JAN SI THE

Westinghouse Atomic Power Division

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

FRACTURE MECHANICS EVALUATION

OF REACTOR VESSEL STEELS

EURAEC-1953 WCAP-3677-6

QUARTERLY PROGRESS REPORT

FOR THE PERIOD ENDING

DECEMBER 31, 1967

L. F. Cochrun Project Engineer

Prepared for the New York Operations Office U. S. Atomic Energy Commission Under AEC Contract AT(30-1)-3677

January 1968

WESTINGHOUSE ELECTRIC CORPORATION Atomic Power Divisions Box 355 Pittsburgh, Pennsylvania 15230

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

-LEGAL NOTICE---

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employe or contractor of the Commission, or employe of such contractor, to the extent that such employe or contractor of the Commission, or employe of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

EXTERNAL DISTRIBUTION

USAEC, Brussels Office, APO 667 New York, New York 09667 Attention: Senior AEC Representative
USAEC, New York Operations Office 376 Hudson Street, New York, New York 10014 Attention: Leo Graup
USAEC, New York Operations Office 376 Hudson Street, New York, New York 10014 Attention: Reports Library
USAEC, Office of Foreign Activities, GM Washington, D. C. 20545
USAEC, Assistant General Counsel for Patents Washington, D. C. 20545 Attention: Dr. William Holton
USAEC, Division of Technical Information Ext. P. O. Box 62 Oak Ridge, Tennessee 37830 1
USAEC, Division of Reactor Development and Technology, Washington, D. C. 20545
USAEC, Heavy Section Steel Technology Program, Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 Attention: F. J. Witt, Director
USAEC, Division of Reactor Development and Technology, Fuel and Material Branch Mail Service F309 Washington, D. C. 20545 Attention: K. E. Horton
Battelle Northwest, Battelle Memorial Institute Pacific Northwest Laboratory P. O. Box 989, Richland Washington 99362 Attention: T. T. Claudson, Manager Mechanical Metallurgy 1
PRELIMINARY-REPORTUS .= EURATOM_EXCHANGE TOTAL 31
To expedite dissemination of technical information to those persons requiring that this report has been issued the interest of the U.S. South and arrows to protect Atomic Ferry consumity. (Surgerfunction, Westinghouse agrees that it is passed on to him in confidence that he will maintain that coat doub and make no disclosures or publication of the contents, that would the European Atomic Energy Community. (Euratom) and

TABLE OF CONTENTS

			•	•	,	Page Number
LIST OF FIGURES	• • • •	• • • •	• • •	• • •	• • • •	iv
LIST OF TABLES	• • • •	• • • •	• • •	• • •	• • • •	v
Program Description	• • • •	• • • •	• • •	• • •	• • • •	1
EUFM-100 Program Management (Sum	mary of	Progress)	• • •	• • • •	2
EUFM-200 Irradiation and Analysi	.s	• • • •	•••	• • •	• • • •	3
EUFM-300 Pre-Irradiation Testing	•••	• • • •	• • •	• • •	• • • •	5

LEGAL NOTICE

This document was prepared under the sponsorship of the United States Atomic Energy Commission pursuant to the Joint Research and Development Program established by the Agreement for Cooperation signed November 8, 1958 between the Government of the United States of America and the European Atomic Energy Community (Euratom). Neither the United States, the U. S. Atomic Energy Commission, the European Atomic Energy Community, the Euratom Commission, nor any person acting on behalf of either Commission.

- A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this document.

As used in the above, "person acting on behalf of either Commission" includes any employee or contractor of either Commission or employee of such contractor to the extent that such employee or contractor or employee of such contractor prepares, handles, disseminates, or provides access to, any information pursuant to his employment or contract with either Commission or his employment with such contractor.

LIST OF FIGURES

Title		Page No.
Two Representative Views - Base Metal - SA533 Grade B Class I - 500X	• • • •	• 11
Two Representative Views - Heat Affected Zone SA533 Grade B Class I - 500X	- • • • •	. 12
Two Representatives - Weld Metal - SA533 Grade Class I - 500X	B • • • • •	. 13
	TitleTwo Representative Views - Base Metal - SA533Grade B Class I - 500X.Two Representative Views - Heat Affected ZoneSA533 Grade B Class I - 500X.Two Representatives - Weld Metal - SA533 GradeClass I - 500X.	TitleTwo Representative Views - Base Metal - SA533 Grade B Class I - 500X.Two Representative Views - Heat Affected Zone - SA533 Grade B Class I - 500X.Two Representatives - Weld Metal - SA533 Grade B Class I - 500X.

