# Department of Meteorology, 54-1517 

## Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Transport Processes and Trace Constitutents in the Stratosphere

Progress Report<br>for the period<br>November 20, 1972 - June 30, 1973<br>Research conducted under Contract no. AT (11-1) - 2249<br>Principal Investigator: Dr. Derek M. Cunnold

April 2, 1973



## DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

## DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

## Table of Contents (April 1973)

## Section

0 Introduction
1 Basic dynamical equations and co-ordinate system
2 Choice of vertical levels
3 Non-dimensional finite-difference equations
4 Photochemistry
5 heating
6 Daily-average hearing and photochemistry
7 Spectral form of the equations
8 Determination of $W$ in the dynamic equations
9 Energecics

## Appendices

A Spectral form of Jacobian terms and evaluation of the associated nonlinear interaction coefficients

B Spectral representation of divergence terms of the general form $\nabla \cdot \mu \nabla A$.

C Solution of a tridiagonal set of equations
D Computation of the weight functions for Gaussian quadrature

## Introduction

During the current contract period progress has been made in all areas of our program. . The progress in each of the task areas is outlined below with the details of the development of the numerical model being discussed in the main body of the report.
(I) The numerical model

The major portion of our research funds are being devoted to this task and substantial progress has been made in writing the necessary computer codes. The vorticity and thermodynamic equations have been programmed with the friction and heating omitted and the model has been run barotropically (i.e. no coupling between levels) at several levels for 12 days of prediction (300 time steps) using a Lorenz n-cycle scheme. Energy was found to be conserved at all levels. The model will be run baroclinically (i.e., including vertical coupling between levels) very shortly using an arbitrary specified vertical velocity field. It is anticipated that by the end of April the coding of the vertical velocity program will be complete and the model may be run baroclinically with an internally consistent vertical velocity field.

The most time consuming portions of the chemistry and heating rate codes have been programmed. A program for evaluating the vertical column concentration of ozone above any level is complete as is a code which derives the daily average values of the photodissociation coefficients, $\mathrm{J}_{\mathrm{O}_{2}}, \mathrm{~J}_{\mathrm{O}_{3}}$, and $\mathrm{J}_{\mathrm{NO}_{2}}$, at every grid point from the predicted ozone mixing ratios. This code also calculates the atmospheric heating rate at each grid point resulting from the absorption of solar ultraviolet and visible energy. The code will shortly be extended to include the small additional contribution that molecular oxygen makes to the heating rate. By the end of April it should
be possible to predict the photoequilibrium ozone concentrations at every grid point for any specified solar declination angle and similarly to evaluate the contribution of chemical processes to the loss of ozone (i.e., to evaluate the term $\left(\mathrm{dx}_{\mathrm{O}_{3}} / \mathrm{dt}\right){ }_{\mathrm{c}}$ in equation (1.31)). The programming necessary to complete the specification of atmospheric heating (which includes the infra-red contributions) will also be finished shortly.

As initial conditions for the model we shall specify the $Z$ and $T$ fields. We have obtained tapes of climatological monthly mean values of these parameters on a $5^{\circ}$ grid below 100 mb and from pole to pole. A code has been completed for converting this information to spectral form. Between 100 and 10 mb we are using other data sources such as those obtained for task II which unfortunately apply only to the Northern Hemisphere. Above 10 mb there is little data available and an arbitrary initialisation will be imposed.

The lower boundary condition on the dynamics - that is the orographical distribution - is already coded but the lower boundary condition on the ozone concentration remains to be prog:ammed.

The major coding task remaining is to couple the dynamics with the chemistry. This requires a program for transforming back and forth rapidly between grid and spectral space. We anticipate that the coding of the numerical model will be complete by the end of the current contract period. Estimates of computation time needed to run the model continue to be approximately 3 seconds per model day or 8 hours per model year (see table 0.1). The remote terminal to the IBM 360/95 at Goddard Institute for Space Studies was installed at M.I.T. at the beginning of January and has performed probably as well as may be expected for these first few months of operation.
(II) The stratospheric climatological data analysis

The conversion of the 5 years of daily values of $Z$ and $T$ on the NMC to a $5^{\circ}$ latitude-longitude grid will be completed shortly. A generalised computer program for obtaining the daily and monthly statistics from the Northern Hemisphere grid data is complete. The output will be fed onto data tapes from which conventional printout and plotting routines can be accessed. For the 1964 statistics the data has been satisfactorily compared with prior computations. The data will probably be displayed on hemispherical grids via contour routines presently being constructed. It is anticipated that the data and the displays for the years 1964-1968 will be completed at the end of this contract period. This information will be analysed during the succeeding contract period.

With regard to the portion of this task relating to the computation of vertical velocities it has become clear that Dopplick's computer code : should undergo considerable revision (e.g., the cloud statistics should be updated). We feel that the vertical velocities derived from the present code may not be used as a climatological data base against which the predictions of the numerical model may be compared. The technique for evaluating $\omega$ in the numerical model is potentially more accurate than is Dopplick's computer code while to modify the latter is a considerable undertaking. No progress in deriving vertical velocities from climatological data has therefore been made largely because Dr . G. Boer has not been replaced. This fact is reflected in the financial statements.

## (III) Heating by trace constituents

The activities involved during this period have typically represented becoming familiar with and obtaining source information. Specifically we have updated a visible radiation code by converting radiation energy density
to gas temperature changes. This visible heating code will be incorporated as one portion of the total aerosol heating code.

A second area of activity has been in the preparation of the infra-red radiative transfer codes. This code will be utilized in computing the direct infra-red sclar heating and the stratospheric warming by ground emissions. Combining these two inf.ra-red heating codes with the visible heating code will give the total aerosol heating from all sources..

The inputs to the radiative transfer codes which have required recent. updating are the physical and optical properties of the aerosol. In the case of physical characteristics both size and projected number density have been the focus of attention. Recent static tests of the SST engine will be utilized to obtain size information concerning the non-gaseous emissions; however, preliminary indications are that coagulation will inevitably take place and will have to be estimated. Data which is missing and important to the basic understanding of the processes involved in the coagulation is aerosol size data vs. distance from the SST engine. Profected number density of aerosols from engine emission data indicate that concentrations of 3 particles/liter may be expected under global conditions. Optical properties of the aerosol such as index of refraction and the absorption characteristics are being measured in a combined CSDL/AFCRL experiment on an SST engine emission sample obtained from T. Broderick DOT-TSC. Preliminary results indicate that the samples are optically different than auto and chimney partiuclates. It has been found that $25 \% \rightarrow 85 \%$ by weight of the samples contained (assumed to be) unburned fuel or a by-product. Further analysis of the properties and optical characteristics is underway.

The principal investigator has been employed full-time on this contract during the current contract period. In early December he attended a C.I.A.P. workshop in Ft. Lauderdale where he contributed to a chapter of

$$
0-5
$$

the monograph on the neutral stratosphere concerning the simulation of dynamics. stratospheric, During February Dr.'si Cunnoid and Prinn attended the C.I.A.P. workshop in Boulder, Colorado at which the first draft of the monograph on the perturbed stratosphere was written and Dr. Alyea attended the workshop of the following week when monograph 4 on perturbations of the troposphere was prepared. Dr.'s Cunnold, Alyea and Phillips have submitted a paper regarding the modeling work to the AIAA/AMS meeting to be held in Denver in June and plan to be represented there.

$$
0-6
$$

## TABLE 0.1 Estimate of calculation times

## Calculation <br> Time (in seconds per time step) on GISS 360/95

1. Nonlinear terms; i.e., Jacobians in S. T, and $O_{3}$ pre-diction equations. Total ${ }^{\sim}$ 2-2/3 Jacobians at $24 \leq 1.00$active levels with 2566 nonlinear interactions ateach level.
2. Photochemical reaction rates (values for terms con- taining transcendental functions are taken from tables ..... 05 using machine language routines.
3. Photodissociation rates (transcendental functions from ..... 83 tables as in 2.
4. Heating due to $\mathrm{O}_{3}$ (transcendental functions as in 2). ..... 20
5. Spectral-grid-spectral transformations for 2, 3, and 4. ..... $\leq .80$
6. Inversion of W-equation (see Chapter 8) ..... <. 30
7. Totals
a. For one time step ..... $\leq 3.18 \mathrm{sec}$
b. For one year of 1 -hour steps ( 8760 steps) ..... S7-3/4 hrs.
8. Basic dynamical equations and coordinate system.

The horizontal coordinate system will be longitude (positive eastward) and latitude, denoted by $\lambda$ and $\varphi$. This dependence will be represented in spherical surface harmonics, except that certain terms, such as part of the heating and photochemistry will be evaluated point-wise at selected values of $\lambda$ and $\phi^{\prime}$. In the vertical direction pressure ( $p$ ) will be used as a coordinate with finite-differences being employed. These
pressure levels will be distributed at equal intervals of $\log p$ in order to give roughly equal intervals in height. We define

$$
\begin{align*}
& P=p \div(100 \text { char })  \tag{1.1}\\
& Z=-\ln P, \quad P=e^{-Z}
\end{align*}
$$

From the hydrostatic relation $d f=-f g d z$ and $p=f / R T$, we have

$$
d L=-\frac{d p}{p}=\frac{q}{2 T} d z
$$

The vertical levels will be separated by a uniform value of $\Delta Z$. To the extent that the temperature $T$ is approximately uniform a change of one in $Z$ corresponds to a height change of the order of 7 kr 。. The bottom of the atmosphere will for simplicity be taken at $Z=0$, i.e. at $p=100 \mathrm{cb}$ instead of at the conventional sea-level pressure of 101.325 cb . The top of the "atmosphere" will be artificially set at $Z=Z_{\text {Top }}$ corresponding to a geometric height of about 70 km .

The dynamical system not only assumes hydrostatic balance, but also a "quasi-geostrophic balance" in the horizontal equations of motion. Because we must consider global processes over the entire sphere, this balance must allow for complete variability of the coriolis parameter $f$ :

$$
\begin{align*}
& f=2 \Omega \sin \phi  \tag{1.3}\\
& \Omega=7.292 \times 10^{-5} \mathrm{rad} \mathrm{sec}
\end{align*}
$$

The quasi-geostrophic balance in question is obtained as follows (Lorenz, Tellus, 1960, P. 364 ). First, we divide the horizontal velocity $\vec{v}$ into a non-divergent part $\widehat{k} \times \nabla \psi$ given by a stream function $\psi$ and a divergent part $-\nabla X$, given by a velocity potential $\chi$ :

$$
\begin{equation*}
\stackrel{\rightharpoonup}{v}=\hat{k} \times \nabla \psi-\nabla x \tag{1.4}
\end{equation*}
$$

If the eastward and northward components of $\vec{v}$ are represented by $\mu$ and , vand $a$ is the radius of the earth, this is equivalent to

$$
\begin{align*}
& \mu=a \cos \phi \frac{d \lambda}{d t}=-\frac{1}{a} \frac{\partial \psi}{\partial \phi}-\frac{1}{a \cos \phi} \frac{\partial \chi}{\partial \lambda}  \tag{1.5}\\
& v=a \frac{d \phi}{d t}=\frac{1}{a \cos \phi} \frac{\partial \psi}{\partial \lambda}-\frac{1}{a} \cdot \frac{\partial x}{\partial \phi}
\end{align*}
$$

The vertical component of relative vorticity, $\zeta$, and the horizontal divergence of $\vec{v}$ are related to $\psi$ and $X$ by

$$
\begin{equation*}
S=\hat{k} \cdot \text { curl } \vec{v}=\nabla^{2} \psi ; \quad \text { div } \vec{v}=-\nabla^{2} x \tag{1.6}
\end{equation*}
$$

where $\nabla^{2}$ is the horizontal Laplacian operator on the sphere.
The condition of quasi-geostrophic balance is

$$
\begin{equation*}
\nabla \cdot f \nabla \psi=g \nabla^{2} z \tag{1.7}
\end{equation*}
$$

where $g$ is gravity and $z$ is the height of a constant pressure surface. [Unless noted otherwise, all partial derivatives with respect to $\lambda, \varnothing$, and $t$ (time) are carried out at constant pressure (or $Z$ ) ]. The hydrostatic relation,

$$
\begin{gather*}
g \frac{\partial z}{\partial p}=-\frac{1}{p}=-\frac{R T}{p}  \tag{1,8a}\\
g \frac{\partial z}{\partial z}=R T \tag{1.8b}
\end{gather*}
$$

enables ( 1.7 ) to be rewritten as

$$
\begin{equation*}
\nabla \cdot f \nabla \frac{\partial \psi}{\partial Z}=\nabla^{2} R T \tag{1,9}
\end{equation*}
$$

Associated with this relation (which is a simplified form of the equation obtained by taking the horizontal divergence of the equations of motion( is the "vorticity equation":

$$
\begin{equation*}
\nabla^{2} \frac{\partial \psi}{\partial t}=-\hat{k} \times \nabla \psi \cdot \nabla\left(f+\nabla^{2} \psi\right)+\nabla \cdot f \nabla x+\nabla \cdot\left(\vec{F}_{\Omega} \times \hat{k}_{2}\right) \tag{1.10}
\end{equation*}
$$

where $\stackrel{\vec{F}}{F_{\Omega}}$ is the horizontal frictional force per unit mass.
The continuity equation (conservation of mass) is

$$
\begin{equation*}
\frac{\partial}{\partial p}\left(\frac{d p}{d t}\right)=\frac{\partial}{\partial P}\left(\frac{d P}{d t}\right)=-\nabla 0 \vec{v}=\nabla^{2} X \tag{1,11}
\end{equation*}
$$

The upper boundary condition at $Z=Z_{\text {Top }}$ will be that $d p / d t$ vanishes there. Let us define

$$
\begin{equation*}
X=-\int_{P_{\text {TOP }}}^{P} X d P \quad X=-\frac{\partial X}{\partial P} \tag{1.12}
\end{equation*}
$$

Equation (1.10) can then be rewritten as

$$
\begin{equation*}
\nabla^{2} \frac{\partial \psi}{\partial t}=-\hat{k} \times \nabla \psi \cdot \nabla\left(f+\nabla^{2} \psi\right)-\nabla \cdot f \nabla\left(\frac{\partial X}{\partial P}\right)+\nabla \cdot\left(\vec{F}_{2} \times \hat{k}\right) \tag{1.13}
\end{equation*}
$$

If we use $\quad Z=-\ln P$ as the vertical coordinate, the appropriate vertical advection velocity is

$$
\begin{equation*}
W=\frac{d Z}{d t}=-\frac{1}{P} \cdot \frac{d P}{d t} \tag{1.14}
\end{equation*}
$$

The continuity equation (1.11) in terms of $W$ is:

$$
\begin{equation*}
\nabla \cdot P \vec{v}+\partial(P W) / \partial z=0 \tag{1.15}
\end{equation*}
$$

From (1.11), (1.12) and (1.14) we get $\partial\left[P W-\nabla^{2} X\right] / \partial P=0$, or

$$
\begin{equation*}
P W=\nabla^{2} X \tag{1.16}
\end{equation*}
$$

Boundary conditions on $W$ are that $W$ vanishes at $Z_{\text {Top }}$ and that it is given byorographic upslope motion at the bottom:

$$
\begin{aligned}
& Z=Z_{\text {Top }}: W=0 \\
& Z=0: W \approx \frac{e q}{}=\frac{1}{H_{0}} \vec{v}_{\psi} \cdot \nabla h
\end{aligned}
$$

where $h$ is the orography and $\vec{v}_{\psi}^{p}$ is $\hat{k}^{0} \times \nabla \psi$ at the first interior level for $\psi$. Here

$$
\begin{equation*}
H_{0}=\frac{R T_{0}}{g}=7 \mathrm{~km} \tag{1.18}
\end{equation*}
$$

is a constant.
Friction will be represented by a vertical Austausch, $\stackrel{\rightharpoonup}{F_{2}}=\frac{1}{\rho} \partial \overrightarrow{\stackrel{\rightharpoonup}{c}} / \partial z$ $=-g \partial \vec{\imath} / \partial \rho$. Thus $\nabla \cdot \vec{F}_{\mu} \times \hat{k}=\frac{\partial}{\partial P}\left[\nabla \cdot\left(-\frac{g}{p_{\Delta}} \vec{\imath} \times \hat{k}\right]\right.$
In the interior regions of the model (but not at the ground) we set

$$
\begin{aligned}
& \vec{\imath}=\rho K_{m} \partial(\vec{k} \times \nabla \psi) / \partial z, \delta i v i \\
& \nabla \cdot\left(-\frac{g}{P_{0}} \vec{\imath} \times \hat{k}\right)=\nabla \cdot\left[\frac{g^{2} \rho^{2}}{p_{0}^{2}} K_{m} \frac{\partial \nabla \psi}{\partial P}\right]
\end{aligned}
$$

Replacing $p$ by $p / R T$ and replacing $g / R T$ by $1 / H_{0}$ we get

$$
\nabla \cdot\left[-\frac{g}{p_{0}} \vec{\varepsilon} \times \hat{l_{0}}\right]=-\frac{K_{m}}{H_{0}^{2}} P \frac{\partial \nabla^{2} \psi}{\partial z} .
$$

At the ground, we can set $\vec{\sim}$ equal to 0.003 Pol|$|\vec{v}| \vec{v}$, with $|\vec{v}|$ a suitable mean anemometer speed ( $5 \mathrm{~m} / \mathrm{sec}^{-1}$ ) and the anemometer ter wind $\vec{v}$ equal to a rotated ( $\alpha=22.5$ degrees) fraction ( 0.5 ) of $\widehat{k_{2}} \times \nabla \psi$ at the lowest interior level at which $\psi$ is defined

$$
\begin{align*}
& \vec{\tau}_{\text {grand }}=[0.003 \vec{p}|\vec{v}|(0.5)][\cos \alpha \hat{k} \times \nabla \psi-\sin \alpha \nabla \psi]_{\text {interior }}  \tag{1.19}\\
& \nabla \cdot\left[-\frac{g}{p_{0}} \vec{\imath} \times \vec{k}\right]_{\text {grind }}=-\left\{\frac{1}{H_{0}}[.003|\overrightarrow{\vec{v}}|(0.5) \cos \alpha]\right\} \nabla^{2} \psi_{\text {int }}
\end{align*}
$$

For $H_{0}=7 \mathrm{~km},|\vec{v}|=5 \mathrm{msec}-1$ and $\cos \alpha=0.925$, the coefficient here has the value $10^{-6} \mathrm{sec}^{-1}$.

The conventional quasi-geostrophic Taylor-Ekman theory (Charney and Eliassen, Tellus, 1949, Vol. 1, No. 2, P. 38) gives a corresponding term ("Eknan pumping") of

$$
\begin{equation*}
-\left\{\frac{1}{H_{0}} \sqrt{\frac{k_{m_{1}} f}{2}} \sin 2 \alpha\right\} \nabla^{2} \psi \tag{1,20}
\end{equation*}
$$

For $K_{m}=5 \times 10^{4} \mathrm{~cm}^{2} \mathrm{sec}^{-1}$ and $\bar{f}=10^{-4} \mathrm{sec}^{-1}$, the coefficient in this derivation is $1.6 \times 10^{-6} \mathrm{sec}^{-1}$. To summarize the friction term we can write

$$
\begin{align*}
\nabla \cdot \vec{F} \times \vec{R} & =\frac{\partial}{\partial P}(P F) \\
Z>0: \quad F & =-\frac{k_{m} P}{H_{0}^{2}} \frac{\partial^{2} \nabla^{2} \psi}{\partial Z}  \tag{1.21}\\
Z=0: \quad F & =-k_{D} \nabla^{2} \psi i_{i n} t
\end{align*}
$$

where $/_{D}$ refers to the "surface drag-coefficient" in (1.19) or (1.20). At $\quad Z=Z_{\text {TOP }}, \quad F$ will vanish (no stress).

The next physical statement is the thermodynamic law $d$ (entropy) $/ d t=$ rate of heating $\div$ temperature. For our perfect gas system this would be

$$
\begin{equation*}
C_{p} \frac{d}{d t}\left[\ln \left(T p^{-x}\right)\right]=\frac{q}{T} ; \quad k=\frac{R}{C_{p}}=\frac{2}{7} \tag{1.22}
\end{equation*}
$$

where $g$ is the rate of heating per unit mass and $T$ the temperature. In terms of $T$, this becomes

$$
\begin{equation*}
\frac{\partial T}{\partial t}=-(\hat{k} \times \nabla \psi-\nabla \chi) \cdot \nabla T-W \frac{\partial T}{\partial Z}-k W T+\frac{q}{t_{p}} \tag{1.23}
\end{equation*}
$$

We will however use a simplified form of this, obtained by ignoring $\nabla X \cdot \nabla T$ and by replacing $T$ in $W \partial T / \partial Z$ and $K W T$ by $\bar{T}$, where $\bar{T}$ is the horizontal average:

$$
\begin{gather*}
T=\bar{T}(p, t)+7^{\prime}(\lambda, \varphi, p, r) \\
\bar{T}=\frac{1}{4 \pi a^{2}} \int_{-\pi / 2}^{1 \pi / 2} \cos \phi d \phi \int_{0}^{2 \pi} T d \lambda ; \overline{T^{\prime}}=0
\end{gather*}
$$

[This definition of () and () will be applicable to any variable.]
This greatly simplifies the computations, and is reasonably accurate because
$\nabla \psi \gg \chi$ and $\partial T^{\prime} \not \partial Z+K T^{\prime} \quad$ is generally small compared to $\partial \bar{T} / \partial Z+k \bar{T}$. The result is

$$
\begin{equation*}
\frac{\partial T}{\partial t}=-\hat{h} \times \nabla \psi \cdot \nabla T-W\left(\frac{d \bar{T}}{\partial Z}+k \bar{T}\right)+\psi / c_{p} \tag{1.25}
\end{equation*}
$$

However this simplification has the result that we can no longer interpret (1.25) as forecasting $\bar{T}$, the horizontally averaged $\bar{T}$; this is because the horizontal average of (1.25) gives simply

$$
\frac{\partial T}{\partial t}=\overline{8} / C_{p}
$$

whereas the horizontal average of the exact equation (1,23) gives

$$
\begin{equation*}
\frac{\partial \bar{T}}{\partial \bar{t}}=\frac{\bar{q}}{C_{p}}-k \overline{W^{\prime} T^{\prime}}-\frac{1}{P} \frac{\partial}{\partial Z}\left(P \overline{W^{\prime} T^{\prime}}\right), \tag{1.26}
\end{equation*}
$$

showing the effect of vertical transports of entropy by the motion. We expect little change in $\bar{T}$ from the observed annual average $\bar{T}(Z)$, however, either with season or with changes in the ozone chemistry.
[The effect of the latter will be investigated separately, as discussed later.]
In passing, we note that

$$
\begin{align*}
\frac{\partial T}{\partial z}+k T & =\frac{R T}{g}\left(\frac{\partial T}{\partial z}+\frac{g}{c_{p}}\right) \\
& =T \frac{\partial}{\partial z}\left[\ln \left(T T_{p}\right)\right]  \tag{1.27}\\
& =\frac{N^{2}}{R}\left(\frac{R T}{g}\right)^{2}
\end{align*}
$$

where $N$ is the buoyancy .frequency.

Finally, we describe the basic form of the equation for the (number density) mixing ratio of a trace substance such as $\mathrm{O}_{3}$. Define

$$
\begin{equation*}
\chi_{i}=n_{i} \div M_{m} \tag{1.28}
\end{equation*}
$$

where $M_{i}$ is the number density of the $i$-th trace substance, $M_{M}$ is the total number density, assumed to be equivalent to the "normal" constituents $\mathrm{N}_{2}, \mathrm{O}_{2}$ and $\mathrm{CO}_{2}$ since $M_{i}$ is very small.

$$
\begin{gather*}
m_{m}=p / h_{2} T \\
k_{2}=\text { Bolt }_{2 \text { man constant }}=1.380 \times 10^{-26} \text { kilojoules de oc } \tag{1.29}
\end{gather*}
$$

The equation for $d \psi_{c} / d t$ (the rate of change following the motion) is

$$
\begin{aligned}
\frac{d \psi_{i}}{d t} & =\frac{\partial \psi_{i}}{\partial t}+\left(\hat{k}^{T} \times \nabla \psi-\nabla x\right) \cdot \nabla x_{i}+\mathcal{H} \frac{\partial \psi_{i}}{\partial Z} \\
& =\frac{1}{m_{m}}\left(\frac{d n_{i}}{d t}\right)_{c}+\frac{1}{\rho} \frac{\partial}{\partial z}\left(F K_{d} \frac{\partial \psi_{i}}{\partial z}\right)
\end{aligned}
$$

where $\left(d w_{i} / d t\right)_{c}$ is the net rate of local photochemical generation of the substance (number per unit volume per unit time) and $K_{d}$ is the vertical eddy-diffusion coefficient [with dimensions (length) ${ }^{2} \div$ time]. $K_{d}$ will vary only with $P$.

