Argonne Mational Laboratoru

> SCF EXCITED STATES AND
> TRANSITION PROBABILITIES OF SOME NEON-LIKE AND ARGON-LIKE IONS

by

Paul S. Bagus

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Printed in USA. Price $\$ 3.00$. Available from the Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards,
U. S. Department of Commerce, Springfield, Virginia

ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60440

SCF EXCITED STATES AND TRANSITION PROBABILITIES OF SOME NEON-LIKE and ARGON-LIKE IONS
by
Paul S. Bagus

Solid State Science Division

October 1964

This Work Provided the Basis for a
Thesis Submitted to the Department of Physics, The University of Chicago in Partial Fulfillment of the Kequirements for the Degree of Doctor of Philosophy

Operated by The University of Chicago
under
Contract W-31-109-eng-38
with the
U. S. Atomic Energy Commission

ARGONNE NATIONAL LABORATORY
 9700 South Cass Avenue
 Argonne, Illinois 60440

ERRATUM
for
ANL-6959

SCF EXCITED STATES AND TRANSITION PROBABILITIES OF SOME NEON-LIKE AND ARGON-LIKE IONS
by

Paul S. Bagus

```
Page 44, second group, first line, last column, 0.1454 should read 0.1545 ; for \(\mathrm{Ne}^{+}\left({ }^{2} \mathrm{~S}\right)\) ls-hole the \(\langle\mathrm{r}\rangle_{1 \mathrm{~s}}=0.1545\).
```


TABLE OF: CONTENTS

Page

ABSTRACT 7
I. INTRODUCTION 7
II. THEORY 9
III. DETAILS OF THE CALCULATION OF THE SCF WAVE FUNCTIONS 15
IV. RESULTS AND DISCUSSION OF SCF CALCULATIONS 21
A. The SCF Wave Functions 21
B. Accuracy of the SCF Wave Functions 31
C. Properties of the SCF Wave Functions 43
D. Validity of the Exponent Variation Procedure for Excited States 46
E. Effect of the Off-diagonal Lagrangian Multipliers. 47
F. Comparison of SCF Ionization Potentials with Experiment 51.
G. Anomalous Behavior of the Correlation Energy 59
V. TRANSITION PROBABILITIES BETWEEN THE SCF WAVE FUNCTIONS 62
A. Theory 62
B. Results of the Dipole Transition Probability Calculations 66
ACKNOWLEDGMENTS 76
REFERENCES 77

LIST OF TABLES

No. Title Page
I. SCF Orbitals and Energies for F^{-}, Ne , and Na^{+}, and $\mathrm{n} \ell$-hole States of $\mathrm{F}^{-}, \mathrm{Na}$, and Na^{+}, Accurate Basis Sets 22
II. SCF Orbitals and Energies for Cl^{-}and $\mathrm{n} \ell$-hole States of Cl^{-}, Accurate Basis Sets 23
III. SGF Orhitals and Energies for Argon and nb-hole States of Argon, Accurate Basis Sets 24
IV. SCF Orbitals and Energies for K^{+}and $\mathrm{n} \ell$-hole States of K^{+}, Accurate Basis Sets 25
V. SCF Orbitals and Energies for $\mathrm{F}^{-}, \mathrm{Ne}$, and Na^{+}and $\mathrm{n} \ell$-hole States of $\mathrm{F}^{-}, \mathrm{Ne}$, and Na^{+}, Simple Basis Sets 26
VI. SCF Orbitals and Energies for Cl^{-}and $\mathrm{n} \ell$-hole States of Cl^{-}, Simple Basis Sets 27
VII. SCF Orbitals and Energies for Argon and $\mathrm{n} \ell$-hole States of Argon, Simple Basis Sets 28
VIII. SCF Orbitals and'Energies for K^{+}and $\mathrm{n} \ell$-hole States of K^{+}, Simple Basis Sets 29
IX. Comparison of Several Hartree-Fock Calculations of Neon 34
X. Comparison of Several Hartree-Fock Calculations of F^{-} 35
XI. Comparison of Several Hartree-Fock Calculations of Argon 36
XII. Comparison of Several Hartree-Fock Calculations of Cl^{-} 38
XIII. Expectation Values of r and r^{2} for $\mathrm{F}^{-}, \mathrm{Ne}$, and Na^{+}and $\mathrm{n} \ell$-hole States of $\mathrm{F}^{-}, \mathrm{Ne}$, and $\cdot \mathrm{Na}^{+}$ 44
XIV. Expectation Values of r and r^{2} for $\mathrm{Cl}^{-}, \mathrm{Ar}$, and K^{+}and $\mathrm{n} \ell$-hole States of Cl^{-}, Ar, and K^{+} 45
XV. Overlap Integrals between Total SCF Wave Functions of the n ℓ-hole States 46

LIST OF TABLES

No. Title Page
XVI. Off-diagonal Lagrangian Multipliers for the nl-hole States of Argon and Neon. 49
XVII. Effect of Neglecting the Off-diagonal Lagrangian Multipliers for the $\mathrm{n} \ell$-hole States of Argon and Neon 52.
XVIII. Comparison of SCF and Experimental Ionization
Potentials for the $\mathrm{n} \ell$-hole States of $\mathrm{F}^{-}, \mathrm{Ne}, \mathrm{Na}^{+}$, $\mathrm{Cl}^{-}, \mathrm{Ar}$, and K^{+} 53
XIX. Total Absolute Multiplet Strengths $S(M)_{\text {IF }}$ for Transitions between the $\mathrm{n} \ell$-hole States of $\mathrm{F}^{-}, \mathrm{Ne}, \mathrm{Na}^{+}, \mathrm{Cl}^{-}, \mathrm{Ar}$, and K^{+}. 67
XX. Total Absolute Multiplet Strengths $\mathrm{S}(\mathrm{M})_{\text {IF }}$ Using Several
Approximations for the Dipole Transition Matrix Element. 69
XXI. Comparison of $S(M)_{\text {IF }}$ with Calculations by Varsavsky 74
XXII. A Comparison of Several Values of Γ_{K} for Argon 75