LIST OF TABLES

<u>Table No.</u>	<u>Title</u>		Page No.
200.1	Typical Temperature for Irradiation Capsules	• • • • •	. 4
300.1	Results of WOL Fracture Toughness Tests SA533 G Class I (from 8" Plate)	rade B •••••	. 7
300.2	Results of WOL Fracture Toughness Tests Europear Forging Grade Steel	1	. 8
300.3	Results of WOL Fracture Toughness Tests SA533 Gr Class I (Weld)	rade B	. 9
300.4	Results of WOL Fracture Toughness Tests SA533 Gr Class I (Heat Affected Zone)	ade B	. 10
300.5	Hardness Values of Weldment (SA533 Grade B Class Steel)	3 I • • • • • •	. 14

PROGRAM DESCRIPTION

An experimental program is being performed directed towards further development and evaluation of a fracture mechanics approach to the problem of brittle fracture of reactor vessel materials, based upon the use of modified Wedge Opening Loading (WOL) specimens. Experimental testing of a group of reactor vessel steels is being performed to investigate the application of the fracture mechanics technique to these materials in both the unirradiated and irradiated conditions. Because of test reactor dimensional constraints, scaled-up specimens can only be used to obtain pre-irradiation data; therefore, irradiation effects will be determined only on small specimens.

Testing in the unirradiated and irradiated conditions will be conducted to determine the variability in fracture toughness of various materials. Materials being investigated include base metal samples from two different heats of a nickel modified, manganese-molybdenum steel and a European forging grade material; and weld and heat affected zone samples from one heat of a nickel modified, manganese-molybdenum steel. Tensile, Charpy V-notch and drop weight specimens from those materials are included in the program in order to provide correlation data.

<u>EUFM-100 - Program Management</u> (Summary of Progress)

L. F. Cochrun - Project Engineer

This is the sixth technical progress report on a USAEC-Euratom joint program on fracture mechanics. The previous technical progress reports were:

WCAP-3677-5	Fracture Mechanics Evaluation of Reactor Vessel
	Steels Quarterly Progress Report for the Period
	Ending September 30, 1967
EURAEC-1879	"Fracture Mechanics Evaluation of Reactor Vessel
WCAP-3677-4	Steels Quarterly Progress Report for the Period
	Ending June 30, 1967"
EURAEC-1829	"Fracture Mechanics Evaluation of Reactor Vessel
WCAP-3677-3	Steels Technical Progress Report for the Period
•	March 31, 1967"
EURAEC-1780	"Fracture Mechanics Evaluation of Reactor Vessel
WCAP-3677-2	Steels Technical Progress Report for the Period
	Ending December 31, 1966"
EURAEC-1720	"Fracture Mechanics Evaluation of Reactor Vessel
WCAP-3677-1	Steels Technical Progress Report for the Period
:	Ending September 30, 1966"

Progress during the period October 1, 1967 through December 31, 1967 is summarized as follows:

- The first series of irradiation capsules, containing all material except the 12 inch plate material is still being irradiated in the Babcock and Wilcox test reactor. Failure of heaters in one capsule was compensated by changing capsule locations.
- 2. The 12 inch plate has been received and is being sectioned in preparation for specimen machining.
- 3. Pre-irradiation testing of all material except the 12 inch plate has been completed.

· 2

EUFM-200IRRADIATION AND ANALYSIST. R. MagerW. S. HazeltonF. O. Thomas

This task provides for the planning of the irradiation experiment including the design, manufacture and assembly of the irradiation capsules. Technical direction shall be provided during the capsule irradiation, capsule disassembly, and post-irradiation examination of specimens. Analysis and evaluation of the experimental results will be performed under this task.

The irradiation of the first three test capsules in the Babcock & Wilcox Test Reactor (BAWTR) is continuing. The capsules were rotated 180 degrees during BAWTR outing after the first irradiation cycle. The purpose of rotating the capsules is to minimize the attenuation of the neutron flux. The capsules will be rotated again after the third and fourth cycles of this experiment.

