ARGONNE NATIONAL LABORATORY

 9700 South Cass Avenue Argonne, Illinois 60439
THE ELECTRICAL DESIGN OF THE EBR-II

by

F. Verber
Reactor Engineering Division

and
H. L. Schmidt

Plant Engineering Division

June 1966

Operated by The University of Chicago under
Contract W-31-109-eng-38
, with the
U. S. Atomic Energy Commission

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

TABLE OF CONTENTS

Page

ABSTRACT 11
I. INTR ODUCTION 12
II. DESIGN SUMMARY 17
A. EBR-II 138-13.8-kV Main Outdoor Substation 17
B. Power Plant 17
C. Reactor Plant 18
D. Sodium-Boiler Plant 19
E. Fuel Cycle Facility 19
F. Underground Duct System 20
G. Grounding System 21
H. Communications and Alarm Systems 22

1. Telephone and Public Address System 22
2. Evacuation Alarm System 24
3. Fire and Security Alarm Systems 24
J. Yard Lighting 25
4. Security Fence Lighting 25
5. Road and Parking-lot Lighting. 25
6. Parking-lot Head-bolt Heaters 26
III.: OPERATIONAL CHARACTERISTICS 27
A. NRTS Electric Power System 27
B. EBR-II 138-13.8-kV Main Outdoor Substation 28
C. EBR-II Turbine-generator 29
D. 13.8-kV System 30
E. 2400-V System 31
F. $480-\mathrm{V}$ System 32
G. Power Supplies for the Two Primary Sodium Pumps 33
H. Power Supply for the Secondary Sodium Pump 34
I. Continuous Power-supply System 34
J. Rectifier and Battery Power for the Primary Auxiliary EM Pump 35

TABLE OF CONTENTS

IV. MAJOR COMPONENTS 36
A. EBR-II Main Outdoor Substation 36

1. General 36
2. Main Power Transformers 36
3. Oil Circuit Breaker and Motor-operated Disconnecting Switches 37
4. Control, Alarm, and Operating Features 38
5. Protective.Relaying 40
B. $13.8-\mathrm{kV}$ System 42
6. General 42
7. 13.8-kV Switchgear 42
8. Neutral Grounding Resistors 44
9. $\quad 15-\mathrm{kV}$ Power Cablé. 44
10. Control Panels 45
11. Protective Relaying 45
C. EBR-II Turbine-generator 48
l. General 48
12. Turbine 49
13. Initial Pressure Regulator 50
14. Speed Governor, Load-limit. Mechanism, and Load- limit Indicator 51
15. Other Turbine Auxiliaries 52
16. Generator 53
17. Excitation System 57
18. Hydrogen Cooling System 58
19. Turbine-generator Load Operation 60
20. Protective Relaying 65
D. 2400-V System 67
1.. General 67
21. 2400-V Switchgear 67
22. Power Transformers 68
23. 2400-V Bus Duct 69
24. $5-\mathrm{kV}$ Power Cable 69
25. Control Panels 69
26. Protective Relaying 70
E. $480-\mathrm{V}$ System 73
l. General 73
27. $480-\mathrm{V}$ Main Switchgear 74
28. Power Transformers 75
29. $480-\mathrm{V}$ Bus Duct. 75
30. 480-V Emergency Switchgear 75

TABLE OF CONTENTS
Page
6. 480-V Lighting Distribution Center 76
7. 480-V Emergency Power System 77
8. Motor-control Centers 88
9. Continuous 120-V A.C. Pow'er Supply System 89
10. Power and Control Cables 89
11. Control Panels. 90
12. Protective Relaying and Circuit-breaker Coordination 91
F. Station Battery and 125-V. D.C. Distribution System 94

1. General 94
2. Battery and Battery Charger 95
3. Metering and Annunciation 95
4. Emergency l25-V D.C. Battery Source 95
G. Short-circuit Study 96
H. Annunciation 97
APPENDICES
A. Control Modification of the Reactor Building 75/5-ton Rotary Bridge Crane to Prevent Traverse of a Crane Load across the Reactor during Reactor Operation 100
5. Introduction. 100
a. Restricted. Operation. 100
b. Administrative Permissive Operation 100
c. Unrestricted Operation 100
6. Description of Controls for the Three Modes of Operation 100
a. Restricted Crane Operation 100
b. Administrative Permissive Operation 101
c. Unrestricted Operation 102
7. Considerations of Overtravel and Load Swing 102
B. Transient Stability of EBR-II 20,000-kW Generator 103
1., Introduction. 103
8. The Problem 103
9. Conclusions 105
10. Results 105
11. Appendix. 108

TABLE OF CONTENTS
Page
C. Electrical Penetrations in the Reactor Building Contain- ment Vessel 114

1. Introduction 114
2. Pressure Chambers 116
3. Bulkhead-type Pressure Connectors 117
a. Cannon Type Connectors 118
b. Amphenol Coaxial Connectors 118
4. MI Gable Penetrations 118
ACKNOW LEDGMENTS $1 \cdot 20$
BIB LIOGRAPHY 121

LIST OF FIGURES

No. Title Page

1. Overall Site Plan of National Reactor Testing Station 122
2. EBR-II Plant Arrangement 123
3. Arrangement of EBR-II Main Outdoor Substation 124
4. Arrangement of Equipment on Operating Floor of Power Plant 125
5. Arrangement of Equipment on Mezzanine Floor of Power Plant 126
6. Arrangement of Equipment on First Floor of Power Plant 127
7. Front Panel Arrangement of $13.8-\mathrm{kV}$ Switchgear 128
8. Front Panel Arrangement of $2400-\mathrm{V}$ Switchgear. 129
9. Front Panel Arrangement of $480-\mathrm{V}$ Main Switchgear. 130
10. Front Panel Arrangement of $480-V$ Emergency Switchgear 131
11. Arrangement of Equipment on Operating Floor and Balcony of Reactor Plant. 132
12. Arrangement of Equipment in Basement and Subbasement of Reactor Plant 133
13. Arrangement of Equipment in Sodium-Boiler Plant 134
14. Arrangement of Equipment in Basement of Fuel Cycle Facility 135
15. Sectional Elevation of Argon Cell in Fuel Cycle Facility 136
16. Electrical Underground Duct System 137
17. Grounding System. 138
18. Typical Test Well and Grounding Plate 139
19. Simplified Single Line Diagram of NRTS 138-kV Electric Power System 140
20. Simplified Single Line Diagram of EBR-II Electric Power System 141
21. Single-line Diagram of EBR-II 138-13.8-kV Outdoor Substation. 142
22. Electrical Control Panels E-5, E-6, and E-7. 143
23. Incoming Lines Electrical Control Panel E-3 144
24. Generator Indicating Panel E-4 145
25. Protective Relaying--13.8-kV Single-line Diag.ram 146
26. Elementary Diagram--13.8-kV Breakers 5Bll-1, 5Bll-2, and 5Bll-12 147
27. Elementary Diagram--13.8-kV Breakers for Transformers No. 3 and 4 148

LIST OF FIGURES

No. Title Page
28. Elementary Diagram--13.8-kV Breakers for Transformers No. 5 and 6 1.49
29. EBR-II $20,000 \mathrm{~kW}$ Turbine-generator 150
30. Elementary Diagram of Turbine Governor Autotransfer Scheme 151
31. Turbine Gauge Panel. 152
32. Elementary Diagram for Excitation and Control 153
33. Generator-excitation Cubicles 154
34. Hydrogen Panel 155
35. Flow Diagram for CO_{2} and Hydrogen 156
36. Curves of EBR-II Generator Reactive Capability 157
37: .EBR-II Generator Pull-out. Limit and Operating Limit 158
38. Elementary Diagram of Synchronizing Circuits 159
39. Tripping Block Diagram for the EBR-II Turbine-generator 160
40. Single-line Diagram for EBR-II Generator 161
41. Elementary Diagram of 13.8-kV Generator Breaker 162
42. Primary Pump Control Sections of Corridor Panel. 163
43. 2400-V Electrical Panel E-2 164
44. 2400-V Single-line Diagram for Protective Relaying. 165
45. Elementary Diagram for 2400-V Circuit Breakers for Transformers No. 3 and 4 166
46. Auxiliary Panels for 100 - and $400-\mathrm{kW}$ Diesel-generator Units 167
47. Normal Bus Section of Motor-control Center Pl 168
48. Emergency Bus Section of Motor-control Center Pl 169
49. Motor-control Center P2. 170
50. Normal Bus Section of Motor-control Center Rl 171
51. Emergency Bus Section of Motor-control Center Rl 172
52. Motor-control Center R2. 173
53. $120-$ V A.C. Continuous Power Supply Assembly 174
54. Single-line Diagram for the Continuous Power Supply Distribution 175
55. Utilities Control Panel 176
56. $480-\mathrm{V}$ Electrical Control Panel E-1. 177
57. Single-line Diagram for $480-\mathrm{V}$ Emergency Power System 178

LIST OF FIGURES

No. Title Page
58. Elementary Diagram for 100-kW Emergency Diesel- generator 179
59. Elementary Diagram for 400-kW Emergency Diesel- generator 180
60. Single-line Diagram for $480-\mathrm{V}$ Normal Power System 181
61. Elementary Diagram for 480-V Breakers for Transformers No. 5 and 6 182
62. Station Battery and $125-\mathrm{V}$ Distribution System 183
63. Impedance Diagram and 3-phase Short-circuit Currents and MVA 184
64. Impedance Diagram for a $13.8-\mathrm{kV}$ System Fault. 185
65. Typical Overcurrent (MVA) Coordination Curves--138-kV, $13.8-\mathrm{kV}$, and $2400-\mathrm{V}$ Systems 186
66. Typical Overcurrent (MVA) Coordination Curves--138-kV, $13.8-\mathrm{kV}$, and $480-\mathrm{V}$ Systems. 187
A-1. Layout of Rotary Bridge Crane in Reactor Building 188
A-2. Elementary Diagram of Control Scheme for Restricted Crane Operation. 189
B-1. System One-line Diagram 190
B-2. Transient Swing of EBR-II Generator (Cases 1, 2, and 3) 190
B-3. Transient Swing of EBR-II Generator (Cases 4, 5, and 6). 190
B-4. Transient Swing of EBR-II Generator (Cases 7 and 8) 190
C-1. Electrical Penetration--Nos. 1 through 16 191
C-2. Electrical Penetration--Nos. 20, 22, and 23 192
C-3. Cannon Type "TBF" Connector 193
C-4. Amphenol No. 100X-3875-l Coaxial Connector. 193
C-5. Terminal Plates of Pressure Chamber 194
C-6. Cannon Type "TBF" Connector Pin Arrangements 195
C-7. MI Cable Test Set-up 196

LIST OF TABLES

No. Title Page37
2. 13.8-kV Air Circuit-breaker Data 43
3. Protective Relays for the $13.8-\mathrm{kV}$ System 46
4. Turbine Throttle Inlet Steam Rates 49
5. EBR-II Generator and Exciter Data 53
6. Design Data for the EBR-II Generator Hydrogen System 60.
7. Protective Relays for the EBR-II Generator 66
8. Data for 2400-V Air Circuit Breaker 68
9. Protective Relays for the 2400 -V System 70
10. Emergency Power System Loads Automatically Applied to the 400-kW Diesel-generator 77
11. Emergency Power System Loads Manually Applied to the 400-kW Diesel-generator 78
12. Emergency Power System Loads Automatically Applied to the $100-\mathrm{kW}$ Diesel-generator 79
13. Loads Automatically Disconnected from Emergency System during Power Outage 79
14. $100-\mathrm{kW}$ and $400-\mathrm{kW}$ Diesel-generator Units--Ratings and Related Data 85
15. Emergency Power System Loads Automatically Applied to the $200-\mathrm{kW}$ Diesel-generator 87
16. 200-kW Diesel-generator Unit--Nameplate Data 87
17. Bus-fault Protective Relays for the $480-\mathrm{V}$ Main Switchgear 91
18. Tripping Device Settings for $480-\mathrm{V}$ Main Switchgear. 92
19. Tripping Device Settings for 480-V Emergency Switchgear 93
20. Miscellaneous 480-V Breaker Tripping Device Settings 94
21. System Imped'ances. 96
B-1: System Data 103
B-2. Results of Load Flow Study 104
B-3. Summary of Transient Stability Studies 105
B-4. Rotor Angle vs Time for EBR-II 106
B-5. Swing Curve Calculation Data 111
C-1. Electrical Penetrations in Reactor Containment Vessel 115
F. Verber and H. L. Schmidt

Abstract

This report summarizes the electrical design of the Experimental Breeder Reactor II Facility (EBR-II). It attempts to gather together and present in reasonable detail the essential features and workings of the completed design, and to present a concise overall view of the system.

The main objective of the EBR-II electrical design was to achieve a high degree of reliability and continuity of power supply commensurate with the desirability of minimizing the number of reactor scrams and consequent thermal shocks to the fuel subassemblies and other components of the reactor.

The order of presentation consists of a simple sequence of main divisions, progressing from general to specific coverage. First, a brief general discussion of the EBR-II is presented, followed by a discussion of physical aspects of the design, including the location and arrangement of electrical equipment in buildings and yard areas. This is illustrated with the use of figures showing electrical equipment layouts. The design features of the underground duct system, grounding system, communication, and alarm systems are then described. Next is presented a brief discussion of the operational characteristics of the electrical system. The remainder of the report, including three Appendices, is devoted to a more detailed technical discussion of the various components and their functions in the system.

Because of the magnitude and many facets of the subject matter involved in the electrical design of the EBR-II, the presentation is necessarily abbreviated. For example, alternative schemes that were investigated and evaluated during the development stages of the design have been omitted; details of controls and instrumentation for most of the electric motor-drive equipment, such as the primary and secondary sodium pumps, have been likewise omitted. Other parts of the design are also presented in a condensed form.

On the other hand, certain areas of the design are treated at considerable length, viz., the $480-\mathrm{V}$ emergency power system, protective relaying, and the turbine-generator.

Notwithstanding the omissions and condensed versions of certain phases of the design, the authors believe this report provides a useful and accurate record of the essential features of the EBR-II electrical design.

I. INTRODUCTION

The Argonnè Experimental Breeder Reactor (EBR-II) at the National Reactor Testing Station near Idaho Falls, Idaho, is part of the Atomic Energy Commission's program for the development of power reactors. It is primarily an engineering facility to determine the feasibility of this type of reactor for application in a central power plant. The EBR-II is an integrated nuclear power plant with an unmoderated, heterogeneous, sodium-cooled, fast reactor, with primary and secondary systems for transfer of sodium, a sodiumsteam heat exchanger, and a conventional hydrogen-cooled turbine-generator. A fuel-reprocessing plant, in which the irradiated fuel is processed, fabricated, and assembled for return to the reactor, is an integral part of the EBR-II Facility.

The thermal-power capability of the reactor is 62.5 MW , and the. gross electric power capability of the plant is 20 MW . The temperature of the sodium at the reactor outlet is $883^{\circ} \mathrm{F}$; steam pressure and temperature at the turbine throttle are 1250 psig and $837^{\circ} \mathrm{F}$, respectively.

The EBR-II Facility is located on Site 16 of the National Reactor Testing Station (see Fig. 1), along the east line of the NRTS $138-\mathrm{kV}$ power loop between SPERT and ANP Facilities.

Figure 2 gives an aerial view of the EBR-II Facility and an isometric drawing showing the arrangement of the Reactor Plant, Sodium-Boiler Plant, Power Plant, Fuel Cycle Facility, and supporting facilities.

The Reactor Plant houses the reactor system, the primary sodium coolant system, and spupporting facilities for these systems, including the high-current power rectifier and floating battery for the primary auxiliary electromagnetic pump. The building is a cylindrical gastight shell of steel plate construction, designed to withstand an internal pressure of 24 psi.

The Power Plant includes the control room for the reactor and power system, the turbine-generator, emergency diesel-generator units, $13.8-\mathrm{kV}$, $2.4-\mathrm{kV}$, and $480-\mathrm{V}$ switchgear, motor-control centers, a machine shop, and personnel facilities for the reactor and power-system operating staff. The building is of conventional construction, with pumice block perimeter base wall and sheet metal siding.

The Sodium-Boiler Plant contains the secondary sodium system and the steam generator. The building consists of a "sodium wing" and a "boiler wing," separated by an 18 -in.-thick reinforced-concrete wall. The sodium wing houses the pumping, purification, and storage facilities for the secondarysystem sodium, including the sodium-receiving station. It also contains
the motor-generator set for power and control of the a.c. secondary electro-. magnetic pump, together with instrumentation and control panels. The sodium wing is a single-story structure of fireproof construction. The boiler wing houses the secondary system a.c.linear-induction electromagnetic sodium pump, the sodium surge tank, the steam generator, and associated steam and feedwater piping. The boiler wing is of reinforced-concrete construction.

The Fuel Cycle Facility contains a shielded argon-atmosphere cell and a shielded air-atmosphere cell for disassembly, processing, fabrication, and assembly of fuel elements and subassemblies. The Facility also contains supporting facilities for these operations, including an emergency diesel-generator unit, the inert-gas storage facilities, the sodium equipment cleanup cell, and exhaust ventilation system and stack for the Fuel Cycle Facility, Reactor Plant, and Laboratory and Service Building. The building is of conventional construction with pumice blocks base wall and sheet metal siding.

The Laboratory and Service Building is a one-story pumice block structure, with a basement, containing laboratories, darkroom offices, locker room, and related facilities. The ANL Idaho Division Director, Assistant Business Manager, and staffs have offices in this building.

Special facilities, including low- and high-level counting rooms, fuel storage vaults, junior caves constructed of high-density concrete, disposal systems for contaminated and suspect waste, and related facilities, are also included. The automatic telephone exchange equipment for the entire EBR-II facility area is installed in this building.

Pump House No. 1 is a one-story pumice structure adjacent to the above-ground water-storage tank, housing deep well pump No. l, three water service pumps, and the diesel-driven fire pump, including all instrumentation, controls, and auxiliaries.

Pump House No. 2 is a one-story pumice block building which houses the deep well pump No. 2 and its instrumentation and control.

The Fuel Oil Tank and Pump House is a pumice block structure built adjacent to the above-ground fuel-oil-storage tank; it houses the oil-pumping equipment, and is complete with piping, controls, instrumentation, and auxiliaries.

The Fire House is a pumice block structure with space for living quarters for the fire protection crew and garage space for one ambulance and one fire truck; it is equipped with electric power-operated doors.

The Guard House is a pumice block structure with counters, storage racks, and turnstile. The short-wave radio system and gate-operation controls are housed in this building.

The Waste Disposal Facilities is a complete system for disposal of sanitary and industrial wastes, and includes lift stations, Imhoff tank, sewage treatment house, meTering pit house, and leaching pit. Below-ground installations are of reinforced concrete and above-ground buildings of pumice block. The buildings are electrically heated and house equipment used to operate the system.

The Materials and Service Building is a standard prefabricated steel frame, sheet metal building erected on a concrete slab. It houses the plant services organization.

This report focuses on the principal design elements comprising the EBR-II electric power system.

The design features incorporated in the power system represent an attempt to achieve a high degree of continuity of power supply and thus to minimize the number of reactor "scrams" and consequent thermal shocks to the fuel subassemblies and to other components of the sodium-cooled reactor. Careful consideration was given to various factors affecting the system design with respect to reliability, flexibility, control and instrumentation, safety, maintenance, and economy.

In general, all electrical equipment, such as the $13.8-\mathrm{kV}, 2.4-\mathrm{kV}$, and $480-\mathrm{V}$ switchgear, transformers, motors, and motor-control centers was designed, constructed, and factory tested in accordance with the prevailing applicable standards of the American Standards Association and the National Electric Manufacturers Association.

Several private companies contributed substantially to the electrical design or construction of the EBR-II Facility. The following is a list of some of these companies:

The H. K. Ferguson Co., Cleveland, Ohio

Gibbs and Hill, Inc., Los Angeles, California

Diversified Builders, Inc., Paramount, California
C. L. Electric Company, Pocatello, Idaho

Architect-Engineer (General)

Architect-Engineer (138-13.8-kV Outdoor Substation)

General Construction Contractor

Electrical Construction

Bonberg and Wehrheim Electric Co.; Las Vegas, Nevada
Fischback and Moore, Inc., Seattle, Washington
J. F. Prichard and Co., Kansas City, Missouri
General Electric Company., Chicago, Illinois
Sargent and Lundy Engineers, Chicago, Illinois

Detroit Edison Compàny, Detroit, Michigàn . Design Review

Overall design responsibility for the EBR-II Facility was assigned to the Reactor Engineering Division of the Laboratory. The following is a list of staff personnel who made substantial contributions to the EBR-II electrical design:

In addition, the members of the Reactor Engineering Division Drafting Department, Scheduling Section, and Secretarial Section contributed very significantly to the project.

The following is a list of the manufacturers of major items of electrical equipment used in the Facility.

[^0]Federal Pacific Electric Co., Newark, N. J. \downarrow

Metal Clad Switchgears, Power Transformers, Motor Control Centers

Turbine-Generator Unit, M-G Set for Secondary Pump, Motor Control Centers

Instrumentation and Control, Control Panels

M-G Sets for Primary Pumps

Continuous Power Supply System
D.C. Power Supplies
D.C. Power Supply

Diesel-Generator Units

Main Power Transformers, $138-\mathrm{kV}$ Oil Circuit Breaker and Disconnecting Switches

II. DESIGN SUMMARY

This section of the report is concerned primarily with the physical aspects of the design, with emphasis on the locations and arrangements of electrical equipment in the Main Outdoor Substation, Power Plant, Reactor Plant, Sodium-Boiler Plant, and Fuel Cycle Facility. In addition, the design features of the undergound duct system, grounding system, communications and alarm systems, and yard lighting are described.
A. EBR-II 138-13.8-kV Main Outdoor Substation

The EBR-II substation (see Fig. 3) is comprised of high-voltage equipment including two main power transformers, one $138-\mathrm{kV}$ oil circuit breaker, six disconnecting switches, six coupling capacitor potential devices, six lightning arresters, and porcelain insulators. The support structures for the incoming $138-\mathrm{kV}$ lines from SPERT and ANP and for the disconnecting switches, bus supports, and bus sections consist of galvanized structural steel racks. The power transformers, lightning arresters, and potential devices are mounted on concrete pads. A 176 - by $106-\mathrm{ft}$ chain link, galvanized steel fence surrounds the substation. A normally unattended control house is located inside the substation, between the power transformers. The control house contains a duplex relay and control board, a supervisory panel, a $125-\mathrm{V}, 60$-cell station control battery, battery charger, distribution panels, and a cable pit for interconnection cables to the EBR-II Power Plant and Scoville Substation.

The EBR-II substation is typical of other high-voltage substations on the NRTS loop, except that the secondary circuit breakers are located in the Power Plant Building instead of in the substation control house. The transformers are connected to the circuit breakers by insulated power cables installed in underground ducts.
B. Power Plant

Control of power generation and $13.8-\mathrm{kV}, 2.4-\mathrm{kV}$, and $480-\mathrm{V}$ power distribution is accomplished essentially from control-panel sections $\mathrm{E}-1$ through E-7 in the Main Control Room located on the operating floor of the Power Plant Building (see Fig. 4). West of the Main Control Room is the turbine-generator, the $13.8-\mathrm{kV}$ metal-clad switchgear, the turbine.gauge board, and, the hydrogen panel.

Located on the mezzanine floor (see Fig. 5) are the generator field amplidyne excitation system cubicle, the battery room containing the $125-\mathrm{V}$ station battery, the $240-\mathrm{V}$ floating battery for the continuous power-supply system, and the Cable Routing Room which houses the continuous powersupply system unit, distribution panels, control-rod relay cubicles, nuclear relay racks, and process shutdown relay racks. A network of cable trays
provides for the routing of the numerous control cables between the console and control panels in the Main Control Room above, and the various equipment and devices located in the Power Plant Building, Reactor Plant Building, and other areas of the Facility.

The 2400-V metal-clad switchgear is located on the first floor along the south wall of the building. Approximately 15 ft to the east is the $480-\mathrm{V}$ main switchgear. On the outside of the building wall are located two $2500-\mathrm{kVA}$ and two $2000-\mathrm{kVA}$ askeral-filled power transformers. These are connected to the $2400-\mathrm{V}$ switchgear and $480-\mathrm{V}$ main switchgear, respectively, by metal-enclosed bus ducts (see Fig. 6). Within 40 ft of the $480-\mathrm{V}$ main switchgear are located the $480-\mathrm{V}$ emergency switchgear, the $100-\mathrm{kW}$ and $400-\mathrm{kW}$ emergency diesel-generator units, the $480-\mathrm{V}$ lighting distribution center, and $480-V$ motor control centers $P-1, P-2, R-1$, and $R-2$. These constitute the main distribution centers of the $480-\mathrm{V}$ power system.

The 480-V lighting distribution cënter consists of circuit-breaker sections for each of the $112-\mathrm{kVA}, 480-120 / 208-\mathrm{V}$ lighting transformers in the Power Plant and Reactor Plant, and the $480-\mathrm{V}$ distribution panel in the 138-13.8-kV substation.

Motor-Control Center (MCC) P-l feeds the auxiliary loads located in the Power Plant Building; MCC P-2 serves the cooling tower fans, startup boiler feedwater pump, etc; MCC R-l serves Reactor Plant and Power Plant auxiliaries; MCC R-2 feeds the shield-and thimble-cooling system drives.

Front panel views of the $13.8-\mathrm{kV}, 2.4-\mathrm{kV}$, and $480-\mathrm{V}$ switchgear, showing arrangements of controls, instrumentation, and protective relays, are shown in Figs. 7 through 10.

C. Reactor Plant

The electrical equip'ment and cables used in the Reactor Plant Building are mainly of standard manufacture, and were installed in accordance with conventional industrial and power-plant practices. Motor-control centers, power rectifiers, instrument panels, safety switches, starters, distribution panels, etc., have general-purpose enclosures. In general, no special insulation or special enclosures were required for protection from exposure of electrical devices and wiring to radioactive radiation. Special consideration, however, was given for the cables and devices used in locations of comparatively high levels of radioactivity; for example, radiationresistant, $600-\mathrm{V}$, glass-braid, multiconductor, shielded cables with Mylar tape wrap and silicone jacket were used in certain instrument thimbles in the primary tank.

Cable trays are installed along sections of the wall above the operating floor and on the electrical-equipment balcony for the routing of power, control, and instrumentation cables. Cable trays are similarly used in the
shallow depressed area adjoining the primary tank. Steel conduits buried in the concrete walls and floors provide for vertical and horizontal routing of cables. Penetration of the reactor building steel containment shell with electrical circuits is covered in Appendix C. See Appendix A for control modification of building crane.

Figure ll depicts a vertical cross section of the Reactor Plant Building and plan views, showing the arrangement of equipment on the operating floor, depressed areas, and electrical-equipment balcony. The rectifier and floating battery for the auxiliary primary electromagnetic (EM) pump are located in the shallow depressed area. Instrument centers Nos. 1 and 2 are located nearby on the operating floor; the local control cabinet for the auxiliary pump is mounted on the north side of instrument center No. l. The main disconnect breaker and $480-\mathrm{V}$ distribution panel for the primary-tank immersion heaters are mounted on the wall'behind instrument center No. 2. The fuel-handling control center is located near the personnel air lock.

The rectifier for the fuel-element-rupture-detector EM pump is located in the depressed area east of the primary tank. The rectifier for the sodium-purification-system pump is located on the electrical-equipment balcony, along with motor-control centers Nos. 4 and 5, 480- and 240/120-V distribution panels, starters and variacs for the fuel-handling system, rotating-plug-seal heaters, àrgon-cooling system, and other loads.

Figure 12 shows the arrangement of various electric-power and control equipment in the basement, and also the shield- and thimble-cooling systems drive equipment in the subbasement.

D. Sodium-Boiler Plant

The $350-\mathrm{kW}$ motor-generator set for the secondary sodium a.c. linear EM pump is located in the electrical room (see Fig. 13) in the sodium wing of the Sodium-Boiler Plant. The electrical room also houses the motorcontrol center $\mathrm{S}-1$, sodium induction-heating and resistance-heating panels, a Panascan control panel, the sodium plant control panel, and other control panels.

The power transformers for the sodium piping-heating system and for sodium surge-tank heaters are located in the basement under the electrical room. The secondary a.c. linear EM pump is located on the first floor of the boiler wing.

E. Fuel Cycle Facility

Figure 14 is a layout of the Fuel Cycle Facility basement showing the main incoming line circuit breakers, emergency diesel-generator unit, automatic transfer switch, motor-control center, and various auxiliary drives.

Figure 15 is a sectional elevation of the Argon Cell showing the arrangement of the cell cranes and manipulators, as well as their feeder and control cables.
F. Underground Duct System

The underground distribution systems for the EBR-II utilities and services include electrical, water, steam, condensate, fuel oil, demineralized water, sanitary sewers, industrial waste sewers, compressed plant air, compressed instrument air, and suspect gas.

The electrical underground system (see Fig. 16) consists of necessary manholes, handholes, concrete-encased nonmetallic ducts and /or galvanized steel conduit runs, and cables as required for the power, control, alarm, and communication circuits between the buildings.

The following briefly reflects the design criteria for the underground duct system:

Underground nonmetallic ducts and galvanized steel conduits are encased in a red-dyed reinforced-concrete envelope (for ready identification as an electrical duct) with a minimum of 3 -in.-covering on all sides. The concrete is mixed with a red dye to produce a distinctive red coloring of the concrete. Reinforcing steel rods for the concrete envelopes are arranged in a manner to avoid forming continuous conducting paths around any one duct or group of ducts, thus preventing the flow of induced circulating currents.

Steel dowels are installed between the concrete envelope of a nonmetallic duct bank and the wall of a building or manhole on which the envelope terminates. The nonmetallic ducts are made of pressed cementasbestos (Transite Korduct).

Separate manholes and handholes are provided for power and communications underground services. Electric manholes are of reinforcedconcrete construction with overall dimensions approximately $72 \times 66 \times 90 \mathrm{in}$. deep, with 6 -in.-thick walls and ceiling, and an 8 -in.-thick floor pad. The manhole is equipped with a cast iron cover assembly, access ladder, sump, grounding cable, supports, and cable-pulling irons. The telephone manholes are of the same type of construction and approximately $66 \times 60 \times 90 \mathrm{in}$. deep. The handholes are approximately $66 \times 30 \times 54 \mathrm{in}$. deep.

The cables for underground power distribution at 480 V have $1000-\mathrm{V}$ insulation; the cables for power distribution at 2.4 kV have $5-\mathrm{kV}$ insulation; for power distribution at $13.8 \mathrm{kV}, 15-\mathrm{kV}$ ungrounded neutral insulation.

G. Grounding System

Because of the poor electrical-grounding characteristics of the surface and underground strata at the EBR-II site, it was necessary to provide a yard grounding network system which is more elaborate and expensive than those usually required in the average industrial or utility plant in this country.

The yard grounding network system (see Fig. 17) is comprised principally of copper grounding plates, grounding electrode inspection and testing wells, and \#4/0 and 500 MCM bare, interconnecting copper grounding cables. All splices of grounding cables and copper rod connections to the grounding plates are of the "Cadweld" thermal process-type connections (see Fig. 18). Buried bolted connections were not permitted.

The grounding electrode inspection wells provide for the inspection of grounding connections and watering the earth around the ground electrode plates during the dry season. The connection of the grounding cables from the grounding network to the copper rod that is welded to the ground plate is made with a solderless connector to allow testing of the grounding electrode separate from the network. The grounding electrode wells consist of cast ir on boxes of $16-\mathrm{in}$. inside diameter, $24-\mathrm{in}$. high, and with a 13-in.-diameter cast iron cover.

The grounding network is connected to building structural steel and to the ground bus-bar systems in buildings. All switchgear enclosures, transformer enclosures, motor and generator frames, bus duct enclosures, distribution cabinets, motor-control centers, control panels, etc., are grounded to their respective ground bus system. Ground connections to equipment that could be removed during the normal life of the facility are made by means of a thermally welded lug, bolted to the equipment.

The overall effectiveness of the grounding system is enhanced substantially by the connection of the above-described grounding network system to the casings of the deep well pumps No. 1 and 2, and to the grounding grid in the $138-13.8-\mathrm{kV}$ Outdoor Substation.

The well casings extend from the yard level to the permanent underground water level, approximately 650 ft below.

The grounding grid in the $138-13.8-\mathrm{kV}$ Outdoor Substation consists of ground rods driven into the ground and interconnected by buried \#4/0 bare copper cable; all buried ground connections are "Cadweld" connections. The driven ground rods are spaced approximately 10 ft apart. All electrical equipment, the substation steel structures, overhead static wires, the conduit system, and the substation fence are grounded to the substation ground grid.

The following listed ground-resistance measurements were taken on structural members of buildings at or near the locations indicated:

Location
Ground Resistance, Ω
Outdoor Substation Fence (north center)
Power Plant (west door) . . 0.5
Reactor Plant (freight door) . 0.4
Sodium-Boiler Plant (sodium wing, south entrance) 0.8
Fuel Cycle Facility (north entrance) 0.7
The measurements were made on June 24, 1965 with an Associated Reasearch Inc. VIBROGROUND, Model 251 Tester (Ser. No. 251877).

The principal ground for the TREAT Facility is established by means of buried copper grounding cables connected to the EBR-II grounding network.
H. Communications and Alarm Systems

1. Telephone and Public Address System

The telephone and public address or paging system is an integrated system. It was designed, furnished, installed, and is being maintained by the Mountain States Telephone and Telegraph Company (MST\&T). The system includes all necessary equipment, such as telephone instruments, switchboards, telephone racks, relay racks, telephone terminal boards, amplifiers, loudspeakers, and wire and cable. This equipment is provided by MST\&T on an installation and rental basis as adopted for similar equipment and installations in other facilities in the National Reactor Testing Station.

The Laboratory and Service Building is the distribution center for all telephone circuits in the EBR-II area. A 300-line (300 -pair) automatic telephone exchange is installed in the basement of that building. This exchange accommodates the needs of EBR-II and TREAT as well as the needs of ZPPR, ITF, and other future additions in the area.

The telephone system is equipped with extensions connecting the EBR-II area with EBR-I and other selected extensions on the NRTS Site, which may be reached directly by dialing. Other extensions on the NRTS Site are reached through the telephone switchboard at NRTS Central Facilities.

The public address system enables one to page in any building and certain yard areas on the EBR-II site. Any phone in the EBR-II telephone system can be used to address the desired EBR-II area by dialing the number listed for that area. There is one unlisted emergency all-call number which is given very limited distribution. When this number is dialed, it overrides any other calls that may be occurring or attempted. Emergency all-call addresses are automatically delivered with increased volume.

A particularized telephone installation is provided between the Console in the Main Control Room and stations in the Cable Routing Room, Reactor Plant, and Sodium-Boiler Plant. A pushbutton station on the Console permits ringing the other stations simultaneously or individually, and also permits connection to the plant telephone system for outside calls; a hold pushbutton is also included. The outlying stations are equipped with pushbuttons and can call the Control Room Console and can also make outside calls. Power for this service is supplied by a rectifier connected to the process generator of the continuous power supply system.

A common talk line is provided in the Fuel Cycle Facility. This consists of a single telephone line to which are connected plug-in jack-type telephone stations located at the viewing windows of the Argon and Air Cells and a two-way speaker located in the control room. By plugging in head or hand phones, any station can communicate with the other stations on the line. Outside calls, one at a time, may also be made from the se stations.