SCF EXCITED STATES AND
 TRANSITION PROBABILITIES OF
 SOME NEON-LIKE AND ARGON-LIKE IONS

by
Paul S. Bagus

Abstract

Analytic self-consistent field (SCF) wave functions were computed for the ground states of the closed-shell atomic systems $\mathrm{F}^{-}, \mathrm{Ne}, \mathrm{Na}^{+}$; and Cl^{-}, Ar, and K^{+}, and for those ground and excited states of the open-shell systems that are obtained by removing a single electron from any one of the occupied shells of these closed-shell systems. Details of the calculation of the functions are presented with emphasis on a justification of the procedures used for the calculations for excited states. A high accuracy is obtained; the calculations for the closed-shell systems give the most accurate analytic SCF wave functions that have yet been reported. Ionization potentials are calculated and compared with experimental values. Computed ionization potentials for the removal of a 2 s electron from Cl^{-}, Ar, and K^{+}, for which no direct experimental data are available, are estimated to be accurate to within 1%. It is found that the removal of an electron from the outermost s shell increases the correlation energy, in contradiction to the predictions of a recently proposed semi-empirical scheme for estimating the correlation energy. For example, the magnitude of the correlation energy of the lowest ${ }^{2} \mathrm{~S}$ state of Ar^{+}is $\sim 4 \mathrm{eV}$ greater than the magnitude of the correlation energy of neutral argon. The effect of the nonzero off-diagonal Lagrangian multipliers is considered and found to be important for the inner-shell hole states. The SCF functions have been used to compute dipole transition probabilities for photon emission. The transition probabilities are computed in several different ways to examine the effects of various approximations. In particular, the results obtained using length, velocity, and acceleration operators are compared. The calculated radiation width for the K-state of argon is corrbined with an experimental value of the K -fluorescence yield to obtain a value of the total K -state width in agreement with experiment.

I. INTRODUCTION

In this paper, analytical self-consistent field (SCF) functions are presented for the ground states of the closed-shell atomic systems F^{-}, $\mathrm{Ne}, \mathrm{Na}^{+}, \mathrm{Cl}^{-}, \mathrm{Ar}$, and K^{+}, and for those ground and excited states of the
open-shell systems that are obtained by removing a single electron from any one of the occupied shells of these closed-shell systems. Specifically, we present SCF functions for the $1 s^{2} 2 s^{2} 2 p^{5} ; 1 s^{2} 2 s 2 p^{6}$, and $1 s 2 s^{2} 2 p^{6}$ configurations of $\mathrm{F}, \mathrm{Ne}^{+}$, and Na^{++}, which, for convenience, we refer to as the
 the $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}, 1 s^{2} 2 s^{2} 2 p^{6} 3 s 3 p^{6}, 1 s^{2} 2 s^{2} 2 p^{5} 3 s^{2} 3 p^{6}, 1 s^{2} 2 s 2 p^{6} 3 s^{2} 3 p^{6}$, and $1 \mathrm{~s} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$ configurations of $\mathrm{Cl}, \mathrm{Ar}^{+}$, and K^{++}, which we refer to as the
 emission and absorption phenomena. They are also useful, for example, for calculating the effect of the electronic charge distribution on electron capture by the nucleus. (1)

Several properties of the wave functions have been calculated. Expectation values of r and r^{2} are given for the SCF orbitals and overlap integrals between total wave functions not orthogonal by symmetry. In the final section of this paper, dipole transition matrix elements between the wave functions are presented.

The SCF wave functions were calculated using the Roothaan analytic expansion method. This method was developed first for closed-shell systems and then extended to a large class of open-shell systems. In its present form, the method will treat a system with any number of open shells, provided there is at most one open shell for each one-electron symmetry species. $(2,3,4)$

Extensive investigations have led to the development of reliable and accurate numerical techniques to implement the application of the analysis. These techniques have been incorporated into computer programs, written for the IBM 704, 7090, and 7094, for the calculation of atomic SCF wave functions. (4)

Many SCF calculations have been performed, using the Roothaan analysis, with the goal of obtaining accurate representations of the Hartree-Fock functions. (5-9) However; these functions have been for ground or low-lying excited states. The functions presented here are the first analytic SCF calculations for X-ray excited states of atomic systems. To our knowledge, the only numerical Hartree-Fock calculations for such states that correctly take exchange into account are those of Sureau and Berthier on aluminum. (10)

II. THEORY

In the Roothaan expansion method, the SCF orbitals $\phi_{i} \lambda \alpha$, omitting spin, are given in terms of basis functions $\chi_{p, \lambda \alpha}$ by

$$
\begin{equation*}
\phi_{i \lambda \alpha}=\Sigma_{p} \chi_{p, \lambda \alpha} C_{i \lambda, p} . \tag{1}
\end{equation*}
$$

Here λ labels the symmetry species, and α the subspecies; for atoms, these are usually denoted by ℓ and m. The principal quantum number is represented by i, and p labels different basis functions of the same symmetry. The complete spin-orbital is given by

$$
\begin{equation*}
\psi_{i \lambda \alpha s}=\phi_{i \lambda \alpha} \eta_{s} \tag{2a}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta_{\mathbf{s}}=\alpha, \text { or } \eta_{\mathrm{s}}=\beta \tag{2b}
\end{equation*}
$$

The set of basis functions used in an expansion SCF wave function is referred to as the basis set of the function.

The notation used in Eqs. (1) and (2) is that adopted by Roothaan. ${ }^{(3,4)}$ Since only atomic systems are considered in this paper, the standard notation for atomic orbitals, $n \ell m$, will be used, hereafter, in place of Roothaan's more general notation, $i \lambda \alpha$.

