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Introduction

During the current contract period progress has been made in all

areas of our program.  The progress in each of the task areas is outlined

below with the details of the development of the numerical model being

discussed in the main body of the report.

(I)  The numerical model

The major portion of our research funds are being devoted to this task

and substantial progress has been made in writing the necessary computer

codes.  The vorticity and thermodynamic equations have been programmed with

the friction and heating omitted and the model has been run barotropically

(i.e. no coupling between levels) at several levels for 12 days of prediction

(300 time steps) using a Lorenz n-cycle scheme. Energy was- found  to  be

conserved at all levels.  The model will be run baroclinically (i.e., including
.

vertical coupling between levels) very shortly using an arbitrary specified

vertical velocity field.  It is anticipated that by the end of April the

coding of the vertical velocity program will be complete and the model may

be run baroclinically with an internally consistent vertical velocity field.

The most time consuming portions of the chemistry and heating rate codes

have been programmed.  A program for evaluating the vertical column concen-

tration of ozone above any level is complete as is a code which derives the

daily average values of the photodissociation coefficients, J J , and
02'  03

J   , at every grid point from the predicted ozone mixing ratios.  This code
N02

also calculates the atmospheric heating rate at each grid point resulting

from the absorption of solar ultraviolet and visible energy.  The code will

shortly be extended to include the small additional contribution that

molecular oxygen makes to the heating rate.  By the end of April it should

AJ
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be possible to predict the photoequilibrium ozone concentrations at every

grid point for any specified solar declination angle and similarly to

s           evaluate the contribution of chemical processes to the loss of ozone (i.e. 9

to   evaluate   the   term   (dX-   /dt)c
in equation   (1. 31)). The programming necessary

U3

to complete the specification of atmospheric heating (which includes the

infra-red contributions) will also be finished shortly.

As initial conditions for the model we shall specify the  Z  and  T

fields.  We have obtained tapes of climatological monthly mean values of

these parameters on a 5' grid below 100 mb and from pole to pole.  A code

has been completed for converting this information to spectral form.  Between

100 and 10 mb we are using other data sources such as those obtained for

task II which unfortunately apply only to the Northern Hemisphere.  Above

10 mb there is little data available and an arbitrary initialisation will

be imposed.
:

The lower boundary condition on the dynamics - that is the orographical

V
distribution - is already coded but the lower boundary condition on

the ozone concentration remains to be progeammed.

The major coding task remaining is to couple the dynamics with the

chemistry.  This requires a program for transforming back and forth rapidly

between grid and spectral space.  We anticipate that the coding of the

numerical model will be complete by the end of the current contract period.

Estimates of computation time needed to run the model continue to be

approximately 3 seconds per model day or 8 hours per model year (see table

0.1).  The remote terminal to the IBM 360/95 at Goddard Institute for Space

Studies was installed at M. I.T. at the beginning of January and has performed

probably as well as may be expected for these first few months of operation.
C

J
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(II)  The stratospheric climatological data analysis

The conversion of the 5 years of daily values of Z and T on the NMC

e
to a 5' latitude-longitude grid will be completed shortly.  A generalised

computer program for obtaiding the daily and m6nthly statistics from the

Northern Hemisphere grid data is complete.  The output will be fed onto data

tapes from which conventional printout and plotting routines can be accessed.

For the 1964 statistics the-data has been satisfactorily compared with prior

computations.  The data will probably be displayed on hemispherical grids

via contour routines presently being constructed.  It is anticipated that

the data and the displays for the years 1964-1968 will be completed at the

end of this contract period.  This information will be analysed during the

succeeding contract period.

With regard to the portion of this task relating to the computation

of vertical velocities it has become clear that Dopplick's computer code :

should undergo considerable revision (e.g., the cloud statistics should be
4

updated).  We feel that the vertical velocities derived from the present

code may not be used as a climatological data base against which the pre-

dictions of the numerical model may be compared.  The technique for evaluating

w  in the numerical model is potentially more accurate than is Dopplick's

computer code while to modify the latter is a considerable undertaking.  No

progress in deriving vertical velocities from climatological data has there-

fore been made largely because Dr. G. Boer has not been replaced.  This fact

is reflected in the financial statements.

(III)  Heating by trace constituents

The activities involved during this period have typically represented

becoming familiar with and obtaining source information.  Specifically we

have updated a visible radiation code by converting radiation energy density

A7                                                                                                                                           -
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to gas temperature changes.  This visible he
ating code will be incorporated

as one portion of the total aerosol heating c
ode.

A second area of activity has been in the pr
eparation of the infra-red

radiative trans fer codes.      This   code  will be utilized ih computing   the

direct infra-red solar heating and the strat
ospheric warming by ground

emissions. Combining these two infra-red heating codes  with the visible

heating code will give the total aerosol heat
ing from all sources..

The inputs to the radiative transfer codes w
hich have required recent.

updating are the physical and optical proper
ties of the aerosol.  In the

case of physical characteristics both size a
nd projected number density

have been the focus of attention.  Recent st
atic tests of the SST engine

will be utilized to obtain size information 
concerning the non-gaseous

emissions; however, preliminary indications 
are that coagulation will

inevitably take- place  and  will  have  to be estimated. Data which is missing

and important to the basic understanding of 
the processes involved in the

41
coagulation is aerosol size data vs. distanc

e from the SST engine.  Projected

number density of aerosols from engine emiss
ion data indicate that concentra-

tions of 3 particles/liter may be expected un
der global conditions.  Optical

properties of the aerosol such as index of r
efraction and the absorption

characteristics are being measured in a combined (ESL/AFCRL experiment

on an SST engine emission sample obtained fr
om T. Broderick DOT-TSC.

Preliminary results indicate that the sample
s are optically different than

auto and chimney partiuclates.  It has been 
found that 25% + 85% by weight

of the samples contained (assumed to be) unb
urned fuel or a by-product.

Further analysis of the properties and optic
al characteristics is underway.

The principal investigator has been employed
 full-time on this

.

contract during the current contract period.
  In early December he attended

a C. I.A.P. workshop in Ft. Lauderdale where 
he contributed to a chapter of

Al-
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the monograph on the neutral stratosphere concerning the simulation of

dynamics.
stratospheric  During February Dr.'§ Cunnold and Prinn attended the C.I.A. P.

"
workshop in Boulder, Colorado at which the first draft of the monograph

on the perturbed stratosphere was written and Dr. Alyea attended the

workshop of the following week when monograph 4 on perturbations of the

troposphere was prepared.  Dr.'s Cunnold, Alyea and Phillips have submitted

a paper regarding the modeling work to the AIAA/AMS meeting to be held in

Denver in June and plan to be represented there.

\*
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V TABLE 0.1 Estimate of calculation times

Calculation Time (in seconds per time

step) on GISS 360/95

1.  Nonlinear terms; i.e., Jacobians in S. T, and 03 pre-

diction equations.  Total - 2-2/3 Jacobians at 24 < 1.00
-

active levels with 2566 nonlinear interactions at

each level.

2.  Photochemical reaction rates (values for terms con-

taining transcendental functions are taken from tables .05

using machine language routines.

3. Photodissociation rates (transcendestal functions from .83

tables as in 2.

4.    Heatiag dde  to 03 (transcendental functions as  in 2). .20
.W

5.  Spectral-grid-spectral transformations for 2, 3, and 4. < .80
-

6.  Inversion of W-equation (see Chapter 8) < .30
-

7.  Totals

a.  For one time step < 3.18 sec
I.

b.  For one year of 1-hour steps (8760 steps) 5 7-3/4 hrs.

.

A,
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1. Basic dynamical equations and coordinate system.

The horizontal coordina
te system will be longi

tude (positive eastward
)

and latitude, denoted by A and f · Tliis dependence will be represented

in spherical surface ha
rmonics, except that ce

rtain terms, such as pa
rt of

the heating and photoch
emistry will be evaluat

ed point-wise at select
ed

values of 21 and 92 .   In the vertical direction pressure  ( ..·») will be

used as a coordinate with finite-differences being employed. These

pressure levels will be
 distributed at equal i

ntervals of log P in or
der

to give roughly equal i
ntervals in height.  We

 define

1

-, (1.1)9     =       Ae    fr   (100   C.bar)

1.-  =- ikp )    P  =   a

From the hydrostatic
relation     c/+  =- t 2   c 3   and      f  =   -t/RT   ,  we  have

31=- flti _ -12 J.
(1.2)

1,                                
                                 

                          43
- RT  Y

*

The vertical levels will be separated by a uniforn value of   Al Z .   To the

extent that the tempera
ture T is approximately

 uniform a change of on
e in

Z corresponds to a height change of the order of 7 km. The bottom of the

atmosphere will for simplicity be taken at Z 0 , i.e. at   · 2
= 100 cb

instead of at the conve
ntional sea-level press

ure of 101.325 cb.  The
 top

of the "atmosphere"  will  be arti ficially  set  at    Z  i    Ta F corresponding

to a geometric height o
f about 70 km.

The dynamical system not only assumes hydrostatic balance, but also a

"quasi-geostrophic balance" in the horizontal equations of motion. Because

we must consider global
 processes over the ent

ire sphere, this balanc
e must

allow for complete vari
ability of the coriolis

 parameter f :

.

1

\ i
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f  =   .2 -rl  Al, f (1.3)

11    =    7.  2  92  K/0 5     rod    5 ec-1
.

The quasi-geostrophic balance in question is obtained as follows (Lorenz,

-3
Tellus, 1960, P. 364).  First, we divide the horizontal velocity /Lr into

A

a  non-divergent  part     k  W T7   given  by a stream function   9 '   and a diver-

gent part -VX , given by a velocity potential X :
4

Ri-- Abvqb- VX
(1.4)

-3
If the eastward and northward components    of     /U- are represented   by  ,/«.,9 and    .  Gr-

and  EL, is the radius of the earth, this is equivalent to

d)                   ,    3 0  _ -1 9 '&
,1,6  =  CO C•OQ, f  -   =     -  -    -dt a·     9%          4 651 f     2   (1.5)

a     guit       --     _,             6,  0                   1       '2 9<
/tr = - .- --.-

d E-                  a. ul  f    2 ->\ 4  2 f
The vertical component of relative vorticity,   , and the horizontal di-

..LA

vergence of /U- are related to  (iP and  X by
-1                       ' I -           2           (1.6)

6      =        6    -    L  unt    RY         =     91    +         3                    66 1.,tr      AT         =        -     '9          Ot

where V is the horizontal Laplacian operator on the sphere.
4

The condition of quasi-geostrophic balance is
R

v. f 7 +   =    3  9 3. (1.7)

where  / is gravity and   .  is the height of a constant pressure surface.

[Unless noted otherwise, all partial derivatives with respect to 3:1,   ,

and.t-(time) are carried  out at constant pressure  (or Z  ) ] . The hydrostatic

relation,
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(1.8a)
9 9-                         1                       R  I1-
9  0                                      -1 2

.,                                                                                                                                       or

91/ RT (1.8b): 9-91

enables (1.7) to be rewritten as

g. f v'k- t V,2 8 r (1.9)

2Z
Associated with this relation (which is a simplified form of the

equation obtained by taking the horizontal divergence of the equations of

motion (   is the "vorticity equation":

742 +             1
*-->        1 1

- =- Axof.9(-A+Fy)+ MtvT +  g.( a. A/,/ ci.io,«
where  EL is the horizontal frictional force per unit mass.

The continuity equation (conservation of mass) is

-2- /c l i,  1  _    -2- /2 1    =  -  v. AF      =   v   /t-
1-, (1.11)

'p  \-X   }   -    2P   Cdt    J
.

The upper boundary condition at  Z i 2TOP will be that Ak/kt

vanishes there. Let us define
9

X =-,11.X' 8 .-.. = - 'X (1.12)

)                    2 p9
TO r

Equation (1.10) can then be rewritten as

L2t
/1   1

V .--Ill-/ -- -  4*gf.g(f-, 9*)-  9.  f  9( )+  9·(  F.»  %  6 ) (1.13)

)t -

If  we  use          Z 0  -  h,    F       as   the vertical coordinate, the appropriate

vertical advection velocity is

W=  5 3= - -1. SU' (1.14)

dt 7 dt

The continuity equation   (1.11) in terms   of    |/"   is:



r
4                                                                                                                                                                                   -1-4

9.PAG  +9(PW)/91 = 0 (1.15)

From (1. 11),(1. 12) and (1.14) we get '3 [ pvt/  - gzA 1/BP=°,or
' p  w    =   9 ZX (1.16)

Boundary conditions on W are that 1/1/ vanishes at Z andTo ;

that it is given b j,orographic upslope motion at the bottom:

Z=z 1    W CO (1.17)TOP

Z =  d:        VI/z   /2 5. « =  f.    /4.   91
where .k is the orography and „U   is 4-x V ¢       at the first interior

level for  96'  .  Here

H. = RT. s 7 6-hl (1.18)V i
is a constant.

.-a

r.*.Il
1 9 462Friction will be represented by a vertical Austausch,  rh, -

-4
2 5/9 P    .     Thus    U•  a w i    =    2  I  V.  6 -32   Ex k   10                                                                      9 F                    po

In the interior regions of the model (but not at the ground) we set

f  =   f  '<„4·6 ( t-A't) A·  , 8,v'.0
-

i r Z Z

9 ·(--   t, 1 )   =   v.  l  -1--6  k    2-EffPO                              *6   A.  14 7

C                Replacing      p      by         /R T and replacing    3 /R T    by      '/Ho         we  get

4- _,  4 1 16-       3 925
9·F- *a- 1: x 1,1-- · . F ·-_ 1 .Po      +        80-     9 1            -I-I ---;

At  the ground,  we  can  set    2   equal  to  0.003   fo  / A;     /tr     , with i ;61
-1

a suitable mean anemometer speed (5 m/sec  ) and the anemometer #ctor wind
/1-A

/1.r    equal  to a rotated  ( 0< = 22.5- degrees) fraction (6.5) of Axot

at the lowest interior level at which (  is defined

i&..,1    =   le. 0,3713) /0..filiT„" 6'(90 --*+W *. 9 *11.-t,#'.
„(1.19)

r     0   3  41
(-7  1-  Y
V' 1 t, 6

3 = - f il- t.'te' 1 A l ' «·') ='li F,4,StL
Po

8441*           0
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-> I - -1

For     H   =   7  km,    / Ar / r 3 *1 5/c and       64#74  -=   0.92  5-,   the
-6    -1

coefficient here has the value 10 sec

The conventional quasi-geostrophic Taylor-Ekman theory (Charney and

Eliassen, Tellus, 1949, Vol. 1, No. 2, P. 38) gives a corresponding  term

("Ekman pumping") of
C 1 (1.20)-1-

1    IC" f'      44114  J ''       92 +L   HO  1 ---2 - V-4 -1    1For      Km =  3-)(/04 0"1 2 36'c-'  and   +  =   /O    S.gc   , the coefficient .1
-6    -1

in this derivation is 1.6 x 10 sec To summarize the friction term

we can write
1

v.  fi x L   =     2- (FF)9"
-6& P .3 9 ZI/'Z>O: F= - i.e     9 1 (1.21)

7 =8 6 F   --     -   ...40     91,0,.t
where .1D   refers  to

the "surface drag-coefficient"  in  (1.19)  or  (1.20).

'       At  7 = 2 F will vanish (no stress).TOP )
The next physical statement is the thermodynamic law c     (entropy)   /  Jf =

rate of heating  + temperature.  For our perfect gas system this would be

er,t *(T«15'11 = f  ;  »« cr<-=-7 (1.22)

where  S  is the rate
of heating per unit mass and 7-the temperature.  In

terms of T , this becomes

3 T         1                              2 T 45 (1.23)

St- - Clexg'1.-94). VT - w,ii - * WT  +  --*
We will however  use a simplified   form  of this, obtained by ignoring     V 9<,9 T

.-I

: and by replacing  Tin   W a Th Z   and   )4 1/l/' 7-
 

by T, where     7-
+

is the horizontal average:
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7   -        9     (bt)       +    7'      (A,    4,     +,-t )
1  -;r/2- (LF .-I (1.24).-

T=
-         \    .       '.01-  1)    J  4     J    1     '1  ·>               3              -T   '         1    0h                                                                         

                                                        111    li-03        j  _   ir,

1 Z-               0

[This definition of () and      c) '     will be applicable  to any variable. ]

This greatly simplifies the computations, and is reason
ably accurate because

9 +  »  9  X       and         3  T'/2 2    9-   * T
/

is generally small com-

pared to   2-7/2 z  +x T .  The result is

3 -,             4                                  f  &7        -  1              4- 1
- i    -       k   X9  0.97-   -   W   C       -    4   K   T  j         +             i    /0
2t c dz               P    (1.25)

However this simplification has the result that we can no longer interpret

(1.25) as forecasting  7-  , the horizontally averaged  
/ ;  this is

because the horizontal average of (1.25) gives simply

97- _ -3    ic6/ p
29 t

whereas the horizontal average of the exact equation (1,23) gi
ves

-
.-.