A four-channel sound-powered telephone system is installed for communication between the Main Control Room and various operating locations in the Power Plant, Reactor Plant, and Sodium-Boiler Plant. The plug-in, sound-powered telephone sets are U. S. Instrument Company Type A560 hand phones. The locations of the telephone jacks comprising the four channels are as follows:

Channels 1, 2, 3, and 4

a. Control Room (5 locations)
b. Sodium-Boiler Plant Control

Panel
c: Instrument Control Centcr \#l
d. Instrument Control Center \#2
e. Instrument Control Center \#3
f. Corridor Panel
g. Cable Routing Room (2 locations)
h. Fuel Handling Console
i. Datex System (Reactor Basement)

Channels 1 and 3

a. Outside personnel air lock
b. Inside personnel air lock

$$
\text { (Sodium-Boiler } \frac{\text { Channel lant--Boiler Wing) }}{\text { (Slan }}
$$

a. Main floor near EM pump
b. 2nd level, top of stairway
c. Near feedwater valve
d. 3rd level, top of stairway
e. Top level, near surge tank
a. At turbine panel
b. \& c. East and west ends of $13.8-\mathrm{kV}$ switchgear
d. Near condensate storage tank
e. Near air ejectors
f. Near turbine oil system
(mezzanine)
g. Near flash tanks
h. End of No. l heater
i. North turbine pedestal
j. Feedwater pump panel
k. Demineralizer area

1. South turbine pedestal
m : Near hydrogen-system manifold
n. On catwalk over pump pit
o. On generator exciter panel (mezzanine)
2. Evacuation Alarm System

The evacuation alarm system is designed to alert the entire EBR-II area in the event of a radiation hazard. The main evacuation siren is a Federal Sign and Signal Corp. Model 2 T 22 siren with a $7 \frac{1}{2}-\mathrm{hp}, 440-\mathrm{V}$, 3-phase motor mounted on top of the Power Plant Building. Small sirens of the same manufacture; Bulletin 111 , Model A for $110-\mathrm{V}$, single-phase operation, are installed in the following locations: one in the cable tunnel, two in the basement of the Laboratory and Service Building, two in the basement of the Fuel Cycle Facility, three in the Reactor Building, and one in each basement wing of the Sodium-Boiler Plant. Electric power for the operation of the sirens originates on the emergency bus section of motorcontrol center R-1.

The evacuation alarm system can be actuated from a control station located in the Division Director's office, the EBR-II Reactor, the Main Control Room, the Fuel Cycle Facility, and the Guard House. Each control station has a black alert pushbutton which initiates a continuous siren signal, a red evacuate pushbutton which initiates an oscillating siren signal, and indicating lights which indicate the location from where an alarm originates. In addition, indicating light stations are installed in the two wings of the Sodium-Boiler Plant and in the Materials and Services Building. Allclear notification is given by voice over the public address system.

3. Fire and Security Alarm Systems

The EBR-II complex is equipped with a fire and security alarm system, including manual fire alarm, automatic fire alarm, vault and burglar alarm, and watchman tour reporting.

The fire alarm system is an American District Telephone Company (ADT) system of the supervised, noninterfering, coding type. The system includes manual fire alarm stations, automatic fire alarm stations, space indicating cabinets, coding bells and horns, and smoke detectors.

Systems that detect sodium smoke are installed in the Sodium-Boiler Plant and Reactor Plant. The actuation of any fire alarm device results in the sounding of all coding bells within the building in which the device is actuated. The code numbers are assigned so that the first digit of the code indicates the building, the second digit indicates the floor or subdivision of the building, and the third indicates the specific location of the actuated device from which the alarm originates. Fire alarm signals are recorded on a punch-type recorder located in the Fire House. The signals are retransmitted via telephone wires to Central Facilities Area Fire Headquarters.

Ultrasonic burglar-alarm units are installed for protection of the two vaults in the Laboratory and Service Building. The alarm signal is transmitted via telephone wires to burglar-alarm drops located at Central Facilities.

The watchman tour system consists of key-operated mechanical watch tour stations and electrical code-transmitting start, mid-tour, and finish stations. The electric stations are located in the Guard House, Power Plant, and Guard House, respectively. Watchman tour signals are recorded at Central Facilities Area Communications Room via telephone wires.
J. Yard Lighting

1. Security Fence Lighting

The security fence-lighting system is a $120 / 208-\mathrm{V}, 3$-phase, 4 -wire system consisting of aerial cables carried on a wooden pole line installed 15 ft inside the site perimeter fence. The distance between poles is approximately 130 ft . A die-cast aluminum hood lighting fixture with reflector and 500-W lamp is mounted on each pole. The power feeder circuits to the pole line are run in concrete-encased underground conduits from the Guard House, where two combination starters and four fused safety switches are located for control and protection of the lighting system. A photoelectric control device is used for automatic control of the lighting.

2. Road and Parking-lot Lighting

The road-lighting system consists of aerial wires installed on wooden poles and with a die-cast aluminum hood lighting fixture with reflector and a $200-\mathrm{W}$ lamp mounted on each pole. Lighting fixtures are also mounted on the walls of buildings. The $120-\mathrm{V}$ a.c. power for the lighting circuits is taken from panels located in nearby buildings.

The parking-lot lighting system consists of a series of wooden poles with a die-cast aluminum hood lighting fixture complete with a $6-\mathrm{ft}$ upswing pipe bracket mounted on each pole. Wiring between poles is carried in underground conduit. Power is supplied from the Fire House,

The road-lighting and parking-lot lighting systems are both controlled by photoelectric control devices.
3. Parking-lot Head-bolt Heaters

A wooden rack on which are mounted waterproof power outlets for $2500-\mathrm{W}, 120-\mathrm{V}$ tank-type heaters for buses is.installed along the west side of the parking lot and a similar rack on which are mounted power outlet cords for $650-\mathrm{W}, 120-\mathrm{V}$ head-bolt heaters for passenger cars is installed along the east side of the parking lot. The feeder cables originate in the 120/208-V Párking Lot Power Panel located in the Fire House.

III. OPERATIONAL CHARACTERISTICS

The following brief description of the operational characteristics of the Electric Power System is intended to present a concise overall view and to highlight the major features, particularly in respect to essential interrelationships of its parts. Other characteristics and ratings of equipment comprising the power system are covered in Section IV - MAJOR COMPONENTS.
A. NRTS Electric Power System

The NRTS $138-k V$ power loop (see Fig. 19) includes substations for Scoville, SPERT, EBR-II, ANP, NRF, MTR/ETR, and CPP. The loop is a 65 -mile-long single-circuit line consisting of three 397,500 -circular mil ACSR conductors, carried on wood-pole H-frame structures, and protected by two overhead ground wires, each 5/16-in., 7-strạnd, high-strength, galvanized steel.

Power at 138 kV and 60 cycles is delivered to Scoville through circuit breaker 8Bl-l over the Utah Power and Light Company singlecircuit tramsmission line from Goshen Substation, located approximately 45 miles southeast. Provision has been made at the MTR substation for future receipt of $138-\mathrm{kV}$ power through circuit breakers $8 \mathrm{~B} 3-2$ and $8 \mathrm{~B} 3-3$ over a single-circuit transmission line from the American Falls Substation of the Idaho Power Company. A Utah Power and Light Company $44-\mathrm{kV}$ single-circuit line from Arco, about 19 miles distant, is connected to Scoville Substation through a power transformer.

The EBR-II 20,000-kW turbine-generator supplies power to the NRTS system on an "as available" basis.

The NRTS high-voltage system is controlled from the control room at Scoville Substation. This control room includes the control, instrument and relay panels for Scoville Substation, power-company billing meters and telemetering equipment, and the dispatching panels of the supervisorycontrol system.

The high-voltage substations are normally unattended and are controlled from Scoville over the supervisory control system. At each substation control switches and indicating lamps are provided for local control, together with a manually operated control-selector switch. In one position of this switch only local control is permitted; in the other position only supervisory control is permitted. Indication of the supervised switches and circuit breakers over the supervisory control system remains effective, whether the control-selector switch is in the local position or the supervisory position. The position of each control-selector switch is also indicated on the supervisory control panels at Scoville.

Normal operation of the $138-\mathrm{kV}$ power system is with the loop closed. Protective relays are provided on the sections of the loop to trip circuit breakers and open motor-operated disconnect switches as required to clear and isolate a faulted line section or power transformer while maintaining continuity of power supply to other parts of the system with a minimum of disturbance.

Protection against phase-to-phase and phase-to-ground faults is provided for each $138-\mathrm{kV}$ loop section between substations by a Westinghouse Corp.-Type HCB high-speed current differential pilot-wire relay at each end of the line. Backup protection is provided by Westinghouse Corp.-Type CR, CR-8 or HCZ (directional overcurrent and directional impedance) relays for phase-to-phase faults, and by Type CR, CRC, CWP or CWC (directional ground) relays for phase-to-ground faults.

The current transformers for the line relays are connected so as to place the power transformers outside the line-section protected zone. Therefore, current surges caused by transformer-energizing currents, loads, or faults outside the protected zone will appear as through currents and will not cause operation of the HCB relays.

The pilot wires used in conjunction with the protective relaying scheme employed between substations are continuously supervised by Westinghouse Corp.-Type PS-13 and PS-3 or PS -23 relays. These relays will detect an open circuit, short circuit, or ground fault of the pilot wires, and cause an alarm to sound. The pilot wires and their supervisory relays are also used for transfer-tripping functions in case of a fault in a stepdown power transformer.

When any $138-\mathrm{kV}$ line section, either of the loop system or of the supply lines, is cleared by operation of high-speed pilot wire or carriercurrent relays, the oil circuit breakers at each terminal of the faulted line section are automatically reclosed within 20 cycles by reclosing relays. If the fault persists and the breakers trip again, or if they were initially tripped by line-backup relays or transformer-differential relays, the reclosing function is locked out.

B. EBR-II 138-13.8-kV Main Outdoor Substation

Figure 20 is a simplified single-line diagram of the EBR-II electric power system. As indicated, the Main Outdoor Substation has two class OA/FA, 12,000/16, 000-kVA, 132-13.8-kV, 3-phase, 60-cycle power transformers with automatic load tap-changing equipment. These transformers tie the $13.8-\mathrm{kV}$ switchgear (located in the Power Plant Building) to the $138-\mathrm{kV}$ power system. This provides duplicate main power interconnections and will permit essentially full-capacity operation of the EBR-II facility in the event one transformer is out of service.

The 138-kV loop-sectionalizing breaker 8Bll-l and the motoroperated line and transformer-disconnecting switches are normally controlled by supervisory equipment from Scoville Substation; they may also be controlled from the control house located in the EBR-II Main Outdoor Substation. Similarly, $13.8-\mathrm{kV}$ incoming line circuit breakers 5Bll-l and 5Bll-2 in the Power Plant Building may be tripped (but not closed) from Scoville Substation or from the control house in the EBR-II Main Outdoor Substation.

C. EBR-II Turbine-generator

Control and instrumentation for the EBR-II generator and electric power and distribution system are located principally on panel boards in the Control Room in the Power Plant Building.

Parallel operation of the EBR-II turbine-generator with the NRTS power loop is normally under initial pressure-regulator control (overriding the speed-governor control) to maintain a constant pressure in the steam inlet to the turbine throttle. The load assumed by the generator varies directly with the output of the reactor up to the limit established by the load limit device or speed governor.

Automatic return to speed-governor control of the turbine is provided in the event the connection between the generator and the NRTS loop opens.

The EBR-II generator is of conventional hydrogen-cooled nonsalient pole design, rated $25,650 \mathrm{kVA}, 13,800 \mathrm{~V}, 3$-phase, 60 -cycles, 0.85 power factor, 3600 rpm , with a direct connected exciter. Excitation control for the generator is maintained by a continuously acting regulating (amplidyne buckboost) system.

When the EBR-II generator is operating in parallel with the NRTS system, there are three sources of $13.8-\mathrm{kV}$ power at the EBR-II Facility, namely, the two $13.8-\mathrm{kV}$ incoming lines from the main power transformers (eventually to be backed up by a second $138-\mathrm{kV}$ utility power-company transmission line serving the NRTS loop) and the EBR-II generator itself.

The EBR-II auxiliary load during 45 MWt operation of the reactor and with the turbine-generator operating is currently approximately 3.2 MW , including operation of the $800-\mathrm{hp}$ motor-driven boiler feedwater pump. When the motor-driven feedwater pump is not in use, the auxiliary load is approximately 2.7 MW . During plant standby, the EBR-II auxiliary load is approximately 3.2 MW. A 10 to 15 per cent increase in the se loads is anticipated when the Facility will be operating at full capacity.

As previously noted, normal operation of the NRTS power system is with the loop closed. It was determined by a transient-stability study that it could be hazardous to operate the EBR-II turbine-generator tied to the NRTS system while the loop is open and an automatic (20 -cycle) reclosure of one of the loop sectionalizing breakers in the circuit occurs. The procedure for operation of the turbine-generator therefore requires that the NRTS loop must be closed when the generator is tied to it. It is evident that if automatic (20-cycle) reclosure of a loop-sectionalizing breaker occurs in the closed loop, there is no hazard to the turbine-generator, since the circuit between the generator and the loop is not interrupted.

It was also determined that an automatic reclosure of a breaker in the Utah Power and Light Company $138-\mathrm{kV}$ transmission line from Goshen Substation could similarly prove hazardous to the EBR-II turbine-generator. To prevent this, pilot-wire tripping of the $13.8-\mathrm{kV}$ incoming line circuit breakers 5Bll-l and 5Bll-2 is provided when the automatic reclosure of a $138-\mathrm{kV}$ breaker in the utility transmission line is initiated. In this case, the EBR-II turbine-generator supplies the EBR-II Facility loads as a single unit generator, until it is desired to synchronize and return to parallel operation with the NRTS system.

An under-frequency relay is connected to separate the EBR-II system from the NRTS system (by tripping breakers 5Bll-l and 5Bll-2) when the turbine-generator is operating and the frequency of the NRTS system drops to 58 cps ; another under-frequency relay is provided to drop other loads from the EBR-II generator, as desired, when the frequency drops to 57 cps ; a third under-frequency relay is connected to trip generator breaker 5Bll-10 when the frequency drops to 56 cps .
D. $13.8-\mathrm{kV}$ System

As shown in Fig. 20, the $138-\mathrm{kV}$ loop-sectionalizing breaker 8B1l-1 and the $13.8-\mathrm{kV}$ bus-tie breaker 5Bll-12 are normally closed. Incoming line circuit breakers 5Bll-l and 5Bll-2 are also normally closed. In the event of a fault in the $138-\mathrm{kV}$ loop on one side of breaker $8 \mathrm{Bll-l}$ or in one of the main transformer circuits, protective relays operate to trip appropriate circuit breakers to isolate the faulted zone and maintain continuity of power supply with a minimum of disturbance to the EBR-II system. For example, should a fault occur in the $138-\mathrm{kV}$ loop between EBR-II and SPERT, circuit breakers 8Bll-1 and 5Bll-1 would open automatically (together with the automatic tripping of the $138-\mathrm{kV}$ tie breaker at SPERT), thus isolating the faulted zone and maintaining continuity of power supply between EBR-II and the $138-\mathrm{kV}$ system via $13.8-\mathrm{kV}$ Incoming Line No. 2.

The $13.8-\mathrm{kV}$ incoming line breakers 5Bll-l and 5Bll-2 are equipped with overcurrent and directional overcurrent relays. The overcurrent relays provide overload protection for the power transformers and backup protection for the protective relays on the $13.8-\mathrm{kV}$ feeder breakers. The
directional overcurrent relays prevent the flow of current from the NRTS power loop through a $12,000 / 16,000-\mathrm{kVA}$ transformer to the $13.8-\mathrm{kV}$ bus and back to the NRTS power loop via the other $12,000 / 16,000-\mathrm{kVA}$ trans former in the event the $138-\mathrm{kV}$ loop-sectionalizing breaker $8 \mathrm{Bll-1}$ should be opened.

Two $2500-\mathrm{kVA}, 13.8-2.4-\mathrm{kV}$, 3-phase, 60-cycle power transformers for the $2400-\mathrm{V}$ power system (see Fig. 20) are served by feeders on the $13.8-\mathrm{kV}$ switchgear, one on each side of the bus-tie circuit breaker. The neutrals of the wye-connected primary windings of these transformers are grounded through grounding resistors to establish a grounded neutral for the $13.8-\mathrm{kV}$ system.

Similarly, two $2000-\mathrm{kVA}, 13.8-\mathrm{kV}, 480-\mathrm{V}, 3-\mathrm{ph}$ ase, $60-\mathrm{cycle}$ power transformers for the $480-V$ power system are served by feeders from the 13.8-kV switchgear.

The TREAT Facility, approximately one mile northwest of the EBR-II Site, is fed from the $13.8-\mathrm{kV}$ switchgear via a single-circuit pole line.

```
E. 2400-V System
```

The $2400-\mathrm{V}$ power system is fed by two $2500-\mathrm{kVA}$ power transformers on the $13.8-\mathrm{kV}$ system. It is an ungrounded delta system. Though a $2400-\mathrm{V}$ grounded neutral system is generally considered to be preferable, the ungrounded delta system has the advantage that the occurrence of an accidental ground on one of the phases does not produce a fault current or cause a reactor "scram;" a ground on the system may therefore be located and cleared during normal plant standby. Ground detection and annunciation are provided.

The two $2400-\mathrm{V}$ incoming-line circuit breakers are provided with one common set of directional overcurrent relays for bus-fault protection and backup protection for the circuit breakers serving the branch circuits. Directional power relays are provided for each of the $2400-\mathrm{V}$ incoming-line breakers to trip their respective breaker if power should flow from the $2400-\mathrm{V}$ bus toward the $13.8-\mathrm{kV}$ bus.

The $2400-\mathrm{V}$ switchgear provides power for the relatively large plant loads, namely, two $300-\mathrm{kW}$ M-G sets for the two $350-\mathrm{hp}$ primary sodium pumps, a $350-\mathrm{kW} \mathrm{M}-\mathrm{G}$ set for the secondary sodium a.c. linear electromagnetic pump, two $350-\mathrm{hp}$ condenser circulating water pumps, an $800-\mathrm{hp}$ boiler feedwater pump, two $200-\mathrm{hp}$ deep-well pumps, and a feeder serving a $500-\mathrm{kVA}, 2.4-\mathrm{kV}-240-\mathrm{V}$, single-phase power transformer for induction heating of the sodium piping and a $250-\mathrm{kVA}, 2.4-\mathrm{kV}-480-\mathrm{V}$, single-phase transformer for the secondary system surge-tank heaters.

The present design for the ZPPR Facility and the Inspection and Test Facility calls for a $2400-\mathrm{V}$ pole line feeder originating in a circuit breaker section of the $2400-\mathrm{V}$ switchgear.

F. 480-V System

The $480-\mathrm{V}$ power system (see Fig. 20) is fed by two $2000-\mathrm{kVA}$ power transformers on the $13.8-\mathrm{kV}$ system. It is a solidly grounded neutral system.

The $480-\mathrm{V}$ main switchgear bus is protected against bus faults by a set of directional overcurrent relays which receive the sum of the current into the bus. Coordination with the branch breakers is provided with the use of instantaneous overcurrent relays which are connected and set to prevent operation of the directional overcurrent relays unless the current is large enough to cause tripping of the branch breakers by their short-time-delay elements. Directional power relays are provided for each of the $480-\mathrm{V}$ incoming-line breakers to trip their respective breaker if power should flow from the $480-\mathrm{V}$ bus toward the $13.8-\mathrm{kV}$ bus.

The $480-\mathrm{V}$-system circuit breakers are equipped with overcurrent devices to provide selective tripping, i.e., the tripping of only the breaker in the circuit nearest the fault to disconnect the faulted circuit from the system.

The $480-\mathrm{V}$ system includes $480-\mathrm{V}$ main switchgear, $480-\mathrm{V}$ emergency switchgear, three emergency diesel-generator units, motor-control centers, and a. $480-\mathrm{V}$ lighting distribution center. Four of the motor-control centers have a "normal" and an "emergency" bus section, and a normally open, electrically operated bus-tie breaker. The "normal" bus section is fed directly from the $480-V$ main switchgear whereas the "emergency" bus section is fed from the $480-\mathrm{V}$ main switchgear via the $480-\mathrm{V}$ emergency switchgear.

In the event of loss of voltage in the "emergency" bus section of a motor-control center, without loss of voltage in the "normal" bus section, the bus-tie breaker closes automatically to restore power to the "emergency" bus section.

With sustained loss of voltage on the $480-V$ main switchgear, in which case there is sustained loss of voltage on the $480-\mathrm{V}$ emergency switchgear, the three diesel-generator units automatically start and assume their respective emergency loads.

The $100-\mathrm{kW}$ diesel-generator unit supplies emergency power for operation of critical emergency loads in the Reactor Plant, namely, the instrument thimble-cooling-system exhaust turbo-compressors, the shield-cooling-system exhaust fans and damper motors, an instrument air compressor, and auxiliary transformers for control and indicating lights.

The $400-\mathrm{kW}$ diesel-generator unit serves emergency loads in the Reactor Plant, Power Plant, Sodium-Boiler Plant, Laboratory and Service Building, and other areas.

Controls are provided for the $400-\mathrm{kW}$ diesel-generator unit to assume the critical emergency loads of the $100-\mathrm{kW}$ diesel-generator unit should the latter fail to operate.

The $200-\mathrm{kW}$ diesel-generator unit serves the emergency loads of the Fuel Cycle Facility.

Power for emergency lighting is supplied by the $400-\mathrm{kW}$ dieselgenerator unit, the $125-\mathrm{V}$ station battery, and by numerous $6-\mathrm{V}$ storage battery emergency lighting units located throughout the Facility.

G. Power Supplies for the Two Primary Sodium Pumps

Each $350-\mathrm{hp}, 480-\mathrm{V}, 3-\mathrm{phase}$, 54.5-cps, totally enclosed, fan-cooled, 6 -pole, squirrel-cage induction primary pump drive motor receives its electric power from a separate 4 -unit motor-generator set consisting of 1) a $400-\mathrm{hp}, 2400-\mathrm{V}, 3-\mathrm{phase}, 60-\mathrm{cps}, 1175-\mathrm{rpm}$, squirrel-cage inductiondrive motor, 2) a water-cooled eddy-current type variable slip coupling, 3) a $375-\mathrm{kVA}, 480-\mathrm{V}, 3-\mathrm{phase}, 54.5-\mathrm{cps}, 1090-\mathrm{rpm}, 0: 8-\mathrm{pf}$ synchronous generator, and 4) a $3-\mathrm{kW}$, $125-\mathrm{V}$ d.c., shunt-wound exciter. The $2400-\mathrm{V}$ circuit breakers serving the $M-G$ set drive motors are part of the $2400-\mathrm{V}$ switchgear, as shown in Fig. 8.

Variable-voltage and variable-frequency output of the synchronous generator is accomplished essentially by controlling the speed of the generator through control of the slip of the coupling between the M-G set drive motor and generator: Variable speed of the pump drive motor from approximately 10 per cent of maximum rated speed is thus achieved.

The main control equipment and instrumentation for the $M-G$ sets are contained in three sections of the Corridor Panel located in front of the $\mathrm{M}-\mathrm{G}$ sets at the ramp and stairway entrance to the Reactor Plant Building. Startup of the $M-G$ sets is from this panel. Instruments, indicating lights, and annunciation are also located on the Primary Section Panel in the Main Control Room. After startup, all pump control is from the Console in the Main Control Room.

The sodium-flow requirement of each pump is approximately 4670 gpm at 54 psig . The rated maximum capacity of each pump is 5000 gpm at 85 psig .
H. Power Supply for the Secondary Sodium Pump

The power supply for the secondary sodium linear induction electromagnetic pump consists of a 2 -unit motor-generator set with a $500-\mathrm{hp}$, $2400-\mathrm{V}, 3$-phase, $60-\mathrm{cps}, 1185-\mathrm{rpm}$ squirrel-cage induction drive motor and a $438-\mathrm{kVA}, 350-\mathrm{kW}, 480-\mathrm{V}, 3-\mathrm{phase}, 60-\mathrm{cps}, 1200-\mathrm{rpm}, 0.8-\mathrm{pf}$ synchronous generator. The excitation rating of the generator field is 125 V d.c. and 36.6 A. The $2400-\mathrm{V}$ circuit breaker feeding the $\mathrm{M}-\mathrm{G}$ set drive motor is part of the $2400-\mathrm{V}$ switchgear.

A $1340-\mathrm{kVAR}, 460-\mathrm{V}, 3-\mathrm{ph}$ ase, $60-\mathrm{cps}$ capacitor bank is connected across the electromagnetic pump for power-factor correction to prevent the full-load current rating of the generator from being exceeded.

The generator-voltage control system originally consisted of an amplidyne-electronic voltage regulator for control and regulation over a 10 to l voltage range. Operating experience, however, revealed the need for improved incremental control of the pump voltage in the region of zero voltage for satisfactory control of the reverse head on the pump. Under certain conditions, i.e., when sodium flow by natural convection is excessive, it is desirable to reduce the flow rate by producing a bucking effect with the pump.

Control of the reverse head on the pump was improved by replacing the amplidyne voltage-regulator scheme with a d.c. power supply consisting of a 4: l ratio transformer, a motor-operated variable voltage transformer, and a $2: 1$ ratio transformer cascaded in the input to a single-phase, silicon diode bridge rectifier. The 4 : l ratio transformer is switched out of the input of the rectifier circuit for normal forward operation of the pump.

The M-G set is placed in operation from the Secondary System Panel in the Sodium-Boiler Plant; the generator breaker is controlled from the Secondary System Panel in the Main Control Room. Pumping power (flow rate) is controlled from the Console in the Main Control Room.

The a.c. linear electromagnetic pump is nominally rated at 460 V 3 -phase, $60 \mathrm{cps}, 350 \mathrm{~kW}$, and $1200-\mathrm{kVA}$, andis capable of providing a flow of 6500 gpm , at a head of 53 psi , when pumping $700^{\circ} \mathrm{F}$ sodium.
I. Continuous Power-supply System

A continuous voltage- and frequency-regulated, $120-\mathrm{V}$, single-phase, $60-c p s$ power-supply unit is provided for the nuclear and process instrumtation and control systems. It consists principally of a magnetic-amplifier type of silicon power rectifier, a floating $240-\mathrm{V}$ storage battery, a $15-\mathrm{kW}$, d.c.-a.c. M-G set for the nuclear system; a $20-\mathrm{kW}$, d.c.-a.c. M-G set for
the process system; and a $50-\mathrm{kVA} 480-120-\mathrm{V}$, double-secondary, singlephase, reserve transformer for the nuclear and process systems during shutdown of the d.c. power system for maintenance or repair. The output of each generator, as designed, has a voltage regulation of one per cent and a frequency regulation of one cps.

It was determined from operating experience that more stable frequency regulation was needed for proper operation of certain instrumentation on the process system during periods of sudden load changes on the process-system alternator. This need was met by the addition of a flywheel to the process M-G set.

Under normal operation the rectifier supplies power to the M-G sets and maintains the floating battery in a fully charged condition. Upon loss of $480-\mathrm{V}$ a.c. power to the rectifier, the floating battery maintains uninterrupted operation of the M-G sets. The battery is capable of maintaining operation of the $M-G$ sets for 30 min at full load or for a longer period at reduced load. Since the power rectifier is automatically transferred to the $400-\mathrm{kW}$ emergency diesel-generator unit when the normal $480-\mathrm{V}$ power supply is lost, it is unlikely that the storage battery will be called upon to power the M-G sets for more than 15 or 20 sec .
J. Rectifier and Battery Power Supply for the Primary Auxiliary EM Pump

To assure maintained operation of the 500 -gpm primary auxiliary d.c. electromagnetic sodium pump, particularly for the period immediately following a reactor shutdown, a $0-15,000 \cdot \mathrm{~A}, 0-1.7-\mathrm{V}$ germanium rectifier and a floating $1.4-\mathrm{V}$ battery are provdied.

Power is normally supplied to the pump by the rectifier during operation and shutdown of the reactor. The rectifier is used to give the battery an equalizing charge and to maintain a trickle charge on the fully charged floating battery. With loss of a.c. power supply to the rectifier, the floating battery maintains uninterrupted operation of the auxiliary pump at a slowly decreasing flow rate, for a period of approximately 30 min . The power rectifier may be manually applied to the $400-\mathrm{kW}$ emergency dieselgenerator unit.

IV. MAJOR COMPONENTS

A. EBR-II Main Outdoor Substation

1. General

The EBR-II 138-13.8-kV substation is similar to other sub:stations served by the NRTS $138-\mathrm{kV}$ Power System, except that the secondary switchgear is located in the EBR-II Power Plant Building instead of in the substation control house. This arrangement exists because of the fact that, unlike other facilities on the NRTS System, the EBR-II Facility includes a $20-\mathrm{MW}$ turbine-generator which is operated by ANL personnel and which supplies substantial amounts of power to the NRTS System on an "as available" basis.

The substation (see Figs. 3 and 20) contains two step-down power transformers, one connected on either side of a $138-\mathrm{kV}$ loopsectionalizing oil circuit breaker. This provides a double-end feed to the substation. The circuit breakers in the secondaries of the transformers comprise a part of the $13.8-\mathrm{kV}$ switchgear assembly in the Power Plant. This provides duplicate main power feeders and will permit essentially full-capacity operation of the EBR-II Facility in the event one transformer is out of service.

Motor-operated horn-gap switches connect each loop linesection to the station and each transformer to its corresponding $138-\mathrm{kV}$ bus. The disconnecting switches on each side of the $138-\mathrm{kV}$ oil circuit breaker 8Bll-1 are manually operated.

2. Main Power Transformers

The two main power transformers are Westinghouse Electric Corp. Type SL, 12000/16000-kVA, OA/FA, 132-13.8-kV wye-delta, 3-phase, 60 -cycle, $55^{\circ} \mathrm{C}$ temperature-rise outdoor-type power transformers. The impedance of each transformer is 9 percent at the $12000-\mathrm{kVA}$ rating. The high-voltage windings have four $2 \frac{1}{2}$ percent full-capacity taps, two above and two below normal rated voltage. Each transformer is equipped with automatic load tap-changing equipment (Westinghouse Type URT) which operates under load to provide a voltage range of plus or minus 10 percent of normal in thirty-two $5 / 8$ percent steps. The transformers may be paralleled together on both the high- and low-voltage sides without causing hunting of the automatic tap-changing equipment.

The insulation of the high-voltage windings is $115-\mathrm{kV}$ class with a full-wave impulse level of 550 kV , and that of the low-voltage windings is $15-\mathrm{kV}$ class with $110-\mathrm{kV}$ full-wave impulse level.

The secondary of each transformer is connected to its respective $13.8-\mathrm{kV}$ air circuit breaker in the Power Plant Building by two $600-\mathrm{MCM}$, single-conductor copper cables per phase installed in underground ducts. The cables are shielded, rubber-insulated cables with a $15-\mathrm{kV}$, ungrounded neutral-system voltage rating.

A $10-\mathrm{kVA}, 13,800 \mathrm{Y} / 7970-\mathrm{V}-240 / 120-\mathrm{V}, 3$-phase, $60-\mathrm{cycle}$ auxiliary transformer, for operation and control of the load tap-changer mechanism and cooling fans, is mounted on top of the core and coil assembly in the oil compartment of each main transformer.
3. Oil Circuit Breaker and Motor-operated Disconnecting Switches

The $1.38-\mathrm{kV}$ loop-sectionalizing breaker is a. Westinghouse Type GM-5B, 138-kV, 1200-A, 3-pole, outdoor-type oil circuit breaker of the tank type, mechanically and electrically trip-free, complete with a Type AA-10 pneumatic (compressed air) operating mechanism, porcelain bushings, and current transformers.

The voltage and current ratings of the oil circuit breaker are given in Table 1.

TABLE 1. $138-\mathrm{kV}$ Oil Circuit-breaker Rating

Rated voltage.	138 kV
Continuous current (60 cps)	1,200 A
Interrupting rating, 3-phase	$5,000 \mathrm{mVA}$
Short-time current rating	
Momentary.	36,000 A
Four-second.	24,000 A
Interrupting rating	
Amperes at rated voltage	21,000 A
Current limitation	24,000 A
Time in cycles (60-cps basis)	3 cycles
Insulation level	
Withstand test, 60 cps	310 kV
Impulse crest	650 kV
Maximum design kV.	145 kV
Maximum kV for rated interrupting mVA.	120 kV

The motor-operated horn-gap disconnecting switches are Westinghouse Type V, 161-kV, 600-A, 3-pole, single-throw, groupoperated, outdoor-type disconnecting switches.
4. Control, Alarm, and Operating Features

The $138-\mathrm{kV}$ oil circuit breaker and the $138-\mathrm{kV}$ line and transformer horn-gap disconnecting switches are normally controlled by supervisory from Scoville Substation but may be controlled from the sùbstation control house. The transformer $13.8-\mathrm{kV}$ secondary breakers are normally controlled from the EBR-II Power Plant but may be tripped from the substation control house or by supervisoryfrom Scoville Substation. Control switches and indicating lights for local control and indication are provided in the substation control house, together with a control-selector switch. The selector switch permits selection of either local or remote supervisory control. An indication of the position of the selector switch is provided at Scoville Substation by the supervisory equipment. All remote position indications, as well as control functions in the Power Plant, remain effective in both positions of the control-selector switch.

The following circuit breakers and disconnecting switches are controlled either locally or remotely, subject to the position of the controlselector switch:
a) 8Bll-l Oil Circuit Breaker
b) 8H11-1 Transformer 8T11-1 Horn-gap Switch
c) 8Hll-2 Transformer 8T11-2 Horn-gap Switch
d) 8H11-3 SPERT Line Horn-gap Switch
e) 8Hll-4 ANP Line Horn-gap Switch
f) 5B11-1 Transformer 8T11-1, 13.8-kV Circuit Breaker*
g) 5Bll-2 Transformer 8Tll-1, 13.8-kV Circuit Breaker*
h) 5Bll-12 Switchgear 13.8-kV Bus-sectionalizing Breaker.**

Nominal control voltage for the disconnecting switches, circuit breaker, and the supervisory control system is 125 V d.c. supplied by a 60 -cell station battery. The battery operates on a continual floating charge provided by a Rectomatic battery charger. Devices are provided with the supervisory equipment to detect battery-charger failure, sustained abnormally low battery voltage, or a ground on the battery bus; an alarm indication is transmitted to Scoville Substation if any of the conditions occur.

Control voltage for the $13.8-\mathrm{kV}$ switchgear in the EBR-II Power Plant is provided by a separate battery. Interposing relays and control circuits prevent any interconnection between the two batteries.

[^1]The supervisory equipment includes provisions for transmitting the following listed alarms:
a) Pilot-wire Alarm, which indicates an open- or shortcircuited HCB relay pilot wire between EBR-II and ANP Substations.
b) Control-voltage Failure Alarm, which indicates failure of $125-\mathrm{V}$ d.c. control voltage for tripping either of the main transformer secondary breakers.
c) General Station Alarm, which indicates any of the following listed abnormalities:

1) Transformer No. 1 (8T11-1) or Transformer No. 2 (8T1l-2)

Oil Temperature High
Oil Level Low Main Tank
Oil Level Low Tap-changer Selector-switch Compartment

Oil Level Low

Gas-Pressure High
Gas Pressure Low
Gas Pressure Low
Tap-changer Transfer-switch Compartment

Main Tank
Main Tank
Storage Cylinder
2) Oil Circuit Breaker (8B11-1)

Air Pressure Low
Compressor Power Failure
3) Control Room Temperature Low

The power transformers are connected to the $138-\mathrm{kV}$ bus through horn-gap disconnecting switches. In order to operate one of these switches safely, the load circuit must be first inter rupted by opening the transformer secondáry circuit breaker.

