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SCF EXCITED STATES AND
TRANSITION PROBABILITIES OF

SOME NEON-LIKE AND ARGON-LIKE IONS

by

Paul S. Bagus

ABSTRACT
.

Analytic self-consistent field (SCF) wave functions were computed
for the ground states of the closed-shell atomic systems F-, Ne, Na+; and
Cl-, Ar, and K+, and for those ground and excited states of the open-shell
systems that are obtained by removing a single electron from any one of
the occupied shells of these closed-shell systems. Details of the calcula-
tion of the functions are presented with emphasis on a justification of the
procedures used for the calculations for excited states.  A high accuracy
is obtained; the calculations for the closed-shell systems give the most
accurate analytic SCF wave functigns tha.t have yet been reported. Ioniza-
tion potentials are calculated and compared v#ith expetimehtal values.

Computed ionization potentials for the removal of a 2s electron from Cl-,
Ar, and K+, for which no direct experimental data are available, are esti-
mated to be accurate to within 1%.  It is found that the removal of an
electron from the outermost s shell increases the correlation energy, in
contradiction to the predictions of a recently proposed semi-empirical
scheme for estimating the correlation energy. For example, the magnitude
of the correlation energyof the lowest 2S state of Ar+ is -4 eV-greater:than
the magnitude of the correlation energy of neutral argon. The effect of the
nonzero off-diagonal Lagrangian multipliers is considered and found to be
important for the inner-shell hole states.  The SCF functions have beenused
to compute dipole transition probabilities for photon emission.  The tran-
sition probabilities are computed in several different ways to examine the
effects of various approximations. In particular, the results obtained using
length, velocity, and acceleration operators are compared. The calculated

  radiation width for the K-state of argon is cornbined with an experi:mental
value of the ·K-fluorescence yield to obtain a value of the total K-state width

)

in agreement with experiment.

I. INTRODUCTION

In this paper, analytical self-consistent field (SCF) functions are
presented for the ground states of the closed-shell atomic systems F-,
Ne, Na+, Cl-, Ar, and K+, and for those ground and excited states of the
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open-shell systems that are obtained by removing a single electron from
any one of the occupied shells of these closed-shell systems. Specifically,
we present SCF functions for the 1822s22ps, ls22s2p6, and ls2s22p6 con-
figurations of F, Ne+, and Na++, which, for convenience, we refer to as the
2p-hole, 2 s-hole, and ls-hole states, respectively; and SCF functions for
the ls22$22p63s23p5, 1 s22s22p63$3p6, ls22s22p53szjp6, ls22sZp63s23p6, and
1 s2 s22p63 s23p6 configurations of Cl, Ar+, and K++, which we refer to as the
3p-hole state, 3s-hole state, etc. These states are of interest for X-ray
emission and absorption phenomena.  They are also useful, for example,
for calculating the effect of the electronic charge distribution on electron               n
capture by the nucleus.(1)

.

Several properties of the wave functions have been calculated.
Expectation values of r and rz are given for the SCF orbitals and overlap
integrals between total wave functions not orthogonal by symmetry.  In the
final section of this paper, dipole transition matrix elements between the
wave functions are presented.

The SCF wa\re functions were calculated using the Roothaan
analytic expansion method. This method was developed first for closed-shell
systems and then extended to a large class of open-shell systems.   In its
present form, the method will treat a system with any number of open shells,
provided there is at most one open shell for each one-electron symmetryspecies.(2,3,4)

Extensive investigations ha*e led to the development of reliable and
accurate numerical techniques to implement the application of the analysis.
These techniques have been incorporated into computer programs, written
for the IBM 704,7090, and 7094,-for the calculation of atomic SCF wave
functions.(4)

Many SCF calculations have been performed, using the Roothaan
analysis, with the goal of obtaining accurate representations of the
Hartree-Fock functions.(5-9) However, .these functions have been for
ground or low-lying excited stites. The functions presented here  are the
first analytic SCF calculations for X-ray excited states of atomic systems.
To our knowledge, the only numerical Hartree-Fock calculations for such
states that correctly take exchange into account are those of Sureau and                .,·
Berthier on aluminum.(10) ¥
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II. THEORY

In the Roothaan expansion method,  the SCF orbitals 0ixa, omitting
spin, are given in terms of basis functions  Xp, Xa by

0ixa = Ip Xp, Xacix,P'                                        (11

Here X labels the symmetry species, and a the subspecies; for atoms,
these are usually denoted by f  and m. The principal quantum number is
represented by i, and p labels different basis functions of the same sym-

4            metry. The complete spin-orbital is given by

Pixas    =     0ixa T) s' (2a)

where

T l s=     a,o r   Tls    - 8. (2b)

The set of basis functions used in an expansion SCF wave function is
referred to as the basis set of the function.

The notation used in Eqs. (1) and (2) is that adopted by Roothaan.(3,4)
Since only atomic systems are considered in this paper, the standard
notation for atomic orbitals, nfm., will be used, hereafter, in place of
Roothaan ' s  more general notation,  ika..

For atomic calculations, the basis functions are given by

Xp,frn(r,8,0) = REp(r)YErn(e,0),                      (3)

where YErn( 8,0) are normalizdd spherical harm6nics, and the radial
functions

R£ (r)
are normalized nodeless Slater-type orbitals (STO's);

naniely,

Rf p(r;nEP,4.gp)  = [(2nt p)!]-* 24.ep) nfp+-i rn£p-le-4 fpr.              (4)
"

The integer n£ is called the principal quantum number of the basis
function, and 2  p the orbital exponent. Care should be taken not to
confuse  the two different  us es of "principal quantum riumber. "    The
principal quantum number of an orbital is the label that distinguishes
that orbital from other orbitals of the same symmetry species and sub-
species. The principal quantum number of an STO is merely a flexible
parameter of a basis function. For example, in our calculations on
argon, the ls orbital is expanded in terms of ls, 2s, and 3s STO's.
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The choice of Slater-type orbitals for the radial functions R.£p(r) is
physically reasonable, and the computation of necessary integrals between
STO's is simple (at least for atoms). Several expansion SCF calculations
have been made on atomic systems with the goal of obtaining accurate
functions using small basis sets of STO's. The results of these calculations
agree quite well with Hartree-Fock (HF)* functions obtained by direct
numerical integration.(9)

The many-electron wave function is constructed frorh one Slater
determinant, or a linear combination of a few Slater determinants, of the
occupied SCF orbitals. The combination is made so that the wave function is

4an eigenfunction of LY, Sz.  L    and Sz· (Methods for constructing eigenfunctions_ '     Z'
of angular momentum from Slater deterrninants are contained in Refs.11
and 12.)  The wave function is also an eigenfunction of the inversion operator
and has a definite parity. The variational principle is applied to obtain
equations for the coefficients Cllf,p[ Cix,  in Eq. (1·)]. These equations are
then solved without further approximation.  In 'particular, the off-diagonal .
Lagrangian multipliers, that couple equations for open- and closed-shell
orbitals of the same symmetry are treated properly. (Procedures that
treit the off-diagonal Lagrangian multipliers in an approximate way are
contained in Refs. 13 and 14).  It will be demonstrated in the discussion
of the results that neglect of the off-diagonal Lagrangian multipliers
Significantly affects the SCF functions of certain excited states.

Equations (1), (2), and (3) place certain restrictions on the form of
the SCF orbitals that should be stated explicitly. Equation (2) requires that
the spin-orbital be factored into a product of a spatial function and a spin
function. Equations (1) and (3) introduce the central field approximation by
requiring that the orbital be factored into a product of a radial function and
a spherical harmonic. A further consequence of Eqs. (1) and (3) is that allthe    electrons   of a given shell   have   the same radial function.      Thus,  0nf m
may be written as**

WhErn(r,e,0) = FnE(r).Y.£rn(e,0),                        (5)
where

FnE(r) =  Sp RZP(r)Cllf,p.
(6) V

*The notations SCF and HF will be used almost interchangeably.  Whenwe wish to distinguish between analytic expansion orbitals as opposed
to exact solutions of the HF equations, we will use the notation SCF
orbitals as opposed to HF orbitals.

**The   use   of  F(-r)   to repr·esent·-the radial portion   of an orbital   is   an
unfortunate deviation from the standard notation which is, of course,
R(r).   We  do this to avoid confusibn with the notation for the basis
function R.£p (r).
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These orbitals ate symmetry-adapted; i.e., they form bases for irreduci-
ble representations of the symmetry grbup of the (at6mic) Hamiltonian.
(For a discussion of the symmetry problem in the HF scheme, see Ref. 15.)

An additional requirement is that the occupied SCF orbitals form an
orthonormal set,

<0.nfrn|0n'g'rn'>= 6ngm,n'f'rn" (7a.)

Because the orbitals are symmetry-adapted, this reduces to the requirement
that

r-
/   Fn*£(r)Fn'£(r)rz dr = On,n'. (7b)
JO

In matrix notation, Eq. (7b) becomes

t r.

(7c)cnfs,gEn,8   =   6n,n"

where cnE is a vector that collects the coefficients C n and S i s  the
- n,5,12,     -f

overlap matrix of basis functions of symmetry species 8,

rS    =1  R  (r)R  (r)r2 dr.                              (8)f pq ,       f p      E q
JO

In the numerical HF procedure, no assumption is made about the
form  of the radial function Fn (r). The variational principle is applied for
arbitrary variations of the raaial functions, subject to the constraint that
they form an orthonormal set, and integro-differential equations for the

Fn £'s are obtained.(2,3) (Reference 16 presents an excellent review
of numer.ical Hartree-Fock procedures. Reference 17 discusses the
applications of numerical techniques to high-speed digital computers.)

The solutions of the integro-differential equations satisfy the
cusp condition, (18,19)

[( 1/fnE) (dfnE/dr)] =    -   Z/(8   +  l) , (9a)r =0

where

FnE(r) = rEfn£(r). (9b)
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The cusp condition may be used as a criterion for the accuracy of an ex-
pansion SCF orbital near the origin. Moreover, an orbital with a poor cusp
value may be a poor representation of an exact HF orbital, not only in the
region  r -0, but also over the entire range of the function.   The  cusp con-
dition is a necessary but not a sufficient condition that the orbital be a so-
lution of the HF equations. A basis set can be chosen so that an expansion
SCF orbital will satisfy the cusp conditions exactly;(8) however, the orbital
may still be a poor approximation of the exact HF orbital.

The total Hamiltonian operator 59 for an atomic system may be
written, in atomic units, as

9(= 8' + 9/, (1Oa)

where

4 = E,(- * 40,
(1 Ob)

and

4 = - Zi (Z ri) + Zi<j(l rij)·

This Hamiltonian is valid for a system with nonrelativistic Cozilomb
interactions  and an infinitely heavy nucleus.

If Fisan exact eigenfunction of SF for any bound state, then the
virial theorem,

<19*19>/<9 1.591 9>   =  - 2,                                                     •    (11)

is satisfied.  If 9 is an approximate eigenfunction which contains a
variable scale factor k such:that 9(xi' xn)  =  9' (kxi'    , kxn)'and
k has been chosen to satisfy (8/3 k) (<T''IS:F 91>/< 9 4 T'>) = 0, then
this approximate 9 also satisfies Eq. (11).(2 )

Exact HF functions satisfy the virial theorem since arbitrary
variation of the radial part of the orbitals includes, implicitly, variation
of a scale factor. Expansion SCF functions for an arbitrary basis set
will not, in general, satisfy the virial theorem. If, however, variation of
.the exponents, as well as the linear coefficients, is performed, the virial
theorem will be satisfied when all parameters have been optimized.
Hence, for expansion SCF functions, the virial theorem is a necessary,
but by no means sufficient, condition that an optimum basis set (in the sense
of satisfying variational equations) has been used.
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Let {9(a)} be a set. of trial functions, where the .index a distinguishes
different members of the set from which we wish to choose an approximate
wave function for so.me state .of a system. The index a  may represent a
set of variable parameters,  ahy one of which may be discrete. or continuous.
Let T (A) be chosen from the set {9(a)} as the solution of equations determined
from application of the variational principle; i.e., 1 (A) .satisfies

6aI<,(ailsrl,(a)>/<-9(a)|·9(a)>] '= 0. (12)

If 9(A) is an approximate wave function for the ground state of the system
or for the lowest excited state of a symmetry (if the trial functions 9(a) are
symmetry-adapted), then 9 (A) is the best function possible for the restricted
form of the trial functions - best in the sense that the expectation value of
the energy for 9(A), <9(A).|54|7(A)> = E(A), is more nearly equal to the
true energy eigenvalue E(t) than the expectation value of the energy for any
of the other trial functions 9(a). Moreover, E(A) 2 E(t), and, if E(A) = E(t),
then 9(A) is the true eigenfunction.(20,21)

This is not true for excited states that are not the lowest states of
a symmetry unless the trial functions {9 (a) } are constrained to be orthogonal
to the exact eigenfunctions of all states of lower energy. The imposition of
this constraint is, of course, not possible in general since the exact

eigenfunctions of the lower states are not known. One procedure would be to
require trial functions for excited states to be orthogonal to approximate
wave functions for lower states.   In the calculation of excited- state  SCF
functions, this is not done; no explicit requirement of orthogonality to
lower SCF states is made.(8)

We rely on the physical model of the choice of the form of the
SCF excited- state wave function to guarantee near-orthogonality to the
SCF wave functions for lower-lying states. This physical model is,
of course, the orbital or shell structure of the atom. Indeed, the only
constraint that is imposed to obtain an excited-state, rather than a
ground-state, wave function is the specification of the electronic con-
figuration. For a ls-hole state, for example, the HF operators are
constructed on the assumption that the ls orbital is occupied'by only one
electron. Eigenvectors of the HF operators are obtained and iterations

are performed in the usual way until the condition of self-consistency is
met; but the assumption that the  1 s orbital is singly occupied is maintained
throughout the process. The singly occupied ls orbital is chosen at each
iteration to be the eigenvector (of the appropriate HF operator) with the
lowest orbital energy. This choice is easily justified by the fact that the
orbital so chosen is the occupied orbital that is most similar to a hydro-
genie ls orbital.

The HF operators are functions of the electron density. The electron
density of a complex atom does not change drastically iii going from ground to
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excited states.  Thus, .the HF operators for ground and excited states are not
drastically different, and SCF wave functions for excited states are very
nearly orthogonal to SCF wave functions for lower states. The 3s-hole
state of argon is the lowest ZS state of Ar+; the  1 s-hole state,  a very highly
excited ZS state, lies about 3000 eV above the 3s-hole state.  Even for this
extreme case, the overlap integral between the many-electron SCF wave
functions for these two states,< YSCIF(ls-hole) 1 T (3s-hole)>, isSCF5 x 10-4. The requirement that the is-hole SCF wave function be orthogonal
to the 3s-hole SCF wave function would produce only a very small changein the ls-hole wave function. Further, since the 3s-hole SCF wave functionis only an approximate eigenfunction, we do not know whether the constraint
of orthogonality would improve or worsen the ls-hole wave function.

»'

Overlap integrals between many-electron SCF wave functions for all those
states, presented in this paper, that are not orthogonal by syrnmetry are
given in Table XV. [M. Cohen and A. Daglarno (22) and D. Layzer(23)
have investigated the overlap of SCF excited states of the same symmetry
using expansions of SCF wave functions in powers of 1/Z and find thatthe overlap is zero to order (1/Z)2.1

For a certain class of excited-state SCF wave functions, it ispossible to state easily tested conditions that must be fulfilled in orde,rthat the SCF energy be an upper bound to the true energy.of the state. (24)
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III;  DETAILS OF THE CALCULATION OF
THE SCF WAVE FUNCTIONS

To obtain analytic SCF orbitals that are good approximations to the
exact orbitals, it is necessary to use a basis set that very nearly spans the
true HF manifold.  It is perhaps possible to do this by using large, more or
less arbitrarily chosen, basis sets, but if this is done, several difficulties
arise. Numerical processes that work well for basis sets of reasonable
size become troublesome, and round-off error becomes important when
large/basis sets are used. Long expansions of atomic functions are poor
starting points for molecular and solid- state calculations, while short  ex-
pansions have proved to be excellent starting points for molecular SCF
calculations.(25) By using large basis sets, one loses much of the advan-
tage of simplicity that the analytic representation of SCF functions has over
numerical tables of orbitals. For large atomic systems, the finite size of
the computer becomes an important limiting factor on the size of the basis
set.

For these reasons, we have used basis sets of limited size, making
a careful choice of the exponents and principal quantum numbers of the
STO's in order to minimize the total SCF energy. Particular emphasis is
placed on varying the exponents  to find optimum values. This variation  is
performed automatically by the computer program.(4) Our method of ex-
ponent variation is to perform several complete SCF calculations for dif-
feient values of rhe exponents and to interpolate between these values.

While we do not explicitly solve variational equationd for the expo-
nents with this method, we do obtain a stationary value of the expectation
value  of the energy with respect to the exponents. The particular station-
ary value that we obtain is a minimum. Explicit variational equations for
the exponents as well as the linear coefficients CnE,  have been given by
Dehn.(26) The equations  for the exponents appear  to be difficult to solve.
One important problem is that the basis functions used to represent an
SCF orbital (to a given accuracy) are by no means uniquely deter-
mined.(27,28) Our brute-force variation of the exponents has proved to
be a quite satisfactory procedure.

When basis sets of limited size are used, it is important to build
up the basis set systematically to the final, accurate set. The initial cal-
culation for a state should be made with a rather small basis set.  This
set can give only a crude approximation to the exact HF wave function,
but for a small set it is easy to find the optimum values of the principle
quantum numbers and exponents. This gives a first or base reference
point for more accurate calculations on the state. Additional exponents
are then introduced, usually one at a time, and the ·exponents reopti-
mized. It is.not sufficient to optimize only the exponents of the new basis
functions; the exponents of old functions must also be a.djusted when a new
function is added.  In this way, it is possible to gauge the "need" for the
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new basis function, and to make an educated guess about the "need" for an
additional basis function. The intermediate sets, formed in this build-up
process, are often useful in themselves.

Because of the many SCF calculations involved in the optimization
of the basis set, the experience gained in the calculation of one state must
be applied·to the calculation of similar states of the same or neighboring
atoms. Linear extrapolations and interpolations of the exponents for
states already computed provide good approximations to the optimized                ·,
exponents of a nearby state. Tliis is particularly true for srnaller basis
sets, since for these sets the Optiniurn values of the exponents are
well-defined. For larger basis sets, where several different sels uf
values of the exponents will give functions with the same total energy, the
interpolated and extrapolated values provide a good starting point for
exponent variations  that lead to the optimized values.

Thus the calculation of the functions of a series of states must be
done systematically, and the. function for each state must not be computed
as a separate problem. This systematic procedure will also uncover
errors in optimization of basis  sets.   If an extrapolation or interpolation
to a neighboring state fails to work well, one has excellent reason to
suspect an error in one of the previously computed states. While the
calculation of the SCF wave function for a single state is laborious and
time-consuming, the calculation of wave functions for a series of states
is fairly economical.

It will be useful, for the following discussion, to introduce the notion
of a loop of an orbital. A hydrogenic radial function with quantum numbers
nf has ry - £ -1 nodes and n-f loops between these nodes and the points
r = 0 and r = go. Similarly, the HF radial function Fn (r) generally has
n  -  8  -  1  nodes  andn  - 8 loops. The contributions to  the HF operator of
exchange terms and off-diagonal Lagrangian multipliers will introduce,
in exc eptional cases, extra nodes and 10,ops near the tail of the orbital;*
but the function is very small in these loops, and for this discussion they
may be ignored.  For HF orbitals of a particular state of a system, the
ls orbital and the inner loops of the Zs and 3s orbitals, in a rough sense,
occupy the same region of space. Similarly, the outer loop of the 2s orbital
and the middle loop of the 3s orbital occupy the same region of space.
Thus, for a given state of a system, the nth loops of HF orbitals of the same
symmetry roughly define a distinct range of values of r. The range is
rather well-defined, except for an outer loop. The outer loop of an orbital
always has a long  "tail " going slowly to  zero. This division of  r  into
distinct ranges permits us to consider groups of basis functions, where
each group is chosen to fit a particular loop.

*See Ref. 29 and the discussion in Section IV-E of this paper.
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The computer program used for the SCF calculations has facilities
for the coupled v.ariation  of the exponents  of  one,  two, or three basis  func -
tions. The choice  of the exponents  to be varied,  if any,  is  part of the input
data to a run.

When the exponent of one basis function is varied, the program per-
forms complete SCF calculations for different values of the exponent being
varied while all the other exponents are held fixed. An energy minimum is
found and bracketed by calculations for five values of the exponent at inter-

,vals of *.AC·. The optimum value of the exponent is determined by interpo-
lation; a quartic is fit to these five points and its minimum is obtained.

'                     The exponent variation increment, A C,  is a flexible input parameter.

Care must be taken in the choice of AC so that the interpolation may
be.accurate.  If AC is chosen too small, the differences of the calculated
SCF energies will be small and the interpolation will be in error because of
the round-off errors inthe SCF energies.· This- is not too serious since the
optimum value of the exponent is indeterminate because of this round-off
error in the SCF energies; however, fairly large amounts of computer time
may be wasted by trying to bracket the energy minimum too closely.  More-
over, if the energy differences are small enough, a true energy minimum
may be missed because the round-off in the SCF energies causes an appar-
ent, but false, minimum. Since, for calculations of the size presented here,
the round-off error in the SCF energy appears to be a few units in the
eighth significant figure, we tried to choose AC so that the SCF energy
changed by at least a few units in the seventh significant figure between
adjacent SCF calculations.

If & C is chosen too large, the interpolation will be in error because
the points (in exponent space) at which SCF calculations are made are too
far  apart to  be fit meaningfully by a quartic. The usual symptbm of this  is
large changes in the SCF vector coefficients CnE,P between adjacent points.
These changes indicate that the basis function is being "used" in the SCF
orbitals in qualitatively different ways for different values of the exponent.
The best, simple way to test whether & C has been chosen too large is to
compare the interpolated value of the total energy with the energy obtained
from an SCF calculation using the interpolated value of the exponent.  This
SCF calculation is automatically performed by the program.

The quartic interpolation scheme is sufficiently accurate   so  that,
for a properly chosen A C, the predicted and computed values of the energy
will agree within round-off error. The range of acceptable values of A C
is,   in fact, quite large,  aid  only  in ekceptional cases  must  8 C be given  to
more than one or one and one-half significant figures.

The procedure.s for the coupled variation of two and three exponerits
are an extension of those described above for the variation of a single
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exponent. However, while a one-dimensional variation requires at least
five SCF calculations, a two-dimensional variation requires at least 25
SCF calculations, and a three-dimensional variation requires at least 125.

Multidimensional variations should couple the exponents of basis
functions used to represent a loop of the orbitals. They should not couple
the exponents of basis functions used to represent different loops.  A
multidimensional variation will usually give better values for the exponents
than a series of one-dimensional variations since a larger region of
exponent space is examined in a multidimensional variation. However, a
multidimensional variation may use more computer time than a series of
one-dimensional variations. The exponent variation procedures are
described in detail elsewhere.(4)

The principal quantum numbers of the STO's of a basis set can be
chosen in a special way so that the cusp condition of Eq. (9) is automatically
satisfied for all the SCF orbitals.(8)  We call a basis set of STO's whose
principal quantum numbers have been chosen in this special way a fixed-cusp
set. Exten$ive experience, especially for first-row atoms,(9) but also for
some second-row atoms, (30) has shown that if fixed-cusp sets are not
used it is possible to obtain accurate SCF orbitals with adequate cusp
values using smaller basis sets. Often the best energies obtained using
these free-cusp sets were lower than the best energies obtained using
the larger fixed-cusp sets.  For this reason, we choose to use free-cusp
sets.