9-I 4                                                       -
--h#.i-

--0--

- k  T,- 25  3.if , W'T, ) ,
(1.26)

3-t        Cr

showing the effect of vertical transports of entropy by t
he motion.  We

expect little change   in     7-     from  the observed annual average        f(Z)     ,

however, either with season or with changes in the ozone 
chemistry.

[The effect of the latter will be investigated separately, 
as discussed later.]

In passing, we note that

2 T RT /97
.- +KT c -17.- 1- i)91

,   C  d '
C)r

. 3-  2- » c 1 -t '1 (1.27)

- -)4,
0Z

9
-         N z     /8 r    1

-   -F  C -* )
where  N  is the buoyancy  , frequency.



Finally, we deacribe the basic form of the equation for the (number

density) mixing ratio of a trace substance sudh as <33 . Define

(1.28)

·                                                                                                                        CEL        =     Al Z         :      /24%

where  /Fli  is the number density of the *-24 trace substance,  09   is thech

total number density, assumed to be equivalent to the "normal" constituents

Ni,     82        and CO* since      /71     is very small.
- 11

rA - p / AzT, 1 'RY,

12 =  Be·liZMMpn r el, flavt  =  /4 3 90 x /6,2 c ki loicul,:s J 4 - 1 (1.29)

The equation for Af'llt (the rate of change following the motion) is

AN. -» d .
-r,      »      '11;      +    c    2  % 9 +   - 9 11  ·   9  i;      +   w    f_Ssdt- 2 t gz

=          1         <_409     )           +        1      2_      /    r      Ka   'p   f  :    b1
Al

M          dt         JC f   9 '3' c
9'3   4

where c d 2MI/di )c is the net rate of local photo,-chemical generation

of the substance (number per unit volume per unit time) and Kcl iis the

.·

vertical eddy-diffusion coefficient [with dimensions (length)2 -*    time].   K 

will vary only with j

The vertical diffusion term can be rewritten by using the hydrostatic

equation as
.-

9-    i   K,  1 1-fi  9 4,7    -     2-.   1--    id    p  23:; 1 (1.30)

2 r  i       a  (£  r)    2  F   J      »     'P P i H'- 9 Z j0

where we have again absorbed the variation of density with  T into   N·o   on

the recognition that kJ itself is not a precisely known quantity.  164:j (and

the momentum Austausch   j<  ) will be prescribed functions ef    .  The

equation for /Fc' is now

-1-   E-  E-  19  79 4,12 F           /6 1        9  Z    .1346; 9 /IL: 1 /j/,4 j
Clix (74-97()- V«.- w --2   +   .....I- 1  -*. C  1

#t 01    m \.dt j (1.31)
6141             C

or
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.  -

"3 )6 9*i 1   1 - :b -1     ,     -8 ( p w.*) 17--I

=   -    -15    lv. F  «  1'   ,
, --I--..-I-/.--- I.    1

/6 k ,-1   --
M L J

1         N  kii \ -9.    f-   tc,(.       9 At·
...i' (1.32)

1-·- 1-  1 - P -1 1
41„, I  d e  /c       9 F l 1402    2 1  J

[having made use of (1.4) and (1.15) to obtain
 the last form].

.-.

The rate of change of  462  (the horizontal av
erage) is obtained from

the horizontal average of (1.32):

C, 4/2      -
97 3,  f F  »'i' 1  +    I tr   C tie')  1. Li- 1

4-- wa    p.2  *J
1   rDj  -t __f (1.33)

-      'f.        or      c    i        al    L    1-lot        31   -1

The  rate of change  of   /lfi. < will however be obtained  from a simplified

form of (1.31), much as was done in the thermo
dynamic equation (1.25):

f x v q.  v '19'-  1*    0 12F        +
2.Z .Z

/ 1 #   n /

+
12       1  -     i      p 24<'-1

(1.34)

+ L - 1-ff -'

'*L,   d r 3 P   L      Ii:    .    2 1     1
.-.

In contrast to  7-  , where we are for the mos
t part content to take 7- as

- 1
given, we must predict  4    as well as  /0·  .  Equation (1.33) will

C                         C

therefore be used as well as (1.34).

Presumably (1.33) need not be applied every ti
me step in the numerical

.-

integration, '1 being a slowly changing function of time. However, the

term    W 'AL
' must be put equal to zero at r- / to ensure no netn_

<

creation of  /Kc'  by the large-scale motion.

The form of  (  d f· /</r )6 is discussed later. IIowever, a special

treatment must be used for the lower boundary c
ondition on the vertical eddy

              flux of ozone.  Galbally (Quart.
 J. Roy. Meteor. Soc., 1971, P. 18) shows
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that in the very lowest layer the vertical flux Cover land) of ozone is

proportional to the ground concentration

'/     9 46     -    ¥-3   144
*            Acl 6-4- --     -        =     d     *ovvik

6  9 Z            r.                 (1.35)

(the surface destruction of ozone being proportional  to   /3  ). The coefficient

0(  has a value of about 1 cm sec-1.  We will apply this formulation to the

lowest layer  in our model  (   0.5  2   -5  zs Z ) . Values  of  /pi are defined  at

the   top   of the layer   (    Z  =  21 Z     =    .3-- /     )   and   at   the   ground   C   Z =6,  J   =   3-   1
.

Thus   (dropping   the z -subscript   on  *  ),

i KJ  99 \ /KA \-,
\            (   4 -    -,7 -3    =      3    4  J

C -iii  927,4.9,    - ( 0067 ).r- 4     ' 4
' (1.36)

... 'Z

whence

«-     4-    4-  El -1- ile-627 (1.37)

J       1-1 ·
 Ld      j r  '1

J- Z

and

/ 140  1 d 43-<C--  11 (4_   - f_ 1      =
H, 4 2  ir- i 1 -/       j j

Cd,4 62/10) (1.38)f -1- C
Galbally cites values of the vertical number flux of ozone molecules over

i j

land in the range 1 to 6 x 10  mol  cm-Z sec-1.  Aldaz (J. Geo. Res., 1969,

1/                      -2           -1
P. 6943) estimates a global average of 1 to 1.7 x 10 mol cm sec

it              -2       -1
Pichinga representative value of 2 x 10 mol cm sec and equating

19     3
this   to        /N»,    k     9 14/3 . -         ,

we find, for /)1  = L/,5-5- A i D Wvi-
ANi

and  '< ·=   105 64*1 &4'c , that a vertical gradient of ozone number
-I

mixing ratio of

94 -13 -, 5 X 10 (1.39)
-9

- -4 °,5 A 10 CNA         =rb,
-)                                      1 0 FL Y,4

is required.  Galbally's data show a typical ground value for /% of

1



p..

,/                                        19                            -  51-10
Sx/0 -9  4,5 XIO *J /0 The trpical inferred

downward flux of ozone observed near the ground is compatible then with a

tropospheric  K  of  105 cm2 sec-1 and a tropopause (101:m) value for ,«

18

of 6 x 10-8 or a    /6 -4nivalue for  /1   of  (6 x 10-8) x (8 x 10  )
10   -3-50 x 10 cm  .  This value is not greatly inconsistent with values of

12   -3
10 cm which seem characteristic of the tropopause level in the  meridional

cross section prepared  by  D.  Nu  from  the  data  of ttering and Borden  (1967).

A special treatment of the ozone equation will be necessary at high

levels.  At these heights, Lindzen and Goody (J. Atmos. Sci., 1965, P. 341)

show that the photo-dissociation of ozone is extremely rapid, with a time

constant becoming less than 1 hour at heights above 45 km. (They pre-

sumably use typical values of incident solar radiation;)  The conventional

methods of "time-stepping" equations   such  as (1.34) require a computational

time step no longer than the chafacteristic physical times associated with

terms on the right side of (1.34).  Since the advective time scale is of the

order of an hour or so, we must consider replacing (1.33) and (1.34) at

upper levels by the equilibrium condition.

(1.40)
d  m.

'162 - (4(: )ef'(il <"i.  7-4   = 0

For  use in radiation computations,   we  need      N '     , the number  of

molecules of /4; in the vertical column of unit cross-section above a

given pressure surface: dj
d)

N,   «     fm,  43      =     F «. 41 c1

2    -  f.'. -f    , d.
3           Ji'

'/1 t M
P 3

- R PO-   .   ,   t 4 '.ap

2 4-2  JO.

where     R  =  2 9 7  ilj   tih, - '   c25
-1 is the gas constant for air.
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This gives numerically
te

Ni= 2.12 x1O4 3 41 J P  iM (1.fler) 2
Z'                       

         (1.35)

Agl 11, - R,

=1    2.1  -A     A  \0            1     /+  i   J   V          11.4        (   CA*1-3
0

In the case of molecular oxygen, 4* is tak
en as uniform and equal to 0.2096,

giving

25- - 2-
N              O.4494  x16 F C.441 (1.36)

0
A

The lower boundary condition for ozone

The surface destruction process for ozone must give rise to a

boundary layer effect in which the ozone d
hanges rapidly from the free air

value a lower value at the ground.  Our use of (
approximately) 3-km

height increments will not represent this 
adequately.  Secondly, land and

1

- water surfaces differ markedly in their ef
fect on surface ozone.  Fortun-

ately it is possible to correct for both o
f these complications by using the

detailed analysis by P. Fabian and C. Jung
e (Global rate of ozone destruction

at the earth's surface:  Arch. Meteor., Ge
o.9 Bioklimat., (a)-Meteor. u. Geo.

19, 161-72, 1970).  The important point is
 to obtain the correct global

ratio between the lower tropospheric value
 of ozone and the surface destructior

rate, since the former may affect the ozon
e amount higher up and thereby the

photochemical destruction rates.

Fabian and Junge model the presumed bounda
ry-layer ozone profile by

standard methods and make allowance for di
fferent properties of land,

vegetation and water (and their global dis
tribution) and for different

1

. wind speeds.  They arrive at a global surf
ace destruction rate ranging from

3.1 to 5.6 x 1010 mol/cm2 sec, the variation being due to uncertainty in

choice of surface wind speed.  Using an av
erage lower tropospheric value of         
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5  x  1011 mol/cm3  for 03,  we· have a global ratio .of

d  = 3.1 to 5.6 x 10  - O•08 cm sec-11- 5 x 1011

[Note that "measuredt' values   of   d   at the ground range   from   .04   cm   sec-1    over

water to land values of 0.6 (Aldaz and 1.0 (Galbally) cm sec-1.]

Referring to our model equations (1.37) and (1.38)

f .5- 3 4  76  i - 1

C HoaZ i, ( YJ-,-Y...1 AY,
A d                                    ,            /8  11„62)                                       3'J-- , +l --*. 1

1                                                                                                                                                             k...            1<.9           .1

we recognize the left side as the downward diffusive flux at the botton of

our model, (which must equal the surface destruction   rate)    and  XJ-1   as
the number density (mixing ratio) in the model corresponding most closely

to the 5 X 10 number density for the free air referred to above.  Our
11

model will not include different types of surface with their differing

abilities to destroy ozone.  This is alright since, because of the strong

horizontal advection in the atmosphere, these differing surface properties

affect primarily the local boundary layer profile and surface value rather

than the local free troposphere values.  We must use a correct global effect,

however, and we get this by simply choosing a single model value for  d  such

that the ratio of the destruction rate to the free air value in the model

matches the global observed ratiO9  d.

cl                                                '
CL   1                         0.O   8                 c.¥"'       5   s e.E

A H   &21+ - b
1< 73

I '
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For H AZ = 3 Km, and Kd = 10 m2 sec-1, this gives d = 0.105 m sec-1.

Fabian and Junge also discuss the ratio (their E) of the surface value of

03 to the free air value, and obtain typical values of 0.35 over land and

0.85 over water.  Our model now implies a single value for this ratio of

TJ      1 1
.- 0. 9

7                 4
1

i..1

very comfortably located in the range inferred by Fabian and Junge.
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Vertical diffusivity for ozone.

An upper estimate for Kd in the troposphere and lower stratosphere

can be obtained from measured ozone profiles by equating

/ 142 \
Ii)16                                                                                                                                    1 2                      1                1f .1- 4 9 1-\i -     r-045£,Nnk --  3.5 x /O-·  .j.< % CM  <sec

C  St 9       1     1                          -DJ

-12
where * is the number density mixing ratio, and 3.5 x 10 is the product

-23
of the mass of an ozone molecule (7.9 x 10 gm) with the average global

10       -2   -1
surface distruction rate of 4.4 x 10  mol cm sec found by Fabian and

Junge (reference cited earlier). Values  of    1)Y /33       can be obtained

from the middle latitude synthesis by Krueger and Minzner (A proposed mid-

latitude ozone model for the U.S. Standard atmosphere.  Preprint, Jan. 1973

Goddard Space Flight Center.) (Similar values are obtained from using the

3-year average ozone profiles for Bedford and Green Bay that has been anal-

ysed by D. Wu.)
2

48               48 9x     -1z (lan) (29 29€ (cm.  )       10 j 3 K  cm
d sec

cm

2          5 x 10-8                                            4-13             -3
3                       0.5 x 10 0.9 x 10 7.8 x 10

46
4

5 0.5 0.74 9.4 x 10

6                  7
4

7 1.5 0.59 4 x 10

8             10
4

9                        6 0.47 1.2 x 10

10             22
4

11                       15 0.36 0.65 x 10

12             52

13                      15 0.26 0.90 x 104

14            82

15             '         30 0.19 0.61 x 104

-           16            142
4

17                       63 0.15 0.37 x 10
18            267                                                4
19                       82              0.11 x 10-3   0.39 x 10-8
20        431 x 10

L-
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At higher elevations ozone begins to no longer act as an inert tracer

«           Here we refer to recent computations by S. Wofsy and M. McElroy (On verti-

cal mixing in the upper stratosphere and lower mesosphere.  Submitted, No-

vember 1972, to J. Geo. Res.)  These authors combine (f) the suggestion by
1/5L

Lindzen that K might vary as    p        because the vblocities in gravi-

ty waves - a like'y mixing process - tend to increase in this manner with

height and (k) measurements by Ehhalt of methane concentration.  Using a

chemical model,   · ·they   find that Ehhalt' s measufements   at   50  km   fit   but   with
3   2

a Kd distribution having small values of 2 x 10  cm  sec-1 at 16-20 km in-

-1/2creasing to 2 x 106 at 80 km as
(nm)

.  We can model this simply by no-

ting that n  is proportional to p for constant T, and tliat p in turn is pro-

portional to exp(-Z).

The following distribution of K seems reasonable.

(a-)        2  4   2.= 0.6 1--   1  -                5         2-   1
rt z· tf -- 10 Ch„

1  54. C.D

(61  79 6 z (Z, = 94: ki  =   2 x /0    (M   /stc
3   1/

(15-1<,)(B-.1.)     r

k     -        k  9      +         I     ,             2.     i  -     L z- ,  Z« -2 Z-21C.ZI- 0/

(c 1         2   771                               :                       1<2  =   9.4·  X  l o s-         2     =    1'0-1

k  =   ki   -1  (k  =ISO
.,t-Fir-zI 1- I     -

\  3                  2,

e,E t»]- 1
These formulae and numbers give the following match for Kd with the in-

ferred values cited above from ozone and methane.
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z(km)       Z Formula Inferred (0 ) Inferred (CH4)3
3                 3           3003 .357 100 x 10 78 x 10

5        .616     98                  94

7        .892     71                 40

9       1.171     48                 12

11       1.492     27                   6.5

13       1.802     13                   9.0

15       2.120      4                  6.1

17 2.433 2.4 3.7 2 x 103

19 2.719 5.7 3.9 x 10-

20 2.861 7.6 6.8

30 4.289 35.7                                     45

40 5.717 93.3 110

50 7.145 210.8 260

60 8.573 450.7 490

70 10.000 940.0 x 103 940 x 103

The CH4 inferred values are from the model B profile of Wofsy and McElroy.

We have given preference in the troposphere to the values deduced from 0-

zone, shifting over at 7 > 2.4  to the deductions based on methane.