The vertical diffusion term can be rewritten by using the hydrostatic equation as

$$
\begin{equation*}
\frac{\partial}{\partial P}\left[K_{d}\left(\frac{g P}{R T}\right)^{2} \frac{\partial \psi_{e}}{\partial P}\right] \approx \frac{\partial}{\partial P}\left[-\frac{K_{d}}{H_{0}^{2}} P \frac{\partial \psi_{i}}{\partial Z}\right] \tag{1.30}
\end{equation*}
$$

where we have again absorbed the variation of density with $T_{\text {into }} H_{0}$ on the recognition that $K_{d}$ itself is not a precisely known quantity. $K_{d}$ (and the momentum Austausch $K_{m}$ ) will be prescribed functions of $P$. The equation for $\psi_{i}$ is now $\quad+\frac{\partial}{\partial P}\left[-\frac{K_{d}}{\mu_{0}^{2}} \frac{\partial \psi_{i}}{\partial Z}\right]$

$$
\begin{equation*}
\frac{\partial \psi_{i}}{\partial t}=-\left(\hat{h_{2}} \times \nabla \psi-\nabla X\right) \cdot \nabla \psi_{i}-W \frac{\partial \psi_{i}}{\partial z}+\frac{1}{m_{m}}\left(\frac{d m_{i}}{d t}\right) \tag{1.31}
\end{equation*}
$$

or
$3 \Omega$

$$
\begin{align*}
& \frac{\partial \psi_{i}}{\partial t}=-\frac{1}{P}\left[\nabla,\left(P \vec{v} \psi_{i}\right)+\frac{\partial\left(P W \psi_{0}\right)}{\vec{z}}\right] \\
& \left.+\frac{1}{M 1}\left(\frac{d \mu i}{d t}\right)_{c}+\frac{\partial}{\partial P}\right]-\frac{K_{i}}{H_{0}^{2}}>\frac{\partial \psi_{i}}{\partial \gamma} \tag{1.32}
\end{align*}
$$

[having made use of (1.4) and (1.15) to obtain the last form].
The rate of change of $\overline{\mathcal{F}}_{i}$ (the horizontal average) is obtained from the horizontal average of (1.32):

$$
\frac{\partial \bar{\psi}_{i}}{\partial t}=\frac{\partial}{\partial P}\left[P \overline{W_{i}^{\prime} \psi_{i}^{\prime}}\right]+\left[\frac{1}{m_{m}}\left(\frac{\left.d_{H_{i}}\right)}{d t}\right)_{c}\right]+\frac{\partial}{\partial P}\left[\frac{-k_{d}}{H_{0}^{2}} P \frac{\partial \psi_{i}}{\partial z_{1}}\right]_{1.33)}
$$

The rate of change of $⿻_{i}^{\prime}$ will however be obtained from a simplified form of (1.31), much as was done in the thermodynamic equation (1.25):

$$
\begin{align*}
& \frac{\partial \psi_{i}^{\prime}}{\partial t}=-\hat{h} \times \nabla \psi \cdot \nabla \psi_{i}^{\prime}-W \frac{\partial \mathcal{F}_{i}}{\partial Z}+ \\
&+\left[\frac{1}{\mu_{m}} \frac{d \mu_{i}}{d t}\right]_{c}^{\prime}+\frac{\partial}{\partial P}\left[-\frac{K_{d}}{H_{0}^{2}} P \frac{\partial \psi_{i}^{\prime}}{\partial Z}\right] \tag{1.34}
\end{align*}
$$

In contrast to $\bar{T}$, where we are for the most part content to take $\bar{T}$ as given, we must predict $\bar{\psi}_{\dot{c}}$ as well as $\mathcal{Y}_{c}^{\prime}$. Equation (1.33) will therefore be used as well as (1.34).

Presumably (1.33) need not be applied every time step in the numerical integration, $\overline{\psi_{i}}$ being a slowly changing function of time. However, the term W'⿻' must be put equal to zero at $P=1$ to ensure no net creation of $\mathscr{F}_{i}$ by the large-scale motion.

The form of $\left(d N_{i} / d t\right)_{c}$ is discussed later. However, a special treatment must be used for the lower boundary condition on the vertical eddy flux of ozone. Galbally (Quart. J. Soy. Meteor. Soc., 1971, P. 18) shows
that in the very lowest layer the vertical flux (over land) of ozone is proportional to the ground concentration

$$
\begin{equation*}
K_{d} \frac{\partial x}{\partial z} \approx \frac{K_{d}}{H_{0}} \frac{\partial x}{\partial Z}=d x_{\operatorname{cind}} \tag{1.35}
\end{equation*}
$$

(the surface destruction of ozone being proportional to $O_{3}$ ). The coefficient $d$ has a value of about $1 \mathrm{~cm} \mathrm{sec}{ }^{-1}$. We will apply this formulation to the lowest layer in our model $(0 \leqslant Z \leqslant \Delta Z)$. Values of $\mathcal{X}$ are defined at the top of the layer $(Z=\Delta Z, j=J-1)$ and at the ground $(Z=0, j=J)$. Thus (dropping the $i$-subscript on $\notin$ ),

$$
\begin{equation*}
\left(\frac{K_{d}}{H_{0}} \frac{\partial \psi}{\partial Z}\right)_{J-1_{2}}=\left(\frac{k_{d}}{H_{0} \Delta Z}\right)_{J-1_{2}}\left(x_{J-1}-\psi_{J}\right)=d \psi_{J} \tag{1.36}
\end{equation*}
$$

whence

$$
\begin{equation*}
x_{J}=x_{J-1} \div\left[1+\frac{d H_{0} \Delta Z}{K_{d}}\right]_{J-1 / 2} \tag{1.37}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{K_{0}}{H_{0} \Delta Z}\right)_{J-I_{2}}\left(\mathbb{N}_{J-1}-\psi_{J}\right)=\frac{d \mathcal{F}_{J-1}}{1+\left(d H_{0} \Delta Z / K_{d}\right)} \tag{1.38}
\end{equation*}
$$

Galbally cites values of the vertical number flux of ozone molecules over land in the range 1 to $6 \times 10^{\prime \prime} \mathrm{mol} \mathrm{cm}{ }^{-2} \mathrm{sec}^{-1}$. Aldaz (J. Geo. Res., 1969, P. 6943) estimates a global average of 1 to $1.7 \times 10^{11} \mathrm{~mol} \mathrm{~cm}{ }^{-2} \mathrm{sec}^{-1}$. Pichinga representative value of $2 \times 10^{11} \mathrm{~mol} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$ and equating this to $n_{m} k \partial x / 0 z$, we find, for $n_{m}=4.55 \times 10^{19} \mathrm{~cm}^{-3}$ and $K=10^{5} \mathrm{~cm}^{2} \mathrm{sec}^{-1}$, that a vertical gradient of ozone number mixing ratio of

$$
\begin{equation*}
\frac{\partial \psi}{\partial g} \sim 0.5 \times 10^{-13} \mathrm{~cm}^{-1}=\frac{5 \times 10^{-8}}{10 \mathrm{~km}} \tag{1.39}
\end{equation*}
$$

is required. Galbally's data show a typical ground value for $\mathbb{K}$ of
$5 \times 10^{11} \div 4.5 \times 10^{19} \sim 10^{-8^{-10}}$ - The topical inferred
downward flux of ozone observed near the ground is compatible then with a tropospheric $K$ of $10^{5} \mathrm{~cm}^{2} \mathrm{sec}^{-1}$ and a tropopause ( 10 mm ) value for $\nsim$ of $6 \times 10^{-3}$ or a $10-12 n$ value for $M_{3}$ of $\left(6 \times 10^{-3}\right) \times\left(8 \times 10^{13}\right)$ $\sim 50 \times 10^{10} \mathrm{~cm}^{-3}$. This value is not greatly inconsistent with values of $10^{12} \mathrm{~cm}^{-3}$ which seem characteristic of the tropopause level in the meridional cross section prepared by D. Wu from the data of $\begin{gathered}\text { cering and Borden (1967). }\end{gathered}$

A special treatment of the ozone equation will be necessary at high levels. At these heights, Lindzen and Goody (J. Atmos. Sci., 1965, P. 341) show that the photo-dissociation of ozone is extremely rapid, with a time constant becoming less than 1 hour at heights above 45 km . (They gresumably use typical values of incident solar radiation) The conventional methods of "time-stepping" equations such as (1.34) require a computational time step no longer than the characteristic physical times associated with terms on the right side of (1.34). Since the advective time scale is of the order of an hour or so, we must consider replacing (1.33) and (1.34) at upper levels by the equilibrium condition.

$$
\begin{equation*}
x_{i}=\left(x_{i}\right)_{\text {equil }}<\frac{d m_{i}}{d t}=0 \tag{1.40}
\end{equation*}
$$

For use in radiation computations, we need $N_{i}$, the number of molecules of $\mathcal{\Psi}_{i}$ in the vertical column of unit cross-section above a given pressure surface:

$$
\begin{aligned}
N_{i} & =\int_{z}^{\infty} n_{i} d z=\int_{z}^{\infty} x_{i} n_{r i} d z=\int_{z}^{\infty} x_{i} \frac{R}{k} p d z \\
& =\frac{R p_{0}}{q k_{2}} \int_{0}^{\infty} x_{i} \cdot d p
\end{aligned}
$$

where $R=287 \mathrm{kj} \mathrm{ton}^{-1} \mathrm{deg}{ }^{-1} \quad$ is the gas constant for air.

This gives numerically

$$
\begin{align*}
N_{i} & =2.12 \times 10^{29} \int_{0}^{P} \psi_{i} d P \text { in (meter) }{ }^{-2}  \tag{1.35}\\
& =2.12 \times 10^{25} \int_{0}^{P} \psi_{i} d P \text { in }(\mathrm{cm})^{-2}
\end{align*}
$$

In the case of molecular oxygen, $\psi_{c}$ is taken as uniform and equal to 0.2096, giving

$$
\begin{equation*}
N_{0_{2}}=0.4444 \times 10^{25} \mathrm{P} \mathrm{~cm}^{-2} \tag{1.36}
\end{equation*}
$$

## The lower boundary condition for ozone

The surface destruction process for ozone must give rise to a boundary layer effect in which the ozone changes rapidly from the free air value a lower value at the ground. Our use of (approximately) 3-km height increments will not represent this adequately. Secondly, land and water surfaces differ markedly in their effect on surface ozone. Fortunately it is possible to correct for both of these complications by using the detailed analysis by P. Fabian and C. Junge (Global rate of ozone destruction at the earth's surface: Arch. Meteor., Geo., Bloklimat., (a)-Meteor, u. Geo. 19, 161-72, 1970). The important point is to obtain the correct global ratio between the lower tropospheric value of ozone and the surface destruction rate, since the former may affect the ozone amount higher up and thereby the photochemical destruction rates.

Fabian and Junge model the presumed boundary-1ayer ozone profile by standard methods and make allowance for different properties of land, vegetation and water (and their global distribution) and for different wind speeds. They arrive at a global surface destruction rate ranging from 3.1 to $5.6 \times 10^{10} \mathrm{~mol} / \mathrm{cm}^{2} \mathrm{sec}$, the variation being due to uncertainty in choice of surface wind speed. Using an average lower tropospheric value of
$5 \times 10^{11} \mathrm{~mol} / \mathrm{cm}^{3}$ for $\mathrm{O}_{3}$, we have a global ratio of

$$
\mathrm{d}_{1} \equiv \frac{3.1 \text { to } 5.6 \times 10^{10}}{5 \times 10^{11}} \sim 0.08 \mathrm{~cm} \mathrm{sec}^{-1}
$$

[Note that "measured" values of $d$ at the ground range from $.04 \mathrm{~cm} \mathrm{sec}{ }^{-1}$ over water to land values of 0.6 (Aldaz and 1.0 (Galbally) $\mathrm{cm} \mathrm{sec}^{-1}$. ]

Referring to our model equations (1.37) and (1.38)

$$
\left(\frac{K_{D}}{H_{0} \Delta z}\right)_{J-\frac{1}{2}}\left(\chi_{j-1}-Y_{j}\right)=\frac{d \chi_{j-1}}{1+\left(\frac{d H_{0} \Delta z}{k_{0}}\right)}=d \gamma_{j}
$$

we recognize the left side as the downward diffusive flux at the baton of our model, (which must equal the surface destruction rate) and $X_{J-1}$ as the number density (mixing ratio) in the model corresponding most closely to the $5 \times 10^{11}$ number density for the free air referred to above. Our model will not include different types of surface with their differing abilities to destroy ozone. This is alright since, because of the strong horizontal advection in the atmosphere, these differing surface properties affect primarily the local boundary layer profile and surface value rather than the local free troposphere values. We must use a correct global effect, however, and we get this by simply choosing a single model value for $d$ such that the ratio of the destruction rate to the free air value in the model matches the global observed ratio, $\bar{d}$.

$$
\frac{d}{1+\frac{d H_{0} \Delta z}{k_{D}}}=d_{1}=0.08 \mathrm{~cm} / \mathrm{sec}
$$

For $H_{0} \Delta Z=3 \mathrm{Km}$, and $K_{d}=10 \mathrm{~m}^{2} \mathrm{sec}^{-1}$, this gives $\mathrm{d}=0.105 \mathrm{~m} \mathrm{sec}^{-2}$. Fabian and Junge also discuss the ratio (their $\varepsilon$ ) of the surface value of $0_{3}$ to the free air value, and obtain typical values of 0.35 over land and 0.85 over water. Our model now implies a single value for this ratio of

$$
\frac{x_{j}}{\psi_{j-1}}=\frac{d_{1}}{d}=0.8
$$

very comfortably located in the range inferred by Fabian and Junge.

Vertical diffusivity for ozone.
An upper estimate for $k_{d}$ in the troposphere and lower stratosphere can be obtained from measured ozone profiles by equating

$$
\left(\frac{4 z}{29}\right) \rho K_{d} \frac{\partial y}{\partial z}=\operatorname{constant}=3.5 \times 10^{-12} \mathrm{gm} / \mathrm{cm}^{2} / \mathrm{sec}
$$

where $\%$ is the number density mixing ratio, and $3.5 \times 10^{-12}$ is the product of the mass of an ozone molecule ( $7.9 \times 10^{-23} \mathrm{gm}$ ) with the average global surface distruction rate of $4.4 \times 10^{10} \mathrm{~mol} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$ found by Fabian and Junge (reference cited earlier). Values of $\partial \mathcal{F} / \partial z$ can be obtained from the middle latitude synthesis by Krueger and Minzner (A proposed midlatitude ozone model for the U.S. Standard atmosphere. Preprint, Jan. 1973 Goddard Space Flight Center.) (Similar values are obtained from using the 3-year average ozone profiles for Bedford and Green Bay that has been analysed by D. Wu.)
$z(\mathrm{~km}) \quad\left(\frac{48}{29} x\right) \quad \frac{48}{29} \frac{\partial x}{\partial z}\left(\mathrm{~cm}^{-1}\right) \quad \rho \frac{\mathrm{gm}}{\mathrm{cm}}{ }^{3} \quad \mathrm{~K}_{\mathrm{d}} \frac{\mathrm{cm}^{2}}{\mathrm{sec}}$

| 2 3 | $5 \times 10^{-8}$ | $0.5 \times 10^{-13}$ | $0.9 \times 10^{-3}$ | $7.8 \times 10^{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 6 |  |  |  |
| 5 |  | 0.5 | 0.74 | $9.4 \times 10^{4}$ |
| 6 | 7 |  |  |  |
| 7 |  | 1.5 | 0.59 | $4 \times 10^{4}$ |
| 8 | 10 |  |  |  |
| 9 |  | 6 | 0.47 | $1.2 \times 10^{4}$ |
| 10 | 22 |  |  |  |
| 11 |  | 15 | 0.36 | $0.65 \times 10^{4}$ |
| 12 | 52 |  |  |  |
| 13 |  | 15 | 0.26 | $0.90 \times 10^{4}$ |
| 14 | 82 |  |  |  |
| 15 |  | 30 | 0,19 | $0.61 \times 10^{4}$ |
| 16 | 142 |  |  |  |
| 17 |  | 63 | 0.15 | $0.37 \times 10^{4}$ |
| 18 | 267 |  | $0.11 \times 10^{-3}$ | $0.39 \times 10^{4}$ |
| 19 20 | $431 \times 10^{-8}$ | 82 | $0.11 \times 10$ | $0.39 \times 10$ |

At higher elevations ozone begins to no longer act as an inert tracer Here we refer to recent computations by S. Wofsy and M. McElroy (On vertcal mixing in the upper stratosphere and lower mesosphere. Submitted, November 1972, to J. Geo. Res.) These authors combine (a) the suggestion by Lindzen that $K$ might vary as $p^{-1 / 2}$ because the velocities in gravity waves - a like'y mixing process - tend to increase in this manner with height and (b) measurements by Ehhalt of methane concentration. Using a chemical model, .they find that Ehhalt's measurements at 50 km fit but with a $K_{d}$ distribution having small values of $2 \times 10^{3} \mathrm{~cm}^{2} \mathrm{sec}^{-1}$ at $16-20 \mathrm{~km}$ increasing to $2 \times 10^{6}$ at 80 km as $\left(\mathrm{n}_{\mathrm{m}}\right)^{-1 / 2}$. We can model this simply by noting that $n_{m}$ is proportional to $p$ for constant $T$, and that $p$ in turn is proportional to $\exp (-z)$.

The following distribution of K seems reasonable.
(a) $Z \leqslant Z_{0}=0.6: \quad K \equiv K_{0}=10^{5} \mathrm{~cm}^{2} / \mathrm{sec}$
(b) $Z_{0} \leq z \leq z_{1}=2.4: \quad k_{1}=2 \times 10^{3} \mathrm{~cm}^{2} / \mathrm{sec}$

$$
K=k_{0}+\frac{\left(k_{0}-k_{1}\right)\left(z-z_{0}\right)}{\left(z_{1}-z_{0}\right)^{2}}\left[z+z_{0}-2 z_{1}\right]
$$

(c) $\quad Z \geqslant Z_{1} \quad: \quad K_{2}=9.4 \times 10^{5}, Z_{2}=10$

$$
K=K_{1}+\left(K_{2}-K_{1}\right) \frac{\exp \left[\frac{z-z_{1}}{2}\right]-1}{\exp \left[\frac{z_{2}-z_{1}}{2}\right]-1}
$$

These formulae and numbers give the following match for $K_{d}$ with the infared values cited above from ozone and methane.

| $\begin{gathered} z(\mathrm{~km}) \\ 3 \\ \hline \end{gathered}$ | $\begin{gathered} z \\ .357 \\ \hline \end{gathered}$ | $\begin{array}{r} \text { Formula } \\ 100 \times 10^{3} \\ \hline \end{array}$ | $\begin{gathered} \text { Inferred }\left(\mathrm{O}_{3}\right) \\ 78 \times 10^{3} \\ \hline \end{gathered}$ | $\begin{gathered} \text { Inferred }\left(\mathrm{CH}_{4}\right) \\ 300 \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 5 | . 616 | 98 | 94 |  |
| 7 | . 892 | 71 | 40 |  |
| 9 | 1.171 | 48 | 12 |  |
| 11 | 1.492 | 27 | 6.5 |  |
| 13 | 1.802 | 13 | 9.0 |  |
| 15 | 2.120 | 4 | 6.1 |  |
| 17 | 2.433 | 2.4 | 3.7 | $2 \times 10^{3}$ |
| 19 | 2.719 | 5.7 | $3.9 \times 10^{3}$ |  |
| 20 | 2.861 | 7.6 |  | 6.8 |
| 30 | 4.289 | 35.7 |  | 45 |
| 40 | 5.717 | 93.3 |  | 110 |
| 50 | 7.145 | 210.8 |  | 260 |
| 60 | 8.573 | 450.7 |  | 490 |
| 70 | 10.000 | $940.0 \times 10^{3}$ |  | $940 \times 10^{3}$ |

The $\mathrm{CH}_{4}$ inferred values are from the model B profile of Wofsy and McElroy. We have given preference in the troposphere to the values deduced from ozone, shifting over at $Z>\bar{\alpha} .4$ to the deductions based on methane.

The formulas for $K$ given above involve 6 selectable parameters: $Z_{0}$, $Z_{1}, Z_{2}, K_{0}, K_{1}, K_{2}$. These cen be changed at will to allow study of our uncertainty about $K$; most notably they should be interpreted as probable upper limits for $K$ since some vertical transport of ozone will be produced by the large-scale explicitly-forecast motions of our model, whereas the method of "inferring" the K-values has ignored this.

## 2. Choice of vertical levels.

We want the vertical domain to extend well above the actual ozone layer. We also want it high enough that there is some opportunity for the damping effects of ozone and radiation to absorb mechanical energy generated in the baroclinic processes of the lower atmosphere. On the other hand, we cannot for practical reasons get involved in the more complicated processes of the upper atmosphere and lower thermosphere. An upper limit of about 70 km seems reasonable.

He obtain equal intervals in $Z=-\ln P$ ( $P=$ pressure $\div 100 \mathrm{cb})$ by defining

$$
\left.\begin{array}{l}
Z_{j}=\Delta Z(J-j)  \tag{2,1}\\
P_{j}=e^{-\Delta z(J-j)}
\end{array}\right\} j=1,2, \cdots, J
$$

$j=1$ is at the "top" of our atmosphere, and $j=J$ at the bottom, whence

$$
\Delta Z=\frac{Z_{i}}{J-1}=\frac{Z_{\text {Top }}}{J-1}
$$

A convenient choice is obtained by choosing

$$
\begin{align*}
& e^{\Delta Z}=\Omega, \quad \Omega=3 / 2 \\
& \Delta z=-\ln \cdot 2=0.40547  \tag{2.2}\\
& J=26
\end{align*}
$$

so that

$$
\begin{align*}
& Z_{1}=Z_{\text {Top }}=(J-1) \ln 2=10.13675 \\
& P_{1}=2^{-(J-1)}=3.9605 \times 10^{-5} \tag{2.3}
\end{align*}
$$

$P_{1}$ corresponds to a pressure of 39.605 dynes $/ \mathrm{cm}^{2}$, typical of the height $\quad Z \sim 71.5 \mathrm{~km}$. Successive pressure levels are separated by (roughly) $72 / 25 \sim 2.9 \mathrm{~km}$. The relations

$$
\begin{equation*}
P_{j}=\Omega^{-(J-j)} ; P_{j+1}=\Omega P_{j} \tag{2.4}
\end{equation*}
$$

are useful.

At these levels, the following basic variables will be represented

$$
\jmath=1,2, \cdots, J: \quad T_{j}, W_{j},\left(\psi_{i}\right)_{u}
$$

together with the heating rate, the photo-chemical term, and the vertical turbulent fluxes of ${ }^{\text {. } . ~ m o m e n t u m . ~ A t ~ t h e ~ i n t e r m e d i a t e ~ l e v e l s ~ t h e ~}$ streamfunction $\psi_{j}$ will be represented

$$
j=\frac{3}{2}, \frac{5}{2}, \cdots, j-\frac{1}{2}: \psi
$$

For convenience in notation, however, $\psi$ will be labeled with an integer subscript according to the convention

$$
\psi\left(P=P_{j+1 / z}\right) \equiv \psi
$$

This results in, the following scheme.

( $F$ and $G$ are defined on pages 17 and 18.)