For atomic calculations, the basis functions are given by

$$
\begin{equation*}
\chi_{p, \ell m}(r, \theta, \phi)=R_{\ell p}(r) Y_{\ell m}(\theta, \phi), \tag{3}
\end{equation*}
$$

where $Y_{\ell m}(\theta, \phi)$ are normalized spherical harmonics, and the radial functions $\mathrm{R}_{\ell \mathrm{p}}(\mathrm{r})$ are normalized nodeless Slater-type orbitals (STO's); namely,

$$
\begin{equation*}
\left.\mathrm{R}_{\ell \mathrm{p}}\left(\mathrm{r}^{; \mathrm{n}_{\ell \mathrm{p}}}{ }^{\prime} \zeta_{\ell \mathrm{p}}\right)=\left[\left(2 \mathrm{n}_{\ell \mathrm{p}}\right)!\right]^{-\frac{1}{2}\left(2 \zeta_{\ell \mathrm{p}}\right.}\right)^{\mathrm{n}_{\ell} \mathrm{p}^{+\frac{1}{2}} \mathrm{r}^{\mathrm{n}} \ell \mathrm{p}^{-1} \mathrm{e}^{-\zeta_{\ell \mathrm{p}}^{\mathrm{r}}}} \tag{4}
\end{equation*}
$$

The integer $n_{l}{ }_{p}$ is called the principal quantum number of the basis function, and $\zeta_{\ell p}$ the orbital exponent. Care should be taken not to confuse the two different uses of "principal quantum number." The principal quantum number of an orbital is the label that distinguishes that orbital from other orbitals of the same symmetry species and subspecies. The principal quantum number of an STO is merely a flexible parameter of a basis function. For example, in our calculations on argon, the ls orbital is expanded in terms of $1 \mathrm{~s}, 2 \mathrm{~s}$, and 3 s STO's.

The choice of Slater-type orbitals for the radial functions $R_{\ell p}(r)$ is physically reasonable, and the computation of necessary integrals between STO's is simple (at least for atoms): Several expansion SCF calculations have been made on atomic systems with the goal of obtaining accurate functions using small basis sets of STO's. The results of the se calculations agree quite well with Hartree-Fock (HF)* functions obtained by direct numerical integration.(9)

The many-electron wave function is constructed from one Slater determinant, or a linear combination of a few Slater determinants, of the occupied SCF orbitals. The combination is made so that the wave function is an eigenfunction of ${\underset{\sim}{\sim}}^{2},{\underset{\sim}{S}}^{2}, L_{z}$, and S_{z}. (Methods for constructing eigenfunctions of angular momentum from Slater determinants are contained in Refs. 11 and 12.) The wave function is also an eigenfunction of the inversion operator and has a definite parity. The variational principle is applied to obtain equations for the coefficients $C_{n \ell, p}\left[C_{i \lambda, p}\right.$ in Eq. (1)]. These equations are then solved without further approximation. In particular, the off-diagonal Lagrangian multipliers, that couple equations for open- and closed-shell orbitals of the same symmetry are treated properly. (Procedures that treat the off-diagonal Lagrangian multipliers in an approximate way are contained in Refs. 13 and 14). It will be demonstrated in the discussion of the results that neglect of the off-diagonal Lagrangian multipliers significantly affects the SCF functions of certain excited states.

Equations (1), (2), and (3.) place certain restrictions on the form of the SCF orbitals that should be stated explicitly. Equation (2) requires that the spin-orbital be factored into a product of a spatial function and a spin function. Equations (1) and (3) introduce the central field approximation by requiring that the orbital be factored into a product of a radial function and a spherical harmonic. A further consequence of Eqs. (1) and (3) is that all the electrons of a given shell have the same radial function. Thus, $\phi_{n l m}$ may be written as**

$$
\begin{equation*}
\phi_{\mathrm{n} \ell \mathrm{~m}}(\mathrm{r}, \theta, \phi)=\mathrm{F}_{\mathrm{n} \ell}(\mathrm{r}) \mathrm{Y}_{\ell \mathrm{m}}(\theta, \phi), \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{n \ell}(r)=\Sigma_{p} R_{\ell p}(r) C_{n \ell, p} \tag{6}
\end{equation*}
$$

[^0]These orbitals are symmetry-adapted; i.e., they form bases for irreducible representations of the symmetry group of the (atomic) Hamiltonian. (For a discussion of the symmetry problem in the HF scheme, see Ref. 15.)

An additional requirement is that the occupied SCF orbitals form an orthonormal set,

$$
\begin{equation*}
\left\langle\phi_{\mathrm{n} \ell \mathrm{~m}} \mid \phi_{\mathrm{n}}{ }^{\prime} \ell^{\prime} \mathrm{m}^{\prime}\right\rangle=\delta_{\mathrm{n} \ell \mathrm{~m}, \mathrm{n}^{\prime} \ell^{\prime} \mathrm{m}^{\prime}} . \tag{7a.}
\end{equation*}
$$

Because the orbitals are symmetry-adapted, this reduces to the requirement that

$$
\begin{equation*}
\int_{0}^{\infty} F_{n \ell}^{*}(r) F_{n^{\prime} \ell \ell}(r) r^{2} d r=\delta_{n, n^{\prime}} \tag{7b}
\end{equation*}
$$

In matrix notation, Eq. (7b) becomes

$$
\begin{equation*}
{\underset{\sim}{n} \ell}_{\dagger}^{\dagger} \underset{\sim}{S} \underbrace{C}_{n} n^{\prime} \ell=\delta_{n, n^{\prime \prime}} \tag{7c}
\end{equation*}
$$

where ${\underset{\sim}{n} \ell}$ is a vector that collects the coefficients $C_{n \ell, p}$, and ${\underset{\sim}{\sim}}^{S_{\ell}}$ is the overlap matrix of basis functions of symmetry species l,'

$$
\begin{equation*}
S_{l \mathrm{pq}}=\int_{0}^{\infty} \mathrm{R}_{\ell \mathrm{p}}(\mathrm{r}) \mathrm{R}_{\ell \mathrm{q}}(\mathrm{r}) \mathrm{r}^{2} \mathrm{dr} \tag{8}
\end{equation*}
$$

In the numerical HF procedure, no assumption is made about the form of the radial function $F_{n}(r)$. The variational principle is applied for arbitrary variations of the radial functions, subject to the constraint that they form an orthonormal set, and integro-differential equations for the $F_{n} \ell^{\prime s}$ are obtained. $(2,3)$ (Reference 16 presents an excellent review of numerical Hartree-Fock procedures. Reference 17 discusses the applications of numerical techniques to high-speed digital computers.)