During the last week of October, #2 capsule lost its heaters and four of its six thermocouples. It was operating at $400^{\circ}F$ by means of gamma heating. It was proposed that the temperature could be increased by introducing nitrogen gas into the capsule. No change in temperature occurred when the gas was purged through the capsule, indicating that the system was already operating with a pure nitrogen atmosphere. The only possible method of increasing the temperature was to increase the amount of gamma heating. This was possible by interchanging capsule #2 with capsule #1 which was closer to the center of the core. Interchanging the capsules increased the temperature in capsule #2 to a peak of about $535^{\circ}F$. The temperature fluctuates with the reactor power and coolant temperature, but is generally $>510^{\circ}F$ at reactor powers of > 5.5 MW. The temperature in capsules #1 and #3 is maintained at about $540^{\circ}F$ with the electrical heat. A typical temperature reading is given in Table 200.1.

Table 200.1

Typical Temperature for Irradiation Capsules

Thermocouple Number	<u>Capsule</u>	<u>#1</u>
1	535 ⁰ F	
2	555 ⁰ F	
3	545 ⁰ F	(Control)
4	515 ⁰ F	
5	535 ⁰ F	
6	510 ⁰ F	
	, ,	
13	545 ⁰ F	(Control)
14	510 ⁰ f	
15	525 ⁰ F	· ·
16	529 ⁰ F	
17	Open	•
18	544 [°] f	· · · · ·

Under this task, the material required for the test specimens will be procured and the pre- and post-irradiation specimens will be manufactured. The testing of the pre-irradiation specimens will be carried out and the results developed for analysis and evaluation under Task EUFM-200.

Procurement of Materials

The procurement of the 12-inch thick plate of SA533 Grade B Class I (MnMo with Ni) steel was completed during this quarter. The material is currently being sectioned into specimen blanks. The machining of the required test specimens will be initiated early in the next report period.

Mechanical Testing

Fracture toughness testing of three of the four AEC approved materials (SA533 Grade B Class I steel from the 8-inch thick plate, the European Forging Grade steel, and a weldment from a heat of SA533 Grade B Class I steel) was completed this quarter. As discussed in previous quarterly reports pertaining to fracture mechanics, the requirements of the type of fracture toughness testing employed are unusual in that it is necessary to compare post-test data to specimen pre-test dimensions to determine if the fracture toughness measured (K_Q) is the critical value (K_{IC}) for the material. In other words, validity of the test can be determined only after testing. Two criteria for validity have been proposed:

 Reference 1 proposes use of the secant off-set method to determine that the majority of strain is due to crack elongation.

-5

2. Reference 2 proposes (specifically for bend specimens, of which WOL specimens are a modification) that both the crack length and specimen thickness exceed 2.5x (Fracture Toughness/Yield Strength).²

Fracture toughness measured for specimens meeting these criteria is considered to be the critical value (K_{IC}) for the material. If the criteria are not met, the measured fracture toughness (K_Q) is considered to have been biased by specimen size. The stress intensity factors (fracture toughness) for AEC approved materials are presented in Tables 300.1, 300.2, 300.3 and 300.4.

Metallography

Samples from the weldment of SA533 Grade B steel were submitted to the Metallography Laboratory. The samples were polished and etched in 2% nital to reveal the microstructures shown in Figures 300.1 through 300.3. The samples were then separated from their mount and hardness readings were taken of each grain size area. The hardness values are summarized in Table 300.5.

J. E. Srawley, Notes Pertaining to Sect. 7.3.2 of Draft Recommended Practice, "Interpretation of Test Record and Calculation of K January 2, 1967.

⁽²⁾ ASTM, E24 Sub T Task Group, "Recommended Practice for Plane Strain Fracture Toughness Testing of High Strength Metallic Materials Using a Fatigue-Cracked Bend Specimen," draft of proposal practice, December 14, 1966.

TABLE 300.1

Results of WOL Fracture Toughness Tests SA533 Grade B Class I (From 8" Plate)