The line horn-gap disconnecting switches are provided to isolate a line section while maintaining service to both transformers from the opposite line. In order to safely operate a line horn-gap switch, the load circuit must first be interrupted by removing the associated transformer from service and opening the oil circuit breaker.

To avoid making or breaking load current with any horn-gap switch, each switch is electrically interlocked with other switches and circuit breakers to prevent operation, by either local or supervisory control, under conditions that would cause such an occurrence. All switching procedures must follow a definite sequence as permitted by the preventive interlocks.

Control and interlock circuits are provided to prevent reenergizing a line section, after a transformer differential-relay operation, until the faulty transformer has been disconnected from the line, and to prevent any attempt to return the transformer to service until the handreset auxiliary trip and lockout relay has been reset to its normal position.

The closing circuit for the $13.8-\mathrm{kV}$ breaker of each transformer is interlocked with the transformer high-voltage horn-gap switch and with contacts of a Type CV voltage relay, so that the breaker cannot be closed unless the horn-gap switch is closed and the corresponding section of the $138-\mathrm{kV}$ bus is energized.
5. Protective Relaying

The protective relaying scheme is shown in Fig. 21. The following listed Westinghouse Electric Corp. relays are mounted on the substation control house panels and are provided for each $138-\mathrm{kV}$ line section:
a) One Type HCB pilot-wire relay (85) for high-speed phase and ground protection.
b) Three Type HCZ directional-distance impedance relays (21) for backup phase protection.
c) One Type CWC directional current-product relay (67 N) for backup ground protection.

Three Westinghouse Type HU differential-current relays (87), together with a hand-reset auxiliary trip and lockout relay, and other auxiliary relays, are provided in the substation control house for differential protection of each $12000 / 16000-\mathrm{kVA}$ main power transformer.

Check-synchronizing equipment is provided for the $138-\mathrm{kV}$ oil circuit breaker; it consists of a Type CI synchronism-verifier relay (25), a Type CV voltage-timing relay (25 X), and two Type SV instantaneousundervoltage relays (27). The relays are manufactured by the Westinghouse Electric Corp. Check-synchronizing potential is provided by two bushing potential devices, one on each side of the $138-\mathrm{kV}$ oil circuit breaker. When
the oil circuit breaker opens, auxiliary-switch contacts establish circuits which apply voltage from the potential devices to the synchronism-verifier and undervoltage relays. If either potential source is de-energized, undervoltage relay contacts complete the breaker closing circuit up to the primary closing control device. If both potential sources are energized, and both voltages are approximately equal and in phase, the breaker closing circuit will be established, after a time delay, by contacts of the CV voltagetiming relay, which is energized through contacts of the synchronismverifier relay. In either case, the breaker will not close until the closing circuit is completed by either the local control switch or the closingcontrol relay of the supervisory system.

When $138-\mathrm{kV}$ oil circuit breakers 8Bll-1 at EBR-II Substation and 8B5-1 at ANP Substation (see Fig. 19) are tripped by HCB pilot-wire relays (85), the breakers will automatically reclose within 20 cycles. The high-speed reclosing is accomplished through Westinghouse Type SX and SGR-12 relays (79) installed at EBR-II and ANP Substations. Automatic reclosing is similarly provided when $138-\mathrm{kV}$ oil circuit breakers $8 \mathrm{Bll}-1$ at EBR-II Substation and 8B10-1 at SPERT Substation are tripped by HCB pilot-wire relays (85). Automatic high-speed reclosure does not occur when tripping has resulted from operation of backup relays, transformerdifferential relays, or transferred tripping, or when a breaker has been tripped by supervisory control or by local control switches.

Overcurrent phase relays (51), overcurrent ground relays ($50 / 51 \mathrm{~N}$), and directional-overcurrent phase relays (67) are provided in the EBR-II Power Plant on the switchgear sections of $13.8-\mathrm{kV}$ circuit breakers 5Bll-l and 5Bll-2. The phase overcurrent relays (5l) provide overload protection for the main power transformers and backup protection for the relays on the $13.8-\mathrm{kV}$ branch feeder breakers. The overcurrent ground relays ($50 / 5 \mathrm{lN}$) operate only for ground faults in the delta $13.8-\mathrm{kV}$ windings of the main transformers or in the cable between the switchgear and the transformers and have been given a sensitive setting.

The directional-overcurrent phase relays (67) provide backup for the transformer differential relays and prevent NRTS System loadcurrent flow through the power transformers and the secondary switchgear bus in case the $138-\mathrm{kV}$ oil circuit breaker is inadvertently opened. The directional elements are connected so as to close their contacts when current flows from the $13.8-\mathrm{kV}$ bus to the $138-\mathrm{kV}$ system. Since load. current normally flows toward the $138-\mathrm{kV}$ system when the turbinegenerator is in operation, the current circuits to the overcurrent elements of the phase relays are differentially connected. Thus, with the load balanced between the two transformers, the relays will not operate to close their contacts even though the directional elements recognize current flow in the tripping direction. Any load unbalance or current reversal which results in a differential current in excess of the tap setting of the
overcurrent elements, will cause tripping of the transformer $13.8-\mathrm{kV}$ -breaker carrying the largest current in the tripping direction, that is, from the $13.8-\mathrm{kV}$ bus to the $138-\mathrm{kV}$ system. In order to prevent tripping when one transformer is out of service or when the switchgear bus is sectionalized, the relay trip circuits are interlocked through breaker auxiliary switches so that the relays are in service only when the $13.8-\mathrm{kV}$ bussectionalizing and transformer breakers are all closed.
B. $13.8-\mathrm{kV}$ System

1. General

The $13.8-\mathrm{kV}$ electric power system consists of two buses with a normally closed bus tie breaker. It is a grounded neutral system in which the ground is established by means of resistors connected in the neutrals of the $13.8-\mathrm{kV}$ primary windings of two $2500-\mathrm{kVA}$ power transformers fed from the $13.8-\mathrm{kV}$ switchgear bus (see Fig. 20).

The system includes an indoor-type metal-clad switchgear assembly, a $25,600-\mathrm{kVA}$ turbine-generator (see Section IV-C TurbineGenerator) and interconnecting $15-\mathrm{kV}$ power cables installed in rigid steel. conduit and/or in underground ducts encased in concrete. A $13.8-\mathrm{kV}$, 3-phase wooden pole-line feeder which originates in a section of this switchgear supplies power to the TREAT Facility approximately 4000 ft northwest of EBR-II.

The $13.8-\mathrm{kV}$ system is controlled mainly from control panels in the Main Control Room on the operating floor level of the Power Plant Building.
2. $13.8-\mathrm{kV}$ Switchgear

The $13.8-\mathrm{kV}$ switchgear assembly was manufactured by Federal Pacific Electric Co. and is of the indoor metal-clad type, with front removable air circuit breakers, and with control, protective relays, instruments; and meters mounted on the front door panels of the switchgear sections. The switchgear is complete with bus differential protection, all necessary current and potential transformers, and complete relay protection for the incoming lines, generator, and branch feeders.

The switchgear assembly consists of fourteen sections, namely, ten circuit-breaker sections and four potential-transformers sections, as follows:

TREAT ($13.8-\mathrm{kV}$ pole-line feeder)
Transformer No. 5--2000 kVA, $13.8-0.48 \mathrm{kV}$
Transformer No. 3--2500 kVA, 13:8-2.4 kV
Bus Section No. 1--potential transformers
Transformer No. 1--12000/16000 kVA, 132-13.8 kV
Generator potential transformers
25,600-kVA generator
Bus transition and potential transformers
Bus tie
Transformer No. 2--12000/16000 kVA, 132-13.8 kV
Bus section No. 2 potential transformers
Transformer No. 4-- $2500 \mathrm{kVA}, 13.8-2.4 \mathrm{kV}$
Transformer No. 6--2000 kVA, 13.8-0.48 kV
Spare breaker.
The air circuit breakers are Federal Pacific Electric Co. Type DST 15-500, horizontal drawout, rated $13.8 \mathrm{kV}, 1200 \mathrm{~A}, 60$ cycle, 3 pole, electrically operated. A summary of circuit breaker data is given in Table 2.

TABLE 2. $13.8-\mathrm{kV}$ Air Circuit Breaker Data

3. Neutral Grounding Resistors ${ }^{\prime}$

Typical of the main power transformers at other Facilities on the NRTS $138-\mathrm{kV}$ loop, the $13.8-\mathrm{kV}$ secondaries of the two EBR-II 12000/ $16000-\mathrm{kVA}$ main power transformers are delta connected. The scheme adopted for establishing a $13.8-\mathrm{kV}$ grounded neutral power system for EBR-II utilizes the neutral points of the wye-connected primary windings of $2500-\mathrm{kVA}, 13.8-2.4-\mathrm{kV}, 3$-phase transformers Nos. 3 and 4. The neutral point of each of these transformers is connected to ground through a 6.66-ohm resistor. The resistors are General Electric Company IC9147-S2 neutral grounding resistors, outdoor type, cast grid, rated 8.4 kV line-to-neutral, 1200 A for 10 sec with $500^{\circ} \mathrm{C}$ rise at an elevation of 5120 ft .

Prior to selecting the above method for providing a grounded neutral for the $13.8-\mathrm{kV}$ system, the following methods were investigated:
(a) using wye-wye main power transformers with a delta tertiary winding;
(b) using wye-wye 13.8-2.4-kV transformers with a delta tertiary winding;
(c) using separate neutral grounding transformers on the 13.8 -kV bus;
(d) using wye-delta 13.8-2.4-kV transformers and grounding the neutrals of these transformers through grounding resistors.

Item (d) proved to be the most practical, showing a cost savings of approximately $\$ 16,000.00$.

4. $15-\mathrm{kV}$ Power Cable

The power cables used in the $13.8-\mathrm{kV}$ system have a $15-\mathrm{kV}$ ungrounded neutral rating, which provides a substantial margin of safety against the occurrence of breakdown of cable insulation. The cables are round, single-conductor, class "C" stranding, soft annealed copper cables, shielded, with ozone-resistant butyl rubber compound insulation, corona-, ozone-, moisture-, and heat resistant, and with an outer covering of oilresistant, thermoplastic polyvinylchloride suitable for a maximum temperature of $80^{\circ} \mathrm{C}$, in accordance with Insulated Power Cable Engineers Association (IPCEA) general specifications S-19-81.

5. Control Panels

Controls for the ten $13.8-\mathrm{kV}$ circuit breakers are provided on electrical panels E-5, E-6, and E-7 (see Fig. 22) in the Main Control Room. The switchgear may be seen from the control room. In addition to the main controls located on these panels, there are permissive trip switches on the switchgear cubicle doors for the individual circuit breakers. These switches are not for normal control functions, but will permit tripping of the circuit breaker in their respective cubicles. The closing function of any breaker from the control room can only be initiated if the respective permissive switch is in the "ON" position, but tripping may be accomplished from either location at any time.

Breaker position-indicating lights are located above each of the breaker control switches in the main control room with duplicate indication provided above the individual breaker permissive control switches at the switchgear.

Metering, instrumentation, and annunciation equipment for the individual $13.8-\mathrm{kV}$ feeders are mounted on electrical panels E-5 and E-7. Instrumentation, metering, controls, and automatic synchromizing equipment for the generator are mounted on panel E-6. Electrical panel E-3 (see Fig. 23) contains the metering, instrumentation, and annunciation equipment for the two $13.8-\mathrm{kV}$ incoming lines (ties to the $138-\mathrm{kV}$ system); a $13.8-\mathrm{kV}$ bus recording voltmeter is on panel E-4 (see Fig. 24). An indicating ammeter and ammeter-transfer switch, in addition to.those on the main control room electrical panels, are provided on the door of each $13.8-\mathrm{kV}$ switchgear cubicle housing a circuit breaker except the bus-tie cubicle. Also, indicating voltmcters and voltmeter transfer switches are provided on the switchgear for cach bus section and incoming $13.8-\mathrm{kV}$.line.
6. Protective Relaying

The design of the protective relaying scheme attempts to achieve a high degree of selective tripping in which a faulted part of the system is automatically disconnected rapidly and with a minimum of disturbance to the remainder of the power system.

The application of relays included consideration of l) protective zones, 2) reliability, 3) backup protection, 4) relay selection and coordination for minimum tripping times, 5) economics, and 6) simplicity of circuitry. Overlapping of the protective relaying zones involved the selection of appropriate locations of current transformers and potential transformers in the power circuits.

The protective relays employed in the $13.8-\mathrm{kV}$. system are mainly of the flush or semiflush, drawout type.

A list of the principal protective relays used in the system is given in Table 3. The table includes the type, application, location, and function of the relays, with references to single-line and elementary diagrams. All the relays are of General Electric Co. (Relays for the $25,600-\mathrm{kVA}$ generator are listed separately in Section IV-C of this report.)

TABLE 3. Protective Relays for the $13.8-\mathrm{kV}$ System

Feeder	Location (Switchgear unit)	Device No.	Quantity	Relay Type	Function	See Fig.
13.8-kV bus section No. 1	Unit No. 9	87 (81)	3	Bus differential, Type 12PVDIICIA	Trip 13.8-kV bus tie (unit No. 9), TREAT (unit No. 1), Transformer No. 3 (unit No. 3). 13.8-kV line No. 1 (unit No. 5), 13.8-kV generator (unit No. 7)	$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \end{aligned}$
13.8-kV bus section No. 2	Unit No. 9	87(B2)	13	Bus differential, Type 12PVDIICIA	Trip $13.8-\mathrm{kV}$ bus tie (unit $\mathrm{N}_{0}{ }^{-9} 9$), 13.8-kV line No. 2 (unit No. 10), Transformer No. 4 (unit No. 12). Transformer No. 6 (unit No. 13)	$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \end{aligned}$
13.8-kV line No. 2	Unit No. 10	$51(\mathrm{~T} 2)$	3	Inverse time overcurrent, Type 12IAC51B13A	Trip 13.8-kV line No. 2 (unit No. 10)	$\begin{aligned} & 21 \\ & 26 \end{aligned}$
		50151N	1	Instantaneous and inverse time overcurrent, Type 12IAC51B18A	Trip 13.8-kV line No. 2 (unit No. 101	$\begin{aligned} & 21 \\ & 26 \end{aligned}$
		67	3	Directional phase inverse time overcurrent. Type 121BC51E1A	Trip 13.8-kV line No. 2 (unit No. 10)	$\begin{aligned} & 21 \\ & 26 \end{aligned}$
.		80	1	D.C. undervoltage, Type 13PJV11AK2A	Supervisory system alarm	26
Transformer No. 4	$\text { Unit No.'. } 12$	50/51	3	Instantaneous and very inverse time overcurrent. Type 12IAC53B27A	Trip transformer No. 4. 13.8-kV feeder breaker	$\begin{aligned} & 25 \\ & 27 \end{aligned}$
		51 N	1	Inverse time ground overcurrent, Type 12IAC51B2A	Trip transformer No. 4. 13.8-kV feeder breaker	$\begin{aligned} & 25 \\ & 27 \end{aligned}$
	.	67N	1	Directional ground overcurrent, similar to Type 12IBCG51E	Trip transformer No. 4 , $13.8-\mathrm{kV}$ feeder	$\begin{aligned} & 25 \\ & 27 \end{aligned}$
		87(T4)	3	Percentage differential, Type 12BDD15B1A	Trip transformer No. 4 , $13.8-\mathrm{kV}$ and $2400-\mathrm{V}$ breakers	$\begin{aligned} & 25 \\ & 27 \end{aligned}$
		50/51G	1	Instantaneous and inverse time ground overcurrent Type 12IAC51T16A	Trip $13.8-\mathrm{kV}$ bus tie, $13.8-\mathrm{kV}$ line No. 2, transformer No. 4. 13.8-kV feeder, transformer No. 6, 13.8-kV feeder, and spare feeder	$\begin{aligned} & 25 \\ & 27 \\ & 44 \end{aligned}$
Transformer No. 6	Unit No. 13	50151	3	Instantaneous and very inverse time phase overcurrent, Type 121AC53B27A	Trip transformer No. 6 . 13.8-kV feeder	$\begin{aligned} & 25 \\ & 28 \end{aligned}$
		50151N	1	Instantaneous and inverse time ground overcurrent. Type 12IAC51B2A	Trip transformer No. 6 , 13.8-kV feeder	$\begin{aligned} & 25 \\ & 28 \end{aligned}$
		87(T6)	3	Percentage differential. Type 12BDD15B1A	Trip transformer No. 6. 13.8-kV and 480-V breakers	$\begin{aligned} & 25 \\ & 28 \end{aligned}$
TREAT	Unit No. 1	50/51	3	Instantaneous and inverse time phase overcurrent. type 12IAC51B13A	Trip 13.8-kV TREAT feeder breaker	25
		50/51N	1	Instantaneous and inverse time ground overcurrent. Type 12IAC51B2A	Trip 13.8-kV TREAT feeder breaker	25

TABLE 3 (Contd.)

Feeder	Location (Switchgear unit)	Device No.	Quantity	Relay Type	Function	See Fig.
Transformer No. 5	Unit No. 2	$50 / 51$	3	Instantaneous and very inverse time phase overcurrent, Type 12IAC53B27A	Trip 13.8-kV transformer No. 5 feeder breaker	$\begin{aligned} & 25 \\ & 28 \end{aligned}$
		50/51N	1	Instantaneous and inverse time ground overcurrent, Type 12IAC51B2A	Trip 13.8-kV transformer No. 5 feeder breaker	$\begin{aligned} & 25 \\ & 28 \end{aligned}$
		87(T5)	3	Percentage differential, Type 12BDD15B1A	Trip transformer No. 5. 13.8-kV and 480-V breaker	$\begin{aligned} & 25 \\ & 28 \end{aligned}$
Iransformer No. 3	Unit No. 3	50151	3	Instantaneous and very inverse time phase overcurrent, Type l2IAC53B27A	Trip 13.8-kV transformer No. 3 feeder breaker	$\begin{aligned} & 25 \\ & 27 \end{aligned}$
		51 N	1	Inverse time ground overcurrent, Type l2IAC51B2A	Trip 13.8-kV transformer No. 3 feeder breaker	$\begin{aligned} & 25 \\ & 27 \end{aligned}$
		87(T3)	3	Percentage differential, Type 12BDD15BlA	Trip transformer No. 3, 13.8-kV and $2400-\mathrm{V}$ breakers	$\begin{aligned} & 25 \\ & 27 \end{aligned}$
		67N	1	Directional ground overcurrent, similar to Type 12IBCG51E	Trip transformer No. 3, 13.8-kV breaker	$\begin{aligned} & 25 \\ & 27 \end{aligned}$
		50/51N	1	Instantaneous and inverse time ground overcurrent. Type 12IAC51T16A	Trip 13.8-kV bus tie breaker (unit No. 9), TREAT (unit No. 1), transformer No. 5 (unit No. 2), transformer No. 3 (unit No. 3). 13.8-kV line No. 1 (unit No. 5), 13.8-kV generator (unit No. 7). annunciation	$\begin{aligned} & 25 \\ & 27 \end{aligned}$
13.8-kV line No. 1	Unit No. 5	51(Tl)	3	Inverse time overcurrent, Type 12IAC51B13A	Trip 13.8-kV line No. 1 (unit No. 5)	$\begin{aligned} & 21 \\ & 26 \end{aligned}$
		50/51N	1	Instantaneous and inverse time overcurrent. Type 121AC5IB18A	Trip 13.8-kV line No. 1 (unit No. 5)	$\begin{aligned} & 21 \\ & 26 \end{aligned}$
		67	1	Directional phase inverse time overcurrent, Type 121BC51E1A	Trip 13.8-kV line No. 1 (unit No. 5)	$\begin{aligned} & 21 \\ & 26 \end{aligned}$
	-	80	1	D.C. undervoltage, Type 12PJV11AK2A	Supervisory system alarm	26
Bus transition and potential transformer	Unit No. 8	81(-2)	1	Underfrequency, Type 12CFF12Al3A	Spare--for tripping 13.8-kV (unit No. 14), breaker or other circuits	$\begin{aligned} & 26 \\ & 40 \end{aligned}$
		$81(-3)$	1	Underfrequency, Type 12CFF12Al3A ,	Trip 13.8-kV line No. 1 (unit No. 5), trip 13.8-kV line No. 2 (unit No. 10)	$\begin{aligned} & 26 \\ & 40 \end{aligned}$

The $13.8-\mathrm{kV}$ incoming-line circuit breakers are provided with induction overcurrent relays (5.1) which provide overcurrent protection for the main power transformers and backup protection for the relays on the $13.8-\mathrm{kV}$ branch-feeder circuit breakers. The instantaneous trip attachments (50) furnished with these relays have been disconnected to provide coordination with the branch feeders. Overcurrent ground relays with instantaneous trip attachments ($50 / 51 \mathrm{~N}$) are provided for sensitive protection against ground faults in the delta windings of the main transformers or in the cable between the switchgear and the transformers.

As described in preceding Section IV-A, directionalovercurrent phase relays (67) are provided to prevent the flow of NRTSsystem load current through the power transformers and the $13.8-\mathrm{kV}$ bus in the event oil circuit breaker $8 \mathrm{Bll-1}$ is inadvertently opened.

Two sets of bus differential relays (87B) are provided for protection of the two switchgear bus sections connected together by bus tie breaker 5Bll-12. For a three-phase, single-phase, or ground-fault internal to a bus section, the appropriate set of relays will operate to trip the tie breaker and all the breakers on the faulted bus section. Additional relays and circuitry are incorporated to trip all the breakers on a bus section in the event a circuit breaker on a $13.8-\mathrm{kV}$ feeder fails to trip under a condition of a ground fault; for example, should an overcurrent ground relay fail to trip its breaker under a ground fault, after a time delay (of 1.7 sec) another initiating circuit will trip all the circuit breakers on the faulted $13.8-\mathrm{kV}$ section, leaving the other bus section in service. This is made selective by having the bus tie breaker trip first, so that only the appropriate bus-lockout relay will then operate to trip the other breakers on the faulted bus section.

Each of the branch feeder circuits is protected by three induction-phase overcurrent relays with instantaneous trip attachments ($50 / 51$) and by a ground relay ($50 / 51 \mathrm{~N}$).

The feeders for $2500-k V A$ transformers Nos. 3 and 4 are provided with directional ground overcurrent relays (67 N) to see only faults on the $13.8-\mathrm{kV}$ feeders to the $2500-\mathrm{kVA}$ transformers. These relays also provide ground backup protection for the differential relays (87) on transformers Nos. 3 and 4. Ground overcurrent relays (5 lN) provided on these feeders coordinate with the slowest ground relay on the $13.8-\mathrm{kV}$ system.

Percentage differential relays (87) with harmonic restraint are used for sensitive, high-speed protection of $2500-\mathrm{kVA}$ transformers Nos. 3 and 4 and for $2000-\mathrm{kVA}$ transformers Nos. 5 and 6.

Underfrequency relay (81-3) is used to trip incoming line breakers 5Bll-l and 5Bll-2 when the frequency drops to 58 cps . Underfrequency relay (8l-3) is a spare which may be used to drop certain loads, such as a future external load that might be served via spare $13.8-\mathrm{kV}$ circuit breaker in unit No. 14 when the generator frequency•drops to, say, 57 cps .
C. EBR-II Turbine-generator

1. General

Three-phase electric power is produced at $13,800 \mathrm{~V}, 60$ cycles, by a General Electric Co. conventional. $20,000-\mathrm{kW}, 3,600-\mathrm{rpm}$ steam turbine generating unit (see Fig. 29). It is located on the Power Plant operating floor, west of the Main Control Room, together with the $13.8-\mathrm{kV}$ metal-clad switchgear assembly, turbine gauge board, and cooling-system-hydrogen control cabinet for the generator (see Fig. 4).

The EBR-II turbine-generator is normally operated under initial pressure-regulator control when connected in parallel with the NRTS electric-power system. Under this control the output of the generator will follow the output of the steam generator. An adjustable load-limit device incorporated in the control of the turbine is set so that the turbinegenerator output cannot exceed the steam-generator capacity for a given reactor power level. Control solenoids and interlocks are provided to transfer control of the turbine-generator automatically from initial pressure-regulator control to speed-governor control whenever the generator is disconnected from the NRTS system.

2. Turbine

The turbine is a standard, commercially designed, horizontalshaft, regenerative machine of the impulse type having sixteen stages with uncontrolled extraction openings at the first, sixth, eleventh, and thirteenth stages. The sixth and thirteenth stage openings are blanked off for possible future use whereas the other two are used for extracting steam for boilerfeedwater heating and have nonreturn valves in their steam lines. Steam extracted from the first and eleventh stage shells has a designed pressure of 665 psia and 29.5 psia, respectively, and heats the boiler feedwater to approximately $485^{\circ} \mathrm{F}$. Further heating of the feedwater to $550^{\circ} \mathrm{F}$ before it enters the boiler is accomplished by steam from the main steam header.

Table 4 lists the manufacturer's guaranteed turbine throttle inlet steam rates for the turbine loads and extraction rates as indicated with $1250-$ psig and $840^{\circ} \mathrm{F}$ inlet steam, and with the condenser operating at $1 \frac{1}{2}$ in. Hg .

TABLE 4. Turbine Throttle Inlet Steam Rates

Turbine Load, kW		Extraction Rates, lb/kWh	
	Zero	$\begin{gathered} 26,000 \mathrm{lb} / \mathrm{hr} \text { at } 665 \mathrm{psia} \\ \text { and } \\ 17,000 \mathrm{lb} / \mathrm{hr} \text { at } 29.5 \mathrm{psia} \end{gathered}$	$30,000 \mathrm{lb} / \mathrm{hr}$ at 665 psia and $23,000 \mathrm{lb} / \mathrm{hr}$ at 29.5 psia
20,000	8.04	9.66	9.98
15,000	8.02	*	*
10,000	8.30	*	*
5,000	9.19	*	*

*Values not available.

The full design capability of the steam generator (approximately $248,000 \mathrm{lb} / \mathrm{hr}$), less that required for turbine operation, feedwater heating, and the turbine-driven feedwater pump, is bypassed to the condenser. The
design of the turbine bypass, the condenser, and related systems was based on the premise that the turbine-generator may be shut down while operating the reactor at full power. When bypassing steam to the condenser with the turbine-generator shut down, the turbine rotor must be maintained on turning gear since no valve or shutoff is provided between the turbine and condenser.

3. Initial Pressure Regulator

An initial pressure-regulator control device is included on the turbine to regulate the turbine steam input according to the available steam supply, i.e., with this device in operation the load on the turbinegenerator follows output of the steam generator. Since the output of the steam generator depends on the reactor power level, the electrical load assumed by the synchronous generator becomes a function of the reactor power level. This method of control can only be employed when the turbogenerator is operating in parallel with the utility-company generators. Because of this, electrically tripped mechanical devices have been provided to take the initial pressure regulator out of service and to reset the speedgovernor control in the event the connection between the EBR-II generator and the NRTS system is broken.

The elementary diagram of Fig. 30 shows the interlocking and control scheme for automatic transfer of turbine control from initial pressure-regulator control to speed-governor control when the EBR-II generator is disconnected from the NRTS system. The control switch and indicating lights of the control are mounted on the Turbine Gauge Panel (see Fig. 31).

Opening of the generator breaker or any combination of $13.8-\mathrm{kV}$ circuit breakers as listed below will result in separation of the generator from the NRTS system and will cause the operation of transfer devices SRD and SST:

1. generator breaker 5B11-10;
2. circuit breakers 5Bll-1 and 5Bll-2;
3. circuit breaker 5Bll-1 and bus-tie breaker 5Bll-12.

The following is a description of the operation of the control scheme as shown in Fig. 30:
(a) The initial condition assumes that circuit breakers 5Bll-1, 5B11-2, and 5Bl1-12 are closed and generator breaker 5Bll-10 is open.
(b) Relay TRl is energized by the auxiliary contact 5 2b on breaker 5Bll-10, and the white "Trip" light is on.
(c) Control switch CS is turned to its "Reset" position. This causes relays TR2 and TR2X to be energized and to be sealed in. A TR2X contact opens the speed reset and control-transfer solenoid (SST and SRD) circuits, and a TR2 contact causes the green "Reset" light to go on.
(d) Solenoids SST and SRD are then manually latched. The turbine-generator is then synchronized, paralleled with the system (by the closing of breaker 5Bll-10), and loaded under control of the speed governor. With the closing of breaker 5Bll-10, relay TRl is deenergized. This causes relays TR2 and TR2X to be de-energized, thus placing the automatic tripping circuit for solenoids SST and SRD under the control of the auxiliary contacts of the circuit breakers. The deenergizing of relay TRl also causes the white "Trip" light to go off.
(e) Initial pressure-regulator control of the turbine-generator is placed in service by raising the setting of the load-limit device and the setting of the speed changer above the control setting of the initial pressure regulator. The power output of the turbine-generator will then follow and match the output of the steam generator.
(f) If the generator becomes separated from the NRTS system due to the opening of $13.8-\mathrm{kV}$ circuit breakers as listed above, the speed-reset solenoid, control-transfer solenoid, and TRI relay will be, energized by the breaker auxiliary switch "b" contacts. Energizing the solenoids rapidly transfers control of the turbine-generator to speedgovernor control. The energizing of relay TRl causes the white "Trip" light to go on and the red "Normal" light to go off.
(g) When the turbine-generator is again paralleled with the NRTS system, the white "Trip" light and the green "Reset". light will go off, and the red "Normal" light will go on.
4. Speed Governor, Load-limit Mechanism, and Load-limit Indicator

The turbine speed governor is an automatic, oil relay type, with a speed regulation of 5%. Turbine speed is controlled by variation of the flow of steam through the turbine control valves. An emergency governor is available which operates on overspeed to trip the turbine main steam stop valve at 110% of rated speed. The speed governor is sufficiently sensitive so that in the case of an instantaneous load change from full to zero load, the turbine speed will not reach the overspeed tripping point. A remotely controlled motor-operated device (commonly referred to as the synchronizing device or speed changer) is provided on the governor mechanism for synchronizing and for load adjustment when the turbine is operated in parallel with another source of power.

Other means provided for tripping the turbine main stop valve are a manual trip lever, an exhaust low-vacuum trip device, and an electrically operated trip solenoid.

Testing of the turbine main steam stop valve can be done by a hydraulic trip test device which functions through operation of the emergency governor to trip the main steam valve, or by a small test valve for testing the freedom of the stop valve. Controls for both of these methods are located on the turbine control casing.

The load-limit mechanism can be operated by either a starting handwheel or by a motor drive controlled from the control room console or Panel E-6. The starting handwheel is employed during turbine startup to open the steam-inlet valves to bring the unit up to approximately synchronous speed. At this time, the turbine control is transferred to the motor-operated synchronizing device (speed changer). With the synchronizing device controlling the turbine, the starting handwheel or motor attachment is used to preset the load-limit mechanism at the maximum load for which the turbine is to operate.

The starting handwheel, a tachometer, and a load-limit indicator are located on the front end of the turbine. Selsyn indicators are remotely mounted near the load-limit motor controls for indication of load-limit setting. A turbine speed indicator is mounted on the Graphic Panel in the Main Control Room.

5. Other Turbine Auxiliaries

In addition to the previously mentioned equipment, the following turbine auxiliary equipment is included in the design.
a. An atmosphere-relief diaphragm is mounted on the upper half of the turbine exhaust casing to protect the exhaust hood and condenser from excessive steam pressure. In normal operation of the turbine, this diaphragm is dished inward against a supporting grid due to the partial vacuum on the inside and atmospheric pressure on the outside. A loss of condenser vacuum for any reason and an increase of the internal exhaust hood pressure to approximately 5 psig will rupture the diaphragm and allow the steam to pass into the atmosphere.
b. A self-contained turning gear, complete with motor, controls, interlocks, etc., is provided for rotating the turbine-generator shaft at 3 to 5 rpm to prevent its bowing. A control panel mounted adjacent to the turning gear between the turbine and generator contains the motor controls and indicating lamps. The turning gear-clutch control is located on this panel.
c. A steam sealing system around the turbine shaft is provided to prevent the inleakage of air or outward leakage of steam; an automatic regulator maintains steam pressure on the seals.
d. A complete lubricating system for the entire turbinegenerator unit is provided; included are pumps, tanks, pressure regulators, oil coolers, valves, gauges, strainers, etc. There are three oil pumps supplied with this system, namely, a main lubricating-oil pump driven from the turbine shaft, a steam-driven auxiliary oil pump, and a motordriven turning gear oil pump.
e. A turbine gauge panel (see Fig. 31) contains the pressure and temperature gauges for the turbine-generator unit and controls and indicating lights.
6. Generator

The EBR-II Generator (serial No. 8287203) is a Type ATB-2 nonsalient two-pole, three-phase, 60-cycle, 3600 -rpm, hydrogen-cooled, synchronous generator rated $25,600 \mathrm{kVA}(21,760 \mathrm{~kW}), 13,800 \mathrm{~V}$, and 0.85 powier factor.

Table 5 lists the guaranteed and expected performance requirements of the generator and exciter.

TABLE 5. EBR-II Generator and Exciter Data
(All data represent expected values except where indicated otherwise)
A. Guaranteed Capability Rating of Generator

$21,760 \mathrm{~kW}$	
$25,600 \mathrm{kVA}$	
0.85 Power Factor	$13,800 \mathrm{~V}$
	$3-$ phase
60 cycles	

B. Generator Design Capability*

Hydrogen Pressure, psig	$\begin{aligned} & \text { Max } \\ & \text { kVA } \end{aligned}$	Max kVA with One Cooler Out	Rated Armature, A	Rated Field, A
0.5	20,480	16,384	857	268
15.0	23,529	18,823	984	291
30.0	25,600	20,480	1071	309
Air	12,288	-	514	-

TABLE 5 (Contd.)