The solutions of the integro-differential equations satisfy the cusp condition, $(18,19)$

$$
\begin{equation*}
\left[\left(1 / f_{\mathrm{n} \ell}\right)\left(\mathrm{df}_{\mathrm{n} \ell} / \mathrm{dr}\right)\right]_{\mathrm{r}=0}=-\mathrm{z} /(\ell+1), \tag{9a}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{\mathrm{n} \ell}(\mathrm{r})=\mathrm{r}^{\ell_{\mathrm{f}}} \mathrm{n}(\mathrm{r}) \tag{9b}
\end{equation*}
$$

The cusp condition may be used as a criterion for the accuracy of an expansion SCF orbital near the origin. Moreover, an orbital with a poor cusp value may be a poor representation of an exact HF orbital; not only in the region $r \rightarrow 0$, but also over the entire range of the function. The cusp condition is a necessary but not a sufficient condition that the orbital be a solution of the HF equations. A basis set can be chosen so that an expansion SCF orbital will satisfy the cusp conditions exactly; (8) however, the orbital may still be a poor approximation of the exact HF orbital.

The total Hamiltonian operator \mathscr{F} for an atomic system may be written, in atomic units, as

$$
\begin{equation*}
\mathscr{F}=\mathscr{O}+\mathscr{Y}, \tag{10a}
\end{equation*}
$$

where

$$
\mathscr{O}=\Sigma_{\mathrm{i}}\left(\begin{array}{ll}
-\frac{1}{2} & \Delta_{\mathrm{i}} \tag{10b}
\end{array}\right),
$$

and

$$
\mathscr{V}=-\Sigma_{i}\left(Z_{i} / r_{i}\right)+\dot{\Sigma}_{i<j}\left(l / r_{i j}\right) .
$$

This Hamiltonian is valid for a system with nonrelativistic Coulomb interactions and an infinitely heavy nucleus.

If Ψ is an exact eigenfunction of \mathcal{F} for any bound state, then the virial theorem,

$$
\begin{equation*}
\langle\Psi| \mathscr{O}|\Psi\rangle \mid\langle\Psi| \mathscr{O}|\Psi\rangle=-2 \tag{11}
\end{equation*}
$$

is satisfied. If Ψ is an approximate eigenfunction which contains a variable scale factor k such that $\Psi\left(x_{1}, \ldots, x_{n}\right)=\Psi^{\prime}\left(k x_{1}, \ldots, k x_{n}\right)$, and k has been chosen to satisfy $(\partial / \partial \mathrm{k})(\langle\Psi||\mathscr{F}| \Psi\rangle\rangle\langle\Psi| \Psi\rangle)=0$, then this approximate Ψ also satisfies Eq. (11). (20)

Exact $H F$ functions satisfy the virial theorem since arbitrary variation of the radial part of the orbitals includes, implicitly, variation of a scale factor. Expansion SCF functions for an arbitrary basis set will not, in general, satisfy the virial theorem. If, however, variation of the exponents, as well as the linear coefficients, is performed, the virial theorem will be satisfied when all parameters have been optimized. Hence, for expansion SCF functions, the virial theorem is a necessary, but by no means sufficient, condition that an optimum basis set (in the sense of satisfying variational equations) has been used.

Let $\{\Psi(a)\}$ be a set of trial functions, where the index a distinguishes different members of the set from which we wish to choose an approximate wave function for some state of a system. The index a may represent a set of variable parameters, any one of which may be discrete or continuous. Let $\Psi(A)$ be chosen from the set $\{\Psi(a)\}$ as the solution of equations determined from application of the variational principle; i.e., $\Psi(A)$ satisfies

$$
\begin{equation*}
\delta_{\mathrm{a}}[\langle\Psi(\mathrm{a})| \mathscr{F}|\Psi(\mathrm{a})\rangle /\langle\Psi(\mathrm{a}) \mid \Psi(\mathrm{a})\rangle]=0 \tag{12}
\end{equation*}
$$

If $\Psi(\mathrm{A})$ is an approximate wave function for the ground state of the system or for the lowest excited state of a symmetry (if the trial functions $\Psi(a)$ are symmetry-adapted), then $\Psi(A)$ is the best function possible for the restricted form of the trial functions - best in the sense that the expectation value of the energy for $\Psi(A),\langle\Psi(A)| \mathscr{F}|\Psi(A)\rangle=E(A)$, is more nearly equal to the true energy eigenvalue $E(t)$ than the expectation value of the energy for any of the other trial functions $\Psi(a)$. Moreover, $E(A) \geq E(t)$, and, if $E(A)=E(t)$, then $\Psi(\mathrm{A})$ is the true eigenfunction. $(20,21)$

This is not true for excited states that are not the lowest states of a symmetry unless the trial functions $\{\Psi(a)\}$ are constrained to be orthogonal to the exact eigenfunctions of all states of lower energy. The imposition of this constraint is, of course, not possible in general since the exact eigenfunctions of the lower states are not known. One procedure would be to require trial functions for excited states to be orthogonal to approximate wave functions for lower states. In the calculation of excited-state SCF functions, this is: not done; no explicit requirement of orthogonality to lower SCF states is made. ${ }^{(8)}$

We rely on the physical model of the choice of the form of the SCF excited-state wave function to guarantee near-orthogonality to the SCF wave functions for lower-lying states. This physical model is, of course, the orbital or shell structure of the atom. Indeed, the only constraint that is imposed to obtain an excited-state, rather than a ground-state, wave function is the specification of the electronic configuration. For a ls-hole state, for example, the HF operators are constructed on the assumption that the ls orbital is occupied by only one electron. Eigenvectors of the HF operators are obtained and iterations are performed in the usual way until the condition of self-consistency is met; but the assumption that the 1 s orbital is singly occupied is maintained throughout the process. The singly occupied ls orbital is chosen at each iteration to be the eigenvector (of the appropriate HF operator) with the lowest orbital energy. This choice is easily justified by the fact that the orbital so chosen is the occupied orbital that is most similar to a hydrogenic ls orbital.