						Plastic	Stress Intensity	
Specimen		Temp.	Y.S.	а		Zone Size	Factor (K_{TC}, K_{O})	Validity
Number	Size	<u>(°F)</u>	<u>(ksi)</u>	<u>(in.)</u>	a/W	<u>r(in.)</u>	<u>See Text (ksi vin.)</u>	(See Note)
811_5	1V	- 320	0.011	0 617	0 5/9	0.004	21 C	-
1	1 7	- 320	110.0	0.01/	0.040	0.004	31.0	1
114	1-1	-320	0.011	0.939	0.308	0.005	32.5	1
Luk-3	⊥-X	-250	94.6	0.453	0.400	0.010	40.9	1
8''-4	1-X	-250	94.6	0.562	0,500	0.008	37.1	1
8"-3	1-X	-250	94 6	0.625	0.556	0.011	44.0	1 -
1T6	1-T	-250	94.6	0.951	0.372	0.010	40.8	1
1 T 1	1-7	-250	94.6	1.035	0.406	0.006	31.2	1
Luk-2	1-X	-200	82.5	0.501	0.431	0.007	30 .6	1
8"-1	1-1	-200	82.5	0.539	0.479	0.015	43.2	2
Luk-4	1-X	-200	82.5	0.459	0.408	0.006	29.0	1:
1T11	1-T	-200	82.5	0.944	0.370	0.010	35 .6	1
1T8	1-T	-200	82.5	1.042	0.408	0.014	42.8	1
1T10	1-T	-175	78.3	0.916	0.359	0.025	55 5	2 ·
8"-6	1-X	-1.50	75.3	0.531	0.472	0.041	67.9	2
1T7	1-т	-150	75.3	1.056	0.414	0.025	51.7	2
1T9	1-T	-150	· 75.3	1.083	0.424	0.027	53.4	2
3	2-т	-150	75.3	1.830	0.358	0.020.	46 .9	1
Luk-1	2-т	-150	75.3	2.085	0.407	0.043	66.9	1
Luk-2	2-т	-100	59.0	2.025	0.395	0.049	68.3	2
4	2-т	- 50	67.5	1.820	0.355	0.052	69.2	2

Note: 1

Meets both criteria: a and B greater than 2.5 $(K_{IC}/y.s.)^2$ and secant offset. Fails a and B greater than 2.5 $(K_{IC}/y.s.)^2$, meets secant offset.

~

				-				
Specimen Number	Size	Temp. (°F)	Y.S. (ksi)	a (in.)	a/W	Plastic Zone Size (in.)	Stress Intensity Factor (K _{IC} ,K <u>O)</u> See Text (ksi vin.)	Validity (See Note)
17	1-X	-320	115.0	0.589	0.524	0 • 006	39.6	1
24	1-X	-320	115.0	0.468	0.468	0.003	27.5	1
Т4	1-T	-320	115.0	0.936	0.367	0.008	: 47.5	1
NOK 27	1-X	-250	99.6	0。469	0.417	0.010	43.2	1
19	1-X	-250	99 .6	0.616	0.547	0.011	47.9	1
NOK11	1-X	-250	99.6	0.460	- 0.408	0.009	41.6	1
B5	1-T	-250	.99.6	0.917	0.360	0.014	51.3	1
Т2	1-T	-250	99 .6	0.943	0.370	0.015	53.9	3
NOK 25	1-X	-200	90.0	0.415	0.369	0.021	56.3	2
NOK 23	1-8	-200	90.0	0.438	0.389	0.023	59.9	2
26	1-X	200	90.0	0.465	0.413	0.011	41.2	2
B3	1-I	-200	90 [.] 0	1.056	0.414	0.028	68.2	2
т6	1-T	-200	90.0	0.905	0.355	0.019	55.0	1
В6	1-T	-200	90.0	0.919	0.364	0.023	60.8	2
Т4	2-т	-200	90 .0	1.831	0.359	0.012	43.3	1 -
T1	1-T	-150	83.9	0.939	0.368	0.025	57.7	2
B2	1-T	-150	33.9	0.936	0.367	0.039	73.2	4
· T3	1-T	-150	83.9	1.048	0.412	0.059	97.8	4
NOKB4	2-т	-150	83.9	1.835	0.360	0.025	57.2	1
NOK-T2	2-т	-125	82.0	2.065	0.403	0.025	56.2	1 -
Т6	2-т	-100	79.5	1.835	0.339	0.026	56.0	1
B3	2-T	-100	79.5	1.819	0.357	0.053	79.2	4
NOKB1	2-T	- 75 ·	0.03	2.116	0.415	0.046	74.6	2
Τŀ	2-т	0	74.0	1.998	0.390	0.078	92.7	4

Results of WOL Fracture Toughness Tests European Forging Grade Steel

TABLE 300.2 '

Note: 1 Meets both criteria: a and B greater than 2.5 $(K_{IC}/y.s.)^2$ and secant offset 2 Fails a and B greater than 2.5 $(K_{IC}/y.s.)^2$, meets secant offset

3 Meets a and B greater than 2.5 $(K_{1C}^{\prime}/y.s.)^2$, fails secant offset

4 Fails both criteria

ΩO I

٢,

TABLE 300.3

Results of WOL Fracture Toughness Tests SA533 Grade B Class I (Weld)