Whereas the exponents, being continuous parameters, were optimized
by continuous variation, the principal quantum numbers  of the basis  func -
tions, being integers, need to be chosen more or less arbitrarily.  Our pref-
erence was to choose principal quantum numbers for the STO's that are
to represent the nth loop of a series of orbitals so that the STO's would
have the same power of r as hydrogenic functions repre senting that loop
have.  Thus, for the states of the fluorine, neon, and sodium ions, we
used 2p STO's to represent the 2p orbital; and for the states of the chlorine,
argon, and potassium ions, we used 3s STO's to represent the outer loop of
the 3s orbital.

This was by no means a hard and fast rule; we did limited experi-
mentation with other values.   The need for experimentation was usually
indicated by one of the following three factors:

1.     The failure of the automatic exponent variation procedures  of
our computer programs to operate efficiently. The program would vary
the exponents so as to cause the basis set to become nearly redundant;
that is, the basis functions at some stage of the exponent variation process
would form a nearly linearly dependent set.*

* A precise measure of the redundancy of a basis set is the value of the determinant of the overlap
matrix S of the basis functions.· As the determinant of S goes to zero, the basis set goes to complete

redundancy (exact linear dependence).
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2.    The failure of a subset of the full:basis set to adequately repre-
sent a loop.  This is indicated when.a basis funct.ion that is important in a
region of space outside the loop does not have a small coefficient when it
contributes to the representation of the loop. Consider the ls orbital of
neutral argon, for example.    For the accurate SCF function (see Table  III),
the principal quantum numbers of the basis functions that represent the
inner s-loop are 1,2, and 3. The coefficients of: these functions for the
ls orbital are large, and the ls coefficients ClS of the remainder of the
s basis functions are of the order of 1 x 10-4. We tried to obtain an SCF
function of the same accuracy using two ls and one 3s basis functions to
represent the inner.s-loop.  In this case, the ls coefficients of the remain-

·.            der of the s basis functions were as large as 2 x 10-2.

3.   The desirability of keeping the basis set as nearly linearly
independent as possible.  For the states of the chlorine, argon, and potas-
sium ions, we believe that we have a less redundant basis set if we use
three 2p and one 4p basis functions to represent the inner p-loop, than
if we were to use four 2p basis functions. This consideration is important
only when we come to the final, largest basis sets used to obtain the most
accurate SCF wave functions.

The minimization of the total SCF energy ESCF was the fundamental
criterion used to choose the basis sets for the SCF functions reported here.
The analytic SCF orbitals determined by using this criterion are not uni-
formly good approximations to the exact HF orbitals. The orbitals of the
electrons that contribute most to ESCF, the core or inner-shell electrons,
are determined Tnost accurately. The orbitals of the electrons which con-
tribute least to ESCF, the valence or outer-shell electrons, are determined
least accurately.

Because of the limitations of the computer, the total energy is only
computed to eight significant figures. The contribution of the outer shells
to ESCF is masked by the large contributions of the core, A rough mea-
sure of the contribution of an electron in the nf-shell to ESCF is the
orbital energy €nE. For neutral argon, we have the values ESCF = -526.817,
Eis = -119.610, and E3S - -1.277; the unit of energy is the Hartree (1 Har-
tree = 2'7.2098 eV).  Thus, when exponent variations are performed on the
inner s-loop basis functions, there are effectively two more significant
figures in ESCF to examine than when exponent variations are performed

-            on the outer s-loop basis functions. To produce equal changes in ESCF,
larger changes must be made in the exponents (and therefore in the orbitals)
of the basis functions used to represent outer loops than in the exponents
of the basis funciions used to represent inner loops.

Because it is more difficult to obtain accurate orbitals for the 3s
and 3p shells than for the inner shells, we paid close attention to small

changes in the total SCF energy when choosing the basis functions used to
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represent the outer loops of the 3s and 3p orbitals of the states of the
chlorine; ·argon, and potassium ions. Small improvements  in the total
energy obtained in fitting these loops are at least as important for the
general quality of the wave function as are larger improvements obtained
when fitting the inner-shell orbitals.

It was also necessary to look for small energy improvements,
when the most accurate functions were computed, so that the tails of the
orbitals would be fit properly. The tails of the orbitals make the smallest
contribution to the total energy. Thus, small expansion sets fit the orbitals
in the regions where they are large at the expense of the behavior of their

I.tails, and larger basis sets must be chosen carefully so that the tails will
be represented properly.

The calculations reported here were performed with computer
programs written for the IBM 704 and 7090/4 by Professor C. C. J. Roothaan
and the author, with the assistance of various members of the Laboratory
of Molecular Structure and Spectra at The University of Chicago,  The pro-
grams are available for distribution upon request.

)

/
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IV.  RESULTS AND DISCUSSION OF SCF CALCULATIONS

A.  The SCF Wave Functions

Tables I-IV present the most accurate SCF function computed for
each state. Tables V-VIII present a simpler, less accurate, but quite
useful SCF function for each state. The simple basis sets were obtained
with relatively little computational effort.  They are a good starting point
for extending these calculations to other states of interest (for example,
to states formed in X-ray absorption). In addition, the simple basis set
functions are sufficiently accurate for many purposes. Expectation values
of  r  and rz, dipole-transition matrix elements, and overlap of  SCF ·wave
functions were computed with the simple set SCF functions as well as the
accurate  set SCF functions. The values obtained usually agree quite well.
Some  comparisons that indicate the extent of the agreement will be given
late r.

The results in Tables I-VIII include the total energy for the non-
relativistic, electrostatic, fixed-nucleus Hamiltonian of Eq. (10) and the
virial coefficient V/T. Exponents  of the basis functions are given for
each state. The I;rincipal quantum number and symmetry type of each
basis function are given in parentheses  in the first column of each table.
The different basis functions are numbered consecutively within each
symmetry type.  For each orbital, the SCF orbitall energy Eng• the
cusp [defined in Eq. (9)], and the vector coefficients CnE,p are given.
The numbering of the vector coefficients corresponds to the numbering
of the basis functions. All energies are given in Hartrees. The results
reported in Tables I-VIII are from calculations performed on an IBM 7094.

The total wave functions for the states given in Tables I-VIII are
all single determinants.   The   lS  and 2S states  have even parity,  and the
2P States have odd parity. The parity follows immediately from the
electron configurations  of the states.

The ls-hole states of F-, Ne, and Na+, afid the ls-, 2 s-, and
2p-hole states of Cl-, Ar, and K+ are not the lowest states of their
symmetry species; these states are marked with asterisks in Tables I-VIII.

The 2 s-hole states of Ne. and Na+, and the 3s-hole states of Ar
and K+ are the first excited states of Ne+, Na++, Ar+,and K++, respec-
tively.  They are the lowest 2S states.

The 2 s-hole state of F- is a highly excited state of fluorine; it is,
in fact, past the ionization limit. However, Moore(31) does not give any
other 2S state of even parity in the spectrum of fluorine. The 3s-hole
state of Cl- is not observed, but no ZS states of even parity are observed
in the spectrum of chlorine.(31) Thus these states may be the lowest states
of their syrnnnetry species.
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TABLE I. SCF Orbitals and Energies for F-, Ne, and ·Na+, and nt-hole States of F-, Na, and Na+, Accurate Basis Sets

F-(ls) ,(2P) .
F(2S) ..--2(2:3) Ne(lS)          Ne+(2p) Ne+(2S) Ne+(2S)*.       Na+( S) Na++(2,) Na++ (25) Na++(2s)*2p-hole 2s-hole ls-hcle 2p-hole 28-hole ls-hole„ 2p-hole 28-hole ·

ls-hole

E -99.45944 -99.40933 -98.53123 -74.52412 -128.5471 -127·8178 -126;7348 -96.62571 -161.6770 -159.9974 -158.7088 -121.7424
V/T -1.999998 -1.999996 -1.999999 -2.000000 -1.999998 -2.000003 -2.000003 -1.99999Z -2.000001 -2.000003 -2.000003 -2.00000'.

CI(10) 13·958 14.201 13·901 15·308 .15·439 15.409 15·231 16.768 15·949 15·329 15·530 18.164

<2(18) 7·936 7·938 7.893 8.371 8.806 8.811 8.771 9.179 9.439 9.597 9.289 9.982

C3(3s) 9.873 9.962 9.901 10.713 10.995 10.967 10.951 11.732 11.624 11.374 11.355 12.750
44(28) 3.426 3.332 3.288 3.522 3.764 3.824 3.758 4.070 4.384 4.462 4.372 4.566

C5(23) 2.183. 2.057 2.078 2.175 2.301 2.526 2.537 2.670 2.811 3.047 3.058 3.153
<6(2 s   1.500

10.835Cl(2P) 9.788 . 9.435 8.793 6.809 10·542 12.548 12.000 12.048 13·437 12.730 10.580
C2(2P) 4.446 4.249 4.181 4.058 4.956 5.759 5.718 -5.567 5.703 6.030 5.939 5.829

C3(2P)
2.595 2.356 2.324 2.285 . 2.793 3.476 3.436 3.279 3.336 3.649 3.503 3.300

C4(2P) 1.511 1.434 1.404 1.487 1.623 2.086 2.047 2.142 2.146 2.522 2.433 2.409

C5(2P)
0.869

:ls -25·82961 -26.38265 -26.42060 -29.53630 -32.77233 -33.61235 -33.61629 -37.16999 -40.75972 -41.86280 -41.83081 -45·82043
CUSP -9.02404 -9.02760 -9.02411 -9.01167 -10.02496 -10.02477 -10.02401 -10.01652 -11.01520 -11.00906 -11.01874 -11.02114

2 0.08975 0.08419 0.09403 0.04171
· 0.09218 0.09256 0.09927 0.05077 O.13371 0.14458 O.15929 0.0596718 ·1

Cl"'2
0.94747 0.95503 0.94586 0.99591 0.94891 0.94804 0.94216 0·99596 0.91835 0.89061 0.89684 0.99466

ClS'3 -0.04015 -0.04226· -0.04308 -0.05444 -0.04499 -0.04442 -0.04548 -0.06476 -0.05827 -0.03891 .-0.06368 -O.07315
Cls,4 0.00377 0.00301 0.00374 0.01684 0.00308 0.00299 0.00377 0.01303 0.00156 0.00420 0.00238 O.01003
cls,5 -0.00083 -0.00013 0.00014 0.01247 -0.00003 -0.00018 0.00004 0.01332 0.09006600_ -0.00067 0.00061 O.01359
Cls,6 0.00050        . . . .        . . . .                                                       . . . .      . . . . .

/28 -1.07458 -1.57245 -1.70583 -1.74534 -1.93031 -2.61917 -2.75317 -2.85349 -3·07368 -3.93054 -4.06585 -4.22305
CUSP -9.06777 -9,06608 ..9.07213. -9.04294 -10.05351 -10.05387 -10.064360 -10.04150 -11.'03456 -11.02316 -11.02905 -11.02846

C2s,1
0.00560 0.00519 0.00439 0.01255 0.00645 0.00718 0.00611 0.01275 O.00581 0.01251 O.00333 O.01304

C -0.27435 -0.28031 -0.28538 -0.31567 -0.28821 -0.29829 -0.30146 -0.33112 -0.30875 -0.32313 -0.32328 -0.3452228,2
c .0.02865 -0.02805 -0.02678 -0.03023 -0.02632 -0.02831 -0.02674 -0.02983 -0.02404 -0.03062 -0.02199 -0.0280728,3
C 0.49528 0.56794 0.59904 0.57594 0.56972 0.52685 0.56055 0.51259 0.49163 0.44384 0.473432s,4 0.47638

C28,5 0.47665 0.52863 9.49531 0.52319 0.53066 0.56743 0.53148 0.58614 0.61232 0.65800 0.62678 0.62255

C23,6
0.1377.0

€ -0.18098 -0.72994 -0.70271 -0.87141 -0.85034 -1.60663 -1.55267 -1.81602 2p -1.79719 -2.74429 -2.66306 -3.01964
CUSP -4.53215 -4.51761 -4.46597 -4.40926 -5.00030 -5.06068 -5.03668 -5.00617 -5.52223 -5.58134: -5.55100 -5.49840

0.00800 0.01055 0.01380 C.04764· 0.00930 0.00408 0.00473 0.00784 O.00509 0.00619 0.01168(2P,1 0.00566
(2p,2 0.20342 0.26789 0.27605 - 0.35674 0.24154 0.13743 0.14248 0.23853 0.23017 0.19601 0.21089 O.30104

f2p,3 0.39809 0.49083 0.48600 0.47736 0.48233 0.42831 0.43100 0.45718 0.45558 0.42481 0.46032 · 0.57139

2'.4
0.36280 0.32561 0.32218 0.21207 0.36532 0.50305 0.49736 0.37235 0.38418 0.43417 0.38511 O.17715

2p,5 0.17010

*States which are not the lowest of a symmetry species.
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TABLE II. SCF Orbitalf.and Energies for Cl- and nt -hole States of Cl-, Accurate Basie Sets

Cl-(ls) Cl(2P) Cl(23) Cl(2P)* Cl(2S)* Cl(2S)*
3P-hole 38-hole· 2p-hole 28-hole 18.-hole

E -459.5768 -459.4820 -458.9167 -452.3349 -449.7655 -356.2822

N/T -1.999999 -2.000000 -2.000001 -2.000001 -2.000001 -2.000004

Cl(ls) 19.955 19.840 19.830 19.955 19.955 20.000

C2(28) 14·545 14.650 14.670 14.530 14.505 16.500

43(39)
,16.000 16.000 16.000 16.000 16.000 18.000

<4(3B) 9.951 9.940 9.684 9.954 10.1669.932

C5(29)
5.748 5.745 5.743 5.867 6.010 6.062

46(38) 2.823 .2.904 2.878 3.140 3.030 3.167

C7(38)
1.651 1.826 1.842 1.970 1.923 1.982

41(2P) 15·380 15·440 15·525 16.345 16.600 16.900

6#0 7·535 7-550 7·555 7.790 7.845 0.310

<3(2P)
4.385 4.415 4.405 4.600 4.615 4.980

4(4) 7.200 7.200 7.200 7·700 7·700 8.000

45(3P)
2.612 2.663 2.653 2'. 852 2.861 2.926

C6(4p) 1.826 1.976 1.932 2.091 2.100 2.136

t7(3p) 0.920 .1.236 1.191 1.307 1.310 1.311

Els -104.50546 -104.88431 -104.95559 -106.27042 -106.04136 -112.50264

CUSP -17.00483 -17·00224 -17.00306 -17.00187 -17.00641 -17.00392

c 0.76554 0.77219 0.77275 0.76588 0.76542 0.77416
ls,1

0.40543C 0.43218 0.40836 0.43389 0.43475 0.32382
ls,2

c -0.16990 -0.15323 -0.15094 -0.17190 -0,17195 -0.07287
10,3

Cls,4
-0.00082 0.00041 0.00107

0.00060 0.00227 0.00272 -0.00055 -0.00072 0.00487

c 0.00005 -0.00060 0.01344
ls,5

-0.00217c 0.00003 0.00013 0.00015 -0.00006 -0.00006
ls,6

c -0.00004 -0.00009 -0.00011 -0.00001 I0:00000 -0.00191
ls,7

/28 -10.22916 -10.60741 -10.66547 -11.32032 -11.47391 -11.83135

CUSP -16.99333 -16.99389 -16.99236 -16.98104 -17· 2706 -16.94919

(28'1
-0.21448 -0.21639 -0.21622 -0.21855 -0.21801 -0.23204

C -0.21001 -0.20133 -0.20016 -0.21460 -0.22715 -0.17324
2/,2

0.06997C 0.07593 0.06934 0.08022 0.07179 0.02477
2s,3

c 0.17p63 0.17368 0.17136 0.20563 0.13283 0.173502 s,·4
0.86777C 0.90099 0.89900 0.90007 0.94252 (1· 90538

2.,5
0.00586 0.00558 0.00719 0.005113 0.094143 O.00693

(28,6·
0.00979C -0.00023 -0.00015 0.00006 0.00042 -0.00024

2s,7

'39 -0.73320 -1.07288 -1.17570 -1.22317 -1.20787 -1.23087

CUSP -16.96224 -16.94416 -16.94540 -16.97671 -17.00251 -16.98601

c 0.06317 0.06541 0.06693 0.07900 0.07341 0.07252
3s,1

C3s,2 0.07620 0.07656 . 0.07770 0.09087 0.09926 0.07018

C -0.02132 -0.02034 -0.02053 -0.02158 -O.02157 -0.00184
3s,3

-O.00059 0.03314c -0.00604 -0.00017 0.01419 0.02248
3s,4

 39,5                                                                  0.64311
-0.40771 -0.42851 -0.43667 -0.49099. - -0.52027 -0.48357

0.70755 0.65176 0.68652 0.64384 0.67449

(33,6 0.43093 0.48089 0.44414 0.51051 0.46565 0.50431
3s,7

'2p -7.69557 -8.07218 -8.14,619 .9.00679 -8.78960 -9.55946                                  0

CUSP -8.44096 -8.43660 -8.44048 · -8.44624 -8.47491· -8.51969

C O.01990 0.01930 0.01875 0.01324 0.01236 0.00767
2p,1

c 0.68564 0.68305 0.68657 0.66057 0.65222 '0,63922
2P,3

0.1.8707C2p,3 0.19201 0.1.926P 0.22510 0.23727 0.24850

 2P·4 0.00296 0.00516 0.00323 0.01950 0.00104 0.00535

0.].6481 0.16636 0.17024 0.14711 0.15609 0.15979

2p,5

(2P,6 -0.00058 -0.00107 -0.00129 0.01128 0.00016 -0.00209

C2p,7
0.00024 0.00111 0.00063 0.00531 0.00000 0.00100 ·

€3p -0.15017 -0.50640 -0.50063 -0.58967 -0.58465 -0.59605

CUSP -8.38032 -8.35998 -8.35630 -8.38535 -8.37179 -8.40151

C
3p,1 -0·00350 -0.00346 -0.00331 -0.00274 -0.00199 -0.00022

-0.18172 -0.19968 -0.20013 -0.22358 -0.20251 -0.19667
(3P,2

. 3P.
3 -0.03172 -0.02837 -0.02733 -0.05978 -0.05454 .0 04580

3p,4
-0.06118 -0.07143 -0.07165 -0.07294. -0.07260 -0.07359

(3P,5 0.59454 0.60295 0.62287 0.63710 0.63463 0.63024

0.36833 0.31482 0·33734 0.32628 0.32834 0.33878

, 52, 0.21232 0.21687 0.17781 0.18060 0.18278 0.17251

*States which are not the lowest of a symmetry species.
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TABLE  LII. SCF Orbitals  and Energies for Argon  and  nt-hole  States  of  Argon, Accurate Basis  Sets

Ar(ls) Ar+(2P) Ar+(23) Ar+(2p). Ar+(28)* Ar+(2S)*
3p-hole 3s-hole 2p-hole 28-hole le-hole

E -526.8175 -526.2745 -525·5977 -517.6690 -514.8795 -409.3890

7/T -2.000000 -1.999999 -1.999999 -1.999999 -2.000001 -2.000000

4(ls) 20.750 20.750 20.735
-

20.700 20.615 20.080

C2(23) 14.900 14.900 14.900 14.945 15·000 16.845

 3(3s)
16.500 16.500 16.500 16.500 16.500 18.500

C4(38) 10.500 10.584 10.758 10.628 10.543 10.863

<5(28)
6.206 6.224 6.253 6.451 6.498 6.544

<6(3s) 3.166 3.259 3.232 3.458 3.382 3·532

C7(38) 1.993 2.185 2.201 2.311 2.278 2.340

Cl(2p) 16.220 16.160 16.195 17·020 17·460 17·720

C2(2P) 8.230 8.180 8.200 8.410 8.500 9.055

<3(2P)
5.000 4.795 ·4.865 5.000 5.115 5.450

C4(4P) 8.000 8.000 8.000 8.500 8.500 8.900

<5(32)
2.970 2.955 2.976 3.157 3.159 3.214

46(40) 2.211 2.2u9 2.242 2.399 2.330 £·303

47(3p) 1.370 1.550 1.550 1.620 1.620 1.650

98 -118.61014 -119.13309 -119.19462 -120.65776 -120.39576 -127·27956

CUSP -18.00366 -18.00349 -18.00287 -18.00005 -18.00218 -18.00163

C 0.78751 u.78752 0.78834 0.79073 0.79512 0.83065
18,1

Cls,2 0.41319 0.41322 0.41103 0.40339 0.38653 0.23192

C -0.17634 -0.17640 -0.17492 -0.17014 -0.15765 -0.05294
18,3

0.00265c -0.00008 -0.00004 -0.00022 0.00027 0.00121
18,4

C -0.00011 -0.00016 -0.00006 -0.00047 -0.00020 0.01419la,5
O.00009 0.00011 -0.00213Cls,6 0.00007 O.Oooil 0.00006

c -0.00006 -0.00008 -0.00008 -0.00008 -0.00008 -0.00203
18,7

/28 -12.32193 -12.83568 -12.88311 -13·61576 -13·77370      ._14.17473
CUpp -17.99649 -18.00356 -18.01242 -18.01453 -18 :02974 -17.95176

C -0.22353 -0.22365 -0.22356 -0.22847 -0.22912 .0.25356
28,1

C -0.21917· -0.22087 -0.22339 -0.23284 -0.22911 -0.1595028,2
C 0.08753 0.08586 0.08258 0.08007 0.07458 0.02281
28;3

C 0.16903 0.16072 0.14166 0.13434 0.11753 0.1578128,4

C2s,5 0.90732 0.91795 0.93996 0.95521 0.96271 0.92791

C
2s,6 0.00708 0.00704 0.00956 0.00977 0.02490 O.00833

C -0.00043 -0.00048 -0.00049 .0.00085 0.00965 -0.0004728,7

'38 -1.27725 -1.71114 -1.81793 -1.89228 -1.87409 -1.90809

CUSP -17.96890 -17.94414 -17.92541 -17.97576 -18.00103. -17.96324

C 0.06982 0.07189 0.07327 0.07702 0.08092 0.08360
3.,1

C 0.08792 0.09287 0.09574 0.10727 0.11101 0.07415..3s,2

(33,3
-0.02628 -0.02782 -0.02893 -0.02530 -0.02355 -0.00188

C 0.00341 0.01304 0.01863 0.04101 0·05414 0.03755
3s,4

C3s,5 -0.45394 -0.48178 -0.49483 -0.55249 -0.58015 -0.53655

c 0.66908 0.60576 0.63355 0.60842 0.62943 0.594593s,6

(36,7
0.46963 0.53030 0.50098 0.54305 0.51521 0.55658

€2p -9·57127 -10.08324 -10.14966 -11.10837 -10.86746 -11.71786
Culp • -8.92591 -8.91125 -8.91441 -8.92308 -8.96769 -8.98739

 p,1 0.01876 0.01845 0.01832 0.01284 0.01174 0·00570

C2P,2

0.63009 0.66020 0.65271 0.64006 0.61217 0.59627

2p,3
0.14165

0.27207 0.23154 0.24110 0.25810 0.29030 0.30855
C 0.13409 0.14874 0.14644 0.13301 0.13460
2p,4

 ,p,5
0.00309 0.00086 0.00001 0.01590 -0.00093 0.00252

2p,6
-0.00058 0.00171 0.00061 0.01386 -0.000750.00165

C2p,7 0.00028 -0·00037 -0.00031 0.00155 -0.00088 0.00047

'3p -0.59092 -1.04532 -1.03104 -1.15880 -1.15303 -1.17532

CUSP -8.88089 -8.88838 -8.86398 -8.89927 -8.89853 -8.93455

c -0.00346 -0.00391 -0.00345 -0.00290 -0.00204 0.000053p,1
C -0.18973 -0.20843 -0.21009 -0.22991 · -0.20638 -0.195493p,2
C -0.06049 -0.06140 -0.05246 -0.08803 -0.08549 -0.083773P,3
C -0.06178 -0.06560 -0.07057 -0.06915 -0.06887 -0.067533p,4

0.68195C3p,5 0·60487 0.66790 0.65321 0.68125 0.68076

0.30887 0.33443 0.32329 0·33574 0.33983 0·33549

22, 0.228,6 0.12476 0.14980 0.11967 0.11682 0.11520

*States which are Abt the lowest of a symmetry species.
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TABLE IV. SCF Orbitals and Energiea for K+ and nt -hole States  of K+, Accurate Basis Setsi                                                                                                                         --