The formulas for K given above involve 6 selectable parameters:  Z ,

Z   Z.K. K_, K20  These can be changed at will to allow study of our un-1'  2'  0'  1

certainty about K; most notably they should be interpreted as probable up-

per limits for K since some vertical transport of ozone will be produced by

the large-scale explicitly-forecast motions of our model, whereas the method

o f   "inferring" the K-values has ignored   this.



2.-1

2.  Choice of vertical levels.

We want the vertical domain to extend well above the actual ozone layer.

We also want it high enough that there is some opportunity for the damping

effects of ozone and radiation to absorb mechanical energy generated in the

baroclinic processes of the lower atmosphere.  On the other hand, we cannot

for practical reasons get involved in the more complicated processes of the

upper atmosphere and lower thermosphere.  An upper limit of about 70 km seems

reasonable.

We obtain equal intervals   in       Z  = -4  P (P= pressure   +  100  cb)

by defining

Zj = 61(J--1,    -
-61 (I-j)

Ji J. = 1,
7,

--.-
, I. (2.1)

P.= e
')

J  =  /    is   at   the   "top"   of our atmosphere,   and   j  =  3-    at the bottom, whence

7.
67 = =

-l
2 roe                                                                   

3-1 3-1

A convenient choice is obtained by chocEing

&Z
e   = 4 A.. T 3/t)
4 2 = -6, 0 (2.2)

v    -1    °·L/°547

3-=26
so that

 -l            Zrop    --    C  3 -1  1  -,6,  .TL      =     jo.  13675-

9 - -(r-11 -5- (2.3)
/ 1- /-1- =  3.9605 410

F    corresponds  to a pressure of 39.605    J y M p 5  ,/6444 2 typical of

the height    - 71.5 lan. Successive pressure levels are separated by

(roughly) 72/25 - 2.9 km.  The relations

1              -(3.-3.)
pJ, = ./2- . jD. 2 /L  P.

J    J+1 J (2.4)

are useful.

1 6



2-2
At these levels, the following basic variables will be represented

J      =       1  , 2,
--

J Y.:
73- J·  .· ) (A/-1 3 J

together with the heating rate, the photo-chemical term , and the vertical

turbulent fluxes  of    - momentum. At the intermediate levels the

streamfunction   .  will be represented

·
_             3 3- - 1   .  4•3- - - - B-.   J -

2 - El1 7 1 j     J
For· convenience in notation, however,     f  will be labeled  with an integer

subscript according to the convention

4   6  P   =      F,  "'    )       s         it: .

This results in the following scheme.
-J

141//I
I

pi l, W  (=41 J     ».· 3 (T)   F,/  ) /  0

+ 5     r
1 ) 1           U.-,

-             2    F;  24       VIG         ('F, 1  ,  ·G      F
01 )  3                             2

0-

3  P Z     W      /4 1    L   F3    1            3           f  C,3   1     4        3
14*50'6-7

3-1  E Z. W. (N ·).     1-      F.J -1 j»l J..1 ( ' ( 5- , J-1 j -1
G.4    <.                    J -1jIll '3-1

F. Z. Vt/.
(4,)  ;                      T-.                         F.J.Jj J   J j

i        S.                                      1

3+,       P.      1                  W                       (42).              T                 1-J+I jt'     itl J-11 Jit Jil

'44&lwl 'lr  ., ..I, "\..  1   /\../ A ....4.,......4..         ... , ...«.....,,.......... -....    . . . . .   . .                           - .
....'...

3-_ ,     7      2              w              (*  )              715-1         13.-13--1 3.-1
3-1 f J--I

9                                G3 -1 ) 7-1 J-I
P_ 2_ VI/_

I

(B,)-                   T                     F1, ,/,1 3 3 3 3) 3 5 T

(F and G are defined on pages 17 and 18.)

,,
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the 1965 CIRAS annual mean, values at lower elevation coming from data based

2-3
The following table lists the values of the more basic variables for the

choice     /2- =  3/2     ,   J-= 2 6 · Values  of T above  30  km were taken  from

on statistics gathered by the Planetary Circulation Project at N.I.T.  (To

be precise, they were obtained from the latter as shown in a figure based on

them  in the thesis  by A. Hollingsworth.) The static stability parameter     S

is defined later in equation (3.20).

3

2 P.                                                    3   (6* 1 7. M     Ce„19        5 ·  /61
J                                           ZJ.                       (ll    p r I) ( )                    J

13           -4
1 .0000396 10.137 71.6 211 136x10 137x10

2 .0000594 9.731 69.0 219 196 144

3 .0000891 9.326 66.3 226.5 285 154

4 .000134 8.920 63.5 234 415 161

5 .000200 8.515 60.6 241.5 600 166
13

6 .000301 8.109 57.6 249.5 877x10 167
14

7 .000451 7.704 54.5 258.5 126x10 174

8 .000677 7.298 51.4 267 184 217

9 .00101 6.893 48.. 267.5 274 277

10 .00152 6.488 : -.. 261.5 421 302
14

11 .00228 6.082 42.0 254.5 649x10 295
15

12 .00343 5.677 38.8 248.5 100x10 285

13 .00514 5.271 35.9 242.5 154 277

14 .00771 4.866 33.0 237 236 272

15 .0116 4.460 30.2 231 364 269

16 .0173 4.055 27.5 225 557 261
15

17 .0260 3.649 24.8 219.5 855x10 251
16

18 .0390 3.244 22.2 214.5 132x10 237

19 .0585 2.838 19.6 211.5 201 217

20 .0878 2.433 17.1 210.5 302 194

21 .132 2.027 14.8 213 449 155

22 .198 1.622 12.0 222 646 125
16

23 .296 1.216 9.3 234 913x10 116
17

24 .444 0.811 6.4 248 130x10 104

25 .667 0.405 3.4 266 182 105
'                                                                  17           -4

26 1.000 0.0 0.1 284 455 :10 122x10
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3.  Non-dimensional finite-diffirence equ2tions.

In this section we write the basic equation in a non-dimensional form

(primarily to simplify the dynamical computations) and simultaneously intro-

duce the vertical finite-difference representation defined in section 2.  We

define

r  =-,4.4
(7   (d, Ai  )     =           a.-1           9   C ./1,C 691    -  66 ;w  1

7  2  (c  ,;i"'         r      L         0 7   //01 41  -
':/ t.·,4,    

4.    {  //,=.i    =     7 11-  CJ     4'    (l-'rM-   AA.0
  (3.1)

)<    ( i 1 64 )     =     2 -CL  a.1     X     /  11 #14  -  J  '. I li )

E   (11 , 1*,  )    =     -L-      0-   C )1 ly, -  d / Ii, 1
1 12

\/\j   (   1 CH  j     --     J J-2-    .   < 11 074-  «·t VV 

7-  C  J  4  )       =        T-(z   )         +               ("tj-2   z  O. z//           ' .             . 1     -7-  C.,1 £41  -  </ /  1,4  )

In the last expression  T ( </Aw ) in the "total" temperature in absolute

degrees, T (Z)  is the "standard atmosphere" temperature  (also in degrees)

given in the table at the end of section 2, while the quantity ( 931. ' (t. 1     R     «          

--

7- (non- d.LM ) is the variable / appearing in (1.25), having a zero

horizontal average. [The total      /    C    d /,w   )  is of course  used  in  all

chemical computations.]

- 5-
_fl   =     7,  a  42    Xi 0 Y 2  j         .6,  c-   I

a,  = 6.3 7/ * loG 1.et /-·V    3

-'        - /                          (3.2)R   s   .2 g 7     6,     271,       66j

C,=(7/7-) R
One day, C J U /12   )   SerS , corresponds to

/1 t (11 011 - 4 1144) = A 31 ( UT)
/·20\  = VT- (3.3)

L
The non-dimensional 9 operator is

2            1    9 Zi ) I of ''2(,1'7/ ) =   -7-,  1:z + --    --  1 66,2 (f
(41  4 dA a" 4 24 1

, „-73 (3.4)
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13 14/   =   92 X (1.16)

between   \/|     and   X    can  be  used  to  eliminate   X in favor  of   \/1/  [in

equation (1.13)] by defining the inverse Laplacian operator

i  7-2.
X =  P Kw (3.5)

We also have:

5=  9z 4,   j    9 =   X g (3.6)

A further convenient arrangement is useful for evaluating terms of the

form 2 CP F ,)1  F  ,
which appears in the vertical diffusion terms for

vorticity and trace substances and in the term

'23       .         2_  1- p (f  vt,) 1'F 2  P l.

in the vorticity equation  (1.13).    Fe  have
-

t 2-  C F All    =    5,72  5,72 - Fj-'4  '3 -'/2   _ 1--2-  \  1-     _  <.i  1  17_'/zL e p                                                                -
J                   1 4 72-

pj-,lt -(4--1 / J+'4   I.-1' n (3.7)
where we have made use of (2.4).

.-/

The horizontal advection of a quantity  j-  can be written as the

Jacobian
4                                                                                                                                     -

- 41 ·v F - b x v¢ -e F --I-

0  F    .3  +          1, 4    21-

f                                                               2 2 1   316 -P A  2 .66j

=   p ( 5 '111) (3.8)
-

The non-dimensional form of the vorticity equation (1.13), with regard to

the subscript labelling defined in section 2, together with equation (1.21)

and (3.5) - (3.8) is as follows.

FoF  J = 1)1, --·- j ,-1,.

951  A /--j  0- 11/
C f' f. f  t·) - v. f ,» vi RPAE#, ) W. - t.1- 1 11« 1 (3.9)5.t 8/ , '                L. /                     J+ 1  \ /2-1 3  J 1

-'  (1  )5„  - C.1  , F.  4 -1 / J
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4.» i 1. (3.10)
J                      J

F,          z-        0                                                                                                                                                                                                                       -                               (3.1 1)

15-  =  -  D  53 -1
- -- (3.12)

5·  =   E-: 6 1.- 5- ) (3--2 3 --

J J 3-'' 19 .1 J-- 1 ) (3.13)

ra- _-- -   (3.14)

5.      =      CK'„   .1.     +   L  H«     J -,2   a Z J

- 40 .
J

- - (3.15)

0        -           2            1     2 -n- ---1- ....

\,4 = 0 -
-i-. __     __    (3.16)

. 9

=  -   (-21 0- 1 - - (3.17)
Vtr 14 22   3     'J-1    1

The  non-dimensional   form  of the "thermal wind equation" (1.9) becomes

3 01.J= 2 3 - - I-l:
1       J          

    1

-97 9 (6- 46-,)
--  72 T. 64

J          (3.18)

The non-dimensional form of the thermal equation (1.25) becomes

3 01,    j  =    2,3.--j 3.-1  :
-

' /3 7.
,      -     -ln/T-      0.+  4.         )   -3.tv.     ,-   1-  FA'3&(9;

P- t 2.,    '  1     J  )     1
3- \7 J               L      p         „ -    a.     3          (3.19)

where

1T (< - 1
..

S.= (-1-- } f
-  -1  .--„. T 1

j                   ,   24 -f)-J af-   1 -
% 33 (3.20)

d Z  '  5,1( .

is tabulated at the end of section 2 ... 1 1   4     Q ·   *he
UJJ

rate of heating per unit mass, is still in dimensional form in (3.19).  It

is considered later in section 5.
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The trace substance equation is

2  I.01/ 3 = 3°,jotlj--,3-i:

3 46· / ct .71J   =  -1  01   C .9 ·   11 . t l i.     1  -   1/11/, 1  -«t
3 it 3-     21  \.        i)     1            j.  \ / J 1 cl 7 j.

-'b                 (3.21)
A +/11 \0

(R,  1  G.      4-    -1   1-1   1. 51.-1< 1     1C /b- 1     j j 3 - '        211  LAl/ni  d-t  /c  J I

G 1  Z       D.    (    4/    .      -   46 .) '   3 er      J- o  Jo  1  -   0   -,   3--1   -3  &   J+1     3        7

D. =  (Kie ).  "   :- (212 N; dz)
(3.22)

3                3-*  12
[The vertical diffusion coefficient       K c,if is defined  at  the Z  -levels

corresponding   to       J  ==- integer  plus 1/2, whereas the vertical exchange

coefficient |< for vorticity appearing in (3.14) is defined at integer/141

.

values of J   .1.  At the bottom, the relation (1.38) gives

76
G - --*7-1

.... -----.---------.---'.............

J-1 I-  9 -Il  1-1 0 2 -£21+2   8 1
- (3.23)

1 -    +      -        0.                  1'-
cE. .(   1<,i  )  o. -1„ 2. , I

.

The  integer     J     sets the level above which  (3.21)  may be replaced  by a photo-

chemical equilibrium statement, as discussed near the end of section one.

L



-

4-1

4.  Photochemistry.

To begin with, the photochemistry will involve only oxygen and odd

nitrogen compounds, with the latter being specified as given functions of
(or possibly pressure and latitude).

pressur«   (Equations to predict the nitrogen compounds may be added later.)

The reactions involved are the four main Chapman reactions and reactions of

NO and N 02 with oxygen.  (The following write-up is based on analysis

by R. Prinn.)

Reference:

(a)
02    +   .6 v     4    2 0

f2459 -to- xo* _/                   (4.1)

.T _ 1(42 --     5 ed3-jlze #--
I.---- -   0         ......Il

(b)         0  1- 0, ·to /vI  »  03 t. 1.n (4.2)

-                               11>19-35 7- 6 -1
i    =     1.6   X  16             2 0#6 Sec

1 --

c«,                6  +.42 29   »  LEL  f. 0
C 11

400 -X (4.3)
- 0-,

Ji        =         C     '*              1        2              4c   51            Sec
-t

U 3           07-

(d) 0 +  03 »20$ A 39f (4.4)

A                 -It

4     1    2410         e           T-     0„3  520- I
1

(e)

N   0     4-   03     »      N    i    -11.    02-
131° (4.5)

1    r                   - /i      -   --T        3       - /1    9   X  18           6                     01*L    96
2 *--

te,               IN 02 t-0  ->     N°  1-°p
5 36b                         - 11 ·-  y _C (4.6)r

4.-3  -   3. 2;   X  /6
/0 01/FL     y 64-

:
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(f,           N 02 1- -1-v  » No + o

 3 <75-   »
/1/6.     .    J g-X -X, (4.7)

3   -                   d>  Sic1                     2  I.-       -4= NO /VO
0 20

In the  three radiation integrals the exponent   is

X. = V/L <4 5 )    i Y c
.4. /4 1 A/.

U;3 4                                    (4.8)

where    Q<£. (12 )      is the absorption cross-section,   A/£= is the number of  , -

molecules  in  the C/»12. vertical column above the point [See equation  (1.35) ]

and  7;' is the solar zenith angle. (The diurnal variation of  (f will be
averaged as described below.)   I  is the incident solar radiation, a

function of the wavelength # ··  Note that because the ozone absorption bands
/\

overlap the absorpt·ion  bands  of  52  and  2:06  we' must  .include the, depletion  of
solar energy by;ozone in (4.1) and 4.7).

References:

(a)  Kockarts, 1970:  Proc. 4th Joint ESRO-ESRIN Symposium (ed. G. Fiocco).

D. Reidel, Dordrecht, 1971.

Ackerman, 1970:  As for Kockarts.

(b)  Johnston, 1971:  Science, 173, P. 517.

Schiff, 1969:  Can. J. Chem., 47, P.1903.

( f is an average of their values)

(c)  Ackerman, 1970:  As for Kockarts.

(d)  Schiff, 1969:  As above.

(e)  Schofield, 1967:  P*anet. Space Sci.,  15, P. 643.

(f)  Hall and Blacet, 1952:  J. Chem. Phys.  20, P. 1745.

L»



TABLE 4.1  Typical values of rate coefficients.

