}^{2}-T \sum_{i=1}^{3} T_{i}\right)\left(\sum_{i=1}^{3} \ln \left[\left(\sigma\left(T_{i}\right)\right]\right)\right.}{\left(3 \sum_{i=1}^{3} T_{i}^{2}\right)-\left(\sum_{i=1}^{3} T_{i}\right)^{2}} \\
& +\frac{\left(3 T-\sum_{i=1}^{3} T_{i}\right)\left(\sum_{i=1}^{3} T_{i} \ln \left[\sigma\left(T_{i}\right)\right]\right)}{\left(3 \sum_{i=1}^{3} T_{i}^{2}\right)-\left(\sum_{i=1}^{3} T_{i}\right)^{2}}
\end{aligned}
$$

1Cの日E=6 Three-point Lagrangian to polynomial form

$$
\sigma(\mathrm{T})=\mathrm{A}+\mathrm{BT}+\mathrm{CT}^{2}
$$

$$
\begin{aligned}
\sigma(\mathrm{T})= & \left(\mathrm{T}-\mathrm{T}_{2}\right)\left(\mathrm{T}-\mathrm{T}_{3}\right) \sigma\left(\mathrm{T}_{1}\right) /\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)\left(\mathrm{T}_{1}-\mathrm{T}_{3}\right) \\
& +\left(\mathrm{T}-\mathrm{T}_{1}\right)\left(\mathrm{T}-\mathrm{T}_{3}\right) \sigma\left(\mathrm{T}_{2}\right) /\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)\left(\mathrm{T}_{2}-\mathrm{T}_{3}\right) \\
& +\left(\mathrm{T}-\mathrm{T}_{1}\right)\left(\mathrm{T}-\mathrm{T}_{2}\right) \sigma\left(\mathrm{T}_{3}\right) /\left(\mathrm{T}_{3}-\mathrm{T}_{1}\right)\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)
\end{aligned}
$$

A comparison of the six interpolation codes is made in the next table for molecular $\mathrm{H}_{2} \mathrm{O}(\mathrm{MAT}=1002)$ at $\mathrm{E}=0.625 \mathrm{ev}$ and $\mathrm{T}=320^{\circ} \mathrm{K}$. The values may be compared to the exact value of 47.784 barns shown in the table of Section 8.1. Temperatures at which kernels were generated were 296,350 , and $400^{\circ} \mathrm{K}$.

ICODE		Correct-Interpolated $\times 100$
	$\underline{\sigma_{2} \text { at } 0.625 \mathrm{ev} \text { and } 320^{\circ} \mathrm{K}}$	Correct
1	47.7647	0.040
2	47.7668	0.036
3	47.7647	0.040
4	47.7668	0.036
5	47.7636	0.042
6	47.7671	0.035

8.4 DESCRIPTION OF KERINT

KERINT contains a main program and four subroutines. The main program is divided generally into three functions: reading and checking input, reading and storing kernels using one scratch tape NSTA if required, and interpolating and punching the interpolated kernel.

8.4.1 Data Set Assignments

The following data sets are used and their values are stored in CØMMØN/TAPES/. Numbers are assigned in the main program.

NIN - System input $=5$
NØUT - System output $=6$
NPUN - System punch $=7$
NTSA - Scratch data set (disk, drum, or tape) $=3$

8.4.2 Error Stops

Errors are handled by subroutine ERRØR which prints a full message. These are the following:

1. 'THE NUMBER OF INPUT TEMPERATURES IS LE 0 " - Check the input cards and specify what temperature kernels will be read into the code.
2. "THE NUMBER OF OUTPUT TEMPERATURES IS LE 0" - No temperatures have been specified for kernels to be generated. Check input cards.
3. "NUMBER OF OUTPUT TEMPERATURES GT 20" - Kernels may be generated at only 20 temperatures on output.
4. "INTERPOLATION CODE LE O OR GT 6" - An incorrect interpolation code is specified in the input.
5. 'END OF FILE OCCURRED ON THE READER BEFORE END OF INPUT" More input kernels were expected than were in the input deck.
6. "KERNELS HAVE INCONSISTENT NUMBERS OF GROUPS" - A kernel was read specifying a different number of groups than the previous kernels.
7. "A KERNEL HAS A TEMPERATURE DIFFERENT FROM THE SPECIFIED TABULATED TEMPERATURES" - A kernel was read with a temperature that did not agree with those specified.
8. "TWO TEMPERATURES ARE IDENTICAL" - Two kernels specified as tabulated temperatures are identical.