K+(ls) K++(2 )
3:2 e)

K++ (2i'.). K++(23)* K++ (23).
3p-hole 2p-hole 28-hole ·ls-hole

E -599.0175 -597.8915 -597.1039 -587.6833 -584.6720 -466.4285

V/T -1.999999 -2.000000 -1.999999 -2.000000 -2.000002 -1.999997

(1(18) 21.530 21.545 21.685 21.480 21.3QO 20.400

<2(23) ]5.255 15·220 15.095 15·3UO 15·400 17·200

<3(38) 17·000 17·000 17·000 17·000 17·000 19.000

(40') 11.085 11.258 11.323 10.957 11.262 11.560

<5(28) 6.687 6.724 6.711 6.878 7.010 7.025

<6(38) 3.502 3.520 3.599 3.787 3.660 3.814

(7(38) 2.338 2.491 2.573 2.658 2.600 2.66:

<1(2P) 17·000 17·000 17·020 17·800 18.460 20.000

C2(2P) 8.890 8.820 8.855 9.075 9.210 9.920

<3(2P)
5.450 5.260 . 5.315 5.610 5.712 6.100

C4(4P)
8.800 8.800 8.800 9·300 9.300 9.800

 5(3P) 3.253 3.358 3.371 3.562 3·563 3.546

46(4P) 2.412           . . .            . . .                                            2.726

<7(3P) 1.650 2.182 2.173 2.294 2.295 2.000

liB -133.75212 -134.40390 -134.45519 -136.06387 -135·76859 -143·07622

Culp -19.00074 -19.00027 -19.00610 -18.99684 -18.99330 -19.00584

c 0.80888 0.80805 0.80027 0.81209 0.82183 0.8885010,1
0.15967c 0.38950- 0.39410 0.42346 0.37982 0.34675ls,2

C -0.17686 -0.18025 -0.20056 -0.17085 -0.14743 -0.0366919,3
c -0.00081 -0.00177 -0.00439 -0.00043 -0.00018 0.00249ls,4

Cls,5
O.00013 -0.00003 -0.00199

-0.00024 0.00010 0.00074 -0.00055 0.00047 0.01358

Cls,6
0.00011 0.00008 0.00001

C -0.00009 -0.00008 -0.00007 -0.00011 -0.00002 -0.00208
ls,7

228 -14.70798 -15.33970 -15.37648 -16.18376 -16.34603 -16.79208

Cusp -19.00163 -19.00951 -19.01782 -19.00269 -19.03162 -18.95758

C -0.23231 .0.23224 -0.22961 -0.23712 -0.23933 -O.27074
2s,1 -0.15189C -0.22932 -0.23548 -0.24544 -0.23674 -0.23878
28,2

C 0.09750 0.09623 0.10267 0.09486 0.07919 0.02290
23,3

028,4
0.15;04 0,14000 0.14298 0.13644 U. Uy24 U.1445U

c 0.92363 0.94521 0.94423 0.93077 0.99761 0.94824
2s,5

C O.00901 0.00953 0.01023 0.01075 0.02701 0.00953
2s,6 0.00777C -0.00103 -0.00166 -0.00050 -0.00133 -0.00100
28,7

-1.96377 -2.47767 -2.58881 4.68728 -2.66588 -2.71203

2 p -18.9 447 -18.95978 -18.92907 -19.01150 -19.00299 -18.96578

C 0·07649 0.07862 0.07904 0.08360 0.08803 0.09344
3s,1

0.11897 0.078540.10123 0.10710 0.11452 0.12444

%2, -0.0»37 -0.03343 -0.03861 -0.02901 -0.02732 -0.00258

c 0.01616 0.02255 0.02791 0.04360 0.06713 0.04315
3s,4

c -0.50319 -0.52525 -0.54237 -0.59121 -0.62553
38,5

0.57719 0.62575 0.589740.63772 0.62378 0.57022

 38,6·                
                      

                      
                      

        -0.57324

0·50386 0.51400 0.58011 0.52008 0.56280
3s,7

0.57145

€2P
-11.73810 -12.36843 -12.42720 -13·48122 -13·21615 -14.14872

Culp _9.40153 -9.40961 -9.39849 -9.42043 -9.45892 -9.47034

929,1 0.01736 0.01746 0.01681 0.01262 0.01054 0.00253

ryp,2 0.60440 0.63378 0.62810 0.59657 0.5(059 0.52985

c2p,3 0.30758 0.27199 0.27634 0.31579 0.35027 0.39164

 2p 4
0.12274 0.13211 0.13435 0.11239 0.11647 0.12198

0.00147 -0.00149 -0.00177 0.01286 0.00072 0.00433
2p,5

0.00039         . . . .         ·                 · · · ·          · · · ·        -0.00201

t:: .0.00023 0.00228 0.00077 0.01746 0.00040 0.00129

£3p          -1.17047 -1.71131 -1.68867 -1.85275 -1.84608 -1,88069

CU.P -9.40818 -9.41311 -9·39637 -9.43034 -9.42898 -9.41764

911
-0.21027 -0.22120

-0.00387 -0.00406 -0·00374 -0.00323 -0.00207 0·00057

 :;; -0.0,892 -0.09122 -0.13117 -0.12730 -0.12897
-O.19057 -0.21305 -0.19844 -0.18219

-0.09160

C -O.05412 -0.06176 -0.06274 -0.06004 -0.06202 -0.06243
3p,4

/ ,5         0.34285                                                           · · · ·         0.32599

0.67017 0.52926 0.52899 0.54360 0.54095 0.69616

3p,6
0.12328 0.57550 0.57691 0.57136 0.57394 0.10617

CJP,7

*States which are not the lowest of a symmetry species.
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TABLE V. SCF Orbitals and Energies for F-, Ne, and Na+ and nt-hole States of F-, Ne, and Na+, Sirnple Basis Sets

F-(ls) ,(2P) ,(25) ,(2s)* Ne(13) Ne +(2p) Ne+(23) Ne+(28)* Na+(ls) Nai·+(2   ita'-*(28) Na++(23)*
2p-hole· 2 s-hole. ls-hole 2p-hole 2 s-hole ls-hole 2p-hole 2s-hole li-hole

E -99.45785 -99.40893 -98.53085 -74.52382 -128.5465 -127·8176 -126.7346 -96.62555 -161.6766 . -159.9972 -158.7087 -121.7423

V/T -2.000002 -2.000004 -1.999999 -1.999993 -2.000008· -2.000018 -2.000004 -1.999990 -2.000002 -2.000013 -1.999996 -1.999995

<1(18) 13·220 13·198 12.810 12.758 14.319 13·623 13·859 12.382 '15.314 14.403 .14.659 12.211

<2(ls) 8.282 8.278 8.230 8.842 9.224 9.144 9.162 9.729 10.157 10.033 · 10.058 10.420

<3(38 ) 4.952 4.982 · 4.962 5.225 5.619 5.627 5.576 5.926 6.254 6.233 6.172 6.676

C4(2a) 2.094 2.246 2.293 2.369 2.518 2.700 2.734 2.840 2.'966 3.161 3.189 3.328

Cl(2Pi 5.219 6.165 6.112 5.695 6.62Q 7.588 7.405 6.665 8.000 9.058 8.759 7.515

(2(2P) 2.599 3.176 3.144 3.208 1484 3·991 3.926 3.955 4.316 4.794 4.715 4.624

C3(2P) 1.154 1.612 1.582 1.724 1.766. 2.164 2.122 2.276 2.325 2.698 2.651 .2.799

618 -25·82687 -26.38217 -26.42007 -29.53598 -32·77162 -33.61208 -33.61587 -37.16972 -40.75946 -41.86265 -41.83046 -45.82011

CUSP -9.01242 -9.01302 -9.00866 -9.02632 -10.01011 -9·99551 -10.00523 -10.02222 -11.00542 -10.98715 -10.99733 -11.01931

C 0.07956 0.08056 0.09582' 0.02797 0.08650 0.11485 0.10566 0.08021 0.09647 0.14038 0.12778 0.28471
18,1

-Cls,2 0.92438 0.92348 .0.90835 0.96451 0.91716 0.88966 0.89831 0.91277 0.90707 0.86426 0.87630 0.70895

Cls,3
0.00594 0.00580 0.00607 0.01658 0.00595 0.00408 0.00588 0.01441 O.00573 0.00315 0.00501 0.01183

Cls,4 -0.00032 -0.00044 0.00019 0.01639 -0.00029 0.00019 0.00015 0.01595 -0.00031 0.00045 0.00034 0.01596

gs -1.07236 -1.57205 -1.70549 -1.74516 -1.92915 -2.61894 -2.75289 -2.85336 -3.07347 - -3.93044 -4.06561 -4.22285

CUSP -9.07531 -8.99798 -9.00934 ·-8.94043 -10.01357 -9.95997 -9.96417 -9.95186 -10.96458 -10.93106 -10.93216 -10.97567

C -0.00824 -0.00411 -0.00583 0.01728 -0.00431 -0.00220 -0.00127 0.03807 -0.00001 0.00192 0.00298 0·05695
28,1

(28,2 -0.22858 -0.24286 -0.24667 -0.29148 -0.24635 -0.26184 -0.26625 -0.32867 -0.26474 -0.28137 -0.365582-0.28516

C2s,3
0.81852 0.81770

b.33891 0.29770 0.29412 0.30914 0.29901 0.26319 0.26448 0.26942 0.23998 0.23945 0.221660.26352
C 0.76464 0.76645 .0.75408 0.76514 0.79565

'

0.79427 0.79696 0.79097 0.84308
28,4 O·73161

gp -0.17886 -0·72953 -0.70231 -0.87121 -0.84974 -1.60644 -1.55239. -1.81586 -1·79697 -2.74424 -2.66290' -3.01944

CUSP -4.02916 -4.19515 -4.20656 -4.32426 -4.67506 -4.78652 -4.78530 -4.86452 -5.26728 -5.35367 -5·34729 -5·38621

C 0.14234 0.07255 0·07692 0.13992 0.08944 O.04870 0.05544 0.11167 0.06123 0.03406 . 0.04050 0.10024
2p,1

C 0.56283 0.48890 0.49372 0.49635 O.50024 0.43454 0.44020 0.44736 ·0.45069 0.39047 0.39581 0.40934
2p,2

0.55122C 0.43109 0.53155 0·52539 0.45645 O.50722 0.58891 - 0.57919 0.51414 0.56481 0.63486 0.62536
2p,3

*States which are not the lowest of a symmetry species.
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TABLE VI. SCF Orbitals and Energies for Cl- and nE-hole States of Cl-, Simple Basis Sets

Cl-(ls) Cl(2P) Cl(28) Cl(2P)* Cl(23)* Cl(28)*
3P-hole 3s-hole 2p-hole 28-hole ls-hole

E -459·5736 -459· 4801. -458.9148 -452.3332 -449.7638 -356.2814
V/T -2.000000 -1.999993 -2.000007 -1.999991 -2.000000 -1.999988

41(la) 18.575 18.674 18.629 18.474 18.095 17·749

42(28) 16.329 16.439 16.385 16.245 15·621 16.424

C3(3S) 10.217 10.190 10.219 10.021 10.386 10.381

4(20) 5.798 5·785 5.795 5.895 6.062 6.082

4(383 2.823 2.904 2.878 3.140. 3.Q30 3.167

<6(38) 1.651 1.826 1.842 1.970 1.923 1.982

Cl(2P) 10.2D3 10.268 10.2-75 10.586 10.594 10.460

<2(2P) 5.585 5.608 5.610 5.884 5.841 6.002

C3(3P) 2.497 2.612 2.617 2.787 2.798 2.881
44(3p) 1.224 1.465 1.459 1.570 1.576 1..607·'

els -104.50086 -104.88211 -104.95369 -106.26874 -106.03937 -112.50146
Cusp -16.96350 -16.96634 -16.96577 -16.95669 -16.95214 -17·01951

c 0.85189 0.84517 0.84820 0.85920 0.88567 0.92623ls,1
c 0.17649 0.18395 0.18062 0.16830 0.13937 0.07920ls,2
C -0.00074 -0.00011 -0.00046 -0.00234 -0.00594 0.01076ls,3
C 0.00245 0.00217 0.00237 0.00337 0.00593 0.0101918,4
gls,5 -0.00052 -0.00054 -0.00061 -0.00082 -0.00112 -0.00151
C 0.00021 0.00024 0.00027 0.00034 0.00051 -0.0022110,6

E23 -10.22595 -10.60672 -10.66476 -11.32012 -11.47338 -11.83108
Cusp -16.99022 .-16.97968 -16.98170 -16.99964 -17·00832 -16.98680

C -0.23882 -0.23691 -0.23743 -0.24544 -0.25239 .0.277712 s,1
0.11908 30.11959 -0.11987 -0.11900 -0.13056 -0.1027428,2

C 0.14005 0.14504· 0.13795 0.17025 0.09289 0.15200
2s,3

C 0.93670 0.93089 0.93755 0.91033 0.98751 0.930662s,4
c 0.00654 0.00546 0.00782 0.00241 0.02434 0.00530
2 s,5

-0.00035 0.00010 -0.00001 0.00185 0.01004 0.00059028,6

is -0·73031 -1.07236 -1.17505 -1.22270 -1.20752 -1.23049
CUSP -16.'76015 -16.72967 -16·74820 -16.62437 -16.83732 -16.69588

c 0.07001 0.07132 0.07321 0.07805 0.08474 0.086273s,1
0.04802 0.05010 0.05117 0.05897 0.06448 0.051803s,2

C 0.01033 0.01482 0.01573 0.03488 0.04751 0.031993s,3

C35,4 -0.42149 -0.44112 -0.45062 -0.50811 -0.53027 -0.49176
C 0.7.0660 0.65189 0.68576 0.64632 0.67235 0.643913s,5

C3s,6 0.43162 0.48073 0.44446 0.50908 0.46670 0.50380

igp -7.69225 -8.07136 -8.14535 -9.00648 -8.78900 -9.55916
CUOP -8.06915 -8.08454 -8.08774 -8.12583 -8.14560 -8.32563

C 0.21126 .0.20561 0.20543 0.17599 0.17940 0.219112p,1
c 0.81783 0.82121 0.82229 0.83577 0.84306 0.805922p,2
C 0.01585 0.02020 0.01796 0.03725 0.01956 0.015002p,3

- C2P,4 -0.00394 -0.00457 -0.00509 0.01137 -0.00519 -0.00369

£3p -0.14772 -0.50603 -0.50013 -0.58933 -0.58439 -0.59575
CUSP -8.14508 -8.12119 -8.12953 -8.12036 -8.13553 -8.37302

C -0.05028 -0.05192 -0.05186 -0.05079 -0.04652 -0.05670
3p,1

h · c3p,2 -0.21340 -0.23694 -0.23666 -0.28976 -0.26765 -0.24645
0.61008 0.56419 0.57193 0.59434 0.59193 0.58595

3P,3
C 0.52453 0.54343 0·53765 0.51794 0.52288 0.528593p,4

*States whlch  are  not the lowest  of a symmetry species.
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TABLE VII. SCF Orbitals and Energies, for Argon and ni -hole States of Argon, Simple Basis Sets

Ar(ls) Ar+(2P) Ar+(23) Ar+(2p)* Ar+(2S)* Ar+(2S)*
3p-hole 39-hole 2p-hole" 2s-hole ls-hole

E -526.8155 -526.2729 -525·5961 -517.6676 -514.8779 -409.3884

N/T -2.000001 -2.000001 -1.999997 -2.000000 -2.000002 -2.000015

Cl(ls) 19.419 19.412 19.454 19.138 19.045 18.566

<2(28) 17·034 17·024 17·075 16.639 16.371 16.958

43(30) 10.943 10.941 10.896 10.896 11.085 11.082

4(28) 6.275 6.279 6.277 6.436 6.537 6.562

<5(38) 3.187 3.259 3.232 3.474 3.314 3.532

C6(38) 2.005 :.185 2.201 2.311 :.230 2.340

tl(2p J 11. U2'/ 11.073 11.095 11 402 11.417 11.208

42(2p  6.095 6.113 6.120 6.388 6.345 6.498

<3(3p) 2.886 2.956. 2.972 3•127 3.142 3.234

4 (3p) 1.609 1.814 1.812 1.919 1.928 1.963

ela -118.60817 -119.13197 -119.19307 -120.65641 -120.39431 -127.27928

CUSP -17.95816 -17.95800 -17.95995 -17.94695 -17.95166 -18.01716

c 0.86927 0.86975 0.86693 0.88877 0.89477 0.9435118,1
C 0.15689 0.15636 0:15949 0.12918 0.05966ls,2
C                         

                          
             0.13538

ls,3 -0.00245 -0.00272 -0.00237 -0.00638 -0.00748 0.00986
C 0.00341 0.00368 0.00348 0.00583 0.00684 0.00999ls;4

-0.00123-                    C -0.00079 -0.00095 -0.00096 -0.00141 -0.00142
ls,5

cls,6 0.00035 0.00046 0.00045 0.00063 0.00069 -0.00244

E28 -12.32139 -12.83595 -12.88297 -13·61587 -13·77364 -14.17480

Cusp -17·98911 -17·99026 -17·99083 -18.00607 -18.02007 -18.03109

c -0.24687 -0.24712 -0.24592 -0.25697 -0.25799 -0.28557
28,1

C -0.12262 -0.12272 -0.12286 -0.12721 -0.13624 -0.10624
2s,2

0.12539C 0.12399 0.12384 0.12284 0.08266 0.14049
2 s,3

0.95768.c 0.95830 0.95863 0.96574 1.00378 0.94875
28,4

C O.00745 0.00727 0.00963 0.00599 0.02491 0.00724
2s,5

-0.00027 -0.00033 -0.00040 0.00090 0.00894 0.00010
C2s,6

<38
-1.27666 -1.71130 -1.81793 -1.89215 -1.87392 -1.90793

Cusp -17·75815 -17·75636 -17·74072 -17·72879 -17.83920 -17.75839

c O.07681 0.07917 0.08033 0.08623 0.09084 O.09367
38,1

O.05492 0.05722 0.05843 0.06789 0.07238 0.05946
33,2

c38,3
-0.50585 -0.5618g -0'.57408 -0.54330

0.02678 0.03123 0.03317 0.05377 0.05842 0.04611

C -0.47508 -0.49604
3s,4

c 0.65610 0.60506 0.63491 0.60870 0.67677 0.59538
3s,5 0.46372

C3s,6
0.48338 0.53045 0.50004 0.54657 0.55601

c2p -9.57061 -10.08339 -10.14938 -11.10839 -10.86733 -11.71788

CUSP -8.60975 -8.61881 -8.62450 -8.65542 -8.67770 -8.84569

0.19611 0.19240 0.19107 0.16434 0.16737 0.20753
CRP,1 0.84393c 0.82878 0.83062 0.83266 0.85184 0.81457
2p,2

0.01861 0.02242 0.02061 0.03805 0.02168 0.01642
C2p,3

-0.00620C -0.00497 -0.00547 -0.00629 0.00967 -0.00428
2p,4

e3p
-0.59046 -1.04550 -1.03108 -1.15874 -1.15294 -1.17519

CUSP -8.63989 -8.63187 -8.63848 -8.62460 -8.63667 -8.86975

c -O.05049 -0.05249 -0.05178 -0.04946 -0.04559 -0.05682
3p,1

_0.31930C -0.25002 -0.27029 -0.26961 -0.29823 -0.27652
3p,2

c O.58087 0.55695 0.55483 0.58189 0.57570 0.56927
3P,3

C3p,4 0.53221 0.54085 0.54469 0.52121 0·52995 0.53616

*States which are not the lowest of a symmetry species.
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TABLE VIII. SCF Orbitals and Energies for K+ and n.8-hole States of K+, Simple Basis Sets

k+(13) K+4-(2   K++ (2S ) K++(2P)* K++(23)* K++(23)*
3p-hole 38-hole 2p-hole 2s-hole ls-hole

E -599·0159 -597.8901 -597.1025 -587.6820 -584.6705 -466.4280

V/T -2.000002 -2.000002 -2.000002 -2.000002 -1.999998 -1.999995

41(la) 20.222 20.200 20.339 19.998 20.006 19.464

C2(2s) 17·611 17·568 17·799 17·194 , 17·116 17·522

<3(38)
11.812 11.804 11.603 11.868 11.962 I2.155

C4(28) 6.793 6.805 6.762 6.999 7.049 7.134

C5(38) 3.502 3.520 3.599 3.787 3.660 3.814

C6(38) 2.338 2.491 2.573 2.658 2.600 2.662

41(2p) 11.838 11.880 11.890 12.210 12.228 11.965

C2(2P) 6.601 6.619 6.621 6.889. 6.846 6.998

43(3p) 3.239 3.290 3.300 3.441 3.453 3.561

<4(3p) 1.965 2.167· 2.156 2.252 2.259 2.302

Els -133.75073 -134.40246 .134.45380 -136.06274 -135·76712 -143·07576

CUSP -18.95218 -18.95205 -18.95638 -18.94390 -18.95098 -19.01711

c 0.88800 0.88948 0.88039 0.90332 0.90230 O·9535110,1
C 0.13603 0.13446 0.14429 0.11956 0.12092 0.04811
ls,2

c -0.00472 -Q.00528 -0.00396 -0.00904 -0.00885 0.00779ls,3

Cls,4
-0.00132 ·-0.00185 -0.00174 -0.00128

0.00458 0.00501 0.00448 0.00720 0.00749 0.01140

cis,5 -0.00112 -0.00136
C 0.00053 0.00070 0.00066 0.00089 0.00090 -0.00243ls,6

<23 -14.70793 -15.33966 -15.37635 -16.]8405 -16.34594 -16.79222

Cusp -18.99464 -19.00240 r18.99354 -19.00464 -19.01649 -19.00922

C -0.25518 -0.25580 -0.25269 -0.26397 -0.26285 -0.290702s,1
c -0,12988 -0.13038 -0.12747 .n. 14134 -0.14610 -0.1228328,2

C20,3 0.09466 0.09326 O.10736 0.07830 0.05739 0.08431

C28,4 0.99545 0.99744 0.97862 1.02354 1.03674 1.01665
C 0.01053 0.01133 0.01083 0.01144 0.02561 0.0116328,5
C -0.00135 -0.00225' -0.00055 -0.00115 0.00869 -0.00153
2 s,6

<38 -1.96364 -2.47755 -2.58857 -2.68729 -2.66576 -2.71209

CUSP -18.81626 -18.82281 -18.73490 -18.82718 -18.88418 -18.86} 95

c 0.08380 0.08639 0.08671 0.09277 0.09651 0.10010
38,1

0.06244 0.06489 0.06623 0.07783 0.08153 0.0689538,2
C 0.04043 0.04354 0.05050 O.06891 0.07410 0.06040
3s,3

-0.62185C
3s,4 -0.52140 -0.53996 -0.55866 -0.60641 -0.58590

c 0.63334 0.62015 0.57039 0.56953 0.62156 0.58244
3s,5

C
3s,6 0.50598 0.51587 0.57106 0.58382 0.52239 0.56650

<2p -11.73792 -12.36825 -12.42694 -13·48136 -13.21598 -14.14875

Cusp -9,14221 -9.14897 -9.15299 -9.18073 -9.20343 -9·36415

c 0.18371 0.18054 0.18030 0.15466 0.15745 0.196322p,1
0.84055C 0.83783 O.85107 0.85924 0.82317

2p,2 0.83920
C 0.02070 0.02456 0.02220 0.03860 0.02333 0.017962P,3
C -0.00591 -0.00658 -0.00725 0.00778 -0.00728 -0.00510

-                             2p,4

£3p -1.17044 -1.71127 -1.68849 -1.85283 -1.84601 -1.88080

CUSP -9.14340 -9.14264 -9.14979 -9.13004 -9.14083 -9.3706g

C -0.05010 -0.05196 -0.05152 -0.04788 -0.04447 -0.055963p,1
c -0.98036 -0.29883 -0.29718 -0.34421 -0.32398 -0.302663p,2
c 0.56462 0.54277 0.54510 0·58046 0.57500 0.562383P,3
C 0.53895 0.55028 0.54969 0.51866 0.52659 0.539093p,4

*States which are not the lowest of a symmetry species.
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The accurate basis sets for the states of the light atoms (fluorine,
neon, ·and sodium) are composed of five s and four p basis functions.  The
one exception is the basis set for F-, which is composed of six x and five
p basis functions.