The following table lists the values of the more basic variables for the choice $\Omega=3 / 2, J=26$. Values of $\bar{T}$ above 30 km were taken from the 1965 CIRAS annual mean, values at lower elevation coming from data based on statistics gathered by the Planetary Circulation Project at it.I.T. (To be precise, they were obtained from the latter as shown in a figure based on them in the thesis by $A$. Hollingsworth。) The static stability parameter $S$ is defined later in equation (3.20).

| j | $P_{j}$ | Z; | $\begin{aligned} & z(k \\ & a p p r \end{aligned}$ | $\bar{T}_{j}$ | $m_{m}(\mathrm{~cm})^{-3} \quad 5 ; / \Delta z$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | . 0000396 | 10.137 | 71.6 | 211 | $136 \times 10^{13}$ | $137 \times 10^{-4}$ |
| 2 | . 0000594 | 9.731 | 69.0 | 219 | 196 | 144 |
| 3 | . 0000891 | 9.326 | 66.3 | 226.5 | 285 | 154 |
| 4 | . 000134 | 8.920 | 63.5 | 234 | 415 | 161 |
| 5 | . 000200 | 8.515 | 60.6 | 241.5 | 600 | 166 |
| 6 | . 000301 | 8.109 | 57.6 | 249.5 | $877 \times 10^{13}$ | 167 |
| 7 | . 000451 | 7.704 | 54.5 | 258.5 | $126 \times 10^{14}$ | 174 |
| 8 | . 000677 | 7.293 | 51.4 | 267 | 184 | 217 |
| 9 | . 00101 | 6.393 | 48. ${ }^{\text {. }}$ | 267.5 | 274 | 277 |
| 10 | . 00152 | 6.488 | \% | 261.5 | 421 | 302 |
| 11 | . 00228 | 6.032 | 42.0 | 254.5 | $649 \times 10^{14}$ | 295 |
| 12 | . 00343 | 5.677 | 38.8 | 243.5 | $100 \times 10^{15}$ | 235 |
| 13 | . 00514 | 5.271 | 35.9 | 242.5 | 154 | 277 |
| 14 | . 00771 | 4.866 | 33.0 | 237 | 236 | 272 |
| 15 | . 0116 | 4.460 | 30.2 | 231 | 364 | 269 |
| 16 | . 0173 | 4.055 | 27.5 | 225 | 557 | 261 |
| 17 | . 0260 | 3.649 | 24.8 | 219.5 | $855 \times 10^{15}$ | 251 |
| 18 | . 0390 | 3.244 | 22.2 | 214.5 | $132 \times 10^{16}$ | 237 |
| 19 | . 0585 | 2.838 | 19.6 | 211.5 | 201 | 217 |
| 20 | . 0878 | 2.433 | 17.1 | 210.5 | 302 | 194 |
| 21 | . 132 | 2.027 | 14.\% | 213 | 449 | 155 |
| 22 | . 198 | 1.622 | 12.0 | 222 | 646 | 125 |
| 23 | . 296 | 1.216 | 9.3 | 234 | $913 \times 10^{16}$ | 116 |
| 24 | . 444 | 0.811 | 6.4 | 248 | $130 \times 10^{17}$ | 104 |
| 25 | . 667 | 0.405 | 3.4 | 266 | 182 | 105 |
| 26 | 1.000 | 0.0 | 0.1 | 284 | $455 \times 10^{17}$ | $122 \times 10^{-4}$ |

3. Non-dimensional finite-difference equations.

In this section we write the basic equation in a non-dimensional form (primarily to simplify the dynamical computations) and simultaneously introduce the vertical finite-difference representation defined in section 2. We define

$$
\begin{aligned}
& \begin{array}{l}
A=A \operatorname{Ln} \phi \\
\nabla\left(d_{(n)}\right)=\frac{1}{a} \quad 17(.20 n-c \operatorname{cin})
\end{array} \\
& \nabla^{2}(d i m)=\frac{1}{a^{2}} \nabla^{7}(\mu \Delta N \cdot d i m) \\
& 4(d \operatorname{lin})=2 \sqrt{2} a^{2} \psi(1700-\alpha \operatorname{con}) \\
& X\left(d(\min )=2-2 a^{2} \times(n \sin d i \operatorname{din})\right. \\
& t(d i m)=\frac{1}{2-2}+(n \infty-d i n) \\
& W(d \operatorname{lin})=252 \quad W(n+\infty-d i n) \\
& T(d \min )=T(2)+\left(4-2^{2} a^{2} / R \cdots\right) T(m(m-d i m)
\end{aligned}
$$

In the last expression $T(d i m)$ in the "total" temperature in absolute degrees, $\bar{T}(Z)$ is the "standard atmosphere" temperature (also in degrees) given in the table at the end of section 2 , while the quantity ( $4 \Omega a^{7} / R$,)
$T$ (non- chm) is the variable $T$ appearing in (1.25), having a zero horizontal average. [The total $T$ ( dim ) is of course used in all chemical computations.]

$$
\begin{align*}
& \Omega=7.292 \times 10^{-5} \text { rat sec } \\
& a=6.371 \times 10^{-1} \mathrm{metevs} \\
& R=287 \mathrm{k} \mathrm{tan}^{-1} \text { cos }-1  \tag{3.2}\\
& C_{p}=(7 / 2) R
\end{align*}
$$

One day, $(2 \pi / \Omega) \operatorname{secs}$, corresponds to

$$
\begin{equation*}
\Delta t\left(n 01-d_{1}, n\right)=2 \Omega\left(\frac{2 \pi}{-2}\right)=4 \pi \tag{3.3}
\end{equation*}
$$

The non-dimensional $\nabla^{2}$ operator is

$$
\begin{equation*}
\nabla^{2}()=\frac{1}{\cos ^{2} \phi} \frac{\partial^{2} 1}{\partial \lambda^{2}}+\frac{1}{\cos \phi} \frac{\partial}{\partial \phi}\left[\cos \phi \frac{\partial \gamma)}{\partial \theta}\right] \tag{3.4}
\end{equation*}
$$

The relation

$$
\begin{equation*}
P W=\nabla^{2} X \tag{1.16}
\end{equation*}
$$

between $W$ and $X$ can be used to eliminate $X$ in favor of $W$ in equation (1.13)] by defining the inverse Laplacian operator

$$
\begin{align*}
& \mathscr{L} \equiv \nabla^{-2} \\
& x=P \mathscr{L} W \tag{3.5}
\end{align*}
$$

We also have.

$$
\begin{equation*}
\zeta=\nabla^{2} \psi, \quad \psi=\mathcal{L} \zeta \tag{3.6}
\end{equation*}
$$

A further convenient arrangement is useful for evaluating terns of the form $\partial(P F) \partial P$, which appears in the vertical diffusion terms for vorticity and trace substances and in the term

$$
\frac{\partial x}{\partial P}=\frac{\partial}{\partial P}[p(x w)]
$$

in the vorticity equation (1.13). We have

$$
\left[\frac{\partial}{\partial P}(P F)\right]_{j}=\frac{P_{j+1 / 2} F_{j+1 / 2}-P_{j-1 / 2} F_{j-1 / 2}}{P_{j+1 / 2}-P_{j-1 / 2}}=\left(\frac{2}{\Omega-1}\right)_{j+1 / 2}-\left(\frac{1}{2-1}\right)_{1} \frac{F_{j}-1 / 2}{(3.7)}
$$

where we have made use of (2.4).
The horizontal advection of a quantity $F$ can be written as the
Jacobian

$$
\begin{align*}
-\vec{v}_{\psi} \cdot \nabla F & =-\hat{k} \times \nabla \psi \cdot \nabla F=\frac{\partial F}{\partial \lambda} \frac{\partial \psi}{\partial \mu}-\frac{\partial \psi}{\partial \lambda} \frac{\partial F}{\partial u} \\
& \equiv D(F, \psi) \tag{3.8}
\end{align*}
$$

The non-dimensional form of the vorticity equation (1.13), with regard to the subscript labelling defined in section 2 , together with equation (1.21) and (3.5) - (3.8) is as follows.

For $j=1,2, \cdots, j-1:$

$$
\begin{aligned}
\frac{\partial S_{j}}{\partial t}=D\left(\mu+5_{j}, \psi_{j}\right) & -\nabla \cdot\left\{\mu \nabla \sum_{j}\left[\left(\frac{2}{2-1}\right) w_{j+1}-\left(\frac{1}{2-1}\right) w_{j}\right]\right. \\
& +\left(\frac{n}{n-1}\right) F_{j+1}-\left(\frac{1}{2-1}\right) F_{j}
\end{aligned}
$$

$$
\begin{align*}
& \begin{array}{lllll}
\psi_{j}=\mathcal{L} \zeta_{j} & - & - & - & - \\
F_{1}=0 & - & - & - & - \\
F_{J}=-0 \zeta_{J-1} & - & - & - & -
\end{array}  \tag{3.10}\\
& F_{j}=E_{j}\left(S_{j}-S_{j-1}\right) \quad(j=2,3, \cdots, J-1) \\
& E_{j}=\left(K_{m}\right)_{j} \div\left[H_{0}^{2} 2 \Omega \Delta Z\right] \cdots \cdots
\end{align*}
$$

$$
\begin{align*}
& W_{J}=-\gamma\left(\frac{h}{H_{0}}, \psi_{J-1}\right)-\cdots- \tag{3.16}
\end{align*}
$$

The non-dimensional form of the "thermal wind equation" (1.9) becomes Jor $j=2,3, \cdots, 5-1:$

$$
\begin{equation*}
\nabla \cdot \mu \nabla\left(\psi_{j}-\psi_{j-1}\right)=-\nabla^{2} T \cdot \Delta z \tag{3.18}
\end{equation*}
$$

The non-dimensional form of the thermal equation (1.25) becomes Jon $j=2,3,-, J-1$ :

$$
\begin{equation*}
\frac{\partial T_{j}}{\partial t}=\frac{1}{2} \psi\left(T_{j}, \psi_{j}+\psi_{j-1}\right)-S_{j} W_{j}+\left[\frac{R}{c_{p} 8 \Omega^{3} a^{2}}\right] q_{j} \tag{3.19}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{j}=\left(\frac{R}{4 \Omega^{2} a^{2}}\right)\left[\frac{d \bar{T}}{d Z}+\frac{R}{C_{p}}\right]_{j} \tag{3.20}
\end{equation*}
$$

is tabulated at the end of section $2 \quad \cdots \quad \cdots \cdots \cdots, q_{j}$, the rate of heating per unit mass, is still in dimensional form in (3.19). It is considered later in section 5.

The trace substance equation is
Jon $j=j_{0}, j_{0}+1,-\cdots, J-1$ :

$$
\begin{align*}
& \frac{\partial x_{j}}{\partial t}=\frac{1}{2} g\left(x_{j}, \psi_{j}+\psi_{j-1}\right)-w_{j}\left(\frac{d \bar{x}}{d z}\right)_{j} \\
& \\
& +\left(\frac{2}{2-1}\right) G_{j}-\left(\frac{1}{2-1}\right) G_{j-1}+\frac{1}{2 \Omega}\left[\frac{1}{2 m}\left(\frac{d n}{d t}\right)_{c}\right]_{j} \\
& G_{j}=D_{j}\left(x_{j+1}-x_{j}\right) ; \partial r_{j}=j_{0}, \cdots, J-2  \tag{3.22}\\
& D_{j}= \\
& \left(K_{d}\right)_{j+1 / 2} \div\left(2 \Omega H_{0}^{2} \Delta z\right)
\end{align*}
$$

[The vertical diffusion coefficient $K_{d}\left(\right.$ is defined at the $Z_{j}$-levels corresponding to $j=$ integer plus $1 / 2$, whereas the vertical exchange coefficient $K_{m}$ for vorticity appearing in (3.14) is defined at integer values of $j$.]. At the bottom, the relation (1.38) gives

$$
\begin{equation*}
\left.G_{J-1}=-\frac{M_{J-1}}{\left[\frac{2 \Omega H_{0}}{d}+\frac{2 \Omega H_{0}^{2} \Delta Z}{\left(K_{d}\right)_{J-1}}\right.}\right] \tag{3.23}
\end{equation*}
$$

The integer $J_{o}$ sets the level above which (3.21) may be replaced by a photom chemical equilibrium statement, as discussed near the end of section one.
4. Photochemistry.

To begin with, the photochemistry will involve only oxygen and odd nitrogen compounds, with the latter being specified as given functions of (or possibly pressure and latitude). pressure $f$ (Equations to predict the nitrogen compounds may be added later.) The reactions involved are the four main Chapman reactions and reactions of NO and $\mathrm{NO}_{2}$ with oxygen. (The following write-up is based on analysis by R. Prinn.)

Reference:
(a)

$$
O_{2}+h \nu \rightarrow 20
$$

(b)

$$
J_{C_{2}}=\int_{0}^{2459} \alpha_{0_{2}} I e^{-x_{0_{2}}-x_{0_{3}} \sec ^{-1}}
$$

$$
\begin{aligned}
& O+O_{2}+M \rightarrow O_{3}+M \\
& \ell_{1}=1.6 \times 10^{-35} e^{\frac{1050}{T}} \mathrm{~cm}^{6} \mathrm{sec}^{-1}
\end{aligned}
$$

(c)
(d)

$$
\begin{aligned}
& 0+O_{3} \rightarrow 2 O_{2}-\frac{2395}{T} \mathrm{~cm}^{3} \mathrm{sec}^{-1} \\
& f_{1}=2 \times 10^{-11} e
\end{aligned}
$$

(e)

$$
\begin{align*}
& \mathrm{NO}+\mathrm{O}_{3} \rightarrow \mathrm{NO}+\mathrm{O}_{2}  \tag{4.5}\\
& R_{2}=1.7 \times 10^{-12} \mathrm{e}-\frac{1310}{T} \mathrm{~cm}^{3} \mathrm{sec}^{-1}
\end{align*}
$$

(e)

$$
\begin{aligned}
& \mathrm{NO}_{2}+O \rightarrow N O+O_{2} \\
& A_{3}=3.2 \times 10^{-11} e^{-\frac{530}{T} \mathrm{~cm}^{3} \mathrm{sec}^{-1}(4.6)}
\end{aligned}
$$

(f)

$$
\begin{align*}
& \mathrm{NO}_{2}+\operatorname{li2} \rightarrow N O+0 \\
& T_{N O_{2}}=\int_{0}^{3975}{\underset{N O}{2}}^{X_{N}} e^{-X_{N O_{2}} x^{3} \lambda^{3} \sec ^{-1}} \tag{4.7}
\end{align*}
$$

In the three radiation integrals the exponent $X$ is

$$
\begin{equation*}
X_{i}=\frac{\alpha_{i}(\lambda) N_{i}}{\cos \psi} \tag{4.8}
\end{equation*}
$$

where $\alpha_{i}(\lambda)$ is the absorption cross-section, $N_{l}$ is the number of $\therefore$ molecules in the $\mathrm{cm}^{2}$ vertical column above the point [See equation (1.35)] and $\psi$ is the solar zenith angle. (The diurnal variation of $\psi$ will be averaged as described below.) $I$ is the incident solar radiation, a function of the wavelength $\lambda$. Note that because the ozone absorption bands overlap the absorption bands of $\dot{O}_{2}$ and $W \mathrm{O}_{2}$ we aust include the depletion of solar energy by ozone in (4.1) and 4.7).
References:
(a) Kockarts, 1970: Proc. 4th Joint ESRO-ESRIN Symposium (ed. G. Fiocco).
D. Reidel, Dordrecht, 1971.

Ackerman, 1970: As for Kockarts.
(b) Johnston, 1971: Science, 173, P. 517.

Schiff, 1969: Can. J. Chem., 47, P. 1903. ( $\ell$, is an average of their values)
(c) Ackerman, 1970: As for Kockarts.
(d) Schiff, 1969: As above.
(e) Schofield, 1967: Planet. Space Sci., 15, P. 643.
(f) Hall and Blacet, 1952: J. Chem. Phys. 20, P. 1745.

TABLE 4.1 Typical values of rate coeffieients

| Coefficient | 60 | 50 | 40 | $\begin{gathered} \text { Height }(\mathrm{km}) \\ 30 \end{gathered}$ | 20 | 10 | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1.1 \times 10^{-7}$ | $3.0 \times 10^{-5}$ | $7.0 \times 10^{-6}$ |  |  |  |  |
| ${ }_{3}{ }^{3}$ | $1.15 \times 10^{-3}$ | $3.0 \times 10^{-5}$ | $7.0 \times 10^{-5}$ | $7.0 \times 10^{-6}$ | $2.3 \times 10^{-6}$ | $1.1 \times 10^{-7}$ |  |
|  | $4.5 \times 10^{-}$ | $2.7 \times 10^{-3}$ | $6.5 \times 10^{-6}$ | $2.7 \times 10^{-4}$ | $2.0 \times 10^{-4}$ | $1.9 \times 10^{-4}$ | Frome Crutzen (1970) |
| $\mathrm{J}_{\mathrm{O}_{2}}$ | $1.0 \times 10^{-9}$ | $6.0 \times 10^{-10}$ | $2.2 \times 10^{-10}$ | $2.6 \times 10^{-11}$ | $2.5 \times 10^{-13}$ | $4.0 \times 10^{-18}$ |  |
| $\mathrm{X}_{\mathrm{NO}_{2}}$ | - | - | $3.0 \times 10^{-9}$ | $9.0 \times 10^{-9}$ | $2.2 \times 10^{-9}$ | $2.0 \times 10^{-9}$ | Btassauir \& Nicolet (1973) |
| $\mathrm{J}_{\mathrm{NO}_{2}}$ | - | - | $7.0 \times 10^{-3}$ | $6.7 \times 10^{-3}$ | $6.4 \times 10^{-3}$ | $6.2 \times 10^{-3}$ | From Cruezea (1070) |
| $\overline{\mathrm{T}}$ | 243 | 268 | 251 | 230 | 212 | 232 |  |
| $k_{1}$ | $1.1 \times 10^{-15}$ | $2.5 \times 10^{-15}$ | $1.4 \times 10^{-15}$ | $0.6 \times 10^{-25}$ | $0.2 \times 10^{-15}$ | $0.6 \times 10^{-15}$ |  |
| $k_{3}$ | $3.6 \times 10^{-11}$ | $4.4 \times 10^{-11}$ | $3.8 \times 10^{-21}$ | $3.2 \times 10^{-11}$ | $2.6 \times 10^{-11}$ | $3.2 \times 10^{-11}$ |  |
| $\mathrm{n}_{\mathrm{m}}$ | $6.5 \times 10^{15}$ | $2.2 \times 10^{16}$ | $8.5 \times 10^{16}$ | $3.8 \times 10^{17}$ | $1.9 \times 10^{18}$ | $8.5 \times 10^{18}$ |  |
| . $20961{ }_{1}{ }^{\text {m }}$ | $1.6 \times 10^{-25}$ | $3.5 \times 10^{-18}$ | $1.9 \times 10^{-17}$ | $9.9 \times 10^{-17}$ | $8.4 \times 10^{-26}$ | 2.2 $\times 10^{-85}$ |  |
| [0] | $9.5 \times 10^{9}$ | $9.0 \times 10^{5}$ | $7.0 \times 10^{6}$ | $4.0 \times 10^{7}$ | $1.3 \times 10^{8}$ | $8.0 \times 10^{3}$ | ( $\mathrm{cm}^{-3} \mathrm{~S}^{\text {) }}$ from Crutzen (2970) |
| K | $7.5 \times 10^{-5}$ | $2.1 \times 10^{-3}$ | $1.1 \times 10^{-3}$ | $3.3 \times 10^{-4}$ | $7.3 \times 10^{-6}$ | $3.0 \times 10^{-5}$ | (zero at nisht) |
| $\mathrm{J}_{\mathrm{O}_{2}}\left[\mathrm{O}_{2}\right] / \mathrm{J}_{\mathrm{O}_{3}}\left[\mathrm{O}_{3}\right]$ | 0.4 | . 015 | 0.01 | . 003 | $1 \times 10^{-4}$ | $4 \times 10^{-8}$ |  |
| $\mathrm{O}_{3}$. | $4.0 \times 10^{-20}$ | $2.5 \times 10^{-21}$ | $4.7 \times 10^{-22}$ | $1.7 \times 10^{-22}$ | $\underline{-}$ | - | joules/sec/0: molecule |
| $q / c_{p}$ | $2.2 \times 10^{-4}$ | $3.5 \times 10^{-4}$ | $1.7 \times 10^{-4}$ | $6.0 \times 10^{-5}$ | - | - | dimensionleas |

The equation for $d[0] / d t$ (we denote temporarily number densities $M_{i}$ by a square bracket) is

$$
\begin{align*}
& \frac{d[0]}{d t}=G_{1}\left[\mathrm{O}_{2}\right] \mathrm{J}_{2}+\left[\mathrm{O}_{3}\right] \mathrm{J}_{3}+\left[\mathrm{NO}_{2}\right] \mathrm{JNO}_{2}  \tag{4.9}\\
& -[0]\left\{\mathrm{X}_{1}\left[\mathrm{O}_{2}\right][\mathrm{M}]+k_{1}\left[\mathrm{O}_{3}\right]+\mathrm{N}_{3}\left[\mathrm{NO}_{2}\right]\right\}
\end{align*}
$$

([M] is the neutral number density, equal to $M m$ in the table at the end of section 2.) The term $\left.\mathcal{\ell}, \mathrm{O}_{2}\right][M]$ increases with decreasing elevation from a minimum of $10^{-3} \mathrm{sec}^{-1}$ at 70 km , and reaches a value as large as $40 \mathrm{sec}^{-1}$ at 30 km . We can therefore assume equilibrium for [0]:

$$
\begin{equation*}
[0]=\frac{G\left[\mathrm{O}_{2}\right] \mathrm{J}_{2}+\left[\mathrm{O}_{3}\right] \mathrm{J}_{3}+\left[\mathrm{NO}_{2}\right] \mathrm{JO}_{2}}{L(1+1<)} \tag{4.10}
\end{equation*}
$$

where

$$
\begin{align*}
& L=\frac{L_{1}\left[\mathrm{O}_{2}\right][\mathrm{M}]}{K=\frac{R_{2},\left[\mathrm{O}_{3}\right]+\mathrm{K}_{3}\left[\mathrm{NO}_{2}\right]}{\left.K \mathrm{O}_{2}\right][\mathrm{M}]}}
\end{align*}
$$