The HF operators are functions of the electron density. The electron density of a complex atom does not change drastically in going from ground to
excited states. Thus, the HF operators for ground and excited states are not drastically different, and SCF wave functions for excited states are very nearly orthogonal to SCF wave functions for lower states. The 3s-hole state of argon is the lowest ${ }^{2} \mathrm{~S}$ state of Ar^{+}; the ls-hole state, a very highly excited ${ }^{2}$ S state, lies about 3000 eV above the 3 s-hole state. Even for this extreme case, the overlap integral between the many-electron SCF wave functions for these two states, $\left\langle\Psi \Psi_{S C F}{ }^{(1 \text { s-hole })}\right| \Psi_{S C F}(3 \mathrm{~s}$-hole $\left.)\right\rangle$, is 5×10^{-4}. The requirement that the 1 shole $S C F$ wave function be orthogonal to the 3 s -hole SCF wave function would produce only a very small change in the ls-hole wave function. Further, since the 3 s -hole SCF wave function is only an approximate eigenfunction, we do not know whether the constraint of orthogonality would improve or worsen the ls-hole wave function.
Overlap integrals between many-electron SCF wave functions for all those states, presented in this paper, that are not orthogonal by symmetry are given in Table XV. [M. Cohen and A. Daglarno (22) and D. Layzer ${ }^{(23)}$ have investigated the overlap of SCF excited states of the same symmetry using expansions of SCF wave functions in powers of $1 / Z$ and find that the overlap is zero to order (l/Z) ${ }^{2}$.]

For a certain class of excited-state SCF wave functions, it is possible to state easily tested conditions that must be fulfilled in order that the SCF energy be an upper bound to the true energy of the state. (24)

III. DETAILS OF THE CALCULATION OF THE SCF WAVE FUNCTIONS

To obtain analytic SCF orbitals that are good approximations to the exact orbitals, it is necessary to use a basis set that very nearly spans the true HF manifold. It is perhaps possible to do this by using large, more or less arbitrarily chosen, basis sets, but if this is done, several difficulties arise. Numerical processes that work well for basis sets of reasonable size become troublesome, and round-off error becomes important when large/basis sets are used. Long expansions of atomic functions are poor starting points for molecular and solid-state calculations, while short expansions have proved to be excellent starting points for molecular SCF calculations. (25) By using large basis sets, one loses much of the advantage of simplicity that the analytic representation of SCF functions has over numerical tables of orbitals. For large atomic systems, the finite size of the computer becomes an important limiting factor on the size of the basis set.

For these reasons, we have used basis sets of limited size, making a careful choice of the exponents and principal quantum numbers of the STO's in order to minimize the total SCF energy. Particular emphasis is placed on varying the exponents to find optimum values. This variation is performed automatically by the computer program. (4) Our method of exponent variation is to perform several complete SCF calculations for different values of the exponents and to interpolate between these values.

While we do not explicitly solve variational equations for the exponents with this method, we do obtain a stationary value of the expectation value of the energy with respect to the exponents. The particular stationary value that we obtain is a minimum. Explicit variational equations for the exponents as well as the linear coefficients $C_{n \ell, p}$ have been given by Dehn. (26) The equations for the exponents appear to be difficult to solve. One important problem is that the basis functions used to represent an SCF orbital (to a given accuracy) are by no means uniquely determined. 27,28) Our brute-force variation of the exponents has proved to be a quite satisfactory procedure.

When basis sets of limited size are used, it is important to build up the basis set sy.stematically to the final, accurate set. The initial calculation for a state should be made with a rather small basis set. This set can give only a crude approximation to the exact HF wave function, but for a small set it is easy to find the optimum values of the principle quantum numbers and exponents. This gives a first or base reference point for more accurate calculations on the state. Additional exponents are then introduced, usually one at a time, and the exponents reoptimized. It is not sufficient to optimize only the exponents of the new basis functions; the exponents of old functions must also be adjusted when a new function is added. In this way, it is possible to gauge the "need" for the
new basis function, and to make an educated guess about the "need" for an additional basis function. The intermediate sets, formed in this build-up process, are often useful in themselves.

Because of the many SCF calculations involved in the optimization of the basis set, the experience gained in the calculation of one state must be applied to the calculation of similar states of the same or neighboring atoms. Linear extrapolations and interpolations of the exponents for states already computed provide good approximations to the optimized exponents of a nearby state. This is particularly true for smaller basis sets, since for these sets the optimum values of the exponents are well-defined. For larger basis sets, where several different sels of values of the exponents will give functions with the same total energy, the interpolated and extrapolated values provide a good starting point for exponent variations that lead to the optimized values.

Thus the calculation of the functions of a series of states must be done systematically, and the function for each state must not be computed as a separate problem. This systematic procedure will also uncover errors in optimization of basis sets. If an extrapolation or interpolation to a neighboring state fails to work well, one has excellent reason to suspect an error in one of the previously computed states. While the calculation of the SCF wave function for a single state is laborious and time-consuming, the calculation of wave functions for a series of states is fairly economical.

It will be useful, for the following discussion, to introduce the notion of a loop of an orbital. A hydrogenic radial function with quantum numbers $\mathrm{n} \ell$ has $\mathrm{n}-\ell-1$ nodes and $\mathrm{n}-\ell$ loops between these nodes and the points $r=0$ and $r=\infty$. Similarly, the HF radial function $F_{n}(r)$ generally has n - $\ell-1$ nodes and n - ℓ loops. The contributions to the HF operator of exchange terms and off-diagonal Lagrangian multipliers will introduce, in exceptional cases, extra nodes and loops near the tail of the orbital;* but the function is very small in these loops, and for this discussion they may be ignored. For HF orbitals of a particular state of a system, the ls orbital and the inner loops of the 2 s and 3 s orbitals, in a rough sense, occupy the same region of space. Similarly, the outer loop of the 2 s , orbital and the middle loop of the 3 s orbital occupy the same region of space. Thus, for a given state of a system, the $n^{\text {th }}$ loops of HF orbitals of the same symmetry roughly define a distinct range of values of r. The range is rather well-defined, except for an outer loop. The outer loop of an orbital always has a long "tail" going slowly to zero. This division of r into distinct ranges permits us to consider groups of basis functions, where each group is chosen to fit a particular loop.