F. Generator Data

1. Short-circuit Ratio. 0.64 (Guaranteed)
2. Synchronous Impedance (On generator-
rated kVA base). 169%
3. Voltage Regulation at Unit Power
Factor . 26%
4. Voltage Regulation at 0.85 Power .
Factor . 34%
5. Excitation at Rated Load at 0.85 Power
Factor at 95% Rated Voltage
a. Field, A. .. 306
b. Collector Ring, V 234.5 V @ $125^{\circ} \mathrm{C}$
6. Excitation at Rated Load at 0.85 Power

Factor at 100% Rated Voltage
a. Field, A. 309
b. Collector Ring, V 236.5 V @ $125^{\circ} \mathrm{C}$
7. Excitation at Rated Load at 0.85 Power

Factor at 105% Rated Voltage
a. Field, A. 316.5
b. Collector Ring, V $242.5 \mathrm{~V} @ 125^{\circ} \mathrm{C}$

TABLE 5 (Contd.)
G. Excitation Data (Guaranteed)

1. Exciter Capacity $85 \mathrm{~kW} @ 5100 \mathrm{ft}$
2. Rated Voltage 250 V
3. Rated Current. 340 A @5100 ft
4. Speed of Response of Excitation System is not less than 0.5 per Uṇit
H. Generator Reactance Values (On
generator-rated kVA base)
5. Direct-axis Synchronous (At rated current
$169 \%^{\prime}$
6. Transient (At rated current) 40%
7. Subtransient (At rated voltage) 16%
8. Negative Sequence (At rated voltage). 16%
9. Zero Sequence (At rated current) . . . 6%
I. Resistances
10. Field @ $25^{\circ} \mathrm{C}$. 0.550 ohms (test)
11. Armature, Average, One Phase,
Line to Neutral at $25^{\circ} \mathrm{C}0 .0166$ ohms (test)
12. Positive Sequence (On generator-
rated kVA base). $0.60 \% @ 100^{\circ} \mathrm{C}$
13. Negative Sequence (On generator-
rated kVA base). $2.9 \% @ 100^{\circ} \mathrm{C}$
14. Armature Insulation (All phases to
ground) 3600 megohms (test) @ $24^{\circ} \mathrm{C}$
15. Field insulation 540 megohms (test) @ $24.5^{\circ} \mathrm{C}$
J. Time Constants, sec
16. Transient Short Circuit (3-phase) . . . 1.65
17. Transient Open Circuit. 7.13
18. Subtransient Short Circuit. 0.038
19. Direct Current (3-phase and L-L). . . 0.160
K. Telephone Interference Factors 1935 weighting
20. Line to Line- 50 (Guaranteed) 15 (expected)
21. Line to Neutral 20 (expected)

TABLE 5 (Contd.)
L. Weights, lb

1. Complete Unit. 302,500
2. Turbine Rotor . 12,000
3. Generator Rotor . 21,300
4. Generator Stator 125,000
5. Heaviest Piece

During Erection. 151,960
After Erection. 39,400
*Hydrogen pressures must be increased. 2.5 psig to cörrect for operation at 5100-ft altitude. i

The wye-connected stator winding has all six leads brought out through hydrogen-tight bushings to terminals located at the bottom of the stator frame. The neutral terminals are metal-enclosed and are connected together to form the generator neutral. The neutral point of the generator winding is ungrounded. Grounding of the $13.8-\mathrm{kV}$ system is established by a 6.66 -ohm grounding resistor in the primary winding, neutral of each of the two $2500-\mathrm{kVA}, 13.8-2.4-\mathrm{kV}$ power transformers serving the $2400-\dot{V}$ power system.

Protection of the generator is provided by three G. E. Co. Model No. 9LA1H053 15-kV ungrounded-neutral, Thyrite Magne-valve lightning arresters and three G. E. Co. Cat. No. 18F45l, 15-kV, 0.25 -microfarad capacitors connected to the generator line terminals.

The generator output is fed into the $13.8-\mathrm{kV}$ switchgear bus with three 600 -MCM cables per phase and a $1200-\mathrm{A}, 500-\mathrm{mVA}$ interrupting capacity air circuit breaker. Solderless pressure-type cable connectors are used to connect the cables.

A total of four 1200/5-A bushing current transformers are mounted on the neutral bushings. One set of three current transformers is mounted on the neutral bushings for differential relaying with the remaining transformer mounted on the B-phase neutral bushing terminal for use with the automatic voltage regulator.

Twelve resistance-type temperature detectors are imbedded in the generator stator windings at points of probable highest temperatures. In addition, eight resistance-type detectors sense the temperatures of the gas entering and leaving the four hydrogen coolers; also, there is one detector in the exciter air intake and one in the exhaust. The temperaturedetector lead wires are connected to terminal boards on the machine. One
of the temperature detectors on each of the stator phase windings and the detectors on the exciter air intake and exhaust are connected to a temperature indicator through a selector switch which are located on Panel E-4 in the Main Control Room. Several of the other detectors are fed into a data-logger in the Main Control Room.
7. Excitation System

The excitation system consists of a main exciter directly connected to the main generator; an electrically operated generator-field circuit breaker, a generator-field discharge resistor, a main-exciter motor-operated field rheostat, a rotating-amplifier motor-generator set, and complete voltage-regulating and -control equipment of the staticmagnetic type, including reactive-ampere lower-limit control, a motoroperated voltage-adjusting rheostat, and paralleling equipment.

The main exciter is a General Electric Co. Type EDF-4, sheet metal-enclosed, $3600-\mathrm{rpm}$, shunt-wound exciter rated at 85 kW , 250 V d.c. for operation at an altitude of 5100 ft . The housing is provided with access doors and observation windows, as well as illumination lighting. Intake of filtered cooling air is from beneath the operating floor; the air is circulated through the exciter and exhausted below the floor. The hot exhaust air is prevented from re-entering the exciter by means of a baffle plate installed at the air outlet under the floor.

The excitation and control circuits are shown in Fig. 32. The generator-excitation cubicles are shown in Fig. 33.

The armature leads of the main exciter are connected to the generator field through a General Electric Co. Type AKF-IC-6, 1600-A frame, $500-\mathrm{V}$ d.c., 2 -pole single-throw, electrically operated air circuit breaker. When the circuit breaker is tripped, one of its contacts closes and connects the field-discharge resistor acros's the generator field, thus limiting the voltage produced by collapse of the magnetic field to a safe value.

Control of field excitation for regulation of the terminal voltage of the synchronous generator may be either manual or automatic. A motor-operated rheostat connected in series with the shunt field of the main exciter is used for manual control from Panel E-6 in the Main Control Room (see Fig. 22).

Automatic regulation of the terminal voltage of the synchronous generator is accomplished with a General Electric Co. CR7931-NA101 voltage-regulator equipment and an amplidyne generator. The amplidyne output is connected in series with the field of the main exciter and the motor-operated field rheostat. Depending upon whether the voltage signal
from the potential transformers on the output of the terminals of the synchronous generator is low or high, the amplidyne generator output will boost or buck the voltage applied to the shunt field of main exciter.
'The excitation system is arranged so that loss or failure of the amplidyne rotating amplifier will automatically adjust the excitation to the setting of the motor-operated field rheostat and will not cause loss of excitation. The EBR-II operating procedure is to place the automatic voltage-regulator equipment in service after the desired kilowatt and reactive kVA loàds have been established. This provides a setting of the motor-operated field rheostat which requires zero "buck" or "boost" voltage from the amplidyne generator and hence will prevent a sudden change in excitation should the amplidyne unit fail.

8. Hydrogen Cooling System

The following discussion of the advantages of hydrogen cooling is taken from General Electric Co. Instructions GEI-46139-D, dated January 1956.
"Hydrogen is used in place of air as the cooling agent principally because of its low density and its superior cooling properties. Since its density is approximately onefourteenth the density of air at a given temperature and pressure, the use of hydrogen reduces the windage friction losses of a rotating machine to a small fraction of the losses encountered when running in air. For a high speed machine such as a turbine generator, this results in an increase in full load efficiency of between one-half and one percent. Hydrogen has a thermal conductivity of nearly seven times that of air, and its ability to transfer heat through forced convection is about fifty percent better than that of air. This permits a reduction of nearly twenty percent in the amount of active material required in the construction of a generator of given output, and for a given temperature. rise of the windings.
"The life of the generator is increased by operating in hydrogen. This is due to the fact that the enclosed construction keeps out dirt and moisture from the windings and ventilation passages. Also, with hydrogen, there is practically no deterioration of the armature insulation because of corona.
' "Since additional kva output may be obtained by increasing the hydrogen pressure, the presently built hydrogen-cooled generators have a maximum hydrogen pressure rating of 30 PSIG. At increased pressures the hydrogen becomes more
dense, and this improves its capacity to absorb and remove heat. As a result, additional load may be carried with'no increase in the temperature rise of the windings. Also, increasing the hydrogen pressure permits operation at normal load with the temperature of the water supplied to the gas cooler in excess of normal. In general, an increase in kva output of about one percent may be obtained for every one pound increase in hydrogen pressure up to 15 psig , while for pressure between 15 and 30 psig , an increase in output of about one-half percent per pound increase in pressure may be obtained. For operation at rated output with temperatures of the cooling water in excess of normal, it is permissible to increase the inlet water temperature by approximately $1^{\circ} \mathrm{F}$ for each one pound increase in hydrogen pressure up to 15 psig. For hydrogen pressures from 15 to 30 pounds, an increase of about $1 / 2^{\circ} \mathrm{F}$ in water temperature per pound increase in pressure is permissible."

Hydrogen gas, under pressure, is used as the cooling medium in the EBR-II generator. The generator-cooling system is a closed system with fans mounted on the shaft to circulate the hydrogen gas through the generator. The heat absorbed by the hydrogen as it passes over the stator and rotor is removed as it continues over the finned tubes of four water-cooled gas coolers located in the generator stator frame. A carbon dioxide system is provided for purging the generator casing to avoid an explosive mixture of air and hydrogen. A seal-oil system and a hydrogen-scavenging system provide an effective seal against hydrogen leakage at the generator-shaft bearings. Other components of the hydrogen system are: (1) a gas dryer, (2) hydrogen and CO_{2} manifolds, valves, regulators, and gauges, (3) purging control valves, (4) a hydrogencontrol cabinet, including controls and indicators, (5) a seal-oil control unit, (6) one a.c. and one d.c. motor-driven seal-oil pump, (7) an oilstorage tank, and (8) a portable gas analyzer.

Table 6 gives design data of the generator hydrogen system for a gas purity of 98 percent.

The flow diagram for the hydrogen and carbon dioxide systems is shown in Fig. 35.

During normal operation the functions of the hydrogen system are essentially automatic, and only routine inspections and adjustments are necessary. Instrumentation, controls for adjusting scavenging rate, and a.system annunciator áre located on the Hydrogen Panel (see Fig. 34). Controls for the vapor extractor, gland exhauster, and a.c. and d.c. sealoil pump motors are on the Turbine Gauge Panel (Fig. 3l), located near the turbine on the operating floor.

TABLE 6. Design Data for the EBR-II Generator Hydrogen System

Gas volume of generator casing	815 cu ft
Hydrogen purity	98\%
CO_{2} required to purge air (on turning gear or standstill)	1000 cu ft
CO_{2} required to purge H_{2} (on turning gear or standstill)	1630 cu ft
H_{2} required to fill casing to 90% purity at $\frac{1}{2}$ psi (on turning gear or standstill)	1400 cu ft
Cooling-gas flow through generator	$29,000 \mathrm{cfm}$
Water flow through gas coolers	110 gpm
H_{2} requirement (generator in normal operation):	
At $\frac{1}{2} \mathrm{psi}$	$70 \mathrm{cu} \mathrm{ft} / \mathrm{day}$
At 15 psi	$110 \mathrm{cu} \mathrm{ft} / \mathrm{day}$
At 30 psi	$170 \mathrm{cu} \mathrm{ft} / \mathrm{day}$
H_{2} required to increase casing pressure from:	
$\frac{1}{2}$ to 15 psi	815 cu ft
15 to 30 psi	1630 cu ft
Seal-oil flow to both shaft seals for inlet temperature of $110^{\circ} \mathrm{F}$:	
At $\frac{1}{2}$ psi H_{2}	4.4 gpm
At 15 psiH	13.4 gpm
At $30 \mathrm{psiH} \mathrm{H}_{2}$	22.7 gpm
Gas-side seal-oil flow from both seals	0.4 gpm
Differential pressure between seal-oil and casing pressure:	
Collector end	$\sim 4.5 \mathrm{psi}$
Turbine end	$\sim 4.5 \mathrm{psi}$

9. Turbine-generator Load Operation

The output of the $20,000-\mathrm{kW}$ turbine-generator is fed into $13.8-\mathrm{kV}$ switchgear bus section No. l (see Fig. 20) via generator air circuit breaker 5Bll-10 and is operated in parallel with the NRTS 138-kV system through the $12000 / 16000-\mathrm{kVA}$ main power transformers. In a demonstration run between 1330 August 13 and 0800 August 17, 1964, the reactor operated continuously at 30 MWt with an average electrical output of 7.5 MW . Since then, the reactor and turbine-generator have operated for extended periods of time at 37.5 MWt and 11.8 MWe , respectively, and at 45 MWt and 14 MWe , respectively. As of the week ending April 13, 1966, the total accumulated reactor thermal power production was $151,010 \mathrm{MWh}$ and the electrical power production was $41,805 \mathrm{MWh}$. The total generator-on-time was $1,644 \mathrm{hr}$.

This operation of the EBR-II reactor and turbine-generator demonstrates the feasibility of this type of power-generating system for central power-plant application. It also demonstratesits feasibility for operation as a base-loaded plant.

When the Initial Pressure Regulator was first placed in service, the speed changer was set at its high-speed position (i.e., 3780 rpm at no load or 3600 rpm at full load). This corresponds to the governor 5% speed regulation. To prevent excessive speed increase when the generator is separated from the NRTS system, an electromechanical arrangement is incorporated whereby the Initial Pressure Regulator and Speed Reset devices are simultaneously tripped to place the turbine on Speed Governor Control and instantly change the speed-changer mechanism to a preset (reset) position. Since the plant auxiliary load is approximately 3MW, this setting corresponds to a machine speed of 3600 rpm at that load. Should the load be dropped by the opening of the generator circuit breaker, the speed would increase to 3627 rpm . When other loads are added to the EBR-II side of the EBR-II-NRTS interconnection, it may become necessary to change the setting of the speed-reset device to correspond to a machine speed of 3600 rpm at the new load in the event of separation of EBR-II from the NRTS system.

Separation of the turbine-generator from the NRTS system results in an inverse speed change of approximately $9 \mathrm{rpm}(0.15 \mathrm{cps})$ for each MW change of load on the generator. Whenever the turbine-generator is automatically transferred from Initial Pressure Regulator Control to Speed Governor Control, the speed and frequency of the generator should be noted and the speed changer should be operated to restore the generator to $3600 \mathrm{rpm}(60 \mathrm{cps})$, if necessary.

With the occurrence of one of the following abnormalities, it is possible for the kW load imposed on the EBR-II turbine-generator to become greater than the available steam supply:
(a) The tripping of $13.8-\mathrm{kV}$ incoming-line breakers 5Bll-1 and 5Bll-2 when the EBR-II generator is supplying only a part of the total load on the EBR-II side of the EBR-II-NRTS interconnection.
(b) The tripping, without reclosing, of two $138-\mathrm{kV}$ loopsectionalizing breakers on both sides of EBR-II, but one of which is beyond the next facility in the loop circuit.

In the case of abnormality (a), the turbine-generator control automatically transfers to speed-governor control, as previously explained, and any deficiency in the amount of steam required by the additional load imposed on the generator results in a reduction of machine speed and frequency.

In the case of abnormality (b), the turbine-generator would remain under initial pressure regulator control and, again, any deficiency in the amount of steam required by the additional load imposed on the generator results in a reduction of machine speed and frequency.

To maintain operation of the EBR-II generator under such conditions as those outlined above, an underfrequency relay is incorporated in the design to trip breakers 5Bll-l and 5Bll-2 when the frequency drops to 58 cps . This would drop that part of the generator load in the $138-\mathrm{kV}$ loop in the case of abnormality (b). Another underfrequency relay is provided for dropping loads not necessary for the operation of the generator, such as TREAT and other external loads which might be served by EBR-II in the future. This could relieve the load on the generator sufficiently to maintain operation of the EBR-II Facility under its own power. If sufficient steam still were not available, a third underfrequency relay is connected to trip generator breaker 5B11-10 when the frequency drops to 56 cps .

The most likely condition to exist following the separation of EBR-II from the NRTS system, however, is an excess of available steam, since the EBR-II generator is normally delivering power to the NRTS system. In this case, the control of the turbine is automatically transferred from initial pressure-regulator control to speed-governor control and any excess steam is automatically bypassed to the condenser.

It has been established from a Transient Stability Study (see Appendix B) that it would be hazardou's to operate the EBR-II generator in parallel with the $138-\mathrm{kV}$ system in the event of a 20 -cycle reclosure of a loop-sectionalizing breaker when the $138-\mathrm{kV}$ loop is open. Therefore, the operating procedure requires that all $138-\mathrm{kV}$ loop-sectionalizing oil circuit breakers be closed when the generator is tied to the loop. It has also been established that an automatic 20 -cycle reclosure of the $138-\mathrm{kV}$ oil circuit breakers in the Utah Power and Light Co. transmission line from Goshen Substation (see Fig. 19) could prove hazardous to the generator. Therefore, pilot-wire tripping (see Fig. 21) of the $13.8-\mathrm{kV}$ incoming-line air circuit breakers $5 \mathrm{Bll-l}$ and $5 \mathrm{Bll-2}$ is provided whenever automatic reclosure of oil circuit breaker 8Bl-1 at Scoville is initiated by a line fault between Goshen and Scoville.

Close liaison between the EBR-II operator and Scoville Substation operator is maintained. The Scoville Substation operator has panel-board indication of the position of every $138-\mathrm{kV}$ oil circuit breaker in the system as well as position indication for the EBR-II $13.8-\mathrm{kV}$ incoming-line breakers 5Bll-l and 5Bll-2 and generator breaker 5Bll-10. He also has supervisory tripping control for breakers 5B11-1 and 5B11-2. Should the EBR-II generator already be in parallel operation with the $138-\mathrm{kV}$ system and a section of the loop is lost for any reason (except for a successful single-shot reclosure), the Scoville operator will trip the EBR-II incoming-line circuit breakers 5Bll-l and 5Bll-2 and notify the EBR-II operator. The EBR-II generator will then be supplying the EBR-II Facility loads without benefit of connection to the NRTS system. After the lost section of the $138-\mathrm{kV}$ loop is restored, the

Scoville operator will notify the EBR-II operator, who may then synchronize the EBR-II generator with the $138-\mathrm{kV}$ system and resume parallel operation.

With operation of the EBR-II generator in parallel with the $138-\mathrm{kV}$ closed loop, an automatic reclosure of a $138-\mathrm{kV}$ loop-sectionalizing breaker entails no danger to the generator since the connection between the generator and the $138-\mathrm{kV}$ supply will not have been momentarily disconnected.

The two $12000 / 16000-k V A 132-13.8-\mathrm{kV}$ power transformers in the Main Outdoor Substation are equipped with mechanisms for automatically changing the low-voltage taps under load. However, when the EBR-II generator is connected to the system with its amplidyne voltageregulator system in service, the transformer tap changers must be placed under manual control to prevent hunting. The transformers are also provided with current balance-paralleling equipment to maintain the tap changers in "step" when the transformers are operating in parallel under automatic control. If one transformer is out of service the balanceparalleling feature is automatically deactivated and the remaining transformer can "step" independently.

Two curves (see Figs. 36 and 37) have been prepared to serve as guides in the operation of the EBR-II Generator. Figure 36 shows the complete operating range of the generator in terms of kilowatts and reactive kVA .

As the kW load is increased on the generator, increased field current is necessary to maintain terminal voltage and to carry a reasonable portion of the reactive kVA associated with the load. With the EBR-II generator operating in parallel with the NRTS power system, voltage and reactive $k V A$ are interrelated and cannot be controlled independently. Changes in generator field current result primarily in changes in voltage on the $1.3 .8-\mathrm{kV}$ switchgear and in the reactive kVA loading of the generator. Increasing the excitation causes the generator to deliver more lagging reactive kVA while decreasing the excitation has the opposite effect.

The operating range of the EBR-II generator will normally be within the boundaries of the points designated as OBFEO in Fig. 36. Within this area, the field current should bc of such magnitude as to hold approximately $13,800 \mathrm{~V}$ on the generator bus. This voltage can go as high as $14,490 \mathrm{~V}$ when the machine is carrying full load and should not drop below $13,110 \mathrm{~V}$ at light load. (This represents the $\pm 5 \%$ voltage tolerance that the manufacturer allows for the operation of this machine.)

The limits of operation are also shown in Fig. 36; the limit indicated by the curve A to B is imposed by the design limits of the
generator field (rotor). This is determined by the manufacturer. Operation within the area OABO is permissible, but normally not necessary unless low-voltage conditions exist on the NRTS loop, and it is desired to use the EBR-II generator to help boost the voltage. The limits indicated by the curve BFC are imposed by the design limits of the generator armature (stator). This also is determined by the manufacturer. The limits indicated by the curve C to D are imposed by design limits of the rotor iron and are also determined by the manufacturer in the design of the machine.

The curve HJEF was determined as the limit to be imposed by considerations of system stability. These considerations take into account the electrical characteristics of the generator and the system to which it is connected. The points at which the EBR-II generator would pull out of synchronism are designated by the curve HG.

Stability may be explained briefly as follows: a synchronous generator connected to a power system can be made to pull out of synchronism in one of two ways, or a combination of the two: (1) by holding the field current constant and increasing the kW loading until the machine pulls out; and (2) by holding the kW constant but decreasing the field current until the machine pulls out. For any value of $k W$ loading there is then a minimum value of field current that must be maintained to hold the machine in synchronism with the system. As the kW loading of the generator is increased, the angle of the rotor advances with respect to the angle of the large system to which the generator is connected. Electrically, this angle must not exceed 90°, because beyond this point, the generator will pull out of synchronism and this would result in serious voltage disturbances to the power system and possible serious damage to the generator.

A 20\% margin (Power Limit to Operating Limit ratio of 1.2) of safety was used in establishing the stability operating limit curve HJEF. Operation of the EBR-II generator with its output above this curve avoids loss of synchronism by allowing the wide margin to curve HG for system disturbances and other abnormal conditions, such as low voltage. It will be noted that the limit imposed by armature core and heating intersects the stability curve HJEF at point J and therefore the generator is not operated in the area below curve DJEF when manual excitation control is used.

Operating within the area OEJD is normally not necessary, but is permissible if the NRTS system voltage is high and it is desired to reduce the voltage by using the generator to do so.

The line RS represents the underexcited reactive-amperes limit start-line characteristics of the amplidyne generator-voltage regulator equipment, as provided to limit minimum excitation. The
underexcited reactive current to which the voltage-regulator equipment responds is automatically readjusted as a function of the power output of the generator.

Figure 37 shows the pull-out limit and the recommended limit of operation in terms of generator output in kW and field current in amperes. The "pull-out limit" on this figure corresponds to the curve HG of Fig. 36, and the recommended limit under manual control of excitation corresponds to the curve DJEF. The "reactive-ampere limit start" line corresponds to line RS in Fig. 36.

Controls, instrumentation, and meters for synchronizing the EBR-II generator and for controlling the generator field excitation are located on Generator Indicating Panel E-4 (see Fig. 24) and the Synchronizing Panel E-6 (see Fig. 22) in the Main Control Room.

There are four circuit breakers in the $13.8-\mathrm{kV}$ switchgear assembly at which the generator can be synchronized and paralleled with the NRTS power system. These are as follows:
(1) $13.8-\mathrm{kV}$ incoming-line No. l circuit breaker 5Bll-1;
(2) $13.8-\mathrm{kV}$ incoming-line No. 2 circuit breaker 5Bll-2;
(3) $13.8-\mathrm{kV}$ bus-tie breaker 5Bll-12;
(4) generator breaker 5Bll-10.

The synchronizing control circuits are shown in Fig. 38.
Synchronizing and paralleling of the EBR-II generator may be performed either by manual or automatic synchronizing procedures. A."MAN-OFF-AUTO" synchronizing selector switch and a synchronizing transfer switch are provided on Panel E-6 (see Fig. 22) for selection of the synchronizing method and the specific circuit breaker to be used.

- 10. Protective Relaying

A list of the principal relays incorporated in the design for protection of the generator is given in Table 7. All the relays function to trip generator breaker 5Bll-10 and all are located in the generator breaker unit of the $13.8-\mathrm{kV}$ switchgear, except for the loss-of-field relay (40); which is located in the generator-excitation cubicle. The relays are of General Electric Co: manufacture.

A block diagram of the tripping scheme for the EBR-II turbinegenerator is shown in Fig. 39. A single-line diagram (Fig. 40) and an elementary diagram of generator breaker 5Bll-10 control scheme (see Fig. 41) show the application of the relays and the interlocking circuits used in the design.

High-speed differential relays (87G) are used for effective protection of the generator against phase-to-phase and phase-to-ground faults. The protected zones of these relays include the generator power cable leads between the first set of three current transformers on the load side of the generator breaker and the set of three current transformers nearest the neutral connection of the generator.

The power directional relay (32) provides protection against motoring of the generator in the event of loss of steam to the turbine. The primary protection is against overheating the turbine blading in the event the generator should drive the turbine.

The voltage-restrained overcurrent relay (5lV) provides backup protection for the faults on the system that are not cleared by other relays and circuit breakers.

The induction-overcurrent ground relay (50-51N) provides generator line-to-ground fault protection and backup protection for the generator differential relays (87G).

The loss-of-field relay (40) is provided to protect the generator against loss of excitation and quickly to trip the generator breaker automatically when this occurs. Loss of field can occur as a result of accidental tripping of the field-circuit breaker, short circuits in the field circuits, loss of excitation to the main exciter, open circuits, or highresistance contact of the brushes on the commutator of the exciter (see Fig. 32).

Underfrequency relay ($81-1$) operates when the frequency drops to 56 cps . As mentioned earlier, underfrequency relay (81-3) operates to trip breakers 5Bll-1 and 5Bll-2 when the frequency drops to 58 cps , and underfrequency relay (81-2) is a spare for shedding other loads as desired.

TABLE 7. Protective Relays for the EBR-II Generator

Device No.	Quantity	Relay Type
87G	3	High-speed differential Type 12CFD12B2A
32	1	Power directional Type 12GGP53B1A
51 V	3	Overcurrent with voltage restraint Type l2IJCV5lAlA
$50 / 51 \mathrm{~N}$	- 1	Instantaneous and inverse time ground overcurrent G. E. Type 12IAC51B18A
40	1	Loss-of-field current Type IC 2820A100AA253E
81-1	1	Underfrequency Type 12CFF12A13A

D. 2400-V System

1. General

The 2400-V power system is an ungrounded delta system consisting of a single main bus which is fed by two parallel-operated 13.8-$2.4-\mathrm{kV}$ power transformers, one connected on each bus section of the $13.8-\mathrm{kV}$ switchgear (see Fig. 20). The $2400-\mathrm{V}$ system is used principally for large individual motor drives ($200-800 \mathrm{hp}$) and for large single-phase loads.

The system includes an indoor-type metal-clad switchgear assembly (see Fig. 8), metal-enclosed bus ducts for throat connection to the power transformers, and $5-\mathrm{kV}$ power cables installed in rigid steel conduit, cable trays, and/or underground ducts.

The main $2400-V$ bus is controlled from panels in the Main Control Room. The branch feeders are controlled from the Main Control Room and/or from local control panels.

2. 2400-V Switchgear

The 2400-V switchgear is an indoor-type, metal-clad, doubleended, single-bus-constructed switchgear assembly. It consists of eleven unit-type constructed cubicles housing eleven front-removable, horizontal drawout, air circuit breakers and all necessary potential transformers, current transformers, protective relays, meters, and control devices to make it functional.

The main busses and all current-carrying parts are copper, with all joints and connections silver-plated and tightly bolted to insure maximum conductivity. Terminations of the main busses are made and arranged at each end of the switchgear in a manner to permit the addition of future units. A ground bus extends throughout the length of the switchgear, with connections to each unit and to the frame of each circuit breaker and potential-transformer assembly. Spring-loaded contacts are provided to assure a positive ground connection whenever circuit breakers are in the "Operate" or "Test" position.

The air circuit breakers are Federal Pacific Electric Co. Type DST5-150, horizontal drawout, rated $2.4 \mathrm{kV}, 1200 \mathrm{~A}, 60$-cycle, 3-pole, and electrically operated. A summary of circuit breaker data is given in Table 8.

TABLE 8. Data for 2400-V Air Circuit Breaker

Manufacturer	Federal Pacific Electric Co.
Type	DST5-150
Rated voltage	$2: 4 \mathrm{kV}$
Maximum design voltage rating	4.76 kV
Continuous 60-cps current	$1200 \mathrm{~A}^{\prime}$
Interrupting ratings:	
3-phase kVA 2400 V	100,000 kVA
Current at 2400 V	21,000 A
Maximum tripping time ($60 \mathrm{cps} \mathrm{basis} \mathrm{)}$	8 cycles
Short-time ratings:	
Momentary	40,000 A
4-sec	25,000 A
Control circuit:	
Nominal voltage	125 V d.c.
Closing voltage range	90-130 V
- Closing current (at 125 V d.c.)	100 A
Tripping voltage range	70-140 V
Tripping current (at 125 V d.c.)	5 A
Tripping time, from energizing trip coil until circuit is interrupted	5 cycles
Closing time, from energizing closing control relay until breaker contacts are fully closed	10-15 cycles
Insulation level withstand test:	
Low frequency	19 kV
Impulse crest	60 kV

3. Power Transformers

The two power transformers (see Figs. 6 and 20) serving the 2400 - V system are Federal Pacific Electric Co. Type LCA, each rated at $2500 \mathrm{kVA}, 13,800 \mathrm{~V}$ wye primary to 2400 V delta secondary, 3-phase, 60 cycle, 5.5 percent impedance, askeral immersed, self-cooled, $55^{\circ} \mathrm{C}$ temperature rise, for outdoor installation. Four $2 \frac{1}{2}$ percent full-capacity taps are provided on the primary winding, two above and two below the $13.8-\mathrm{kV}$ tap; the desired tap is selected by means of an externally operated no-load manual tap switch, with provisions for padlocking.

There are no exposed live parts on the transformers. The neutral of the transformer primary winding is brought out to a porcelain terminal bushing in the high-voltage terminal box. A 600-5-A multiratio current transformer is provided on the neutral bushing. The neutral of each transformer is grounded through a 6.66-ohm resistor, as previously described.

The delta secondary leads of each transformer are brought out to 2400-V terminal bushings for throat connection to a metal-enclosed bus duct.

Each transformer is equipped with the following listed accessories:

Liquid-level gauge
Thermometer with alarm contacts
Vacuum pressure gauge
Manual tap changer
Relief vent

Drain valve
Vacuum pressure control and test connections Filter-press connection Liquid-sampling device
4. $2400-V$ Bus Duct

The secondary connection between each transformer and the switchgear is made by means of a metal-enclosed, 3-pole, nonsegregated bus duct rated at $2400 \mathrm{~V}, 1200 \mathrm{~A}, 60$ cycle, and suitably braced to withstand a momentary short-circuit current of $40,000 \mathrm{rms}$ asymmetrical amperes. Each bus bar is insulated for 5 kV with flame-retardant insulation. Connections to the transformer terminals are made with strip laminated flexible connectors. Flanges and vapor-tight barriers are installed to seal the wall opening at the point of the bus duct where it enters the building.

5. $5-\mathrm{kV}$ Power Cable

The power cables used in the $2400-\mathrm{V}$ system have a $5-\mathrm{kV}$ rating to provide a good margin of safety against the breakdown of cable insulation. The cables are round, single-conductor, class "C" stranding, soft-annealed copper cables, unshielded, insulated with ozone-resistant butyl rubber compound, and with an outer covering of oil-resistant, thermoplastic polyvinylchloride suitable for a maximum temperature of $80^{\circ} \mathrm{C}$.

6. Control Panels

Controls for the 2400-V incoming power feeders and branch load feeders are located on panels as listed below:

Circuit Breaker Cubicle No.	Load	Location of Controls
1	Primary Pump No. 1 M-G Set	Corridor Panel (See Fig. 42)
2	Primary Pump No. 2 M-G Set	Corridor Panel (See Fig. 42)
3	$\begin{aligned} & \text { Transformer No. } 3 \\ & \text { Secondary } \end{aligned}$	13.8-kV Feeder Panel E-5 (Main Control Room) (See Fig. 22)
4	Pump House No. 1	2400-V Electrical Panel E-2 (Main Control Room) (See Fig. 22)
5	Pump House No. 2	Pump House No. 2 (See Fig. 43)

Circuit Breaker Cubicle No.	Load	
	Location of Controls	

*Duplicate controls are located on the local startup panel.
Breaker-position indication is provided at each control location and also above the permissive trip switches located on the front door of the respective circuit breaker switchgear cubicle. An indicating ammeter and ammeter switch are mounted on the front door panel of the switchgear for each of the switchgear circuits; an ammeter and ammeter switch are also provided on Panel E-2 (see Fig. 43) in the Main Control Room for each load feeder. Bus voltage may be read from either an indicating voltmeter on Panel E-2 or the indicating voltmeter provided on the switchgear.
7. Protective Relaying

The protective relaying scheme for the $2400-\mathrm{V}$ system is indicated in Figs. 44 and 45.

The relays are mainly of the flush or semiflush, drawout type, and are located on the front door panels of the switchgear, except for the relays for the 200 hp pump-drive motor in Pump House No. 1 .

A list of the principal protective relays, all of General Electric Co. manufacture, is given in Table 9.

TABLE 9. Protective Relays for the $2400-\mathrm{V}$ System

Feeder	Location on Switchgear	Device No.	Quantity	Relay Type	Function
Primary sodium pump No. 1, M-G set motor	Unit No. 1	49/50	2	Thermal overcurrent, with instantaneous overcurrent unit, Type 12TMCl1B94A	Trip unit No. 1, 2.4-kV breaker
Primary sodium.pump No. 2, M-G Set Motor	Unit No. 2	$49 / 50$	2	Thermal overcurrent, with instantaneous overcurrent unit, Type 12TMCl1B94A	Trip unit No. 2, 2.4-kV breaker
Incoming lines No. 1 and No. 2 (transformers No. 3 and No. 4)	Unit No. 3	67	3	Directional phaseovercurrent, inverse time, Type 121BC51E1A	Trip incoming lines No. 1 and No. 2 (transformers No. 3 and No. 4), 2.4-kV breakers and alarm
Incoming lines No. 1 and No. 2 (transformers No. 3 and No. 4)	Unit No. 3	50	1	Instantaneous overcurrent, similar to Type 12PJC3IC67A	Establishes pickup of 167) at $2400 \mathrm{~A}, 10,000 \mathrm{kVA}$ via 50 X

TABLE 9. (Contd.)

Feeder	Location on Switchgear	Device No.	Quantity	Relay Type	Function
Incoming line No. 1 (transformer No. 3)	Unit No. 3	32	1	Instantaneous directional power, 3-phase, Type CCP-13D	Trip incoming line No. 1 (transformer No. 3), $2.4-\mathrm{kV}$ breaker via device No. 62
Incoming line No. 1 (transformer No. 31	Unit No. 3	62	1	D.C. timing relay, Type 12RPMI3A12A	Auxiliary to device 32
$2.4-\mathrm{kV}$ bus	Unit No. 4	64	1	A.C. overvoltage, Type 121AV51A7A	Annunciates $2.4-\mathrm{kV}$ bus ground
Pump house No. 1	Unit No. 4	51	3	- Overcurrent, extremely inverse time, Type 121AC77B4A	Trip pump house No. 1, 2.4-kV feeder breaker
Well pump No. 2	\int Unit No. 5	49/50	2	Thermal overcurrent, with instantaneous overcurrent unit, Type 12TMC11B2A	Trip well pump No. 2, 2.4-kV breaker
Well pump No. 2	Unit No. 5	WP2		Automanual selector relay	Permissive control (manual automatic) of 2.4-kV well pump No. 2 breaker
Secondary sodium pump	Unit No. 6	49/50	2	Thermal overcurrent, with instantaneous overcurrent unit, Type 12TMCl186A	Trip secondary sodium pump $2.4-\mathrm{kV}$ breaker
Condenser circulating water pump No. 1	Unit No. 7	49/50	2	Thermal overcurrent, with instantaneous overcurrent unit, Type l2TMCIIB8A	Trip condenser circulating water pump No. 1 breaker
Condenser circulating. water pump No. 2	Unit No. 8	49/50	2	Thermal overcurrent, with instantaneous overcurrent unit, Type 12TMC11B8A	Trip condenser circulating water pump No. 2 breaker
Incoming line No. 2 (transformer No. 4)	Unit No. 9	32	1	Instantaneous directional power, 3-phase, Type CCP-13D	Trip incoming line No. 2 (transformer No. 4), $2.4-\mathrm{kV}$ breaker via device 62
Incoming line No. 2 (transformer No. 4)	Unit No. 9	62	1	D.C. timing relay, Type 12RPMI3A12A	Auxiliary to device 32
2.4-kV bus	Unit No. 9	27	2	A.C. undervoltage, Type 12PCVI281	Reactor scram and alarm
Induction and resistance heating	Unit No. 10	50/51	3.	Overcurrent, extremely in= verse time, with instantaneous overcurrent unit, Type 12IAC77B4A	Trip induction and resistance heating $2.4-\mathrm{kV}$ breaker
Boiler feedwater pump	Unit No. 11	49/50	2	Thermal overcurrent, with instantaneous overcurrent unit, Type 12IMC11B6A	Trip.boiler feedwater pump $2.4-\mathrm{kV}$ breaker
Deep well pump No. l motor	On 2.4-kV starter at pump house No. 1	49/50	2	Thermal overcurrent, with instantaneous overcurrent - unit, Type TMC11B42A	Open motor starter
Deep well pump No. 1 motor	On 2.4-kV starter at pump house No. 1	46	1	Current balance; Type 12IJC51B3A	Open motor starter

Since the 2400-V system is an ungrounded system, a ground fault on only one of the lines will not cause operation of any protective relay.