The accurate basis sets for the states of the heavier atoms
(chlorine, argon, and potassium) are composed of seven s and either
six or seven p basis functions. The seven  p   sets used three.basis  func -
tions to represent the outer  loop  of  the 3p orbital. The addition  of  a  thir d
basis function to represent this loop caused only a small improvement in
the total energy.  For most of the states of K++, a third basis function
did not cause any improvement in· the total energy. Otily· two bacig fi.inc-,
tions were used to represent the loop for these states.

The simple basis sets for the light atoms are composed of four s
and three p basis functions. Two basis functions are used to represent each
loop of the s orbitals. The simple basis sets for the heavier atoms are
composed of six s and four p. basis functions; two basis functions are used
to represent each 16op of.the orbitals. The aut6matic exponent variation
procedures of the SCF program converge quickly to the optimum values
of the exponents  of the simple basis sets; almost no manual examination
of the intermediate results, and consequent readjustment  of the exponent
variation parameters, are required.  Thus, the calculation of the simple
basis set functions is extremely automatic and requires the use of little .
human or machine, time.  Of the simple basis set SCF functions, the two
which give the poorest approximations to the exact HF. functions  are the
functions for the negative  ions  F-  and  Cl-. (The simple basis  sets for
the light atoms were called nominal basis sets in an.earlier paper.(9)
The reasons for the use of this name were explained in· that paper.)

The optimum values of the exponents are not determined in all
cases to the number of significant figures given in Tables IL.VIII.  This is
especially true for the large exponentd of the basis functions used to rep-
resent inner loops, and for the large, accurate, basis sets.  Some of the
exponents used to represent a loop are better determined than others.
The exponents of the dominant basis functions (usually the basis functions
with the largest vector coefficients Cnf,p) are often well-determined once
the exponents 9f the less important basis functions are fixed. The largest
exponents of the accurate basis sets of the heavier atoms were rounded.
The largest exponents of the p basis functions of some of the states of
Ne+ and Na++ were also rounded to  imple·,values. Beyond this, wedid
not make a systematic attempt to round any of the other exponents but
used them, rounded to three decimal pl·aces, as they were obtained from
the SCF computer program. When exponents were rounded, the vector
coefficients given are those determined from SCF calculations made using
the rounded values  of the exponents.
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B.  Accuracy of the SCF Wave Functions

Estimates were made of the effect of round-off errors on the SCF
calculations.   As  a part  of the round-off error, we include the extent to
which the results are not self-consistent solutions of the mattix HF equa-
tions. Our estimates of round-off error are based, primarily, on informa-

tion gained in the following ways:

1.   The examination of the convergence thresholds, for diagonali-
zation and self-consistency met by the S·CF vector coefficients. These

thresholds are part of the output of the computer program and are also
- '              set automatically by the program depending on the features of the calcula-

tion being performed.(4) Unfortunately, our experience indicates that
these· thresholds give alow estimate of the effects of round-off errors.

2.     The comparison of the results· of SCF calculations performed
on the IBM 704 and on the IBM 7094.  The most important difference be-
tween the 704 and 7094 programs is that in the 7.094 program the results
of floating-point addition and multiplication are rounded, while in the 704,
program they are not.  Thus a comparison of the results of SCF calcula-
tions, performed on the 704 and 7094, should provide an estimate, most
likely on the high side, of the effect of rounding errors on the 7094 results.

3.   The comparison of the results of two SCF calculations, both
performed on the 7094 and using the same basis set, but.with somewhat
different initial approximations for the SCF eigenvectors.

For·the calculations performed with srriall basis sets, viz:., the
simple sets for the heavier atoms (chldrine, argon, and potassium)·and
both the simple and accurate sets for the lighter atoms (fluorine,.neon,
and sodium), the estimates of round-off errors are the following:  The
round-off error in the·total energy and V/T is probably less than,or .
equal to five units in the eighth significant figure.. For those states for
which the total energy is just larger·than 100 Hartrees, the round-off
error  in· the total energy is probably less than two units  in the eighth
significant figure. The round-off error inthe En£'s and CnE,p's is probablyless
than or equal  to one unit  in the fifth decimal place (that is,one unit' in the  last
figure givan for these quantities in Tables I-VIII). The round-off error
in.the Cusps is usually less than one unit in the fifth decirnal place, but
in some cases is probably about three or four·units in the fifth decimal
place.

For calculations·with the accurate basis sets for the heavier
atoms, the estimates o'f round-off error are the following: The round-off
error in the total energy is probably less ,than.four to eight Anits in the
eighth significant figure. The round-off error in V/T is usually about          ·
five units in the eighth significant figure, but ih a few cases it is as large
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as  four  in the seventh significant figure. The round-off error·for  the   En,g' s
and cusps varies depending on the orbital considered (ls, 2s, 2p, etc.), but
in any case.is no more than one or two units in the fourth decimal place.
The round-off error for the CnE,P' s ·for s orbitals is about one unit in the
fifth decimal place, and for p orbitals is less than one unit in the fourth
place.

The round-off error is larger for the vector coefficients of p
orbitals because the p basis functions form a more nearly linearly depen-
dent set than the s basis functions. The·diagonalization procedures lose
accuracy as the basis set becomes linearly dependent. .For cxablple, for
the accurate basis set for neutral argon, the determinant 6f the overlap
matrix of the p basis functions is 0.5 x 10-6; for the s basis funttions it
is 5.3 x 10-6, a factor of 10 larger. But, because of the redundancy of the
p basis functions, the round-off errors in the vector coefficients may not
have a large effect on.the numerical values  of the. p orbitals.

Although the vectors given in Tables I-VIII may not be SCF eigen-
vectors to the number of figures. given, they do form an orthonormal set
to the number of figures giveri.

It is important to obtain reliable estimates of the accuracy of the
analytic SCF wave functions. By accuracy  of the analytic functions we
mean how closely they repr esent the exact HF solutions. Information on
the  accuracy of the analytic functions  may be obtained in the following.ways:

1.      The  comparison of analytic functions with solutions obtained by
direct numerical integration. This method has limited usefulness; first,
because numerical solutions are often not available and, second, because
accurate analytic functions are often better than the available numerical
solutions.

2.   'I'he comparison of·different, good, analytic functions for the
same state, calculated independently by different workers or with a dif-
ferent choice of principal quantum numbers for the basis functions, but
with very nearly the same total energy. These calculations are not likely
to have the same systematic errors because of individual peculiarities  in                        '
the choice and optimization of the basis functions.  Thus, it is reasonable
that the. differences between the results of these calculations should rep-
resent the random error of functions with this total energy. These differ -
ences provide  a good basis for estimating the accuracy of the functions.

3.     The  examination of the convergence  of 'the properties  of the
SCF functions obtained in the process of building up the_basis set from a
small set to the final accurate set. This method is very powerful when the
basis set is completely reoptimized at each step of the build-up so that the
effects of systematic errors on the choice of basis functions to represent a
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loop are minimized. These techniques and their application to first-row
atoms are discussed elsewhere.(9)

The cusp is not useful as 'a guide to the accuracy of any fairly good
analytic SCF function. For all butvery small basis sets, the cusp condition
is satisfied well enough, if optimized basis functions are used, to insure
against,unreas·onable behavior at the origin.. This is because an analytic

·SCF radial function PnE (r), Pn,2(1*) = rF'n,0(12) - rER£p(r)Cnf,p, goes near    '
th . origin as

Png(r) = Ao(nE)r·8+1 [1 + (Cuspn.2)r + 0(rz)]. (13)

The dominant term in this expansion is Ao(ng), not the cusp, and PnE is
not overly sensitive to errors in the cusp.

Fortunately, it is not necessary to apply the tests described above
to every analytic SCF function that is calculated.  When the SCF functi6ns
of a series of similar states have been calculatdd ·in a systematic way,  as
described in Section III of this paper, the accuracy of each function in the
series ·may be inferred from careful. estimates  of the accuracy of the.
functions  of  only  a few states.  ·One ·must take some precautions when making
these inferences of estimates of accuracy.  It is important, for example, to
remember that it may be more. difficult to determine more diffuse orbitals,
e.g., orbitals of negative ions, as ac'curately as less diffuse ones.

Tables IX-XII present comparisons of the results of several HF
calculations of Ne, F-, Ar, and Cl- with·the·re'sults obtained with our ac -
curate basis set functions.  In each case, we give: comparisons with results
obtained by direct numerical integration of the HF equations;* and, except
for Clr, we also give comparisons with analytic SCF functions with.very
nearly the· same energy  as our accurate-·set·functions. The analytic  func -
tions whose total SCF energies differ only in the eighth significant figure.
are grouped together with the accurate-set function at the left of the tables.
Comparisons between these functions give information of the type 2 above.
We have included, for each case, comparison with the results obtained with
the si·niple basis set functions so. that the accuracy of these functions may
be deterrnined.

For Ne and F-, we.include comparisons with·the analytic SCF cal-
culations of Allen,(36) and for Ar and Cl-, with the analytic SCF calcula-
tions of Watspn and Freeman.(37) These calculations were performed
without using techniques for the. automatic optimization of the exponents of
the basis functions.

*For numerical HF calculations of Ne, F-, Ar, and Cl-, see Refs. 32,
33,34, and 35, respEctively.
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TABLE IX. Comparison of Several Hartree-Fock Calculations of Neon

(Values are in a.u.)

Worsleyc
This Calculation b

IM:Zation)
This Calculation

Accurate Set. Fixed Cusp Seta Clementi Simple Set Allend

E                        -128.54709. -128.54703 -128.54701   .. . . ... -128.54648 -128.54319

AE                             0 -0.00006 -0.00008 . . . . . -0.00061 -0.00390

*ls -32.77233 -32.77229 -32.77277 -32.775 -32.77162 -32.76740

6€                               0 -0.00004 +0.Q0044 +0.00 4&Ml -0.0049318                                                                              3

CusPls -10.0250 -10.0000 -10.0049 -10.0101 -9.9994

8CUBpls
60.777 An·741 60.750 60.77 60.761 60.746
+0.0250         . . . . .        +0.0049     . . . . . +0.0101 -0.0006

IA (10)1

8 'Ao (la) 1 -0.01 +0.03 +0.02            0 +0.01 +0.02

ehs 0.15763 . . . . . 0.15763 0.157640.15763 0.15763

89>ls                            0 0.00000 0.00000 . . . . . 0.00000 -0.00001

92318 0.03347 0.03347 0.03347 0.03347 0.03347

842>18                           U 0·00000 0.00000 . . . . . 0.00000 0.00000

 Capis)216                         0 0.0005 0.0004 O.0005 9·0006

18Pls'max 0 & r< 00 0 0.0002 0.0003 0.003 0.0004 0.0005

92S -1.93031 -1.93031 -1.93048 -1.933 -1.92975 -1.92592

8€ 0 . 0.00000 +0.00017 +0.003 -0.00056 .-0.004392s

CUSP28 -10.0535 -10.0000 -10.0052 . . . . . -10.0136 -10.3010

8Cusp +0.0535.        . . . . . +0.0052 +0.0136 +0.30102s

1Ao(28)1 14.280 14·253 14.264 14.27 14.269 14.344

BIA (20)1 -0.01 +0.02 +0.01 0. 0.00 -0.07

<r>28                            0 +0,00002 -0.00007    · · · · ·

0.89209 0.89207 . 0.89216 . . . . . 0.89135 0.89267

a<r>28 +0.00074 -0.00058

<r >28 0.96694 0.96691 0.96735 0.96359 0.96964

84'>28                           0 +0·00003 -0.00041 . . . . . +0.00335 -0.00270

[f(app.)21*            0 0.0014 O.0015 . . . . . O.0054 0.0061

|AP28|max     O L r< 1.0 0 0.0002 0.0004 0.0003 0.0015 0.0023

1.0 6 r <·00             0 0.0009 0.0012 O.001 0.0046 0.0046

-0.85034 -0.85033 -0.85048 -0.8525 -0.84974 -0.84610

BFP 0 -0.00001 +0.00014 +0.002 -0.00060 -0.00424
2

Cusp2p -5.0003 -5.0000 -5.0000 . . . . . -4.6751 -4.7356
•acusp2 +0.0003 0.0000      .....    , -0·3249 -0.2644

IAO(2plil 27·804 27·732 27·861 27·87 27·159 27·479
81 Ao(2P)1 +0.07 +0..14 +O.01             0 ·+O.71 +0.39

<r> 0.96518 0.96519 0.96537 . . . . . 0.96477 0.96489
2R

8<r p                              0 -0.00001 -0.00019 . . . . . +0.00041 +0.00029

42>2P
1.22789 1.22787 1.22901 . . . . . 1.22516 1.23800

8<r >2p

O.0037 0.0186

0 +0.00002 -0.00112                .     .   ·.    ·     · · to.00273 -0.01011

frcap21,)21*                                                                 O 0.0010 O.0017
|aP2p |ma:x 0 6 r< 1.0         0 0.0002 0.0006 0.0002 0.0011 0.0063

1.0 6  r   <   00                                 0 0.0006 0.0011 0.004 - 0.0026 0.0102

ap. S. Bagus, T. L. GUbert, C. C. J. Roothaan, and H. D. C6hen (see Ref. 9).
bE. Clementi, C. C. J. Roothaan, and M. Yoshimine (see Ref. 7).

'B. H. Worsley (see Ref. 32).

dL. C. Allen (see Ref. 36).



35

TABLE X. Comparison of Several Hartree-Fock Calculations of F-

(Values arc in a.u.)

bFroese
This Calculation

a  Ilit:I i )         c        d    This Calculation
Accurate Set Flxed Cusp Set Clementl Allen Simple Set

E -99.459440 -99.459444 -99.459363 _99.458879 _99.457854
aE                                0 +0.000004 · · · · -0.000077 -0.000561 -0.001586

Els, .-25.82961 -25·82961
-25·8225    -25.82944· -25.82957 -25·82687

bels                             0 +0·00000 -0.0071 -0.00017 -0.00004 -0.00274

CusPls -9.0240 -9.0000          . . . . -9.6174 -9.0055 -9.0124
8Cusp +0.0240          . . . . .         . . . · +0.0174 +O.0055 +0.01241s

1Ao(la)1 51 724 51402 51405 51.717 51403 51413
8'AI(la)1 -0.019 +0.003               0 -0.0 +0.002 -0.008

<r> 0.17576 0.17576 0.17576 0.17577 0.175751s

8<r>ls                              0 0·00000 O.00000 · -O.00001 +O.00001
<r2  0.04162 0.04162 0.04162 0.04162 0.04161

8<r)> s                             ° °·°°00° . . . . O.00000 O.00000 +O.00001

[/(apl$)21*                     O 60.0002 0.0004 0.0004 0.0606
laPls|max      O.r< - 0 0.0002 0.0003 0.0092 0.0004 0.0005

gs -1.07458 -1.07458
-1.0765 -1.07435 -1.07468 -1.07236

8€                                 0 0.00000
+0.0019 -9.00023 +0.00010 -0.002222s

Cuspoo -9.0678 -9.0000 -9·0345 -9.2576 -9.0753
8Cusp2s +0.0678 +0.0345 +0.2576 +0.0753
IAO(28)  11.683 11.667 11.669 11.670 11.729 11.688

a'Ao(23)1 -0.014 +0.002               0 -0.001 '-0.060 -O.019

<r>2S 1.03555 1.03556 1.03540 1.03617 1.03333
8<h                              0 -0.00001 +0.00015 .n.00069 .0.00822

<  28 1.31886 1.31903 1.31776 1.32219 1.30703
8<r >                               0 -0.00017 . . . . +0.00110 -0.00333 +0.011832s

l/(ap23)21*              O 0.0009 0.0027 0.0035 0.0118
lap28|max 0 6 r< 1.5          0 0.0003 0.0005 O.0009 O.0015 0.0024

1.5  £  r   <  -                               0 0.0006 0.0005 0.0018 0.0026 0.0088

gp -0.18098 -0.18098 -0.181 -0.18079 -0.18122 -0.17886
5

/gp

-4.1523 -4.0292

0 0.00000 +0.000 -0.00019 +0.00024 -0.00212
5

CUSP -4.5322 -4.50002p                                                               . . . .      -4.4282
ACUSP2P +0.0322 . . . . -0.0718 -0.3477 -0.4708

'Ao.(2P)1 18.861 18.882 18.849 18.740 18.268 18.017
81 Ao(2P)1 -0.012 -0.033               0 +O.109 +0.581 +0.832

<r> 1.25556 1.25557 . . . . 1.25512 1.25604 1.252062P
8<r>2p

2.20971 2.20516 2.21748

0 -O.00001 . . . . +0.00044 -0.00048 +O·00350

<r >2P.
2.20956 :.17892

8<r >2P 0 -0.00015 . . . . +0.00440 -0.00792 +0.03064

 pap )21* 0 0.0007 ....' 0.0024 0.0076 . 0.0121

AP2P| max             0 .r   <   1.5                          0 0.0002 0.0002 0.0002 0.0012 0.0021
1.5 6 r< -0 0.0003 0.0005 0.0013 0.0034 0.0067

5

ap. S. 'Bagus. T. L Gilbert. C. C. J. Roothaan, and H. Cohen (see Ref. 9).
bc. Froese (see Ref. 33).
CE. Clementi and A. D. McLean (see Ref. 38).

dL. C: Allen (see Ref. 36).
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TABLE··XI.  Comparison of Several Hartree-Fock Calculations of Argon

(Values are in a·.u.)

Alternatea                                 cb           HartreeThis Calculation Large Set Malli
(Numerical Thls Calculation · watson andAccurate Set 8s and 7P (Flxed Cusp Set) Integration) Clementid Simple Set Freemane

E                                                                                                                                                                    '-526.81746 -526.81745 -526.81743 -526.81707 -526.81553 -526.81463
AE                               0 -0.00001 -0.00003 <0.00039 -0.00193 -0.00283

E 119.61014 -118 610 2 .ila.61030 -118.6 -118.60987 -118.60817 -118.6095018
-0.001978'18                              0 +0·00028 +0.00016 0.0 -0.00027 -U.UUU64                      -

CUSPls
+0.0037

148.92 148.77 148.81

-18.0037 -18.0063       .-18.0000 · · · · · · -18.0298 -17.9582 -17.9727

8Culp +0.0063       . . . . .         • · · · · +0.0298 -0.0418 -0.027318

1Ao(ls)1 148.87 148.88 148.85 148.8

81 Ao(lo) 1
-O.1 -0.1 O.0                 0        · -0.1 0.0 0.0

- <r>18 0.08610 0.08610 0.08610 · · · · · 0.08610 0.08611 0.08610

8<r ls 0.00996 0.00996 0.00996 O.010 0.00996 0.00996 '0.00996

0 0.00000 0.00000 • • • • • 0.00000 -0.00001 0.00000

832,1:      0 0.00000 O.00000 O.000 O.00000 O.00000 O.00000

lf(api.)21*                                0 &.006 #.0002 60.0003 O.0005 0.0004

18Pli|max 0 6 r<.. 0 0.0001 0.0002 0.007 0.0003 0.0008 0.0004

628 -12.32193 -12.32220 -12.32214 -12.33 -12.32150 -12.32139 -12.32141

86                                   0 +0.00027 +0.00021 +0.0 -0.00043
'

„-0.00054 -0.00052
2s 1.

OUSP2s -17.9965 -18.0049 -18.0000 . . . . . -17.9940 -17.9891 -18.2048

ACUSP2S
42.257 42.266 · 42.244 42.25 42.254 42.252 42.276

-0.0035 +0.0049       . . . . . -0.'0060 -0.0109 +0.2048

1 Ao (28)|
O.00 0.00 -0.036|Ao(28)1 -0.01 -0.02 +0.01               0

<r>28
-O.00001       . . . . . O.000 -0.00003 0.00000

6.41228 0.41227 0.41229 · · · · · 0.41228 0.41231 0.41228

8</228
0. +0.00001

852:                0 ...0,00, o.ooooo O.000 +O.00001 -0.00002 +O.00001
0.20123 0.20122 0.20123 0.201 0.20122 0.20125 0.20122

 Cap2s)21*                           0 0.0005 0.0004 . . . . . 0.0008 O.0005 0.0006

lAP23|max     O i r< 0.35           0 0.0002 O.0002 O.002 O.0002 O.0004 0.0003

0.35 6/ <0 0               0 0.0005 O.0002 O.002 O.0006 O.0006 O.0005

'38 -1.27725 -1.27734 -1.27735 -1.2775 -1.27692· -1.27666 -1.27649

 <33 +0.0000 +0.00009 +0.00010 -0.00033 -0.00059 -0.000762

CUMP38 · -17.9689 -17.9517 -18.0000 . . . . . -18.0976 -17.7582 -17.9798
8Cusp -0.0311 -O.0483 · · · · · +0.0976 -0.2418 ·-0.0202

3s
1 Ao(39)1 13·199 13·197 13·f99 13·21

'

13·222 13·146 13·201
81 Ao(33)1 +0.01 +0.01 +0.01               0 -0.01 +0.06 +0.01

<r> 1.42196 1.42228 1.42192 . . . . . 1.42256 1.42218 1.422523s

81>38                                0 -O.00032 ·+0.00004 . . -0.00060 -0.00022 -0.00056

4 >38 2. 34912 2.35086 2:34888 2.348 2.35144 2.34981 2.35372

8<r >38
0 -0.00174 +0.00024 +0.001 -0.00232 -0.00069 '-0.00460

lf(ap3s )2]* 0 0.0009 0.0004        .. . . . . 0.0025 0.0006 O.0059
lap38|max O a r< 1.2             0 0.0002 0.0002 0.001 0.0009 0.0007 0.0003

1.2 6/ <0 0 0 0.0006 0.0002 0.001 0.0021 0.0004 0.0042
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·rABLE XI. CO..litled .

(Values are in a.u.)

a                                                                       c' Alternate Hartreeb
Thls Calculation Large Set Malll (Numerical This Calculation Watson a8dd

Accurate Set 8s and 7p (Fixed Cusp Set) Integration) Clementl Simple Set Freeman

€2P
-9.57127 -9.57152 -9.57146 -9.575 -9.57083 -9.57061 -9.57072

8€                                0 +0.00025 +0.00019 +0.00 -0.00044 -0.00066 -0.00055
2p                                                                                       4

CUSP:P
-0.0423 .0.0989 -0.3902 -0.2303

-8.9259 -8.9577 -9.0000 -8.9011 -8.6098 -8.7697

ACUSP2 -0.0741                       . . . . .        . . . . .