[^1]The computer program used for the SCF calculations has facilities for the coupled variation of the exponents of one, two, or three basis functions. The choice of the exponents to be varied, if any, is part of the input data to a run.

When the exponent of one basis function is varied, the program performs complete SCF calculations for different values of the exponent being varied while all the other exponents are held fixed. An energy minimum is found and bracketed by calculations for five values of the exponent at intervals of $\frac{1}{2} \Delta \zeta$. The optimum value of the exponent is determined by interpolation; a quartic is fit to these five points and its minimum is obtained. The exponent variation increment, $\Delta \zeta$, is a flexible input parameter.

Care must be taken in the choice of $\Delta \zeta$ so that the interpolation may be accurate. If $\Delta \zeta$ is chosen too small, the differences of the calculated SCF energies will be small and the interpolation will be in error because of the round-off errors in the SCF energies. This is not too serious since the optimum value of the exponent is indeterminate because of this round-off error in the SCF energies; however, fairly large amounts of computer time may be wasted by trying to bracket the energy minimum too closely. Moreover, if the energy differences are small enough, a true energy minimum may be missed because the round-off in the SCF energies causes an apparent, but false, minimum. Since, for calculations of the size presented here, the round-off error in the SCF energy appears to be a few units in the eighth significant figure, we tried to choose $\Delta \zeta$ so that the SCF energy changed by at least a few units in the seventh significant figure between adjacent SCF calculations.

If $\Delta \zeta$ is chosen too large, the interpolation will be in error because the points (in exponent space) at which SCF calculations are made are too far apart to be fit meaningfully by a quartic. The usual symptom of this is large changes in the SCF vector coefficients $C_{n \ell, p}$ between adjacent points. These changes indicate that the basis function is being "used" in the SCF orbitals in qualitatively different ways for different values of the exponent. The best, simple way to test whether $\Delta \zeta$ has been chosen too large is to compare the interpolated value of the total energy with the energy obtained from an SCF calculation using the interpolated value of the exponent. This SCF calculation is automatically performed by the program.

The quartic interpolation scheme is sufficiently accurate so that, for a properly chosen $\Delta \zeta$, the predicted and computed values of the energy will agree within round-off error: The range of acceptable values of $\Delta \zeta$ is, in fact, quite large, and only in exceptional cases must $\Delta \zeta$ be given to more than one or one and one-half significant figures.

The procedures for the coupled variation of two and three exponents are an extension of those described above for the variation of a single
exponent. However, while a one-dimensional variation requires at least five SCF calculations, a two-dimensional variation requires at least 25 SCF calculations, and a three-dimensional variation requires at least 125.

Multidimensional variations should couple the exponents of basis functions used to represent a loop of the orbitals. They should not couple the exponents of basis functions used to represent different loops. A multidimensional variation will usually give better values for the exponents than a series of one-dimensional variations since a larger region of exponent space is examined in a multidimensional variation. However, a multidimensional variation may use more computer time than a series of one-dimensional variations. The exponent variation procedures are described in detail elsewhere. (4)

The principal quantum numbers of the STO's of a basis set can be chosen in a special way so that the cusp condition of Eq. (9) is automatically satisfied for all the SCF orbitals. (8) We call a basis set of STO's whose principal quantum numbers have been chosen in this special way a fixed-cusp set. Extensive experience, especially for first-row atoms, (9) but also for some second-row atoms, (30) has shown that if fixed-cusp sets are not used it is possible to obtain accurate SCF orbitals with adequate cusp values using smaller basis sets. Often the best energies obtained using these free-cusp sets were lower than the best energies obtained using the larger fixed-cusp sets. For this reason, we choose to use free-cusp sets.

Whereas the exponents, being continuous parameters, were optimized by continuous variation, the principal quantum numbers of the basis functions, being integers, need to be chosen more or less arbitrarily. Our preference was to choose principal quantum numbers for the STO's that are to represent the $n^{\text {th }}$ loop of a series of orbitals so that the STO's would have the same power of r as hydrogenic functions representing that loop have. Thus, for the states of the fluorine, neon, and sodium ions, we used 2 p STO's to represent the 2 p orbital; and for the states of the chlorine, argon, and potassium ions, we used 3 s STO's to represent the outer loop of the 3 s orbital.

This was by no means a hard and fast rule; we did limited experimentation with other values. The need for experimentation was usually indicated by one of the following three factors:

1. The failure of the automatic exponent variation procedures of our computer programs to operate efficiently. The program would vary the exponents so as to cause the basis set to become nearly redundant; that is, the basis functions at some stage of the exponent variation process would form a nearly linearly dependent set.*

[^2]2. The failure of a subset of the full:basis set to adequately represent a loop. This is indicated when a basis function that is important in a region of space outside the loop does not have a small coefficient when it contributes to the representation of the loop. Consider the ls orbital of neutral argon, for example. For the accurate SCF function (see Table III), the principal quantum numbers of the basis functions that represent the inner s-loop are 1,2 , and 3. The coefficients of these functions for the ls orbital are large, and the ls coefficients $C_{1 s, p}$ of the remainder of the s basis functions are of the order of 1×10^{-4}. We tried to obtain an SCF function of the same accuracy using two ls and one 3 s basis functions to represent the inner s-loop. In this case, the ls coefficients of the remainder of the s basis functions were as large as 2×10^{-2}.
3. The desirability of keeping the basis set as nearly linearly independent as possible. For the states of the chlorine, argon, and potassium ions, we believe that we have a less redundant basis set if we use three $2 p$ and one $4 p$ basis functions to represent the inner $p-l o o p$, than if we were to use four $2 p$ basis functions. This consideration is important only when we come to the final, largest basis sets used to obtain the most accurate SCF wave functions.