- To provide annunciation of the occurrence of a line-to-ground fault; an overvoltage "ground alarm" relay (64) is connected in the open corner of the delta secondary of a set of 2400-120-V potential transformers, connected wye-broken delta.

The $2400-\mathrm{V}$ incoming-line circuit breakers are provided with one common set of three directional overcurrent relays (67) to provide bus-fault protection and also backup protection for the relays on the branch feeder circuit breakers. These relays receive the sum of the current flowing into the $2400-V$ bus. In order to provide coordination with the relays on the branch-feeder circuit breakers, instantaneous overcurrent relays (50) are connected to prevent operation of the directional overcurrent relays (67), except when the total current is large enough to operate the instantaneous elements on the branch-feeder circuit breakers.

Instantaneous directional power relays (32) are provided for each of the $2400-\mathrm{V}$ incoming-line breakers. These relays will trip their respective circuit breaker if power should flow from the $2400-\mathrm{V}$ bus toward the $13.8-\mathrm{kV}$ bus. They are set to operate on a very low power flow in the reverse direction; however, time-delay relays (62) are incorporated to provide time delay before tripping an incoming-line circuit breaker.

Each of the motor-feeder circuit breakers is provided with two thermal overcurrent relays with instantaneous trip elements (49/50) for motor overload and short-circuit protection. The thermal overcurrent relay (49) settings are between 110 and 120 percent of the motor full-load current.

- In addition to overload and short circuit protection, the 200-hp deep well pump motor in pump house No. 1 is protected against single-phase operation by a current-balance relay (46). This motor is controlled by an industrial motor controller (Limitamp) equipped with current-limiting fuses.

The feeder circuit breaker for the $500-\mathrm{kVA}$ single-phase induction heating transformer and the $250-\mathrm{kVA}$ surge-tank heating transformer is provided with induction-type overcurrent relays with instantaneous trip attachments $(50 / 51)$ for overload and short-circuit protection. The linefeeder circuit breaker for pump house No. lis similarly provided with overcurrent relays (5l); instantaneous elements furnished with the latter relays were disconnected since they could not be coordinated with the motor starter and transformer fuses.

Two plunger-type undervoltage relays are connected to the $2400-\mathrm{V}$ bus through two 2400-120-V potential transformers for reactor scram and annunciation in the event of an undervoltage condition.

1. General

The $480-\mathrm{V}$ power system is a wye-connected system with the neutrals of two $2000-\mathrm{kVA}, 13.8-\mathrm{kV}-480-\mathrm{V}$ delta-wye power transformers solidly grounded. One transformer is connected to the $13.8-\mathrm{kV}$ bus on one side of the bus tie breaker, and one is connected to the bus on the other side of the bus tie breaker (see Fig. 20).

The system inćludes $480-\mathrm{V}$ main and emergency indoor-type, metal-enclosed, switchgear assemblies, three automatic-starting emergency diesel-generator units, a $480-\mathrm{V}$ lighting distribution center, motor-control centers, lighting and distribution transformers, power and lighting distribution panels, and control panels.

The $480-\mathrm{V}$ main switchgear assembly has a single bus which is throat-connected to the two power transformers by metal-enclosed bus ducts.

The 480-V emergency switchgear is normally fed by a feeder from the $480-V$ main switchgear. Four of the motor-control centers have a "normal" and an "emergency" bus section, with a normally open bus tie breaker between them. The "normal" bus section is fed directly from the 480-V main switchgear whereas the "emergency" bus section is fed from the $480-\mathrm{V}$ main switchgear via the $480-\mathrm{V}$ emergency switchgear. Under emergency conditions, i.e., when the normal power supply is lost, the $480-\mathrm{V}$ emergency switchgear bus is automatically disconnected from the $480-\mathrm{V}$ main switchgear and receives its power from the $400-\mathrm{kW}$ automatic-starting diesel-generator unit (see Fig. 20).

When the normal power supply is lost, the "emergency" bus section of three of the motor-control centers receives power from the $400-\mathrm{kW}$ diesel-generator unit; the fourth motor-control center, Fl, receives power from the $200-\mathrm{kW}$ unit. Concurrently with the starting of the $400-\mathrm{kW}$ diesel-generator unit, the $100-\mathrm{kW}$ unit starts automatically to serve the critical loads on motor-control center R2.

When voltage is lost on the "emergency" bus section of a motorcontrol center but not on the "normal" bus section, the bus tie breaker closes automatically to energize the "emergency" bus.

1000-V-insulation, single-conductor cables are used for heavy $480-\mathrm{V}$ power feeders, and $600-\mathrm{V}$-insulation, single-conductor and/or multiconductor cables are used for light power circuits, lighting, and control. Cables are routed in galvanized rigid steel conduit, galvanized electrical metallic tubing, cable trays, and/or in underground duct runs encased in concrete.

2. $480-\mathrm{V}$ Main Switchgear.

The 480-V main switchgear is of Federal Pacific Electric Co. manufacture and consists of a single-bus, indoor-type, metal-enclosed, double-ended, drawout switchgear assembly with six rigid, self-supporting steel frames containing individually isolated compartments for fourteen drawout-type air circuit breakers. Instruments, protective relays, and permissive control switches are mounted on hinged front-panel sections over the incoming-line circuit breakers (see Fig. 9).

The main busses are copper with a continuous current rating of 3000 A ; their entire length, including contact surfaces of all bolted connections, are silver-plated. These busses are mounted in high-impact, heavy phenolic base supports in each cell and are braced to withstand stresses induced by a maximum momentary asymmetrical short-circuit current of 75,000 A.

A ground bus extends the entire length of the assembly and connects to ground stabs provided in each breaker cell. The ground bus has a continuous rating exceeding 1000 A , and a momentary rating equivalent to that of the largest circuit breaker. Ground connections to the circuitbreaker frames are made at all times when the circuit breakers are in service.

The two incoming-line (transformer secondary) circuit breakers are General Electric Co. Type AK-1-75, 600-V a.c., 3000-A, 60-cps, 3-pole, electrically operated, trip-free, drawout air circuit breakers with an interrupting capacity of $75,000 \mathrm{rms}$ amperes at 480 V . The circuit breakers are not equipped with integral series overcurrent devices as fault protection is provided by means of separate protective relays connected to energize the breaker shunt trip device. The motor-operated closing mechanisms provided have an operating range of 90 to 130 V d.c. and the shunt trip devices have an operating range of 70 to 140 V d.c.

The branch-feeder circuit breakers are Federal Pacific Electric Co. Type DMB-50, 600-V a.c., 1600-A frame, 3-pole, electrically operated', trip-free, drawout air circuit breakers, with an inter rupting capacity of $50,000 \mathrm{rms}$ amperes at 480 V . Each circuit breaker is equipped with three series overcurrent trip devices of the time-delay mechanical-escapement type with long time-delay and short time-delay mechanisms with factoryset time bands of minimum, intermediate, or maximum--for selective tripping of circuit breakers in the system. The long-time delay mechanisms are field adjustable from 80 to 160 percent of rated current, and the shorttime delay mechanisms are field adjustable to calibrated pickup settings of 500,700 and 1000 percent of rated current. The breaker-closing mechanisms have an operating range of 90 to 130 V d.c. and the shunt trip devices have an operating range of 70 to $140 \mathrm{~V} \mathrm{d.c}$.

3. Power Transformers

The two power transformers (see Figs. 6 and 20) serving the 480-V system are Federal Pacific Electric Co. Type LCA, each rated $2000-\mathrm{kVA}, 13,800-\mathrm{V}$ delta primary, $480-\mathrm{V}$ wye secondary, 3 -phase, 60 cycle, 11.75 percent impedance, askeral-immersed, self-cooled, $55^{\circ} \mathrm{C}$ temperature rise, for outdoor installation. Four $2 \frac{1}{2}$ percent full-capacity taps are provided on the primary windings, two above and two below the $13.8-\mathrm{kV}$ tap; the desired tap is selecte'd by means of an externally operated no-load manual tap switch, with provisions for padlocking. There are no exposed live parts on the transformers. The primary leads are brought out to porcelain terminal bushings in the high-voltage terminal box mounted on the front of the transformer. The secondary leads, including the neutral connection, are brought out to porcelain terminal bushings at the rear of the transformer. The neutrals of the transformers are solidly grounded to the EBR-II ground grid system. The $480-\mathrm{V}$ secondary terminals of each transformer are throat-connected to a metal-enclosed bus duct.

Each transformer is equipped with the following listed accessories:
Liquid-level gauge
Thermometer with alarm contacts
Vacuum pressure gauge
Manual tap changer
Relief vent

Drain valve Vacuum pressure control and test connections Filter press connection Liquid-sampling device
4. $480-\mathrm{V}$ Bus Duct

The secondary connection between each transformer and the switchgear is made by means of a metal-enclosed, 3-wire, nonsegregated bus duct rated at $480 \mathrm{~V}, 3000 \mathrm{~A}, 60$ cycles, and suitably braced to withstand a momentary short-circuit current of $75,000 \mathrm{rms}$ asymmetrical amperes. Connections to the transformers terminals are made with strip laminated flexible connectors. Flanges and vapor-tight barriers are installed at the point of the bus duct where it enters the building.
5. 480-V Emergency Switchgear

The 480-V emergency switchgear is of Federal Pacific Electric Co. manufacture and consists of a single-bus, indoor-type, metal-enclosed, switchgear assembly containing individually isolated compartments housing seven drawout-type air circuit breakers, one 1200-A nonautomatic incomingline disconnect switch, and a 3 -phase current-limiting line reactor. Protective relays, control switches, and indicating lights are mounted on the front of the equipment (see Fig. 10).

The main busses are copper with a continuous-current rating of 600 A , and braced to withstand the stresses induced by a momentary as symetrical rms short-circuit current of $35,000 \mathrm{~A}$. All bus joints and connections are silver-plated and tightly bolted to insure maximum conductivity. A ground bus, extends the length of the switchgear, with a connection to each switchgear unit and to each circuit-breaker frame. Grounding of a circuitbreaker frame is in effect at all times when the breaker is in the operating position.

The circuit breakers are Type DMB-25, 600-V V a.c., 600-A frame, 3-pole, trip-free, drawout air circuit breakers with an interrupting capacity of 35,000 asymmetrical rms amperes at 480 V . Each breaker is equipped with three series overcurrent trip devices of the time-delay mechanical-escapement type with long-time and short-time delay tripping mechanisms. The long-time-delay mechanisms are adjustable from 80 to 160 percent of rated current, and the short-time-delay mechanisms have adjustable pickups calibrated at 500,750 , and 1000 percent of rated current.

The $400-\mathrm{kW}$ diesel-generator breaker has a $125-\mathrm{V}$ d.c. closing mechanism, with an operating range of 90 to 130 V . All circuit breakers in this gear have $125-\mathrm{V}$ d.c. shunt trip devices with an operating range of 70 to 140 V . The closing and tripping potential is supplied by the station 125-V battery.

The current-limiting line reactor is a Westinghouse-type MSP shielded reactor, rated $600 \mathrm{~V}, 1000 \mathrm{~A}, 3$-phase, 60 -cycle, 0.01 ohm per phase. The reactor limits the short-circuit current on the switchgear bus to approximately 23,600 assymetrical rms amperes.

6. $480-\mathrm{V}$ Lighting Distribution Center

The 480-V lighting distribution center consists of three vertical sections joined together to form a rigid, free-standing, dead-front, indoor metal-enclosed assembly. All busses in the assembly are braced to withstand a short-circuit current of $25,000 \mathrm{rms}$ amperes. The distribution center is normally fed from the $480-\mathrm{V}$ main switchgear through a $600-\mathrm{A}$, manually operated, nonautomatic, L-frame air circuit breaker and a 3-phase, 600-A current-limiting reactor. A normally open feeder circuit breaker in the $480-\mathrm{V}$ emergency switchgear is included in the design to provide power to the lighting distribution center from the $400-\mathrm{kW}$ emergency diesel-generator unit.

The distribution center contains a total of nine manually operated, K-frame branch molded case circuit breakers, four of which are spares. The distribution center serves lighting and auxiliary loads in the Power Plant, Reactor Plant, Main 138-13.8-kV Outdoor Substation, Guard House, Fire Station, and Yard Lighting.

7. 480-V Emergency Power System

Emergency power for the $480-\mathrm{V}, 3$-phase emergency power system is supplied by one $400-\mathrm{kW}$ and one $100-\mathrm{kW}$ automatic-starting emérgency diesel-generator unit (see Fig. 20). The $400-\mathrm{kW}$ generator output is fed into the $480-\mathrm{V}$ emergency switchgear, and the $100-\mathrm{kW}$ generator output is fed into motor-control center R2. Table 10 lists the loads which are automatically applied to the $400-\mathrm{kW}$ unit and Table 11 the loads which may be manually applied. Table 12 shows the critical emergency loads served by the $100-\mathrm{kW}$ unit via motor-control center R2. Table 13 shows the loads which are automatically disconnected and locked out during a power outage.

TABLE 10. Emergency Power System Loads Automatically Applied to the $400-\mathrm{kW}$ Diesel Generator

Load No.	Description	hp	Delay (sec)
RM-45	Argon Blower 1	5	0
RM-46	Argon Blower 2	5	0
PPS P	Pump Pit Sump Pump	$\frac{1}{2}$	0
PM-77	Turning Gear Oil Pump	5	0
PM-90	Instrument Air Compressor 1	50	0
PM-91* I	Instrument Air Compressor 2	50	0
PM-94	Continuous Power Supply	115	0
PC-383	Annunciator	10	0
PF-74	Control Power System	10	0
PM-74	Hydrogen Seal Oil Pump	2	0
PM-119 D	Duplex Condensate Pump	3	0
PM-120*	Duplex Condensate Pump	3	0
RF-11 E	Emergency Lighting Panel RE-l	5	0
PF-63 S	Sodium-Boiler Plant	0.3	0
PM-64	Demineralizer Service Pump 1 (make up)	7.5	0
PM-65*	Demineralizer Service Pump 2 (make up)	7.5	0
RF-14 R	Refueling Machine	10.75	
		5.2 kW	0
PF-11	Guard House and Fire House Emergency Feeder	11.5	0
PM-59	Emergency Instrument Air Compressor.	2.	10
PF-96 S	Station Battery Charger	5	10
PM-115 .	Cooling Water Pump l	15	10
PM-116	Cooling Water Pump 2	15	10
RM-48	Shield Air Recirculating Fan !	20	10
RM-49*	Shield•Air Recirculating Fan 2	20	10
RM-54**	Refrigeration Compressor 3	40	20
RM-62**.	Refrigeration Compressor 1 .	20	20
RM-63	Refrigeration Compressor 2	20	20
PF-31 Laboratory and Service Building			
L11M-311A	Main Exhaust Fan (West)	20	
Ll1M-311B*	* Main Exhaust Fan (East)	20	
LM-707A	Process Water Pump (South)	3	
LM-707B*	Process Water Pump (Nôrth)	3	

TABLE 10. (Contd:)

Load No.	Description	hp	$\begin{aligned} & \text { Delay } \\ & (\mathrm{sec}) \end{aligned}$
RM-52 \dagger	Thimble Cooling Compressor 1	60	50
RM-53* \dagger	Thimble Cooling Compressor 2	60	50
PF-67 \dagger	Pilot Light Transformers	2.0	50
RF-13†	Shield Cooling Supply Fan Dampers		
	RM-99	0.25	50
	RM-100	0.25	50
RF-13C \dagger	Shield Cooling Supply Filters Dampers		
	RM-101	0.25	50
	RM-102	0.25	50
RM-68 ${ }^{+}$	Emergency Instrument Air Compressor (Reactor Plant)	1.5	50
RM-50t	Shield Cooling Exhaust Fan 2	30	70
RM-51* \dagger	Shield Cooling Exhaust Fan 1	30	70
PF-34	Emergency Lighting Panel PE-1	15.0	45 (min)

*Standby operation--only one motor for this service will operate at one time.
**Compressors RM- 62 and RM- 63 will operate simultaneously as a standby for RM-54, but not at the same time as RM-54.
\dagger Applied to $400-\mathrm{kW}$ generator if $100-\mathrm{kW}$ generator fails.
TABLE 11. Emergency Power System Loads Manually Applied to the $400-\mathrm{kW}$ Diesel Generator

Load No.	' Description	hp
RF-10	Rotary Bridge Crane	67
RM-60	Air Supply Fan	30
RM-66	Purge Exhaust Fan	5
RF-69	Personnel Air Lock	1
RF-71	Equipment Air Lock	1
RM-73	Equipment Air Lock Cart	0.75
RF-14	Large Rotating Plug Seal Heaters	38 kW
PM-50	Auxiliary Boiler 1 Forced Draft Fan	10
PM-53	Auxiliary Boiler 2 Forced Draft Fan	10
PM-56*	Auxiliary Boiler Feed Water Pump	40
PM-57	Diesel Oil Pump	2
PM-58	Fuel Oil Pump	5.25
PM-76	Turning Gear	1.5
PM-94M1**	Continuous Power Supply	50
RF-35A	Auxiliary Primary Sodium Pump	50
	Evacuation Siren	10
	Acid Storage Tank Heaters (1 Phase)	5.5 kW

[^2]TABLE 12. Emergency Power System Loads Automätically Applied to the $100-\mathrm{kW}$ Diesel Generator

Load No.	- Description	hp	Dèlay (sec)
R M-50	Shield Cooling Exhaust Fan 2	30	20
RM-51*	Shield Cooling Exhaust Fan 1	30	20
RM-52	Thimble Cooling Compressor 1	60	0
RM-53*	Thimble Cooling Compressor 2	60	0
RM-67	Pilot Light Transformers	2	0
RM-68	Emiergency Instrument Air Compressor	1.5	0
RF-13	Shield Cooling Supply Fan Dampers .		
	RM-99	0.25	0
	RM-100	0.25	0
RF-13C	Shield Cooling Supply Filters Dampers		
	RM-101	0.25	0
	RM-102	0.25	0

*Standby operation-- only one motor for this service will operate at one time.

TABLE 13. Loads Automatically Disconnected from Emergency System during Power Outage

Load:No.	Description	hp
PM-10	Heating and Ventilation Unit Fan (North)	5
PM-11	Heating and Ventilation Unit Filter (North)	$1 / 6$
PM-12	Heating and Ventilation Unit Fan (South)	5
PM-13	Heating and Ventilation Unit Filter (South)	$1 / 6$
PM-36	Data Logger Refrigeration Compressor	1.5
PM-75	Vapor Extractor	0.75
PF-33	Cooling Tower	10
PM-171	Silicone Pump 1	15
PM-172	Silicone Pump 2	15
PM-56*	Auxiliary Boiler Feed Water.Pump	40
PF-30**	Fuel Cycle Facility Emergency Feeder	

[^3]In the original design of the emergency power system, the $400-\mathrm{kW}$ diesel-generator unit served all the emergency loads in the Reactor Plant, Power Plant, Sodium-Boiler Plant, Laboratory and Service Building, and Yards (see Fig. 20). In the event of failure of the $400-\mathrm{kW}$ unit to operate, the $100-\mathrm{kW}$ diesel-generator unit was arranged to assume automatically the critical loads on motor-control center R2.

With the gradual addition of loads to the emergency system as time went on, it became apparent that optimum utilization of the dieselgenerator units was not being realized, since the $100-\mathrm{kW}$ unit would normally be unused during an emergency condition in which normal electric power is lost. Therefore, to improve the utilization of the emergency power-generating equipment, the design was revised to provide for the $100-\mathrm{kW}$ unit to supply power to motor-control center R2 immediately upon sustained loss of the normal electric power supply. Further, if the $100-\mathrm{kW}$ unit should fail to operate, the motor-control center. R2 loads will be picked up automatically by the $400-\mathrm{kW}$ unit; the revision also includes means for shedding certain nonessential loads from the $400-\mathrm{kW}$ unit before picking up the critical motor-control center R2 to prevent overloading the $400-\mathrm{kW}$ unit.

The application of emergency loads to the diesel-generator units in time-delayed steps (instead of all at once) was incorporated in the design to prevent the dropout of loads due to excessive drop in generator terminal voltage and consequent voltage drop on the contactor coils of starters during the motor starting periods.

The following listed Cases illustrate the design objectives and operational functions of the $100-\mathrm{kW}$ and $400-\mathrm{kW}$ emergency diesel-generator units in the $480-\mathrm{V}$ emergency power system. All of the events indicated, namely, diesel-generator set starting, circuit-breaker closing, or circuitbreaker tripping, are accomplished automatically. The devices and circuits involved are shown in Figs. 57, 58, and 59 (see pp. 178-180).

Case I
Assumed Conditions

1. Loss of voltage on $480-\mathrm{V}$ emergency switchgear bus and motorcontrol center (MCC) R2 bus.
2. No voltage on MCC R1-A (normal bus).
3. $100-\mathrm{kW}$ and $400-\mathrm{kW}$ diesel-generators start and come up to rated voltage within approximately 50 sec .
Equipment Response
4. MCC R1 to MCC R2 tie breaker 15C trips.
5. $480-\mathrm{V}$ main switchgear breaker 3B trips.
6. $400-\mathrm{kW}$ generator connects to $480-\mathrm{V}$ emergency switchgear (breaker 3D closes).
7. $\quad 100-\mathrm{kW}$ generator connects to MCC R2 bus (breaker la closes).

Case II

Assumed Conditions

1. Loss of voltage on $480-\mathrm{V}$ emergency switchgear and MCC R2 busses.
2. No voltage on MCC Rl-A (normal bus).
3. $100-\mathrm{kW}$ and $400-\mathrm{kW}$ diesel-generators start and come up to rated voltage within approximately 50 sec , but the $100-\mathrm{kW}$ dieselgenerator fails to continue operating.

Equipment Response

1. MCC R1 to MCC R2 tie breaker 15C trips.
2. $480-\mathrm{V}$ main switchgear breaker 3 B trips.
3. $\quad 100-\mathrm{kW}$ generator connects to MCC R2 bus (breaker la closes) and $400-\mathrm{kW}$ generator connects to the emergency s.witchgear bus (breaker 3D closes).
4. On failure of the $100-\mathrm{kW}$ diesel-generator, the $100-\mathrm{kW}$ generator is disconnected from MCC R2 (breaker lA opens).
5. After approximately $50 \mathrm{sec}, \mathrm{MCC}$ R1 to MCC R2 tie breaker 15C recloses. This places MCC R2 loads on the $400-\mathrm{kW}$ dieselgenerator. Excess loads on the $400-\mathrm{kW}$ unit will be shed as preselected.
6. In the event the $100-\mathrm{kW}$ diesel-generator restarts (automatically or manually), it will not reconnect to MCC R2 bus. Manual operation is required for further control of the loads.

Case III

Assumed Conditions

Loss of voltage on $480-\mathrm{V}$ emergency switchgear only.
Equipment Response

1. $480-\mathrm{V}$ emergency switchgear breaker 2B (emergency supply feeder to MCC R1) trips.
2. MCC RI-B breaker 16A (emergency supply feeder to MCC R1) trips.
3. MCC Rl bus tie breaker 8A closes. MCC Rl-B (emergency bus) and MCC R2 are energized from the normal source via MCC Rl-A (normal bus).
4. $\quad 100-\mathrm{kW}$ diesel-generator starts and comes up to rated voltage, but does not connect to MCC R2 bus.
5. $\quad 400-\mathrm{kW}$ diesel-generator starts and comes up to rated voltage.
6. $480-\mathrm{V}$ main switchgear breaker 3B trips.
7. $400-\mathrm{kW}$ generator connects to $480-\mathrm{V}$ emergency switchgear bus. (breaker 3D closes).

Case IV
Assumed Conditions
Loss of voltage on MCC•R2 bus only.

Equipment Response

1. MCC R1 to MCC R2 tie breaker 15C trips.
2. $\quad 100-\mathrm{kW}$ diesel-generator starts, comes up to rated voltage and connects to MCC R2 (breaker lA closes).

Case V

Assumed Conditions

1. Loss of voltage on 480-V emergency switchgear and MCC R2.
2. No voltage on MCC Rl-A (normal bus).
3. $400-\mathrm{kW}$ diesel-generator starts and comes up to rated voltage.
4. $\quad 100-\mathrm{kW}$ diesel-generator fails to start or to come up to rated voltage within approximately 50 sec.

Equipment Response

1. MCC R1 to MCC R2 tie breaker 15C trips.
2. $480-\mathrm{V}$ main switchgear breaker 3 B trips.
3. $400-\mathrm{kW}$ generator connect to $480-\mathrm{V}$ emergency switchgear bus (breaker 3D closes).
4. After approximately $50 \mathrm{sec}, \mathrm{MCC}$ R1 to MCC R2 tie breaker 15C closes. This places MCC R2 loads on the $400-\mathrm{kW}$ unit. Excess loads on the $400-\mathrm{kW}$ diesel-generator will be shed as preselected.
5. In the event the $100-\mathrm{kW}$ diesel-generator starts after approximately 50 sec, it will not connect to MCC R2 bus. Manual operation is required for further control of loads or for shutdown of the unit.

The following examples provide a detailed description of the theory of operation of the automatic transfer scheme to provide $480-\mathrm{V}$ emergency power for the critical emergency loads on motor-control center R2 from (Example A) the $100-\mathrm{kW}$ diesel-generator unit, or (Example B) from the $400-\mathrm{kW}$ unit in the event of failure of the $100-\mathrm{kW}$ unit. The devices and circuit actions described are shown in Figs. 57, 58, and 59.

Example A

a) Assume that the $100-\mathrm{kW}$ diesel-generator is in standby and that the normal electric power supply is lost.
b) Initial circuit conditions:

1. Breaker 15C in MCC-Rl is closed.
2. $\quad 100-\mathrm{kW}$ generator breaker 1 A is open.
3. 100.-kW generator "MAN.-STANDBY-OFF" selector switch CS/GEN is in the "STANDBY" position; its No. 2, 4, and 8 contacts are closed; its No. 1, 3, 5, 6, and 7 contacts are open.
4. Breaker 15C control switch CS is in its "normal-after-close" position; its No. 2 and 3 contacts are open: its No. 5 and 10 contacts are closed.
5. The voltage on the MCC-R2 bus is zero; a.c. time-delay relays $27,62 \mathrm{D}, 62 \mathrm{~L}$ and 62 T are de-energized and start to time

+ out. (Relay 62 T contact in series with CS/GEN contact No. 4 is closed.)

6. Time-delay relay 62 GV and auxiliary relay 59 X are deenergized. (Relay 62GV TDO contact is open and its TDC contact is closed.)
c) The circuit actions that follow automatically to delivery $480-\mathrm{V}$ power to the MCC-R2 bus are as follows (all time delays indicated are from the instant of loss of MCC R2 bus voltage):
7. After 3 sec , relay 27 TDC contact closes and energizes relay $27 X$; its N.O. contact in the trip circuit of breaker l5C closes, causing breaker 15C to trip. The 27 XN . O. contact in the trip circuit of breaker 1 A also closes.
8. At the same time, the relay 27 N.O. contact in the $100-\mathrm{kW}$ Diesel Starting Control Circuit opens and initiates cranking of the diesel engine.
9. After the generator terminal voltage rises to normal (approximately 490 V), relay 59 picks up and its N .O. contact energizes its seal in coil and relay 62 GV .
10. The relay 62 GV TDC contact in the trip circuit of generator breaker lA opens immediately, and the relay 62 GV TDO contact in series with relay 59 X closes immediately.
11. Relay 59 X is thus energized and its N.O. contact in the closing control circuit of generator breaker lA closes to cause breaker 1 A to close and deliver $480-\mathrm{V}$ power to the MCC-R2 loads. (Relay 27 picked up, causing 27 X to be, de-energized, opening its N.O. contacts in the trip circuits of breakers lA and l5C.)
12. With the closing of breaker la, its "b" contact de-energizes 59 X and 62 GV . After one second, relay 62 GV TDC contact, in series with the open 27 X contact, closes and the 62GV TDO contact in series with 59 X opens.
13. Relay 62 L picks up before it has timed out and prevents 94 L from picking up to shed the selected loads, if any.
14. Relay 62 D picks up before it has timed out and prevents 62 DX from picking up.

Example B

a) Assume that normal electric power supply is lost, the $400-\mathrm{kW}$ diesel-generator is serving its loads, and the $100-\mathrm{kW}$ diesel-generator is serving the motor control center R2 loads, when the $100-\mathrm{kW}$ diesel engine stops as a result of low lube oil pressure, water overtemperature, overspeed, or other reasons.
b) Initial circuit conditions:

1. Breaker 15C in MCC-Rl is open.
2. $\quad 100-\mathrm{kW}$ generator breaker 1 A is closed.
3. $100-\mathrm{kW}$ generator "MAN.-STANDBY-OFF" selector switch is in its "STANDBY" position; its No. 2, 4, and 8 contacts are closed; its No. 1, 3, 5, 6 and 7 contacts are open.
4. Breaker 15C control switch CS is in its "normal-after-close" position; its No. 2 and 3 contacts are open; its No. 5 and 10 contacts are closed.
5. The voltage on the MCC-R2 bus is zero; a.c. time-delay relays 27, 62D, 62 L , and 62 T are de-energized and start to time out. Relay 59 is de-energized.
6. Time-delay relay 62 GV had been timed out, since its coil is in series with a " b " contact of breaker lA. For the same reason, the seal-in coil of relay 59 is de-energized.
c) The circuit actions that follow automatically to deliver $480-\mathrm{V}$ power to the $\mathrm{MCC}-\mathrm{R} 2$ bus are as follows (all time delays indicated are from the instant of loss of $100-\mathrm{kW}$ generator terminal voltage):
7. After 3 sec, relay 27 TDC contact closes and energizes relay 27 X ; its $\mathrm{N} . \mathrm{O}$. contact, in series with the already closed 62GV TDC contact, closes to cause breaker lA to trip. At the same time, the 27 X N.O. contact in series with CS/GEN contact No. 4 (in the trip circuit of breaker 15 C) has closed; note that, although the relay 62 T contact is closed, the trip coil is deenergized because of the open "a" contact of breaker l5C.
8. After 40 sec , the relay 62 T contact opens, thus disconnecting battery " + ". line from the trip coil of breaker 15 C .
9. After 48 sec, relay 62 L TDC contact closes and causes shedding of loads from the $400-\mathrm{kW}$ generator via relay 94 L , as preselected.
10. After 50 sec, relay 62 D , TDC contact closes and energizes relay 62 DX ; the N.O. 62 DX contact in the closing circuit of breaker 15C closes and causes breaker 15C to close and energize the MCC-R2 bus and the loads thereon from the $400-\mathrm{kW}$ diesel-generator.
11. The following circuit changes then occur:
a. Relays $62 \mathrm{~T}, 27,62 \mathrm{~L}$, and 62 D are energized.
b. The l-sec time delay on pickup of relay 62 T prevents its open contact from closing before the 27 X contact in the trip circuit of breaker 15 C has opened.

The 400- and $100-\mathrm{kW}$ diesel-generator units are located on the first floor of the Power Plant Building (see Fig. 6).

The diesel engines are full-compression ignition engines capable of starting cold from the heat of compression and operating on No. 2 fuel oil without the need of auxiliary heating devices. Exhaust from the engines passes through exhaust silencers connected to the engines by flexible connections and is vented to the outside. Each is equipped with a radiator and a belt-driven fan for cooling. The cooling air is taken from inside the building and blown through the radiator and a duct to outside of the building.

Relays, indicating lights, pushbuttons, and associated circuits are included on an automatic start panel (see Fig. 46) for each dieselengine. The automatic start cycle is initiated when loss of normal voltage occurs. The start circuits incorporate engine crank and rest cycles with an automatic overcrank lockout and alarm at the end of 90 sec . The crank and rest periods are each adjustable up to 30 sec . Alarms are provided for high water temperature, low oil pressure, and overspeed.

A generator field cubicle (see Fig. 46) is located adjacent to each diesel-generator unit. Each cubicle includes a manually operated generator air circuit breaker, a field rheostat, a field- disconnect switch and discharge resistor, a voltage regulator, and indicating meters. A storage battery and charger is located at each unit to supply power to the stàrting motors:

A summary of ratings and related data for the $100-\mathrm{kW}$ and $400-\mathrm{kW}$ diesel-generator units are given in Table 14.

TABLE $14.100-\mathrm{kW}$ and $400-\mathrm{kW}$ Diesel-generator Units--Ratings and Related Data.

400-kW Diesel-generator

TABLE 14. (Contd.)

The emergency loads in the Fuel Cycle Facility are automatically applied to the emergency $200-\mathrm{kW}$ diesel-generator unit (see Table 15). Whenever the normal power supply is lost, feeder circuit breaker la in the 480 -V emergency switchgear (see Fig. 57) is automatically tripped and locked out.

Table 16 shows the nameplate data of the $200-\mathrm{kW}$ dieselgenerator unit.

TABLE 15. Emergency Power System Loads Automatically Applied to 200-kW Diesel-generator

			Delay Sequence
Load No.	Description	hp	(sec)
FM-56	Stack Exhaust Fan 1	60	0
FM-58*	Stack Exhaust Fan 2	60	0
FM-66	Emergency Instrument Air Compressor	3	0
FF-67	Instrument Power	10	0
FM-14	Sodium Cleanup Exhauster	40	2
FM-15	Suspect Exhaust Fan 1	60	1
FM-16	Suspect Exhaust Fan 2	60	1
FM-43	Sodium Cleanup Pump	2	0
FM-116	Freight Elevator	5	0
FF-18	Emergency Lighting	15	0
FF-23	Stack Feeder	4.5	0

*Standby operation--only one motor for this service will operate at one time.