1 Ao (2pli 1 181.89 182.07 182.14
182.35

181.81 179.21 180.54

BIAO(2p)1 +0.46 +0.28 +0.21'               0 ·+0·54 +3.15 +1.81

0 0.00000 0.00000       . . . . . +0.00004 +0.00006, -0.00003«33:
0.37533 0·37533 0.37533 0·37529 0·37527 0.37536

42>2P
0.17434 0.17434 0.17434 0.174 0.17430 0.17427 0.17437

a<r >2p                            0 0·00000 0.00000 0.000 +0.00004 -0.00003+0.00007

[f(Apvp)21*                           0 0.0005 0.0004        . . . . . 0.0009 0.0028 0.0016

IAP2P|max     O L r<0 0 0 0.0002 0.0003 0.002 0.0007 0.0026 0.0014

€3p                                                                                        5-0.59092 -0.59102 -0.59099 -0.590 -0.59071 -0.59046 -0.58997

8€                                0 +0.00010 +0.00007 -0.000 -0.00021 -0.00046 -0.00095
3P                                                                                        4

OUBP3p ..8.8809 -8.947] -9.0000 . . . . . -8.9216 -8.6399 -9.1924

8Culp .0 11 91 '0.05F9       . . . • • -0.0784 -0.3601 +0.1924

IAI(3 )| 50·707 50.824 50.804 50.97 50.790 50.018 51.638

BIAo(3p)1 +0.26 +0.15 +0.17              0 +0.18 +0.95 -0.67

<P, 1.66276 1.66289 1.66298 1.66181 1.66156 1.66343
3p

+O.00095 -0.000678<r>                                  0 -0.00013 -0.00022 · · · · · +0.00120

<.2/>P 3·. 30917 3.31003 3.31087 3.312 3·30105 3.29947 3·32762

8<„2>3P                            0
-0.00086 -0.00170 -0.003 +0.00812 +0.00970 .0.01845

I.f(ap3p )21*                                                                              0 0.0006 0.0019 . . . . . 0.0051 0.0051 0.0179

lap3p|max     0 0.r< 1.3            0 0.0003 0.0002 0.001 0.0009 0.0007 0.0025

1.3 E r< . 0 0.0004 0.0011 0.001 0.0032 0·0033 0.0096

ap. S. Bagus (uripublished).
bG. L. Malli (to be published).
cD· R. Hartree and W. Hartree (see Ref. 34) solved the SCF equations with exchange only for the 38 and 3p wave functions, the ls, 28, and Zp wave
functions with exchange were obtained from the functions without exchange and interpolation between the values  for  Ca++,  K+,  and Cl-.

dE· Clementi (see Ref.  39).  Details of the function are not published in Clementi'. paper but are available at the Library of Congress (see Ref. 40).

IR. E. Watson and A. J. Freeman (sce Ref. .17).
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TABLE XII. Comparison of Several Hartree-Fock Calculations of Cl

(Values are in a.u.)

Hartreea
This Calculation (Numerical Watson a d   This CalculationAccurate Set Integration) Freeman Simple Set

E -459.57684 -459.57499 -459.57362
aE 0 -0.00185 -0.00322

Els -104.50546 -104.5 -104.50829 -104.50086
•                                                                                                   5

AE13                               0 +0·0 +0.00283 -0.004604

Cusp -17.0048 -16.9691 -16.9635le
ACusp +0.0048ls · · · ·4 0.0309 =n.0365

IAO(18)1 136.48 136.5 136.41 136.40

8'Ao(ls)  0.0                 0 +0.1 +0.1

<r)ls 0.09130 ,0.09130 0.09130

8<r>ls
0.01120 O.01 ·0.01120 0.01120

0 ..... 0.00000 0.00000

<r2)13

8<r >ls                              0 0·000 0.00000 0.00000

I./,(f,r,1211
0 0.0004 O.0005

18 ls max 0  L   r   <   -                                                0 0.001 0.0005 0.0008

E28 -10.22916
-10.235 -10.23225 -10.'22595

Af28                               0 +0.006 +0.00309 -0.00321.

Cusp -16.9933. -17.0174 -16.99022s

AcusP23 -0.0067 +0.0174 -0.0098

|Ao(28)1 38.238 38.24 38.254 '38.238

8'AO(2d)1 0.00                0 -0.01 0.00

<r>2S
0 +O.00001 -0.00001

0.44180 0.44179 0.44181

8<r>2s

0.231 0.23129<r2>2S
0.23129 0.23130

aa >25                              0 0.00 0.00000 -0.000010

IJF(ap2 s)2 1 0                                                                                             0                                       ·     · ·•'· 0.0006 6£.0003

|AP25|max O L r< 0.35              0 0.001 O.0003 O.0002
0.3 5   6  r   <   00                                                0 0.001 O.0004 O.0003

<38 -0.73320 -0.727 -0.73547 -0.73031
8€                                  0 -0.006 +0.00227 -0.002893s

Cusp -16.9622 -17.0158 '-16.76023s
ocusp -0.0378 +0.0158 -0.23983s
1 Ao(3S)1 11.261 11.31 11.273 11.209

AIAO.(38)1 +0.05                0 +0.04 +0.10

<r>3S
+0.00016 -0.00063

1.60179 1.60163 1.60242

8<r s          e
2-38

-0.00221'       -

3.01041 3.012 3.01207 3.01262

8<r >38                              0 -0.00 -O.00166
2

I (ap3s)211              0      . . . . . O.0051 O.0007
lap3sl max O L r< 1.3             0 0.001 0.0002 0.0010

5
1.3   6  r   <   =                                                0 0.002 0.0032 0.00035
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TABLE XII. Continued

(Values are in a.u.)

a
Hartree

This Calculation  ' (Numerical Watson aBd   This CalculationAccurate Set Integration) Freeman Simple Set

e2p -7.69557 -7.69 -7.69866 -7.69225
6 -O.00 +0.00309 -0.00332

5
8€2p                                                        1

Cusp2P -8.4401 -8.2818 -8.0692

8CusP2P -0.0599 -0.2182 -0.4308
1 Ao(2p)  153·63 154.1 152.46 150.73

AIA (2p)1 .+0.5              0 +1.6 +3.4

 

<r>2P 0.40538 0.40540 0.40525

a<r>2P
0.20 0.20387 0.20369

0 ..... -0.00002 +0.00013

<1·2>2P
- 0.20386 4

6<r >2p                              0 0·00 -0.00001 +0.000170

[jf.(ap2p )21*                                                              0                          •   •   ·   · • O.OQ12 O.0034

|AP2p|max O  L  r   <  00                                         0 0.001 O.0009 0.0031

 3p -0.15017 -0,14855 -0.15172 -0.14772

8€                                   0              -0.00162     +0·001553P                                                                             -0.00245

Cusp -8.3803 . . . . . . -8.6557 -8.14513P
ACusp -0.1197 +0.1557 '

-0.35493

IA (3P)1 37·927 38.02 38.601 37.468

a'AO(3P)1 +0.09                0 -0.58 +0·55

<r> 2.02880 2.03967 2.019103P

8<r>3                                0 · · · · · -0.01087 +0.00970
<r2 p 5.10806 5.13 5.22941
2-3P                                                  7

5.01079

a<r >3p                                                   90 -0.02 -0.12135 +0.09727

['lf'( ap 3p )2 1*                                                                                                                0 0.0207 0.0209
'8p3p|max 0 6 r< 1.5             0 0.0015

0.0028 0.0021

1.5  6  r   <  -                                         0 0.0015 0.0102 O.0116

aD· R. Hartree and W. Hartree (see Ref. 35).
bR. E. Watson and A. J. Freeman (see Ref. 37).



40

\ Where analytic calculations of other workers are reported, we have
used their basis sets to recompute their functions with our program.  This
was done so that all the properties of each calculation would be available
for comparison. Tables IX-XII present the results obtained from our re-
calculations. Our recalculations agree closely with the original
calculations.

The total SCF energies in Tables IX-XII are given to eight significant
figures. Although round-off error affects the eighth figure,  this  is  the  only
way to distinguish the energies of several of the functions.  For each orbital,
we give the values of the orbital energy EnE, cusp, Ao(nE), the dominant
term in the expansion of the radial-wave function near the origin [defined in           -
Eq. (13)], and the expectation values of r and rz.

Direct comparisons are also made for the radial wave functions
Pn£(r).  For each orbital, we give values of the quantity

00

 S,  [paccurate s'et(r) - Pcomparison(r)]2dr 

denoted in the tables by [ f (ApnE )211/2 . This is a sum of the differences of
the radial wave functions over their entire range and may be used as an
overall figure of merit for the quality of the comparison function.  (This
comparison cannot be made with the numerical functions. The radial
wave functions obtained with the accurate basis sets and by numerical
methods usually agree within one or two units in the last figure given in
the  tabulation of the numerical functions,  and [ f(tpn £)2 11/2 calculated from
these differences would only reflect rounding errors.)· The tables also
give the maximum value of |AP(r)| = IPaccurate set(r) - Pcomparison(r)1
For some orbitals, |AP|max is given for two ranges of r to indicate that
the agreement between some of the radial wave functions is considerably
better for the inner portion of the function than for the tail. The limit of
the ranges is arbitrary. Except for a small range of values of r, usually
at the tail of the orbital,  |AP(r)| is smaller than |AP(r)| ThusImax
AP(r)|max gives the worst view of the accuracy of the orbitals.

The differences given in Tables IX-XII (AE, A €, etc.) are usually
defined as

AProperty = Property (accurate set)

- Property (comparison function). (14a)

The exceptions are

bCuspng  = -Z/(.8 + 1) - Cuspnf (comparison function), (14b)
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and

8  Ao(nE)  1 =   Ao(n.g) [numerical·calculation] 

- |Ao(nE) [comparison.function]|. (14c)

For Ao(nf), numerical calculations were chosen as a standard of compari-
son because numerical techniques require that the radial functionh be de -
termined accurately at the origin. The.·numerical integration is started
outward from r = 0, and the results are sezisitive to any error in the
function at the origin.

The values of the radial wave functions obtained from the accurate
basis SCF calculations agree strikingly well with the values obtained from
numerical calculations.

Worsley(32) gives the neon radial functions, tabulated at logarithrnic
intervals, to four decimal places except for the tail region of each orbital
where they are given to only three decimal places. Worsley claims that
the  functions are accurate to within two or three units  in  the last figure
given. At every point Worsley tabulates, the difference between our accurate
set results and her numerical results,  A'P(r)|, is within this limit except
for four points. Atthe great majority of tabulated points,' |AP(r)|· is 0 or 1
in the last figure Worsley gives.

#. 1

Froese(33) claims that her radikl wave functions for F-, given to
four decimal places, are accurate to 0.0002. The differences with our
accurate-set results are within this limit with only a few exceptions.   At
two points,  &Pls(r)11 = 0.0003; atten points, |AP2S(r)11 is between. 0.0003
and 0.0005; and at five points, 'APZP (r) 11 is between 0.0003 and 0.0005.

Hartree and Hartree(34,35) give the radial wave functions for Ar
and Cl- to three decimal places; for the 3s and 3p orbitals of Cl-, they
tabulate 2P(r) rather than P(r) in order· to obtain additional accuracy.
For argon,  .(SPis(r)  has its largest values at five consecutive points and
is between 0.003 and 0.007; at several points of the 2 s and 2p radial
functions, | AP(r) | has its maximum value of 0.002. For.the argon.Js and
3p radial functions, ;|AP(r)| is usually 0.000 and is never larger than
0.001 (i.e., 0 or 1 in the last figure that Hartree and Hartree give).  The

- relatively large disagreements for the· ls, 2s, and 2p radial functions. occur
because Hartree and Hartree did not obtain these functions by direct solu-
tion of the HF integro-differential equations but rather by an interpolation
between results for  Cl-  and K+. Their  3s  and .3p functions, on the other
hand, were obtained as self-consistent numerical solutions of the HF equa-
tions. This explanation is supported by the. fact that, for the ls, 2 s, and
2p orbitals of the Hartree and Hartree calculation on Cl-, IdP(r)U is never
larger than 0.001. Although the agreement between our results and those
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of Hartree and Hartree for the 3s and 3p orbitals of Cl- is still good, it
is not as good for these orbitals as for the othets.  For 'the 3s radial
function, ·2 AP(r)|| is 0.005 atone point inthe tail of the function, 0.004 at
the two adjacent points, and 0.002 or 0.003 at several points; for the 3p
function, there are also several points for which  2 |AP(r) |  is as large as
0.002 and 0.003.

For Ne, F-, Ar, and Cl-, the agreement between the numerical
and accurate basis set analytic radial functions is, in almost all cases,.
within the error of the nannerical calculations.  The 3s and 3p radial
functions of Cl- obtained by Hartree and Hartree are slightly more ac-
curate than the accurate basis set analytic functions.                                         -

The differences between the orbital energies Eng obtained from the
accurate set analytic SCF calculations and from the numerical calculationsi
are sometimes larger than might be expected from the small differences
between the radial wave functions : This can b.e explained from the different
way that the   €' s are obtained by  the two meth6ds.   In the analytic method,
the  € given is obtained directly as· the expectation value of the Fock operator
for the orbital, EnE  =<0n,8 |IF|0nf>· Inthe numerical calculations dis-
cussed, € istreated simply as a parameter to be adjusted until the solutions
of the HF equations approximately satisfy the boundary conditions placed
on them. The results of the accurate analytic S GF calculations should give
better values  of the   €'s  than the numerical calculations.

The accuracy of the accurate basis set SCF functions given in
Tables I-IV has been estimated. The estirriates used the techniques de-
scribed above and, in large part, the information given in Tables IX-XII.
The  estimates are generous and probably indicate,  for' most  of  the  func -
tions, errors larger than the true errors.

The total SCF energy, ESCF, represents the exact HF total
energy to within two units  in the seventh significant figure,  and the
En,g's are accurate to about. five units inthe same decimal place that the
error enters·the total energy.  When ESCF <'100, the En£'s are accurate  --;
to five ·units in the fifth decimal place,  and when .ESCF 2 100, to five units
in the fourth decimal place.

For·the states of the. heavier atoms (chlorine, argon, and potassium)
the ls, 2 s, and 2p radial wave functions do not differ from the exact HF
solutions, for any value of r, by more than 0.0005.  The ls radial function
is probably accurate to within 0.0002.  The 3s and 3p radial functions are
definitely accurate: to within 0.0015, and over much of the range of r are
accurate to within 0.0005.  The only exception is the 3s radial function
of Cl-, where the error is as large as 0.0025 for a fairly small range of
r near the tail of the function.
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For the states of the light atoms (fluorine, neon, and sodium), the
radial functions are accurate to within 0.0005. The ls radial function is
accurate to within 0.0002.  The ·2s and 2p radial functions.have,an error
smaller than 0.0005.

The radial wave function of the outermost s shell (2 s for the light
atoms, and 3 s· for the heavier atoms) is the least accurate. function for
any given state. The outermost s shell makes the smallest contribution
to the total energy and so is least well6determined by the exponent variation
procedures which optimize the total energy.

-                        The accurate set SCF functions given in Tables I-IV, except for
Cl- and the ls-hole state of K+, represent the limit of accuracy which
can be obtained using the single-precision, eight-significant-figure,
floating-point arithmetic of the IBM 704 and 7094 computers.  The Cl- SCF
function could probably be improved with the addition to the basis set of an
s, and possibly a p, basis function. The function for the ls-hole state of
K+ could be improved slightly if the .numerical evaluation in the exponent
variation procedures were altered to minimize round-off error.  (This
change has already been made in the latest versions: of the SCF programs.)

C. Properties of the SCF Wave Functions

Expectation values of r and rz, for all the states computed are
given in Tables XIII a.nd XIV. These expectation values were calculated
froni the accurate basis set SCF functions.  For each state, the expecta-
tion values of r and rz given are taken with respect to each occupied
orbital,  <1:,3>nf =  fo  [pn.0(:1  )]2rdr Find <rz>n,0 =  fo  [pn£(r)]zridr.  In
addition, the airerage values of the <r> and <ri> are given. The average
value of <r> is defined by ENnE<r)nE/El\In,g, where NnE is the electronoccu-
pation of the. n,gth orbital and. the sum is over all occupied orbitals.  The
value s of <r> n Z and  <r 2> n f represent the exact HF values to within a
few units in the .last figure given. · The values of <r23 n f for the outermost
s, and p orbitals of a system are least accurate; and the errors may be
as large as 20 units in the last figure. These estimates of accuracy may
be checked by reference to the comparisons given in Tables IX-XII.

Ah extra figure is given.for the average values of <r> and <rz>
-                  to avoid round-off error if these values are multiplied by the .total number

of electrons in the system to give <Sri> and <Sri>

Nonzero overlap integrals between many-electron SCF wave.func-
tions, calculated from the accurate basis set SCF functions, are given in
Table.XV. These results are presented inconnection with the.discus.sion,   at the end of Section II, of the lack of orthogonality between excited- and
ground-state SCF functions of the same symmetry.
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TABLE XIII. Expectation Values  of  r   and   rz   for  F- ,  Ne,  and Na+  and
nt-hole States  of· F -„  Ne,  and  Na+

(Values are in a.u.; 1 Bohr = 0.52917A)

F-(ls) F(2   F(2S) F(2S)
2p-hole 2s-hole is-hole

<r>ls
1.0011 0.9885 0.9435

0.1758 0.1757 0.1760 0.1718

<r>28 1.0355

<r>2P 1.2556 1.0847 1.0934 0.9659

ENt<r>i/'INi 0.99560 O.86411 0,87790 0.87267

2
<r >ls 0.04162 0.04161 0.04177 O.04045

<r23 1.3189 1.2164 1.1827 1.08362s
<r2>2p 2.2096 1.5429 1.5738 1.2245

E Nj.<r2>i/ENi 1.59783 1.13672 1.18988 1.06166

Ne(ls) Ne+(2P) Ne+(2S) Ne+(2S)
2p-hole 2 s-hole ls-hole

<r>ls
0.8603 0.8536

0.1576 0.1576 0.1578 0.1454

<r>2S
0.8759 0.8841 0.7993

0.8921 0.8171

<r>2P 0.9652

E.Ni<r>i/E.Ni 0.78905 0.71280 0.71931 0.73159

<22 ls 0.03347 .0.03344 0.03357 0.03260

<r >23 0.9669 0.8903 0.8751 0.8056

<r2>2P 1.2279 -0.9820 1.0032 0.8196

ENi<r->i/ENi 0.93682 0.75081 0.77351 0.72903

Na   S) Na++(2P) Na++(2S) Na++(28)
2p-hole 2s-hole ls-hole

<r>ls
0.7196

0.1429 0.1428 0.1430 0.1403

<r>28
0.7453 O.6845

0.7791 0.7530 0.7491

<r>2P 0.7962 0.7385

ENi<r>i/ENi 0.66214 0.60932 0.61190 0.63182

<r2>15 0.02748 0.02744 0.02755 0.02681

<r2)28 0.7314 0.6779 0.6703 0.6210

<r >2p 0.8159 0.6889 0.7033 0.5932

ENi<rc>i/ENi 0.64130 0.53945 0.54949 0.53645
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TABLE XIV. Expectation.Values of  r  and  rz  for Cl-,· Ar, and.K+ and ni-hole States
of  Cl -,   Ar,   and  K+

(Values are in a.u.,·1 Bohr = 0.52917A)

Cl-(ls) Cl(2P) Cl(2S) Cl(2P) Cl(2S) Cl(2S)
3p-hole 3s-hole 2p-hole 2s-hole ls-hole

<r>ls 0.09130 0.09130 0.09130 0.09121 0.09134 0.09031

<r>2S 0.4418 0.4417 0.4424 0.4338 0.4390 0.4226

<r>33
0.3952 0.3776

1.6018 1.5557 1.5341 1.4696 1.4759 1.4514

<r>2P
1.6928 1.6992 1.6623

0.4054 0.4057 0.4050 0.4004

<r> 2.0288 1.8418 '1.8380
3P

ENi<r>i/Xiii 1.04860 0·93065 0.94469 O.94988 0.94942 0.94573

«,4'ls 0.01120 0.01120 0.01120 0.01117 0.01122 0.01105

<r >28 0.2313 0.2312 0.2321 0.2225 0.2300 0.2117

s. 2;                                                2

08'31 2.5069 2.5364 2.4472<r 3.0104 2.7299

0.2039 0.2043 0.2034 0.2020 0.1930 0.1762

<r >3p
5.1081 4.0575 4.0444 3.4404 3.4480 3.3052

E#i<r->1/ENi 2.13207 1.62498 1.68842 1.59608 1.59830 1.54220

Ar(ls) 'Ar+(2P) Ar+(23) Ar+(2P) Ar+(2S) Ar+(2S)
3P-hole 33-hole 2p-hole 28-hole ls-hole

<r>ls 0.08610 0.08610 0.08611 0.08602 0.08614 0.08523

<r>23
1.4220 1.3814 1.3679 1.3162 1.3209 1.3005

0.4123 0.4121 0.4128 0.4052 0.4100 0.3954

<r>3S
0.3714 0.3667 0.3515<r>2P 0·3753 O.3756 0.3749

<r>39
1.6628 1.5584 1.5589 1.4560 1.4627 1.4321

INi<r>i/IFI.1 0.8927-4 , 0.81205 0.82171 0.83576 0.83531 0.83403

<r2>13 0.00996 0.00996 0.00996 0.00994 0.00997 0.00983

<r2>25 0.2012 0.2010 0.2019 0.1940 0.2003 0.1852

<r >3s 2.3491 2.2018 2.1570 1.9980 2.0185 1.9517

<r2>2p 0.1743 0.1747 0.1739 0.1730 0.1658 0.1524

<r2>3p 3.3092 2.8601 2.8642 2.5102 2.5196. 2.4179

EN'i<rc>i/ENi 1.44565 1.18672 1.22406 1.19586. 1.19821 1.15911

K+(ls) K++(2p  K++(2S) K++22p) K++(2S) K+0(2S)
3p-hole 3s-hole. 2p-hole 2s-hole ls-hole

<r>ls
6.3845 0.3715

0.08147 0.08146 0.08147 0.08139. 0.08150 0.08069

<r>23
1.1922 1.1959 1.1787

0.3864 0.3861 0.3869 0.3801

<r> 1.2768 1.2435 1.2341
3s

<r>2P
1.3629 1.2850 1.2915 1.2657

0.3494 0.3496 0.3490 0.3462 0.3419 0.3287

<r>3p
1.4312 1.3611

INi<r>i/ENi 0.78740 0.72503 0.73189 0.74991 0.74942 0.74987

<r2>1s 0.00891 0.00891 0.00891 0.00889 0.00892 0.00880

«2>28 0.1766 0.1763 0.1771 0.1706 0.1759 0.1634

<r >3s
1.8818 1.7761 1.7481 1.6320 1.6477 1.5962

<r2>2P 0.1508 0.1511 0.1504 0.1497 0.1439 0.1330

<r > 2.4161 2.1646 2.1712 1.9402 1.9497 1.8741 ·
3

ENi<r2>i/EN 1.08532 0.92071 0.94407 0.94193 0.94416 - 0.91592i
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TABLE XV. Overl_ap Integrals between Total SCF Wave
Functions  of the nf -hole States

F- Ne Na+

2s States <9(2s-hole) |9(ls-hole)> 0.003984 0.003380 0.002876

Cl- Ar K+

2P States <9(3p-hole)   9(Zp-hole)> 0.009428 0.008299 0.007285

 <9(3s-hole) 9(2s-hole)> 0.006062 0.005469 0.004906
2S. States        <9(3s-hole) 9(ls-hole)> 0.000514 0.000486 0.000457

l<9(Zs-hold) · Mls-hole)> 0.001264 0.001131 0.001018

D.  Validity of the Exponent Variation Procedure for Excited States

The basis-function exponent variation procedure, described in
Section III, selects values of the exponents that minimize the total SCF
energy.  This is a valid procedure for ground states and excited states·
that are the lowest states of a symmetry species. SCF functions for
these states give stationary values of the energy that are absolute minima.
It is not known whether the SCF functions for the higher excited states
of a symmetry species give stationary values of the energy that are
relative minima or some other sort of extrema. The problem, for these
excited states,  is that exponents, chosen to minimize the total energy may
not give SCF functions that are optimum representations of the true
HF solutions.

If explicit variational equations, e.g., those given by Dehn,(26)
were solved for the exponents: of the basis functions, there would be no
difficulty with the higher excited states.   In this way, stationary-values
of the energy would be found with respect to variation of the exponents
as well as the linear coefficients, CnE,# However, when our exponent
variation procedure is used, a particular stationary value of the energy
with respect to variation of the exponents is found in a brute-force
fashion. This point was discussed in Section III. The particular stationary
value found is a minimum.  For all the exponent variations performed to
obtain the 'SCF functions reported in this paper, this stationary value was
found with no more difficulty for the excited states than for the ground
states.