Coefficient  

Comments
Height (km)

60          50          40          30          20          10

r.-I

x         1.1 x 10-7  3.0 x 10-5  7.0 x 10-6  7.0 X 10-6  2.3 x 10-603                                                                    1.1 x 10-7

3         4.5 x 10-2  2.7 x 10-3  6.5 x 10-40,                                            2.7 x 10-4  2.0 x 10-4  1.9 x 10-4 From Crutzen (1970)
3         1.0 x 10-'  6.0 x 10-le 2.2 x 10-m 2.6 x 10-11 2.5 x 10-u 4.0 x 10-1802

XN02 3.0 x 10-9  9.0 x 10-9  2.2 x 10-9  2.0 x 10-9 Btasseur & Nicolet (1973)
3                                  7.0 x 10-3  6.7 x 10-3  6.4 x 10-3  6.2 x 10-3 From Crutzen (1970)N02

r 243 268 251 230 212 232

kl       1.1 x 10-15 2.5 * 10-15 1.4 x 10-15 0.6 x 10-15 0.2 x 10-15 0.6 X 10-15
k3                       3.6   x   10-11    4.4.x   10-11    3.8   x   10- 11    3.2   x   10-11    2.6   x   10-11    3.2   x   10-11                                                                                           6

Ilm       6.5 x 1015  2.2 x 1016  8.5 x 1016  3.8 x 101'  1.9 x'1018  8.5 x 1018.20961 n 1.6 x 10-18 3.5 x 10-10 1.9 x 10-17 9.9 x 10-17 8.4 x 10-16 2.2 x 10-151m
fo] 9.5 x 109 9.0 x 109 7.0 x 10a 4.0 x 107 1.3 x 106 8.Ox 10' (cm-3) from Crutzen (1970)
K        7.5 x 10-5  2.1 x 10-3  1.1 x 10-'  3.3 x 10-4  7.3 x 10-6  3.0 x 10-5   (zero at night)

7' [02],7 [031 0.4 .015 0.01 .003 1 x 10-4    4 x 10-802      03

903  -   4.0 x 10-20 2.5 x fo-21 4.7 x 10-22 1.7 x 10-22   joules/sec/03 molecule
q/C

-

2.2 x 10-4  3.5 x 10-4  1.7 x 10-4  6.0 x 10-5 dimensionlessP

B
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The equation for i I o ] /(LA9      (we denote  temporazily number densities  41 +
6

by a square bracket) is

d [o] --

dt 2. J      /yoz-=       d     I  6,   J     '5       4-      I 0,  3    JI         +-   f N 0     7   J
(4.9)

-   I.O ]   .i  ·f,  co« 1),If  +  4,    I 6,  I  t   j,3   f N 6, 1   f

([/11 ] is the neutral number density, equal to /77 in the table at the/n'I

end of section 2.)  The term
.f,     E  oa  -1   E 911 increases with decreasing

3    -1
elevation from a minimum of 10 sec at 70 km, and reaches a value as

-1
large as 40 sec at 30 km.  We can therefore assume equilibrium for [ O]:

-1

Id ] = L  J      NOA £031 JI, f £031363 +ENO. IJ
...,---'---- 2     (4.10)

L (11-1<.1

where

L =  .1, [oa- ityll
(4.11)

1< = 4 1   I 3  1     +-1-*    L Noz   1
-

.f   ,   to21 i MJ
A similar thing happens in the equation for [ flo],

d E,Yoj
---     =     63  f Ni l f. 0 3    + I      t wo,  .i  -  So-j  f   ,  (   f f
a.t NO.           -4

(4.12)

4                                   -3    -1where the product AL[0 ]i s again large enough (10 sec at 50 km,
a 3

-1
.04 sec at 20 km) to allow us to assume 6  (Nol /di     =  0      .    Thus

r\10.
IN 01 =

fi,»I,t»47 (4.13)

41,  f 63 7
0
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TABLE 4.2

Flux of solar photons, 4, at one AU, absorption cro*s section of 01 and of Ci, 0(0:,) and G(09,
for wavelength inter,·a!, 011 and Biavenuti,ber intervals 3,· from Ly-.1 to 7300 A

No. 21(A) Av(cm- 1) e<cm-2 s. 1) o (0:) (cm2) 0(0,)(cmp   a(NO,)(Cmz)

1         Ly c 1.215,67 82.259 3.00 x 10,1 1,00 x 10-20 2.32 x 1047
2 1.170-1.163 83.500-86.009 1.03 .. 108 2.00 x :C-'0         7.60 x 10-Is
3 1.176-1.170 85.000-85.500 3.66 1.25 x IC -te 7.97
4 1.183-1.176 84.500-85.000 1.12 2.55 y.jO-19 8.66
5 1.190-1.183 84.000.84.500 1.24 3.00 x :9 -20 9.51
6 1.198-1.190 83 500-64.000 1.81 3.75 r 10-19 1.25 x 10-17
7 1.205-1.198 83.000-83.500 1.90 4.45 x  U-18 1.84
8 1.212-1.205 82.500-81.000 7.40 8.35 2.19
9 1.220-1.212 82.000-82.500 2.2£ x 109 6.00 x 10-19 2.30
10 1.227-1.220 8:.500-82.000 3.67 2.35 2.26
11 1.235-1.227 81.000- 81.5(30 1.36 4.50 2.06
12 1.242-1.235 80.300-81.000 1.61 3.35 1.30
13 1.250-1.242 80.000-80.500 1.32 1.75 x 10-11 8.91 x 10-18
14 1.258--1.250 79.400-80.000 1.4/ 8.95 x 10-18 7.24
15 1.266-1.258 79.000-79.500 3.11 4.30 6.09
16 1.274-1.266 78.500-79.000 1.06 1.10 5.66
17    1.282- 1.274 78.000-78.500 1.37 2.05 5.87
18 1.290-1.282 7;.500-78.000 1.02 4.43 6.47
19 1.299-1.290 77.01)0-77.500 1.14 5.55 8.14
20 3.307-1.299 76.500-77.000 7.29 4.20 1.24 x 10-17
21 1.316-1.307 76.000-76.300 2.20 6.85 1.32
22 1.324·-1.316 73.500 -76.000 1.59 1.45 x 10-18 1.47
23   1.333· 1.324 73.000--75.500 2.21 2.25 1.51
24 1.342-1.333 74.500-75.000 1.24  x 1010 2.30 x 10-18 1.51 X 10-17
25 1.3514.342 74.000-74,500 1.99' x 109 4.53 1.65
26 1.36 1.331 73.500 74.000 3.09 7.23 1.54
27 1.370-1.360 73.000-73.500 2.57 9.30 1.35
28 1.379-1.370 72.500-73.000 2.74 1.23 xiO-17 1.05
29 1.389-1.379 72.000-72.300 3.10 1.32 7.97 x 10-18
30 1 A08-1.389 71.000-72.0#) 7.60 1.36 7.17
31 1.428-1.408 70.000--1.000 i.01 xlow 1.4C 6.28
32 1.449-1.428 69.000-70.000 1.30 1.48 5.66
33 1.470-1.449 68.000-69.000 1.82 1.41 3.23
34 1.492-1.470 67.000 .68.000           2.33                        1.29                       4.47
35 1.515-1.492 66.08-67.000 2.66 1.15 3.69
36 1.538-1.515 65.000-66.000 2.90 9.91 x 10.16 2.93
37 1.562-1.538 64.000 65.000       3.60 8.24 2.19·
38 1.567-1.562 63.000-64.000 475 6.58 1.63
39 1.613-1.587 62.000- 63.000 6.40 4.97 1.20
40 1.639-1.613 6 1.000-42.000 5.49 3.45 9.77 x 10-12
41 1.667-1.639 80.000-61.000 1 19 x 1011 2.08 8.66
42 1.695-1.66; .  39.000-60 000 1.76 1.23 8.14
43 1.724-1.695 58.000-59.000 2.32 7.22 x 10-1, 8.17
44 1.739-1.724 57.500158 000 1.44 4.58 8.57
45 1.754-1.739 57.000-57.500 1.83 2.74 8.4046 ' 1.770-1.754 56.500-57.000 2.34 310 110-3 8.11
47 1.786-1.770 56.000- 56.500 2.62 · 1*90 7.99
48 1.8024.786 55.300-56.000 2.88 < 1011 1.10 7.86 x 10-1949 1.818-1.801 55.000- 55.500 3.14 6.00 1 10-21 7.63

See Ackerman (1970), Proc. 4th Joint ESRO-ESRIN Symposiud (ed. G. Fiocco)
D. Reidel, Dordrecht, 1971.
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TABLE 4.2 (Continued)

No. 81(A> 5,·(cm-1) q(cm·-2 5-1) c,(0,) (cnil 6(OR (cm9 O(NO,)(9=2)

30 1.835-1.818 54.500-55.000 3.81 x 1011 5.50 *  10 Z 7.29.x 10-19
51 1.8524.835 54.000-54.500 4.43 1.80 6.88
52 1.869-1.852 53.500 -34.000 4.95 ©0 1 1011 6.40
33 1.887-1.869 53.000-53.500 5.94 470 3.88
54 1.905-1.887 32.500-33.000 6.59 . 280 5.31
55 1.923-1.905 52.000-52.500 7.26 130 4.80
56 1.942-1.923 51.500-52.000 9.83 6,50 x 30 23 4.38
57 1.961-1.942 51.000-51.500 1.27 X 10,2 3,70 4.11
58 1.980-1.961 50.500-51.000 1.39 2.40 3.69
59 2.000-1.980 50.000-50.500 1.53 1.70 3.30
60 2.020-2.000 49.500-50.000 1.60 125 3.26
61 2.041-2.020 49.004-'9.500 i.74 1.14 x 10-23 3.26
62 2.062-2.041 48.500-49.000 7.31 1.05 3.51

· 63 2.083-2.062 48.000- 48.500 4.20 1.00 4.11
64 2.105-2.083 47.500-48.000 7.30 9.55 x 10-24 4.84
65 2.128-2.105 47.000 47.500 9.42 8.93 6.26
66 2.150-2.128 46.500-47.000 1.06 x 1018 8.28 8.57
67 2.174-2.150 46.000-46.500 1.34 7.60 1.17 x 10-18
68 2.198-2.174 45.500-46.000 1.32 6.92 1.52
69 2.222-2.198 43.000-45.500 1.73 6.28 1.97
70 2.247-2.222 44.500-45.000 1.80 5.65 2.33
71 2.273-2.247 44.000 44.500 1.82 3.03 3.24
72 2.299-2.273 43.500-44,000 2.26 4.40 4.00
73 2.326-1299 43.000-43.500 2.40 3.76 4.83
74 2.353-2.326 42.50043.000 2.25 3.09 5.79
75 2.381-2.353 42.000-42.500 2.21 2.44 6.86
76 2.410-2.381 41.5(*42.000 2.32 1.75 197 4.82 10-2077 2A392.410 41.000-41.500 2.50 6.74 x 10-u 9.00 4,9278 2.469-2.439 40.500-41.000 2.73                                                 1.00 x 1041 22679 2.500-2.469 40.000-40.500 2.88 1.07

2.1080 2.532-2.500 39.50040.000 3.02 1.11 2.3281 2.564-2.332 39.000-39.500 3 97 1.12 26282 2.597-2.564 38.500-39.000 7.13 1.11 21083 2.632-2.597 38.000-38.500 4.37 1.03 2.5584 2.667-2.632 37.50638.000 1.12 x 10t4
85 2.703-2.667 37.000-37.500 1.25 8.23 lu

9.43 x 10-1, 2.83

86 2.740-2.703 36.560-37.000 1.16 6.81 36087     2.778- 2.740 36.00 36.500 1.19 5.31 3/888 2.817-2.778 35.500-36 000 .1.38                                                                      ' 3.99 19789 2.857-2.817 35.000-35.300 1.70 2.84 ·
42590 2.899-2.857 34.500-35.000 2.46 1.92 4.53

91 2.941-2.899 34.000-34.500 3.90 1.14
5*1192 2.985-2.941 33.500-34.000 3.99 6.60 x 10-le 37093 3.030-2.985 33.000-33.500 186 3.69 623 '94 3.077-3.030 32.500-33.000 5.08 1.97

95           3.100  C z 25, 32.520-32.000 5.92 1.05 :M,96 3.150 32.000-31.496 6.05 3.23 x 10-20 1,03 101997 3.200 31.496-31,008 6.94 2.91 1.1998 3.250 31.008-30.534 8.12 1.50 1.35
99 1300 30.534-30.073 9.71 7.78 x 10-" 1,53
100 3.330 30.075-29.630 8.97 3.72 L65

. ,

1
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'                     TABLE 4.2 (Continued)

No. Ai.(A) A,·(cm-1) 9(cm-2 5-1) a(01) (cm:) 9(04) (cm) 0 (N02) (cm2)
lot 3.400 ( i 25) 29.630-29.197 9.44 Y ION E.7  4 10-21 1.78  1049
102 3.450 29.197-28.777 1.01 X 1013 7.46 x  1 0 -22 143
103 3.500 28.777-28.369 1.03 164 2.09
104 3.350 28.369-27.972 1.0] 1.69 218105 3.600 27.972-27.586 1.04 226106 3.650 27.386- 27.211 1.18

3.e x 10 -2,

332
107 3.700 27.211-26.846 1.23 2.38
108 3.750 26.846-26.490 1.24 266
109 3.SOO 26.490-26.144 1.17 2.53
110 3.850 26.144-25.806 I.ll
111 3.900 25.806-25.478 1.09

257
112 3.950 25.478-25.157 1.19 263

2.60

113 4.000 25.157-24.945 1.54
114 4.050 24.845-34 540 1.90

*
115 4.100 24.540-24.242 1.99 231
116 4.150 24.242-23 952 1.99 3.14
117 4.200 23.952-23.669 2.02 199
118 4.250 23.669-23.392 2.01 634
119 4.300 23,392-23.121 1.94 6.83
120 4.350 23.121-22.851 1.98 8.66
121 4.400 22.851-22.599 2.25 S.25 x 10-'2
122 4.450 22.599-22.346 2.39 1.49
123 4300 22.346-23.099 2.48 1.71
124 4.550 22.099-21.858 2.49 2.22125    4.600 '

21.858-21.622 2.48 337
126 4.650 21.622-21.390 2.30 3.68
127 4.700 21.390-21.164 2.55 4.05
128 4.750 21.164-20 942 2.61 4.89
129 4.SOO 20942· 20.725 2.39 7.1 1
130 4.850 20.725-20.513 2.46 8.43131 4.900 20.513-20.504 2.44 8.28
132 4.950 20.304-20.100 2.33 9-09133 3.000 20.100-19.900 2.48 t.22 x 10-el
134 5.050 19.900-19.704 2.49 1.62
135 5.100 19.704-19.512 2.50 1138
136 5.150 19.512-19 324 2.43 1.60
137 5.200 19.324-19.139 2.43 1.78
138 1250 19.139-18.937 2.52 251139 5.300 18.957-18.779 2.58 235
140 5.350 18.779-18.605 2.64 .  2.74
141 5.400 18.605-18.433 2.67' 2.88
142 5.450 18.433-18.265 2.70 3.07
143 5.500 18.265-18.100 2.68 117144 3.350 18.100-17.937 2.66 3.36145 3.600 17.937-17.778 2.66 3.8*
146 5.650 17.778-17.621 2.67 4.3*147 5.700 17.621- 17.467 2.67 4.Gl
148 5.750 17.467-17.316 2.69 4.75149 5.800 17.316-17.667 2.71 4.55130   5.850 ·

17.667-17.021 2.71 4.35151 5.900 17.021-16.678 2.71           ·                        4.42
152 5.950 16.878-16.736 2.72 4.61

* At wavelengths beyond 3975  dissociation of NOI is not posfible and thevalues of 0(N02) are therefore not tabulated.

%
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TABLE     4.2 (Cont inued )

No. 61.(A) 3,(cm-12 40m-2 s.1) 0(0:) (Cm?) 0(03) (cme) 0(N02)(cm,)„. .,
153 6.000 (r 25) 16.736-16.598 2.72 x 1015 4.89 x 10 -21
154 6.050 16.598-16.461 2.71 4.84
155 6.100 16.461-16.326 2.10 4.54
156 6.150 16.326-16.194 2.70 4.24157 6.200 16.194-16.064 2.70 3.90
158 6.250 16.0&4- 15.936 2.69 3.60
159 6.300 15.936-13.810 2.68 3.43' 160 6.350 15.810-13.656 2.67 3.17
161 6.100 15.686-- 1 5.564 2.66 2.74
162 6.450 15.564-15.444 2.65 2.61
163       6.500 (3 50) 15.384-15.365 3.9f 2.40
164 6.600 15.265-·15.038 5.22 2.07
165 6.700 15.038-14.815 5.18 1.72
166 6.800 14.815-14.598 5.14 1.37167 6.900 14.598-14.388 5.09 1.11168 7.000 14.388-14.184 5.04    .                                       9.13 x 10-22169 7.100 • 14,184-13.966 4.99 7.93
170 7.200 13.986-13.793 4.94 6.40- 171 7.300 13.793-13.605 4.90 3.14

.