8.4.3 Kerne] Storage

Storage of a kernel for interpolation purposes presents a data handiing problem. FLANGE II generates scattering kernels for emergeyky meshes up to 200 points; however, because it generates only the downscattering part of the kernel this corresponds to 20,100 transfer elements for each Legendre order and temperature. For interpolation purposes it is desirable to store kernels for all Legendre orders and temperatures simultaneously to obtain all desired output temperatures from a single pass through the code. The storage necessary to do this for a 200group energy mesh, P_{5} Legendre kernels, and three-point temperature interpolation is 361,800 single precision words. This amount of fast core storage is not available; hence a system utilizing a single scratch data set (NSTA) is used.

All data are stored in a singly indexed array. This array gives values of the initial and final energy groups for which transfer elements are given. The array values are defined as

$$
\mathrm{IN}(\mathrm{I})=1000 * \mathrm{NI}+\mathrm{NF} \quad(\mathrm{I}=1, \mathrm{NUMB})
$$

where $I N(I)$ is the array value, NI is the initial group index, NF is the final group index, and NUMB is the number of array values for a given set of transfer matrices. The maximum value of NUMB is 20,100 .

The transfer elements for a set of matrices by Legendre order and temperature are stored in pages of data, each page containing a fixed number of entries. If the Legendre order specified is LØRD and there are NKT temperatures ($=2$, or 3) a typical entry is diagrammed below.

For each entry in the IN(I) array there will be a segment of a data page as diagrammed above for the indicated initial to final group transfers. These are stored sequentially in the data pages starting with the first entry IN(1) to the last entry, IN(NUMB) each having length NOENT $=(\mathrm{L} \emptyset \mathrm{RD}+1) * \mathrm{NKT}$. Each page of data can store $\operatorname{JMAX}(=9600)$ words of data; hence, each page can store $\mathrm{N} \emptyset \mathrm{PP}=\mathrm{JMAX} / \mathrm{N} \emptyset E N T$ entries.

The procedure to store the kernels then is the following: The IN(I) array and NUMB are set to zero. NSTA is rewound, data page NPAGE is set to 1 , and the page values $X(J)$ are set to zero. The first kernel is read in the format that FLANGE II punches. As each element is read, array $\operatorname{IN}(\mathrm{I})$ is checked to see if this transfer element has been read. If it has not been read, a new entry in IN(I) is created, the appropriate area is reserved in $X(J)$, and data for the particular transfer element are stored by temperature and Legendre order. As each data page is filled up it is written to NSTA with the page number attached. The first kernel must reserve all data space, and care must be taken to assure that new transfer elements do not occur in subsequent kernels.

After the first kernel is read NSTA is rewound. Each subsequent kernel element is then read, the appropriate location in the data pages is determined, and data are stored by temperature and Legendre order. The method of location is as follows:

- Array IN(I) is searched until the proper initial and
final energy groups are found. Designate this value IX.
- The page number on which the data entry resides is determined from IPAGE $=I X / N \emptyset P P+1$ where $N \emptyset P P$ is the number of data entries/page.
- The proper page is brought into core from NSTA.
- The position of the entry on the page is determined from IPT = IX-(IPAGE-1)*NøPP.
- The first word of the entry on the page is determined from IWD $=(I P T-1) * N \varnothing E N T+1$ where $N \emptyset E N T=(L \emptyset R D+1) N K T$.

Each kernel element is stored in the above manner as it is read from a card.

8.5 INPUT/OUTPUT DESCRIPTION

8.5.1 Input

The input to KERINT contains 1 to 4 input cards plus scattering kernels for each Legendre order and temperature specified. The required data are as follows.

Number	Columns	Format	Mnemonic	Description
1	1-10	I10	NKT	Number of temperatures at which kernels are input (= 2 or 3)
	11-20	I10	NT	Number of temperatures at which kernels will be interpolated $(\leqslant 20)$
	21-30	I10	LøRD	Highest Legendre order contained in input kernels ($\leqslant 5$)
	31-40	I10	ICøDE	Interpolation code (Section 8.3)
*	41-50	E10.0	T1	Temperature (${ }^{\circ} \mathrm{K}$) of first set of kernels
	51-60	E10.0	T2	Temperature (${ }^{\circ} \mathrm{K}$) of second set of kernels
	61-70	E10.0	T3	Temperature (${ }^{\circ} \mathrm{K}$) of third set of kernels
2-4		8E10.0	T (I)	NT temperatures at which kernels will be interpolated (${ }^{\circ} \mathrm{K}$)

The above cards are followed by ($L \emptyset \mathrm{RD}+1$)*NKT scattering kernels each corresponding to one Legendre order at one temperature (T1, T2, or T3). Each kernel is followed by a blank card with an 8 -punch in Column 1 to signal the end of a kernel.

The last card of a problem is a blank card with a 9 -punch in Column 1.

An example of an input deck for KERINT is shown in Appendix B.