A similar thing happens in the equation for $[\mathrm{NO} O$,

$$
\begin{equation*}
\frac{d[N O]}{d t}=k_{3}\left[\mathrm{NO}_{2}\right][0]+J_{N O_{2}}\left[\mathrm{NO}_{2}\right]-[\mathrm{NO}]\left\{k_{2}\left[\mathrm{O}_{3}\right]\right\} \tag{4.12}
\end{equation*}
$$

where the product $\ell_{2}\left[0_{3}\right]$ is again large enough $\left(10^{-3} \mathrm{sec}^{-1}\right.$ at 50 km , $.04 \mathrm{sec}^{-1}$ at 20 km ) to allow us to assume $\quad d[\mathrm{NO}] / \mathrm{dt}=0$. Thus

$$
\begin{equation*}
[N 0]=\left\{\frac{\alpha_{2}[0]+\mathrm{NO}_{2}}{\mathrm{~N}_{2}\left[\mathrm{~N}_{3}\right]}\right\}\left[\mathrm{NO}_{2}\right] \tag{4.13}
\end{equation*}
$$

$$
40-3
$$

TABLE 4.2

Flux of solar photons, 4, at one $A U$, absorption cross section of $\mathrm{O}_{2}$ and of $\mathrm{O}_{3}, \sigma\left(\mathrm{O}_{2}\right)$ and $c\left(\mathrm{O}_{3}\right)$, for wavelength intervals $4 i$ and wavenumber intervals $d v$ from $\mathrm{Ly}-1$ to 7300 A

| No. | $\Delta \lambda(\lambda)$ | $\Delta v\left(\mathrm{~cm}^{-1}\right)$ | $\left.4\left(\mathrm{~cm}^{-2}\right)^{-1}\right)$ | $0\left(\mathrm{O}_{2}\right)\left(\mathrm{cm}^{2}\right)$ | $\sigma\left(\mathrm{O}_{3}\right)\left(\mathrm{cm}^{2}\right)$ | $\sigma\left(\mathrm{NO}_{2}\right)\left(\mathrm{cm}^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Ly a 1.215,67 | 82.259 | $3.00 \times 10^{41}$ | $1.00 \times 10^{-20}$ | $2.32 \times 10^{-17}$ |  |
| 2 | 1.170-1.163 | $85.500-86.000$ | $1.03 \times 10^{8}$ | $2.00 \times 10-20$ | $7.80 \times 10^{-18}$ |  |
| 3 | 1.176-1.170 | 85.000-85.500 | 2.66 | $1.25 \times 10^{-18}$ | 7.97 |  |
| 4 | 1.183-1.176 | 84.500-55.000 | 1.12 | $2.55 \times 10^{-17}$ | 8.66 |  |
| 5 | 1.190-1.183 | 84.000-8.4.500 | 1.24 | $3.00 \times 10-20$ | 9.51 |  |
| 6 | 1.198-1.190 | $83.500-84.000$ | 1.8? | $3.75 \times 10{ }^{-19}$ | $1.25 \times 10^{-17}$ |  |
| 7 | 1.205-1.198 | 83.000-83.500 | 1.90 | $4.45 \times 10^{-18}$ | 1.84 |  |
| 8 | 1.212-1.205 | 82.500-83.000) | 7.40 | 8.35 | 2.19 |  |
| 9 | 1.220-1.212 | 82.000-82.500 | $2.28 \times 10^{0}$ | $6.00 \times 10^{-19}$ | 2.30 | - |
| 10 | 1.227-1.220 | 85.509-82.000 | 3.67 | 2.55 | 2.26 |  |
| 11 | 1.235-1.227 | $81.000-81.50$ | 1.36 | 4.50 | 2.06 |  |
| 12 | 1.242-1.235 | $80.5(0-81.050$ | 1.61 | 3.35 | 1.30 |  |
| 13 | 1.250-1.24? | 80.000-80.500 | 1.32 | $1.75 \times 10^{-12}$ | $8.91 \times 10^{-18}$ |  |
| 14 | 1.258-1.250 | $79.500-80.000$ | 1.48 | $8.95 \times 10^{-18}$ | 7.24 |  |
| 15 | 1.256-1.258 | 79.000-79.500 | 3.1: | 4.30 | 6.09 |  |
| 16 | 1.274-1.266 | 78.500-79.000 | 1.06 | 1.10 | 5.66 |  |
| 17 | 1.282-1.274 | 78.000-78.500 | 1.37 | 2.05 | 5.87 |  |
| 18 | 1.290-1.282 | 71.500-78.000 | 1.02 | 4.43 | . 6.47 |  |
| 19 | 1.299-1.290 | 77.000-77.500 | 1.14 | 5.55 | 8.14 |  |
| 20 | 1.307-1.299 | 76.500-77.000 | 7.29 | 4.20 | $1.24 \times 10^{-27}$ |  |
| 21 | 1.316-1.307 | 76.000-76.500 | 2.20 | 6.85 | 1.52 |  |
| 22 | 1.324-1.316 | 75.500-76.000 | 1.59 | $1.45 \times 10^{-18}$ | 1.47 |  |
| 23 | 1.333. 1.324 | $75.000-75.500$ | 2.21 | 2.25 | 1.51 |  |
| 24 | 1.342-1.333 | 74.500-75.000 | $1.24 \times 10^{10}$ | $2.30 \times 10^{-18}$ | $1.51 \times 10^{-17}$ |  |
| 25 | 1.351-1.342 | 74.000-74.500 | $1.99 \times 10^{3}$ | 4.55 | 1.65 |  |
| 26 | 1.360-1.351 | 73.500-74.000 | 2.09 | 7.23 | 1.54 |  |
| 27 | -1.370-1.360 | 73.000-73.500 | 2.57 | 9.50 | 1.35 |  |
| 28 | 1.379-1.370 | 72.500-73.000 | 2.74 | $1.23 \times 10^{-17}$ | 1.05 |  |
| 29 | 1.389-1.379 | 72.000-72.500 | 3.10 | 1.32 | $7.97 \times 10^{-18}$ |  |
| 30 | 1.408-1.389 | 71.000-72.000 | 7.69 | 1.36 | $7.17 \times 10$ |  |
| 31 | 1.428-1.408 | 70.000--1.000 | $1.01 \div 10^{18}$ | 1.46 | 6.28 |  |
| 32 | 1.449-1.428 | 69.000-70.000 | 1.30 | 1.48 | 5.66 |  |
| 33 | 1.470-1.449 | 68.000-69.000 | 1.82 | 1.41 | 3.23 |  |
| 34 | 1.492-1.470 | 67.090-68.000 | :. 33 | 1.29 | 4.47 |  |
| 35 | 1.515-1.492 | 66.010-67.090 | 2.60 | 1.15 | 3.69 |  |
| 36 | 1.538-1.515 | 65.000-66.000 | 2.90 | $9.91 \times 10^{-16}$ | 2.93 |  |
| 37 | 1.562-1.538 | $64.000 \cdot 65.090$ | 3.60 | 8.24 | 2.19. |  |
| 38 | 1.587-1.562 | 63.000-64.000 | 4.75 | 6.58 | 1.63 |  |
| 39 | 1.613-1.587 | $62.000-63.000$ | 6.40 | 4.97 | 1.20 | $\cdots$ |
| 40 | 1.639-1.613 | 61.000-62.000 | 5.49 | 3.45 | $9.77 \times 10^{-18}$ |  |
| 41 | 1.667-1.639 | 60.000-51.000 | $119 \times 10^{12}$ | 2.08 | 8.66 | ; |
| 42 | 1.695-1.667 | 59.000-60.000 | 1.76 | 1.23 | 8.14 | , |
| 43 | 1.724-1.695 | 58.000-59.000 | 2.32 | $7.22 \times 10^{-19}$ | 8.17 |  |
| 44 | 1.739-1.724 | $57.500-58.000$ | 1.44 | 4.58 | 8.57 | . |
| 45 | 1.754-1.739 | 57.000-57.500 | 1.83 | 2.74 | 8.40 |  |
| 46 | $1.770-1.754$ $1.786-1.770$ | 56.500-57.000 | 2.34 . | $350 \times 10-20$ | 8.11 |  |
| 48 | $1.786-1.770$ $1.802-1.786$ | $56.000-56.500$ $55.500-56.000$ | $\frac{2.62}{2.88} \times 10^{11}$ | 1.90 1.10 | 7.99 7.86 ${ }^{10^{-19}}$ |  |
| 49 | 1.818-1.80? | 55.000-55.500 | 3.14 | $6.00 \times 10^{-21}$ | $7.83 \times 10^{-19}$ | - |

See Ackerman (1970), Proc. 4th Joint ESRO-ESRIN Symposium (ed. G. Fiocco) D. Reidel, Dordfecht, 1971.

$$
4-5
$$

TABLE 4.2 (Contsfued)

| No. | $\Delta \lambda(A)$ | $d r\left(\mathrm{~cm}^{-1}\right)$ | $q\left(\mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$ | $\sigma\left(\mathrm{O}_{2}\right)\left(\mathrm{cni}^{2}\right)$ | $\sigma(\mathrm{O})\left(\mathrm{cm}^{2}\right)$ | $\sigma\left(\mathrm{NO}_{2}\right)\left(\mathrm{cm}^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | 1.835-1.818 | 54.500-55.000 | $3.81 \times 10^{11}$ | $350 \times 1025$ | $7.29 \times 10^{-19}$ |  |
| 51 | 1.852-1.835 | 54.000-54.500 | 4.43 | 180 | $6.88$ |  |
| 52 | 1.869-1.852 | 53.500-54.000 | 4.95 | $550 \times 1082$ | 6.40 |  |
| 53 | 1.887-1.869 | 53.000-53.500 | 5.94 | 4.50 | 5.88 |  |
| 54 | 1.905-1.887 | 52.500- 53.000 | 6.59 | 230 | 5.31 |  |
| 55 | 1.923-1.905 | 52.000-52.500 | 7.26 | 1.30 | 6.30 |  |
| 56 | 1.942-1.923 | 51.500-53.000 | 9.85 | $6.50 \times 3029$ | 4.38 |  |
| 57 | 1.961-1.942 | 51.000-51.500 | $1.27 \times 10^{12}$ | 37010 | 4.11 |  |
| 58 | 1.980-1.961 | 50.500-51.000 | 1.39 | 240 | 3.69 |  |
| 59 | 2.000-1.980 | 50.060-50.500 | 1.53 | 1,70 | 3.30 |  |
| 60 | 2.020-2.000 | 49.500-50.000 | 1.60 | $1.25{ }^{\circ}$ | 3.26 |  |
| 61 | 2.041-2.020 | 49.002-59500 | 1.78 | $1.14 \times 10^{-23}$ | 3.26 |  |
| 62 | 2.062-2.041 | 48.500-49.000 | 2.31 | 1.05 | 3.51 |  |
| 63 | 2.083-2.062 | $48.000-88.500$ | 4.20 | 1.00 | 4.11 |  |
| 64 | 2.105-2.083 | 47.500-48.000 | 7.30 | $9.55 \times 10^{-24}$ | 4.84 |  |
| 65 | 2.128-2.105 | +7.000-47.500 | 9.42 | 8.93 | 6.26 |  |
| 66 | 2.150-2.128 | 46.500-47.000 | $1.06 \times 10^{12}$ | 8.28 | 8.57 |  |
| 67 | 2.174-2.150 | 46.000--46.500 | 1.34 | 7.60 | $1.17 \times 10^{-16}$ |  |
| 68 | 2.198-2.174 | \$5.500-46.000 | 1.32 | 6.92 | 1.52 |  |
| 69 | 2.222-2.198 | $45.000-\$ 5.500$ | 1.73 | 6.28 | 1.97 |  |
| 70 | 2.247-2.222 | $44.500-15.000$ | 1.80 | 5.65 | 2.55 |  |
| 71 | 2.273-2.247 | 44.000-44.500 | 1.82 | 5.03 | 3.24 |  |
| 72 | 2.299-2.273 | $43.500-44.000$ | 2.26 | 4.40 | 4.00 |  |
| 73 | 2.326-2.299 | 43.000-43.500 | 2.40 | 3.76 | 4.83 |  |
| 74 | 2.353-2.326 | $42.500-43.000$ | 2.25 | 3.09 | 5.79 |  |
| 75 | 2.381-2.353 | 42.000-42.500 | 2.21 | 2.44 | 6.86 |  |
| 76 | 2.410-2.381 | $41.500-42.000$ | 2.32 | 1.75 | 7.97 | $4.82 \quad 10-20$ |
| 77 78 | 2.439-2.410 | 41.000-41.500 | 2.50 | $6.74 \times 10^{-25}$ | 9.00 | $4,82$ |
| 78 79 | 2.469-2.439 | $40.500-41.000$ | 2.73 |  | $1.00 \times 10^{-17}$ |  |
| 79 80 | $2.500-2.469$ $2.532-2.500$ | $40.000-80.500$ $39.500-40.000$ | 2.88 3.02 |  | 1.07 | 220 |
| 81 | 2.564-2.532 | 39.000-39.500 | 3.02 |  | 1.11 | 232 |
| 82 | 2.597-2.564 | 38.500-39.000 | 7.13 |  | 1.11 | 242 |
| 83 84 | 2.632-2.597 | 38.000-38.500 | 4.37 |  | 1.03 | 2177 |
| 84 | 2.667-2.632 | 37.500-38.000 | $1.12 \times 10^{14}$ |  | $9.43 \times 10^{-13}$ | 2.53 |
| 85 | 2.703-2.667 | 37.000-37.500 | 1.25 |  | 8.23 | 3.11 |
| 86 | 2.740-2.703 | 36.500-37.000 | 1.16 |  | 6.81 | 3410 |
| 87 | 2.778-2.740 | 36.000-36.500 | 1.19 |  | 5.31 | 368 |
| 88 | 2.817-2.778 | 35.500-36000 | 1.38 | - | 3.99 | 3.97 |
| 89 | 2.857-2.817 | 35.000-35.500 | 1.70 |  | 2.84 | 4.25 |
| 90 | 2.899-2.857 | 34.500-35.000 | 2.46 |  | 1.92 | 453 |
| 91 | 2.941-2.899 | 34.000-34.500 | 3.90 |  | 1.14 | 5.11 |
| 92 | $2.985-2.941$ $3.030-2985$ | $33.500-34.000$ | 3.99 |  | $6.60 \times 10^{-30}$ | 520 |
| 94 | $3.030-2.985$ $3.077-3.030$ | $33.000-33.500$ $32.500-33.000$ | 3.86 5.08 |  | 3.69 197 | 6.23 |
| 95 | $3.100( \pm 25)$ | 32.520-32.000 | 5.92 |  | 1.97 1.05 | 74. 8.78 |
| 96 | 3.150 | 32.000-31.496 | 6.05 |  | $5.23 \times 10^{-30}$ | 1.031019 |
| 97 | 3.200 | 31.496-31.008 | 6.94 |  | 2.91 | 119 |
| 98 | 3.250 | 31.008-30.534 | 8.12 |  | 1.50 | 1.35 |
| 99 | 3.300 | 30.534-30.075 | 0.71 : |  | $7.78 \times 10^{-81}$ | 1.53 |
| $\infty$ | 3.350 | 30.075-29.630 | 8.97 |  | 3.72 | 1.65 |

ThiLE 4.2 (Continued)


* At wavelengths beyond $3975 \AA$ dissociation of $\mathrm{NO}_{2}$ is not possible and the values of $\sigma\left(\mathrm{NO}_{2}\right)$ are therefore not tabulated.

TABLE 4.2 (Continued)

| No. | $\Delta \lambda(A)$ | $A v\left(\mathrm{~cm}^{-2}\right)$ | $9\left(\mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$ | $0\left(\mathrm{O}_{2}\right)\left(\mathrm{cm}^{2}\right)$ | $\sigma\left(\mathrm{O}_{3}\right)\left(\mathrm{cm}^{2}\right)$ | $\mathrm{O}\left(\mathrm{NO}_{2}\right)\left(\mathrm{cm}^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 153 | 6.000 -25 ) | 16.736-16.598 | $2.72 \times 10^{15}$ |  | $4.89 \times 10^{-81}$ |  |
| 154 | 6.050 | 16.598-16.461 | 2.71 |  | $4.89 \times 10^{-21}$ |  |
| 155 156 | 6.100 6.150 | 16.461-16.326 | 2.10 |  | 4.54 |  |
| 156 157 | 6.150 6.200 | $16.326-16.194$ $16.194-16.064$ | 2.70 |  | 4.24 |  |
| 158 | 6.250 | $16.194-16.064$ $16.054-1596$ | 2.70 |  | 3.90 |  |
| 159 | 6.300 | 15.935-1.5.810 | 2.58 |  | 3.60 3.43 |  |
| 160 | 6.350 | 15.810-15.6.86 | 2.67 |  | 3.43 $\mathbf{3 . 1 7}$ |  |
| 161 | 6.400 | 15.686-15.564 | 2.66 |  | 2.74 |  |
| 162 | 6.450 | 15.564-15.444 | 2.65 |  | 2.61 |  |
| 163 | $6.5001-50)$ | 15.384-15.265 | 3.95 |  | 2.40 |  |
| 164 165 | 6.600 | 15.265-15.038 | 5.22 |  | 2.07 |  |
| 165 | 6.700 6.800 | 15.038-14.815 | 5.18 |  | 1.72 |  |
| 167 | 6.800 6.900 | 14.815-14.598 | 5.14 |  | 1.37 |  |
| 168 | 7.000 | $14.598-14.388$ $14.388-14.184$ | 5.09 5.04 |  | 1.11 |  |
| 169 | 7.100. | 14.184-13.986 | 4.99 |  | $9.13 \times 10^{-72}$ |  |
| 170 | 7.200 | 13.986-13.793 | 4.94 |  | 6.93 |  |
| 171 | 7.300 | 13.793-13.605 | 490 |  | 5.14 |  |

In the nightime [ NO ] vanishes accorditif to this exp session. In the daytime the factor multiplying $\left[N O_{2}\right]$ in (4.13) has the typical values 70,2 , 0.3 and 0.15 at $50,40,30$ and 20 km (see table). We may then argue that at the levels of major $\left[\mathrm{O}_{3}\right]$, the major portion of $\left[\mathrm{NO}+N \mathrm{O}_{2}\right.$ ] averaged over a day is in the form of $\left[N O_{2}\right]$. That is to say, an assumption that [ $\mathrm{NO}+\mathrm{NO}_{2}$ ] is a given function of pressure can be replaced by an assumption that $\left[~ M O_{2}\right.$ ] is an assigned function of pressure (possibly a different function, of course).

Calculations by Johnston (1971; Science, 173, P. 517) and Crutzen (1971; J. Geophy. Res., 76, P. 7311) suggest that the total odd nitrogen mixing ratio ([NO]+[ $\left.\left.\mathrm{NO}_{2}\right]\right) \div\left[\mathrm{N}_{\mathrm{l}}\right]$ increases considerably with height. These results do depend however on assumptions about the vertical eddy difffusion coefficient and the set of assumed reactions and reaction rates, (see Crutzen, ibid plus 1972, AMBIO, in press). The calculations by Crutzen (1971), which include $\mathrm{HNO}_{3}$ suggest that $\left[\mathrm{NO}_{2}\right] \div[\mathrm{M}]$ is appraimately constant above about 25 km while decreasing by a factor of about 10 from 25 km down to 15 km .

For the moment then, we assume that $\left[\mathrm{NO}_{2}\right]$ or $\left[N O_{2}\right] \div[M]$ is a prescribed function of pressure, with [ NO] determined from (4.13).

The equation for $\left[\mathrm{O}_{3}\right]$ is

$$
\frac{d\left[0_{3}\right]}{d t}=l,\left[0_{2}\right][\mathrm{M}][0]-J_{0}\left[0_{3}\right]-k_{1}[0]\left[\mathrm{O}_{3}\right]-k_{2}[\mathrm{AO}]\left[\mathrm{O}_{3}\right]
$$

Substitution for $[O]$ and $[N O]$ from (4.10) and (4.13) gives

$$
\begin{aligned}
\frac{d\left[\mathrm{O}_{3}\right]}{d t} & \left.=\frac{1-K}{1+K} 2\left[\mathrm{O}_{2}\right] J_{\mathrm{O}_{2}}-\frac{2 K}{1+K}\left(\mathrm{LO}_{3}\right] \mathrm{J}_{\mathrm{O}_{3}}+\left[\mathrm{NO}_{2}\right] \mathrm{JNO}_{2}\right) \\
& =\frac{1}{1+K}\left\{2\left[\mathrm{NO}_{2}\right] \mathrm{J}_{0}-2 K\left(\left[\mathrm{O}_{2}\right] \mathrm{J}_{2}+\left[\mathrm{O}_{3}\right] \mathrm{J}_{\mathrm{O}_{3}}+\left[\mathrm{NO}_{2}\right] \mathrm{J}_{\mathrm{NO}_{2}}^{(4.15)}\right)\right\}
\end{aligned}
$$

4010
The previous table shows that $K$ and the ratio $\left[0, \bar{O} O_{2}\right.$ ) $\left(\left[\mathrm{O}_{3}\right] \mathrm{J}_{3}\right.$ ) are both equaily small, of order $10^{-2}$ or less. A case can then be made for simplifying the above expression to

$$
\begin{equation*}
\left.\frac{d\left[O_{3}\right]}{d t} \approx 2\left[C_{2}\right] J_{0}-\overrightarrow{2}\left[0_{3}\right] J_{O_{3}}+\left[\mathrm{NO}_{2}\right] \mathrm{J}_{N 2}\right) \tag{4.16}
\end{equation*}
$$

where we have retained only the leading terms. In terms of the number mixing ratios $\mathcal{K}_{i}$,

$$
\begin{align*}
& M_{O_{2}}=\left[\mathrm{C}_{2}\right] \div n_{m}=0.2096 \\
& M_{3}=\left[0_{3}\right] \div n_{m}  \tag{4.17}\\
& \mathrm{H}_{\mathrm{NO}_{2}}=\left[\mathrm{NO}_{2}\right] \div \mathrm{mm}_{\mathrm{m}}
\end{align*}
$$

we have

$$
\begin{align*}
{\left[\begin{array}{ll}
\frac{1}{m} & d 0_{3} \\
d t
\end{array}\right] } & \left.=2(.2046) J_{0}-2 k \psi_{0_{3}} J_{3}+\psi_{N O_{2}} N_{2}\right]
\end{align*}
$$

At constant pressure the logarithmic derivative of $m_{m}$ with $T$ is $T$,
 is $3445 / T^{2} \sim \frac{10}{T}$ and $1580 / T^{2} \sim \frac{5}{T}$ respectively. We therefore treat $\mathcal{M}_{m}$ as a known function of pressure $(=f /-k \vec{T}$. ; see table at end of section 2), but will compute the exact dependence of the rate constants on $T$.

$$
\begin{align*}
& \text { Using } n_{m}=7.243 \times 10^{21} P_{j} / T_{j}, K \text { computed as follows } \\
& K=\frac{\bar{T}_{j}}{P_{j}}\left\{823 \chi_{O_{3}} e^{-\frac{3445}{T}} \div 1317 \chi_{N_{O}} e^{-\frac{1550}{T}}\right\} \tag{4.20}
\end{align*}
$$

The two exponential are computed from the non-dimensional temperatures,

$$
\begin{align*}
& e_{1}=\exp \left[-\frac{3445}{T(\text { non-dimin }} \cdot \frac{R}{4 n^{2} \Omega^{2}}\right]  \tag{4.21}\\
& e_{2}=\exp \left[-\frac{1580}{T(\text { non -dim) }} \cdot \frac{R}{4 a^{2} \Omega^{2}}\right]
\end{align*}
$$

5000 values of $e_{1}$ and $e_{2}$ are stored in a table computed four values of
$T($ non $\cdot$ din. $)=\left(\frac{10}{256}+\frac{\delta}{2}\right),\left(\frac{10}{256}+\frac{3 \delta}{2}\right), \cdots,\left(\frac{10}{256}+\frac{9999}{2} \delta\right)$
where $\delta=16^{-4}$. It is assumed that the stratospheric model will always yield temperatures in the range

$$
\begin{equation*}
\frac{10}{256}=0.0390<T(\text { non dim }) \leq \frac{945}{32 \times 256}=0.1154 \tag{4.22}
\end{equation*}
$$

Suppose that a model $T$ (non-dim) is such that

$$
\begin{aligned}
& \left(\frac{10}{256}+i \delta\right) \leqslant T(n o n-d i m)<\left(\frac{10}{256}+\overline{i+1} \delta\right) \\
& \text { then we set } \quad e_{1}(T)=e_{1}\left(\frac{10}{256}+\frac{2 i+1}{2} \delta\right) \\
& \text { and } \quad e_{2}(\tau)=e_{2}\left(\frac{10}{256}+\frac{2 i+1}{2} \delta\right)
\end{aligned}
$$

The maximum error introduced by evaluating the exponential by this method is approximately $1 / 2 \%$.

Let us now consider how $\mathrm{J}_{\mathrm{O}_{2}}, \mathrm{~J}_{\mathrm{O}_{3}}$, and $\mathrm{J}_{\mathrm{NO}_{2}}$ are computed. Consider first $\mathrm{J}_{\mathrm{O}_{3}}$.

$$
J_{O_{3}}=\int_{0}^{11400} \alpha_{0_{3}}(\lambda) I(\lambda) e^{-x_{0_{3}}} d \lambda
$$

is computed as the sum

$$
\begin{equation*}
J_{o_{3}}=\sum_{i=60}^{171} \alpha_{o_{3}}\left(\lambda_{i}\right) F\left(\lambda_{i}\right) e^{-X_{o_{3}}} \tag{4.23}
\end{equation*}
$$

where the wavelengths, $\lambda_{i}$, the absorption coefficient, and the solar flux, $F\left(\lambda_{1}\right)$, integrated each wavelength interval are taken from table 4.2 (from Ackerman, 1970). The reduction of the solar flux in this wavelength range by molecular onygen is considered to be negligible. The maximum error thus introduced is certainly less than $5 \%$.

In order to compute $\mathrm{J}_{\mathrm{NO}_{2}}$, we must evaluate $\mathrm{X}_{\mathrm{NO}_{2}}$. Using the $\mathrm{NO}_{2}$ profile shown in table 4.1 , the optical depth, $\mathrm{X}_{\mathrm{NO}_{2}}$, for a solar zenith angle of zero is only . 01 at ground level and at $3975 \AA$. We shall therefore neglect the reduction in $I(\lambda)$ resulting from absorption by $\mathrm{NO}_{2}$ in our computation of $\mathrm{J}_{\mathrm{NO}_{2}}$. Thus the computation scheme used is

$$
\begin{equation*}
J_{N_{O}}=\sum_{i=} d_{N O_{2}}\left(\lambda_{i}\right) F\left(\lambda_{i}\right) e^{-X_{o_{3}}} \tag{4.24}
\end{equation*}
$$

$\mathrm{J}_{\mathrm{O}_{2}}$ is evaluated as the sum

$$
\begin{equation*}
J_{o_{2}}=\sum_{i=45}^{77} \alpha_{o_{2}}\left(\lambda_{i}\right) F\left(\lambda_{i}\right) e^{-\left(x_{o_{3}}+x_{o_{2}}\right)} \tag{4.25}
\end{equation*}
$$

In which the overlapping of the absorption bands of molecular oxygen and ozone must be included.