TABLE 16. 200-kW Diesel-generator Unit--Nameplate Data

	Generator
Diesel Engine	
General Motors MOD 12201	General Electric Type ATl
Unit No. 12-1249	No. 6784431
Equipment Type	250 kVA
Gear Box 32	1200 rpm
Generator Battery 55	Form BL
Cover Rocker 14	220/440 V
Shutoff or Alarm SL- 100	656/328 Armature Amperes:
Starting Motor SL- 102	0.8 pF
Throttle Control SL-101	200 kW
Engine Base 61	3-phase, 60 cycle
Twin-671 1600 rpm	125 V, Exciter
Power.Transfer Gear	22.4 A, Field
Part No. 5172721	Frame 965Z
Ratio 1.33 to 1.0	Temperature Rise $50^{\circ} \mathrm{C}$ Continuous
Serial No. SSll72	

8. Motor-control Centers

The $480-\mathrm{V}$ plant auxiliary loads are fed mainly from motorcontrol centers designated Pl, P2, R1, R2, R3, Sl, and Fl (see Fig. 20). These control centers, with the exception of $R 3$, have two busses and a bus-tie breaker. Motor-control centers Pl, Rl, Sl and Fl have a "normal" and "emergency" bus section, and a normally open, electrically operated bus-tie breaker. As previously indicated, their "normal" bus sectionsare fed directly from the $480-\mathrm{V}$ main switchgear while the "emergency" bus sections are fed from the $480-\mathrm{V}$ main switchgear via the $480-\mathrm{V}$ emergency switchgear. Both bus sections of motor control center P2 are fed directly from the $480-\mathrm{V}$ main switchgear; the bus-tie breaker is manually operated and is normally open. Power is fed to motor-control center R2 via a branch feeder on the "emergency" bus section of motor-control center R1.

The arrangement of compartments comprising the motor-control centers in the Power Plant Building are shown in Figs. 47 through 52.

Each control center consists of vertical sections with compartments joined together to form a NEMA Class I, Type B, metal-enclosed, rigid, floor-mounted, indoor assembly. The control centers are of back-to-back construction, except for $R 2$, which is assembled in a-single row.

The -main horizontal busses in all motor-control centers are rated 600 A continuous, except for motor-control center P2, which is rated 1000 A. Distribution of power to individual control units is by $300-\mathrm{A}$, silverplated vertical busses. Busses and all main current-carrying parts in the motor-control centers are braced to withstand $25,000 \mathrm{rms}$ amperes shortcircuit current. A copper ground bus extends the full length of each motorcontrol center.

The assemblies of motor-control centers (except for Sl and Fl) are equipped with incoming-line current-limiting reactors (see Fig. 60, p. 181) to limit the short-circuit currents to values permitting the use of less expensive circuit breakers (with lower interrupting ratings) and other components than would otherwise have been required. A separately mounted current-limiting reactor is installed in the incoming-line feeder to the "normal" bus section of motor-control center Fl.

The motor-control centers are equipped with combination starters or circuit breakers rated for the loads being served. The smallest circuit breakers used have a minimum short-circuit interrupting rating of $15,000 \mathrm{~A}$, except for those in motor-control center P 2 , which have a minimum rating of $25,000 \mathrm{~A}$. Each starter is provided with an individual 480-120-V control transformer.

Motor-control-center compartments containing a combination starter have a red pilot light mounted on the compartment door. The light ON indicates that the load is energized.

In addition to the motor-control centers described above, numerous control centers and distribution cabinets are provided throughout the Facility for supplying power to individual lighting circuits, small motors, and other loads.

9: Continuous 120-V A.C. Power Supply System
The continuous power supply system provides voltage- and frequency-regulated single-phase power: $120 \mathrm{~V}(\pm 1 \%), 60$ cycle (± 1 cycle), for essential nuclear and process system instrumentation and control. The system consists of a power magnetic amplifier (rectifier) that feeds a $240-\mathrm{V}$ d.c. bus. Connected to the bus are one $25-\mathrm{hp}$ d.c. motor-15-kW a.c. generator, 0.8 power factor, $1800-\mathrm{rpm} \mathrm{M}-\mathrm{G}$ set for the nuclear instrumentation and control system, and one $30-\mathrm{hp}$ d.c. motor- $20-\mathrm{kW}$ a.c. generator, 0.8 power factor, $1800-\mathrm{rpm}$ M-G set for the process instrumentation and control system. A $240-\mathrm{V}$ battery is "floated" on the bus to provide uninterrupted operation of the $M-G$ sets in the event of loss of a.c. power supply to the power rectifier. A $50-\mathrm{kVA}, 480-120-\mathrm{V}$, single-phase, 60 -cycle doublesecondary reserve or auxiliary transformer provides power directly from the plant electric power system in the event that the continuous power supply units are out of service for maintenance or repair.

The continuous power supply equipment is a package unit (see Fig. 53) housed in a metal enclosure located in the cable routing room (see Fig. 5) in the Power Plant. Controls and instrumentation are mounted on front panel sections of the enclosure; voltmeters and frequency meters for the two generators are duplicated on the Utilities Control Panel (see Fig. 55) in the Main Control Room. The $240-\mathrm{V}$ floating battery is located in the battery room adjacent to the cable routing room.

The battery provides for emergency full-load operation of the two M-G sets for approximately 30 min or for a correspondingly longer duration under reduced load. Extended battery operation is achieved by dropping continuous power loads, except the more critical loads fed from panels $1 \mathrm{~A}, 2 \mathrm{~A}$, and S 4 after the first 15 to 20 min of battery operation (see Fig. 54). This load shedding is accomplished by contactors controlled by manually operated key switches on the control room console.

10. Power and Control Cables

The cables used for power distribution are mainly $1000-\mathrm{V}$ and $600-\mathrm{V}$, stranded, tinned-copper, round, single-conductor and three-conductor cables covered with corona-, ozone-, moisture- and heat-resistant, rubber
compound insulation. The $1000-\mathrm{V}$ cable has an outer sheath of oil-resistant, thermoplastic polyvinylchloride composition suitable for a minimum temperature of $80^{\circ} \mathrm{C}$; the temperature rating of the copper is $85^{\circ} \mathrm{C}$. The outer jacket on the $600-\mathrm{V}$ cables are generally either polyvinychloride or neoprene suitable for $75^{\circ} \mathrm{C}$ operation.

When high-temperature operation, small cable diameter, and/or flexibility were requirements of the design, special cables were specified for power and control circuits: these consisted essentially of (1) "KEL-F" cables, insulated for $175^{\circ} \mathrm{C}$ copper operation, with a polyvinychloride jacket suitable for $105^{\circ} \mathrm{C}$ ambient, (2) silicone-rubber-tape-insulated cables with asbestos braid jacket for $125^{\circ} \mathrm{C}$ operation, and (3) glass-insulated cables for high-temperature applications such as heater-terminal connections. The application of the first two cable types are principally inside the Reactor Plant or in the cable tunnel between the Power Plant and Reactor Plant, where the cables are connected to the bulkhead-type pressure connectors in the Reactor Building Containment shell.

Conductor sizes were specified for the design in accordance with the National Electrical Code. Multiconductor cables used in the design are color coded to aid in making terminal connections and tracing of circuits.

11. Control Panels

The 480-V main-switchgear incoming-line circuit breakers áre controlled from the Main Control Room panels E-5 and E-7 (see Fig. 22), and the branch-feeder circuit breakers are controlled from panel E-l (see Fig. 56). Selector switches, "start" pushbuttons, indicating lights, and instrumentation for the $100-\mathrm{kW}$ and $400-\mathrm{kW}$ emergency diesel-generator units are mounted on panel E-l.

A permissive control switch for each of the $480-\mathrm{V}$ incomingline circuit breakers is mounted, on the $480-\mathrm{V}$ main switchgear (see Fig. 9) together with incoming-line ammeters, à bus voltmeter, and protective relays.

The branch circuit breakers of the $480-V$ emergency power system are manually operated at the switchgear (see Fig. 10). A permissive control switch for the $400-\mathrm{kW}$ generator breaker, breaker-position indicating lights, and protective relays are mounted on the switchgear.

The control stations for the numerous loads served by the motorcontrol centers are located locally at the respective load and/or on the motor-control center.

12. Protective Relaying and Circuit-breaker Coordination

The design of the $480-\mathrm{V}$ electric power system includes the application of circuit breakers in series which are so coordinated as to provide selective overcurrent tripping, i.e., to provide for the automatic opening of the circuit breaker nearest the fault, without other circuit breakers opening.

The arrangements of circuit breakers, busses, and protective relays in the $480-\mathrm{V}$ emergency power system and in the $480-\mathrm{V}$ main or normal power system are shown in the single-line diagrams of Figs. 57 and 60, respectively. The circuitries of the protective relaying and control schemes for these systems are shown in Figs. 58, 59, and 61.

The 480-V main-switchgear incoming-line circuit breakers (see Figs. 60 and 61) are not equipped with series tripping devices; instead, a set of three directional overcurrent relays (67) connected to receive the sum of currents flowing into the $480-V$ bus provides protection against bus faults and backup protection for the branch circuit breakers (see Table 17). To achieve coordination between the directional overcurrent relays (67) and the branch circuit breakers, instantaneous overcurrent relays (50) are connected to prevent operation of the directional overcurrent relays unless the current is large enough to cause the branch circuit breakers to be tripped by their short-time-delay elements.

TABLE 17. Bus-fault Protective Relays for the $480-\mathrm{V}$ Main Switchgear

Feeder	Relay Location on Switchgear	Device No.	Quantity	Relay Type	Function
Incoming line No. 1 (transformer No. 5)	Unit No. 1A	32	1	Instantaneous directional power, Type 12CCP13D1A	Trip incoming line No. l breaker via device 62
Incoming line No. 1 (transformer No. 5) and incoming line No. 2 (transformer No. 6)	Unit No. la	67	3	Inverse time and instantaneous directional overcurrent, Type 12IBC5IE1A	Trip incoming line No. 1 and No. 2 breakers via device 86
Incoming line No. 1	Unit No. 1A	62	1	D.C. timing relay, Type 12RPM13A12A	Auxiliary to device 32
Incoming line No. 1 and No. 2	Unit No. 1A	50	1	Instantaneous overcurrent similar to Type 12PJC31C67A	Energize relay device 67
Incoming line No. 2 (transformer No. 6)	Unit No. 6A	32	1	Instantaneous directional püwer, Type 12CCP13D1A	Trip incoming line No. 2 breaker via device 62
Incoming line No. 2	Unit No. 6A	62	1	D.C. timing relay	Auxiliary to device 32

Individual instantaneous directional power relays (32) are provided to trip either of the incoming-line circuit breakers if power should flow from the $480-\mathrm{V}$ bus toward the $13.8-\mathrm{kV}$ bus. These relays are set to
pick up on very low power in the reverse direction, and timing relays (62) are therefore used to provide some delay before a reverse power relay trips the respective incoming-line circuit breaker.

The $400-\mathrm{kW}$ generation breaker 3D (see Figs. 57 and 59) has no instantaneous or short-time-delay tripping devices. Although the breaker is equipped with a long-time-delay element, it is given its maximum setting to prevent tripping under any overload conditions. Generator-overload protection is provided by overcurrent relays with voltage restraint (5lV) which will allow the generator to be operated at 133% of its rating continuously provided that the generator terminal voltage is normal. Under fault conditions the voltage will be reduced and the relays will operate at lower currents to protect the generator.

The branch circuit breakers in the $480-\mathrm{V}$ main and emergency switchgear assemblies should coordinate with the molded-case branch circuit breakers on the motor-control center busses and the $480-\mathrm{V}$ lighting distribution center bus (see Figs. 20, 57, and 60). The molded-case circuit breakers are equipped with thermal long time and magnetic instantaneous tripping devices.

The series tripping device settings of the branch circuit breakers in the $480-\mathrm{V}$ main switchgear and $480-\mathrm{V}$ emergency switchgear are shown in Tables 18 and 19, respectively.

TABLE 18. Tripping Device Settings for 480-V Main Switchgear

$\begin{aligned} & \mathrm{ACB} \\ & \text { No. } \end{aligned}$	Service	Trip Coil Continuous Current Rating, A	Tripping Device Settings				
			Long Time Delay			Short Time Delay	
			Pic	ckup .	Time Band	Pickup	Time Band
2 A	E-2 Lighting Distribution Center	600	100\%	600 A	Intermediate	500\% 3000 A	Minimum
2B	MCC P2-A Power Plant	1000	100\%	1000 A	Intermediate	$500 \% 5000 \mathrm{~A}$	Minimum
2 C	MCC R1 Reactor Plant	600	100\%	600 A	Intermediate	$750 \% 4500 \mathrm{~A}$	Intermediate
3A	MCC Pl Power Plant	400	100\%	400 A	Intermediate	500\% 2000 A	Minimum
3B	E-1 Emer- gency Switchgear	1000	140\%	1400 A	Intermediate	750\% 7500 A	Maximum
3 C	MCC P2-B Power Plant	1000	100\%	1000 A	Intermediate	$500 \% 5000 \mathrm{~A}$	Minimum
4 A	MCC.R3 Reactor Plant	400	. 160%	640 A	Intermediate	1000\% 4000 A	Minimum
4B	Laboratory Bus Ducts B and D	400	160%	$640 \mathrm{~A}$	Intermediate	1500\% 6000 A	Instantaneous
4C	MCC Fl-A Fuel Cycle Facility	- 600	160\%	960 A	Intermediate	1000\% 6000 A	Minimum

TABLE 18. (Contd.)

$\begin{aligned} & \mathrm{ACB} \\ & \text { No. } \end{aligned}$	Service	Trip Coil Continuous Current Rating, A	Tripping Device Settings				
			Long Time Delay			Short Time Delay	
			Pickup		Time Band	Pickup	Time Band
5 A	MCC SI-A	400	100\%	400 A	Intermediate	500\% 2000 A	Minimum
	Sodium-Boiler						
	Plant						
5B	Bus Duct in	600	100\%	600 A	Intermediate	500\% 3000 A	Minimum
	Fuel Cycle	-					
	Facility						,
5C	Primary-tank	800	100\%	400 A	Intermediate	1000\% 8000 A	Instantaneous
	Immersion						
	Heaters .						.

TABLE 19. Tripping Device Settings for $480-\mathrm{V}$ Emergency Switchgear

$\begin{aligned} & \text { ACB } \\ & \text { No. } \end{aligned}$	- Service	Trip Coil Continuous Current Rating, A	Tripping Device Settings					
			Long Timc Delay			Short Time Delay		
			Pickup		Time Band	Pickup	Time Band	
1 A	MCC Fl-B	600	160\%	960 A	Minimum	$750 \% 4500 \mathrm{~A}$	Minimum	
	Fuel Cycle							
	Facility							
1 B	Laboratory	400	100\%	400 A	Minimum	500\% 2000 A	Minimum	
1 C	No ACB							
1D	No ACB				\cdots		.	
2 A	Spare ACB	400	160\%	640 A	Minimum	1000\% 4000 A	Minimum	
2B	MCCR1-B	600	160\%	. 960 A	Minimum	$750 \% 4500 \mathrm{~A}$	Intermediate	
	Reactor Plant							
2 C	MCC Pl-B	400	100\%	400 A	Minimum	500\% 2000 A	Minimum	
	Power Plant							
2 D	E-2 Lighting	600	100\%	600 A	Minimum	$500 \% 3000 \mathrm{~A}$	Minimum	
	Distribution							
	Center							
3	400-kW	600	160\%	960 A	Intermediate	No Short Time or Instantaneous Trip Devices		
	Diesel. .							
	Generator							

The 800-A circuit breaker 5C (see Fig. 60) feeding the primarytank immersion heaters is provided wịth an instantaneous trip device; therefore coordination with the molded-case circuit breakers in the distribution cabinet cannot be assured.

The bus-tie breakers in motor-control centers Pl and Rl (see Fig. 60) should coordinate with breakers $3 A$ and $2 C$, respectively, in the $480-\mathrm{V}$ main switchgear. The series tripping device settings of the bus-tie breakers is shown in Table 20.

TABLE 20. Miscellaneous 480-V Breaker Tripping Device Setting

$\begin{aligned} & \mathrm{ACB} \\ & \text { No. } \end{aligned}$	Service	Location	Trip Coil Continuous Current Rating, A	Tripping Device Settings			
				Long Time Delay		Short Time Delay	
				Pickup	Time Band	Pickup	Time Band
9 A	Bus Tie	$\cdots \mathrm{MCC} \mathrm{Pl}$	225	160\%		1000\%	Instantaneous
				360 A		2250 A	
8A	Bus Tie	MCC R1	400	120\%		1000\%	Instantaneous
				480 A		4000 A	
15C	MCC R2 Feeder	MCCR1	225	100\%		1000\%	Instantaneous
				225 A		2250 A	
1 A	100-kW. Generator Breaker	MCC R2	150	160\%		1000\%	Instantaneous
				240 A		1500 A	
	$400-\mathrm{kW}$ Generator Breaker	$400-\mathrm{kW}$	600	600 A		$4800 \mathrm{~A}^{\prime}$	
		Generator		(20-sec			
		Field		delay at			
		Cubicle		3000 A)			

The emergency bus section for motor-control center Rlis normally fed via emergency switchgear circuit breaker 2B (see Table 19). Motor-control center Rl branch feeder breaker l5C (see Table 20 and Fig. 57) feeds motor control center R2. Breaker 2B settings provide coordination with the 200-A branch breakers on motor-control.center R2 and the 150-A branch circuit breakers on motor-control center Rl; however, there will be the possibility of simultaneous tripping with breaker 15 C for fault currents below approximately 3000 A (see Fig. 66). Fault currents of this low value could probably occur only when the $400-\mathrm{kW}$ diesel-generator is. serving motor-control center R2. This, however, assumes the unlikely conditions in which the normal power supply has been lost and the $100-\mathrm{kW}$ emergency diesel-generator unit has failed to operate; under such circumstances a fault anywhere between the $400-\mathrm{kW}$ generator and motor-control center R2 would result in sustained loss of power for motor-control center R2.

Typical overcurrent coordination curves for the EBR-II power system are shown in Figs. 65 and 66.

F. Station Battery and 125-V D.C. Distribution System

1. General

The $125-\mathrm{V}$ station battery and d.c. distribution system (see Fig. 62) is an ungrounded system. A 16 -circuit, $125-\mathrm{V}$ d.c. distribution panel located in the cable routing room (see Fig. 5) provides control power for electrically operated air circuit breakers, isolation valves, emergency lighting, and essential turbine-generator auxiliaries and controls.

2. Battery and Battery Charger

The $125-\mathrm{V}$ station battery is a 60 -cell lead-plate storage battery with a discharge capacity of 40 A for 8 hr or 430 A for one minute to 1.75 V per cell at an ambient temperature of $77^{\circ} \mathrm{F}$. The battery is an Electric Storage Battery Co. Type EMP-17, Exide-Manchex battery with seventeen (17) Plante positive plates per cell.

When fully charged the specific gravity of the electrolyte is 1.200 to 1.220 at $77^{\circ} \mathrm{F}$, and the voltage is approximately 2.15 V per cell, giving a battery voltage of approximately 129 V .

The station battery and the continuous power supply system battery are installed on battery racks in the battery room (see Fig. 5). The arrangement of this room provides for ease of battery servicing and for adequate ventilation. There are no receptacles installed inside the room, and all lighting fixtures are of the explosion-proof type.

An Electric Products Co. Model "UR" rectifier (silicon diode) battery charger with a maximum rated output of 12 A d.c. at $120-140 \mathrm{~V}$ maintains the $125-\mathrm{V}$ station battery in a fully charged condition. The charger supplies the essentially constant d.c. load current plus a battery trickle charging current. A manually operated timer located on the charger is provided for placing the battery on an equalizing charge at the periods desired.

3. Metering and Annunciation

An ammeter and voltmeter located on the battery charger provide indication of the charger output. Indication of the load current is provided by a second ammeter located adjacent to the charger and connected to a shunt in the main feed to the d.c. distribution cabinet. The battery charging or discharging current can be determined readily from these ammeter readings.

A ground developing anywhere on the d.c. system will be annunciated on Control Room Panel E-l and will be indicated by groundindicating lights on the d.c. distribution cabinet. Low battery voltage (below 100 V) is also annunciated on Panel E-1. A separate bell sounds an alarm for a loss of a.c. power input to the battery charger or for a blown fuse at the charger output.
4. Emergency 125-V D.C. Battery Source

In case the station battery is damaged or lost, its load can be transferred for emergency operation to a $125-V$ tapped section of the continuous power system $240-\mathrm{V}$ battery. A manually operated transfer switch is provided for this purpose (see Fig. 62).

G. Short-circuit Study

The short-circuit currents required to establish relay settings and circuit-breaker coordination for the EBR-II electrical system (see Fig. 20) were calculated with the use of the net-per-unit imepdance values on a 100-MVA base, as shown in Fig. 63. The short circuit current and MVA values shown are 3 -phase, symmetrical, balanced, values.

The impedance of the fault is assumed to be zero in all cases. Subtransient reactance values, $\mathrm{X"d}$, of rotating machines are used. The subtransient reactance of $2300-\mathrm{V}$ and $440-\mathrm{V}$ motors are assumed to be 20 percent and 25 percent, respectively. Cable and bus impedances are neglected in the calculation of fault currents at the $13.8-\mathrm{kV}, 2400-\mathrm{V}$, and $480-\mathrm{V}$ main busses, whereas reactance and/or resistance values are included in the calculations involving power feeders in the $480-\mathrm{V}$ system.

Table $2 l$ lists the system elements and per unit impedance values used in the short-circuit calculations for the $13.8-\mathrm{kV}, 2400-\mathrm{V}$, and $480-\mathrm{V}$ main busses. The per unit values on a 100 -MVA base are shown in the impedance diagram (see Fig. 64) made for calculation of a $13.8-\mathrm{kV}$ system fault.

TABLE 21. System Impedances

Rated System Element	Per Unit X on Rated kVA Base	Per Unit X on 100 MVA Base
$138-\mathrm{kV}$ system	1.0	0.37
25600-kVA Generator	0.16	0.625
12000-kVA Transformer	0.09	0.75
2500-kVA Transformer	0.055	2.2
2000-kVA Transformer	0.1175	5.9
$3000-\mathrm{kVA} 440-\mathrm{V}$ Motors	0.25	8.35
5000-kVA 2400-V Motors	0.2	4.0
480-V Current-limiting Reàctors	0.13	5.65

The series and parallel combinations of impedances in the diagram combine to give an equivalent per unit impedance of 0.314 at the fault, from which the short-circuit current I_{Sc} and MVA are calculated:

$$
\begin{aligned}
I_{\text {S.C }} & =\frac{10^{8}}{13,800 \sqrt{3} 0.314}=13,350 \mathrm{rms} \text { amperes }(\text { symmetrical }) \\
\text { MVA } & =\frac{13 ; 800 \sqrt{3} 13,350}{10^{6}}=319 \text { MVA. }
\end{aligned}
$$

Typical overcurrent coordination curves for the electrical system are shown in Figs. 65 and 66. Since the short-circuit current value at any system voltage is directly proportional to the short-circuit MVA, the abscissas of the curves are expressed in mVA. Amperes per MVA referred to $13.8 \mathrm{kV}, 2400 \mathrm{~V}$, and 4800 V are $41.8,240$, and 1200 A , respectively.

H. Annunciation

Multiwindowed annunciator cabinets are mounted on electrical control panels E-1 through E-7 in the Main Control Room, except for Synchronizing Panel E-6.

These provide visual and audible alarms when an important part of the electric power system is in an "off-normal" condition and also when the "off-normal" condition returns to "normal." The visual alarms employ both flashing and sustained illuminated windows, which are marked to identify the "off-normal" condition.

The annunciator cabinets have an audible automatic ringback operating sequence in which the "off-normal" visual alarms are white lamps flashing behind the corresponding annunciator windows. The audible alarms are provided by a bell.

Each control panel is provided with three pushbuttons: "Test," "Reset," and "Silence." In addition, the Control Console is equipped with a master silence pushbutton which may be used to silence any annunciator in the Control Room, except the Control Console annunciator.
"An "off-normal" condition covered by an annunciator causes the alarm to sound and the window or windows associated with the "off-normal" point to flash. When the "Silence" button is pushed on the panel containing the flashing window, the sound will shut off and the window will be continuously lighted. After the "off-normal" condition has been corrected, a bell . will ring and the window will start flashing again. The flashing will continue until the "Reset" pushbutton is depressed. Then the window light will go off.

The "Test". pushbutton is used to check for lamp burnout. When this pushbutton is depressed all windows become lighted, except those with a burned out lamp.

The following is a list of the major electrical alarms showing the legends as appearing on the annunciator windows:

480 Volt Panel E-1
Emerg. Sw'gr. E-1 Feeder Trip
Emerg. Lighting Dist. Ctr. E-2 Ftr.. Trip
Power Plant MCC P-1 Trip
Power Plant MCC P-2A Trip
Power Plant MCC P-2B Trip
Reactor Plant Feeder Trip
Primary Tank. Immersion Heater Trip
Sodium Boiler Bldg. Feeder Trip
Fuel Cycle Process Feeder 1 Trip
Fuel Cycle Process Feeder 2 Trip
Laboratory Feeder 1 Trip
Fuel Handling and Sodium Purif. Feeder Trip
125 Volt D. C. Station Battery, Low. Voltage
125 Volt D. C. Battery Bus Grounded
Rod Drive Power Off
400 KW Diesel Gen Fail to Start
400 KW Diesel Gen 480 V Circuit Bkr. Closed
400 KW Diesel Gen Water High Temp.
400 KW Diesel Gen Oil Low Press.
400 KW Diesel Gen Overspeed
100 KW Diesel Gen Oil Low Press.
100 KW Diesel Gen. Overspeed
100 KW Diesel Gen Fail to Start
100 KW Diesel Gen 480 V Circuit Bkr. Closed.
100 KW Diesel Gen Water High Temp.
480 Volt Emergency Bus E-l Undervoltage
480 Volt Emergency Bus MCC R2A Undervoltage
2400 Volt Panel E- 2
Primary Sodium Pump 1 Feeder Trịp
Primary Sodium Pump 2 Feeder Trip
Pipe Induction Heating Feeder Trip
Sec: Sodium Pump Feeder Trip
Pump House l Feeder Trip
2400 V Bus Undervoltage
2400 V Bus Ground
Incoming Lines Panel E-3
138 KV OCB Trip
Generator Panel E-4
Amplidyne M-G Set Off-Trip
13.8 KV Feeder Panel E-. 5
Treat Feeder Trip
Transformer No. 5 13.8.KV Primary Trip
Ṫransformer No. 5480 V Secondary Trip
Transformer No. 5 High Temperature
Transformer No. 3 13.8 KV Primary Trip
Transformer No. 32400 V Secondary Trip
Transformer No. 3 High Temperature
Transformer No. l 13.8 KV Secondary Trip
Generator 13.8 KV Breaker Trip
Generator Differential Trip
13.8 KV Bus No. I Undervoltage
13.8 KV Bus Section No. l Ground
13.8 KV Bus Section. No. l Lockout
13.8 KV Feeder Panel E-7
Transformer No. 2 13.8 KV Secondary Trip
Transformer No. 4 13:8 KV Primary Trip
Transformer No. 42400 V Secondary Trip
Transformer No. 4 High Temperature
Transformer No. 6 13.8 KV Primary Trip
Transformer No. 6480 V Secondary Trip
Transformer No. 6 High Temperature
13.8 KV Bus No. 2 Undervoltage
13.8 DV Bus Section No. 2 Ground
13.8 KV Bus Section No. 2 Lockout
13.8 KV Bus Tie Trip
Pilot Wire Trip out of Service

APPENDIX A

Control Modification for the Reactor Building 75/5-ton Rotary Bridge Crane to Prevent Traverse of a Crane Load across the Reactor during Reactor Operation

1. Introduction

At the request of the Atomic Energy Commission, a system of interlocks was designed and installed in the control circuits of the reactor building $75 / 5$-ton rotary bridge crane to prevent traverse of a crane load across the reactor during reactor operation.

This requirement of crane operation enhances reactor safety by reducing the possibility of collision with and damage to the reactor controlrod mechanism and other vital components mounted on top of the primary tank.

The crane control scheme as modified (see Figs. A-1 and A-2) provide the following listed modes of operation:
a. Restricted Operation. This mode restricts operation and location of the crane hoists from the area above the primary sodium tank during reactor operation.
b. Administrative Permissive Operation. This mode of operation is performed only under strict administrative control, and provides for the operation and location of the crane hoists in the area above the primary sodium tank during reactor operation, when authorized. The key needed to use this mode of operation is kept in the custody of the control room operator.
c. Unrestricted Operation. This mode permits unrestricted operation of the crane whenever the reactor is shut down:
2. Description of Controls for the Three Modes of Operation

1
The following describes the functioning of control circuits as modified to accomplish the above indicated modes of operation:
a. Restricted Crane Operation

The control circuits for restricted operation of the crane are established only when the reactor can be started, i.e., only when reactor scram relay, CP, is energized (see Fig. A-2). In order for this relay to be energized, it is necessary for the crane bridge and trolly to be in the position indicated in Fig. A-l.

The following is a description of the operation of the control scheme for the restricted mode of crane operation:

1) The key-operated Administrative selector switch, SS, is placed in the "ON".(Restricted Operation) position, the normal position for. this switch. The switch and red indicating light are located in the hinged cover of a control box mounted on the wall of the reactor building, adjacent to the crane power disconnect switch:
2) The position shown for contacts LSl through LS5 of the limit switches (see Fig. A-2) are for the location of the crane bridge and trolley as indicated in Fig. A-1.
3) The closed contacts of limit switches LSl and LS5 cause relay coil CX to become energized, and the normally open CX contact in the scram string circuit closes, energizing reactor scram relay CP. (It is assumed that all the other series contacts in the CP coil circuit were already closed.) The normally open CP contact then closes and energizes relay CPl.
4) Since the crane must be in its predetermined position before. reactor scram relay CP can be energized, annunciation is provided in the main control room. It is initiated when the crane is not properly positioned for reactor startup.
5) The normally closed CPl contact opens and de-energizes relays $B X$ and TX. This, in turn, causes the normally open BX and TX contacts to open, thus placing starter contactor coils $\mathrm{TF}_{\mathrm{F}}, \mathrm{B}_{\mathrm{CW}}$, and $\mathrm{B}_{\mathrm{CCW}}$ for the trolley and bridge travel drives under control of limit switches LS2, LS3, and LS4, respectively.
6). Limit switch LS2 opens and de-energizes contactor coil T_{F}, thus stopping the travel of the trolley when the position of the auxiliary hoist hook approaches close to the restircted area. Limit switch LSS opens and de-energizes contactor coil B_{CW}, thus stopping the clockwise rotation of the crane bridge when it approaches close to the restricted area. Similarly, limit switch LS4 opens and de-energizes contactor coil ${ }^{\mathrm{C}} \mathrm{CCW}$, thus stopping the counterclockwise rotation of the crane bridge when it approaches close to the restircted area.

b. Administrative Permissive Operation

1) The key-operated selector switch SS is placed in the "OFF" position for this mode of operation. In this position the $S S$ contact is parallel with the CPl contact (see Fig. A-2) is closed.
2) This causes auxiliary 'relays $B X$ and $T X$ to remain energized, since the parallel contact of the CPl relay is maintained open as a result of the reactor being in operation.
3) With auxiliary relays $B X$ and $T X$ energized, normally open BX and TX contacts close to bypass limit switches LS2, LS3, and LS4, thus providing full range operation of the crane while the reactor is operating.
c. Unrestricted Operation

In this mode of operation, the reactor is shut down, and the CP and CPl relays are de-energized. The normally closed CPl contact maintains relays BX and TX energized, and causes limit switches LS2, LS3, and LS4 to be bypassed, thus providing unrestircted operation of the crane.
3. Considerations of Overtravel and Load Swing

The design included consideration of overtravel of the crane bridge and trolley due to their momenturn and that of the load. The swing of hoisted loads was also considered.

Tests were performed with "source coffin," which weighs approximately 10 tons, to check the design and installation, particularly in respect to location of the brackets for actuation of travel-limit switches.

A maximum load swing of 18 in . was measured in the tests. This occurred when the bridge was rotated at maximum speed and suddenly stopped. The trolley was positioned near the end of the bridge, and the tests were performed for both clockwise and counterclockwise rotations of the bridge. Maximum overtravel of the bridge under the loaded condition was found to be 5 in.

It was recognized that crane handling of loads of unusual shape and size, such as machines, steel beams, floor plates, and long cylinders, must receive special precaution and supervision to insure safety.

APPENDIX B

Transient Stability of EBR-II 20,000-kW Generator*

1. Introduction

This report presents the results of a study whose purpose was to determine if any hazard to the EBR-II $20,000-\mathrm{kW}$ generator might exist due to the application of automatic reclosing to either the $138-\mathrm{kV}$ circuit breaker in the NRTS electric power loop or to those in the $138-\mathrm{kV}$ tie between Scoville and the Goshen station of the Utah Power and Light Company.
2. The Problem

Figure B-l shows the one-line diagram of the system studied. The interconnection between the EBR-II generator and the NRTS $138-\mathrm{kV}$ power loop is indicated, as is the tie to the Utah Power and Light Company. Table B-l includes the various system and EBR-II generator constants used in the study. The power and reactive loads for each of the substations supplied from the NRTS loop are given in Table B-2. (Fig. B-1, and Tables B-l and B-2 are based on information supplied by Messrs. Verber and Koch, Argonne National Laboratory, in letters of October 16 and November 20, 1961, to J. M. Henderson, of General Electric Company.)

TABLE B-1. System Data

-	\% R	\% X
138-kV Lines		
Scoville-SPERT	0.083	0.280
EBR-II--ANP	0.470	1.577
ANP-NRF	0.437	1.469
NRF-MTR/ETR	0.122	0.410
MTR/ETR-CPP	0.051	0.172
CPP-Scoville	0.061	0.205
Utility System Equivalent	1.120	6.410
EBR-II Step-up Transformers		
(2 in parallel)	0.000	7.500
EBR-II Generator ,		
Transient Reactance, $\mathrm{X}^{\prime}{ }_{\mathrm{d}}$	0.000	31.250
EBR-II Turbine-generator		
, Inertia Constant, H		4.494

NOTE: The above impedances are all expressed in percent on a $20-\mathrm{MVA}$ base. The turbine-generator inertia constant is in perfunit on the $20-\mathrm{MVA}$ base.

[^4]TABLE B-2. Results of Load Flow Study

	$\begin{gathered} \text { Voltage, } \\ \% \end{gathered}$	Load		
		M W	MVAR	Z θ^{*}
Load Buses				
EBR-II (13.8 kV)	102.5	2.00	0.98	$9.43126 .10^{\circ}$
EBR-II (138 kV).	100.0	-	-	- -
ANP	99.1	2.00	0.56	$9.458 \lcm{15.64}{ }^{\circ}$
NRF	98.4	7.50	2.16	$2.480 \lcm{16.07^{\circ}}$
MTR/ETR	98.3	9.00	2.58	$2 . 0 6 3 \longdiv { 1 6 . 0 0 ^ { \circ } }$
CPP .	98.3	2.00	0.56	$9.29715 .64^{\circ}$
Scoville	98.3	1.50	0.42	$12.400115 .64^{\circ}$
SPERT	98.3	3.00	0.86	$6.179115 .98^{\circ}$
Generation				
(Behind Transient Reactance)				
EBR-II	120.8	20.00	15.32	
Utility Equivalent	99.2	7.19	1.83	
			s**	-
		M W	MVAR	.
Circuits				
Scoville-SPERT		3.00	0.86	
EBR-II-ANP		18.00	6.00	
ANP-NRF		. 15.92	5.16	
NRF-MTR/ETR		8.36	2.78	
MTR/ETR-CPP		-0.65	0.19	
CPP-Scoville		-2.65	-0.37	
Scoville-Utility		-7.16	-1.65	
EBR-II (13.8-138 kV)		18.00	7.35	

*Equivalent shunt impedance per unit on 20-MVA base.
**Indicated flows are measured at the source end, that is, at the first mentioned bus: Positive flows are away from the bus:

From Fig. B-1, it is apparent that the analysis required to determine the effect of automatic circuit-breaker reclosing involves a transient stability study of a two-machine system--one machine being the EBR-II generator, and the second an equivalent representing the generation by the Utah Power and Light Company. Whether or not automatic breaker reclosing can be applied without hazard to the EBR-II generator depends on the ability of the two machines to stay in synchronism with one another following a system disturbance in which transmission tie circuit breakers
are first opened and then reclosed. A loss of synchronism would result in severe transient power swings between the EBR-II generator and the utility system and would, no doubt, result in considerable damage to the EBR-II unit.