The minimization of the total SCF energy ESCF was the fundamental criterion used to choose the basis sets for the SCF functions reported here. The analytic SCF orbitals determined by using this criterion are not uniformly good approximations to the exact HF orbitals. The orbitals of the electrons that contribute most to $E_{S C F}$, the core or inner-shell electrons, are determined most accurately. The orbitals of the electrons which contribute least to ESCF, the valence or outer-shell electrons, are determined least accurately.

Because of the limitations of the computer, the total energy is only computed to eight significant figures. The contribution of the outer shells to $E_{S C F}$ is masked by the large contributions of the core, A rough measure of the contribution of an electron in the $n \ell$-shell to ESCF is the orbital energy $\epsilon_{n \ell}$. For neutral argon, we have the values $\operatorname{ESCF}=-526.817$, $\epsilon_{1 S}=-119.610$, and $\epsilon_{3 S}=-1.277$; the unit of energy is the Hartree (1 Hartree $=27.2098 \mathrm{eV}$). Thus, when exponent variations are performed on the inner s-loop basis functions, there are effectively two more significant figures in ESCF to examine than when exponent variations are performed on the outer s-loop basis functions. To produce equal changes in ESCF, larger changes must be made in the exponents (and therefore in the orbitals) of the basis functions used to represent outer loops than in the exponents of the basis functions used to represent inner loops.

Because it is more difficult to obtain accurate orbitals for the 3 s and $3 p$ shells than for the inner shells, we paid close attention to small changes in the total SCF energy when choosing the basis functions used to
represent the outer loops of the 3 s and 3 p orbitals of the states of the chlorine, argon, and potassium ions. Small improvements in the total energy obtained in fitting these loops are at least as important for the general quality of the wave function as are larger improvements ob'tained when fitting the inner-shell orbitals.

It was also necessary to look for small energy improvements, when the most accurate functions were computed, so that the tails of the orbitals would be fit properly. The tails of the orbitals make the smallest contribution to the total energy. Thus, small expansion sets fit the orbitals in the regions where they are large at the expense of the behavior of their tails, and larger basis sets must be chosen carefully so that the tails will be represented properly.

The calculations reported here were performed with computer programs written for the IBM 704 and $7090 / 4$ by Professor C. C. J. Roothaan and the author, with the assistance of various members of the Laboratory of Molecular Structure and Spectra at The University of Chicago. The programs are available for distribution upon request.

IV. RESULTS AND DISCUSSION OF SCF CALCULATIONS

A. The SCF Wave Functions

Tables I-IV present the most accurate SCF function computed for each state. Tables V-VIII present a simpler, less accurate, but quite useful SCF function for each state. The simple basis sets were obtained with relatively little computational effort. They are a good starting point for extending these calculations to other states of interest (for example, to states formed in X-ray absorption). In addition, the simple basis set functions are sufficiently accurate for many purposes. Expectation values of r and r^{2}, dipole-transition matrix elements, and overlap of SCF wave functions were computed with the simple set SCF functions as well as the accurate set SCF functions. The values obtained usually agree quite well. Some comparisons that indicate the extent of the agreement will be given later.

The results in Tables I-VIII include the total energy for the nonrelativistic, electrostatic, fixed-nucleus Hamiltonian of Eq. (10) and the virial coefficient V / T. Exponents of the basis functions are given for each state. The principal quantum number and symmetry type of each basis function are given in parentheses in the first column of each table. The different basis functions are numbered consecutively within each symmetry type. For each orbital, the SCF orbital energy $E_{\mathrm{n} \ell}$ the cusp [defined in Eq. (9)], and the vector coefficients $C_{n \ell, p}$ are given. The numbering of the vector coefficients corresponds to the numbering of the basis functions. All energies are given in Hartrees. The results reported in Tables I-VIII are from calculations performed on an IBM 7094.

The total wave functions for the states given in Tables I-VIII are all single determinants. The ${ }^{1} S$ and ${ }^{2} S$ states have even parity, and the ${ }^{2} \mathrm{P}$ states have odd parity. The parity follows immediately from the electron configurations of the states.

The ls-hole states of $\mathrm{F}^{-}, \mathrm{Ne}$, and Na^{+}, and the $1 \mathrm{~s}-, 2 \mathrm{~s}-$, and 2 p -hole states of $\mathrm{Cl}^{-}, \mathrm{Ar}$, and K^{+}are not the lowest states of their symmetry spccies; these states are marked with asterisks in Tables I-VIII.

The 2 s -hole states of Ne , and Na^{+}, and the 3 s -hole states of Ar and K^{+}are the first excited states of $\mathrm{Ne}^{+} ; \mathrm{Na}^{++}, \mathrm{Ar}^{+}$, and K^{++}, respectively. They are the lowest ${ }^{2}$ S states.

The 2 s-hole state of F^{-}is a highly excited state of fluorine; it is, in fact, past the ionization limit. However, Moore (31) does not give any other ${ }^{2} S$ state of even parity in the spectrum of fluorine. The 3 s -hole state of Cl^{-}is not observed, but no ${ }^{2} \mathrm{~S}$ states of even parity are observed in the spectrum of chlorine. (31) Thus these states may be the lowest states of their symmetry species.