Values of $\mathrm{J}_{\mathrm{O}_{3}}, \mathrm{~J}_{\mathrm{O}_{2}}$, and $\mathrm{J}_{\mathrm{NO}_{2}}$ are calculated at levels 1 through 22 .
5. Model heating

Above 30 km atmospheric heating is assumed to be the sum of two contributions - the absorption of solar ultraviolet and visible radiation by ozone and infrared heating and cooling by carbon dioxide, ozone, and water apor. The relative magnitudes of these contributions is depicted in figure 5.1 (from calculations by Newell et al., 1970).
(a) model of solar absorption by ozone

$$
\begin{equation*}
Q_{0_{3}}^{\prime}=\int_{0}^{7500} \alpha_{0_{3}}(\lambda) I(\lambda) \varepsilon(\lambda) e^{-x_{0_{3}}} d \lambda \text { joules/sec } / 0_{3} \text { mol. } \tag{5.1}
\end{equation*}
$$

where $\alpha_{0_{3}}(\lambda)$ is the absorption coefficient of ozone
$I(\lambda)$ is the flux of solar photons incident on the top os the atmosphere
$\varepsilon(\lambda)$ is the energy of a photon of wavelength $\left(=1.9872 \times 10^{-15} / \lambda\right.$ joules for $\lambda$ in $\AA$ )
$X_{0_{3}}$ is the optical depth of ozone (see section 4)

For equation 1.25 we require the heating rate in dimensionless units,

$$
\begin{equation*}
\frac{q}{c_{p}}=9.375 \times 10^{7} \chi_{0_{3}} Q_{0_{3}} \tag{5.2}
\end{equation*}
$$

$Q_{0_{3}}$ is evaluated as the sum

$$
\begin{equation*}
Q_{o_{3}}=\sum_{i=60}^{171} \alpha_{o_{3}}\left(\lambda_{i}\right) F\left(\lambda_{i}\right) \frac{e^{-x_{o_{3}}}}{\lambda_{i}} \tag{5.3}
\end{equation*}
$$

where $F\left(\lambda_{1}\right)$ is the solar flux of photons integrated over a small wavelength interval around $\lambda_{i}$ (see table 4.2).


Figure 5.1. Vertical distribution of the components of the net radiative heating rate. (Newell and Gray, 1972)
(b) Tropospheric and infra-red stratospheric heating rates

In the troposphere and lower stratosphere, we follow Trenberth (Ph.D. thesis, M.I.T., 1972) in setting, at each level $j$,

$$
\begin{equation*}
\frac{\partial T}{\partial t}=\cdots+h_{j}\left(T_{j}^{*}-T\right) \tag{5.4}
\end{equation*}
$$

where $h_{j}$ is a "Newtonian" cooling coefficient, $T_{j}{ }^{*}$ is a hypothetical equi1ibrium temperature field, and $T$ is the temperature predicted by the model. (All $T^{\prime} s$ in the above equation have a zero horizontal average.) For the zonally symmetric part, Trenberth divided $T^{*}$ into an annual average term (symmetric in latitude) and a seasonal term (an odd function of latitude):
$T_{j}^{*}(\mu, t)=T_{j 2}^{*} P_{2}^{0}(\mu)+\left[T_{j 1}^{*} P_{1}^{0}(\mu)+T_{j 3}^{*} P_{3}^{0}(\mu)\right] \sin \frac{2 \pi}{3 \in 5}\left(t \cdot \phi_{j}\right)$

Here $\mu$ is the sine of the latitude and $P_{n}{ }^{\circ}$ are the legendre functions normalized so that $\int_{-1}^{1} p^{2} d \mu=2$.

$$
\begin{align*}
& P_{1}^{0}(\mu)=\sqrt{3} \mu  \tag{5.6}\\
& P_{2}^{0}(\mu)=\frac{\sqrt{5}}{2}\left(3 \mu^{2}-1\right) \\
& P_{3}^{0}(\mu)=\frac{\sqrt{7}}{2} \mu^{\mu}\left(5 \mu^{2}-3\right)
\end{align*}
$$

$t$ is in days and is zero at the vernal equinox. $d_{j}$ is a mild time-lag introduced in the troposphere to account for delayed ocean warmth. Trenberth used the following values for his eight levels:

| $\mathrm{Z}_{\mathbf{j}}$ | $\mathrm{P}_{\boldsymbol{j}}$ | $z_{j}(k m)$ | 5-\% |  |  | $T_{j 1}^{*}(\mathrm{deg})$ | $T_{j 3}^{*}(\mathrm{deg})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{h}_{j}$ (day ${ }^{-}$ |  | $\mathrm{T}_{\mathrm{j} 2}^{*}(\mathrm{deg})$ |  |  |
| . 511 | .6 | 4 | 0.08 | 21 | -15.4 | 6.54 | 0 |
| 1.204 | .3 | 9 | 0.059 | 21 | -10.3 | 5.97 | 0 |
| 2.120 | . 12 | 15 | 0.019 | 0 | -2. 24 | 8.96 | 1.70 |
| 3.219 | . 04 | 22 | 0.026 | 0 | -4.64 | 11.8 | 3.32 |
| 4.605 | . 01 | 30.5 | 0.050 | 0 | -5.39 | 14.0 | 4.57 |
| 6.214 | . 002 | 43 | 0.190 | 0 | -5.37 | 11.7 | 5.45 |
| 7.601 | . 0005 | 54 | 0.24 | 0 | -1.78 | 11.2 | 4.89 |
| 9.210 | . 0001 | 63 | 0.20 | 0 | 0 | 2.77 | 1.21 |

In the stratosphere, Trenberth's formula empirically represents all of the main types of radiation effects:
a. Short wave absorption by ozone and oxygen ( 20 km and higher)
b. 9.6 micron absorption and emission by ozone ( $20-30 \mathrm{~km}$ )
c. Infra-red absorption and emission by $\mathrm{CO}_{2}$ (all heights)

In our model we will explicit $y$ comput radiatinn of type $a$, as described elsewhere. This means that Trenberth's formulation must be changed for $Z$ higher than $20 \mathrm{~km}(z \geq 2.9)$. Type $c$ can be represented by a simple Newtoniàn law

$$
\begin{equation*}
\frac{\partial T}{\partial t}=-a(p) T \tag{5.7}
\end{equation*}
$$

The most recent values of a are those computed by Dickinson (A method of parameterization for infra-red cooling between altitudes of 30 and 70 km .

$$
5-5
$$

NCAR preprint, February 1973). He obtained these values of $a(p)$ by careful line integration of the $C O$ and $O$ bands for a standard atmosphere, followed by a similar computation in which $T$ was varied slightly. (Physically this is satisfactrry for the circumstance of cooling to space - it does not include, however, the major effect of $b$ above, which comes from absorption of radiation emitted by the ground in the water-vapor window region.)

Dickinson finds values as follows:

| Z | $\mathrm{a}\left(\right.$ day $\left.^{-1}\right)$ |
| :---: | :---: |
| 11.4 | $\underline{.016}$ |
| 10.0 | .062 |
| 9.1 | .125 |
| 8.7 | .172 |
| 7.9 | .200 |
| 7.4 | .220 |
| 6.9 | .212 |
| 6.1 | .135 |
| 4.8 | .080 |
| 3.9 | .060 |

These can be fit satisfactorily by two linear segments matching the three underlined extreme values:

$$
\begin{align*}
& 3.9 \leq z \leq 7.4 \quad a=0.22+.045714(2-7.4) \operatorname{deg}^{-1}  \tag{5.8}\\
& 7.4 \leq z \leq 11.4 \quad a=0.22-.051(z-7.4) \operatorname{deg}^{-1}
\end{align*}
$$

Dickinson's values are larger than the early values used by Lindzen and Goody (J. Atmos. Sci., 1965) of 0.043 and 0.06 day $^{-1}$ for $z$ less than:or greater than $6(z=40 \mathrm{~km})$. Dickinson's values can also be compared with values obtained by taking the cooling rates computed by London and Kuhn
(J. Atmos. Sci., 1969) and, at each pressure level, determining a least square fit to $\delta T / \delta t=-a \mathrm{~T}$ from the seven latitudes at which Kuhn and London made their computations. The proflle of values for a so obtained

| $z(\mathrm{~km})$ | $a\left(\right.$ day $\left.^{-1}\right)$ |
| :--- | :--- |
|  |  |
| 77.5 | 0.17 |
| 72.5 | 0.10 |
| 67.5 | 0.18 |
| 61.5 | 0.18 |
| 56.5 | 0.125 |
| 50.5 | 0.135 |
| 44 | 0.125 |
| 38 | 0.097 |
| 32.25 | 0.044 |

has the same shape with height as that obtained by Dickinson, but peaks with a value of 0.18 day $^{-1}$ at the higher level $Z \sim 9$, and in the stratosphere are typically smaller than Dickinson's values by about 0.03 day $^{-1}$. (The difference in the srratosphere may arise from Dickinson's having taken "hot bands" into account for $\mathrm{CO}_{2}$

Trenberth's values of his $h_{j}$ (given earlier above) exceed Dickinson's values by only $0.05,0.02$, and 0.03 day $^{-1}$ at $\mathrm{z}=6.2,7.6$, and 9.2 and is less than Dickinson's by 0.02 at $Z=4.6$. It therefore appears reasonable to use "Dickinson's values" given by (5.8).

Heating due to the 9.6 micron $O_{3}$ band has been computed by Dopplick (Ph.D. thesis, M.I.T., 1970) using typical observed values of $0_{3^{\circ}}$ It gives a heating rate more or less independent of season with a peak value of 1.1 deg day ${ }^{-1}$ at the poles, centered at an altitude of about $25 \mathrm{~km}(Z=3.5)$. This may be represented most simply by

$$
\begin{equation*}
\frac{\partial T}{\partial t}=-\frac{0.8}{\sqrt{5}} P_{2}^{0}(\mu)\left[1-(z-3.5)^{2}\right] \tag{5.9}
\end{equation*}
$$

for $2.5 \leqq \mathrm{Z} \leqq 3.5$ and zero for $Z$ values outside this range. As such, this heating does not depend on $\mathrm{O}_{3}$ or T . This is not too critical, however, since the physical dependence on $T$ is primarily due to ocean surface and cloud top temperatures, and any moderate variations in $0_{3}$ from that used by Dopplick will mostly shift somewhat the height $Z=3.5$ vertically (i.e., the existing $\mathrm{O}_{3}$ is ample to absorb all this upwelling radiation.)

We therefore propose the following strategy for heating computations. Define

Method I.
a. Explicit computation of short wave heating
b. Infra-red cooling with the Dickinson formula (5.8) for a supplemented by $a=0.06$ for $Z<3.9$
c. Formula (5.9) for $0_{3}$ window radiation for $2.5 \leqq 2 \leqq 4.5$

Method II.
Trenberth's formulas (subject to some possible re-evaluation in detail)

These methods are combined as follows for different height ranges. ( $z=2.5$ and 4.5 corresponds roughly to heights of 17.5 and 30.3 km )
A. $Z>4.5:$ Only method I.
B. $2.5 \leqslant z \leqslant 4.5$ : Weighted average of I and II as follows

$$
\left(\frac{z-2.5}{2}\right) \times \text { Method I }+\left(\frac{4.5-z}{2}\right) \times \text { Method II }
$$

C. $Z \leqslant 2.5$ : Only method II.

TABLE 5.1 Standard concentrations of ozone, molecular oxygen, and nitrogen dioxide.

| Level | Height <br> km | $\begin{gathered} \mathrm{n}\left(\mathrm{O}_{2}\right) \\ \left(\mathrm{cm}^{-3}\right) \end{gathered}$ | Column Conc. $\mathrm{N}_{\mathrm{O}_{2}}\left(\mathrm{~cm}^{-2}\right)$ | $\begin{aligned} & \mathrm{n}\left(\mathrm{O}_{3}\right) \\ & \mathrm{cm}^{-3} \end{aligned}$ | Columin Conc. $\mathrm{N}_{\mathrm{O}_{3}}^{*}\left(\mathrm{~cm}^{-2}\right)$ | $\begin{gathered} \mathrm{n}\left(\mathrm{NO}_{2}\right) \\ \mathrm{cm}^{-3} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | 71.6 | $2.86 \times 10^{14}$ | $1.76 \times 10^{20}$ | $2.8 \times 10^{8}$ | $8.12 \times 10^{13}$ |  |
| 2 | 69.0 | 4.11 | 2.64 | 6.4 | $1.97 \times 10^{14}$ |  |
| 3 | 66.3 | 5.99 | 3.96 | $1.5 \times 10^{9}$ | 4.70 |  |
| 4 | 63.5 | 8.72 | 5.94 | 3.5 | $1.13 \times 10^{15}$ |  |
| 5 | 60.6 | $1.26 \times 10^{15}$ | 8.91 | 6.5 | 2.52 |  |
| 6 | 57.6 | 1.84 | $1.34 \times 10^{21}$ | $1.2 \times 10^{10}$ | 5.16 |  |
| 7 | 54.5 | 2.65 | 2.01 | 2.3 | $1.03 \times 10^{16}$ |  |
| 8 | 51.4 | 3.86 | 3.01 | 4.6 | 2.08 |  |
| 9 | 48.2 | 5.75 | 4.51 | 9.9 | 4.30 |  |
| 10 | 45.0 | 8.84 | 6.77 | $2.15 \times 10^{11}$ | 9.01 | $8.84 \times 10^{6}$ |
| 11 | 41.9 | $1.36 \times 10^{16}$ | $1.02 \times 10^{22}$ | 4.1 | $1.84 \times 10^{17}$ | $7.79 \times 10^{7}$ |
| 12 | 38.8 | 2.10 | 1.52 | 7.6 | 3.55 | $4.00 \times 10^{8}$ |
| 13 | 35.9 | 3.23 | 2.28 | $1.3 \times 10^{12}$ | 6.50 | $1.39 \times 10^{9}$ |
| 14 | 33.0 | 4.96 | 3.43 | 1.8 | $1.09 \times 10^{18}$ | 2.60 |
| 15 | 30.2 | 7.64 | 5.14 | 2.45 | 1.68 | 3.27 |
| 16 | 27.5 | $1.17 \times 10^{17}$ | 7.71 | 3.4 | 2.46 | 3.40 |
| 17 | 24.8 | 1.80 | $1.16 \times 10^{23}$ | 4.3 | 3.48 | 3.68 |
| 18 | 22.2 | 2.84 | 1.73 | 4.8 | 4.66 | 3.96 |
| 19 | 19.6 | 4.22 | 2.60 | 4.65 | 5.87 | 4.40 |
| 20 | 17.1 | 6.34 | 3.90 | 3.6 | 6.92 | 6.04 |
| 21 | 14.6 | 9.43 | 5.85 | 2.5 | 7.68 | 8.08 |
| 22 | 12.0 | $1.36 \times 10^{18}$ | 8.78. | 2.0 | 8.25 | $1.15 \times 10^{10}$ |
| 23 | 9.3 | 1.92 | $1.32 \times 10^{24}$ | 1.0 | 8.66 | 1.72 |
| 24 | 6.4 | 2.73 | 1.98 | $6.0 \times 10^{11}$ | 8.88 | 2.58 |
| 25 | 3.4 | 3.82 | 2.96 | 6.0 | 9.05 | 3.87 |
| 26 | 0.1 | 9.56 | 4.44 | 6.0 | 9.25 | 5.80 |

6. The computational procedure for evaluating the daily average values of the heating and photodissociation rates

Expressions $5.3,4.23,4.24$, and 4.25 for $\mathrm{Q}_{\mathrm{O}_{3}}, \mathrm{~J}_{\mathrm{O}_{3}}, \mathrm{~J}_{\mathrm{O}_{2}}$, and $\mathrm{J}_{\mathrm{NO}_{2}}$ require a knowledge of the vertical column concentrations of $\mathrm{O}_{2}$ and $\mathrm{O}_{3}$ $\left(\mathrm{NO}_{2}\right.$, and $\mathrm{N}_{\mathrm{O}_{3}}$ ) and of the solar zenith angle ( $\psi$ )。 ${ }^{\mathrm{N}} \mathrm{O}_{2}$ is given at each level by expression (1.36). $\mathrm{N}_{\mathrm{O}_{3}}$, on the other hand, must be evaluated at each time step using expression (1.35) and values of $\chi_{0_{3}}$ from the prior time step.
(a) Evaluation of $\mathrm{N}_{\mathrm{O}_{3}}$ at each grid point and each level, $\mathrm{P}_{\mathrm{j}}$.

$$
\begin{equation*}
N_{O_{3}}\left(P_{j}\right)=2.12 \times 10^{25} \int_{0}^{P_{j}} X_{O_{3}} d P \quad\left(\mathrm{~cm}^{-2}\right) \tag{6.1}
\end{equation*}
$$

Clearly,

$$
N_{O_{3}}\left(P_{j}\right)=N_{O_{3}}\left(P_{j-1}\right)+2.12 \times 10^{25} \int_{P_{j}}^{P_{j-1}} X_{O_{3}} d P
$$

Therefore ${ }_{\mathrm{N}_{0}}$ is evaluated first at level 1 and then sequentially at every other level. $\mathrm{N}_{\mathrm{o}_{3}}\left(\mathrm{P}_{1}\right)$ need only be evaluated approximately, and we suppose that $X_{O_{3}}$ decays exponentially above level 1 with a scale height determined from the horizontal average values of $\chi_{0_{3}}$ at levels 1 and 2. Thus

$$
\begin{equation*}
N_{O_{3}}\left(P_{1}\right)=2.12 \times 10^{25} \psi_{0_{3}}\left(P_{1}\right) P_{1}\left[1+\frac{1}{\Delta z} \log _{e} \frac{\overline{\chi_{0_{3}}\left(P_{2}\right)}}{\overline{x_{0_{3}}\left(P_{1}\right)}}\right]^{-1} \tag{6.2}
\end{equation*}
$$

$\mathrm{DO}_{3}^{2}\left(\mathrm{P}_{\mathrm{j}}\right)$ for $\mathrm{j} \geqslant 2$ is evaluated using expression (6.1). The integral is evaluated by using a second order curve fit to $\chi_{o_{3}}$ with the curve forced to pass through the values of $\mathcal{Y}_{\circ_{3}}$ at levels $j, j-1$, and j-2. Then

$$
\int_{P_{j}}^{P_{j-1}} \chi_{0_{3}} d P=\frac{\Delta z}{12}\left[5 P_{j} \chi_{O_{3}}\left(P_{j}\right)+8 P_{j-1} \chi_{0_{3}}\left(P_{j-1}\right)-P_{j-2} X_{O_{3}}\left(P_{j-2}\right)\right](6.3)
$$

$\chi_{O_{3}}\left(P_{0}\right)$ is set equal to zero. For the 2.8 km level spacing typical of our model, this computational technique produces errors in $0_{3} \leqslant 2 \%$ 。
(b) Evaluation of daily average values of $\mathrm{Q}_{\mathrm{O}_{3}}, \mathrm{~J}_{\mathrm{O}_{3}}, \mathrm{~J}_{\mathrm{O}_{2}}, \mathrm{~J}_{\mathrm{NO}}$

We do not wish to include the diurnal variation of the solar zenith angle in our model. Thus, in principle, we wish to evaluate expressions 5.3, 4.23, 4.24, and 4.25 at dally average values of $X_{O_{2}}$ and $X_{O_{3}}$, corresponding to diurnal mean solar zenith angles. This has proved not possible within acceptable error limits. However by trial and error it has been found that the mean of two values of the $Q$ and the $J^{\prime} s$ at partitular solar zenith angles does yield daily average values to $5 \%$ accuracy. We first evaluate the hour angle of sunset at each latitude using the relation

$$
\begin{equation*}
\cos \psi=\sin \phi \sin \delta+\cos \phi \cos \delta \cos h \tag{6.4}
\end{equation*}
$$

where $\Psi$ is the solar zenith angle
$\phi \quad$ is the latitude
$\delta$ is the solar declination
and $\quad h \quad$ is the hour angle (measured from local noon).

Sunrise and sunset are given by $h= \pm H$ with

$$
\begin{equation*}
\cos H=-\tan \phi \tan \delta \tag{6.5}
\end{equation*}
$$

Considering only the Northern Hemisphere $(\tan \phi \geqslant 0)$ we have

$$
\begin{array}{lll}
\tan \phi \tan \delta \leq-1 & : H \equiv 0 \quad \text { (polar winter night) } \\
-1<\tan \phi \tan \delta<0 & : H<H<\pi / 2 \\
\tan \phi \tan \delta=0 & : H=\pi / 2 \quad \text { (equinox) }  \tag{6.6}\\
0<\tan \phi \tan \delta<1 & : \pi / 2<H<\pi \\
1 \leq \tan \phi \tan \delta & : H \equiv \pi \quad \text { (polar summer day) }
\end{array}
$$

The exact expression for the daily average value of $q$ (say) is

$$
\begin{equation*}
\bar{q}=\frac{1}{2 \pi} \int_{-H}^{H} q d h=\frac{1}{\pi} \int_{0}^{H} q d h \tag{6.7}
\end{equation*}
$$

However we have found the following alogorithm to be accurate to $5 \%$ :

$$
\begin{equation*}
\bar{q}=\frac{H}{2.05 \pi}\left[\left.q\right|_{h=\frac{H}{4}}+\left.q\right|_{h=\frac{3 H}{4}}\right] \tag{6.8}
\end{equation*}
$$

This procedure is used to evaluate $\overline{\mathrm{Q}}_{\mathrm{O}_{3}}, \overline{\mathrm{~J}}_{\mathrm{O}_{3}}, \overline{\mathrm{~J}}_{\mathrm{NO}}$, and $\overline{\mathrm{J}}_{\mathrm{O}_{2}}$.
(c) Tabulation of values of $\mathrm{Q}_{\mathrm{O}_{3}}, \mathrm{~J}_{\mathrm{O}_{3}}, \mathrm{~J}_{\mathrm{O}_{2}}$, and $\mathrm{J}_{\mathrm{NO}_{2}}$.

The evaluation of $\overline{\mathrm{J}}_{\mathrm{O}_{2}}$, for example, at a particular grid point requires the evaluation of 66 exponentials. However computation time requirements limit us to approximately 10 multiplications per grid point for the evaluation of $\overline{\mathrm{O}}_{\mathrm{O}_{3}}, \overline{\mathrm{~J}}_{\mathrm{O}_{3}}, \overline{\mathrm{~J}}_{\mathrm{O}_{2}}$ and $\overline{\mathrm{J}}_{\mathrm{NO}_{2}}$. Tables of values of $\mathrm{Q}_{\mathrm{O}_{3}}$ $\mathrm{J}_{\mathrm{O}_{3}}, \mathrm{~J}_{\mathrm{O}_{2}}$, and $\mathrm{J}_{\mathrm{NO}_{2}}$ are therefore stored in the machine initially as a function of $\mathrm{N}_{\mathrm{O}_{3}}$.

6-4
Consider for example the way in which $\mathrm{J}_{\mathrm{O}_{3}}$ is evaluated in the determination of $\bar{J}_{0_{3}}$. For each level, $j$, a table of $2 \times 240$ values of $J_{0_{3}}$ are stored. Thus initially $\mathrm{J}_{\mathrm{O}_{3}}$ is evaluated for values of

$$
X_{o}\left(\lambda_{i}\right)=\frac{X_{k}\left(\lambda_{i}\right)}{4}\left(1+\frac{\delta}{2}\right), \frac{X_{k}\left(\lambda_{i}\right)}{4}\left(1+\frac{3 \delta}{2}\right), \cdots, \frac{X_{k}\left(\lambda_{i}\right)}{4}\left(1+\frac{479 \delta}{2}\right)
$$

where $\delta=1 / 256, k=1$ or 2 , and

$$
X_{1}\left(\lambda_{i}\right)=1.1 \alpha_{o_{3}}\left(\lambda_{i}\right) N_{O_{3}}^{*}, \quad X_{2}\left(\lambda_{i}\right)=2.6 \alpha_{o_{3}}\left(\lambda_{i}\right) N_{o_{3}}^{*}
$$

The numbers 1.1 and 2.6 are considered to be typical values of sec $\psi$ at $h=H / 4$ and $h=3 H / 4$ respectively. $N_{O_{3}}^{*}$ are obtained from a standard ozone profile suggested by Kruger (1972) and are tabulated in table 5.1.