3. Conclusions

The writer has drawn the following conclusions from the results of this study:

1. For faults in the NRTS $138-\mathrm{kV}$ loop, automatic reclosing should not be permitted when the loop is broken, that is, when one of the section breakers is open. This follows from the fact that stability between EBR-II and the utility system is in serious jeopardy following reclosure for cases where the remaining load on the isolated EBR-II unit is not within a.few megawatts of the initial load on the EBR-II unit (see case 2).
2. Automatic reclosures on the $138-\mathrm{kV}$ interconnection to Utah Power and Light Company can also be hazardous to the EBR-II unit. This is true in cases where a material unbalance exists between the EBR-II generation and the load on the NRTS $1.38-\mathrm{kV}$ loop. Of particular concern are modes of operation in which the Utility System supplies the bulk of the NRTS demand while the EBR-II unit is lightly loaded (see cases 6 and 8).
3. When and if the EBR-II transmission system shown in Fig: B-I is materially revised, additional transient stability studies should be conducted to see if the above limitations still exist.

4. Results

Transient stability runs were computed for the conditions outlined in Table B-3. The results of these runs are plotted in Figs, B-2, B-3 and B-4; they are also tabulated in Table B-4.

TABLE B-3. Summary of Transient Stability Studies

$\begin{aligned} & \text { Case } \\ & \text { No. } \end{aligned}$	System Load, MW	Initial Operation			.	Description of Disturbance				Comments
		EBR-II		Utility Tie		Fault Location ${ }^{\circ}$	Clearing Time, Cycles	Reclosing Time, Cycles	EBR-II Accelerating Power, MW**	
		MW	\% E'	MW	\% E'					
(1)	27.2	20.0	120.8	7.2	99.2	EBR-II--ANP	9	21	17.30	Unstable
(2)	27.2	20.0	120.8	7.2	99.2	NRF-MTR	9	21	5.74	Unstable
(3)	27.2	20.0	120.8	7.2	99.2	Scoville-Utility	9	21	-4.20	Stable
(4)	27.9	4.0	106.4	23.9	102.9	Scoville-Utility	9	21	-14.76	Stable
(5)	27.9	4.0	106.4	23.9	102.9	Scoville-Utility	9	27	-14.76	Stable
(6)	27.9	4.0	106.4	23.9	102.9	Scoville-Utility	0	24	-14.76	Unstable
(7)	27.9	4.0	106.4	23.9	102.9	Scoville-Utility	9	24	-23.90	Stable
(8)	27.9	4.0	106.4	23.9	102.9	Scoville-Utility	6	24	-23.90	Unstable

[^5]TABLE B-4. Rotor Angle vs. Time for EBR-II

	Rotor Angle, Degrees for Case Nos. 1-8							
Time, sec	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8
0	18.31	18.31	18.31	-0.53	-0.53	-0.53	-0.53	-0.53
0.05	20.86	20.86	20.86	-0.38	-0.38	-2.74	-0.38	-0.38
0.10	28.52	28.52	28.52	0.07	.0 .07	-9.39	0.07	0.07
0.15	41.29	41.29	41.29	0.82	0.82	-20.48	0.82	-2.93
0.20	59.21	57.47	55.98	-0.52	-0.52	-36.00	-1.88	-13.14
0.25	82.33	75.37	69.41	-6.27	-6.27	-55.95	-1.79	-30.56
0.30	.110 .65	95.00	81.58	-16.46	-16.46	-80.34	-28.91	-55.19
0.35	144.16	116.35	92.48	-31.08	-31.08	-109.16	-53.24	-87.03
0.40	178.80	134.82	98.18	-44.62	-50.13	-142.42	-84.78	-126.08
0.45	218.54	148.55	94.92	-49.13	-73.62	-173.63	-113.38	-163.24
0.50	272.32	160.26	82.58	-43.89	-93.06	-202.62	-129.68	-195.93
0.55		172.59	61.12	-29.74	-99.31	-235.79	-135.47	-231.37
0.60		-188.49	32.00	-9.27	-92.48	-278.99	-131.59	-276.22
0.65				13.15	-72.46		-117.47	

In all cases the total NRTS loopload plus that of the EBR-II facility is essentially constant--27.2 MW for cases $1-3$ and 27.9 MW for cases 4-8. The first three cases are concerned with system disturbances with the EBR-II generator operating at its rated $20-\mathrm{MW}$ output; in the latter five casts, the EBR-II unit output is 4 MW , or 20% of rating.

Normal Operation--Load Flow and Voltage Distribution. In conducting a tr̀ansient stability study it is, of course, necessary to determine the initial operating conditions. This was done for the system of Fig. B-l by means of the computer load flow program outlined in Ref. 1. The results--bus voltages, circuit megawatt and megavar flows, and the shunt impedance equivalent of the load at each bus-are shown in Table B-2. Of these data, the most significant--as far as the transient stability studies are concerned--are the power output and voltage behind transient reactance of each of the machines as well as the load shunt impedance equivalents. The use of these data in determining transient stability performance is described in the appendix.

Automatic Reclosing for Faults in the NRTS Loop. During normal operation, with the EBR-II generator operating in parallel with the utility system and with all NRTS $138-\mathrm{kV}$ loop circuit breakers closed, short circuits on the $138-\mathrm{kV}$ loop when cleared in approximately 9 cycles (0.15 sec) will not result in system instability, i.e., synchronism will be retained.

However, when one of the loop section breakers is open, a fault on the remaining tie between the EBR-II facility and the utility interconnection point--Scoville--results in isolating the two generation sources. This latter mode of operation exists, of course, until the circuit breakers protecting the

[^6]faulted section are reclosed. After reclosure, the system may be unstable, depending on the location of the fault, the load on the loop, and the load on the EBR-II generator.

Figure B-2--cases 1 and 2--shows the transient angular swing of, the EBR-II generator with respect to the utility generation for two different 3-phase fault conditions of the NRTS loop. In each case, the line section breaker atSPERTis open. In each case, although the fault is removed in 9 cycles and a successful reclosure is effected in 21 cycles, system stability is lost. This is evidenced by the increasing positive angular displacement between EBR-II and the utility generation.

The difference between the swing curves for cases 1 and 2 is due solely to the difference in fault location. Faults close to the EBR-II facility result in a faster acceleration. This is particularly pronounced in the . interval between the fault removal and the line reclosure. As indicated in Table B-3, the accelerating power on EBR-II during this interval is 17.3 MW for the close-in fault (case l) and 5.74 MW for the more remote fault (case 2).

Case 3--also plotted in Fig. B-2--provides an interesting comparison with those discussed above. This case, differing from the other two only in the location of the fault, is stable. The reason stability is maintained is due principally to the decelerating effect of the loop load during the period EBR-II is isolated from the utility generation. From Table B-3 the decelerating power during this interval is $4: 20 \mathrm{MW}$.

Automatic Reclosing for Faults on the Utility Tie Line. Faults on the $138-\mathrm{kV}$ tie line between the Scoville Substation and the Utah Power and Light Company isolate the EBR-II generator along with the entire NRTS loop load from the Utility System. Case 3 (see Fig. B-2) indicates stability is
 where the initial EBR-II generation (20 MW) and the loop load (27 MW) are in relatively close balance.

Figures B-3 and B-4 indicate the EBR-II swing with respect to the utility generation for 3-phase faults on the utility tie. In all of the cases shown the initial NRTS loop load (27.9 MW) is considerably in excess of the initial EBR-II generation (4 MW). This results, as the curves illustrate, in a negative angular swing, that is, the EBR-II rotor angle retreats or slows down with respect to that of the utility generation.

In cases 4,5 , and 6 the NRTS loop loads were represented--as they were in cases l-3--as constant shunt impedances. With this assumption the total megawatt load on the EBR-II unit after the fault is cleared and prior to reclosing is 18.76 MW . This output with the turbine input of 4 MW produces, as indicated in Table B-3, a net decelerating power on the EBR-II unit of 14.76 MW .

As indicated by cases 4 and 5 of Fig. B-3, this decelerating load is not sufficient to produce an unstable condition for $9-$ cycle fault switching and line-reclosing times in the range from 21 to 27 cycles.

Case 6 may be somewhat academic since, in the strictest sense, fault-clearing times of zero cycles are impossible. Practically speaking, this case may be interpreted as depicting system performance for a false trip on the utility tie followed by a 24 -cycle reclosure. As indicated in Fig. B-3, an occurrence of this nature would result in loss of synchronism between the EBR-II generator and the utility system.

The swing curves of Fig. B-4 are based on constant-power, rather than constant-impedance, representation of the NRTS loop loads during the interval in which EBR-II is isolated from the utility and required to carry the entire system load. For such a transient condition, the net decelerating power acting on the EBR-II generator is (27.9-4.0) $=23.9 \mathrm{MW}$. The data of Fig. B-4 indicate stability is maintained for fault clearing and line reclosing times of 9 and 24 cycles respectively (case 7). Where the tie line fault is cleared at the Scoville end in 6 cycles (case 8), synchronism is lost following a 24 -cycle reclosure.

Whether or not the NRTS loop is closed has only a minor effect on system stability for faults on the utility tie line. This is due to the fact that the synchronizing power between the two generators-after the tie line fault is removed and the breakers are reclosed--is essentially the same for either broken or closed loop operation. Therefore, the results of cases 3-8, which are predicated on the SPERT section breaker being open, would also apply for closed loop operation.

5. Appendix

The method of analysis employed in this study is covered in detail in Ch. 5 of Ref. 2. Therefore, only a brief description is in order.

Assumptions: The following assumptions, commonly made in transient stability studies, were employed in this analysis:

1. Transient saliency was neglected ($\mathrm{X}_{\mathrm{d}}^{1}=\mathrm{X}_{\mathrm{q}}$).
2. Flux linkages were held constant, corresponding to the voltage back of the transient reactance (X_{d}^{\prime}).
3. Damping torques and subtransient effects were neglected.
4. Mechanical-shaft torques of synchronous machines were taken to be constant.

[^7]5. Loads were represented by constant shunt impedances.
6. System-network impedances were taken to be constant; corresponding to normal frequency.
7. Stability was determined by the first swing.

Procedure. The procedure used in the swing curve calculation includes the following steps:

1. The system network is reduced to a simple equivalent
2. Transfer and driving point impedances for circuit conditions of transient (fault on, fault off, etc.) are determined.
3. Initial conditions and power flow equations for subsequent transient conditions are determined.
4. Calculations are carried out for assumed system disturbance until it is apparent that system is stable or unstable.

System Equivalent and Power Flow Equations. Using techniques described in Ch. l of Ref. 3, and with loads represented as constant shunt impedances, the system of Fig. B-l was reduced to the following equivalent:

where
$E_{1}=$ Voltage behind the transient reactance of the EBR-II generator.
$E_{2}=$ Voltage behind the transient reactance of the equivalent utility generation.
$P_{1}=$ Power output of EBR-II generator.
$P_{2^{\prime}}=$ Power output of equivalent utility generation.
${ }^{3}$ S. B. Crary, Power System Steam Stability, Vol. I, John Wiley and Sons, Inc., New York (1945).

$$
\begin{aligned}
& \bar{Z}_{1}=0.4120 \boxed{88.80^{\circ}} \text { per unit on } 20 \mathrm{MVA} . \\
& \overline{\mathrm{Z}}_{2}=0.0788 \boxed{79.04^{\circ}} \text { per unit on } 20 \mathrm{MVA} . \\
& \overline{\mathrm{Z}}_{3}=0.6856 \boxed{16.00^{\circ}} \text { per unit on } 20 \mathrm{MVA} .
\end{aligned}
$$

The transfer and driving point impedances of the equivalent circuit are:

$$
\begin{align*}
& \left.\overline{\mathrm{Z}}_{11}=\overline{\mathrm{Z}}_{1}+\frac{\overline{\mathrm{Z}}_{2} \overline{\mathrm{Z}}_{3}}{\overline{\mathrm{Z}}_{2}+\overline{\mathrm{Z}}_{3}}=\mathrm{Z}_{11} \right\rvert\, 90-\mathrm{a}_{11}=0.4842186 .47^{\circ} ; \tag{1}\\
& \left.\overline{\mathrm{Z}}_{22}=\overline{\mathrm{Z}}_{2}+\frac{\overline{\mathrm{Z}}_{1} \overline{\mathrm{Z}}_{3}}{\overline{\mathrm{Z}}_{1}+\overline{\mathrm{Z}}_{3}}=\mathrm{Z}_{22} \right\rvert\, 90-\mathrm{a}_{22}=0.3907 .66 .05^{\circ} ; \tag{2}\\
& \overline{\mathrm{Z}}_{12}=\overline{\mathrm{Z}}_{1}+\overline{\mathrm{Z}}_{2}+\frac{\overline{\mathrm{Z}}_{1} \overline{\mathrm{Z}}_{2}}{\overline{\mathrm{Z}}_{3}}=\mathrm{Z}_{12} 90-\mathrm{a}_{12}=0.5119192 .03^{\circ} . \tag{3}
\end{align*}
$$

In terms of these impedances, which are defined in Ref. 3, the generator power outputs are

$$
\begin{align*}
& P_{1}=\frac{E_{1}^{2}}{Z_{11}} \sin a_{11}+\frac{E_{1} E_{2}}{Z_{12}} \sin \left(x_{12}-a_{12}\right) ; \tag{4}\\
& P_{2}=\frac{E_{2}^{2}}{Z_{22}} \sin a_{22}-\frac{E_{1} E_{2}}{Z_{12}} \sin \left(x_{12}+a_{12}\right), \tag{5}
\end{align*}
$$

where Z_{11}, Z_{22}, and Z_{12} are the absolute values of the impedances and a_{11}, a_{22}, and a_{12} are the complements of the impedance angles; x_{12} is the phase angle difference between the rotors of the two generators.

Thus, for cases l-3, for which $E_{1}=1.208$ and $E_{2}=0.992$, the per unit electrical power output of EBR-II, when interconnected with the utility, equals

$$
\begin{equation*}
0.186+2.342 \sin \left(x_{12}+2.03^{\circ}\right) \tag{6}
\end{equation*}
$$

For cases 4-8 (E_{1} and E_{2} are 1.064 and 1.029, respectively), the EBR-II per unit electrical power is

$$
\begin{equation*}
0.144+2.139 \sin \left(\mathrm{x}_{12}+2.03^{\circ}\right) . \tag{7}
\end{equation*}
$$

The initial operating conditions given in Table B-3 for cases $1-3$ correspond to x_{12} equal to 18.31°; those for cases $4-8$ result from an angle of -0.53°.

The Swing Equation. The step-by-step procedure used to determine the transient angular swing of the EBR-II unit with respect to the utility generation is described in Ch. 5 of Ref. 2 (Vol. II) and is illustrated in Table B-5. The latter data apply specifically to case 3 .

TABLE B-5. Swing Curve Calculation Data
GENERAL ELECTRIC CO.-A.C. NETWORK ANALYZER STEP-BY-STEP SWING CURVE CALCULATION

FOR Argonne National Laboratory

The indicated procedure provides the solution to the following equation of angular motion of a synchronous machine:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}=\frac{180 \mathrm{f}\left(\mathrm{~T}_{\mathrm{m}}-\mathrm{T}_{\mathrm{e}}\right)}{\mathrm{H}}, \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
f & =\text { frequency (cps) } \\
\mathrm{t} & =\text { time (sec) } \\
\mathrm{x} & =\text { generator angular displacement (degrees) } \\
\mathrm{T}_{\mathrm{m}} & =\text { mechanical shaft torque per unit } \\
\mathrm{T}_{\mathrm{e}} & =\text { electrical torque per unit } \\
\mathrm{H} & =\text { generator per unit inertia constant. }
\end{aligned}
$$

Since machine speed does not vary appreciably from synchronous speed during the transient swing, per unit torque and per unit power can be assumed equal and therefore used interchangeably. Thus, in terms of Eq. 8, the acceleration of the generator angle at a particular instant in time equals a constant times the accelerating power acting at that same instant. With the mechanical power input assumed constant, the accelerating power is a function only of the electrical output.

For the EBR-II unit, the electrical power output during short-circuit conditions of the NRTS loop or of the utility tie was assumed to be 15% of nameplate rating. (This is typical for 3 -phase faults electrically close to the terminals of the generator step-up transformer).

With the fault removed and the two generators isolated from one another, the EBR-II power output is

$$
P_{1}=\frac{E_{1}^{2}}{Z_{11}} \sin a_{11}
$$

where Z_{11} and a_{11} vary depending on the shunt impedance loads remaining on the EBR-II unit. The following table shows these data and P_{1}, expressed in per unit on 20 MVA, for cases l-8:

Case	E_{1}	Z_{11}	A_{11}, degrees	P_{1}
1	1.208	9.572	62.21	0.135
2	1.208	. 1.784	60.56	0.713
3	1.208	0.898	48.02	1.210
4-6	1.064	0.898	48.02	0.938
7-8	(Consta	Loads)		.. 1.395

- After the fault is cleared and the breakers reclosed, the EBR-II electrical output is a function of the angular displacement between it and the utility generation. Eqs. 6 and 7 define this relationship.

Throughout this analysis, the phase angle of the equivalent utility generation was assumed to be unaffected by disturbances in or near the NRTS loop. This is thought to be reasonable since the inertia constant of the utility generation is large compared to that of EBR-II; furthermore, the accelerating power acting on the equivalent utility generation would be quite small for faults in the NRTS loop area.

APPENDIX C

Electrical Penetrations of the Reactor Building Containment Vessel

1. Introduction

Containment of the EBR-II is provided to preclude release of fission products and/or plutonium from the Reactor Building in the unlikely event of a major nuclear accident.

A large number of openings through the Reactor Building containment vessel are required for personnel and equipment, for electrical conductors, ventilating air, sodium pipes, instrument and utility compressed air lines, and other utilities. All openings employ gas-tight seals, either of the metal-to-metal type or of an organic type suitably protected against possible hightemperature gases generated in a postulated incident involving a sodium-air reaction. All openings are designed so as not to detract from the strength of the building shell and so as to be capable of sustaining the same building pressure as the maximum containable by the shell itself.

The necessary electrical circuits are brought into the Reactor Building through leak-tight pressure connectors mounted in pressure chambers (penetrations) installed in the building containment shell. These are located at the north end of the cable tunnel below the corridor between the Reactor Building and the Power Plant Building. Cables leaving the penetrations inside the Reactor Building are routed to equipment via conduit embedded in the concrete walls of the containment vessel.

The design of the electrical penetrations permits pressure and leaktesting of bulkhead-type connector assemblies prior to their installation onto pressure chambers installed in the containment vessel. After installation, each connector assembly is retested for possible leakage. The design permits convenient leak-rate testing of the individual pressure chamber without pressurizing of the entire building. Periodic leak-rate testing of the penetrations is performed as part of the plant maintenance program.

As shown in Table C-1, 34 electrical pressure chambers are provided. Thirty chambers contain electrical connectors, consisting of Cannon Electric Company Type TBF connectors, Amphenol Electronics Corporation Type 100X Coaxial connectors, and specially constructed mineral-insulated (MI) cable connectors of ANL design. One electrical pressure chamber (No. 26) was used for the installation of a low-pressure relief valve which opens for a predetermined low-pressure condition inside the building to limit the pressure differential on the building containment shell. Three chambers are blanked off and sealed as spares. This arrangement provides a total of 4212 connector pins or circuit penetrations; approximately 15 percent of these are spares. In addition, 48 coaxial cable connectors are provided.

TABLEC-1. Electrical Penetrations in Reactor Building Containment Vessel

Pressure Chamber (penetration)		Type of Pressure Connector (receptacle)	Pressure Connectors (receptacle)		Number of Connector Pins	
			Type			
No.	IPS, in.		No.	(see Fig: C-6).		
1	10		Cannon TBF	7	R-5.	259
2	10	Cannon TBF	7	R-5	259	
3	. 10	- Cannon TBF	6	R-5	222	
			1	R-3	14	
4	10	Cannon TBF	6	R-5	222	
			1	R-3	1.4	
5	10	Cannon TB.F	6	R-2	18	
			1	R-3	14	
6	10	Cannon TBF	5	R-1	15	
			1	R-2	3	
7			1	R-3	14	
	10	Cannon TBF	5	R-1	15	
			2	R-2	6	
8	10	Cannon TBF	4	R-4	104	
			2	R-2	6	
			1	R-3	14	
9	10	Cannon TBF	7	R-5	259	
10	10	Cannon TBF	7	R-5	259	
11	10	Cannon TBF	6	R-5	222	
			1	R-5A	37	
12	10	Cannon TBF	6	R-5	222	
			1	R-5A	37	
13	10	Cannon TBF	7	R-3	98	
14	10	Cannon TBF	. 4	R-5	148	
			2	R-4	52	
			1	R-2	3	
15	10	Cannon TBF	4	R-1	12	
			2	- $\mathrm{R}-2$	6	
			1	R-3	14	
16	10	Cannon TBF	6	R-4	156	
		Cannon	1	R-3	14	
20	6	MI Cable.	1	(Fig. C-2)	6	
21	6	Cannon TBF	1	R-7	6	
22	6	Mi Cable	1	(Fig. C-2)	6	
23	6	MI Cable	1	(Fig. C-2)	6	
24	6	Spare	-	(Fig.	-	
25	6	Spare	:-	. - .	. -	
26	6	Containment Vessel	-	- .	-	
		Low-pressure Relief				

TABLE C-1 (Contd.)

Pressure Chamber (penetration)		Type of Pressure Connector (receptacle)	Pressure Connectors (receptacle)		Number of Connector Pins
No.	IPS, in.		No.	$\begin{gathered} \text { Type } \\ \text { (see Fig. C-6) } \end{gathered}$	
27	6	Spare	-	. -	-
28	6	Cannon TBF	1	R-5	37
29	6	Cannon TBF	1	R-5	37
30	16	Cannon TBF	10	R-5B	370
			2	R-5	74
31	8	Cannon TBF	5	R-3	70
32	8	Cannon TBF	4	R-5	148
			1	R-5B	37
33	16	Cannon TBF	7	R-5	259
			3	R-3	42
			2	R-2	6
34	16	Amphenol 100X	14	R-6A	-
		(Coaxial)	10	R-6B	-
35	16	Amphenol 100X	22	R-6A	-
		(Coaxial)	2	R-6B	-
36	8	Cannon TBF	5	R-5	185
37	8	Cannon TBF	5	R-5B	185
				Total	ins 4212

Note: Penetrations Nos. 17, 18, 19 do not exist.
The Cannon Type TBF and Amphenol Type 100 X Coaxial connectors are bulkhead-type pressure connectors with solid through-conductors with terminals at each end. Where conductor sizes larger than $1 / 0$ AWG are required, special MI cable penetration assemblies provide leak-tight through-conductors with terminals at both ends.

Cabinet enclosures for the electrical connector assemblies are installed in the concrete wall opposite the end of the tunnel at the Reactor Building. The enclosures are made of $1 / 8$-in.-thick steel plate for protection against mechanical injury and the inside surfaces of the doors of the enclosures are provided with a 3/4-in.-thick layer of thermal insulation.

2. Pressure Chambers

The pressure-chamber designs shown in Figs. C-1 and C-2 for penetrations Nos. 1 through 16, 20, 22, and 23 are typical of the design used for all electrical penetrations. Basically, a penetration consists of short lengths of standard carbon steel pipes (5, 10 or 16 in:, Schedule 40 pipe, or 8 -in. Schedule 160 pipe) inserted in the wall openings and welded to the
containment vessel shell. A $1 \frac{1}{2}$-in. carbon steel reinforcing ring is welded to the external side of the shell at all penetrations to relieve the stresses, except for penetrations Nos. $31,32,36$, and 37 which consist of Schedule 160 carbon steel pipe. Welded to each end of the pipe is a pipe flange (see Figs. C-l and C-2). Carbon steel terminal plates (terminal plates used on penetrations 20 and 22 are stainless steel) are gasketed and bolted to the outside pipe flanges.

To permit leak-rate testing of penetrations without disconnecting the circuits involved, several additional terminal plates mounted with hermetically sealed Cannon Type BFH receptacles are installed on the reactor building ends of pressure chambers. A short length of cable inside the pressure chamber, with plug connectors on both ends, connects the receptacle on the outside plate with the corresponding receptacle on the inside plate. At present, inside plate assemblies are installed on pressure chambers $9,10,13,29,31$, and 37 . Other pressure chambers will similarly be equipped with inside plate receptacle assemblies in the future to enhance reactor operation time.

Leak-rate testing of the individual pressure chamber (except chambers $9,10,13,29,31$, and 37) is accomplished by disconnecting all its cables on the inside of the pressure chamber, removing the fiber ring, and then installing the test head. The test head is provided with fittings for pressurizing the chamber, and attaching a manometer and a thermocouple probe. Chambers $9,10,13,29,31$, and 37 , however, do not require use of the test head for leak-rate testing since terminal plates and connectors have been installed on the inside flange of these chambers.

A leak-rate test was run continuously for a minimum of 48 hr on each of the pressure chambers after all pressure connectors were installed. These tests were made under ambient temperature conditions with pressures of 60 psig on chambers with the Amphenol coaxial connectors and with pressures of $30-34 \mathrm{psig}$ on those with the Cannon TBF connectors.

Leak-rate testing of the pressure chambers is presently being conducted at 24 psig on a yearly schedule with a random selection of penetrations to be tested. Penetrations which have been worked on or disturbed for any reason are tested immediately.

3. Bulkhead-type Pressure Connectors

Figures C-3 and C-4 show construction and mounting details of the Cannon Electric Company Type TBF and Amphenol Borg Electronic Corporation coaxial cable pressure connectors, respectively. Figure C-4 also shows the coaxial connector assembly and gasketing of the parts for mounting the connector. The socket-and-plug. arrangement facilitates disconnecting of cables from the bulkhead fittings for ease of maintenance and testing.

Figure C-6 is a diagram of the pin arrangement in the various pressure connectors, and Fig. C-5 shows the arrangement of the pressure connectors on the pressure chamber terminal plates. These two diagrams in conjunction with Table C-l show the number and type of pressure connectors and their arrangement on each terminal plate.
a. Cannon Type TBF Connectors. The Cannon Electric Company TBF pressure connectors are of the through-bulkhead type (see Figs. C-3 and C-6) rated for 30 psi at $250^{\circ} \mathrm{F}$ continuously, with a leakage rate of not more than one cubic inch per hour. The Cannon Electric Company catalog numbers are shown on Fig. C-6. Connector shells are equipped with a polarizing key to prevent any misalignment of mating pins and sockets. These shells are all size 28 except for the one Type. $\mathrm{R}-7$ connector which has three $1 / 0$ and three No. 12 pins. The Type R-7 connector has a size 36 shell and is used in pressure chamber No. 21. The connector pins are embedded in a pressurized resilent insert to provide solid leak-tight through conductors.
b. Amphenol Coaxial Connectors. The Amphenol Borg Electronic Corporation coaxial cable connectors are also of the bulkhead type. The coaxial connectors, Amphenol assembly No. 100X-3875-1, consist of Type UG-30 C/U pressurized bulkhead adapters and Type UG-630 A/U mating plugs for Amphenol 2l-804 (RG-71/U) cable or Type UG-21/DU mating plugs for Amphenol 21-467 cable. The tapered connector pin is embedded in a pressurized resilent insert to provide a solid leak-tight through conductor.

The Amphenol connector assembly was subjected to a pressure of 50 psig and $300^{\circ} \mathrm{F}$ continuously for one week at Argonne National Laboratory. No detectable leakage was observed. The electrical resistance of this connector measured 10 megohms. A voltage breakdown test on four samples gave the following results:

$\frac{\text { Sample }}{1}$	$\frac{\text { Breakdown, V }}{4,500}$
2	3,100
3	4,300
4	3,000

4. MI Cable Penetrations

Special copper-jacketed, copper-conductor, magnesium-oxideinsulated (MI, mineral-insulated) cable penetration assemblies are
provided for the three-phase, $480-\mathrm{V}$ power circuits feeding the two $350-\mathrm{hp}$, squirrel-cage induction motors for the primary pumps, the primary-tank immersion heaters, and the Reactor Plant motor-control center R-3.

The penetration assemblies (see Fig. C-2) consist of short lengths of MI cable brazed to nozzle plates, and mounted on pressure chambers Nos. 20, 22, and 23 with gaskets between the penetration steel flange and the nozzle plate. A fiber cable support is included at the opposite end of the chamber. The enlarged view of the cable end shows the method used to seal the cable insulation. The magnesium oxide insulation between the cable sheath and the copper conductor is reamed out to a depth of one-half inch at both ends of the cable and the void thus created is filled with an epoxy resin sealing compound.

A test set-up (see Fig. C-7) was made to determine the leakage through a piece of $500-\mathrm{MCM}$ MI cable, 15 in . in length, sealed at one end as described above. Heat was applied to the cable in order to determine the ability of the epoxy resin to maintain a satisfactory seal at 30 psi and at a temperature of approximately $240^{\circ} \mathrm{F}$. As the end of the cable was heated to $240^{\circ} \mathrm{F}$, the pressure in the vessel was bled off to maintain 30 psi . After achieving $240^{\circ} \mathrm{F}$, the vessel was sealed and the temperature and pressure readings were taken for a period of 48 hr . The initial and final conditions were as follows:

Initial
695 cu in.
30 psi (vessel)
$240^{\circ} \mathrm{F}$ (end of sealed MI cable)

Final
695 cu in.
1
30.5 psi (vessel)
$250^{\circ} \mathrm{F}$ (end of sealed MI cable)

It is estimated that the accuracy of these readings are 0.25 psi for the pressure gauge and $1^{\circ} \mathrm{F}$ for the temperature.

Calculations made from these data indicated no leakage through the MI cable. Also, a Freon leak-test performed with the vessel at 30 psi indicated no leakage.

After installation of these special MI cable penetration assemblies, leak-rate tests were performed on each completely assembled pressure chamber with the leak-rate well within the design requirements. The results of these tests and the field maintenance testing has proved that the design is satisfactory and reliable.

ACKNOW LEDGEMENTS

The authors gratefully acknowledge the review, comments and criticisms by J. H. Monaweck. The helpful advice and assistance with the graphic arts portions of the report by M. R. Sims, J. R. Korn, and J. M. Flagg are also gratefully acknowledged.

Acknowledgement of the various contributors to the EBR-II electrical design is included in the Introduction.

BIBLIOGRAPHY

1. Koch, L. J., H. O. Monson, W. R. Simmons, M. Levenson, F. Verber, E. Hutter, R. A. Jaross, T. R. Spalding, J. R. Simanton, and A. Lovoff, Construction Design of EBR-II; an Integrated Unmoderated Nuclear Power Plant, Proceedings Second International Conference on the Peaceful Uses of Atomic Energy, Geneva, Switzerland 9, 323 (1958).
2. Koch, L. J., H. O. Monson, D. Okrent, M. Levenson, W. R. Simmons, J. R. Humphreys, J. Haugsnes, V. Z. Jankus, and W. B. Loewenstein, Hazard Summary Report, Experimental Breeder Reactor II (EBR-II), ANL-5719 (1957).
3. Koch, L. J., W. B. Loewenstein, and H. O. Monson, Addendum to Hazard Surmary Report, Experimental Breeder Reactor II (EBR-II), ANL-5719 (Addendum) (1962).
4. Loewenstein, W. B., The Physics Design of the EBR-II, ANL-6383 (1961).
5. Barnes, A. H., F. A. Smith, and G. K. Whitham, Electromagnetic Pump for Liquid Metals, ANL-4317 (1949).
6. Hutter, E., and G. Giorgis, Design and Performance Characteristics of EBR-II Control Rod Drive Mechanisms, ANL-6921 (1964).
7. EBR-II Project Staff, EBR-II Operating Manual, Volume Nos. 1-5.
8. Gibbs and Hill, Inc., Operating Instructions--High Voltage Electrical System at National Reactor Testing Station, (May 1958; Revised Jan 1964).
9. General Electric Company, Steam Turbine Generator Manual Experimental Breeder Reactor II, GEI-67217.
10. Seim, O. S., and R. A. Jaross, Characteristics and Performance of 5000-gpm AC Linear Induction and Mechonical Centrifugal Sodium Pumps, Proceedings Second International Conference on the Peaceful Uses of Atomic Energy, Geneva, Switzerland I, 88 (1958).
11. Monaweck, J. H., and E. S. Sowa, Summary Report on Irradiation of Prototype EBR-II Fuel Elements, ANL-6010 (1960).
12. Hesson, J. C., M. J. Feldman, and L. Burris, Description and Proposed Operation of the Fuel Cycle Facility for the Second Experimental Breeder Reactor (EBR-II), ANL-6605 (1963).
13. Sargent and Lundy, Engineers, Protective Relay Settings--EBR-II Facility, (Jan 1960; Revised June 1962 and Dec 1964).
14. Koch, L..J., Fast Reactor Fuel Handling, ANS National Topical Meeting, Detroit, Michigan, ANS-100 (April 1965), p. 333.
15. H. O. Monson, EBR-II Initial Operation--Highlights, London Conference on Fast Breeder Reactors (May 1966).
16. J. D. Cochran, H. O. Monson, J. E. Owens, Operating Experience with Large Sodium-Cooled Reactor Plants, American Power Conference (April 1966).

Fig. 1. Overall Site Plan of National Reactor Testing Station

Fig. 2. EBR-II Plant Arrangement

Fig. 3. Arrangement of EBR-II Main Outdoor Substation

Fig. 4. Arrangement of Equipment on Operating Floor of Power Plant

[^8]Fig. 5. Arrangement of Equipment on Mezzanine Floor of Power Plant

Fig. 6. Arrangement of Equipment on First Floor of Power Plant

note: oescription in panewthesis (), does not appear on nameplates
Fig. 7. Front Panel Arrangement of $13.8-\mathrm{kV}$ Switchgear

Fig. 8. Front Panel Arrangement of $2400-$ V Switchgear

[^9]21 time delay trip d.c. (ttransf. No. 6 480V bKr.)
22 REVERSE POWER (TRANSF. NO. 6)
Reacter plant mcc ro (air circuit ber. 4-a- elect. cp.)

5 PROCESS BLDG. FEEDER NO. I (AIR CIRCUIT BKR. 4 -C - ELECT.
SODIUM BOILLR PLANT MCC SIA-NORMAL (AIR CIRCUIT BKR. $5-\mathrm{A}$ -
ELECT. OP.)
fuel cycle.facility process feeder (air circuit bkr, 5-b-
beactor plant primary. tank immersion heaters (air circuit REACTOR PLANT PRIMARY.
BKK. $5-\mathrm{C}$ - ELECT. OP.