It seems unlikely, for an .analytic-expansion ·SCF function of a
particular state, that there will be more than one stationary·value of the
energy.  It is reasonable that the solutions of variational equations for
both the Cng 'p' s  and. the exponents are unique.   If this is true, then the
use of our exponent variation procedulfe is justified. '
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The procedure may also be justified from the results of the SCF
calculations. The virial theorem, which may be used as an indication of
how well the exponents of. the basis functions have been optirnized, is
satisfied equally well for the. excited-state wave functions and the ground-
state functions.   The cusp condition is. also satisfied equally well for the
excited-state functions and the ground-state functions.  This can be easily
confirmed by reference to Tables I-VIII. Further, as may be seen from
Table XVIII, the calculated ionization potentials,  for the removal of inner -
shell electrons, agree quite well with experimental values.

The success of our method of exponent variation implies that the
total energy of analytic-expansion SCF functions,  even for excited states,
is an upper bound to the exact HF energy. The results in Table XVIII
also show quite clearly that the SCF energies are, in fact, upper bounds
to the exact, nonrelativistic, total energies. According. to estimates made
by Clementi,(43) the exact nonrelativistic enerky is -I 0.4 Hartree below
the SCF energy for F-,· Ne, and Na+ (Enr = ESCF - 0.4) and -0.7 Har-
tree below the SCF energy for Cl-, Ar, and K+ (Enr = ESCF - 0·7).  The             :
calculated ionization p.otential IP(AESCF) is obtained by ,subtracting the
SCF energy of the parent from that of the ion; i.e., IP(AESCF) =
ESCF(ion) - ESCF(parent). Suppose the SCF energies of the inner-shell
hole states were not upper bounds to the exact energies. Then IP(tESCF)
for the removal of an inner-shell electron would have to be much smaller
than the true nonrelativistic ionization potential; at least 0.4 smaller for
the neon-like. ions and 0.7 smaller for the argon-like ions.   This is ob-
viously not the case.

E.  Effect of the Off-diagonal Lagrangian Multipliers

The constraint, given in Eq. (7), that the SCF orbitals belonging
to the same symmetry species be orthogonal is incorporated by intro-
ducing off-diagonal Lagrangian multipliers  into the HF equations. (2-5)
Orbitals of different syminetry are, of course, automatically orthogonal.
For closed-shell systems, a unitary transformation can be found between
the occupied orbitals that puts the matrix of Lagrangian multipliers into
diagonal form. This additional requirement that the off-diagonal
Lagrangian multipliers be zero serves,  in fact, to uniquely define  the
SCF orbitals. For open-shell. systems, it is possible to findaunitary
Lransformation between the closed-shell orbitals for which  the   off -
diagonal Lagrangian multipliers coupling the closed shells are zero.
However, the Lagrangian multipliers that couple open and closed shells
of the same symmetry cannot be reduced to zero.(3,4)

In other treatments, the nonzero off-diagonal Lagrangian multi-
pliers are introduced into the HF equations as inhomogeneous terms;(16,29)
i.e.,

F0 i  =  €i   +  E j/ieji0j: (15)
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Because  of the difficulty of handling these additional' inhomogeneous terms,
the off -.diagonal Lagrangian multiplier s are· 6ften treated  in an approximate
way.(13,14,42) Roothaan(3,4) has shown  that  it is possible,  thr ough  the  use
of coupling operators, to absorb the te'rms involving the nonzero off-diagonal
multiplier s into the ' HF operator, thus preserving the pseudoeigenvalue
form of ·the HF equations.

This method is especially suitable for·the· matrix form of the  HF
equations. The matrix HF operators (4) are

E c f    =  . t     + .--PZ     +   80% ,

and (16)

Fof = 11£ + 2,0 - 98 + 8.CE;

where EcE and ·E.0.0 are closed-shell and open-shell. Fock operators,
respectively, for symmetry species 8, lig is the one-electron operator,

28 and QZ are combineitions of Coulomb and exchange operators, and
Bo Z    and   Bc£    are the coupling operators.. (The eigenvalue problem  is
ES = €@£ where S is the overlap matrix.)  Let the index k stand only
for closed-shell orbitals, and m only for open-shell orbitals; the c'oupling
operators are defined so that for self-consistent eigenvectors of FC,0 and

-

FOE,

80£ ck,g     =     S( - ern,g , k·EcrnE ) ,

and              ·                                       :  (17)

 CE£mE = 6%-ek.g,m££kE):·

The emE,kE and Gkl,mE are·the off-diagonal Lagrangian multipliers that
couple the open and closed shells;  Note that they'are not symmetric, but
that

N.ofekf,mE = NCE8rnE,kg, (18)

where  NC£  and  No,g are·the electron occupations of. the closed· shells
and open shell, respectively, of symmetry 10.

The values of the nonzero off-diagonal Lagrangian multipliers
for the nE-hole states 9f argon and neon are given in Table XVI. These
values. were computed with the accurate set· SCF functions reported in
Tables I-IV. While the off-diagonal Lagrangian multipliers are fairly
small for states with open outer shells, they are·more than an order of
magnitude larger for states with. open inner shells. The values of the
off-diagonal Lagr'angian multipliers for the nf-hole·states of Cl- and K+,
and  F-  and Na+ are 'similar tothe· values given in Table XVI for argon and
neon.
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TABLE XVI. Off-diagonal Lagrangian Multipliers for the
nE -hole·States of Argon and Neon*

State Open
Shell eopen shell, closed shell

ensils ens,zs ens,3s

Ar+(3s-hole) 3s -0.00136 +0.01046

Ar+(2s-hole) 2s +0.04518     . . . . +0.13093

-            Ar+(ls-hole)       ts       . . . . +0.72661 -0.22742

Gnp,2p Gnp,3p

Ar+(3p-hole) 3p +0.01672   . . .

Ar+(Zp-hole) ' Zp +0.24923

ens,ls ens,zs

Ne+(2s-hole) 2s +0.01644       . . . .

Ne+(ls-hole)      ls           . . .. . +0.37522

*The Lagrangian multipliers are not symmetric; 8closed, open -
(Nc/No) eopen, closeci, where Nc and:No are the electron occu-
pations of the closed and open shellsi respectively.

The most striking effect of the ·inclusion of the off-diagonal
Lagrangian multipliers is that the ls orbitals, of the ls-hole states of
Cl-, Ar, and K+, have anode.  In each of thdse cases, Pis(r) goes
through zero and reaches a minimum value  of  -0.003. For example,
Pis(r) for Ar+(ls-hole) is zero for r = 0.93 Bohr and.has·a minimum
of -0.0028 for 1.30 S r 5 1.45. For large  r, the  HF·equation fpr  Pis (r)
becomes

-               €isPis(r) = - eZS,ls ZS(r) - e38,1S113s(r). (19)

For Ar+ (ls-hole), when the values in Tables III and XVI Sre used,
Eq. (19) becomes

Pls(r) S +0.01142Pzs(r) - 0.00357P3s (r), (20)

and the second term is dominant since the 2s radial function goes to zero
much before·the 3 s radial function does·.  For r 21.2 Bohrs, Pis(r) cal-
culated from Eq. (20), using the accurate-set 2s and 3s radial functions,

,    agrees with the accurate-set analytic SCF ls radial function to within
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0.00006. The error is always less than 3%; this is remarkably good agree-
ment, especially since the analytic expansion method does not give exact
solutions  of the integro-differential HF equations.

The dominant terms,  in  the HF equations, that determine  the  be -
havior of inner-shell orbitals at large r ar.e the nonzero off-diagonal
Lagrangian multiplier s  with the outer,- shell orbitals.    With the exception
of 8 for the ls-hole and 3s-hole states   of   Cl-,    Ar,   and   K+,   the  off -l S,3S

diagonal Lagrangian multipliers, for the states reported in this paper, are
positive. The effect of the positive off-diagonal Lagrangian multipliers is
to extend the tails of the orbitals rather than to introduce additional nodes.

The signs of the off-diagonal Lagrangian multipliers are determined
by the sign conventions used for the SCF orbitals. The signs of the orbitals
have been chosen so that the ls, 3s, and 2p radial functions are positive
as r - 0, and the Zs and 3p radial functions are negative as r - D.  Be -
cause of this choice, the values of Pn£(r) 'in the  (n - f )th loop, usually the
outermost loop of the orbital, will be positive. This is a departure from
the convention usually used in numerical HF calculations,(16,32-35)
which is that all radial functions are positive as r - 0.

The negative ·value  of  e
3 S,l S

should introduce  a node  into the   1 s

orbital of the 3s-hole states. However, the maximum'value of Pis(r) in
the outer loop would be only -0.00001.  This is beyond the accuracy of the
present calculation and too small to be of any interest.·

To get further insight into the importance of the off-diagonal
Lagrangian multipliers, an approximate treatment was developed.  The
matrices 2-08 and BC£ were arbitrarily set equal to zero, and "self-
consistent" solutions using the operators,

E b.g    F   :  f    +    17.8

and
, (21)

Eb,0    =    kig    +    28     -    98,

rather than ECE ·and -Fof of Eq. (16), were obtained. The·occupied open-
shell eigenvector. of 26£ is not orthogonal, to the occupied closed-shell
eigenvectors   of 26,0. Since the operators   of   Egs.   (16)   and   (21) are assumed
to be constructed from an orthogonal set of orbitals, the open-shell eigen-
vector was Schmidt-orthogonalized to the closed-shell eigenvectors.  This
Schmidt orthogonalization does not change the total determinantal wave
function. A "self-consistent" solution was obtained when the Schmidt-
orthogonalized eigenvectors of  62 and Ebf were the same, within con-
vergence thresholds, as the orthogonal vectors used to construct the
operators   82  and -FbE  of Eq·.(21).
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Since this method neglects the off-diagonal Lagrangian multipliers
in constructing the operators -Fb,g and Ebi, "self-consistent" solutions
obtained, using :E.6 2 and  ;rb,2 ' are denoted.by NLM (Neglect Lagrangian
Multipliers) to distinguish them from the SCF solutions obtained using
the operators of Eq. (16).

NLM calculations were performed, using the accurate basis sets
of Tables I and III, for the nE·-hole states of argon and neon. The results
of these calculations are given in Table XVII.  The NLM calculations were
performed on the IBM 704 and are compared with SCF calculations also
performed  on the  704. The values  of  E(SCF)   and   V/T (SCF) given  in

-            Table XVII differ slightly, because of round-off, from the values given in
Tables I-IV. Values of the total'energy E (in Hartrees), V/T, and the
overlap integrals SnE,ny between the occupied eigenvector  .of  -Fb.g  and
the occupied eigenvectors  of   Et:£ are given. The signs  of  the   Sn.trn'f
are determined by the sign conventions stated above for the ' SCF orbitals.

The NLM results for states with outer-shell vacancies,are al-
most the same as the SCF results, and the SnE,n' 8 are·quite small.
However, for the states with inner-shell vacancies, where the off-diagonal
Lagrangian multipliers are large, the NLM results are quite ..different
from the SCF results, and the SnE,ny are large.

F.  Comparison of SCF Ionization Potentials with Experiment

Experimental data are available for most of the ionization po-
tentials (IP's) of the closed-shell systems of F-, Ne, Na+, Cl-, Ar,
and  K+. This includes  the  IP' s for the removal of an electron from
any occupied shell. A comparison with experiment of IP's calculated
from the  SCF wave functions is presented in Table XVIII.  The  IP for
the removal of an outer-shell electron (3s or 3p shell of the· a'rgon-like
ions, and 2s or 2p shell of the neon-like ions) can usually be determined
from Moore's. optical data.(31) The eledtron affinities of F- and Cl -
(i.e., the 2p-hole IP of F-, and the 3p-hole IP of Cl-) have been de-
termined very accurately by Berry, Reimann, and Spokes.(43,44)  The

*only state for which experimental data do not seem to be available is
2.  the 3 s-hole state of Cl-; but Varsavsky(45) reports an estanate made

by Rohrlich of the term value of this state.

The IP for the removal of an inner-shell electron can be calcu-
lated from the experimental values of the energies of X-ray emission
lines, combined with the IP for the removal of the appropriate outer-shell
electron. For example, for the argon-like ions, the  IP  for· the removal
of a ls electron is
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TABLE XVII. Effect of Neglecting the Off-diagonal Lagrangian Multipliers for the n.8-hole States of
Argon and Neon (the results for the correct treatment of the off-diagonal Lagrangian multipliers

are denoted by SCF, tha results for the approximate treatment: by NLM)

E(NLM) Open Overlap Integrals between Open-
State E(SCF)* [E(SCF)-E(NLM)] V/T(SCF)* V/T(NLM) Shell and Closed-Shell Orbitals

Sns,ls Sns,28 Sns,38

Ar+(3s-hole) -525.5976 -525.5976 -1.999999 -1.999972      33 -0.0000 +O.0009
[0.0000] 13

Ar+(23-hole) -514.8794 -514.8808 -2.000000 -2.000242 28
+0.00039 . . . . -0.0104

[+0.0014]                                                                                4

Ar+(ls-hole) -409.3890 -409.3941 -2.000000 -2.001786 ls -0.00622   +0·00176
[+0.0051]

Snp'lp Snp,2P

Ar+(3P-hole) -526.2744 -526.2744 -1.999999 -1.999966      3p              +0.0003
[0.0000]                                                               5

Ar+(2p-hole) -517.6690 -517·6746 -2.000000 -2.000464      2p                         -0.00438
[+0.0056]

Sns,ls Sns,23

Ne+(2s-hole) -126.7348 -126.7348 -2.000003 -1.999897 2s +0.0005
[0.0000]                                                               3

Ne+(ls-hole) -96.62571 -96.62983 -1.999997 -2.003008 ls -0.0102
[ +0. 00412 ] 2

*The results given in this table are from calculations performed on the IBM 704.  Thus E(SCF) andV/T(SCF) may differ slightly
from the values of these quantities given in Tables I and III, which are from calculations performed on the IBM 7094.
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TABLE mII. Comparison of SCF and Experimental Ionization Potentials for the nt-hole States of F-. Ne, Na+, Cl-, Ar, and K+
(energies are in Hartree; 1 Hartree · 27.2098 eV · 2.194746 x 105 cm-11

State IP(exp)a Iplnr,a
IP(-En.El

IP(exp)b - IP(-EnE) IPIAESCF) IP(explb - IPMESCF)

F-c,d                     '0.1273       ' . . . .
, 0.1810 -0.0537 0.0501 +0.0772

1-1.461 eVI 1+2.101 eVI

2p-hole 15225%5      Ned 0.7937 0.8503 -0.0566 0.7293 +0.0644

(-1.540 eV) 1+1.752 eVI

Na+d 1.7404 1.7972 -0.0568 1.6796 +0.0608

1-1.546 eVI (+1.654 eVI

F-(,d| 0.8947 1.0746 -0.1799 0.9282 -0.0335

1-4,895 eV) 1-0.912 eVI

25-hole 152 296 Ned 1.7814 1.9303 -0.1489 1.8123 -0.0309

1-4.052 eV) (-0.841 eV)

Na+d 2.9433 3.0737 -0.1304 2.9682 -0.0249

(-3.548 eV) (-0.678 eV)

F- 24.99i 24.967' 25.8296 -0.863 24.9353 +0.032
e                            f

(-23.48 eVI (+0.87 eV)

ls-hole 1 2522P6 Nee 31.9701 31.945  32.7723 -0.821 31.9214 +0.04
31.9849 1-22.50 evj (+0.65 eVI

Na+e 39.99gf 39.938 40.7597 -0.822 39.9345 +0.003

1-22.37 eVI 110·08 evl

Cl-C,d 0.1341 0.1502 -0.0161 0.11Y48 +0.0393

1-0.438 eVI 1+1.069 eVI

3p-hole 15225221163523115    Ard 0.5813 0.5909 -0.0096 0.5430 +0.0383

1-0.261 eVI 1+1.'042 eVI

K+d 1.1726 , 1.1705 +0.0021 1.1260 +0.0466

1+0.057 eVI (+1.268 eV)

Cl-C.h 0.5261?) 0.7332 -0.207 0.6601 -0.134

(-5.63 eVI 1-3.65 eV)

35-hole 15225:29635396 Ard 1.0745 1.2773 , -0.2028 1.2198 -0.1453

1-5.518 eVI 1-3.954 eV)

K+d 1.7644 1.9638 -0.1994 1.9136 -0.1492

1-5.426 eVI 1-4.060 eVI

2P3k 7.220'

7.242(?11
Cl e 7.228' 7.6956 -0.468 7.2420 -0.014

2P112 '      1·219i
. 1-12.7 3 eVI C 0-38 cv)

7.301'7)1

2P312 9 1331
9.11j

2p-hole 154223523  Arl 9.142' 9.5713 -0.429 9.1484 -0.006

2Pl/2 9.209i (-11.67 eV) 1-0.2 evl

9.24

2P3/2 11.3061

11.3081

K+e 11.315i 11.7381 -0.42  11.3342 -0.019

2Pl/2 11.416' (-11.51 eV) 1-0.52 eVI
11.411j

Cl-k 9.73(?1 10.2292 9.8114

25-hole 152 2p6352396 Ar 12.3219 11.9380

K+k 14.41(?) 14.7080 14.3455

Ci-e 103.597' 103.181 104.5055 -1.33 103.2947 -0.11

103.614?)m,n (-36.2 eVI 1-3.0 ev)

1,-hole 1 2522 3523P6 Are 117.83 ' .117.30 118.6101 -1.31 117.4284 -0.13

117.8359 (-35.6 eVI (-3.5 AV)  „

113.093|
K+e 133.095In 132.42 133.7521 -1.33 132.5890 -0.17

133.088n                                          (-36.2 eVI (-4.6 eV)

aIp(exp} is the experimental value of the ionization potential.  For 2P terms, unless explicitly indicated otherwise, the IP is given to the center of gravity of th'e term.
IP(exp) does not include any correction for the finite mass of the nucleus. IP(nr) is the experimental ionization potential corrected for relativistic effects and the
finite mass of the nucleus. The relativistic corrections are made with data taken from Pekeris  (Ref. 46) and Scherr et  1·  (Ref. 471. For discussion of the
relativistic corrections, see the text.

bsCF values are compared with IP(expl unless a value of IP(nr) is given; in the latter case, comparisons are made with IP(nr).
CExperimental data for the electron affinity of F- and  Cl- are from Berr% and.Reimann (Ref. 431.
dExperimental data are from Vol. I by Moore (Ref. 311 and correction for LP separation of the 3p-hole state of Cl- in Vol. III.
elmization potentials are obtained by combining the ionization potentials for the outer-shell vacancy states with experimental data on X-ray emission lines.  For
the ls-hole states of argon and neon, measurements of the K absorption edge are also used. For sources of X-ray data, see text.

1Experimental ionization potential are obtained from the relation IP(ls-hotel · AE(Kal) + IP(25-hole; 21>3/2 
9K absorption edge is as measured by Brogren (Ref. 49).
11Estimate of the 35-hole term value is given by Varsavsky (Ref. 45).
iExperimental ionization potential.is obtained from the relation IP(2p-hole; 2P3/2.1/2) = -AE(Kal 21 + BECKB 11 + IP(3p-hole; 2P3/21·
jExperimental ionization potential is obtained trom the relation IP(2p-hole; 2P3/2,1/21   ABLE, 71;  +  IP(35-hole).
kThe experimental ionization potential is obtained from a table of normal energy levels of atoms; Table 13146 of Landolt-Barnstein (Ref. 481. A correction is added to
account for the fact that the zero of energy of a free atom is not the same as that used in the Landoll-Bornstein table. The correction for K+ is +0.56 Hartree,
and for Cl- is -0.17 Hartree.

-|Experimental ionization potential is obtained trom the relation IP(ls-hole) · AE(KBl)  + IP(3p-hole; 2P3/2)·
mExperimental ionization potential is obtained from the relation IP(ls-hole) · AE(Kall + AE(1,0 + IPOs-hole}.
nExperimental ionization potential is obtained from the relation IP(ls-hole) · AE(Ka2) + AE(Ll) + IPOs-hole).
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IP(ls-hole, 2Sl/2  = IP(3p-hole, 2P3/2) + AE (K#1)

= IP(3 s-hole, 2Sl/2) + AE(LE) + AE(Kai)
= IP(3s-hole, 2S 1/2   + dE(L71) + AE(KaJ, (22)

where the configuration and level of the final state of the ion are given in
parentheses after IP, and AE.(KBl), ZE(Kal), etc., are the energies of the
X-ray emission lines KBl, Kai, etc., respectively. Standard X-ray notation
is used to describe the emission lines.; KB , Kai, and Kaz denote the
transitions ls-hole,· 2Sl/2 -* 3p-hole, 2Pi/2 (KMIII) ' ls-hole, 2Sl/6 -+ 2p-hole,

.I2P3/2(KLIII),  and ls-hole,  2Sl/2 -* 29-hole.  zpi,,2 (KT,II), rp.Rpprtil,ely;  and  Li
and LT} denote the transitions Zp-hole,   2P3/2  -  3 s-hole,   2Sl/2(LIIIMI)   and
2p-hole, 2pl/2 + 3s-hole, 2S 1/2(LIIMI) ; respectively. For the ls-hole IP of
neon and argon, the K absorption limits (ls - 00) of gaseous neon and
argon, determined by Brogren,(49) may also be used.  (We have used ab-
sorption limit here in the ·same sense as series limit is used.for optical
spectra; that is, the removal of the electron to infinity with zero kinetic
energy.)

Except for the inert gases, argon and neon, ithe X-ray measurements
used have not been on free atomic systems. The' emission lines used to
calculate  IP' s  for the removal of inner-shell electrons .were obtained from
the emission spectra of atoms in crystals. The wavelength and shape of
these lines will, of course, be affected by the chemical structure of the
solids. The lines involving the outermost shells of the atom will be most
affected. This chemical effect, for the systems considered here, appears
to be small and about the same   order of magnitude lis: the accuracy of the
experimental measurements. For example,  the full width at half-maximum' '

of the K  1 3 line of Cl- in KCl, with no correction made for the unre-
solved doublet KMII and KMIII, has been experimentally determined by
Deslattes(50) to be 1.00 + 0.05 eV. Deslattes estimates that 0..4 eV =
0.015  Hartree   of this width  is attr ibutable to solid-state effects   (i.e.,  the
band structure  of the · 3p  band of  Cl-).   This  is  to be compared with the
wavelength.of the line, as measured by Valasek,(51) which is 4394.91 +
0.14 XU = 103.464 + 0.003 Hartrees. [The conversion.from XU's to
A's, as given in Sections 13 and 68 of SandstrBm' s review article,(52) is
1000 XU = (1.00202 + 0.00002) A.] The wavelength shift of the K#1 (or
KB1,3) line of Cl- as measured in various substances is also small.
Valasek(51,53) gives 4394.90+ 0.07 XU for 61- in·NaCl, 4394.91 + 0.14 XU
for Cl- in KCl, and 4394.61 XU for Cl- in CaC12· The results of an
earlier measurement of the K 81 line of:Cl- inthe same substances, given
by Lindh and Lundquist,{54) are 4394.2,XU, 4394.1 XU, and 4394.2 XU,
respectively.

In several cases, the results of more than one measurement of the
same line were available. Our choice of which result to use was generally

e
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guide.d by the choices made by Sandstr6m* and Landolt-Bornstein(48) for
their compilations of X-ray emission lines. When measurements were
made for an atom in several compounds, the values for· the atom in an
alkali halide compound were usually used. The sources of the experimental
data for the X-ray emission lines used are the following:  F-, Kal 2
TyrA;(55) Ne, Kai 2 Moore and Chalklin;(56) Na+, Kai,2 Johnson;(57)
Cl-, Kal and Kaz Shearer;(58) KA Valasek; (51) LT) and LE. Siegbahn
and Magnusson;(59) Ar, Kai, Kaz, and ·Kftl Lindh and Nilss·on;(60) LT) and
L.6 Ba8kovsk  and Dolej ek;(61) K+, Kai Siegbahn and DolejNek;(62)
Kaz Sandstrtirn;* KBl Parrat and Jossem;(63) and LT) and Lf Tyre'n. (64)

-                     Unfortunately, the method described above cannot be used to de-
termine the IP for removal of a 2s electron from the argon-like ions.
According to Sandstr6m* and Landolt-Bornstein, (48) no X-ray emission
lines are observed that involve, transitions from the 2 s-hole state for
atoms between chromium and sulfur.