2

Specimen Number	Size	Temp。 (°F)	Y.S. (ksi)	a (in.)	a/W	Plastic Zone Size r(in.)	Stress Intensity Factor (K _{IC} ,K _Q) See Text (ksi √in.)	Validity (See Note)
PW4X	1-x	-320	115.0	0.518	0.460	0.004	29.7	1
PW5X	1-X	-320	0 ، 115	0.505	0.451	0.003	27 .2	1
PW6X	1-X	-250	97.0	0。475	0.424	0.008	37.6	· 1
PW13X	1-X	-250	97 。0	0.503	0.447	0.007	37.8	1
PW2X	1-X	-250	97.0	0.519	0.463	0.020	65.7	2
PW7Y	1-T	-250	97.0	0.958	0.376	0.010	43.6	1
PW6Y	1-T	-250	97.0	0.935	0.367	0.025	67.7	2
PW6Z	2-T	-250	97.0	1.999	0.392	0.033	55.6	1
PW18X	1-X	-225	93.5	0.506	0.452	0.021	62.3	2
PW16X	1-X	-225	93.5	0.500	0.446	0.014	57.7	2
PW3X	1-X	-225	93.5	0.485	0.433	0.013	47.8	2
PW9Y	1-T	-225	93.5	0.973	0.381	0.003	40.1	1
PW 3y	1-T	-225	93.5	0.921	0.361	0.016	52.8	1
PW1Z	2-T	-225	93.5	2.073	0.405	0.027	66.2	1
PW 4Y	1-T	-200	90.5	0.959	0.376	0.037	76.0	2 ·
FW8y	1-T	-200	90.5	0.933	0.366	0.027	64.3	2
PW2Z	2-т	-200	90.5	2.015	0.393	0.032	70.7	1
PW4z	2-T	-200	90.5	2.033	0.399	0.048	86.9	2
PW3Z	2 - T	-125	85.0	2.245	0.440	0.063	92.9	2

Note: 1 Meets both criteria: a and B greater than 2.5 $(K_{IC}/y.s.)^2$ and secant offset 2 Fails a and B greater than 2.5 $(K_{IC}/y.s.)^2$, meets secant offset

Q

TABLE 300.4

Results of WOL Fracture Toughness Tests SA533 Grade B Class I (Heat Affected Zone)

5

Specimen Number	<u>Size</u>	Temp。 (°F)	Y.S. (ksi)	a (in.)	<u>a/₩</u>	Plastic Zone Size <u>r (in,)</u>	Stress Intensity Factor (K _{IC} ,K _Q) See Text (ksi vin.)	Validity See Note
рнбх	1-X	-320	110.0	0.511	0.456	0.004	30.3	1
PH2X	1-X	-250	.94.6	0 ₀ 502	0.446	0.007	35.2	1
PH7X	1-X	-250	94.6	0.500	0.447	0.009	40.4	1
PH 2Y	1-T	-250	94.6	0.998	0.391	0.005	30.5	1 ·
PH4Y	1-T	-250	94.6	0.925	0.362	0.011	44.2	1
PH 3Y	1-T	-225	89 .0	0.909	0.356	0.034	75.0	2
PH3X	1-X	-200	82.5	0.515	0.460	0.021	56 . 5	2
PH1Y	1-T	-200	82.5	0.908	0,356	0.057	90 . 5	2
PH2Z	2-т	-200	82.0	2.051	0.402	0.040	71.2	1
PH1Z	2-т	-150	74.0	2.150	0.413	0.084	97.9	3

- 1 Meets both criteria: a and B greater than 2.5 $(K_{IC}/y.s.)^2$ and secant offset 2 Fails a and B greater than 2.5 $(K_{IC}/y.s.)^2$, meets secant offset 3 Fails both criteria: a and B greater than 2.5 $(K_{IC}/y.s.)^2$ and secant offset Note:

ĩ.,

Figure 300.1 Two Representative Views - Base Metal - SA 533 Grade B Class I - 500X

Figure 300.2 Two Representative Views - Heat Affected Zone - SA 533 Grade B Class I - 500X

Figure 300.3 Two Representative Views - Weld Metal - SA 533 Grade B Class I - 500X

Hardness Values of Weldment (SA533 Grade B Class I Steel)

Material	Hardness (R _B) (AVE)
Base	91
Heat Affected Zone	98
Weld	92

,C.;

ťÝ

 $\hat{\boldsymbol{\alpha}}$