»
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In the nightime  [  N O ] vanishes  accordihg  to this expression.    In the daytime

the factor multiplying  [  N O   ]  in  (4.13)  has the typical values 70,  2,

0.3  and  0.15  at  50,  40,  30  and  20 km (see table).    We may then argue  that  at

the levels of major [ 6)  ' the major portion of [  /V 0 7- Nui ] averaged

over a day is in the form of [ /4/  ].  That is to say, an assumption  that

[     /\/ 0    +  N Oj lisa given function of pressure can be replaced by an

assumption  that   [    ly o      ]   is an assigned function of pressure (possibly  a

different function, of course).

Calculations by Johnston (1971; Science, 173, P. 517) and Crutzen (1971;

J.   Geophy.   Res.,    76,   P. 7311) suggest   that the total odd nitrogen mixing

ratio    ( [   N O   1   +    [       /Y  0.1      1 )     '        I  /yl ] increases considerably with height.

These results do depend however on assumptions about the vertical eddy dif-

fusion coefficient and the set of assumed reactions and reaction rates, (see

Crutzen, ibid plus 1972, AMBIO, in press).  The calculations by Crutzen (1971),

which include   H A/
03 suggest that I  NO2  ] f-[ M] is apIraimately

constant above about 25 km while decreasing by a factor of about 10 from

25 km down to 15 km.

For the moment  then, we assume that  [  h/02   1  or  [  NO2   ]  P [ /VI ]  is a
prescribed function of pressure,  with  [  HZ) ] determined  from   (4.13).

The equation for [
 3         ]       i s

d     £1 0,1
-      i      =  A,to»lity,1£81-36 i.0  3 -  I   tolio-] -6,IN011031
d.t 3 1 7<1 (4.14)

3

Substitution for [0] and [ Ae] from <4.10) and (4.13) gives

a   f 031                 1 - 1<     2    f 4  1 JI
7%     (                -                         -

l to-3 1J-+ ENo_-IJd. t- 1+K j.+K 03           2 1     N 02-   

=     -1-     f   2   [0    7   i-   2   K    (co,  1   JJ,  +   Los]   JI   +  [NO

15)

1+K 2 .  a;
"                                                                                                                                              3 .1 ti)  f
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3        ..C-                                    ...The previous table shows  that      )<    and the ratio   (    fil.  j  :-3 Z)2_       )    --.

-2
( ft J 4 ) are both equally small, of order 10 or less. A case

can   then  be   made for simplifying the above expression   to

3               (4.16)

where we have retained only the leading terms.  In terms of the number

mixing
ratios   /162 2

402 = ff'J E-«„,1 = 0- 4,696

t- =   2033 4-mkM (4.17)3

/0      =  EN° 1 1 AlNO 2 1  4   ./Ky
2-

*2 haed-

I  i    1/%1
1 - 3\·=  2(·10616)

IJ„
---

-9  11
1 -ro    -4*  T  ,F       + -      ,

o e. f.,/   7- » T  (4.18)
'       1.«39 1 2            L.     3 j NO.  'Y°.1

1< =    4,40   +113  940,-2      -      -2-   *--  K  fi T)
(4269L) k 1 «/,41*

(4.19)

-1
At constant pressure the logarithmic derivative of /71411 with T is   7    ,

whereas the logarithmic variation of (  " , /' -4  ) and C .X  /-/, -

) with  /

2  to
is     3445/  T  -,.and   1580/-rz  ..1/ :  respectively. We therefore treat     /5,        as

i 1, -ta known function of pressure C  = * ,/.6 7 ;see table at end of

section 2), but will compute the exact dependence of the rate constants on   / .
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Using  n   =   7.243   x   1021    p /T  9   K-. s computed as follows

9. ( 3 445- 15803

k     =    2-   3     923  %o    e-
T

-:-    /3 1 7   0(.          e     -3=-                  (4.20)
' S l            Re,

The two exponentials are computed from the non-dimensional temperatures,

34Ll-5- -R -1
21             2-   1      -  7 n.  « ii3      ,/,  ....2.  n 1-

)            7    L    • ' · 4.
j

(4.21)

\ 1 1590F

<12    Z    « 10   1  -
1 1

i   T<„04- A.,"D   40-*fl** J

5000 values of el and e2 are stored in a table computed fBr values of
.'

-         7- ("...ae..1 =.1 - + 122 , (-!s_ + 36 
( 10

/ 1 0              9919  9: h'f \256 .

 9-54   1/  , FR +  -2     1

where  6 = 16-4.  It is assumed that the stratospheric model will always

yield temperatures in the rarge

10
- = 0·0390 < 7-    (n.„.  A: 21         L- 11.5 (4.22)
256 0.11 5-4

33*256

Suppose that a model T(non-dim) is such that

(10
1-+C C)      T (,0.1-1<--)  < (,t «- 117 , j ,
(-125-6

Uke  we sel C to 3« S j
e i  (-r)    =      e ,    C 6'4    +       -     4  /9, 1

t i n d                                                           "
2 1    T)      f      C .    i    ./2     +        2 J.+ 1    F   6   \ 4 56 -F°I
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The maximum error introduced by evaluating the exponentials by this method

is approximately 1/2 %.

Let us now consider how JO29 JO ' and JNO2
are computed.  Consider

first J
0
3

''1400

0<9    0)   T  (A l .e      . .0,

Y

- Ah
30    3

is computed as the sum

1

17,
- ' '3              (4.23)

3-                             » i        9(03   (A i)     F  (A  £ )    «03          .,60

where the wavelengths, Ais the absorption coefficient, and the solar flux,

F(Ai), integrated each wavelength interval are taken from table 4:2 (from

Ackerman, 1970).  The reduction of the solar flux in this wavelength range
..

by molecular onygen is considered to be negligible.  The maximum error

thus introduced is certainly less than 5%.

In order to compute J
. we must evaluate X 02.  Using the NONO 2

2

profile shown in table       4.1, the optical
depth,   XNO2'    for

a solar zenith

angle of zero is only .01 at ground level and at 3975A.  We shall therefore

neglect the reduction in I(X) resulting from absorption by NO2 in our

computation of J Thus the computation scheme used ia
N02 

I   = i d A  1   F I A·1  e
- X 03

ND
4 0 2  L

t/ C l/ (4.24)1        2.

J   is evaluated as the sum
02

79                                                            03+ M 01 
T  =   1-  0(92(A-) 12-(Ai) e- (X07

1=45 (4.25)

in which the ogerlapping of the absorption bands of molecular oxygen and

ozone must be included.

Values. of J J  , and J are calculated at levels 1 through 22.
039 02 N02

.%
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5.  Model heating

Above 30 km atmospheric heating is assumed to be the sum of two

contributions - the absorption of solar ultraviolet and visible radiation

by ozone and infrared heating and cooling by carbon dioxide, ozone, and

water  apor.  The relative magnitudes of these contributions is depicted in

figure 5.1 (from calculations by Newell et al., 1970).

(a) model of solar absorption by ozone

Q ,        (7500                        - X03
a'                        <03(X)  I (A)  E (A)

e .1.>    10•• <3/sec  03 »'.1   (5.1)
0

where  a  (A) is the absorption coefficient of ozone
03

I(A) is the flux of solar photons incident on the top os the atmosphere

E (A)         is the energy  of a photon of wavelength         C   =   1.9872   x   10-15/A

joules for A in A)

X      is the optical depth of ozone (see section 4)
03

For equation 1.25 we require the heating rate in dimensionless units,

0                                             7-        =          9  375  x   /0        36 CR (5.2)/ 0
C                         3    039

Q.  is evaluated as the sum
U3

'71 -  03

Q   =   1  £(0 (h,) F(A.) i (5.3)n
3

2:6 0                s                                         '            X  L

where F(Ai) is the solar flux of photons integrated over a small wavelength

interval around Xi (see table 4.2).

9
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Figure 5.1.  Vertical distribution of the components of the net radiative

heating rate.  (Newell and Gray, 1972)

-
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(b) Tropospheric and infra-red stratospheric heating rates

In the troposphere and lower stratosphere, we follow Trenberth (Ph.D.

thesis, M. I.T., 1972) in setting, at each level j,

3T
---

(5.4)4   A i  (31- - T)

*

where   h    is
a "Newtonian" cooling coeff

icient,   T       is
a hypothetical   equi-

librium temperature field, and T is the temperature predicted by the

model.  (All T's in the above equation have a zero horizontal average.)

For the zonally symmetric part, Trenberth divided T* into an annual

average term (symmetric in latitude) and a seasonal term (an odd function

of latitude):

*                                                         9

3 (t' ') = Ti  11'(/0 4 -Ti:T'(/9+ T.* 1=30(/)  'C" f,-(e-- t) (5.5).jl       .1

Here W is the sine of the latitude and Pn' are the legendre functions normal-
7/

ized so that

li -p

i

Cr =2

1. Crl  =  'B r (5.6)

-P''  (r) ·     7   (»'.  0

rp,o </S) =  - 2. (9,- 3.).I"f
2/

t is in days and is zero at the vernal equinox.  d  is a mild time-lag intro-
j

duced in the troposphere to account for delayed ocean warmth.  Trenberth used

the following values for his eight levels:

L
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Z         P       z  (km)   hj(day- )   dj Tj 2(deg)  Tjl (deg)  Tj3 (deg)j             j

.511     .6         4        0.08      21 -15.4 6.54     0

1.204     .3         9        0.059     21 -10.3 .5.97    0

2.120 .12       15        0.019      0 -2.24 8.96 1.70

3.219 .04       22        0.026      0 -4.64 11.8 3.32

4.605 .01 30.5 0.050      0 -5.39 14.0 4.57

6.214 .002      43        0.190      0 -5.37 11.7 5.45

7.601 .0005     54        0.24       0 -1.78 11.2 4.89

9.210 .0001     63        0.20       0     0 2.77 1.21

In the stratasphere, Trenberth's formula empirically represents all of

the main types of radiation effects:

a.  Short wave absorption by ozone and oxygen (20 km and higher)

b.  9.6 micron absorption and emission by ozone (20-30 km)

c.  Infra-red absorption and emission by (02 (all heights)

In our model we will explicit y comput  radiatinn of type a, as described

elsewhere.  This means that Trenberth's formulation must be changed for Z

higher than 20 km (  Z Z 2.9).  Type  c  can be represented by a simple

Newtonian law

 il
8-(19T (5.7).-6 6

The most recent values of  a  are those computed by Dickinson (A method

of parameterization for infra-red cooling between altitudes of 30 and 70 km
.
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NCAR preprint, February 1973).  He obtained these values of a(p) by careful

line integration of the CO  and 0  bands for a standard atmosphere, followed

by a similar computation in which  T  was varied slightly.  (Physically this

is satisfactrry for the circumstance of cooling to space - it does not

include, .however, the major effect   of b above, which comes from absorption

of radiation emitted by the ground in the water-vapor window region.)

Dickinson finds values as follows:

Z             a(day-1)

11.4 .016

10.0 .062

9.1 .125

8.7 .172

7:9 .200

7.4 .220

6.9 .212

6..1 .135

4.8 .080

3.9 .060

These can be fit satisfactorily by two linear segments matching the three

underlined extreme values:

3,1 S Z < 7.4 CL - 0. 2 2 + .0 4 5 914 ( Z - 7.4)  Ole 3

(5.8)

7.4  5  2   6 1 1.4 4 =
D.29_ .OSI  -2 --7.4  de)

-1

Dickinson's values are larger than the early values used by Lindzen and

Goody (J. Atmos. Sci., 1965) of 0.043iand 0.06 day-1 for Z  less than.:or

greater than 6 (z = 40 km).  Dickinson's values can also be compared with

„           values obtained by taking the cooling rates computed by London and Kuhn
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(J. Atmos. Sci., 1969) and, at each pressure level, determining a least

square fit to  OT/Lt = -a T  from the seven latitudes at which Kuhn and

-           London made their computations.  The profile of values for  a  so obtained

z (km) a(day-1)

77.5 0.17

72.5 0.10

67.5 0.18

61.5 0.18

56.5 0.125

50.5 0.135

44                0.125

38                0.097

32.25 0.044

has the same shape with height as that obtained by Dickinson, but peaks

with a vAlue of  0.18 day-1 at the higher level   Z <v 9   9  and  in the

stratosphere are typically smaller than Dickinson's values by about

0.03 day-1.  (The difference in the srratosphere may arise from Dickinson's

having taken "hot bands" into account for (02
Trenberth's values of his h  (given earlier above) exceed Dickinson'sj

values by only 0.05, 0.02, and 0.03 day-1 at Z = 6.2, 7.6, and 9.2 and is

less than Dickinson's by 0.02 at Z = 4.6.  It therefore appears reasonable

to use "Dickinson' s values" given   by    (5.8).

Heating due to the 9.6 micron 03 band has been computed by Dopplick

(Ph.D. thesis, M. I.T., 1970) using typical observed values of 03.  It gives

a heating rate more or less independent of season with a peak value of 1.1

-1
deg day at the poles, centered at an altitude of about 25 km (Z = 3.5).

This may be represented most simply by
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37 0.9 0 . 2-7

-         -    43-   1'2  (/')    1   -  (Z -3,S) j (5.9)
1 E

for 2.5 S Z S 3.5 and zero for Z values outside this range.  As such, this

heating does not depend on 03 or T.  This is not too critical, however,

since the physical dependence on  T  is primarily due to ocean surface and

cloud top temperatures, and any moderate variations in 03 from that used by

Dopplick will mostly shift somewhat the height  Z = 3.5  vertically (i.e., the

existing 03 is ample to absorb all this upwelling radiation.)

We therefore propose the following strategy for heating computations.

Define

Method I.

a.  Explicit computation of short wave heating

b.  Infra-red cooling with the Dickinson formula (5.8)
for a supplemented by a = 0.06 for Z < 3.9

c.  Formula (5.9) for 03 window radiation for 2.5 S Z S 4.5

Method II.
Trenberth's formulas (subject to some possible re-evaluation

in detail)

These methods are combined as follows for different height ranges.

(Z = 2.5 and 4.5 corresponds roughly to heights of 17.5 and 30.3 km)

A.  Z > 4.5:  Only method I.

B.  2.5 G Z A 4.5:  Weighted average of I and II as follows

 Z-25  45- Z

       2  0       x Method  I+     0   2
x Method II

.

C.  Z 4 2.5:  Only method II.
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TABLE 5.1  Standard concentrations of ozone, molecular oxygen,

and nitrogen dioxide.

Level Height n(02) Column Conc. n(03) Column Conc. n(N02)

km       (cm 3)     N (cm 2) cm-3
* -- -3

02                     03
N  (cm L) cm

1 71.6 2.86 x 1014 1.76 x 1020 2.8  x 108  8.12 x 1013

2 69.0 4.11 2.64 6.4 1.97 x 1014

3 66.3 5.99 3.96 1.5  x 109  4.70

4 63.5 8.72 5.94 3.5 1.13 X 10 15

5 60.6 1.26 x 1015 8.91 6.5 2.52

6 57.6 1.84 1.3 4   x   1021     1.2      x   1010    5.1 6

7 54.5 2.65 2.01 2.3 1.03  x    1016

8 51.4 3.86 3.01 4.6 2.08

9 48.2 5.75 4.51 9.9 4.30

10 45.0 8.84 6.77 2.15 x 1011 9.01 8.84 x 106

11 41.9 1.36 x 1016 1.02 x 1022 4.1 1.84 x 1011 7.79 x 107

12 38.8 2.10 1.52 7.6 3.55 4.00 x 108

13 35.9 3.23 2.28 1.3      x   1 0 1 2 6.5 0 1.39 x 109

14 33.0 4.96 3.43 1.8 1.09 x 10= 2.60

15 30.2 7.64 5.14 2.45 1.68 3.27

16 27.5 1.17 x 1017 7.71 3.4 2.46 3.40

17 24.8 1.80 1.16 x 1023 4.3 3.48 3.68

18 22.2 2.84 1.73 4.8 4.66 3.96

19 19.6 4.22 2.60 4.65 5.87 4.40

20 17.1 6.34 3.90 3.6 6.92 6.04

21 14.6 9.43 5.85 2.5 7.68 8.08

22 12.0 1.36 x 1018 8.78 2.0 8.25 1.15 x 1010

23 9.3 1.92 1.32 x 1024 1.0 8.66 1.72

24 6.4 2.73 1.98 6.0  x 1011 8.88 2.58

25 3.4 3.82 2.96 6.0 9.05 3.87

26 0.1 9.56 4.44 6.0 9.25 5.80
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6.  The computational procedure for evaluating the daily average values

-                 of the heating and photodissociation rates

Expressions 5.3, 4.23, 4.24, and 4.25 for Q03, JO39 JO ' and JNO2

require a knowledge of the vertical column concentrations of 02 and 03

(N8   and  N i)   and  of
the solar zenith angle   ( 14,) 0     Nd  is given  at  each

level by expression (1.36).  N  ' on the other hand, must be evaluated

at  each  time step using expression   (1.35) and
values  of  )603  from  the

prior time step.