Landolt-Bornstein(48)  give a table of the normal energy levels of,
atoms in which they include values for the 2 s-hole (LI) levels:of,
chlorine and potassium. The levels in this table were determined using
a combination of X-ray emission lines. and absorption limits. The proce-
dure for determining the levels is much like that discussed above, except
that X-ray absorption limits of atoms in crystals, rather than optical
series limits of free atoms, are used. The val e s given for the 2 s-hole
states of chlorine and potassium were not obtained directly from ex-
perimental data; they are interpolations made·by Tomboulian and Cady.(65)
The interpolation was based on rules for·the LI-LII (2s-hole, 2Sl/2 -2p-hole, 2Pl/2) screening-doublet splitting.

The levels in the Landolt-Bornstein table may not be used directly
as  IP's  of free atoms because the zero of energy chosen for the atom in
the crystal is not the same as the·zero of energy of the free atom.(66)

The correction for the 2 s-hole IP that must be made to account
for the different zeros of energy was determined by cornparing the
normal energy ].evel given by Landolt-Bornstein for the : 2p-hole,
2Pl/2(LII) state with« the. IP obtained.as described above. The 2 s-hole
experimental  IP' s, IP(exp),  of  Cl-  and K+ given· in Table XVIII are
the Landolt-Bornstein values, with the corrections  -0.17  and +0.56  Har -

-           tree, espectively. These values are included only to give a rough indica-
tion of the experimental values.

When the experimental IP's are, cbmpared with the IP's obtained
from the  SCF wave functions, the experimental values should be corrected
for relativistic effects.   The SCF functions were calculated using  a

*See Ref. 52, Section 53.  See also the discussion of the accuracy' of
measurements of X-ray emission spectra in Sections 50-52 in
Ref. 52.
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nonrelativistic, electrostatic Hamiltonian. The total experimental energy
of a system Eexp. may be written as

EexP = Enr + Erel, (23)

where E is the exact energy eigenvalue of the Hamiltonian of Eq. (10),nr
and Erel is the relativistic correction to the total energy. (To be·precise,
the reduced.mass of the electron should be·used in the nonrelativistic
Hamiltonian, and mass-polarization corrections should be.included in
Erel·)  Then the nonrelativistic IP, IP(nr), is

IP(nr)  =  Enr(ion)  -  Ellr (parent) = IP(exp)  - AIP(rel), (,4)

and

AIP(rel) = Erel(ion) - Erel(parent), (25)

where AIP(rel) is the relativistic correction.to IP(exp).  The term ion is
used here to refer to the system after an electron has been removed from
the parent.

For the ls-hole IP of an atom, AIP(rel) is assumed to, be·equal to
the relativistic correction to the  IP  of the ·two-electron.ion of that atom
(IP: for  lszto 181). Pekeris,(46) using his extremely accurate nonrela-
tivistic wave functions, has calculated.the relativistic corrections to the
IP' s  of the. two-electron ions of hydrogen through neon. His calculations
include the mass polarization correction, relativistic corrections to Order
06 2, and the Lamb shift corrections to order 063. Scherr and Silvermaii,(67)
using.an expansion  in powers   of   Z-1,  have extr apolated Pekeris's calcu-
lations to calcium (Z = 20). The results of Pekeris and·Scherr and Silver-
man have been used for AIP(rel) for the ls-hole IP's.

For the 2p -hole IP of an argon-like ion, tIP(rel) is assumed to be
equal to the relativistic correction to the IP of the ten-electron ion (IP for
ls22 s22p6 to ls22szzp5).  Scherr, Silverman,. and Matsen(47) have· calculated
these corrections using screened nuclear charges.to evaluate the Dirac
one-electron energy and.the one-electron Lamb shift to order 063.

For the Zp -hole IP' s of the neon-like ions and the 3p-hole IP's
of the argon-like ions, the only relativistic correction made is that
IP(exp) in Table XVIII is given for the center of gravity of the · 2P term
of the ion. No relativistic corrections are.given for the .2 s-hole IP!s of
the neon-like ions and.the Zs- and.3 s-hble IP's of the argon-like ions.

In several cases, IP(exp), given in Table XVIII, is determined in
more than one·way; this is done to indicate roughly the reliability of the
experimental data.  When the different ways give different values of
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IP(nr), the method used to obtain IP(nr) is indicated. A correction for
the finite mass of the nucleus is included in IP(nr), but not in IP(exp).
This correction affects the values of IP(exp) and IP(nr)by no more than
two units in the last place given.

The IP of a system can be calculated in two ways from SCF wave
functions.   One way  is  to use the frozen-orbital approximation.   In the
frozen-orbital approximation, an SCF calculation is performed for the
parent system, and the SCF orbitals of the parent are also used as the
orbitals of the ion.  In this approximation, the IP for the removal of an
electron from the nE-shell of a·closed-shell systemz is  -Enf; this re-

-                     sult is known as Koopmans' s theorem. The second way is to perform
separate SCF calculations for the parent and the ion.  In this case, the
IP is the difference of the SOF energies aESCF of the two systems.
The accurate-set SCF functions of Tables I-IV have been used to cal-
culate the IP in these two ways. The results, IP(-€nl) and IP(AESCF),
are given in Table XVIII together with.their differences with IP(exp),
or with IP(nr).when IP(nr) is given.

The true value of a quantity, in the sense that it is used in the
following discussion, is the exact nonrelativistic value obtained from
solutions of the Hamiltonian of Eq. (10). The error of an approximate
value of a quantity is the error with respect to this true value.  The
values of TP(exp) or IP(nr) given in Table XVIII are taken to be good
approximations to the true IP' s. The choice of IP(exp) or IP (Iii) de-
pends, of course, on whether the electron has been removed from an
inner or outer shell of the parent.

The data in Table XVIII show that when an electron is removed from
the outermost shell (2p shell  of the neon-like ions,. and .3p shell of the
argon-like ions), IP(-EnE)  is a better approximation than IP( BES CF) to the
true IP. The frozen-orbital wave function for the ion is always a poorer
approximation than the  SCF wave ·function to the true wave function of
the ion.  For the lowest state of a symmetry species, the error in the
energy of the ion in the frozen-orbital approximation must be larger
than the·correlation energy of the ion (the error of the SCF energy of    1
the ion). However, in the cases mentioned above, the correlation energy
of the parent is more nearly equal to the error in the energy of the ion
in the frozen-orbital approximation than to the correlation energy of the
ion. The errors in the energies of the parent and ion more nearly cancel,
and IP(-El'l,g) is a better approximation than IP(AESCF) to IP(nr).

The error in the energy of the ion in the frozen-orbital approxi-
mation is usually larger than the correlation energy of the parent.  Be-
cause of this, IP(-EnE) is usually larger than the true IP.  This is not
always fhe case; for K+, IP(-E3p) is 0.06 eV smaller than IP(exp) for
the· removal. of a 3p electron.
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Note that IP(-€nE) is larger than the true IP when an inner-shell
electron has been removed.  If the ion is not in the lowest state of a
symmetry species, it is not necessary that the expectation value of the
energy for an approximate wave function be an upper bound to the true
energy.   If the expectation value  of the energy  in the frozen-orbital.·approx-
imation for ions in these states was not larger than.the true energy, then
IP(-€rlf) would be considerably smaller than the true IP.

When an electron is removed from any but the outermost shell,
IP(AESCF) is· a better approximation.than IP(-Eng) to the true IP. When
an electron is removed from an inner shell (ls shell of the neon-like
ions, and ls, 2s, or 2p shell of the argon-like ions), the SCF orbitals                -
of the ion are considerably different from the SCF orbitals of the parent
(cf., <r > and <r 2> in Tables XIII and XIV). Consequently, the error in
using the orbitals of the closed-shell parent for these ions is quite large.

The SCF orbitals of the states that have a hole in the outermost
s shell are not very different from the SCF orbitals of the states with a
hole in the outermost p shell. The IP(-Enf) was a good approximation
to the IP for the removal of an outermost p electron, but not for an
outermost s electron. For these s-hole states, there is another reason
why. IP(-€nf) is a poorer approximation than IP(AESCF)·  As discussed
in Section IV-A, these s-hole states are likely to be the lowast 2S states
of even parity of their ionic systems.  The only states for which this is
at all in doubt are F(2 s-hole) and Cl(3s-hole).  When the ion is the lowest
state of a symmetry species, IP(-€nE) must be greater than .IP(AESCF)·
Now, IP(AESCF) for the removal of an outermost s electron is ·already
larger than the true IP. Since IP(€nE) must be  still larger, it is a poorer
approximation to the true IP. The surprising fact that IP(AESCF) is
larger than the.true IP is discussed in Section G below.

The agreement of IP(AESCF) with IP(nr) for the removal of an
inner-shell electron is remarkably good. [C:omparisons of IP(AESCF)
with IP(nr) for the removal of a 2s electron from an argon-like ion
cannot be made since there is no accurate experimental data available. ]
The error of IP(AESCF),for these cases,· is alw'ays less.than 0.2% and
often no more than 0.1%. Thus,· IP(AESCF) often agrees with IP(nr)
to four significant figures.

This good agreement is due, at least in part, to the fact that the
importance of the one-electron contributions to the HF operator relative
to the two-electron contributions (the kinetic energy and nuclear attrac-
tion terms r,elative to the Coulomb and 1exchange terms), is considerably
greater for inner-shell orbitals than for outer-shell orbitals.  The best
results are obtained with the HF one-electron approximation when the
two-electron terms, are a small perturbation on the one-electron terms.
Since the error :of the HF treatment of the outer-shell orbitals can be
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expected tobe roughly the same whether the inner-shell electron is
present or not, IP(AESCF)  for the removal of an inner -shell electron
should give reasonably goodagreement with the true  IP.

Thus,  IP(AESCF)  for the removal of a 2s electron from an
argon-like ion should be in good agreement with the·true nonrelativistic
IP. The relativistic correction to these IP's, estimated.from the data of
Scherr, Silverman, and Matsen,(47) is probably no more than 0.1 Hartree.
Even without relativistic corrections, the·values of IP(AESCF), given in
Table XVIII, should agree with·the correct experimental values to within
1%;  because of the relativistic corrections, they should be 'smaller than

-            the correct experimental values. No direct experimental data are available
for these 2 s-hole IP's; the values of IP(exp), given in Table XVIII, were
obtained through interpolation. (65)

G. Anomalous Behavior of the Correlation Energy

The correlation energies of some of the hole-state systems:have              :1
anomalous values. The correlation energy Ecorr' is the error  of the total                     7
SCF energy ESCF and is defined by the relation                                              '

Enr  =  ESCF · + Ecorr, (26)

where E is the exact nonrelativistic solution of the Hamiltonian.ofnr
Eq. (10).  The sign has been chosen so that Ecorr is negative for all
the systems considered here and is always negative for the lowest state                 A
of  a symmetry species. It follows imme diately  from  Eq.   (26)  that                                                       a

IP(nr) - IP(AESCF) = Ecorr(ion) - Ecorr(parent) (27)

The error of IP(AESCF), given in the last column of Table XVIII, is
the difference of -E corr between the parent and the ion.

Usually IP(AESCF) is less than the·true IP. The orbitals of the
ion are not drastically different from those of the parent.  The ion has one
fewer electron than the parent, and it is reasonable to expect that
E;corr(ion)| < |Ecorr(parent) . As shown in Table XVIII, this·usual case

'
occurs when an electron is removed from the outermost p shell of any of
the closed-shell systems considered.

When an electron is removed from the outermost s shell,
IP(AESCF) is larger  than the. true  IP. The magnitude of Ecorr  of
Ne+<Zs-hole) is 0.84 eV larger than the magnitude of E of neon.;corr
 Ecorr| of Ar+(3s-hole) is 3.95 eV larger than [Ecorr| of argon.

When an electron is removed from. the 2p or the ls shell of one
of the argon-like ions, |E corr |

of the resulting ion is also larger than
MEcor] '|  of the par·ent. The uncertainties of the experimental data and
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the relativistic corrections make this conclusion somewhat doubtful for the
2p-hole states. For the ls-hole states, however, the increase of |Ecorr|
is larger than these·uncertainties.

This anomalous b'ehavior of the correlation energy is extremely
important in light of.the recent work of Clementi(41,68) and in particular
of Allen, Clementi, and Gladney(69) to obtain semiempirical rules for the
calculation of E corr· Such rules, if they could:be successfully applied,
would be very useful since SCF wave functions may now be easily ob-
tained for a large class of systems. The analysis of Allen, Clementi,
and Gladney is based on a decomposition of E into pair-correlationcorr
energies. For atoms, the pair-correlation energy is denoted by
Ecorr (Il, £,Ing,rns ;  Il' , ZI,rl:lj irr16),  where  Il, f,InE, Irls..are.the· usual  one -
electron quantum numbers. Allen et al.(69) explicitly make the following
three assumptions about this decomposition: (1) The·total correlation
energy is, to a very good approximation, the sum of the pair-correlation
energies,

Ecorr = E Ecorr(n,£,mjg,Ins; ni,ZI,Inj ,rn;I). (28)

(2) The most important pair-correlation energies are· for electrons
which differ only in their spin quantum numbers, and.these correlation
energies are independent of mE; i.e., Ecorr (n, 8,Inf'.Cg n,£,rnE '13). =
Ecorr(n, 8, a;  n, 8, ).    (3)  The  pair-correlation  energy,  with only  rninor
qualifications,  is a function  only  of the· quantum numbers  of the pair  of
electrons and the nuclear charge  Z; in particular, it does not depend on
the total electronic configuration of the system. The third assumption
is  a key one since Allen, Clementi,  and Gladney obtained the pair -
correlation energies for an atom by subtracting the total correlation
energies of various ions. of the atom.

The first two assumptions 'are quite·reasonable. The anomalous
behavior  of the correlation energy, discussed above, shows that the. third
assumption is not correct.

From the·assumptions and Eq. (27), it follows that when an electron
is removed.from a closed shell with quantum numbers n.g,      '

-Ecorr(n, 8, ai  n,f, 3) '=  Ecorr(ion)  -  Ecorr (parent)   =   IP(nr)  -  IP(AESCF)·

(29)
For neon, Allen, Clementi, and Gladney find that -Ecorr (2pa,Zp B )    Z

+1.7 eV,  -Ecorr(2sa,Zs#) Z  +3.2 eV, and -E corr(lsa,lsB) 3
+1.2 eV. The results given in Table XVIII show that E corr (Ne+;2p-hole) -
E     (Ne) = +1.75 eV, E (Ne+;2s=-hole) - E (Ne) = -0.84 eV, andcorr corr corr
Ecorr(Ne+;ls-hole) - Ecorr(Ne) = +0.65 eV. When. a Zp electron is re-
moved, Allen, Clementi, and Gladney correctly predict the change in the
total correlation energy; this is· hardly surprising since thi.s change was
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part of the data used in their semiempirical analysis. However, when a
2s electron is removed, they predict a decrease of  E 11      of    -3.2   e V;corn
but, in fact, |Ecorr| increases by 0.84 eV.  When a ls electron is re-
moved, they predict a decrease of -1.2 eV, but there is a decrease of
only· half that. Allen, Clementi, and Gladney also give pair correlations
for·fluorine and sodium. Their. predictions for the correlation energies
of the 11£-hole states of 15'- -and Na+ are·very similir ·to their predictions
for neon.

Clearly the values that the Allen, Clementi, and Gladney analysis
gives·for Ecorr(Zsa,Zs#). and Ecorr(lsa, ls ) are·not correct. Kestner(70)

-            has considered the anomalous correlation energy of Ne+(2s-hole) using
the· formalism of Sinona lu. He claims that he has accounted for the in-
crease of |Ecorr| to the accuracy of his calculation.

Kestner explains  that. the anomalous correlation.energy  of  the
2s-hole state of neon is due·to the increased importance of configuration
interaction for the SCF function of this state. The ls22s2p6 configuration
of the 2 s-hole state of Ne+ can interact with the configurations ls22szeplns,
192282p5np, and ls22s22plnd. The configurations 1822 s 22p6 and 1022S22p5

. I. of neutral neon and the 2p-hole state of neon can interact only with con-
figurations formed by exciting two electrons into orbitaIs with principal
quantum numbers n > 2. The energies of some of the excited configurations
that mix with the SCF configuration of the 2 s-hole state of neon are closer
to the energy of that state, than the energies oi the exicted configurations
for neon and Ne+(2p-hole) are to the·energies of these states.  Thus, the
mixing. of configurations will be larger for the·2 s-hole state·than for·the
neutral  atom  or the· 2p-hole state. When:the effects of configuration inter -
action are more important, the SCF one-configuration:function gives a
poorer approximation to the true·wave function, and the magnitude of the
correlation energy is larger.

Similar arguments can be made about the 3s-hole states of the
argon-like ions.  It will be interesting to see if Kestner's treatment can
account.for the increase of |Ecorr|1 for·these states. The.increase of
'Ecorr| for these states is more.than four·times as large as the increase
of  |Ecorr|  for the Zs-hole states of the neon-like ions.
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V. TRANSITION PROBABILITIES BETWEEN                  i
THE SCF WAVE FUNCTIONS

A. Theory          \

To calculate electric-dipole transition probabilities, it is necessary
to evaluate matrix elements I of the form

I   =    <TIliE(i)   iFF>' (30)

where  TI,and   FF are the normalized many-electron wave functions ·of the
initial and final states, r(i) is the position vector of the ith electron, and
the sum is over .all the electrons·in·the'atom. Inthis calculation, 1FI and
YF are approximated by SCF wave functions.  For the states considered
here, the SCF function is given by a single Slater determinant and is an
eigenfunction of L  and S2, but not Jz. Since FI and FF were obtained as
separate SCF solutions of the variational equations,.the 'SCF one-electron
orbitals for the two states have no special relation to each other.  In par-

i(I)   .ticular, the overlap integrals of the orbitals (pngrn 01  TI.with the orbitals

  . rn of  T.F' are not zero or one; that is,  <0 rn |0 1  rrl   /  On,n'.
It is common practice(45,71,72) to approximate the dipole transition

matrix element I of Eq. (30) by

r-I = <TIIES(i) 1,4.> S  f f  Pi/1(r.)rplitl,(r) dr. (31)
JO

Here P :I  and P i ' i. are the radial wave functions of the active electron
(the electron making the transition) for: the initial and final states.  The
radial functions P   :and P .1   , need not be·SCF·functions.(45,71)  The vec-
tor   includes the angular integrations and also depends on·the symmetry
species and subspecies of the initial and final states. The approximation
of Eq. (31) is equivalent to assuming that the orthonormality relations

r 00

<0il„1019™> =  f  pill (r-) pi,9 (r) dr·= On,n' (32)
0'*                      -

hold. We shall ·refer to this approximation as the active electron
approxirnation.

With SCF functions, or with any -total wave functions which are ex-
pressed as combination of Slater determinants, it is not necessary to use
the active elec·tron.approximation. · Li;wdin(73) has given an expression for
the matrix element of a one-electron operator FO(i) between two arbitrary
Slater determinants, TU and TV. Lowdin showed that
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< Fu l Eo(i) 1 Tv>  =   sk, f < 1,1  ) ( 1 ) 10( 1 ) 1 999 ( 1 )> Duv(k lf), (33)

( U)                ( V)
where 9]c   and 4 8 are spin-orbitals of the determinants TU and FV re-
spectively, the double sum k,£ is over all the occupied spin-orbitals, and
DUV(k|f) is the signed minor, formed by removing the kth row and Eth col-
umn, of the matrix DUV. The elements of Duv are the overlap integrals
between the spin-orbitals of the two determinants; the kf element of Duv is

(DUV)kf  =  < Vt'  ) 19(Zv)> I
'

(34)

The SCF spin-orbitals were defined in Eq. (2).

The evaluation of the sum in Eq. (33) is simple because the SCF spin-
orbitals are symmetry-adapted and because there is only radial function for
each shell [cf., Eqs. (2) and (5)].  In fact, for the transitions considered, it 3.
was never necessary to evaluate a determinant larger than 3 x 3. The dipole          r
transition matrix elements required for this calculation were, therefore,

.

evaluated by means of Eq. (33).

The results of the dipole transition calculations will be given as
total absolute multiplet strengths S(M)IF.  In the electric dipole approxima-          41
tion, S(M)IF is defined, in atomic units, by                                                    t

S( M) IF    =   I        1< TI(L,S,ML,MS)  1/,r(i) 1  p'(L',S,ML,M;3)>12,     (35)
MS'M i  ML,· fL

where L, S, ML' and MS are the usual orbital and spin angular momentum

quantum numbers for the many-electron system.  The sum is over all the
states of the initial and final terms. This surb need not be evaluated ex-
plicitly; sum rules* for the sum over MI, and ML, and the fact that the
operator Es(i) does not involve the spin, may be used to reduce the sum.
For the case of interest here (transitions between 2S and ZP states with
a L=  1) , S(M)I F beconies

S( M) IF   -   ( 2 S +  1 ) ( L +  1 ) ( 2 1:, +  3 )  | < YI( L +  1, S, ML =  L, MS = S) 1 Z z ( i) 1  FF( L, S, ML - L, MS = S) > 12,

(36)

where z(i) is the z coordinate of the ith electron.
1

*Feenberg and Pake(74) present a complete statement and derivation .
of the sum rules.
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Absolute line strengths may be obtained from S(M) IF by using the
relative strengths of lines. in multiplets. Oscillator strengths and spon-
taneous transition probabilities may also be obtained from S(M) IF by using
either experimental or SCF transition energies. Summaries of current
notation and definitions of terms may be found elsewhere.(75) The general
problem of emission and absorption of radiation is treated in detail else-
where; see, for example, Bethe and Salpeter.(20)

For the sake of convenience, we give here the relations that will be
required later   for the discussion  of the width  of the ls-hole state;  thi s
width is referred to as the K-state width, or simply the K width.

Tlie absolute line strength S(L)IF is defined, in atomic units, by

S(L)IF =  Z  I <YI(J,L,S,MJ) IES(i) 1*F(J',L',S,M )>12. (37)

MJ' M.T

The  subscripts   I  and   F for S(L)IF refer to levels  (i.e.,  2S+1 LJ)' while  the
subscripts for S(M)I# refer to terms (i.e., 2S+1 L).  For the transitions of
interest here, S(L)IF' is given in terms of S(M)IF by

2Sl/2 4,-* 2Pl/2; S(L) IF    -    (1/3) S(M) IF    -
(38)

2Sl/z  --'-- 2 3/2; S(L) IF   =   (2/3) S(M) IF·,

The transition probability for spontaneous emission of a photon AIF is
given, in sec-1, by

AIF = 2.1419 x 1010  (4EIF)3/gI] SIF(L), (39)

where  AEIF  -   EI  -  EF is the energy  of the  line in atomic units,  SIF( L)  isin atomic units, and gI is the degeneracy of the initial level.

The total width of a level I, FI' may be written as PI = hPI, where
PI is the total probability of transitions from the level I to all lower-lying
levels. The partial width due to radiative transitions I'(R), called the
radiative width, is

riR)  = 1 I A (40)
F  IF,
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where the sum is over all levels with lower energy, EF < EI. For inner-
shell hole states, where radiationless .transitions are important, the total
width is given by.