30 MAIN ACB - TRANSF. NO. 6 (AIR CIRCUIT BKR. 6-b-ELECT. CP.)
31 THIS BREAKER TO BE OPERATED IN CONTROL FOOM ONLY

Fig. 9. Front Panel Arrangement of $480-$ V Main Switčhgear

-вкR. 2-D - Man. Op.)
POWER PLLANT MCC Pi-b (AIR CIRCUIt bkr. $2-\mathrm{c}$ -
MAN. OP.)
REACTOR PLANT MCC RI-8 (AIR CIRCUIT bkr. 2-b
SPARE (ALR ClICCUIT Exr 2-A Man op)

Laboratory and service builoing (air circuit
GKR. 1-8 - MAM. OP.)

- SWITCH) (IVE Control generator acb (SWITCH PERMISSIVE CONTROL GEEERATOR ACB (SWITCCH
HITH REE \& GREEN BRR. POSITION IWICATING
te: description in parentiesis ()
10 (bekr. position inolcatimg lamps - red \& green)

12 GENERAOR OVERVOTAGE

SLAMPS WITH RED 8 GREN EKR. POSITION INOICATING

17 LOAD REJECTION RELAY

Fig. 11. Arrangement of Equipment on Operating Floor and Balcony of Reactor Plant

basement plan (El. 102'-0')

LEGEND

I. RADIAL NEUTRON SHIELD
2. reactor vessel grid and contents
3. Primary tank
4. Primary tank support columns
5. bLAST SHIELD
6. storage holes
7. AcCess to sub-basement
8. ACCESS TO SUB-BASEMENT
9. SODIUM COLD TRAP ASSEMBLY
10. D-C ELECTROMAGNETIC PUMP
11. Nak silicone heat exchanger
12. Hak a-C electromagnetic pump
13. motor control center r-7
14. AIR COOLING UNIT
15. $30 \mathrm{KVA}-480-120-\mathrm{V} 3 \neq 60 \sim$ transformer
16. 10 KYA - 480-120/290-V $1 \phi 60 \sim$ emergency lighting transf.
17. emergency lighting panel re-I
18. LIGHTING PANEL RL-I
19. emergency lighting pahel re-2
20. MOTOR CONTROL CENTER R-3
21. 480-V EmERGENCY POWER DISTRIbution panel re-3
22. Fuel handling system digital control cabinet

- 23. instrument center no. 3

24. LIGHting panel rl-2
25. motor control center r-3
26. InSTRUMENT AIR COMPRESSOR
27. Subassembly distillation apparatus
28. STORAGE PIT
29. aec filter unit mo. 2
30. AEC FILTER UNIT NO. I

3I. AEC FILTER UNIT NO. 3
32. Shield cooling exhaust fan no. 2
33. COMPRESSOR NO. 2
34. Shield cooling exhaust fan no. I
35. SHIELD COOLING COMPRESSOR NO. 3
36. SHIELD COOLING SUPPLY FAN NO. 2
37. Shield cooling supply fan no. I
38. COMPRESSOR NO. I
39. EXHAUST TURBO COMPRESSOR NO. 2
40. control panel
41. EXHAUST TURBO COMPRESSOR NO. I
42. ARGON COMPRESSOR
43. AIR COOLING UKIT

- SUb-basement plan (EL. 87'-4") ,

Fig. 12. Arrangement of Equipment in Basement and Subbasement of Reactor Plant

Fig. 13. Arrangement of Equipment in Sodium-Boiler Plant

Fig. 14. Arrangement of Equipment in Basement of Fuel Cycle Facility

Fig. 15. Sectional Elevation of Argon Cell in Fuel Cycle Facility

Fig. 18. Typical Test Well and Grounding Plate

Fig. 20. Simplified Single Line Diagram of EBR-II Electric Power System

Fig. 21. Single-line Diagram of EBR-II 138-13.8-kV Outdoor. Substation

$$
\begin{gathered}
\text { E5 } \\
\text { 13.8-KVFEDERS }
\end{gathered}
$$

synchronizing panel
13.8-KV FEEDERS
5. (13.8-KV FEEDERS PANEL ANNUNCIATOR clear)
CLEAR)
(13.8-ky feeders panel annunciator
TREAT (AMME ER R
PrIMARY TRANSFORMER NO. 5 (AMMETER)
PRIMARY TRANSFORMER NO.
3
. PRIMARY TRANSFORMER NO. 3 (AMMETE
SYNCHRONIZING INCOMING (VOLTMETER)
SYNCHRNIZING RUNNING (VOLTMETER)
. SyNCHRONIZINg RUNNING
PRIMARY TRANSFORMER NO. 4 (AMMETER)
Primary transformer no. 6 (ammeter)
(SPARE AMMETER)
treat (Wattmeter)

Primary transformer no. 5 (Wattmeter
Primary transformer no.

GENERATOR (VOLTMETER)
Generator (ammeter)

- generator (Wattmeter)

Primary transformer no. 4 (wattmeter)
PRIMARY TRANSFORER NO. 6 (WATMETER)
R (VOLTM E
55. GENERATOR (VOLTMETER SWITCH)
56. GENERATOR (AMMETER SWITCH)
57. MAN-AUTO. SYNCHRONIZING SWITCH
58. SYNCHRONIZING TRANSFER (SWITCH)
64. PREAT (AMMETER SWITCH)
64. PRIMARY TRASFORMER NO. 5 (AMMETER SW
65. PRIMARY TRANSFRMER NO. (AMMETER SW,
66. REGULATOR VOLTAGE ADJUSTER SWITCH
66A PILT WIR TRIP 3.8 -KV LINES I \&
2 (SWITCH
67. FIELD RHEOSTAT LIGTS. RONTROL RHEGEEN
67. FIELD RHEOSTAT CONTROL SWITCH
68. GOVEROR (CONTROL SWITCH \& INDICATIN
68. GOVERNOR (CONTROL SWI
69. PRIMARY TRANSFORMER NO. ${ }^{4}$ (AMMETER SWITCH
70. Primary transformer no 6 (ammeter switch)
71. (SPARE AMMETER SWITCH)
75. TREAT (CONTROL SWITCH \& INOICATING LIGHTS
76. primary transformerno. 5 (control swi
77. PRIMORY TRANSFORMER NO RED \& GREER
77. PRIMARY TRANSFORMER NO. 3 (CONTROL SWITCH

79. \& INDICATING LIGHTS. RED \& GREEN
79. GENERATOR 5B11-10 (CONTROL SWITCH \&

81. 13. 8-KVLINE NO 2 5B11-2 (CONTROL SWITCH 82. PRIMARY TRANSFORMER NO REO GREEN) \& INDICATINGLIGHTS. RED \& GREEN SWITCH 3. PRIMARY TRANSFORMER NO G \& GONEENOL SWITCH
 - RED \& GREEN)
99. 480-V LINE NO. 1TRANSformer No. 5
00. Red \& 2400 -v Linen (ine no. thansformer no. 3 2400-V LINE NO. 1 TRANSFORMERNO. ${ }^{3}$ (CONTROL SWITCH \& INOICATINGLIGHTS

1. RED \& gren) generator emergency trip (control switch)
2. 240-V LINE NO. 2 TRANSFORMERNO 4 (CONTROL SWI
RED \& GREN
 (CONTROL SWITCH \& IRANSFORMER NO ${ }^{2}$
3. treat kilowatt hour (meter)
4. generator kilowat hour (meter)
5. CUT-OFF RELAY
6. (SPARE KILOMATT HOUR METER)
7. (SPARE KILOWATT HOUR
8. SYNCHRONIZING RELAY
9. SYNCHRONIZING CHECK RELAY
10. 48O-V BUS POWER DIRECTIONAL TRIP
11. (INDICATING LIGHT- AMBER) $2400-$ V BUS POWER DIRECTIONAL TRIP
12. (INDICATING LIGHT- AMBER)
$13,8-K V$ BUS NO. 1 OIFFERENTIAL
13. 13.8-KY BUS NO. DIFFERENTIAL TRIP
14. 13.8-KV BUS NO. 2 OIFFERENTIAL TRIP
15. (INDICATING LIGHT AMBER) (INOR OIFFERENTIAL TRIP (INOICATING
16. LIEST (ANNUERCIATOR PUSHBUTTON)
17. TEST (ANNUNCIATOR PUSHBUTTON)
18. RESET CANNNCIAOR PUSHBTTON)
19. RESET (ANNUNCIATOR PUSHBUTTON)
20. SILENCE (ANNUNCIATOR PUSHBUTTON)
21. TRANSFORMER NO 5 OIFFERENTIAL TR
22. TRANSFORMER NO. 5 OIFFERENTIAL TRIP

23. (INDISATINGLIGT - AMBER
24. TURBINEATING LIGHT- AMBER)
25. TURBINE LOAD LIMIT INDICATOR
26. TURBINE LOA LMIT SWITCH RAISE-OFF-LOWER
27.
28. TURBINE LOAD LIMIT SWITCH RAISE-OFF-LOWER
29. GENERATOR OPERATING TIME
note: oescriptions in parenthesis () not on nameplates
Fig. 22. Electrical Control Panels E-5, E-6, and E-7

3- incoming lines panel annunciator
12.- 138 KV LINE NO. 1 VOLTMETER
$13-13.8 \mathrm{kV}$ LINE NO. 1 AMMETER
$14-13.8 \mathrm{KV}$ LINE NO. 2 AMMETER
15-138 KV LINE NO. 2 VOLTMETER
35- IS.8 KV LINE NO. I VOLTMETER
$35-13.8$ KV LINE No. I VOLTMETER
$36-13.8 \mathrm{KV}$ LINE NO. I WATTMETER
$36-13.8$ KV LINE N.
$37-13.8$ K K LINE NO. 2 WATMETMETER
$33-13.8 \mathrm{KV}$ LINE NO. 2 VVITTEETER
33-13.8 KV LINE NO. V VABMETER
$53-13.8$ KV LINE NO. 1 VaRMETER
$54-13.8$ KV LINE NO. 2 VARMETER
$59-$ TAP POSITION TRAMSEOMER NK
$54-13.8$ KV LINE NO. 2 VAAMEEER
59 - TAP POSI TION TRANSFORMER NC. I INDICATOR KM-KVAR TOTALIZING REC
TRANSFORMER NO. I \&
TRANSFORMER NO.
TAP POSITION NO.

- tap position ho. a inolcator

73 - is KV LINE NO. I VOLIMATER SHITCH
$74-138$ KV LINE NO. 2 VOLTEETER SHITCH
Fig. 23. Incoming Lines Electrical Control Panel E-3

4- Generator inotcating pane annunclato
18- Generator temperature inicato

- Generator temperature inoicaton

18- Generator fiel ameter
18 - GENERATOR FIEL VOLTMETER
19 - AMPLIOYNE OUTPUT VOLTMETER
$19-$ a APPIIVYNE OUTPUT
62- KH-KVAR RECOROER

 - REGUATOR ON-TESTEOF
LIGTS (RED \& GREN)

苜

98- Generator field breaker control switch GENERATOR FIELD BREAKER CONTROL SW
\& INDICATING LIGHTS (RED \& GREEN) - RECORDING YOLTMETER
 135 - ANNUCLIATOR ALARM RESET PUSHBUTTON
136 - ANNUNCI ATOR ALARM SILENCE PUSHBUTTON 136 - ANNUNCI ATOR ALARM SILENCE
149 - SOUND POWER PHONE JACK
151 - FIELD EXCITER GROUNO TEST PUSHBUTTON
152 - FIELD EXCITER GROUND LIGHT (WHITE)

Fig. 24. Generator Indicating Panel E-4

Fig. 25. Protective Relaying--13.8-kV Single-line Diagram

Fig. 26. Elementary Diagram--13.8-kV Breakers 5Bll-1, 5Bll-2, and 5Bll-12

Fig. 27. Elementary Diagram--13:8-kV Breakers for Transformers No. 3 and 4

Fig. 28. Elementary Diagram--13.8-kV Breakers for Transformers No. 5 and 6

Fig. 29. EBR-II $20,000-\mathrm{kW}$ Turbine-generator

SRD - COMTROL TRAMSFER SOLENOID SST. - SPEED RESET SOLEMOID TRI - TRIP RELAY
TR2 - RESET RELAY
TR2X- AUXILIARY TO TR2
CS - PERHISSIVE COHTROL SWITCH
52 - CIRCUIT BREAKER
SD - SOLENOID CUT-OFF CONTACT HAND RESET
(SOLENOIDS ARE EMERGIZED TO TRIP FROM IMITIAL PRESSURE COMTROL TO PRESET SPEED CONTROL)

Fig. 30. Elementary Diagram of Turbine Governor Aútotransfer Scheme

1. TURBINE THRUST BEARING TEMP.
2. HIGH PRESSURE BEARING TEMP.
3. MAIN BEARING TEMP.
-4. GENERATOR \#1 BEARING TEMP.
4. GENERATOR. *2 BEARING TEMP.
5. EXCITER BEARING TEMP.
6. EXCITER BEARING TEMP.
7. EXCITER AIR DISCHARGE TEMP.
8. TURBINE OIL COOLER INLET TEMP.
9. TURBINE OIL COOLER OUTLET TEMP.
10. TURBINE THROTTLE TEMP.
11. TURBINE EXHAUST TEMP.
12. TURBINE THROTTLE PRESS.
13. FIRST STAGE EXTRACTION STEAM PRESS.
14. 15\# STAGE EXTRACTION STEAM PRESS.
15. TURBINE EXHAUST STEAM PRESS.
16. GLAND SEAL PIPING SYSTEM STEAM PRESS.
17. VACUUM TRIP RESET SOLENOID SELECTOR SWITCH \& IND. LMPS.
18. $A C H_{2}$ SEAL OIL PUMP - P.B. \& IND. LMP.
19. DC H2 SEAL OIL PUMP - P.B. \& IND. LMP.
20. VAPOR EXTRACTOR - P.B. \& IND. LMP.
21. GLAND EXHAUSTER - P.B. \& IND. LMP.
22. INITIAL PRESSURE GOVENOR - RESET SHITCH
23. TURBINE STOP VALVE POSITION IND. LIGHTS
24. STEAM HEADER PRESS.
25. BAROMETER

Fig. 31. Turbine Gauge Panel

Fig. 32. Elementary Diagram for Excitation and Control

CUBICLE NO. I

- CUBicle NO. 2

CUBICLE NO. 3

1. FUSE COMPARTMENT
2. FIELD discharge resistor (in rear section of cubicle no. 1)
3. MAIN EXCITER GIRCUIT BREAKER COMPARTMENT
4. MAIN EXCITER CIRCUIT BREAKER COMPARTMENT
5. SHUNT (IN REAR SECTION OF CUBICLE NO: I)
6. SPARE COMPARTMENT (RESERVE EXCITER CIRCUIT BREAKER)
7. LOSS OF FIELD RELAY (in rear section of cubicle no. I)
8. D-C CONTROL PANEL
9. A-C CONTROL PANEL
10. reactive - ampere limit panel
11. Voltage - regulator panel
12. AUXILIARY EQUIPMENT PANEL (IN REAR SECTION OF CUBICLE NO. 2)
13. EXCITER FIELD RHEOSTAT COMPARTMENT

I3. AMPLIDYNE MOTOR - GENERATOR COMPARTMENT
Fig. 33. Generator-excitation Cubicles

Fig. 35. Flow Diagram for CO_{2} and Hydrogen

. HORN
2. MACHINE GAS PRESSURE (INDICATOR-HIGH)
. FLOWMETER FOR GAS analyzer
4. SCAVENGING RATE COLL. END (ROTAMETER)
5. Machine gas pressure (indicator-Low)
6. SCavenging rate turbine end (rotameter)
7. DIFFERENTIAL fAN PRESSURE (INDICATOR)
8. SELECTOR VALVE SCAV. gas
8. SELECTOR VALVE SCAV. GAS
10. H_{2} PURITY, generator cas ing (meter)
11. H_{2} PURITY, SCAVENGED GAS (METER)
12. raté of flow adjustment (COLLECtor end)
13. RATE OF FLOW ADJUSTMENT (TURBINE END)
14. MILLIAMETER
15. POTENTIOMETER AND SWITCH
16. ANNUNCIATOR
17. REMOTE ALARM CUT-OUT (PUSHBUTTON)
19. D.C. PILOT LAMP
20. ALARM LAMP
21. DROP RESET
22. SIGNAL RESET
23. SIGNAL RESET

Fig. 34. Hydrogen Panel

REACTIVE CAPABILITY CURVES
FOR STEAM TURBINE-GENERATOR UNIT ATB-2-POLE - 25600 KVA - 3600 RPM 13800 VOLTS - . 85 PF 30 PSIG H_{2}, 1070 ARMATURE AMPS - 250 VOLTS EXCITATION

1. OPERATION OF THE GENERATOR SHOULD BE ABOVE CURVE "DJEF", THE LIMIT IMPOSED by System stability and armature core END HEATING.
2. AREA "O B F E 0 " IS THE MORMAL OPERATIMG RANGE OF THE GEMERATOR.
3. CURVE "A B" INDICATES THE DESIGN LIMITS OF THE GENERATOR FIELD (ROTOR) heating.
4. CURVE "B F C" IMDICATES THE DESIGN LIMITS OF THE GENERATOR ARMATURE (STATOR) HEATING.
5. CURVE "C D" IMDICATES THE DESIGM LIMITS OF THE ARMATURE CORE ENO heAting.
6. OPERATION OF THE GENERATOR IN AREA "O A B O" COULD BE USED WHEN LOW VOLTAGE CONDITIONS EXIST ON THE MRTS SYSTEM AND IT IS DESIRED TO USE THE gENERATOR TO HELP RAISE THE VOLTAGE.
7. OPERATION OF THE GEMERATOR IN AREA "OEJDO" COULD BE USED WHEM HIGH VOLTAGE CONDITIONS EXIST ON THE NRTS SYSTEM AND IT IS DESIRED TO USE THE GENERATOR TO HELP LOWER THE VOLTAGE.
8. CURVE "HG" IS THE LOCUS OF POINTS AT WHICH THE GENERATOR WILL PULL OUT OF SYMCHRONISM.
9. LIME "RS" IMDICATES THE REACTIVE-AMPERE LIMIT START LIME SETTING OF THE VOLTAGE REGULATOR EQUIPMEMT.

Fig. 36. Curves of EBR-II Generator Reactive Capability

Fig. 37. EBR-II Generator Pull-out Limit and Operating Limit

Fig. 39. Tripping Block Diagram for the EBR-II Turbine-generator

Fig. 40. Single-line Diagram for EBR-II Generator

Fig. 41. Elementary Diagram of $13.8-\mathrm{kV}$ Generator Breaker

PrIMARY PUMP NO. 1 M-G SET
PUMP CONTROL PAKEL
PRIMARY PUMP NO. 2 M-G SET CONTROL PanEl

CONTROL PANEL

1. RUNNING HOUR METER - M.G. SET NO.• 1
2. RUNNING HOUR METER - M. G. SET NO. 2
3. ANNUNCI ATOR
4. M-G MOTOR AMMETER \& AMMETER SWITCH
5. GENERATOR VOLTMETER \& VOLTMETER SWITCH
6. GENERATOR AMMETER \& AMMETER SWITCH
7. GENERATOR FREQUENCY METER.
8. MOTOR CONTROL SWITCH \& INDICATING LIGHTS
9. GENERATOR BREAKER INDICATING LIGHTS (GREEN, RED)
10. BLOWER CONTROL SWITCH \& INDICATI日G LIGHTS (GREEN, RED)
11. GENERATOR WATTMETER
12. EXCITER AMMETER
13. EXCITER VOLTMETER
14. ANNUNCIATOR RESET \& SILENCE
15. REFERENCE VOLTAGE RESET
16. ANNUNCIATOR RESER \& SILENCE
17. CLUTCH FIELD AMMETER
18. TACHOMETER
19. CLUTCH EXCITATION CONTROL SWITCH \& indicating Lights (blue, red)
20. BRAKE RESET PUSHBUTTON
21. CONTROL POWER SUPPLY CONTROL SWITCH \& I NDICATING LIGHTS (GREEN, RED)
22. SPARE THYRATRON "ON" - INDICATING LIGHTS (CLUTCH RED, BRAKE RED)
23. EDISON MONI TORING SYSTEM
24. PUMP MOTOR A Φ UNDERCURRENT (RED INDICATING LIGHT)
25. PUMP MOTOR C $\mathbf{\Phi}$ UNDERCURRENT (RED indicating light|
26. PUMP MOTOR A Φ UNDERCURRENT (RED

INDICATING LIGHT)
36. PUMP MOTOR C Φ UNDERCURRENT (RED INDICATING LIGHTI
37. TOTAL HOURS RUN PUMP NO. 1
38. TOTAL HOURS RUN PUMP NO. 2
39. CLUTCH COOLING WATER DISCHARGE TEMPERATURE
40. WATER DISCHARGE TEMPERATURE SELECTOR
41. PRIMARY PUMPS EXCITATION POWER SUPPLIES START, STOP
42. TESt Light panel

Fig. 42. Primary Pump Control Sections of Corridor Panel

nOTE: DESCRIPTIONS In PARENTHESIS () nOt On Nameplates
Fig. 43. 2400-V Electrical Panel E-2

* - located in main control room

Fig. 44. 2400-V Single-line Diagram for Protective Relaying

Fig. 45. Elementary Diagram for 2400-V Circuit Breakers for Transformers No. 3 and 4

[^10]note: 400 kw generator field cubicle
equipped with gooa circuit
breaker, 100 kw equipped with
200a circuit breaker

Fig. 46. Auxiliary Panels for $100-$ and $400-\mathrm{kW}$ Diesel-generator Units

Fig. 47. Normal Bus Section of Motor-control Center Pl

Fig. 48. Emergency Bus Section of Motor-control Center Pl

MOTOR CONTROL CENTER P2
EAST ELEVATION

Fig. 49. Motor-control Center P2

Fig. 50. Normal Bus Section of Motor-control Center RI

Fig. 51. Emergency Bus Section of Motor-control Center Rl

Fig. 52. Motor-control Center R2


```
1- AlTERNATOR voltmeter meter
2- AlTERNATOR FREOUENCY 
4- UNDERFREOUENCY RELAY
5- overfrequency relay
- speg regulator adjustment switch
8- regulator control shitch
8- VOLTAGE REGULATOR ADJUSTMENT SWITCH
I - RESET PUSHBuTTON (AC UNDERVOLTAGE RELAY)
12 - NORMAL AC OUUTPUT 
LTS. (Red, green)
    \mathrm{ IND. LTS. (PED, GREEN)}
2- Al ternator fieouencr meter
3- AC OUTPUT AMMETER
- UNDERFREOUENCY RELAY
5- OVERFREOUENCY RELAY
- Voltage check relar
7- Speed regulajor adustuent swita
10 - OUTPUT GROUNV DEETECTOR LIGGTS (CLEAR)
12 - normal ac outtrut circuit breaker a ind.
- auxiliary ac output
```

14 - Motor ammeter
5 - MOTOR FIELD RHEOSTAT
18 - ALTERNATOR FIEL L RHEOSTAT (STAT, STOP)
17 - MOTOR CONTROL PUSHBUTTONS (START,
18- CONTROL CIRCUIT BREAKER
19 - MOTOR CIRCUIT BREAKER \& INO. LIGHTS
20-batiery ammete
21- RECTIFIER VOLTMETER
$22-$ RECTIFIER AMMETER
23- ground detector lights (Clear)
24 - COnTrol voltage regulator aduustmen

- SWITCH
- rectifier circuit breaker a ind. Light (red, green fan motor pilot lights (red green)
- auxiliary ac infut circuit breaker
- and IND. LIGHTS (RED, GREEN)
- - ac input Circuit breaker and ind.
lights (red, green)
30 - motor ammeter
31 - MOTOR FIELD RHEOSTAT
32 - alternator field rheostat (start, stop)
33 - motor control pushbuttons (stan
33 - MOOTOR CONTROL PUSHBUTTO
34 - CONTROL CIRCIT BREAKER
34- CONTROL CIRCUIT BREAKER
35 - MOTOR CIRCUIT BREAKER AND IND. LIGHTS
(RED, GREEN) (RED, GREEN)

Fig. 53. 120-V A.C.Continuous Power Supply Assembly

36-ALTERNATOR VOL TMETER
37- ALTERNATOR FREOUENCY METER
38-aC OUTPUT AMHETER
38 - AC OUTPUT AMMETER
39 - VOLTAGE CHECK RELA
40- OVERFREOUENCY RELAY
41 - UNDERFREOUENY RELAY
42 - VoL TaGE REGUIATOR ADUSTMENT SWITCH
42- VOLTAGE REGULATRR ADJUSTMEIT
43- REGGLATOR CONTROL SHITCH
43 - REGUEATOR CONTROL SHI ITH
44 - SPEED REGULATOR ADUUTMENT SWITCH
45 - NORMAL AC OUTPUT CIRCUIT BREAKER AND INO.
48 - LTS., (REDET, GREEN)
47- Relay) autilary ac output circuit breaker an

Fig. 54. Single-line Diagram for the Continuous Power Supply Distribution

\square

 (O) 0

(10) (a) (0)
\because

E B

C. 가 파

$\bar{\sigma} \bar{\delta}$

Fig. 55. Utilities Control Panel

Fig. 56. 480-V Electrical Control Panel E-1

Fig. 57. Single-line Diagram for 480-V Emergency Power System

1
LEGBIO
27 - undervoltage relay (gen)
27x- AUXILIARY To UDDERVOLTAEE RELAT
52 - OIL CIRCUIT breake
$\begin{aligned} & 59 \text { - OVERYOLTAEE reLay } \\
& 59 x \text { - AUXILIARY to overvoltaes relay. }\end{aligned}$
${ }^{59 x}$ ch controll switch
CR CONTROL RELAY

TOR time delar relay
HTS water teaperatue swich

wTs Mater telperature swi
ops oil pressure switch

oss overspeto mitch
$\begin{aligned} & \text { fu } \\ & \text { fuse } \\ & \text { filise delay relay }\end{aligned}$
62L time deear rellay
620 time delay relay
20V (HCC R2 bus loss of voltage)
620 V tiMe delay relay
(GEEERATOR loss of voltage)
$\begin{aligned} & \text { (MEC ReLar relar } \\ & \text { (MELar) }\end{aligned}$
T.O.O. TIME DELAY OPEN
t.o.c. TIME DELAY CLOSE

speime revirn to moenl from close ano tra
generency aenerator control suiten es

tor x

Fig. 58. Elementary Diagram for 100-kW Emergency Diesel-generator

Fig. 59. Elementary Diagram for $400-\mathrm{kW}$ Emergency Diesel-generator

Fig. 60. Single-line Diagram for $480-V$ Normal Power System

Fig. 61. Elementary Diagram for 480-V Breakers for Transformers No. 5 and 6

Fig. 62. Station Battery and 125-V Distribution System

Fig. 63. Impedance Diagram and 3-phase Short-circuit Currents and MVA
: =

Fig. 64. Impedance Diagram for a $13.8-\mathrm{kV}$ System Fault

Fig. 65. Typical Overcurrent (MVA) Coordination Curves-$138-\mathrm{kV}, 13.8-\mathrm{kV}$, and $2400-\mathrm{V}$ Systems

Fig. A-1. Layout of Rotary Bridge Crane in Reactor Building

TO TROLLEY AND
HOIST MOTORS

BCw bridge clockwise motor starter

${ }^{B}$ CCW BRIDGE COUWTER-CLOCKWISE MOTOR STARTER
bX bridge aux. control relay
bridge aux. COntrol relay
brioge ano trolley position aux. relay for reactor startup
bridge and trolley po
reactor scram relay
REACTOR SCRAM RELAY
REACTOR SCRAM AUX© RELAY
REACTOR SCRAM AUX:! RELAY
reactor startup key
Lsi LIMIT SWITCH (trolley position on bridge for reactor startup) contact closed when switch is actuated.
LS2 LIMIT SWITCH(LIMITS TROLLEY TRAVEL) CONTACT OPENS WHEN SWITCH IS ACTUATED.
LS3 LIMIT SWITCH (LIMITS BRIDGE CLOCKWISE ROTATION) CONTACT OPENS WHEN SWITCH IS ACTUATED.
LSH LIMIT SWITCH (LIMITS BRIDGE COUNTER-CLOCKWISE ROTATION) CONTACT OPENS WHEN SWITCH IS ACTUATED.
LS5 LIMIT SWITCH (BRIDGE POSITION FOR REACTOR STARTUP) CONTACT CLOSED WHEN SWITCH IS ACTUATED.
key òperated selector switch (shown in "On" position for restricted operation
TROLLEY FORWARD MOTOR STARTER
Fig. A-2. Elementary Diagram of Control Scheme for Restricted Crane Operation
trolley reverse motor starter
trolley aux. control relay

Fig. B-1. System One-line Diagram

Fig. B-3. Transient Swing of EBR-II Generator (Cases 4,5, and 6)

Fig. B-2. Transient Swing of EBR-II Generator
C Cases 1, 2, and 3)

Fig. B-4. Transient Swing of EBR-II Generator

Fig. C-1. Electrical Penetration--Nos. 1 through 16

Fig. C-2. Electrical Penetration--Nos. 20, 22, and 23

Fig. C-3. Cannon Type "TBF" Connector

Fig. C-4. Amphenol No. 100X-3875-1 Coaxial Connector

terminal plate type "F"
(FOR PRESSURE CHAMBERS 31, 32,:36 \& 37)

TERMINAL PLATE TYPE "E" (FOR PRESSURE CHAMBERS 21, 28 \& 29) (e:

terminal plate type "A" (for pressure chambers 1 thru 16 incl.)

TERMINAL PLATE TYPE "D (FOR PRESSURE Chambers 20, 22, \& 23)

terminal plate .type "C"
(FOR Pressure chambers 34 \& 35)

;
TERMINAL PLATE TYPE "B" (FOR PRESSURE CHAMBERS 30 \& 33)

TYPE R-1 (CANNON CATALOG NO. TBF-28-3PS)
(3 \#8 COPPER CONTACTS)
TYPE R-2 (CANNON CATALOG NO. TBF-28-6PS)
($3 \neq 4$ COPPER CONTACTS)
TYPE R-7 (CANNON CATALOG NO. TBF-36-3P'S)
(3 \#1/0 AND 3* 12 COPPER CONTACTS).
(PINS A, C \& E ON CONNECTOR R-T ONLY)

TYPE R-4 (CANNON CATALOG NO. TBF-28-12PS-All5) (26 \#16 GOLD PLATED CONTACTS)

TYPE R-3 (CANNON CATALOG NO. TBF-28-20PS)
(10 \#12 AND 4 *16 COPPER CONTACTS)

TYPE R-5 (CANNON CATALOG NO. TBF-28-1 2PS-Al15)
(37 \#16 GOLD PLATED CONTACTS)
TYPE R-5A (CANNON CATALOG NO. TBF-28-21PS-F9)
(37 \# 16 CHROMEL AND ALUMEL CONTACTS)
TYPE R-5B (CANNON CATALOG NO. TBF-36-1 2PS-All5)
(37 \#16 GOLD PLATED CONTACTS)
(12 SHIELDED PAIR CABLE)

Fig. C-6. Cannon Type "TBF" Connector Pin Arrangements

Fig. C-7. MI Cable Test Set-up

[^0]: ${ }^{1}$ On loan from Illinois Power Company, Decatur, Illinois.
 ${ }^{2}$ On loan from Sargent and Lundy Engineers, Chicago, Illinois.
 ${ }^{3}$ On loan from Commonwealth Edison Company, Chicago, Illinois.
 ${ }^{4}$ On loan from Detroit Edison Company, Detroit, Michigan.

[^1]: *Supervision and trip-control only.
 **Supervision only.

[^2]: *PM-56 operation on standby service is rejected; however, starting is permitted under manual operation.
 **PM-94M1 is standby for PM-94 and will not operate when PM-94 is in service.

[^3]: *PM- 56 operation on standby service is rejected; however, starting is permitted under normal operation.
 **See Table 15 (Emergency Power System loads applied to $200-\mathrm{kW}$ Diesel-generator).

[^4]: *By: J. M. Henderson, Electric Utility Application Engineer, General Electric Company, Chicago, Illinois--March 19, 1962.

[^5]: "In each case, a 3-phase fault is assumed at the source end of the indicated line section. The fault is cleared in the indicated time with the opening of the circuit breakers at each end of the line section.
 ${ }^{* *}$ This condition exists from the time the fault is cleared until the line breakers are reclosed.

[^6]: ${ }^{1}$ Automatic Digital Computer Solution of Load Flow Studies, J. M. Henderson. AIEE Transactions, Pt. III (Power Apparatus and Systems), February 1955, pp. 1696-1701.

[^7]: ${ }^{2}$ S. B. Crary, Power System Stability, Vol. II, John Wiley and Sons. Inc., New York (1947).

[^8]: 1. boiler no.
 bolern no.

 - feematier heater
 auxilaby condensate storage tank
 . hotwater heater
 - PROCESS SHU TDOWN RELAY RACK
 continuous power sup
 io-kva transformer

 9. 10 KVA TRANSFO
 10. SAETY SWICH
 11. CONTINUOS POWER PANEL 2A
 12. CONTINUOUS POWER PANEL 2B
 13. 120VA-C OISTRIBUTION PANEL
 14. CONTINUOUS POEER PANEL
 15. CONTINUOUS POWER PANEL 1B
 16. D25 O-C OISTRIBUTIONPANEL
 17. DISTRIBUTHN-PANEL PC. IA
 18. OISTRIBUTION PANEL PC-IB
 9EFRIGERATION COMPRESSER
 19. REFRIGERATION COMPRESSER
 20. GENERATORFFIELD CUBICLE
 21. AIREEEGTR
 22. AIREEECTOR
 23. CONOENSER
 24. CEATER NO.
 25. HEATER NO. 3
 26. Low pressure flash tank
 27. HIGH PRESSUREFLASHSH TANK
 28. BLOWOOWN COOLER
 29. CONTROL ROD RELAY CUBICLES
 30. EXhaust fan
 $240-V$ BATTERY (120 CELL) $)$
 $125-V$ BATEPY

 analog computer charger
 dp ot 125-v o-c transfer switch
 DP DT 125-V O-C TRANSFER SWITCH
 OISCONECT SWITH FOR $125-V$ GATIERY 38. CARD PUNCH
[^9]:

 POWER PLANT
 (AMMETER)
 12 TIME DELAY TRIP D.C. (TRANSF. NO. 5 480V BKR.)
 13 DIEECTONAL OVERCURENT PHASE A
 14 OIR. OVERCURRENT LOCKOUT (WITH WHITE INDICATIMG LAMP)

 I6 PERMISSIVE CONTROL MAIN ACB (SW ITCH WITH RED \& GREEN BK
 POSITION INOICATING LAMPS - TRANSF:. NO. 5 480V BER.)
 (AMMETER)
 (VOLTMETER

 (VOL TMETER-BUS)
 (AMMETER SWITCH)
 17 Difectional overcurrent phase b
 PCSITION INOICATING LAMPS - TRANSF. NO. 6480 V BKR.)
 (VOLTMETER SWITCH - Bus)
 19 H80V (NCRMAL) MAIR SHI TCHGEAR
 20 DIRECTIONAL CVERRIDE (INCOMING LINES)

[^10]: - (AMMETER)

 HIILTMETER MATER
 OEMPERATURE (INDICATING LIGHT)

 - LOW Lube oil pressure (inola

 RESET ALARM (PUSHBUTION)

 (AC AMMETER)

 (ELAPSED Time indicict
 (voltage regulator)

 18. (FIELOSTSWITCH)
 19. START (PUSHBUTTON)