(a)     Evaluation  of  N 3  at   each
grid point  and each level,   P4  4

J

1
/  -2\

No, (13)  =  2.12 Ato'S    '.,0,
d-P (6.1)

0

Clearly,                                                                                  73
25- 3-'

No, (-5) =   NO, (9. 1    -'-     2   1 9   K   (0                         703  t.p3-2/ J

3

Therefore N 3 is evaluated first at level 1 and then sequentially at

every other level. Noi(Pl)    need   only
be evaluated approximately,    and   we

suppose that
703

decays exponentially above level 1 with a scale height

determined  from the horizontal average
values  of     36, at levels  1  and   2.

3

Thus
-1

-

25

No3  (p,)   =     3.12  ,   10        7*9  M) T      1   +  i  f«i      tp,)           26.2)62   e -' O. (31
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MO3(Pj) for j 3 2 is evaluated using expression (4.1).  The

integral is evaluated by using a second order curve fit to X 3with

the curve forced to pass through the values of ->1 at levels j, j - 19
03

and j - 2.  Then

71.                                                                                              r

f '-'70- ip =  43 1 5-91 %-ffi) » 89  x  (p,I) _-17  -K (7 -)-1(6.3)
7  s    12 L '

1-1 03 j. 1     03     J -2 f--1
J

10 03  0  is
set equal to zero.  For the 2.8 km level spacing typical of

our model, this computational technique produces
errors in  N 3 4  2%.

(b)  Evaluation of daily average values of QO ' J0 ' J02' ·IN02

We do not wish to include the diurnal variation of the solar zenith

angle in our model.  Thus, in principle, we wish to evaluate expressions

5.3, 4.23, 4.24, and 4.25 at daily average values of  X o and Xo ,1 3

corresponding to diurnal mean solar zenith angles.  This has proved not

possible within acceptable error limits.  However by trial and error it

has been found that the mean of two values of the Q and the J's at par-

ticular solar zenith angles does yield daily average values to 5% accuracy.

We first evaluate the hour angle of sunset at each latitude using

the relation

C".3  4,   =     st » 4  S       +    C.«D  4   c,- S  c..., 6 (6.4)

where 4''   is the solar zenith angle

is the latitude

6&   is the solar declination

and k       is the hour angle (measured from local noon).
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Sunrise and sunset are given by  h = tH with

c=o H = E » t  ko. E
(6.5)

Considering only the Northern Hemisphere  864 7  1 o  we have

8&0 ct ts. S  6 -1 :H E O
(601Ar  Wi kler  KL51,&1

-1  <  t=A + ta» S  < o : 0<H < -Tj 

 AA+   es M  s    z o ,

1-1 = 77/2 les* Mozl
/                    (6.6)

O<  ON (1' 64 E C I , 756 <H< -iT
1 5 6,4 4 t» 8 : H 2 -TE <    30 lar        S v *mt r        0   47    1

\h
The exact expression for the daily average value of q (say) is

r H         f H

f                             i                    1    & 11                                     1             1                           A 1,                                                                                                       (6  .7)
STr -1 1

-Ir Jo-H

However we have found the following alogorithm to be accurate to 5%:

i = -1- 1 .1 + i (6.8)

1

2.05 Tr L 6 z  H 31-l4 = --
4                                         4

-  -  -      -

This procedure is used to evaluate Qo 9 J J and J
0 '  NO '      0

3 3 22

(c)  Tabulation of values of QO ' JO ' JO2' and JNO2'

The evaluation of J  ' for example, at a particular grid point

requires the evaluation of 66 exponentials.  However computation time

requirements limit us to approximately 10 multiplications per grid point

for the
evaluation   of  i ) '   JO39   302   and  IN02

' Tables   of
values   of   Q03

JO , JO ,and
J are therefore stored in the machine initially as a
NO32 2

function of N0
3
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Consider for example the way in which J   is evaluated in the detep-
3

mination of J For each level, j, a table of 2 x 240 values of J areO e                      0
3                                                                   3

stored.  Thus initially J   is evaluated for values of
3

Xo (A) = Xk (Ai) <
1+-1

1 1+ - / . . . . ) lit
2 \    Xk (AA f ST 1 XK(X:) C   4.790 
111

.

1/13   4     4       4, -rf
where     E  = 1/156 k=  I   a r S ,

a.Mi

X, (A.) = Al W  (AL) N  X      (A  ,)   =   2. 6    4        CA·)   N
*

03           3      1        2                    0 3#  7   03

The numbers 1.1 and 2.6 are considered to be typical values of  Sec 4)
*

at   It r  H/4  and  In =  314 /4 respectively.     N  are obtained  from a standard
3

ozone profile suggested by Krueger (1972) and are tabulated in table 5.1.

Suppose  now  that    6  =   H/4,

41  \

1.1 NO C.P./ . */\
1

1 N. 13 j /
-3     J    (1+ 26')  6    1\10   Pi  6„ec lt,1 6  -L "3  4  ' (1+ QTIg)  (6.9)
4                                                             4

Then J   is set equal to
3

r

I. 1      4  C i +  gze#LE)1   '
3- 11 --*N

03 l 4- 03    Z

Except that if N  (P )sec 51 N.(R). ,- is set equal to0 j
4'  03 j3                           v3

-3-    F  1.1   A l*    f

O   1-  'N03  l  I. ' -    ).                                    (6.10)
3  L  4

*
'             and if NO (Pj) sec   > 4.4 NO  (P ), JO  is set equal to

3                         3           3

3-       r 4 4   Ni  (i_  f )103  L       3     1 3

6--
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A similar procedure is used (using the second set of tabulated values) to

 *                                       evaluate   JO3   at   h   =   3H/4.       QO39    JO2,    and JNO2
are evaluated in a similar

manner.

In the case of 1 2 there is however an additional complication, viz.

that JO2 depends not only on X 3 but also on X  .  Again computer lim-

itations require that we produce an approximation scheme for computing

the   dependence   of   J 2   on  NO   sec 41   - 04
since   N02   is   fixed   at

each level,
2

on sec Lb .  If log JO2 is plotted against log cos 41 , a curve wlth but a

small curvature over values of cos 4f varying by a factor of 3 or 4 is

produced.  Thus it was decided to make a quadratic fit to this curve.  Then

(9
- 21

3-9,   C.       R    =     3-0      e-» 1'   1 a ,  2,1.(3,7 j  ..  6   e..    C
coj*    --- 11 1  (6.11)

211- -
1

49.    \         1.//        1

4
79

where       f ' )  =      1      «i„    (h &)  F(x ,)   e- (X.3 + Xi )   )
2        -           1

.=45

and                      ( '1

X 0  =  1.) 010.4 (AQ) NO-* ,1

J02 is evaluated by the tabulation procedure previously described.  The

constants, al(Pj) and bl(Pj) are determined by

(lo92 3.0)  2032   5   -  C  op  "sf f°3   -33
1 '

\  je / e 3-5a =                    1
foq  (·9 204  3,0 20<  0.6

de Je Jt

T
.Cole 3.0 1°5e  5  - i.ouc f,8 206

(6.12)
1  -3'3

6

Ron    1.5    foje  3.0    2050  0.6                                                                     1
Je

(11        (11

77                                                                (   v        +  A o'   )-
AO

T            i      4   (A ..)   .F- CA:)  L            33 2
,=45

.-
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6 1                  (; 1
7 7                                                                       -   < X, I B   4-  /. S  K O.     

&                1        1 0      CA :)   'F ( \ * ) e '2

i s L/.5
.2-

77 ,       (1)                  El)

- (X03 + 3*0  )
T,   =         f       «  -       (XI)   lF ( A..)    9-           U -1 (6.13)

l=45-

(,)

w, EL X =    1. 1 0(
0  (A (1  N*03              3

A similar procedure is used to evaluate J  1
in this case the

6 = ·21  ;

constants are a2 and b2 and XO and XO are replaced by XO
(1) ili 4    (2)

and XO
(2)                      2           3                        2

3

(1)

X        =     2.6   of     (A- )  Nc,Ol             02       1
(11                          A                              (6.14)

X             =         2.  4      0(0      C  A ,)    No0                              433

rh
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7.  Snectral form of the equations

We define spectral solutions at arbitrary level j in the form

Y --  _'1'43 Y,(1, p)·i

C. = 1-5. · Y. CA,p)
34- 0-) 1 AA

\Al. = 7 \Ai .,c (1  )
vv;)·     L  vv(k,1- 18.c '\).P/ (7.1)4

FI   =  7-  Fl,d X*(A,p)
-r

7-I   =   7 -11,1  \, AA
.-.

1 +       =   7     '8' ' i.  rl (A, ·1' --«f<k
and for the trace substance equation

965  = 7  L&,St"CA,
p (7.2)

G

GS   »  »,   .  '<*(Al»)
A      'r) 6

In terms of longitude (A) and latitude (U) we have defined members of

the complete set of orthogonal spherical harmonics in (7.1) and (7.2)

using

YACA,p) = f22*AFLC,) (7.3)

with

A,  =   *A +  I  .2 k (7.4)
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denoting a vector index of planetary wave number la and degree na.   The

PaCT) are Legendre polynomials of rank and degree given by a.  Normalization

of the spherical harmonics is such that integration over the unit spherical

surface (s) yields the orthogonal property

Ss'<*,<0 ds   =   47r 64 e      .          (7.5)

Complex conjugate values are denoted by an asterisk.  Another useful

property of the set of spherical harmonics is that they satisfy the

differential equation

Fily'k = c  Y      .     c   -   'v.tk C.,kt t)   .4    0    3 A- (7.6)

The complete set of orthonormal Legendre polynomials as used in (7.3) are

defined such that

11» 11     (7.7)
and all 11 are normalized to

+'

j Pli:'3 «Ip   =  3- 6*,e           .                     C'.B)-1

We now want to substitute solutions (7.1) and (7.2) into the non-

dimensional forms of our model equations,multiply through with a member of

*
the orthogonal  set  (say,  '<*'   ), and integrate the resulting relationships

over the unit s.here. Application of this procedure to the vorticity

equation    (3.9> for example 'yields the desired spectral   form   of this equation,

».



6'4 6\7-5 1  =-  Dr  Yr-Ed-t-  Yr-€,1 )  +

0                           
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d.55,6 = -ift.'4,& - AT,5 +- L f ( OW.- -

dt           - c-r-€L
,

6, S+I

-  62:b \Air-«,i     -El.    1»\ W- - -

CV-+6   LE'-1          1 +4=)  j-$  1
(7.9)

_(0)wr,«, A + (2) Fr,41.,-(3.-I) Fr,i
-

in which over the unit spherical surface s,

dEr,4 = 1-Cisr.*As
oIt· 4- Tr j      .1.  ·t             r

i f,T, :    =1 (»3("Ii-,P)'( «ts  = -L (JIi Yj-49
3 &

4-7 )s *T14 1X

Ard.  =1(3(1111>SI)'(:As  (s€e- app=dia A)
4-TT j

...S '(7.10)

 1 W           Er w --

1.-CE, f 9 icwlritasr- E Fl- E¥.- 6 ,/- c
t+ 6, '3-     -        471- J

CS« (1196.,i» 83
1 C F. T+As

f 6-  =  «r -)s  1.    r
Similarly, the thernodynamic energy equation (3.19), the trace substance

equation (3.21), and the thermal wind relationship (3.18) reduce to the

spectral forms

*TI i   =   -  B      .         6.  \C     ·          11_3 -3
at

Tish -   ,   1-,1 1- 1-5,%20'tl 3'65    )(,10 CAT.1
  5131,,1    =   -  89, i.   -   Cj,i j \Air i   1-  Ca)  6'1-   i   -

-1,       -  »03    -rt,-1  + illi , fjll'lk:, (k).j .it.':-,1»   (7.11)
-  C.-1-, 6    .

1 \ B

+E       C Y              .        1. .
t  <     r.6 , F- 1

Yrkebi/-)
where, for example,

4' · 51  3    42 k-
(7.12)

1 1.- -'6

1
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11

AXI .i-       =   1      (    » 4 '.*                                                                       1- rAs
·,                                                                   cpIt   35 4-t  r                1

,

A                                                                                   
  j

«,lit i    »     ti,(- 9.T,)  r:'11'                                               1

B r,"     =     -1-    C    -3 (111+1',- :  ,-i-d }'il" A s1  r            % rr   )5 (SQ (49»kas. A-3 1 (7.12 cont.)

813)   =   -1=     (-5(3'i--"ti-„50\  «ls
''2         XIT Js             (s-" Cl-FF" '' ' 4( AD        <

D¥01'H-           - Ery"*, 4. = - 4  9' g't'*» )
6,5

C»'- c»lx, 83     3
*-

In addition, we want to determine the spectral form of (1.6) relating the

vertical component of relative vorticity   e    and the streamfunction   (4 ) .
It can be shown that

g             z - C„'t   /
'54            , "1- (7.13)

or

4yrit   - -t==--=-

S r, i- (7.14)

ET
provided  that  in  (6.14) we stipulate Tt  O +3 0   (1.E>.   cjl-*.8 .

We see that the spectral relatienships (7.9), (7.11), and (7.13)

[or (7.14)] along with definitions (7.10) and (7.12) form a complete set

of equations for solution.  However, it is not convenient to attempt to

integrate the model in this form as there is no explicit relationship

deterniming tha vp. ctical velocity field represented by TA7 . In order to

define  \Al    we  r:,;t  to  alter the thermal wind relationship  of  (7.11).    This

development is cvntained in t·.te next section. Furthermoze, specification of
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the truncation limits to be used for series solutions (7.1) and (7.2)

have not yet Leen established and will be discussed in a later section.

..
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8.  Deternimation of W in the dynamic equations

In order to obtain an explicit- description of the vertical motion fields
-·                                          in our model atmosphere, we insert    (7.14)    into the thermal wind equation   of

(7.11) and differentiate w. r.t. time to get

54 c         ·,9          Dr-      Clfy-6-,s-1- AST«'   -
d T,c   '

r.-Citi Er-e    < GAL of t
(8.1)

ET      (4 S.«,4- 1 -   41»' ij
-

EEI:« C. ott Jec

for all levels j=2,3, ... ,J-1.  We note that (8.1) does not

apply  for  the  case   N-=-O 1-10. Furthermore, for notational purposes,   we

will stipulate that in (8.1) and all future relationships, terms which

require 1-1€=Oboor "A      <f      do not exist. This applies equally to cases
t-e 'r-e-

in which 1-t-€ is not contained within the specified model truncation

limits .

Let us now define

(146-   E   -  19'.(72,4--'-Yr,0)  -  A 'til-i    t- Ani.   -
/ 1 ) C -1- (») F-- (-:BA 1-                                         1-IF,/1 r,5-1 ,, i -    VL-, /   rr,Si.+ 1

t'TiE -8 1- R -1 (8.2)

r,4 + Lcps.221 1-r,S
' OF

such that using (7.9) we can write

d S li 1-1  -  a Ss 1     -   ..,         .    -  _3_    92    li 3-t YE     ,     -    ..c ril.          c>·--1)   c.,1-e  '34:-6, :ir,-(R„tb\Nr-4,)4 +
(8.3)

+-3'>All"e., J  +  0-i) t  b.1,»,i-, - ("b\'Aln.6, Si

+JL\'VittE , S 
and, the thermod'z:iamic energy equation of (7.11) reduces to

lii''       10'1-,i
-

12 i \/i,YI i.   . (8.4)
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Inserting solutions (8.3) and (8.4) into (8.1) has the effect of eliminating

the time dependence of (8.1) and at any given time we have

6'4 c»br -

4 )9

64 C.r ds\'Ur; i.=    · 11   ar.6,5-    ..    dr.t:Ii   --  1   DFEDr         , 1 . -(1+0\N'1 , +A\Ail
-r-6 C\F+€

(51.-1,         Cy--* c.[1(1  lJF-16- ) 64 Y--16, 4
F,€34,-1 +

\r-
1    /Er--6 Dr. 2E Dr,6  ,  " '0-1- - - (40\UT. i + 3, - tly=,i-¥1         -

1 VJYT4-1OL-1) C  Cr-ect     Ckly,te) _                                                      »
r--

'        EE»-- _31.IME \Ail .    - Cit\BAJ . +AjAJF.*, F.- 01. -1') C 'E+D.6, 3-r-*ECT¥Ja F+26 ,&-1
.-.

or, if we define
.-.