FI = r (R) + riA), (41)

where r A) is-called the Auger width. The fluo:rescence yield S. ': the frac-
tion of the ·total transition rate due to ritdiative transitions, may be written
as

-,

Zi,I =  rat/,[t.(R) + rit')11  =  r(R)/1.PE                                         (42)

These matters are,dis·cussed in detail elsewhere.(76)

The operator Er(i) is called the dipole length operator.  It is pos-
sible, through the use of commutation' relations, to find alternate expres-
sions ·for the dip6le transition matrix element of Eq.' (30).  For the
many-electron Hamiltonian of Eq. (10), we have the relations

[Er(k),SF] = .i,Ep(k) = 52 (k), (43a)

ind

[Sp(k),59] = ·-i[S 9-(k) 14= -iZ ZE(k)/r(k)3; (43b)
-

where Z is the nuclear charge and the commutation relations are expressed
in atomic units. · If TI and  YF are exact eigenfunctions of SV, the .dipole
transition matrix element I, in atomic units, inay be evaluated, using
Eq. (3,0) or equivalently, as either

I   =    < YI' [- 1/LEIF'] E .F(k)  1 FIF>' (44a)

or

I = <TIll[Z/(AEIF)2]ZE·(k)/r(k)31:TF>, (44b).

where AEIF = EI - EF is the difference between the exact nonrelativistic
total energies of the initial and final states. The operators·in Eqs.·(44a) and
(44:b) are calIed the dipole-velocity and dipole«acceleration operators, re-
spectively.  Note that the-dipole-acceleration operator was obtained from
the exact many-electron potential energy and not. from some average one-
electron potential.
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When a dipole .transition matrix element is evaluated using ap-
proximate wave functions :(e.g., SCF functions), the length, velocity, and
acceleration forms  of the matrix element  will  not  have  the same value.
The values obtained using the three operators do not necessarily bound
the correct value of the matrix element.  Even if the three values are in
close agreement, they are not necessarily correct. However, the main
contributions ·to the matrix element come from different regions ·of r for
the three operators. The contributions to the value of the matrix, element
from comparatively lirge  r  are most important for the .dipole length op-
erator, from intermediate values of  r  for ·the velocity operator, and from
small values ·of r for the acceleration operator.  Thus, if the three opera-
tors give approximately equal values .for a ,transition matrix element, it is
not unreasonable to infer that these values are close to the true value.  In
any event, it is interesting to see how the results obtaihed using the length,
velocity, and acceleration operators compare.  Such a comparison will be
made in Section B' below.

B.  Results of the Dipole Transition Probability Calculations

A computer program was wr.itten for.the 'IBM 704 to calculate all
the one-electron overlap and electric-dipole transition integrals, between
the expansion SCF orbitals of two states, needed for the evaluation of
S(M) IF· The one-electron overlap and transition:integrals are defined in
Eqs.  (33)  and (34). Transition integrals ·may be computed for the dipole -
length, -velocity, and -acceleration operators'. Since the angular integra-
tion follows immediately from the properties of the spherical harmonics,
only the radial portions of the .transition integrals are calculated by the
program.  For the transitions reported here, the program was modified
to calculate S(M) IF directly,·#ith the electric dipole transition matrix
element evaluated exactly, as a matrix element between the many-electron
SCF wave functions. Actually, S(M) IF ;is calculated when the length Opera-

tor is used;· but ( AEIF)2S(M)IF and ( AEIF)4Z-*S(M)IF are calculated when
the velocity and acceleration operators are used.  In this way, experimental,
rather than SCF, energy differences may be used when the velocity and ac-
celeration forms  of S(M)IF are evaluated.

For a given transition, the input to the transition moment program
consists of two -sets of punched cards.   One of these.sets contains the in-
formation necessary to describe the'SCF function of the initial state; the
other, the information necessary to describe the final state. While a set
of cards may be pi·epared manually, it is available, optionally, as part of
the output of an SCF calculation performed with the 7094 SCF program.

The values of S(M) IF, ·in the electric dipole approximation, for all
possible electric dipole .transitions between the n E-hole states 'computed,
are presented in Table XIX.. The matrix elements- were computed exactly,
between many-electron SCF wave functions, using the expression of
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Eq.·(33). The matrix elements were evaluated using the ·dipole-length
operator.   The SCF functions used are the accurate-set functions reported
in Tables I-IV. The values of S(M)IF are given in atomic units.

TAB LE XIX. Total Absolute'Multiplet  Strengtht S(M)IF  for   Tran itions
between the nf-hole States of F-,·Ne, Na , Cl-, Ar, and K

(Values of· S(M)IF are in a.u·.)
++F Ne+ .Na

2 s-hole -+ 2p-hole
-         ' ultraviolet emission line '2.0652 1.4632 1.0855

1 s-hole -+ 2p-hole
Ka emission line 0.02466 0.02193 0.01937

Cl Ar+ K++

3 s-hole -* 3p-hole
ultraviolet emission line 5.3584 4.1392 3.2995

2p-hole -+ 3 s-hole
LE, 71 emis:sion lines ·0.03430 0.02808 0.02324

2 s-hole -* 3p-hole
not observed 0.02932 0.02991 0.02965

2 s-hole-* 2p-hole
not observed 0.3382 0.2923 0,2549

1 s-hole -+ 3p-hole
Ki3 emission line 0.0006722 0.0007010 0.0007078

1 s-hole -+ 2p-hole
Ka emis·sion line ·0.009245 0.008354 0.007588

For most of the transitions given in Table XIX,·S(M) IF' ·for a given
transition, decreases with increasing Z. Along an isoelectronic sequence,
the:'wave functions ·for a given state become more contracted as the nuclear

.                          charge·increases ·(c:f.,  <r>   and <rz> given in Tables  XIII and  XIV).     'I'hus,
the main contributions ·to the dipole· transition matrix element  <TIll Zi'32(i)11
TF > come from smaller.values of r for larger values of Z,·and S(M) IF

-  becomes smaller with inc·reasiidg Z. ·In·fact, for the hydrogenic.one-
elec·tron ions, S(M)IF goes as 1/Z2.

For the ls-hole -+ 3p-hold and the 2 s-hole -+ 3p-hole transitions of
Cl, Ar+, and K++., however, S(M)I   does not have this behavior;, for the
ls-hole - 3p-hole·transition, S(M IF· increases with.inc·reasing Z. Although            
all the SCF orbitals of a given state contract with increasing  Z,  the
3p orbitals contract more than the ls or 2s orbitals. The region of                       
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important "overlap," the region where F I  TF is large, will increase, and,
in some cases, this increase will be more important than the fact that the
"overlap" occurs in a region of smaller r.  As Z becomes larger, the
contraction with increasing Z, of all the orbitals of a given state, becomes
more nearly the same. For large enough Z, S(M)IF for any transition
should decrease with increasing Z along an isoelectronic sequence;
S(M)2s-hole,3p-hole is smaller for K++ than for Ar+, and it is likely that
S(M)is-hole.,3p-hole  will  be   smaller  for   Ca+3  than  for   K++.

For transitions between the n.8-hole states of neon and argon,
Table XX compares the effects, on S(M)IF, of the use of· several different
approximations for the evaluation of the dipole transition matrix element.
The results for these transitions are very similar to·the results for the
transitions of the other atoms. The values of S(M)IF are given for the
dipole length, velocity, and acceleration operators defined by Eqs. (30) and
(44).  For each operator, the transition matrix element was evaluated using
the many-electron expression of Eq. (33), and also using the active-electron
approximation of Eq. (31).

The notation < 9(ns-hole) |0| 9(n'p-hole)> is used in Table XX to'
indicate that the matrix element for S(M) was evaluatedns-hole,n'p-hole
between many-electron SCF. wave functions.   In the active-electron ap-
proximation,

(ns-hole) 0   0(n'p-hole)) 12. (45)S(M)ns-hole,n'p-hole = 61<0n'p,m=o | z ns,nn=o   '

where

09) = z,

O v) = _(1/2,EIF) 8 z'

and

OCza) - [Z/(8EIF)2][z/r3]. (46)

The notation <02119 1015,> is used in Table XX to indicate that the matrix             ..
element for S(M)IF was evaluated using the active-electron approximation;
for simplicity, the subscript m for the symmetry subspecies is not used.
'Matrix elements wete evaluated in the active-electron approximation in two
ways: first, using the appropriate orbitals from the SCF wave functions for
the initial and final states of the transition, as indicated in Eq. (45); and
second, using the orbitals from the SCF wave function for the closed-shell
system, either neutral neon or argon.
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TABLE XX: Total Absolute Multiplet Strengths S(M)IF Using Several Approximations for the
Dipole Transition Matrix Element [S(M)IF and BEIF are in a.u.]

Operator

Approximation for
Transltlon Matrix Element Length Velocity Diff.* Acceleration Diff.*

7(28-hole ) 12IT (2p-hole )> 1.463 1.166 20.3%
Ne+; 28-hole-, 2p-hole

(23-hole)
   P-hole)  1.465 1.181 -  -150·<92p

BEIF = 0.9877

<75ae)12;920Se,> 1.630 1.282

d (la-hole.) 1£ 11(2p-hole )> 0.02193 0.01979 9.8% 0.02252 2.7%
Ne+;  ls-hole -, 2p-hole

(ls-hole) 121'pi  -hole), 0.02119 0. ob066 0.02355<QgpAE = 39.151IF

<   e) £I l   > 0.01549 0.01415 0.01484

<9(3s-hole )|217(3p-hole)> 4.139 4.791 15·8%

Ar+; 38-hole -, 3p-hole

AE = 0.4932 <   8-bole)121B  P- ole)) 4.143 4.798          . . .        - #3000.
IP

<'ip#,Le '6), 4.460 4.777

<•* (2p-hole ) 1219 (38-hole )> 0.02808 0.02150 23·4% wrong slgn**...
Ar+;  2p-hole -4 3s-hole

BE   = 8.067
 f p-hole)

1214Js-hole)> 0.02492 0.02222 O.000003
IF

<9 9  12
lijpk)> 0.01981 0.01835 wrong sign**     . . .                 .

</(23-hole) 1219(3p-hole)> 0.02991 0.02413 19.3% O.01056 64.7%
Ar; As-hole -i 3p-hole

<9  8-hole) 0 9  P-hole) > 0.02893 0.02547 . . .        0.01213AE   = 11.357IF

<gjp#,i254 )> 0.01954 O.01701 O.00562

<9 (28-hole) 12IF(2p-hole)> 0.2923 0.2079 28.9%

Ar+; 2s-hole -, 2p-hole
(28-hole)   _(2p-hole),

6EIF = 2.796. <92p -    4'23 2 0.2842 0.2054 -  -   50*

<   r)  1 2   > 0.2967 0.2262

<9(18-hole) 2 9(3p-hole)> 0.0007010 0.0006519 7.0% 0.0007061 0.7%
Ar+; ls-hole -, 3p-hole

<9  s- ole)121 1 p-bole))  o.0005358  0.0005433 ... 0.0006001AE = 116·72IF

<p r) fll  r)> 0.0004223 0.0004011 . . . 0.0004118

<9(1 -hole)121,1,(4 -hole)> 0.008354 0.000003 4.2% 0.008683 3.9%
'                        Ar+; ls-hole -4 2p-hole

g  a-hole)  £ ,  p-hole)) 0.008470 0.008347 . . .        0.009082BE = 108.16
IF

<#(Ar  O  Ar - 0.007607 0.007208 . . . 0.007482"2P  + "'ls  1

*This  is the percent difference between S(M)IF evaluated using the length operator,  and S(M)IF evaluated 1,sing  the
velocity or acceleration operator.

**The sign of the transition matrix elernent for the acceleration operator is not the same as the sign of the matrix
element for the length operator.
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The second case (the use of the SCF orbitals of a single state for
the wave functions  of  both the initial and final state s  of a transition)  may
be regarded as a frozen-orbital approximation for S(M)IF·  It is, in a sense,
similar  to  the  use of Koopmans's Theorem  for  the  IP  of a system.     In  thi s
case, the active-electron approximation gives the correct value for the
transition matrix element since the orthonormality conditions  <0(Il    10( r)    >  =nam n'L In6   , are satisfied.
n, n·

In Table XX, the superscript on the 0 indicates the state for which
the orbital was computed. The entry "wrong sign" in the table means that
the sign of the transition matrix element for the acceleration operator was
not the same as the sign for the length operator; for exact cigcnfunctions,
the signs must be the same.

The nonrelativistic energy differences AEIF were obtained by taking
differences of the IP' s given in Table XVIII; IP(exp) was used for the 3p- and
3 s-hole states of the argon-like ions, and the 2p- and 2 s-hole states of the
neon-like ions; IP(nr) was used for the 2p-hole states of the argon-like
ions,  and for all the ls-hole. states; and IP( AESCF) was  used for the  Zs-
hole states of the argon-like ions.

The  calculations were performed using the accurate-set  SCF  func -
tions given in Tables I-IV. The values of S(M) IF and AEIF are given in
atomic units. The column labeled "Diff. " is the difference between
S(M) IF evaluated using the dipole-length operator, and S(M) IF evaluated
using the dipole-velocity or -acceleration operator. This difference is
only given when the dipole matrix elements for S(M)IF have been ·computed
between the many-electron SCF wave functions.

For all but one of the transitions given in Table XX, the dipole-
length form  of S(M) IF obtained using the orbitals  of the closed- shell
system (third line and first column for each transition) gives a signif-
icantly poorer result than that obtained using the orbitals for the initial
and final states of the transition (first and second lines and first column
for each transition).  For the 3 s-hole - 3p-hole transition of Ar , tlie
improvement is 8%; for the ls-hole - 3p-hole transition of Ar+, the im-

+.provement is 40%.  Only for the 2 s-hole -+ 2p-hole transition of Ar  lS                    •
the improvement as small as 1.5%.

For the dipole-velocity form of S(M) IF, the frozen-orbital ap-
proximation sometimes gives a better result  than  the  use  of  the   SCF  func -
tions of the initial and final states of the transition.  Here, we mean better
in the sense of being more nearly equal to the dipole-length value of
S(M) IF with the many-electron matrix element correctly evaluated.  How-
ever, the agreement in these cases between the length and velocity forms
of S(M)IF is not very good, and the better result of the frozen-orbital ap-
proximation does not have much meaning.
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It seems, from the results ·given in Table XX, that the use of the
SCF functions of the initial and final states of a transition gives a sig-
niIicantly better value for S(M)IF than the use of the frozen-orbital
approximation.

In several cases, the value of S(M)IF,obtained when the dipole
transition matrix element is evaluated between total many-electron wave
functions is quite different from the value obtained when the active-
electron approximation is used. The difference is largest for transitions
between the ls-hole and the outermostp-hole states; itis smallest, and
quite negligible, for transitions between the outermost s-hole and outer-
most p-hole states. The value of the many-·electron matrix element cannot
be much -different from the active-elec·tron approximation value unless the
minors DIF(k.11.e, defined in Eqs. (33) and (34), are considerably different
from one or zero.. This condition is met. for the former.transitions, but
not for the latter, where the orbitals of the initial and final states are too
similar.

Note that the value of S(M) IF obtained using the many-electron ex-
-

pres5ion for the matrix element is ofted larger than that obtained using :the
active-elec·tron approximation...It has been suggested(7.7.,78) that the correct
evaluation of the matrix element simply corrects the active-electron approx-
imation for overlap effects.  If this were true, then the many-electron ex-
pression for the matrix element would always give a smaller result than
the active-electron approximation since overlap effects always introduce
a factor less than one. In several cases, transition integrals between or-
bitals other thin the transition integ·ral of the active-electron approximation
must make significant contributions to the value of the matrix element.  The
best examp,le of this is the  l s-hole ·-+ 3p-hole transition of Ar+., where the
value of dipole length form of S(M) IF using the many-electron matrix ele-
ment-is ·30% larger than value in the active electron approximation.

In discussing the use of the length, velocity, and acceleration forms
of the dipole matrix element,·we will consider only the cases ·where the
matrix element is .evaluated between the many-electron SCF functions of
the initial and final states.  That is, of the values of S(M) IF in Table XX,
only the values in the·first row of each trans·ition will be compar·ed.

The values ·of the length and velocity forms of S(M)IF are always at
least in reasonable, if not necessarily good, agreement.  In the worst case,
the Zs-hole -* 2p-hole transition of Ar+, the velocity form of S(M)IF is
30% smaller than·the length form.

The acceleration form of S(M)IF often has absurd values.  For sev-
eral transitions, the acceleration for'm 'of S(M)IF is larger than ·the length
and velocity forms by a factor of betwden 100 and 1000;.and for one transi-

tion, .the s·ign of the acceleration form of. the matrix element, Eq. (44b),.is
.
.:

W



72

different from the signs  of the length and velocity forms of the matrixeleme'nt,
Eqs.  (30) and (44a). However, for transitions from 1 s-hole states, the ac-
celeration form of S(M)IF is in ·good agreement with the length and velocity
forms.  For the ls-hole -, 2p-hole transition of Ne+ and the, ls-hole - 3p-
hole transition of Ar+, the difference between the length and acceleration
forms of S(M)IF is,.in fact,. less than·.the. difference between the length and
velocity forrns.

When the agreement between the length and acceleration forms of
S(M)IF is.:good, the important one-electron transition integrals are between
orbitals with simple structure. The orbitals involved either have no radial
nodes  (i.e.,ls  and 2p),  or the contribution to ·the value  of the integral from
the region around and past the radial node is -small (i.e., 1sand 3p).  When
the important, one-electron transition integrals are betwe·en orbitals whose
nodal structure is important in deterrnining the value ·of the integral, the
acceleration  form of S(M) IF has.poor value s.

For transitions between outer-shell hole states, one might consider
using some screened, effective, nuclear charge, Zeff, for the acceleration
form of the dipole transition matrix element. In place  of Eq.  (44b),  the
expression

-

-I = <TIll[Zeff/( bEIF)2]22(k)/r.(k)31 .-TF> (47)

would be used.  For the 3 s.-hole -+ 3p-hole transition of Art, Zeff = 0.7would be required to bring the length and acceleration forms of S(M) IF into
agreement; for the 2 s-·hole - .2p-hole transition of Ne+, Zeff =  1 would berequired. However, a· reasonable value of Zeff for these cases, based on
arguments about the screening of the nuclear charge by the electron charge
distribution (e.g., Slater's rules)'.mus·t be Zeff 2 2.  Thus,.even the use of
a Zeff will not give good values for the acceleration form of S(M)IF·

The length form of the dipole. transition matrix clcment has the
advantage of being less :sensitive .than the velocity or acceleration forms
to the precise shape ·of the approximate wave functions. The velocity OP-
erator involves derivatives ·of the orbitals, and the acceleration operator

Dvaries strongly and weighs different regions ·of r very differently.  From
these ·considerations, it would seem best to use the length form of the
matrix element to evaluate S(M)IF·

Chandrasekhar<79) has pointed out that' larger values ·of  r  are more
important for the evaluation of the length form of the.dipole matrix element
than for the evaluation  of the total energy; ,c.onversely, smaller value s  of
r are more important for the evaluation of the acceleration form of the
matrix element than for the evaluation of the energy. Thus, Chandrasekhar
suggests that the v&locity form.of the matrix -element is ·the most suitable
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form when the wave functions used have been obtained from an application
of the variational principle.

He used the three forms of the matrix element for the calculation
of transitions from the ground state to continuum states of the H- ion.
The use of the velocity form of the matrix element did, indeed, give better         -
results.   But, 6- and 12-term Hylleraas-type functions were us·ed for the
ground- state wave function  of  H-.    The se functions are considerably  more
accurate than HF functions, and the conclusion above may not apply when

'              HF wave ·functions are used to evaluate the transition matrix elements.

o                    Weiss(80) has calculated oscillator strengths for several transitions
of helium. He compared the results,  for both the length· and velocity forms
of the matrix element, obtained by using HF functions and by using the more
accurate Hylleraas-type functions.  For all but three of these transitions,
when HF wave ·functions were used, the value obtained with the length form
of the matrix element was more accurate than that obtained with the veloc-
ity form. For two·transitions, the us·e of the velocity form of the matrix
element gave very poor results, while ·the ·results obtained with the length
form were quite accurate.  In the three cases in which the use of the ve-
locity form of the matrix element gave better results, both the length and
velocity forms  gave good results;  in  the se ·cases, the largest difference
between the results obtained using ·the length and velocity forms with the
HF wave functions was le.ss than 5%. Bates and Damgaard(71) have corn-
pared the length and velocity forms of the multiplet strength, calculated
using HF functions, with experimental values for several transitions of
lithium and sodium.  In all the cases they conside red, the length form of
the multiplet strength, although it ·sometimes.gave poor values,  was in
better agreement ·with experiment than the velocity form. These calcula-
tions would  seem to bear out the expectation ·that the  us·e ·of the length form
of the matrix element,  when HF wave func·tions  are  us·ed., · will give ·more
reliable re sults .than the  use  of the  velocity  form.

The simple bas·is set SCF functions, given in Tables V-VIII, have
also been used to calculate S(M)IF· The agreement between the values
obtained using the accurate-set SCF functions  and the simple   set  SCF  func -
tions ·is quite good,   For ·the length form of S(M) IF, the differences between
the values obtained using ·the simple and accurate ·set func·tions are ·never
larger than 0.35%; for the veloc·ity form of S(M) IF, the differences are

+                  never larger than 0.10%. The greatest differences between·the simple set
and ac·c·urate set SCF orbitals are at the tails of the orbitals ·(c.f., Tables IX-
XII).  It is not surprising, then, that the differences for the velocity form
of S(M) IF are s6rnetimes less than th6 se for the length form.  For the ac-
celeration form of S(M)IF,. the differences are somewhat larger than for
the length and velocity forms, but only for the 2p-hole - 3·s-hole transitions
of Cl, Art, and K++.is ·the agreement rather poor.
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Varsavsky,(47) using a method based on screened nuclear charges,
gives values of S(M)IF for a large number of ultraviolet transitions.
Varsavsky' s values  and the values obtained from this calculation are  corn-
pared in Table XXI. The values of S(M) IF given for this calculation are
taken from Table XIX. Varsavsky' s values are all approximately twice as
large as the values of this calculation. It seems likely that he made an
error of a factor of 2 in calculating S(M) IF from the value of the radial
integral  f  P(I)r P(F) dr. The values of S(M)IF are, as usual, in atomic

Jo np ns
units.

e

TABLE XXI. Comparison of S(M) IF with Calculations
by Varsavsky (Values of S(M)IF are in a.u.)

2 s-hole - 2p-hole

F Ne+ Na++

This calculation 2.065 1.463 1.086

Varsavsky* 5.011 2.991 1.977

3 s-hole -* 3p-hole

Cl Ar+ K++

This calculation 5.36 4.14 3.30

Varsavsky* 11.53 8.30 6.23

*See Ref. 45.

Experimental data for the absolute or relative intensities of the
X-ray lines computed here have not been found. However, a calculation of

r  -), the radiative width  of  the  1 s-hole state  (or K state), can provide  a
comparison with experiment.

For the argon-like ions,  l s-hole + 2p-hole (Ka) and the ls-hole - 3p-
hole (K ) transitions make the most important contributions to r  R). Allother transitions from the  1 s-hole state involve at least double excitations
(e.g., ls2s22p63s23p6 -* ls22s22p63s3p5ns, n 2 4) and are much less probable. ./

The value of I' '  for argon has been calculated using the values of
S(M) IF given in Table XIX, the experimental values for the energies of the
Kaand K  emission lines(62) [LE(Kai) = 108.70 Hartrees, AE(Kaj =
108.62 Hartrees, and AE(K#1) - 117.26 Hartrees], and the relations of
Eqs. (38-40). The value is found to be I' R) = 0.0835 eV. The K-shell
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fluorescence yield for argon, as determined by Watanabe, Schnopper, and
Cirillo,(81)  is aK  =  0·140  + 0.014.   From Eq.  (42), a value of the total width.
of the K-state  rK =  0·60 + 0.06 eV is obtained. The, uncertainty in FK is
taken entirely from the uncertainty in the value of SK· Table XXII compares

this value of I'K and values obtained directly from experimental data on
X-ray emission and absorption by Watanabe(80) and by Deslattes.(52)  The
value which we have obtained is, within experimental uncertainties, in agree-
ment with the 'experimental values.

TABLE XXII. A Comparison of
Several Values of rK for Argon

-

Author rK  (ev)

Present Work 0.60 + O.06

Watanabe * 0.68 + 0.03

Deslattes** 0.70 + 0.05

*See Ref. 78.

**See Ref. 50.

.
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