Suppose now that $h=H / 4$,

$$
\begin{equation*}
\frac{1.1 N_{O_{3}}^{*}\left(P_{j}\right)}{4}(1+e \delta) \leqslant N_{O_{3}}\left(P_{j}\right) \sec \psi \leqslant \frac{1.1 N_{O_{3}}^{*}\left(P_{j}\right)}{4}(1+\overline{l+1} \delta) \tag{6.9}
\end{equation*}
$$

Then $\mathrm{J}_{\mathrm{O}_{3}}$ is set equal to

$$
J_{O_{3}}\left[\frac{1.1}{4} \mathrm{~N}_{\mathrm{O}_{3}}^{*}\left(1+\frac{2 \theta+1}{2} \delta\right)\right]
$$

Except that if $\mathrm{N}_{\mathrm{O}_{3}}\left(P_{j}\right) \sec \psi \quad \frac{1}{4} N_{O_{3}}^{*}\left(P_{j}\right), J_{0_{3}}$ is set equal to

$$
\begin{equation*}
J_{O_{3}}\left[\frac{1.1}{4} N_{O_{3}}^{*}\left(1+\frac{\delta}{2}\right)\right] \tag{6.10}
\end{equation*}
$$

and if $\mathrm{N}_{\mathrm{O}_{3}}\left(\mathrm{P}_{\mathrm{j}}\right) \sec \psi>4.4 \mathrm{~N}_{\mathrm{O}_{3}}^{*}\left(\mathrm{P}_{\mathrm{j}}\right), \mathrm{J}_{\mathrm{O}_{3}}$ is set equal to

$$
J_{O_{3}}\left[4.4 N_{O_{3}}^{*}\left(1-\frac{\delta}{2}\right)\right]
$$

A similar procedure is used (using the second set of tabulated values) to evaluate $\mathrm{J}_{\mathrm{O}_{3}}$ at $\mathrm{h}=3 \mathrm{H} / 4, \quad \overline{\mathrm{Q}}_{\mathrm{O}_{3}}, \overline{\mathrm{~J}}_{\mathrm{O}_{2}}$, and $\overline{\mathrm{J}}_{\mathrm{NO}}^{2}$ are evaluated in a similar manner.

In the case of $\bar{J}_{0_{2}}$ there is however an additional complication, viz. that $\mathrm{J}_{\mathrm{O}_{2}}$ depends not only on $\mathrm{X}_{\mathrm{O}_{3}}$ but also on $\mathrm{X}_{\mathrm{O}_{2}}$. Again computer himitations require that we produce an approximation scheme for computing the dependence of $\mathrm{J}_{\mathrm{O}_{2}}$ on $\mathrm{N}_{\mathrm{O}_{2}}$ sec $\psi$ - or, since $\mathrm{N}_{\mathrm{O}_{2}}$ is fixed at each level, on $\sec \psi$. If $\log \mathrm{J}_{\mathrm{O}_{2}}$ is plotted against $\log \cos \psi$, a curve with but a small curvature over values of cos $\psi$ varying by a factor of 3 or 4 is produced. Thus it was decided to make a quadratic fit to this curve. Then

$$
\begin{equation*}
\left.J_{O_{2}}\right|_{h=\frac{H}{4}}=J_{O_{2}}^{(1)} \exp \left[a_{1} \log _{e}\left(\frac{\cos \psi}{1.1}\right)+b_{1} \overline{\log }_{e}\left(\frac{\cos \psi}{1.1}\right)^{2}\right] \tag{6.11}
\end{equation*}
$$

where $J_{0_{2}}^{(1)}=\sum_{i=45}^{77} \alpha_{0_{2}}\left(\lambda_{i}\right) F\left(\lambda_{i}\right) e^{-\left(x_{0_{3}}+x_{o_{2}}^{(1)}\right)}$
and

$$
X_{0_{2}}^{(1)}=1.1 \alpha_{0_{2}}\left(\lambda_{i}\right) N_{O_{2}}
$$

$\mathrm{J}_{\mathrm{O}_{2}}$ is evaluated by the tabulation procedure previously described. The constants, $a_{1}\left(P_{j}\right)$ and $b_{1}\left(P_{j}\right)$ are determined by

$$
\begin{align*}
& a_{1}=\frac{\left(\log _{e} 3.0\right)^{2} \log _{e} \frac{J_{1}}{J_{s}}-\left(\log _{e} 1.8\right)^{2} \log _{e} \frac{J_{3}}{J_{s}}}{\log _{e} 1.8 \log _{e} 3.0 \log _{e} 0.6} \\
& b_{1}=\frac{\log _{e} 3.0 \log _{e} \frac{J_{1}}{J_{s}}-\log _{e} 1.8 \log _{e} \frac{J_{3}}{J_{s}}}{\log _{e} 1.8 \log _{e} 3.0 \log _{e} 0.6}  \tag{6.12}\\
& J_{s}=\sum_{i=45}^{77} \alpha_{o_{2}}\left(\lambda_{i}\right) F\left(\lambda_{i}\right) e
\end{align*}
$$

$$
\begin{align*}
J_{1} & \left.=\sum_{i=45}^{77} \alpha_{0_{2}}\left(\lambda_{i}\right) F\left(\lambda_{i}\right) e^{-\left(x_{o_{3}}^{(1)}+1.8 x_{0_{2}}^{6-6}\right.}\right) \\
J_{3} & =\sum_{i=45}^{77} \alpha_{0_{2}}\left(\lambda_{i}\right) F\left(\lambda_{i}\right) e^{-\left(x_{0_{3}}^{(1)}+3 x_{0_{2}}^{(1)}\right)} \\
\text { with } \quad X_{0_{3}}^{(1)} & =1.1 x_{0_{3}}\left(\lambda_{i}\right) N_{o_{3}}^{*} \tag{6.13}
\end{align*}
$$

A similar procedure is used to evaluate $J_{O_{2}} \left\lvert\, n=\frac{3 H}{4}\right.$; in this case the

$$
\begin{gather*}
\text { constants are } a_{2} \text { and } b_{2} \text { and } X_{0_{2}}^{(1)} \text { and } X_{0_{3}}^{(1)} \text { are replaced by } X_{0_{2}}^{(2)} \\
\text { and } X_{0_{3}}^{(2)} \\
X_{O_{2}}^{(2)}=2.6 \alpha_{O_{2}}\left(\lambda_{i}\right) N_{O_{2}}  \tag{6.14}\\
X_{O_{3}}^{(2)}=2.6 \alpha_{O_{3}}\left(\lambda_{0}\right) N_{O_{3}}^{*}
\end{gather*}
$$

7. Spectral form of the equations

We define spectral solutions at arbitrary level $f$ in the form

$$
\begin{align*}
& \Psi_{j}=\sum_{\alpha} \Psi_{\alpha, j} Y_{\alpha}(\lambda, \mu) \\
& S_{j}=\sum_{\alpha} S_{\alpha, j} Y_{\alpha}(\lambda, \mu) \\
& W_{j}=\sum_{\alpha} W_{\alpha, j} Y_{\alpha}(\lambda, \mu)  \tag{7.1}\\
& F_{j}=\sum_{j} F_{\alpha, j} Y_{\alpha}(\lambda, \mu) \\
& q_{j}=\sum_{\alpha} T_{\alpha, j} Y_{\alpha}(\lambda, j)
\end{align*}
$$

and for the trace substance equation

$$
\left.\begin{array}{l}
x_{j}=\sum x_{\alpha}, j Y_{\alpha}(\lambda, \mu)  \tag{7.2}\\
G_{j}=\sum_{\alpha}^{\alpha} G_{\alpha, j}, Y_{\alpha}(\lambda, \mu)
\end{array}\right\}
$$

In terms of longitude ( $\lambda$ ) and latitude ( $\mu$ ) we have defined members of the complete set of orthogonal spherical harmonics in (7.1) and (7.2) using

$$
\begin{equation*}
Y_{2}(\lambda, \mu)=e^{i l \lambda} P_{2}(\mu) \tag{7.3}
\end{equation*}
$$

with

$$
\begin{equation*}
d=n_{\alpha}+i l_{\alpha} \tag{7.4}
\end{equation*}
$$

denoting a vector index of planetary wave number $l_{\alpha}$ and degree $n_{\alpha}$. The $P_{\alpha}(\mu)$ are Legendre nolynomials of rank and degree given by $\alpha$. Normalization of the spherical harmonics is such that integration over the unit spherical surface (s) yields the orthogonal property

$$
\begin{equation*}
\int_{s} Y_{\alpha} Y_{\beta}^{*} d s=4 \pi \delta_{\alpha, \beta} \tag{7.5}
\end{equation*}
$$

Complex conjugate values are denoted by an asterisk. Another useful property of the set of spherical harmonics is that they satisfy the differential equation

$$
\begin{equation*}
\nabla^{2} Y_{\alpha}=-c_{\alpha} Y_{\alpha} ; c_{\alpha}=n_{\alpha}\left(n_{\alpha}+1\right) \tag{7.6}
\end{equation*}
$$

The complete set of orthonormal Legendre polynomials as used in (7.3) are defined such that

$$
\begin{equation*}
P_{\alpha^{*}} \equiv P_{\alpha} \tag{7.7}
\end{equation*}
$$

and all $P_{\alpha}$ are normalized to

$$
\begin{equation*}
\int_{-1}^{+1} P_{\alpha} P_{\beta} d \mu=2 \delta_{\alpha, \beta} \tag{7.8}
\end{equation*}
$$

We now want to substitute solutions (7.1) and (7.2) into the nondimensional forms of our model equations, multiply through with a member of the orthogonal set (say, $Y^{*}$ ), and integrate the resulting relationships over the unit swiere. Application of this procedure to the vorticity equation (3.3) for example felds the desired spectral form of this equation,

$$
\begin{align*}
\frac{d S_{r, j}}{d t} & =-i l_{r} \psi_{r, j}-A_{r, j}+\frac{D_{r}}{C_{r-\epsilon}}\left[\left(\frac{\pi}{\Omega-1}\right) W_{r-\epsilon, j+1}-\right. \\
& \left.-\left(\frac{1}{\Omega-1}\right) W_{r-\epsilon, j}\right]-\frac{E_{r}}{C_{r+\epsilon}}\left[\frac{\Omega}{(\pi-1)} W_{r+\epsilon, j+1}-\right.  \tag{7.9}\\
& \left.-\left(\frac{1}{\Omega-1}\right) W_{r+\epsilon, j}\right]+\left(\frac{\Omega}{\pi-1}\right) F_{r, j+1}-\left(\frac{1}{\Omega-1}\right) F_{r, j}
\end{align*}
$$

in which over the unit spherical surface $s$,

$$
\begin{align*}
& \frac{d S_{r i}}{d t}=\frac{1}{4 \pi} \int_{s} \frac{\partial S_{j}}{\partial t} Y_{r}^{*} d s \\
& i X_{r} \psi_{r_{i j}}=\frac{1}{4 \pi} \int_{s}^{s} S\left(\Psi_{j, N}\right) Y_{r}^{*} d s=\frac{1}{4 \pi}\left(\frac{2 \psi_{j}}{\partial \lambda} Y_{r}^{*} d s\right. \\
& A_{r_{i j}}=\frac{1}{4 \pi} \int_{s}^{s} J_{j}^{s}\left(\psi_{j}, S_{j}\right) Y_{r}^{*} d s\left(\sec \text { Oppendax }^{*} A\right) \\
& \begin{array}{l}
\frac{D_{r}}{C_{r-\epsilon}} W_{r-\epsilon, j}-\frac{E_{r}}{C_{r+\epsilon}} W_{r+\epsilon, j}=-\frac{1}{4 \pi}\left(\sum_{s} D_{\text {s }} \mathcal{V}\left(w_{j}\right)\right] r_{r}^{*} d s \\
\quad \text { (seeCeppendix B) }
\end{array}  \tag{7.10}\\
& F_{r_{j} j}=\frac{1}{4 \pi} \int_{s} F_{j} Y_{r}^{*} d s
\end{align*}
$$

Similarly, the thermodynamic energy equation (3.19), the trace substance equation (3.21), and the thermal wind relationship (3.18) reduce to the spectral forms

$$
\begin{align*}
& \frac{d T_{r}}{d t}=-B_{r_{j j}}-S_{j} W_{r_{i j}}+\left[\frac{R}{C_{p} 8 \Omega^{3} a^{2}}\right] q_{r, j} \\
& \frac{d x_{r, j}}{d t}=-B_{r, j}^{(k)}-\left(\frac{d \bar{x}}{d z}\right) W_{r, j}+\left(\frac{\Omega}{\Omega-1}\right) G_{r_{j} j}- \\
& -\left(\frac{1}{\Omega-1}\right)^{\prime} G_{r, j-1}+\frac{1}{4 \pi} \int_{s} \frac{1}{2 \Omega}\left[\frac{1}{n_{m}}\left(\frac{d n}{d t}\right)_{c}\right]_{j}^{, j} Y_{r}^{*} d s  \tag{7.11}\\
& \Delta z_{t} c_{r} T_{r_{i j}}=-D_{r}\left(\Psi_{r-\epsilon, j-1}-\Psi_{r-\epsilon, j}\right)+ \\
& +E_{r}\left(\psi_{r+\epsilon, j-1}-\psi_{r+\epsilon, j}\right)
\end{align*}
$$

where, for example,

$$
\begin{equation*}
d T_{r} j=\frac{1}{4 T} \int_{s} \frac{\partial T_{i}}{\partial t} Y_{r}^{*} d s \tag{7.12}
\end{equation*}
$$

$$
\begin{align*}
& \frac{d x_{r} ; j}{d t}=\frac{1}{4 \pi} \int_{s} \frac{d x_{j}}{\partial t} Y_{r}^{*} d s \\
& c_{r} T_{r, j}=\frac{1}{4 \pi} \int_{s}\left(-\nabla^{2} T_{j}\right) Y_{r}^{*} d s \\
& B_{r, j}=\frac{1}{8 \pi} \int_{S}^{S} J\left(\psi_{j}+\psi_{j-1)} T_{j}\right) Y_{r}^{*} d S  \tag{7.12cont.}\\
& B_{r, j}^{(x)}=\frac{1}{8 \pi} \int_{s} J\left(\psi_{j}+\psi_{j-1} \chi_{j}\right) Y_{r}^{*} d s \\
& D_{r} \psi_{r-\epsilon, j}-E_{r} \psi_{r+\epsilon, j}=-\frac{1}{4 \pi}\left(\left[\nabla \cdot \mu \nabla \psi_{j}\right] Y_{r}^{*} d s\right) \\
& \text { (see Appendix B) }
\end{align*}
$$

In addition, we want to determine the spectral form of (1.6) relating the vertical component of relative vorticity ( ) and the streamfunction ( $\psi$ ). It can be shown that

$$
\begin{equation*}
S_{r, j}=-c_{r} \psi_{r, j} \tag{7.13}
\end{equation*}
$$

or

$$
\begin{equation*}
\psi_{r_{i j}}=-\frac{S_{r_{i j}}}{c_{r}} \tag{7.14}
\end{equation*}
$$

provided that in (6.14) we stipulate $\gamma \neq 0+i 0\left(1 . e, C_{r} \neq 0\right)$.

We see that the spectral relationships (7.9), (7.11), and (7.13) [or (7.14)] along with definitions (7.10) and (7.12) form a complete set of equations for solution. However, fit is not convenient to attempt to integrate the model in this form as there is no explicit relationship deterniming the vertical velocity field represented by $W$. In order to define $W$ we art to alter the thermal wind relationsitp of (7.11). This development is contained in the next section. Furthermost, specification of
the truncation limits to be used for series solutions (7.1) and (7.2) have not $y \in t$ leen established and will be discussed in a later section.
8. Deternimation of $W$ in the dynamic equations

In order to obtain an explicit description of the vertical motion fields in our model atmosphere, we insert (7.14) into the thermal wind equation of (7.11) and differentiate w.r.t. time to get

$$
\begin{align*}
\Delta z_{1} C_{r} \frac{d T_{r} ; j}{d t} & =\frac{D_{r}}{C_{r-\epsilon}}\left(\frac{d S_{r-\epsilon, j-1}}{d t}-\frac{d S_{r \epsilon, j}}{d t}\right)-  \tag{8.1}\\
& -\frac{E_{r}}{C_{r+\epsilon}}\left(\frac{d S_{r+\epsilon, j-1}}{d t}-\frac{d S_{r+\epsilon, j}}{d t}\right)
\end{align*}
$$

for all levels $j=2,3, \ldots, J-1$. We note that (8.1) does not apply for the case $\gamma=0+i 0$. Furthermore, for notational purposes, we will stipulate that in (8.1) and all future relationships, terms which require $Y^{\prime}-\epsilon=O+; 0$ or $n_{r-\epsilon}<l_{r-\epsilon}$ do not exist. This applies equally to cases in which $\gamma+\in$ is not contained within the specified model truncation limits.

Let us now define

$$
\begin{align*}
a_{r i j} \equiv & -i l_{r}\left(\psi_{r, j-1}-\psi_{r, j}\right)-A_{r, j-1}+A_{r, j}- \\
& -\left(\frac{1}{\Omega-1}\right) F_{r, j-1}+\left(\frac{\Omega+1}{\Omega-1}\right) F_{r, j}-\left(\frac{\Omega}{\Omega-1}\right) F_{r, j+1} \\
b_{r, j} \equiv & -B_{r, j}+\left[\frac{R}{C_{p} \delta \Omega^{3} a^{2}}\right] q_{r ; j} \tag{8.2}
\end{align*}
$$

such that using (7.9) we can wrote

$$
\begin{align*}
& \frac{d S_{r}, j-1}{d t}-\frac{d S_{r}}{d t}, j=a_{r, j}-\frac{1}{(1-1)} \frac{D_{r}}{C_{r-\epsilon}}\left[W_{r-\in, j-1}-(\Omega+1) W_{r-\epsilon, j}+\right. \\
& \left.+\Omega W_{r \in, j+1}\right]+\frac{i}{(1-1)} \frac{E_{r}}{C_{r+\epsilon}}\left[W_{r+\in, j-1}-(\Omega+1) W_{r+\epsilon, j+}\right.  \tag{8.3}\\
& \\
& \left.+\Omega W_{r+\epsilon, j+1}\right]
\end{align*}
$$

and, the thermos mic energy equation of (7.11) reduces to

$$
\begin{equation*}
\frac{d T_{r}}{d t} \cdots b_{r i j}-S_{j} M_{r i j} \tag{8.4}
\end{equation*}
$$

Inserting solutions (8.3) and (8.4) into (8.1) has the effect of eliminating the time dependence of (8.1) and at any given time we have

$$
\begin{aligned}
& \Delta z_{1} c_{r} b_{r, j}-\Delta z_{1} c_{r} S_{j} W_{r, j}=\frac{D_{r}}{C_{r \in \epsilon}} a_{r-\epsilon, j}-\frac{E_{r}}{C_{r+\epsilon}} a_{r+\epsilon, j}- \\
& -\frac{1}{(\Omega-1)} \frac{D_{r-\epsilon} D_{r}}{C_{r-2 \epsilon} C_{r \epsilon \epsilon}}\left[W_{r-2 \epsilon, j-1}-(\Omega+1) W_{r-2 \epsilon, j}+\Omega W_{r-2 \epsilon, j+1}\right]+ \\
& +\frac{1}{(\Omega-1)}\left(\frac{E_{r \epsilon \epsilon} D_{r}}{C_{r-\epsilon} C_{r}}+\frac{E_{r} D_{r+\epsilon}}{\left.C_{r} C_{r+\epsilon}\right)}\left[W_{r, j-1}-(\Omega+1) W_{r, j}+\Omega W_{r, j+1}\right]-\right. \\
& -\frac{1}{(\Omega-1)} \frac{E_{r} E_{r+\epsilon}}{C_{r+\epsilon} C_{r+2 \epsilon}}\left[W_{r+2 \epsilon, j-1}-(\Omega+1) W_{r+2 \epsilon, j}+\Omega W_{r+2 \epsilon, j+1}\right]
\end{aligned}
$$

or, if we define

$$
\left.\begin{array}{l}
r_{r j} \equiv(\Omega-1)\left[\frac{D_{r}}{C_{r \epsilon} C_{r}} a_{r, j}-\frac{E_{j}}{c_{r} C_{r+\epsilon}} a_{r+\epsilon} ;-\Delta z_{i} b_{r ; j}\right. \\
f_{r}^{(1)} \equiv \frac{D_{r-\epsilon} D_{r}}{C_{r-\alpha \epsilon} C_{r-\epsilon} C_{r}} \\
f_{\gamma}^{(2)} \equiv-\frac{1}{C_{r}^{2}}\left(\frac{E_{r-\epsilon} D_{r}}{C_{r-\epsilon}}+\frac{E_{r} D_{r+\epsilon}}{C_{r+\epsilon}}\right)  \tag{8.5}\\
f_{\gamma}^{(3)} \equiv \frac{E_{r} E_{r+\epsilon}}{C_{r} C_{r+\epsilon} C_{r+2 \epsilon}} \\
\sigma_{j} \equiv(\Omega-1) \Delta z, S j
\end{array}\right\}
$$

the $W$-equation can be compacted to

$$
\begin{align*}
& {\left[f_{r}^{(1)} W_{r-2 \in, j-1}+f_{r}^{(2)} W_{r, j-1}+f_{r}^{(3)} W_{r+2 \epsilon, j-1}\right]-} \\
& -(\Omega+1)\left[f_{r}^{(1)} W_{r-2 \epsilon, j}+f_{r}^{(2)} W_{r i j}+f_{r}^{(3)} W_{r+2 \epsilon, j}\right]+ \\
& +\Omega\left[f_{r}^{(1)} W_{r-26, j+1}+f_{r}^{(2)} W_{r, j+1}+f_{r}^{(3)} W_{r+2 \epsilon, j+1}\right]- \\
& -\sigma_{j} W_{\gamma, j}=r_{\gamma, j} \tag{8.6}
\end{align*}
$$

in which from (1.17) we represent the boundary conditions as

$$
\begin{align*}
& w_{r, 1}=0 \\
& w_{r, J}=H_{r} \\
& H_{r} \equiv \frac{1}{4 \pi} \int_{s} J\left(\psi_{J-1}, \quad h / H_{0}\right) Y_{r}^{*} d s \tag{8.7}
\end{align*}
$$



In order to prepare (8.6) for inversion we want to take note of certain properties of the equations in order to reduce the calculation to a finite set of simple matrix solutions. Inspection of (8.6) shows that the equations uncou le according to planetary wave numbers, $l_{y}$. In addition, within each planetary wave the equations contain two independent sets; one of even vector elements ( $n_{\gamma}+\cdots$ all even) and the other of odd vector elements ( $n_{\gamma}+$ 伿 $_{\gamma}$ all odd). Thus, to facilitate ease of notation, let us define some new sets of indices to be applied to (8.6) by first denoting a maximum planetary wave number, $L$, for a given spectral truncation as

$$
\begin{equation*}
\left.L=l_{r}\right)_{\max } \tag{8.8}
\end{equation*}
$$

so that we can designate $K$ independent sets of matrix equations using index $k$ where

$$
\begin{equation*}
k=1,2,3, \ldots, K ; \quad K=2(L+1) \tag{8.9}
\end{equation*}
$$

For a given matrix set we will determine $k$ by designating

$$
k=\left\{\begin{array}{l}
2 l_{r}+1 \text { for even vector sets }  \tag{8.10}\\
2\left(l_{r}+1\right) \text { for orel vector sate }
\end{array}\right\} \text {. }
$$

Furthermore, within each of the $K$ matrix equation sets it is useful to
designate an element index, $b_{k}$, where

$$
\begin{equation*}
b_{k}=1,2,3, \ldots, B_{k} \tag{8.11}
\end{equation*}
$$

Thus, for a given matrix set designated by the subscript $k$ we devise the $b_{k}$ indices as follows:

1) Fork odd (even vectors) let

$$
\begin{equation*}
\left.N_{k}=n_{k}\right)_{\max } \tag{8.12}
\end{equation*}
$$

for which we consider only $n_{k}$ from the set $n_{k}+f_{k}$ even. Then the value for an individual $b_{k}$ is determined from

$$
\begin{align*}
& b_{k}=\frac{m_{k}+l_{k}+2}{2}-\delta_{l_{k}, 0} \\
& B_{k}=\frac{N_{k}+l_{k}+2}{2}-\delta_{l_{k}, 0} \tag{8.13}
\end{align*}
$$

where we ingore values of $b_{k}$ outside the range indicated in (7.11); 1.e., when $k=1, n_{1}=0$, and $\ell_{1}=0$ we do not include the value $b_{1}=0$ which designates the nonallowable equation of (7.1) in which $\gamma=0+i 0$ [see comments following (8.1)].