8.5.2 Output

For each temperature $T(I)$ specified on input a kernel for each Legendre order $\mathrm{P}_{0} \rightarrow \mathrm{P}_{\mathrm{L}}$ RRD will be punched in the format described in Section 5.3 for scattering kernels. A printout similar to that for FLANGE II will be produced for each kernel at each temperature. An example of this printout is shown in Appendix B.

9. REFERENCES

1. Data Formats and Procedures for the ENDF Neutron Cross Section Library. Edited by M. K. Drake, Brookhaven National Lab., Upton, N. Y. USAEC Report BNL 50274 (T-601) (ENDF 102, Vol. I) (1970).
2. G. M. Borgonovi. Neutron Scattering Kernel Calculations at Epithermal Energies. USAEC Report GA-9950, General Atomic, Inc., San Diego, Calif. (1970).
3. J. E. Lynn. The Theory of Neutron Resonance Reactions. Chapter VII, Clarendon Press, Oxford (1968).
4. B. J. Topper, A. L. Rago, and D. M. O'Shea. $M C^{2}-A$ Code to Calculate Multigroup Cross Sections. USAEC Report ANL-7318, Argonne National Lab., Ill. (1967).
5. D.M. O'Shea and H.C. Thacher. "Computroten of Peavenuce

APPENDIX A - FLANGE II SAMPLE PROBLEMS

Two sample problems are shown for use in checking the code and as illustrations of its use.

TEST PROBLEM 1

Problem 1 is an example of obtaining group-averaged cross sections with no scattering matrices being generated. The energy mesh for this problem is the standard 30 -group THERMøS code mesh. The material is uranium-235 taken from ENDF/B-II (MAT = 1102 from tape 201). Input cards and printed output are shown below.

TEST PROBLEM 1 INPUT CARDS

TEST PROBLEM 1 OUTPUT

15	0.0569247	1.4999962	0.0675900	0.0531930	1.4499969
16	0.0651730	1.6049957	0.0089334	0.0607830	1.5499964
17	0.0748471	1.7195555	0.0104437	0.0697163	1.6599960
18	0.0861214	1.8449955	0.0121363	0.0801601	1.7799959
19	0.0991855	1.5759948	0.0140262	0.0522964	1.9099951
20	0.1139759	2.1224937	0.0155727	0.1663226	2.0499945
21	0.1312305	2.2774535	0.0190148	0.1218953	2.1949940
22	0.1524829	2.4545932	0.0236022	0.1409101	2.3599939
23	0.1790117	2.6599932	0.0256110	0.1645123	2.5499935
24	0.2124051	2.8974924	0.0373862	0.1541233	2.7699928
25	0.2546369	3.1724911	0.0473557	0.2315095	3.0249920
26	0.3081548	3.4899902	$0.060 c 416$	0.2788652	3.3199911
27	0.3759819	3.8549900	0.0760740	0.3389068	3.6599963
28	0.4618304	4.2724895	0.0962037	0.4149808	4.0499897
29	0.5702278	4.7474890	0.1213123	0.5111846	4.4949894
30	0.7066506	5.2849884	0.1524296	0.6324969	4.9999886

```
LIERARY TAPE LABELED 201
    ENDF/E TAPE 201 (5/13/70)
```

MATERIAL DESCRIPTICA
J-235 CSEnG EVAL-SEFG9 LECNARD,ALTER,LUBITZ 多RE-EVALS
AI-AEC-MEMO-12916
* URANIUM-235
VARIULS INOIVIDUALS CONTRIBLTED TO TE EVALUATICN OF
the criss secticas fur tris naterial
甘.R..LEGNARD ZBAWく- CRUSS SECTIONS BELOW L.C EV
h. ALTER AND C.L.DUAFORD- CRCSS SETIONS ABUVE 15 KEV
C.LUBITZ- THE ORIGINAL DATA SET \& MATHIO44く
E.PENNINGTON- UNRESOLVED RESONANCE PARAMETERS
AND THE FISSILE AND FERTILE TASK FORCE JJUNE-AUG., 1969 S
* * * * * * *
MATHILO2 IS A PARTIAL KE-EVALUATICN DF CATA IN MAT\#1044
THE TGTAL AND ALL PARTIAL CRCSS SECTICAS FUR NEUTRON ENERGIES
BELOW L. 0 EV WERE PROVECIEU EY B.R.LECNARO.JR. WUNPUBLISHED MEMU
TO CSEWG*AUG. 1965 S.
THE PARTIAL X-SEC WERE CBTAIAED gY STARTING WITH LATA GIVEN IN
MATHIO44 AAD MLDIFYINĞ THE SHAPE AND MAGNITUDE DF THESE DATA TO
CCNFORM TO THE $22 C 0 \mathrm{M} / \mathrm{SEG}$ PARAMETERS ©IACLUUING G FACTGRSK THAT
WERE DGTAINED JURIAG THE $196 G$ IAEA EVALUATION GRUUP GSEE- HANNA
ET AL, ATCMIC ENERGY REVIEW, VOL VII, AC.4, 1969 K.
* * * *