'r . = (- -h 1 -Dr
1,14. - l)6 , c , r    Cr Crt€_c *6 1  -1-51   '11*..«, i.   - 6'1' bli;

-13'1 =  Dr-6 Dri
T  - dilecr--6 Cr

-                                           -6(,0-  - -1.-/Gr-62£  1_ Er-Dy-, '\1
r   -    C.2.< CT-  Cr+ 6          

3 (8.5)

ff' E    r E» 6
CY-- Cri- C\-tie

F r (3.-0 6'29 2 S1-
the W-equation can be compact:ed to

Ff'  , fr-,w      "16,       1-L  r  \AN- 16  - 1

Ni:ir  1         -t-  377     14, r,>.&,  5-1r  )*
I  ) C-(D r (33                            (S)-(»·t

,  'tr  wr-*«    1        +I -5.-     \KI,f, 6-     +- 4     wr+-6,4- 3       +3.

 --- (t) 4                                 r (3)                           7

i- 51-  1-fr    Wr.,6,;.,   + fr    \L'r,i.+,   +ir   \K'Ir.26,1+1       -
(8.6)- 5\Al.iI i -- yr,I

in which from (1.17) we represent the boundary conditions as
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\'gr, 1     -   o

\Al r  J       =     VT,,

1.k zi (-AF 44'jrtsl  f \1-- - 4-Tr   1  2, C  IT-1  1    / 0/ (8.7)JS

f

In order to prepare (8.6) for inversion we want to take note of certain

properties of the equations in order to reduce the calculation to a finite

set of simple matrix solutions.  Inspection of (8.6) shows that the

equations uncouCe according to planetary wave numbers,  , 1' 0  In
addition, within each planetary wave the equations contain two independent

sets;  one of even vector elements (n  4 1.  all even) and the other of.Y
*                                     odd vector

elements   (n   +-1    all   odd).      Thus,
to facilitate  ease  of

notation, let us define some new sets of indices to be applied to (8.6)

by first denoting  a maximum planetary wave number, L, for a given spectral

truncation as

L     = Ir),=« (8.8)

so that we can designate K independent sets of matrix equations using

index k where

k = 1.13 6* e
,1< 1       K =  3, (L+1  )  1 3 (8.9)

For a given matrix set we will determine k by designating

(19#0 1    »_ A»«'''» »«t'1 »«,6

R = 19.(I,+ 0    ff='--  «rk-=1  -t-«'301
-4»*0 6  (8.10)

Furthermore, within each of the K matrix equation sets it is useful to
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designate an element index, bk' where

·                                   b* == 1   3 ---> M      -               (8.11)1.% )> 3
Thus, f6r .a given matrix set designated by the subscript k we devise

the bk indices as follows:

1)    Fo,u,  le.  g. Le  C »'2..· »JO'V'-3   ...©t-

At - 14 \ (8.12)'
vk -    k,1»«

for   which we consider   only   n    from   the   set   n c  +  kk   even.       Then the value

for an individual bk is determined from

6 - 7 5-'*4+11 - S
./ k-        - 9- v-Qk,0

(8.13)

B  wk+Jik +1-     -    S.,1'1 0'R    -     9-

where we ingore values of bk outside the range incicated in (7.11); i.e.,

'*' hen k = 1, nl = 0, and 21 = 0 we do not include the value bl = 0 which

designates thenonallowable equation of (7.1) in which T-  O-+ 1 0

[see comments following (8.1)].

Similarily,

2)  For k even (odd vectors) letf

10 4'- 41k)«.- (8.14)

in  which   here we consider   only  n    from   the   set   n   +   lc   odd.       Then,   we   have

6       -      /rt b----Qu-t-   1-uk-
R -

(8.15)
lot,-11/1.  1

L' k       -          - _f-1
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At this point we want to note an additional property inherent in the

spectral W-equations represented by (8.6).  That is, from definitions

contained in (8.5) and Appendix B we can show that for any given k,

c©   ErkErk+ 6fbk - -
C t'- Cs,te C»Xe

Drk, 6-Dr+ie- -(13
-                                                                                                                    

                  (8.16)

CYACS,"re Grbla bk+ \

We are now prepared to convert (8.6) to matrix form.  To do this we

first defide tridiagonal matrices C  as
f W  (33 0---» -0

cDk-

1            1          (33» *-       (231  r (11

00   00                 1-6 »f  -C -3        12-'   \  1 8-CD\ \
..» \ .1

X-i -i 4    (8.17)k.\    k\         1
1 \  \ \0     \    il
1 \
1

\  (©\  (00

0            0 fab-1 fs,\                                           k

where we have made use of (8.8) - (8.16).  We note from (8.17) that not

only   is   each 3Ik tridiagonal   but   it   is also symmetric. In addition, it   can

be shown that every principle minor determinate of J  is positive and
thus j 

can be said to be positive definite.  These properties will be

discussed in more detail below.

To complete the conversion of (8.6) to matrix form we define vectors
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/\U  ·
/    .          1, 4

n'
ZA) .

,4

TAT - 19.,1. O R
Yv                                 1                                                                                            ': ) S                           (8.18)

41 6                           \V b
1

k,+ t-b '
1

/1 j.

8 12,  & k ri) 1-   k

such that (8.6) can be written in the matrix form

aDYJ ,20, - (i-0 JI)kTAIk,6  +

+ADJUTh - 9757&J,/4 --   R   .,&01          419 3 (8.19)
4=1 3 4  -3734  602 32.zaj k=,2,3-) - -c) K)3,

We   wish to modify (8.19) through diagonalization   of   each  )k.

However, since each tridiagonal J)    is real, symetric and positive definite

we know that all eigenvalues of JJ  are real and positive.   Also,  the sets

of eigenvectors associated with these eigenvalues are orthonormal.  Thus

if  k is of rank M, say, there exists a set of real positive eigenvalues

(Ak)p with p = 1, 2, 3, ...
,  M  associated  with (P  and  M  sets  of  orthonormal

eigenvectors q with s = 1, 2, 3, ... , M.  If we let Qk represent the
P,S

matrix of eigenvectors associated  with  the set (Ak)p and matrix J)k'  we
have

fg,1 6,6-" %-15 ... '81 M \

111    96,1   99KA.  0   0    '8.
As ...

c J-M   (8.20)
f

00=   0
-\a

%'P / Eff /- E.Ps
u• Bo S'M

<    SM  I     %'NL  - .      'EMS  . . '   E-"Ml  12.

L
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such that

QA'  -  -Q,aGJ'2- = I (8.21)

where  I  is  the unit matrix  and C ) denotes transposition. Define

/(10, 0-- -_  - 0
/         0       (Ak),1\0 1

A z    '   '
-4 -               1          , (h'Af        '            (8.22)

0 \4 0

'4   -           -    -            -   I. . CA':  M   /where then we know

9«„#      31(Ilk =    Gi.ki\. 
:

-

NA »'
e    (8.23)

QI,«49·k  »   Qt,-Q kALE    =    ilk

We now want to expand the vector W C,  in (8.19) in the form

-FAr .v V je =1
0 bVK, 4-     3  -VQ i   =    *TO-k-, 6-

(8.24)
1.3          't-

where we note that V is also a vector.
k 9j

Inserting solutions (8.24) into (8.19) and multiplying through with

 k gives
/\-'1 A
QI'Sk'k(I kN ,4-1- (3L+ 0 Qk'S kcl) 1 -VI, ,   +,*

r--J

+ A.(11'.'f) t 62.-Tr -  93 QI, (Rkrj; -Z
Q kRE a-R.  v le,  -1                                                       )  3-

or, from (8.23), we can write
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.A.2117*, Si  -  Irk,0 ilk »GLFTJQA  +

+  31-1-1-1 1.' b,&*t    =  Ck Rk,i (8.25)
6

Now, we know that there exists an inverse

C K'*O--        0o Hwa     I
1                             0          '

-1

A- 12 1               h\ p        i               (8.26)0
0-- - --

2   .   'CA'AM

such that

-Ak 41, = I (8.27)

Thus,    if we multiply (8.25) through with -Li£, (8.25) reduces   to   the   form

#          37'' i-    -IP'.,)11+  5Ltjvk,i  '323,  - =1iQ"R·b,& (8.28)
'3-+1

where for each k = 1, 2, 3, ..O ,K w e have j=2,3,4, ... 9 J-1.

We now let

-

J Sk,i -- - 19-,VI + 9 116-1/- 1
.lrk-Egk2Rk,;. -TA,1      (1«'  i= ©

 bl E- i·At, 2*ki k,;  (f'« 36'SES-2) (8.29)

( 11;    Qk    2*34   - 3.JV£,3      (·102 4=3-1)

L
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Using (8.29), (8.28) transforms to the set

S k LVI,)·   + 31-vG,  »Rk,2.   ( 80'· i.=33

74,4-1   -1-   1Mb, ·24,6 ..©4,&41= At,,s (36 S €T->)      f
.((8.30)

-\I ,3-2     -1-'St'.3--IKJ- 1

A.- 71\
= Re,3-1 167,3.=111

in which from (8.24) and the boundary conditions of (8.7) we see that in (8.29)

12,1 -

-147   -  010«,3-  9  QkH k (8.31)

We see that for each k the system (8.30) is tridiagonal in j and thus submits

readily to solution provided certain provisions are met (see Appendix C for

details).  Briefly, to invert (8.30) we first define

litt)& E  A (» S=»,
-1

1211-

Alk, 1  E    ('Ck  :   -3, ilk,6_,j'   (»5 Si s-1
'e                                        (8.32)

14,& E- 31-,1.lk, 1       (14-  S·25-1)

and then let

1. 4,1      7-    ·11/,1     62*,a         (»   S.=·13 6

(8.33)

-'6#*,4  =   1 ·k,; (Rk,I-,  4-3 »ss,3.-1

Solutions to (8.30) thus appear as
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74)"5-1   1-11,- p -1       c».S  =3-13    LT
-\JU,4  =      lk'.i->'ji A.+1  -1- *k, 4

(8.34)

(e -S=.3,-3.3-30..., 2-')      1-
provided all u c,  in (8.23) exist and are finite. Vectors W C,  are then
obtained from (8.24).

.
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9.  Energetics

The kinetic energy  per  unit  mass,   K ,   at any given atmospheric level

j is given in terms of nondimensional quantities in (3.1), as

KL  = -*45 .14   = 1,  994- ·  3:21 49 4- (9.1)

Similarly, the available potential energy can be written as

1/ - \9 

A·i-    =-     3.  S.  (Ti --,, (9.2)
\· 1

in which we assume here that T  has been nondimensionalized in the samej

manner as T .  The local time rate of change of the quantities 
K and A

j                                                               
              jj

in (9.1) and (9.2) become

8.Ki     -    .1.- FT  63j.  8  'Wit   +1:O'lld  .  FA2 4
O.ta- 9-- A-t d--E

=  9. '\1'. Aj   _   4.  4140 3-2 1 0-2 (9.3)

44  = 7/3-53 -4
4.1-

8-t   W   a bt

for hwich we have utilized (3.6).  We also want to define horizontal

mean values for (9.1) - (9.3) on the unit sphere as
.-'

r. 1 C
1\ g =---

=r \ KO Cts
)5         0

84 9 ·    i    'ts·13 -t'(1' i'16    69.4,
S S.-/

A 2           -          8,  Js = ((T· -93'·ls1 \
3 47-r , T 3.

V etr S' 3  3      3
)<55
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-1-
1 C G.Ki  j

Ki.   4'„ 3,-32 -«S
=  -1- ( 1, j JES  «ts - 414 7. Jjids

49-T J  v /1 3 3--1= •, 3    d dt
6      -5 /                S1  /\ d.A- ·   = -  C  s.* 4.s

 

(9.4 cont.)

3       +TT hs bEL

=  -L    (CT  -TI )431 eis*rt S 5 1 3   2 3.-t         _j
Finally, integrating vertically, the total values for each of the energy

types are defined

K -7-1'.-h T,Ki   .  - t-,Pi  S'.1,  7Az. 1

.-

0
21 3- )                                              SL

A =ff"Rpit -A-7,4# Sc,6 -iI>St» 1 :13- 4=«
X JS

*    3=1

K - 2(JL-bpit5 - -i F   -0 plf:t. OL .15  2.,9.5,+4 'AtX3-1
d 3*- 1 3-

A  .2»" »-'. i-,1't i,-iN 4  11- - Gza-
4.

0

In order to demonstrate the energy conversion properties of our mod-

el we consider only the time rate of change equations of (9.4) and (9.5).

Substituting from the vorticity prediction equation (3.9) into the third

equation of (9.4) we have
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t    =   2-„  (Yi«  & ») 4     +
6,06 Cra

Jj /

, t.'1.t."Sl ", -(' >'ili,
-  1  (a=)(1Y. E JUAl cA

+Tr VL.Y.1     8       '+1'6    24'rl»,0   .5  1  49,5

-
--1-  f p -/'8'\NI /_1 .,7       s

- 4-Trr 41-1/1'vs.1.- lk-VI M/6-1 7 2.1 91t  Js -

1-  (-3=Y  "p . F       ks   t.1.1.1.>  1, .F.    «ls   .
- 471- ll-«1 ' S

j.+1
47-r (1,-1 /4,  1 , 1- (9.6)

·             Similarly, substitution of the thermal equation (3.19) into the fourth of

(9.4) gives 710

Ai  -  -  %72. at    ic'i--'11)3'16    0'11.       -lijck -0-   ,-13a. t...
t

- * i, -Gi" 'is' 5 <S,L»,i,S.(9.7)
"     Then, using (9.6) and (9.7) in the third and fourth equations of (9.5), we

have for the total time rate of change of kinetic and available potential

energies, 3-1

A -49211 54
3.Wift- \A,Ii.      g·yg19$ eis   -
-

A=1       6
V.3-1 3-1

-

-1- 7-lpt '» fy. E  ks .1 7-PS-  75 Ficks
(

4-71-                - 3                   -'s               3* L 4--D L _
6 21                                                                         4 =1         S
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-3-1

e       _ 1   13  4 \ A
C no

-                                                  IC     =331  +'lx'10 7'0,1''AS  »iliZAJsiwi  v·pg('ti'th*.
4-3-
a 3-1

4--1- B.Gtg tpg,11,»,cls  -li- 3,. Al,  9.   -E/«ts.
477 04 «TI-/     d-)  1 6 4     3.+1     a

4 11          fs

But, from (3.18) we know that fo
r j = 2, 3, 4,..., J-1,

g ·p  g  (Y i -11).     h   =-  Alt  «Tipr-\ /
and thus

3-1
.-

1< = -1- 92 .   CR,1. L)'lli ohitts  ,-A]   I,g ·,«9'ts_ 45
477* l-& 7\  2

3 -a-  t

/ E -F) Js
CA.,  Si- ,               S /

»                            4%1
1= A  - cC,  - A 1 13   <Mi   O Y opj-1 Js

-                                     4-Tr     ju'ls 'Ses +47T-'3-   3
=·3. 5       -S
-3- 1

- 1   3-p. 04, 0  R   - F. ) «ts (9.8)

471 Z_ 1 1 3 841   3- 1

and,
.

A- - 64    47  c.      -n -
/  i.  C  (3 -TS')41% ds   »    

   ..:417 z_.3 3
r

A=62 -'S 211 7-  1

+  thl-_R         ) 7     1'1  C  /1-,  -T.) "   .   d
-47Tlips-Q'at/ L MiS  j   &      f T)-1     -S

3=a
3-1

=     - Aa       3--P,    C -n··\1.1  ·    els        +

47:r A-9-1 - 1 1  2.
J
10-

\3-1  , /

I

.

+ 6'21 /- R+Tr I\Slp 8 TO t;/3         .      (9,9)

5-3,
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We see that in (9.8) and (9.9), the terms involving W T  represent con-

versions between kinetic and available potential energies.  Addition of

these two equations yields the correct relationship for the time rate

of change of total energy, E,
0           .         .

E  =  K ·+-A

=     t'ER'   t.&1'  F.'"   9'1'»,
aS-

- ilii·  t.124   676 0,5., - 53  ·ls  +

0 X<_1 \, p , (c    =t„ (cps-«,da-) zif \CTS-101-615 (9.10)
' =-3.   3 3,a

in which the first term on the right side of (9.10) represents energy

changes at the bottom level due to orography, and the other two terms are

d--
respectively the disappation of kinetic energy  to frictional stress   and

the generation of available potential energy due to diabatic heating.
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Appendix A.  Spectral form of Jacobian terms and evaluation of the associa-

ted nonlinear interaction coefficients.