Similarly,
2) For $k$ even (odd vectors) let

$$
\begin{equation*}
\left.N_{k}=n_{k}\right)_{\max } \tag{8.14}
\end{equation*}
$$

in which here we consider only $n_{k}$ from the set $n_{k}+l_{k}$ odd. Then, we have

$$
\begin{align*}
& b_{k}=\frac{n_{k}-l_{k}+1}{2} \\
& B_{k}=\frac{N_{k}-l_{k}+1}{2} \tag{8.15}
\end{align*}
$$

At this point we want to note an additional property inherent in the spectral W-equations represented by (8.6). That is, from definitions contained in (8.5) and Appendix B we can show that for any given $k$,

$$
\begin{align*}
f_{b}^{(3)} & =\frac{E_{\gamma_{k}} E_{\gamma_{k}+\epsilon}}{C_{\gamma_{k}} C_{\gamma_{k}+\epsilon} C_{\gamma_{k}+2 \epsilon}} \\
& \equiv \frac{D_{\gamma_{k}+\epsilon} D_{\gamma_{k}+2 \epsilon}}{C_{\gamma_{k}} C_{\gamma_{k}+\epsilon} C_{\gamma_{k}+2 \epsilon}} \equiv f_{b_{k}+1}^{(1)} \tag{8.16}
\end{align*}
$$

We are now prepared to convert (8.6) to matrix form. To do this we first define tridiagonal matrices as

where we have made use of (8.8) - (8.16). We note from (8.17) that not only is each $D_{k}$ tridiagonal but it is also symmetric. In addition, it can be shown that every principle minor determinate of $\partial_{k}$ is positive and thus $\AA_{k}$ can be said to be positive definite. These properties will be discussed in more detail below.

To complete the conversion of $(8.6)$ to matrix form we define vectors

Such that (8.6) can be written in the matrix form

$$
\begin{align*}
& \mathcal{O}_{k} W_{k, j-1}-(2-1) \mathcal{D}_{k} W_{k, j}+ \\
& +\Omega \mathcal{D}_{k} W_{k, j+1}-J_{j} W_{k, j}=P_{k, j} .  \tag{8.19}\\
& i=2,3,4, \infty, j-1 \text { for each } k=1,2,3, \infty, k
\end{align*}
$$

We wish to modify (8.19) through diagonalization of each ${ }^{\circ}{ }_{k}$. However, since each tridiagonal $\oint_{k}$ is real, symetric and positive definite we know that all eigenvalues of $\mathcal{D}_{k}$ are real and positive. Also, the sets of eigenvectors associated with these eigenvalues are orthonormal. Thus if $\mathcal{O}_{k}$ is of rank $M_{s}$ say, there exists a set of real positive eigenvalues $\left(\lambda_{k}\right)_{p}$ with $p=1,2,3, \ldots, M$ associated with $\mathcal{D}_{k}$ and $M$ sets of orthonormal eigenvectors $q_{p, s}$ with $s=1,2,3, \ldots, M$. If we let $Q_{k}$ represent the matrix of eigenvectors associated with the set $\left(\lambda_{k}\right) p$ and matrix $D_{k}$, we have
such that

$$
\begin{equation*}
\widetilde{Q}_{k} \widetilde{Q}_{k}=\widetilde{Q}_{k} Q_{k}=I \tag{8.21}
\end{equation*}
$$

where $I$ is the unit matrix and () denotes transposition. Define

where then we know

$$
\text { and } D_{k} Q_{k}=Q_{k} A_{k}
$$

$$
\begin{equation*}
\tilde{Q}_{k} \mathcal{D}_{k} Q_{k}=\widetilde{Q}_{k} Q_{k} \Delta_{k}=t_{k} \tag{8.23}
\end{equation*}
$$

We now want to expand the vector $W_{k, j}$ in (8.19) in the form

$$
\begin{equation*}
W_{k, j}=Q_{k} V_{k, j} \quad g V_{k, j}={\widetilde{Q_{k}}}_{W_{k, j}} \tag{8.24}
\end{equation*}
$$

where we note that $\nabla_{k, j}$ is also a vector.
Inserting solutions (8.24) into (8.19) and multiplying through with $\widetilde{Q}_{k}$ gives

$$
\begin{aligned}
& \tilde{Q}_{k} \mathcal{O}_{k} Q_{k} T_{k, j-1}(\Omega+1) \widetilde{Q}_{k} \mathcal{O}_{k} Q_{k} V_{k, j}+ \\
& +\tilde{Q}_{k} \mathcal{O}_{k} Q_{k} V_{k, j+1}-\sigma_{j} \tilde{Q}_{k} Q_{k} V_{k, j}=\tilde{Q}_{k} R_{k ; j}
\end{aligned}
$$

or, from (8.23), we can write

$$
\begin{align*}
& \Lambda_{k} V_{k, j-1}-\left[(\Omega+1) \Lambda_{k}+\sigma_{j}\right] V_{k, j}+ \\
& +\Omega \Lambda_{k} V_{k, j * 1}=\widetilde{Q}_{k} R_{k, j}
\end{align*}
$$

Now, we know that there exists an inverse

$$
\Lambda_{k}^{-1}=\left(\begin{array}{cccc}
1 /\left(\lambda_{k}\right)_{1} & 0 & \cdots & \cdots  \tag{8.26}\\
0 & 1 /\left(\lambda_{k}\right)_{2} & 0 & 0 \\
\vdots & \cdots & 0 & \vdots \\
\vdots & 0 & 1 /\left(\lambda_{k}\right)_{p} & \vdots \\
\vdots & 0 & \cdots & 0 \\
0 & \cdots & \cdots & 0 \\
1 & \left(\lambda_{k}\right)_{m}
\end{array}\right)
$$

such that

$$
\begin{equation*}
\Lambda_{k}^{-1} \Lambda_{k}=I \tag{8.27}
\end{equation*}
$$

Thus, if we multiply (8.25) through with $\Lambda_{b}^{-1}$, (8.25) reduces to the form

$$
\begin{equation*}
V_{k, j-1}-\left[(\Omega+1) I+\sigma_{j} \Lambda_{k}^{-1}\right] V_{k, j}+\Omega V_{k, j+1}=\Lambda_{k}^{-1} \widetilde{Q}_{k} R_{k, j} \tag{8.28}
\end{equation*}
$$

where for each $k=1,2,3, \ldots, k$ we have $j=2,3,4, \ldots, J-1$.
We now let

Using (8.29), (8.28) transforms to the set

$$
\left.\begin{array}{rl}
S_{k, 2} V_{k, 2}+\Omega V_{k, 3}=R_{k, 2}(f o r j=2) \\
V_{k, j-1}+S_{k, j} V_{k, j}+\Omega V_{k, j+1} & =R_{k, j}(3 \leq j \leq J-2) \\
V_{k, J-2}+S_{k, J-1} V_{k, J-1}= & =R_{k, J-1}(f o r j=J-1) \tag{8.30}
\end{array}\right\}
$$

In which from (8.24) and the boundary conditions of (8.7) we see that in (8.29)

$$
\left.\begin{array}{l}
V_{k, 1}=0 \\
V_{k, J}=\widetilde{Q}_{k} W_{k, J} \equiv \widetilde{Q}_{k} H_{k} \tag{8.31}
\end{array}\right\}
$$

We see that for each $k$ the system (8.30) is tridiagonal in $j$ and thus submits readily to solution provided certain provisions are met (see Appendix $C$ for details). Briefly, to invert (8.30) we first define

$$
\left.\begin{array}{l}
\mu_{k, 2} \equiv S_{k, 2}^{-1} \quad(\text { for } j=2) \\
\mu_{k, j} \equiv\left(S_{k, j}-\Omega \mu_{k, j-1}\right)^{-1}(\text { for } 3 \leq j \leq J-1 \tag{8.32}
\end{array}\right\}
$$

and then let

$$
\left.\begin{array}{l}
y_{k, 2}=\mu_{k, 2}{R_{k, 2}}(\text { for } \hat{j}=2) \\
y_{k, j}=\mu_{k, j}\left(R_{k, j}-y_{k, j-1}\right)(\text { for } 3 \leq j \leq 5-1 \tag{8.33}
\end{array}\right\}
$$

Solutions to (8.30) thus appear as

$$
\begin{gather*}
V_{k, J-1}=y_{k, j-1} \quad(\text { for } j=J-1) \\
V_{k, j}=V_{k, j} \bar{j}_{k, j+1}+y_{k, j} \\
\quad(\text { for } j=J-2, J-3, \infty, 2) \tag{8.34}
\end{gather*}
$$

provided all $u_{k, j}$ in (8.23) exist and are finite. Vectors $W_{k, j}$ are then obtained from (8.24).

## 9. Energetics

The kinetic energy per unit mass, $\mathrm{K}_{\mathrm{j}}$, at any given atmospheric level $j$ is given in terms of nondimensional quantities in (3.1), as

$$
\begin{equation*}
K_{j}=\frac{1}{2} V_{j} \cdot V_{j}=\frac{1}{2} \nabla \psi_{j} \cdot \nabla \psi_{j} \tag{9.1}
\end{equation*}
$$

Similarly, the available potential energy can be written as

$$
\begin{equation*}
A_{j}=\frac{1}{2 S_{j}}\left(T_{j}-\overline{T_{j}}\right)^{2} \tag{9.2}
\end{equation*}
$$

in which we assume here that $\bar{T}_{j}$ has been nondimensionalized in the same manner as $T_{j}$. The local time rate of change of the quantities $K_{j}$ and $A_{j}$ in (9.1) and (9.2) become

$$
\begin{align*}
\frac{\partial K_{j}}{\partial t} & =\frac{1}{\partial} \nabla \frac{\partial \psi_{j}}{\partial t} \cdot \nabla \psi_{j}+\frac{1}{\partial} \nabla \psi_{j} \cdot \nabla \frac{\partial \psi_{j}}{\partial t} \\
& =\nabla \cdot \psi_{j} \frac{\partial \psi_{j}}{\partial t}-\psi_{j} \frac{\partial S_{j}}{\partial t}  \tag{9.3}\\
\frac{\partial A_{j}}{\partial t} & =\frac{1}{S_{j}}\left(T_{j}-T_{j}\right) \frac{\partial T_{j}}{\partial t}
\end{align*}
$$

for hwich we have utilized (3.6). We also want to define horizontal mean values for (9.1) - (9.3) on the unit sphere as

$$
\begin{align*}
\overline{K_{j}} & =\frac{1}{4 \pi} \int_{s} K_{j} d s \\
& =\frac{1}{8 \pi} \int_{s} \nabla_{s} \psi_{j} \psi_{j} d s-\frac{1}{8 \pi}\left(\psi_{j} S_{j} d s\right.  \tag{9.4}\\
\overline{A_{j}} & =\frac{1}{4 \pi} \int_{s} A_{j} d s=\frac{1}{8 \pi S_{j}}\left(\left(T_{j}-T_{j}\right)^{2} d s\right.
\end{align*}
$$

$$
\begin{aligned}
\dot{\bar{K}}_{j} & =\frac{1}{4 \pi} \int_{S} \frac{\partial K_{j}}{\partial t} d s \\
& =\frac{1}{4 \pi} \int_{s} D_{0} \psi_{j} \cdot \frac{\partial \psi_{j}}{\partial t} d s-\frac{1}{4 \pi} \int_{s} \psi_{j} \frac{\partial s_{i}}{\partial t t} d s \\
\dot{\dot{A}_{j}} & =\frac{1}{4 \pi} \int_{s} \frac{\partial A_{j}}{\partial t} d s \\
& =\frac{1}{4 \pi S_{j}} \int_{s} \int_{i}-T_{j}-\frac{\partial T_{j}}{\partial t} d s
\end{aligned}
$$

Finally, integrating vertically, the total values for each of the energy types are defined

$$
\begin{aligned}
& \dot{A}=\sum_{j=2}^{J-1} \Delta z_{i} P_{j} \cdot \dot{A}_{j}=\frac{1}{4 \pi} \prod_{j=2}^{J_{j}-1} \frac{z_{j}}{P_{j}} \int_{s}\left(T_{j}-\overline{T_{j}}\right) \frac{\partial T_{j}}{\partial t} d s
\end{aligned}
$$

In order to demonstrate the energy conversion properties of our model we consider only the time rate of change equations of (9.4) and (9.5). Substituting from the vorticity prediction equation (3.9) into the third equation of (9.4) we have

$$
\begin{aligned}
& \dot{K}_{j}=\frac{1}{4 \pi}\left(\psi_{j} J\left(\psi_{j} S_{i}^{0}+\mu\right) d s+\right. \\
& +\frac{1}{4 \pi} \int_{s} \psi_{j} \nabla \cdot\left\{\mu \nabla \mathcal{L}\left[\left(\frac{\Omega}{\Omega-1}\right) w_{j+1}-\left(\frac{1}{\Omega-1}\right) w_{j}\right]\right\} d S \\
& -\frac{1}{4 \pi}\left(\frac{\Omega}{\Omega-1}\right) \int_{s} \psi_{j} F_{j+1} d s+\frac{1}{4 \pi}\left(\frac{1}{\Omega-1}\right) \int_{s} \psi_{j} F_{j} d s \\
& =\frac{1}{4 \pi} \int_{s}^{p} \alpha\left[\left(\frac{\Omega}{\Omega-1}\right) W_{j+1}-\left(\frac{1}{\Omega-1}\right) W_{j}\right] \nabla \cdot \mu \nabla \psi_{j} d s- \\
& -\frac{1}{4 \pi}\left(\frac{\Omega}{\Omega-1}\right) \int_{s} \psi_{j} F_{j+1} d s+\frac{1}{4 \pi}\left(\frac{1}{\Omega-1}\right) \int_{s} \psi_{j} F_{j} d s
\end{aligned}
$$

Similarly, substitution of the thermal equation (3.19) into the fourth of (9.4) gives

$$
\begin{align*}
\overline{\bar{A}}_{j}= & -\frac{1}{\delta \pi S_{j}} \int_{s}\left(T_{j}-\bar{T}_{j}\right) J\left(\psi_{j}+\psi_{j-1} T_{j}\right) d s- \\
& -\frac{1}{4 \pi} \int_{s}^{\left.\left.\left.\left(T_{j}-T_{j}\right) w_{j} d s+\frac{1}{4 \pi S_{j}}\left(\frac{R}{c} \frac{R}{c_{p} R^{3} a^{2}}\right)\right)_{s}^{\left(T_{j}-T_{j}\right.}\right)\right)_{j j} d s .} . \tag{9.7}
\end{align*}
$$

Then, using (9.6) and (9.7) in the third and fourth equations of (9.5), we have for the total time rate of change of kinetic and available potential energies,

$$
\begin{aligned}
\dot{k} & =\frac{1}{4 \pi} \sum_{j=1}^{J-1} P_{j} \int_{S}\left\{\left[\Omega w_{j+1}-w_{j}\right] \nabla \cdot \mu \nabla \psi_{j} d s-\right. \\
& -\frac{1}{4 \pi} \sum_{j=1}^{J-1} P_{j} r \int_{s} \psi_{j} F_{j+1} d s+\frac{1}{4 \pi} \sum_{j=1}^{j-1} P_{j} \int_{s} \psi_{j} F_{j} d s
\end{aligned}
$$

$$
\begin{aligned}
\dot{K}= & -\frac{1}{4 \pi} P_{1} \int_{s} w_{1}^{0} \nabla \cdot \mu \nabla \psi_{1} d s+\frac{1}{4 \pi} \sum_{j=2}^{j-1} P_{j} \int_{s}^{9-4} w_{j} \nabla \cdot \mu \nabla\left(\psi_{j-1}-\psi_{j}\right) d s+ \\
& +\frac{1}{4 \pi} P_{J} \int_{s} w_{s} \nabla \cdot \mu \nabla \psi_{s-1} d s-\frac{1}{4 \pi-1} \sum_{j=1}^{j P_{j}}\left(\psi_{s}\left(n F_{j+1}-F_{j}\right) d s .\right.
\end{aligned}
$$

But, from (3.18) we know that for $\mathrm{j}=2,3,4, \ldots, \mathrm{~J}-1$,

$$
\begin{aligned}
& \text { we know that for } j=2,3,4, \ldots, \cdots{ }^{\sigma} \cdot \mu \nabla\left(\psi_{j}-\psi_{j-1}\right)=-\Delta z \nabla^{2} T_{j}
\end{aligned}
$$

and thus
and,

$$
\begin{align*}
& \dot{K}=\frac{1}{4 \pi} \sum_{j=2}^{J-1} P_{j}\left(\int_{S} w_{j} \Delta z_{i} \nabla^{2} T_{j} d s+\frac{1}{4 \pi} P_{J} \int_{5} W_{J} \nabla \cdot \mu \nabla \psi_{j-1} d s\right. \\
& -\frac{1}{4 \pi} \sum_{j=1}^{J-1} P_{j} \cdot \int_{s} \psi_{j}\left(\Omega F_{j+1}-F_{j}\right) d s \\
& =\frac{\Delta Z_{1}}{4 \pi} \sum_{j=2}^{j P_{j}-1} \sum_{S}\left(w_{j} T_{j} d s+\frac{1}{4 \pi} P_{J} \int_{S} W_{J} \nabla \cdot \mu \nabla \psi_{J-1} d s\right. \\
& -\frac{1}{4 \pi} \sum_{j=1}^{J-1} P_{j}\left(\psi_{s}\left(\Omega F_{j+1}-F_{j}\right) d s\right. \tag{9.8}
\end{align*}
$$

$$
\begin{align*}
\dot{A}= & -\frac{\Delta z}{4 \pi} \sum_{j=2}^{J-1} P_{j} \int_{s}\left(T_{j}-\overline{T_{j}}\right) W_{j} d s+\cdots \\
& +\frac{\Delta z}{4 \pi}\left(\frac{R}{C_{p} \delta \Omega^{3} a^{2}}\right) \sum_{j=2}^{J-1} \frac{P_{j}}{S_{j}} \int_{s}\left(T_{j}-T_{j}\right) q_{j} d s \\
= & -\frac{\Delta Z}{4 \pi} \sum_{j=2}^{J-1} P_{j}\left(T_{s} T_{j} W_{j} d s+\right. \\
& +\frac{\Delta Z}{4 \pi}\left(\frac{R}{C_{p} 8 \Omega^{3} a^{2}}\right) \sum_{j=\alpha}^{J-1} \frac{P_{j}}{S_{j}^{j}} \int_{s}\left(T-\overline{T_{j}}\right) q_{j} d s . \tag{9.9}
\end{align*}
$$

We see that in (9.8) and (9.9), the terms involving $W_{j} T_{j}$ represent conversions between kinetic and available potential energies. Addition of these two equations yields the correct relationship for the time rate of change of total energy, $E$,

$$
\begin{aligned}
\dot{E}= & \dot{k}+\dot{A}^{\prime} \\
= & \frac{1}{4 \pi} P_{J} \int_{s} W_{J} \nabla \cdot \nabla \psi_{J-1} d s- \\
& -\frac{1}{4 \pi} \sum_{j=1}^{J-1} P_{j} \int_{s} \psi_{j}\left(\Omega F_{j+1}-F_{j}\right) d s+ \\
& +\frac{\Delta Z_{1}}{4 \pi}\left(\frac{R}{C_{p} 8 \Omega^{3} a^{2}}\right) \sum_{j=2}^{J-1} \frac{P_{j}}{S_{j}}\left(\left(T_{j}-T_{j}\right) q_{j} d s \quad(9.10)\right.
\end{aligned}
$$

in which the first term on the right side of (9.10) represents energy changes at the bottom level due to orography, and the other two terms are due respectively the disappation of kinetic energy to frictional stress and the generation of available potential energy due to diabatic heating.
( $\mathrm{A}-1$ )
Appendix A. Spectral form of Jacobian terms and evaluation of the associated nonlinear interaction coefficients.

Consider on the unit sphere the Jacobian of arbitrary horizontal glowbal scale rs $A$ and $B$ where

$$
\begin{equation*}
J(A, B)=\frac{\partial A}{\partial \lambda} \frac{\partial B}{\partial \mu}-\frac{\partial A}{\partial \mu} \frac{\partial B}{\partial \lambda} \tag{A.1}
\end{equation*}
$$

and $\lambda$ is longitude while $\mu$ is the sine of latitude. Expanding $A$ and B in terms of spherical harmonics, we have for solutions

$$
\begin{gather*}
A=\sum_{\alpha} a_{\alpha} Y_{\alpha}(\lambda, \mu) \\
B=\sum_{\alpha} b_{\alpha} Y_{\alpha}(\lambda, \mu) \\
\alpha=n_{\alpha}+\hat{\lambda} l_{\alpha} \tag{A.2}
\end{gather*}
$$


in which the special properties of the orthonormal spherical functions $Y_{\alpha}\left(\lambda_{,}, \nu\right)$ are outlined in (7.3)-(7.8). Inserting solutions (A.2) into (A.1), transforming the result to insure symmetry with respect to ventor indices $\alpha$ and $\beta$, and writing in terms of a single nonredundant sum (for details of these developments, see Beer and Platzman, 1961) we arrive at

$$
\begin{align*}
& J(A, B)=-i \sum_{\alpha_{\beta}^{\beta},}\left(1-\frac{E_{\alpha, \beta}}{2}\right)\left(a_{\alpha} b_{\beta}-a_{\beta} b_{\alpha}\right) \times \\
& m_{\beta} \geq n_{\alpha}  \tag{A.3}\\
& x e^{i\left(l_{\alpha}+l_{\beta}\right) \lambda}\left(l_{\beta} P_{\beta} \frac{d P_{\alpha}}{d \mu}-l_{\alpha} P_{\alpha} \frac{d P_{\beta}}{d \beta}\right)
\end{align*}
$$

for which we define through use of the Kronecker delta, $\delta_{i, j}$,

$$
\begin{equation*}
E_{\partial, \beta} \equiv \delta_{m_{\alpha, n}, m_{\beta}} \delta_{\left|\alpha_{\alpha}, l_{\beta}\right|} . \tag{A.4}
\end{equation*}
$$

(A-2)
The term $\left(1-\frac{E_{\alpha}, B}{2}\right)$ is necessary because the two conjugate interactions for the case $\quad M_{\beta}=m_{\alpha} \quad$ and $\left|l_{\beta}\right|=\left|l_{\alpha}\right|$, assumed in the symmetric reduction of $J(A, B)$ to the form of (A.3), are not unique and one of them must be ignored.