ELASTIC LEGENDRE CRESS SECTICNS AT T $=0.0 \mathrm{~K}$

0. U-235 at o deg K - Mat 1102 - grclip averaged cross sections

LEGENLKE SCATTERING CROSS SECTIGNS AT $T=0.0 \mathrm{~K}$

SHP	E (EV)	S1CNA		SIGMA 1	(MU-HAR)	SIGMA 2	SIGMA 3	SIGMA 4	SIGMA
1	C.CCC253	0.15910 E	02	0.45517E-C1	(0.c02at)	0.0	0.0	0.0	0.0
2	C.C01C12	$0.15905 E$	02	0.45503E-01	(0.c0286)	0.8	0.0	0.0	0.0
3	c.002277	0.15898 E	02	C. $45483 \mathrm{E}-\mathrm{Cl}$	(0.cc296)	0.0	0.0	0.0	0.0
4	C. CC4048	0.15888 E	02	0.45456E-C1	(0.00286)	0.0	0.0	0.0	0.0
5	C.C06325	$0.15876 E$	02	$0.454<1 E-C 1$	(0.0.0286)	0.0	0.0	0.0	0.0
6	0.009108	0.15861 E	02	$0.45378 \mathrm{E}-\mathrm{Cl}$	(0.c02d6)	0.0	0.0	0.0	0.0
7	C.012397	0.15844 E	02	C.45328E-C1	$(0.002 \mathrm{ab})$	0.0	0.0	0.0	0.3
¢	0.016192	$0.15824 E$	02	0.45271E-01	(0.cc28t)	0.0	0.0	0.0	0.0
9	c. $0<0493$	0.15ccle	02	$0.452 \mathrm{C} 7 \mathrm{E}-\mathrm{Cl}$	(0.c0286)	0.0	0.0	0.0	0.0
10	0.025300	0.15776 E	02	$0.45135 E-C 1$	(0.cc2et)	0.0	0.0	0.0	0.0
11	C. 030613	0.15749 E	02	0.45056E-Cl	(0.00286)	0.0	0.0	0.0	0.0
12	C.036432	0.15719 E	02	0.44970E-C1	(0.cc286)	0.0	0.0	0.0	0.0
13	C.042757	0.15680 E	02	C. $44877 \mathrm{E}-\mathrm{Cl}$	(0.00286)	0.0	0.0	0.0	0.0
14	C.045588	$0.15652 E$	02	0.44778E-Cl	(0.00286)	0.0	0.0	0.0	0.0
15	0.656925	0.15614 E	02	C.44572E-C1	(0.00236)	0.0	0.0	0.0	0.0
16	$0 . \operatorname{cts} 173$	$0.15573 E$	C2	$0.44553 \mathrm{E}-\mathrm{Cl}$	(0.cc288)	0.0	0.0	0.0	0.0
17	0.074847	$0.15525 E$	02	0.44417E-01	(0.00266)	0.0	0.0	0.0	0.0
18	0.686121	0.15469 E	02	$0.44257 E-C 1$	(0.00286)	0.0	0.0	0.0	0.0
19	0.059180	0.154 CbE	02	0.44076E-C1	(0.00286)	0.0	0.0	0.0	0.0
20	0.113976	0.15236 E	02	C.43674E-Cl	(0.0028t)	0.0	0.0	0.0	0.0
21	C. 131230	$0.15253 E$	02	0.43638E-Cl	(0.00286)	0.0	0.0	0.0	0.0
22	C. 152483	0.15154 E	02	$0.43353 E-C 1$	(0.0c286)	0.0	0.0	0.0	0.0
23	0.179012	$0.1503 \angle E$	02	C.430C5E-01	(0.00286)	0.0	0.0	0.0	0.0
24	c. 212405	0.14889 E	02	C. 425 56E-C1	(0.00286)	0.0	0.0	0.0	0.0
25	0.254637	0.147712	02	$0.42258 \mathrm{E}-\mathrm{Cl}$	(0.00286)	0.0	0.0	0.0	0.0
26	C. 308155	$0.14753 E$	C2	$0.422 \mathrm{CoE}-01$	(0.00286)	0.0	0.0	0.0	0.0
27	C. 375982	$0.14599 E$	02	C.41768E-C1	(0.002861	0.0	0.0	0.0	0.0
28	0.461830	0.14300 E	C2	$0.40911 \mathrm{E}-\mathrm{Cl}$	(0.cc286)	0.0	0.0	0.0	0.0
29	c. 570228	0.13567 E	02	0.39959E-C1	(0.c0286)	0.0	0.0	0.0	0.0
30	c. 706657	0.13606 E	02	0.38926E-01	(0.c0286)	0.0	0.0	0.0	0.0