Consider on the unit sphere the Jacobian of arbitrary horizontal glo-

bal seal<  A and B where     01

3-(A, B)  - aBL &- A-A   . 13--    ck X     »1             -ap      8- A (A.1)

and  A is longitude while  »,  is the sine of latitude. Expanding A and

B in terms of spherical harmonics, we have for solutions

A  =    Z.«24('X,p)   ,
d.

B = 7-baY'-CA, P) ,
ck

A.= 0 4 +134
(A.2)

in which the special properties of the orthonormal spherical functions

\<'f A 'p) are outlined in (7.3) - (7.8).  Inserting solutions (A. 2) in-

to (A.1), transforming the result to insure symmetry with respect to vec-

tor indices  k and  Q  , and writing in terms of a single nonredundant

sum (for details of these developments, see Baer and Platzman, 1961) we ar-

rive at

J(A.,83= -i'Igi- St,f} 61269-4212., 3
3'1»

« 43-94 X. (94+Ne) CQ p al-2. p 4.)1,
e  grAP       + a- 4) (A.3)

g.
for which we define through use of the Kronecker delta, 41' 

-A 19 St'a,ve 911,-i, 1 gel
0

(A.4)
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«          The term (1 -
Ele is necessary because the two conjugate in-

3.
teractions for the case 'Y'| g =  'h *                   and         *   =  <     6  

assumed in the symmetric reduction of J(A,B) to the form of (A. 3), are not

unique and one of them must be ignored.

We now multiply (A.3) through with any arbitrary member of the orthog-

V* /
onalizing set, say \T /41T , and integrate over the unit sphere to

get 27Tc 1

C; T - -1.- (  { 3(A-,B)X;(A,p)«'PJA-«T J ,
O  Z.1

=-i-  (1- *MA+Wt<T,s''
0 *Z«la640,

(A.5)

and the interact ion   coeff icient,          Ky)*) JA
is obtained from

=  -!_   (/9   P  L  - 3,11 ·)  Pf  91.P .'<'r G 4-  a J'  P e 91'01- ) -1

(A.6)

Since we intend to evaluate K,fle)&. using the "transform" method with

integration by exact Gaussian quadrature (see, for example, Eliasen et al.,

1970), a time saving simplification can be obtained by noting that the in-

tegral in (A. 6) can be nonzero only if the integrand possesses an even par-

ity with respect to the equator.  For this condition we can reduce (A. 6) to

KT,' '4 -   f (1 '8, 13 -»e'l''fl3) pr 'Ij'    .
-  '                                     0                                           (A. 7)
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In order to evaluate (A.7) numeric
ally let us define

46(y)    E    9 A- 11 (p)

( $(p) a, 45:<0
dp

(A.8)

where  gck can be determined  from the Cegendre differential relationshlps

in the form 01 p»
9  p)    s ..2'Z 21 X

--/9,63,M,Fl - Cam,I,1 ' A,L'1,1)-(04*Qi,31 p

(1-1<,A, (t -/)     -(27&+13 (#11,1 3) J    *+4 >

6  ;.1   +10
(A.9)

we now let =j 1      0   n c Pe
He,& (p)  = 32* P*-gf -Na. r& 311,

=   4-90/-44 5 9 (A. 10)

which can be expanded in the form

11**'.(p)   '=  7645,0,;
p G)       .

(A. 11)

from (A.10) and (A.11) we see that
 (A. 7) can be replaced with

KT,9,1 = *I  F''Vil Pr Ap

=  261449'Aill''r  «1,»'                      *                      MA,)

= Jh'1.,9,6



---

(A-4)

However, if we represent
  334 J       at

N discrete points )U k where

k = 1, 2,....,N, then an exact quadrature analog 
for (A.12) is obtained

in the form (see Eliasen et al, 1970)

KT,0,4 = 234* Ijlf''Cpol  Pr cpk)
k.=.1

N

--  7-9„1 *Cok) '1*(PO-44-ek) B,Of' 1 titw'3
k= 1

(A. 13)

provided

N =»1)/1

K 2 -94+16=-1=)  + -1.-  (A. 14)

(N  and  K must be intergers)  and the latitudes  /Jk
are located  at the North-

ern Hemisphere zeroes of the Legendre
polynomial.

P: (»3    (including

the equator if K is odd).  In (A. 13) the W  rep
resent the Gaussian weights

required to maintain orthogonalization of the di
screte set of Legendre

polynomials used in (A. 13) such that

allk 830 4 30     =     64*                  6
(A. 15)

A discussion of the evaluation of these Gaussian
 weights is contained in

Appendix D.
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Appendix B.  Spectral representation of divergence terms of the general

form 9 =tu 9 A     .

In terms of spherical operators on the unit sphere in which     is

longitude and /U  is the sine of latitude we have

  ty 9 A    = 9/0  -r,04   +,u F gA

--(1-2)1*  »' 0,A (B.1)

in which A is an arbitrary horizontal global scaler expandable in the form

A = Za, r*(A,p)    ,
(B.2)

Y CA hProperties of the orthonormal spherical functions li 'pl are out-

lined in (7.3) - (7.8).  Insertion of solutions (B.2) into (B.1) yields

1 JA
r' .p V A  =  (1 -.u,)   3'.«'.)' c  69-/t,2 5 01'.   Q     il(P /1

* A \ --
AXJ-b i

=   1 qi e 1.fi-„91&  -p "F,J   ,          (f'  .  (8.3)6.

c.k=   /Ad (M'.+ 0
But, if we define

'/a **)

W  -- 721,+0 (12.©1-, L-             (13.4)(116.'34) 1   -
4 -=. i.'-1 0

then we know from the Legendre differential and recurrence relations (for

example, see Jahnle and   Emde,    1945)    that

:*
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.

Adpk  =-'Adp 11  +(14+2 )>16-   E- e( 1 -A' / 3;7 8.1 Hk-€

and                                                 * (8.5)

»''l= On,44"60 («Aj  u k  21-€.
(1-1&+ D Wi'le (5774+1) klj- €

- 1-406+ - -
Then, using (B.5), we can show that

=3 4 Il C 1 -·nt)(94+313    k'K
CI-..u     ' 3    -BC';Pi    =     ..--(rnj-+,)  -10--     P-€  -4-€

_41(M,41)(1drjjto    _ME     P'* e     .
(17\3-0 )) 41- E

(B.6)

We now insert (B.6) into (B.3), multiply through using '.4» , and

integrate over the unit sphere to get

1

.

Drr< 1

449- i  f cp ·'.9 A,r: 4, 1 X  =
-1                                                               \

=  -32)(3#23 57  J   Qp4-€pr Ap  -
tr   L  (17*1)   A)&-tl al-)

.1,=4 -1

A#*/40 41  I P     P  «,1
--   C

-    7- "r,
WhiLT

(ay\3,+0 47 -a) 't€ r P
R \-111 Il    -1

4, Tw r +3'13(1 F·*r)
=  Cl--Kr) -(»p-1)»r+')3  ar- 6

-'

- "14(1,+I)jar·'3,+I) (St'FLrti)    4r+ 6
l.»\-+1)  (rn r-'3)   -1

-     n_  ap_E      -Er a-f+E (B.7)
71  ,
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1/1 7where we have defined
,    -BAL.'ar) (14¥-lp--1  -          

Dr   E  61-*Mi) _»rit)63¥+15--1     -,AA  ,         (608)
Fi .  E  *Ar(94+1) 73¥,+4+ Ilf3i.18£111          3
&'.-1, ,-»H+0 (r'tr +3)  _  J

A special case of (B.7) occurs when we consider scaler B in which
1.

13 -9 A (%.9)

where similar to (B.2) we can expand B in the form

8 =  _baX'a-Ch,p)    .                               (B. to)
Then, from (7.6), we know that

bK = -  Ca.Clk (B. 11)

and, in terms of coefficients b , (B. 7) becomes

·fT t'"I'(= "'FA),4,6' AX  =-#St  br.e +  Er  br-e (71 r-+6

= Br br- 6 - ET br+e· (Eg. la 

in which we have defined

-D   =- 22  ,   Eri = - 511 (B. 13)i/-   0 CT+E

provided   that   in   (B.12) we ignore terms in which   C,p_e= 0  GB> Mr-6,=0  .

Further, for both (B.7) and (B.13) we must stipulate that all terms call-

ing   for  any    QTLE  )Cly,+6    b,r- e.   or bf+e. outside the r0ange   of   the

particular spectral truncation chosen must also be ignored.

Reference
.

Jahnke, E. and F. Emde, 1945:  Tables of Functions.  Dover, New York,
306 pp. plus tables.
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Appendix C.  Solution of a tridiagonal set of equations.

Suppose we have an equation set of the form

arXY-1 + bTXT  + cr X'1-*,    == RF   - -
r-- \5,3,'.-   r             c                     (c.1,

where we must have

« ,  =  ° 1. (C.2)

C p    =  0         3

That is, in matrix form we can write (C.1) as

AX t R (C.3)

with A being tridiagonal of the form

(4    5    0
-

--    .....  0

*.                                                                                                                                                                                                                                                                                                                      1

1 al ba ca -
\  I- -1  \ \         1

CL r       Dr -  Cr=   '                                                                                     (C.4)
* # ...

*   --1
0- -- 0 CL'r .OP

1

For solutions we define

C ,    =  1/ bl

r  r-, -iT-v 3   -        7
-    CIr    =    1/C br-q    c       (+      )- 1,7-Er (C.5)

6.4                 -C    r02= r n T

and let

8, = 41121
e      (C. 6)R= dr(Rr -4,8,Br- 1,  ,S                  L-,j--

3- S r  f  IP
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Then, the solutions appear as

Xp = P

XT = Drxs.1 + aTi (C.7)

r= 0-1, p -1 ... 1
DI

provided   all     (  f in (C.5) are finite.  That is, if

b,%O 7 . (C.8)          1

b y' -4-  a r cr- 1  d 1.-,      -- 

.,

"1
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Appendix D.  Computation of the weight functions for Gauseian quadrature.

We consider the set of complete orthogonal Legendre polynomials;

Rt ,U    ) in which       = 0:) 1 1 ) t.3.  0  .   •  0      and   14 =O, 1 , 23
..0

We define this set, according to (7.8), to be normalized such that

5// p.1 6,1 2,1(,04»=  1- SAlOn, (D.1)

where )61 is the sine of latitude or equivalently, the cosine of colati-

tude,  ( )  .   Now in order to expand an arbitrary functin of latitude, say

4 (2-1') , in terms of the set of Legendre polynomials we let
r

foi) = 2 7 -d Pbt/ "1
(D.2)

from which the coefficients,  f-,    , are obtained through application

of (D.1) such that

42- -= 1 7- Z f .1 f FlfC'1, R.'G) ,4,1

= 1 i-16) 850 4.«     .              C..3,However, to be able to transform at will between spectral and grid point

space, it is necessary to represent foo at a number of discrete points,

pk , in which k = 1, 2, 3,..., N with N being the total number of

points lying within    -  1  Z,L)  61  1     .      Thus   at each latitude point,

(D.2) becomes

1

-FC»,0  1    f.f- R (P,)      .
(D.4)
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r.                                   rs,
This means that in order to determine coefficients   77    we must
evaluate the integrals in (D.3) numerically and at the same time main-

tain the orthogonality properties of the discrete polynomial represen-

tation in (D.4).  For this purpose, integrating by quadratures, we intro-

duce a set of Gaussian weight functions, w,e such that

 5 zpmf,j F.50  ---   ileGO e, 00 4'
tz= 1 -1

(D.5)

and the numerical analog for (D.3) becomes

-64  -  -1- T 'T o ' 94.,pip. Wo p.,f ,©-7/ 'Ld-·t-- 6_14
A. A1 k=-1

I'                                                               W

.-'

1 71.ri,-f-(Plb P <"J).
-

4 L                                          G

4=«1

(D.6)

The remainder of this Appendix is devoted to the method of ev
aluation

of the Gaussian weights,wk   I
Because we know that any given Legundre polynomial, e , can

be represented by a finite series in  » of at most degree n, we can ex-
I

pand
..M+44

p.lt.,O 93 (v)  - 2-b p»
4 --O / (D.7)CAL                               -'V\+ 

P.flp'> PJLP,) = D, E.,21.                                         I
and thus, t/y\*/+

f  Ple) P.  C.)4,« = Tbl f»'ct"  . (D.8)1 10        -1

:

1
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n

Integrating (D.8) by quadratures usin  (D. 5),
1.

j   P.4&) 1'361) 40    =   71«  Pity,) tit (Pk)
53 i                 /
N *+M

= n¢rk 7 bi IPO'      ,
4=1 43-0 (D.9)

Equating (D.8) and (D. 9) we have

'V'+4/1
/

i W /'V +44/

»  ,A'.1, =- 5» 9,14-i ZO
(D.10)

and thus for any i such that 05264+1  it must hold that
/1 , _N_       -

9  BA-Ap     =    7  "'rk'P'd »
r -11 k=- 1 (D.11)

: We see from (D.11) that if we choose the number of latitude points, N,
1                          .t

such that  10- 1- /VI+/n then  utilizing  all   X z 0   1  2   *0.    '\A +44
11 3  )

we   can   form  a   set   of N equations containing N unknown quantities, ilit)
for inversion. However, in terms of colatitude,     , for which

we   can   show   that   any      Ze<3- 8  ( 3            (j    i s   an   integer)    can be expanded   in

the form

L13%_60 -_t = c ,Nqi B
3.44

AH =0                          1

1- D i   +31'4- p114

L_
'YA=0                                      &

(D.12)

and .   Ul- 1                1141

<»«614+ = 4,(ld:+79*» ['1'1/WI Z.0
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.

Then, inserting (D.12) into (D.11).,

1 f In ( O,44
1 ' Af,-1 / 1

.cli     6=14  '1'V         -Si   l9,- 13         «6'   =
-1 'hA=.0,  -1

49-1                N

=   +   fl'k "'1  4- ai.   7:,-2"kit'0,-4 1-               A (D.13)

41 1

twl=0 tt--1

or                                               x.      _    (  ..os.     ,o  k,£41 4'k    -     j
tz= 1

-1
CIT-* f-LAK , AL=* 40

f.9 » 1 .JJ  4 (D.14)
--   --2:-- .Aoyi 10.Q«   3

Cl,-  1      0i =03\11, . 0 / 1 /y\-+ 44
where we have made use of (D.11) to eliminate the second term on each

side of (D.13). Again, as for (D.11), we see that if we take  0-1=/V\+0/,

we can invert (D.14) to obtain the Gaussian weights.
0 0

As an example, consider N=3 where we select 4,=30  , 433 90 , and
0

 3 2-  150    ,    Then,  from  (D.14)  we
can construct  the set (using

1=0 3 1, 1   )

40-1   +  1.5,,  ." 1.ll'3  --1

 1*1-1 fyr =-0
3.                                   - Frva

1     WJ   2 -93 (D. 15)-Lt,r 11 .    4- 15 "V 1

.-
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4

with solutions

lu-1  =.b = 4/9    - 
frM   =     to/9        3               *                                     (D. 16)

We   note   that the solutions   (D.16 3 are symmetric   in tASk about   the   equa-

tor.      If we assume such symmetry a prior_Lthen all equations   in   (D.14)

involving odd values of i become redundant and we can write (D.14) over

the integration interval from =-0 to
  *.1-1 2 as

3i,'k.=,/4,  j  (.1,44 ..»* 40
k=-1                           -%

6 (D.17)ezi )
\                                                       /

,                       4=0 1)*D...31  / ) k'-1= ' \+'vt
0 0

Again, using the example used above in which N=3, *,=30   , and 4,=90
A)+1 k)-1

we have - -- ==-
and --,3- --   giving the set

t.. «1 ..'1, -1  i,1Ji -1uk=- (3  15
with solutions

4,3-1 -- 4/9   -1
«_= 5/9 3 (D.18)

Furthermore, if we want to obtain 443- )A. for the entire pole to pole

integration, we need only make use of the symmetry property

SWL+1 -4      - 774      + Stk,Thy,k
(D.19)

which gives for our example

«r,  =' 1*.1'3 =- 4/9

1                                                                            1,·rD-= 5/9   +  5/9    -  10/9        6
Solutions (D.20) are identical with those of (D.16). (D.20)