We now multiply (A.3) through with any arbitrary member of the orthogonalizing set, say $Y_{\gamma}^{*} / 4 \pi$, and integrate over the unit sphere to get

$$
\begin{align*}
G_{\gamma}= & \frac{1}{4 \pi} \int_{0}^{2 \pi}\left(J(A, B) Y_{\gamma}^{*}(\lambda, \mu) d \mu d \lambda\right. \\
= & -i \sum_{\alpha, \beta}^{1}\left(1-\frac{E_{\alpha} \beta}{2}\right)\left(a_{\alpha} b_{\beta}-a_{\beta} b_{\alpha}\right) K_{\gamma, \beta, \alpha} \\
& \left\{\begin{array}{l}
n_{\beta} \geq n_{\alpha} \\
l_{\gamma}=l_{\alpha}+l_{\beta}
\end{array}\right\} \tag{A.5}
\end{align*}
$$

and the interaction coefficient, $K_{\gamma, \beta}, \alpha$ is obtained from

Since we intend to evaluate $K_{\gamma, \beta} \beta, \alpha$ using the "transform" method with Integration by exact Gaussian quadrature (see, for example, Eliasen et al., 1970), a time saving simplification can be obtained by noting that the integral in (A.6) can be nonzero only if the integrand possesses an even party with respect to the equator. For this condition we can reduce (A.6) to

In order to evaluate (A.7) numerically let us define

$$
\left.\begin{array}{l}
f_{\alpha}(\mu) \equiv l_{\alpha} P_{2}(\mu)  \tag{A.8}\\
g_{\alpha}(\mu) \equiv \frac{d P_{\alpha}(\mu)}{d \mu}
\end{array}\right\}
$$

where $g_{\alpha}$ can be determined from the Legendre differential relationships in the form

$$
\begin{aligned}
g_{\alpha}(\mu) & \equiv \frac{d P_{\alpha}(\mu)}{d \mu} \\
& =\frac{\left(n_{\alpha}+1\right) \mu P_{\alpha}}{\left(1-\mu^{2}\right)} \\
\epsilon & \equiv 1+i 0
\end{aligned}
$$

we now let

$$
\begin{align*}
H_{\beta, \alpha}(\mu) & =l_{\beta} P_{\beta} \frac{d P_{\alpha}}{d \mu}-l_{\alpha} P_{\alpha} \frac{d P_{\beta}}{d \mu} \\
& =f_{\beta} g_{\alpha}-f_{\alpha} g_{\beta} \tag{A.10}
\end{align*}
$$

which can be expanded in the form

$$
\begin{equation*}
H_{e_{2},(\mu)}=\sum_{8}^{2} n_{\varepsilon, \rho_{2},} p_{8}(\nu) . \tag{A.11}
\end{equation*}
$$

from (A.10) and (A.11) we see that (A.7) can be replaced with

$$
\begin{align*}
K_{\gamma, \beta, \alpha} & =\int_{0}^{1}[H \beta, \alpha(\mu)] P_{r} d \mu \\
& =\sum_{\delta}^{1} h_{\gamma, \beta, \alpha} \int_{0}^{1} P_{\delta} P_{r} d \mu  \tag{A.12}\\
& =h_{r, \beta, \alpha}
\end{align*}
$$

However, if we represent $H_{\beta, \alpha}(\mu)$ at $N$ discrete points $\mu_{k}$ where $k=1,2, \ldots, N$, then an exact quadrature analog for (A.12) is obtained in the form (see Eliasen et $N^{\text {al; }}$, 1970)

$$
\begin{align*}
K_{\gamma, \beta, \alpha} & =\sum_{k=1}^{N} w_{k}\left[H_{\beta, \alpha}\left(\mu_{k}\right)\right] P_{\gamma}\left(\mu_{k}\right) \\
& =\sum_{k=1}^{N} w_{k}\left[f_{\beta}\left(\mu_{k}\right) g_{\alpha}\left(\omega_{k}\right)-f_{\alpha}\left(\mu_{k}\right) g_{\beta}\left(\mu_{k}\right)\right] P_{\gamma}\left(\mu_{k}\right) \tag{A.13}
\end{align*}
$$

provided

$$
\left.\begin{array}{l}
N=(k+1) / 2 \\
K \geq l_{\text {max }}+\frac{3}{2}\left(n_{\text {max }}-l_{\text {max }}\right)+\frac{1}{2} \tag{A.14}
\end{array}\right\}
$$

( $N$ and $K$ must be intergers) and the latitudes $\mu_{k}$ are located at the Northen Hemisphere zeroes of the Legendre polynomial. $P_{k}^{\circ}(\mu)$ (including the equator if $K$ is odd). In (A.13) the $W_{k}$ represent the Gaussian weights required to maintain orthogonalization of the discrete set of Legendre polynomials used in (A.13) such that

$$
\begin{equation*}
\sum_{k=1}^{N} w_{k} P_{\alpha}\left(\mu_{k}\right) P_{\beta}\left(\mu_{k}\right)=\delta_{\alpha, \beta} \tag{A.15}
\end{equation*}
$$

A discussion of the evaluation of these Gaussian weights is contained in Appendix D .

## References

Beer, R., and G.W. Platzman, 1961: A procedure for numerical integration of the spectral vorticity equation. J. Meteor., 18, 393-401.

Eliasen, E., B. Mackenhauer and E. Rasmussen, 1970: On a numerical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields. Report No. 2, Institut for Teoretisk Meteorologi, Kobenhavns Universitet, 37 pp.

Appendix B. Spectral representation of divergence terms of the general form $\nabla \cdot \mu \nabla A$.

In terms of spherical operators on the unit sphere in which $\lambda$ is longitude and $\mu$ is the sine of latitude we have

$$
\begin{align*}
\nabla \cdot \mu \nabla A & =\nabla \mu \cdot \nabla A+\mu \nabla^{2} A \\
& =\left(1-\mu^{2}\right) \frac{\partial A}{\partial \mu}+\mu \nabla^{2} A \tag{B.1}
\end{align*}
$$

in which $A$ is an arbitrary horizontal global scaler expandable in the form

$$
\begin{equation*}
A=\sum_{\alpha} a_{\alpha} Y_{\alpha}(\lambda, \mu) \tag{By}
\end{equation*}
$$

Properties of the orthonormal spherical functions $Y_{\alpha}(\lambda, \mu)$ are outlined in (7.3) - (7.8). Insertion of solutions (B.2) into (B.1) yields

$$
\left.\begin{array}{rl}
\nabla \cdot \mu \nabla A= & \left(1-\mu^{2}\right)\left[a_{\alpha} e^{i l_{2} \lambda} \frac{d P_{\alpha}(\mu)}{d \nu}-\mu \sum_{\alpha} c_{\alpha} a_{\alpha} e^{i l_{\alpha} \lambda} P_{\alpha}(\mu)\right) \\
= & \sum_{\alpha} a_{\alpha} e^{i l_{\alpha} \lambda}\left[\left(1-\mu^{2}\right) \frac{d P_{\alpha}}{d \mu}-\mu c_{\alpha} P_{\alpha}\right], \\
& C_{\alpha}=n_{\alpha}\left(n_{\alpha}+1\right)
\end{array}\right\} \text { (B.3) }
$$

But, if we define

$$
\left.\begin{array}{rl}
N_{2} & =\left[\frac{\left(2 n_{2}+1\right)\left(n_{2}-l_{2}\right)!}{\left(n_{2}+l_{2}\right)!}\right]^{1 / 2}  \tag{B.4}\\
& \in=1+i 0
\end{array}\right\}
$$

then we know from the Legendre differential and recurrence relations (for example, see Jahnke and Eide, 1945) that

$$
\left(1-\mu^{2}\right) \frac{d P_{\alpha}}{d \mu}=-n_{\alpha} \mu P_{\alpha}+\left(n_{\alpha}+l_{\alpha}\right) \frac{N_{\alpha}}{N_{\alpha}-\epsilon} P_{\alpha-\epsilon}
$$

and

$$
N P_{\alpha}=\frac{\left(n_{\alpha}-l_{\alpha}+1\right)}{\left(2 n_{\alpha}+1\right)} N_{\alpha} N_{\alpha+\epsilon} P_{\alpha+\epsilon}+\frac{\left(n_{\alpha}+l_{2}\right)}{\left(2 n_{\alpha}+1\right)} \frac{N_{\alpha}}{N_{\alpha}-\epsilon} P_{\alpha-\epsilon}{ }^{\text {(B.5) }}
$$

Then, using (B.5), we can show that

$$
\begin{gather*}
\left(1-\mu^{2}\right) \frac{d P_{\alpha}}{d N}-\mu C_{\alpha} P_{\alpha}=\frac{\left(1-n_{\alpha}^{2}\right)\left(n_{\alpha}+l_{\alpha}\right)}{\left(2 n_{\alpha}+1\right)} \frac{N_{\alpha}}{N_{\alpha-\epsilon}} P_{\alpha-\epsilon}- \\
-\frac{n_{\alpha}\left(n_{\alpha}+2\right)\left(n_{\alpha}-l_{\alpha}+1\right)}{\left(2 n_{\alpha}+1\right)} \frac{N_{\alpha}}{N_{\alpha+\epsilon}} P_{\alpha+\epsilon} . \tag{B.6}
\end{gather*}
$$

We now insert (B.6) into (B.3), multiply through using $Y^{*} / 4 \pi$, and integrate over the unit sphere to get

$$
\begin{align*}
& \frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{-1}^{1}(\nabla \cdot \mu \nabla A) Y_{r}^{*} d \mu d \lambda= \\
&= \sum_{l_{\alpha}^{\alpha}=l_{r}} a_{\alpha}\left[\frac{\left(1-n_{\alpha}^{2}\right)\left(n_{\alpha}+l_{\alpha}\right)}{\left(2 n_{\alpha}+1\right)} \frac{N_{\alpha}}{N_{\alpha}-\epsilon}\right] \frac{1}{2} \int_{-1}^{1} P_{\alpha-\epsilon} p_{\gamma} d \mu- \\
&-\sum_{l_{\alpha}} a_{2}\left[\frac{n_{\alpha}\left(n_{\alpha}+2\right)\left(n_{\alpha}-l_{\alpha}+1\right)}{\left(2 n_{\alpha}+1\right)} \frac{N_{\alpha}}{N_{\alpha+1}}\right] \frac{1}{2} \int_{-1}^{1} p_{\alpha+\epsilon} P_{r} d \mu \\
&=\left(1-n_{\gamma}^{2}\right)\left[\frac{\left(n_{r}+l_{r}\right)\left(n_{r}-l_{r}\right)}{\left(2 n_{r}-1\right)\left(2 n_{r}+1\right)}\right]^{1 / 2} a_{\gamma-\epsilon}- \\
&-n_{\gamma}\left(n_{r}+2\right)\left[\frac{\left(n_{r}+l_{r}+1\right)\left(n_{r}-l_{r}+1\right)}{\left(2 n_{r}+1\right)\left(2 n_{r}+3\right)}\right] q_{r+\epsilon} \\
&= D_{\gamma} a_{r-\epsilon}-E_{r} a_{r+\epsilon} \tag{B.7}
\end{align*}
$$

where we have defined

$$
\left.\begin{array}{l}
\text { defined } \\
D_{r} \equiv\left(1-n_{r}^{2}\right)\left[\frac{\left(n_{r}+l_{r}\right)\left(n_{r}-l_{r}\right)}{\left(2 n_{r}-1\right)\left(2 n_{r}+1\right)}\right]^{1 / 2} \\
E_{r} \equiv n_{r}\left(n_{r}+2\right)\left[\frac{\left(n_{r}+l_{r}+1\right)\left(n_{r}-l_{r}+1\right)}{\left(2 n_{r}+1\right)\left(2 n_{r}+3\right)}\right]^{1 / 2}
\end{array}\right\}
$$

A special case of (B.7) occurs when we consider scaler $B$ in which

$$
B=\nabla^{2} A
$$

where similar to (B.2) we can expand $B$ in the form

$$
\begin{equation*}
B=\sum_{\alpha} b_{\alpha} Y_{\alpha}(\lambda, \mu) \tag{B.10}
\end{equation*}
$$

Then, from (7.6), we know that

$$
\begin{equation*}
b_{2}=-c_{2} a_{2} \tag{B.11}
\end{equation*}
$$

and, in terms of coefficients $b_{d}$, (B.7) becomes

$$
\begin{gather*}
\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{-1}^{1}(\nabla \cdot \mu \nabla A) Y_{r}^{*} d u d \lambda=-\frac{D_{\gamma}}{c_{r-\epsilon}} b_{r-\epsilon}+\frac{E_{\gamma}}{c_{r+\epsilon}} b_{r+\epsilon} \\
=D_{\gamma} b_{r-\epsilon}-\varepsilon_{\gamma} b_{r+\epsilon} \tag{B.12}
\end{gather*}
$$

in which we have defined

$$
D_{\gamma}=-\frac{D_{r}}{c_{\gamma-\epsilon}}, \quad E_{\gamma \gamma}=-\frac{E_{\gamma}}{C_{\gamma+\epsilon}} \quad \text { (B.13) }
$$

provided that in (B.12) we ignore terms in which $C_{Y \in \epsilon}=0$ (ie, $n_{r-\epsilon}=0$ ).
Further, for both (B.7) and (B.13) we must stipulate that all terms calling for any $a_{\gamma-\epsilon} a_{\gamma+\epsilon}, b_{\gamma-\epsilon}$ or $b_{\gamma+\epsilon}$ outside the r\&ange of the particular spectral truncation chosen must also be ignored.

Reference
Jahnke, E. and F. Emde, 1945: Tables of Functions. Dover, New York, 306 pp . plus tables.

Appendix C. Solution of a tridiagonal set of equations.
Suppose we have an equation set of the form

$$
\left.\begin{array}{c}
a_{r} x_{r-1}+b_{r} x_{r}+c_{r} x_{r+1}=R_{r}  \tag{C.1}\\
r=1,2,3, \cdots, r
\end{array}\right\}
$$

where we must have

$$
\left.\begin{array}{l}
a_{1}=0  \tag{C.2}\\
c_{1}=0
\end{array}\right\}
$$

That is, in matrix form we can write (C.1) as

$$
\begin{equation*}
A X=R \tag{C.3}
\end{equation*}
$$

with $A$ being tridiagonal of the form

$$
A=\left(\begin{array}{ccccc}
b_{1} & c_{1} & 0 & \cdots & \cdots  \tag{C.4}\\
a_{2} & b_{2} & c_{2} & & - \\
\vdots & \vdots & \vdots \\
1 & - & a_{r} & - & b_{r} \\
c_{r} & \vdots \\
\vdots & & \cdots & - & - \\
0 & \cdots & 0 & a_{r} & b_{r}
\end{array}\right)
$$

For solutions we define

$$
\begin{align*}
C_{1} & =1 / b_{1} \\
C_{r} & =1 /\left(b_{r}-a_{r} c_{r-1} G_{r-1}\right) ; 2 \leq r \leq \Gamma  \tag{C.5}\\
D_{r} & =-c_{r} G_{r}
\end{align*}
$$

and let

$$
\begin{align*}
& B_{1}=G_{1} R_{1} \\
& B_{r}=C_{r}\left(R_{r}-a_{r} B_{r-1}\right) ;  \tag{C.6}\\
& \quad \alpha \leq r \leq r
\end{align*}
$$

Then, the solutions appear as

(c.7)
provided all $G_{\gamma}$ in (C.5) are finite. That is, if

$$
\left.\begin{array}{c}
b_{1} \neq 0 \\
b_{r} \neq a_{r} c_{r-1} G_{r-1}
\end{array}\right\}
$$

(c.8)

Appendix D. Computation of the weight functions for Gauseian quadrature. We consider the set of complete orthogonal Legendre polynomials;
$P_{m}^{l}(\mu)$, in which $l=0, \pm 1, \pm 2, \ldots$ and $n=0,1,2, \ldots$. We define this set, according to (7.8), to be normalized such that

$$
\begin{equation*}
\int_{-1}^{1} P_{n}^{l}(\nu) P_{n}^{l}(\nu) d \nu=2 \delta_{n, n^{\prime}} \tag{D.1}
\end{equation*}
$$

where $\mathcal{N}$ is the sine of latitude or equivalently, the cosine of colatirude, $\phi$. Now in order to expand an arbitrary functin of latitude, say $f(\mu)$, in terms of the set of Legendre polynomials we let

$$
\begin{equation*}
f(\mu)=\sum_{l} \sum_{n} f_{m}^{l} P_{n}^{l}(\nu) \tag{D.2}
\end{equation*}
$$

from which the coefficients, $f_{m}$, are obtained through application of (D.1) such that

$$
\begin{align*}
f_{n}^{l} & =\frac{1}{2} \sum_{\ell} \sum_{n} f_{n^{\prime}}^{l} \int_{-1}^{1} P_{n}^{l}(\mu) P_{n}^{l}(\nu) d \nu \\
& =\frac{1}{2} \int_{-1}^{1} f(\mu) P_{n}^{l}(\nu) d \mu \tag{Di}
\end{align*}
$$

However, to be able to transform at will between spectral and grid point space, it is necessary to represent $f(\mu)$ at a number of discrete points, $\mu_{k} \quad$, in which $k=1,2,3, \ldots, N$ with $N$ being the total number of points lying within $-1<\mu<1$. Thus at each latitude point, (D.2) becomes

$$
\begin{equation*}
f\left(\mu_{k}\right)=\sum_{l} \sum_{n} f_{n}^{l} P_{n}^{l}\left(\omega_{k}\right) \tag{Do}
\end{equation*}
$$

This means that in order to determine coefficients $f_{m}^{l}$ we must evaluate the integrals in (D.3) numerically and at the same time maintain the orthogonality properties of the discrete polynomial represencation in (D.4). For this purpose, integrating by quadratures, we introduce a set of Gaussian weight functions, $W_{k}$, such that

$$
\begin{equation*}
\sum_{k=1}^{N} w_{k} P_{n}^{l}\left(\mu_{k}\right) P_{n}^{l}\left(\omega_{k}\right) \equiv \int_{-1}^{1} P_{n}^{l}(\omega) P_{n^{\prime}}^{l}(\omega) d \mu \tag{D.5}
\end{equation*}
$$

and the numerical analog for (D.3) becomes

$$
\begin{align*}
f_{m}^{l} & =\frac{1}{2} \sum_{l} \sum_{n} f_{n}^{l} \sum_{k=1}^{N} w_{k} P_{n}^{l}\left(\mu_{k}\right) P_{n}^{l}\left(\mu_{k}\right) \\
& =\frac{1}{2} \sum_{k=1}^{N} w_{k} f\left(\mu_{k}\right) P_{n}^{l}\left(\mu_{k}\right) \tag{Di}
\end{align*}
$$

The remainder of this Appendix is devoted to the method of evaluation of the Gaussian weights, w he

Because we know that any given Legundre polynomial, $P_{m}^{\ell}(\omega)$, can be represented by a finite series in $\mu$ of at most degree $n$, we can exband
and thus,

$$
\left.\begin{array}{l}
P_{n}^{l}(\nu) P_{n}^{l}(\nu)=\sum_{i=0}^{n+n^{\prime}} b_{i} \mu^{i} \\
\text { or } P_{n}^{l}\left(\mu_{k}\right) P_{n^{\prime}}^{l}\left(\mu_{k}\right)=\sum_{i=0}^{n+n^{\prime}} b_{i}\left[\omega_{k}\right]^{i}
\end{array}\right\}
$$

Integrating (D.8) by quadratures using (D.5),

$$
\begin{align*}
\int_{-1}^{\prime} P_{n}^{l}(\omega) P_{n}^{l}(\mu) d \omega & =\sum_{k=1}^{N} w_{k} P_{n}^{l}\left(\mu_{k}\right) P_{n^{\prime}}^{l}\left(\mu_{k}\right) \\
& =\sum_{k=1}^{N} w_{k} \sum_{i=0}^{n+n^{\prime}} b_{i}\left[\mu_{k}\right]^{i} \tag{Di}
\end{align*}
$$

Equating (D.8) and (D.9) we have
and thus for any $i$ such that $0 \leq i \leq n+n^{\prime}$ it must hold that

$$
\begin{equation*}
\int_{-1}^{1} \nu^{i} d N=\sum_{k=1}^{N} w_{k}\left[\mu_{k}\right]^{i} \tag{D.11}
\end{equation*}
$$

We see from (D.11) that if we choose the number of latitude points, $N$, such that $N-1=m+m^{\prime} \quad$ then utilizing all $i=0,1,2, \cdots, n+m^{\prime}$ we can form a set of $N$ equations containing $N$ unknown quantities, $\mathcal{W}_{k}$ ) for inversion. However, in terms of colatitude, $\phi$, for which we can show that any $\cos j \phi$ ( $j$ is an integer) can be expanded in the form

$$
\begin{align*}
\cos j \phi & =\sum_{m=0}^{\frac{1}{j}} a_{2 m} \mu^{2 m} \\
& =a_{j} \nu^{2}+\sum_{m=0}^{1 / 2-1} a_{2 m} \mu^{2 m} \tag{D.12}
\end{align*}
$$

and

$$
\left.\cos j \phi_{k}=a_{j}\left[\mu_{k}\right]^{j}+\sum_{m=0}^{j / 2-1} a_{2 m}\left[\mu_{k}\right]^{2 m}\right)
$$

(D-4)

Then, inserting (D.12) into (D.11),

$$
\begin{align*}
& \frac{1}{a_{i}} \int_{-1}^{1} \cos i \phi d N \quad-\frac{1}{a_{i}} \sum_{2 m} a_{2 m} \int_{m=0}^{1} N^{2 m} d \mu= \\
& \quad=\frac{1}{a_{i}} \sum_{k=1}^{N} \omega_{k} \cos i \phi_{k}-\frac{1}{a_{i}} \sum_{i} a_{2 m} \sum_{m=0}^{N} \omega_{k=1}\left[N_{k}\right]^{2 m} \tag{D.13}
\end{align*}
$$

or

$$
\begin{align*}
& \sum_{k=1}^{N} w_{k} \cos i \phi_{k}=\sum_{-1}^{1} \cos i d d N \\
& =\int_{0}^{-\pi} \cos i \phi \sin \phi d \phi \\
& =\left\{\begin{array}{l}
0 \\
0 \text { for } i \text { oed } \\
\frac{1}{i^{2}-1} \text { tori } \sin , \\
i=0,1,2, \ldots, n+m,
\end{array}\right. \tag{D.14}
\end{align*}
$$

where we have made use of (D.11) to eliminate the second term on each side of (D.13). Again, as for ( $D .11$ ), we see that if we take $N-1=n+n^{\prime}$, we can invert (D.14) to obtain the Gaussian weights.

As an example, consider $N=3$ where we select $\phi_{1}=30^{\circ}, \phi_{2}=90^{\circ}$, and $\phi_{3}=150^{\circ}$. Then, from (D.14) we can construct the set (using $i=0,1,2)$

$$
\left\{\begin{array}{l}
w_{1}+w_{2}+w_{3}=2  \tag{D.15}\\
\frac{\sqrt{3}}{2} w_{1} \\
\frac{1}{2} w_{1}-\frac{\sqrt{3}}{2} w_{3}=0
\end{array}\right\}
$$

with solutions

$$
\begin{align*}
w_{1} & =w_{3}  \tag{D,16}\\
w_{2} & =4 / 9 \\
w_{2} & =10 / 9
\end{align*}
$$

We note that the solutions (D.16) are symmetric in $W_{k}$ about the aquator. If we assume such symmetry a prior then all equations in (D.14) involving odd values of $i$ become redundant and we can write (D.14) over the integration interval from $\phi=0$ to $\quad \phi=\pi / 2$ as

$$
\left.\begin{array}{rl}
\sum_{k=1}^{N} w_{k} \cos 2 i \phi_{k} & =\int_{0}^{\pi / 2} \cos 2 i \phi \sin \phi d \phi \\
& \left.=-\frac{1}{4 i^{2}-1}\right) \\
i=0,1,2, \cdots, \frac{n+n^{\prime}}{2}, N-1=n+n^{\prime} \tag{D.17}
\end{array}\right\}
$$

Again, using the example used above in which $N=3, \phi_{1}=30^{\circ}$, and $\phi_{2}=90^{\circ}$ we have $\frac{N+1}{2}=2$ and $\frac{N-1}{2}=1$ giving the set

$$
\left\{\begin{array}{l}
w_{1}+w_{2}=1 \\
\frac{1}{2} w_{1}-w_{2}=-1 / 3
\end{array}\right\}
$$

with solutions

$$
\left.\begin{array}{l}
w_{1}=4 / 9 \\
w_{2}=5 / 9 \tag{D.18}
\end{array}\right\}
$$

Furthermore, if we want to obtain $U_{k}{ }_{k} A$ for the entire pole to pole integration, we need only make use of the symmetry property

$$
\begin{equation*}
u_{N+1-k}=u_{k}+\delta_{\phi_{k}} \pi / 2{ }^{N_{k}} \tag{D.19}
\end{equation*}
$$

which gives for our example

$$
\left.\begin{array}{l}
w_{1}=w_{3}=4 / 9 \\
w_{2}=5 / 9+5 / 9=10 / 9 \tag{D,20}
\end{array}\right\}
$$

Solutions (D.20) are identical with those of (D.16).