TABLE I. SCF Orbitals and Energies for $\mathrm{F}^{-}, \mathrm{Ne}$, and Na^{+}, and n -hole States of F°, Na , and Na^{+}, Accurate Easie Sets

	$\mathrm{F}^{-}\left({ }^{1} \mathrm{~S}\right.$)		$\underset{2 \mathrm{~s}-\mathrm{hole}}{\mathrm{P} \mathrm{D}^{2}}$	$\cdot \underset{18(2, h e l e}{\left.2^{2}\right)}$	$\mathrm{Ne}\left({ }^{1} \mathrm{~S}\right.$)	$\begin{gathered} \mathrm{Ne}^{+}\left({ }^{2} \mathrm{p}\right) \\ 2 \mathrm{p}-\mathrm{hol}{ }^{\circ} \end{gathered}$	$\begin{aligned} & \left.\mathrm{Ne}^{+}{ }^{2} \mathrm{~s}\right) \\ & 2 \mathrm{~s}-\mathrm{hole}) \end{aligned}$	$\begin{aligned} & \mathrm{Ne}^{+}\left({ }^{2} \mathrm{~S}\right)^{*} \\ & \text { ls-hole. } \end{aligned}$	$\mathrm{Na}^{+}\left({ }^{1} \mathrm{~s}\right)$	$\begin{aligned} & \mathrm{Na}^{++}\left({ }^{2} \mathrm{p}\right) . \\ & 2 \mathrm{p} \text {-hole } \end{aligned}$	$\begin{aligned} & \mathrm{Na}^{++}\left({ }^{2} \mathrm{~s}\right) \\ & 2 \mathrm{~s}-\mathrm{hole} \end{aligned}$	$\begin{gathered} \left.\mathrm{Na}+{ }^{++}{ }^{2} \mathrm{~s}\right)^{*} \\ 1 \mathrm{~s}-\mathrm{hole} \end{gathered}$
E	-99.45944.	-99.40933	-98.53123	-74.52412	-128.5471	-127.8178	-126:7348	-96.62571	-161.6770	-259.9974	-158.7088	-121.7424
V / T	-1.999998	-1.999996	-1.999999	-2.000000	-1.999998	-2.000003	-2.000003	-1.999997	-2.000001	-2.000003	-2.000003	-2.00000:
$\zeta_{1}(18)$	13.958	14.201	13.901	15.308	15.439	15.409	15.231	16.768	15.949	- 15.329	15.530	18.164
$\zeta_{2}(18)$	7.936	7.938	7.893	8.371	8.805	8:811	8.771	9.179	9.439	- 9.597	9.289	9.982
$\zeta_{3}(38)$	9.873	9.962	9.901	10.713	10.995	10.967	10.951	11.732	11.624	11.374	11.355	12.750
$5{ }_{5}(28)$	3.426	3.332	3.288	3.522	3.764	3.824	3.758	4.070	4.384	4.462	4.372	4.566
$55_{5}(2 \mathrm{~s})$	2.183	2.057	2.078	2.175	2.301	2.526	2.537	2.670	2.811	3.047	3.058	3.153
$55_{6}(28)$	1.500	-••	- . -	-••				-••
$\dot{\zeta}_{1}(2 \mathrm{p})$	9.788	9.435	8.793	6.809	10.542	12.548	12.000	10.835	12.048	13.437	12.730	10.580
$5_{2}(2 p)$	4.446	4.249	4.181	4.058	4.956	5.759	5.718	5.567	5.703	6.030	5.939	5.829
$5_{3}(2 p)$	2.595	2.356	2.324	2.285	2.793	3.476	3.436	3.279	3.336	3.649	3.503	3.300
$\zeta_{4}(2 p)$	1.511	2.434	1.404	1.487	1.623	2.086	2.047	2.142	2.146	2.522	2.433	2.409
$5_{5}(2 \mathrm{p})$	0.869	-••	-••	-••	-••	-••	- - .	-••	-••	
${ }^{1} 18$	-25.82961	-26.38265	-26.42060	-29.53630	-32.77233	-33.61235	-33.61629	-37.16999	-40.75972	-41.86280	-41.83081	-45.82043
cusp	-9.02404	-9.02760	-9.02411	-9.01167	-10.02496	-10.02477	-10.02401	-10.01652	-11.01520	-11.00906	-11.01874	-11.02114
${ }^{1} 18,1$	0.08975	0.08419	0.09403	0.64171	0.09218	0.09256	0.09927	0.05077	0.13371	0.14458	0.15929	0.05967
$\mathrm{Cl}_{18,2}$	0.94747	0.95503	0.94586	0.99591	0.94891	0.94804	0.94216	0.99596	0.91835	0.89061	0.89684	0.99466
$\mathrm{C}_{18,3}$	-0.04015	-0.04226	-0.04308	-0.05444	-0.04499	-0.04442	-0.04548	-0.06476	-0.05827	-0.03891	-0.06368	-0.07315
$\mathrm{C}_{18,4}$	0.00377	0.00301	0.00374	0.01684	0.00308	0.00299	0.00377	0.01303	0.00156	0.00420	0.00238	0.01003
$\mathrm{C}_{18,5}$	-0.00083	-0.00013	0.00014	0.01247	-0.00003	-0.00018	0.00004	0.01332	0.00060	-0.00067	0.00061	0.01359
$\mathrm{C}_{18,6}$	0.00050	-•••	-•••	-•••	-•••	-•••	. . .	-•••	
$¢_{28}$	-1.07458	-1.57245	-1.70583.	-1.74534	-1.93031	-2.61917	-2.75317	-2.85349	-3.07368	-3.93054	-4.06585	-4.22305
Cusp	-9.06777	-9,06608	..9.07213.	-9.04294	-10.05351	-10.05387	-10.06436:	-10.04150	-11:03456	-11.02316	-11.02905	-11.02846
$\mathrm{c}_{23,1}$	0.00560	0.00519	0.00439	0.01255	0.00645	0.00718	0.00611	0.01275	0.00581	0.01251	0.00333	0.01304
$\mathrm{C}_{23,2}$	-0.27435	-0.28031	-0.28538	-0.31567	-0.28821	-0.29829	-0.30146	-0. 33112	-0.30875	-0.32313	-0.32328	-0.34522
$\mathrm{C}_{28,3}$	-0.02865	-0.02805	-0.02678	-0.03023	-0.02632	-0.02831	-0.02674	-0.02983	-0.02404	-0.03062	-0.02199	-0.02807
$\mathrm{C}_{28,4}$	0.49528	0.56794	0.59904	0.57594	0.56972	0.52685	0.56055	0.51259	0.49163	0.44384	0.47343	0.47638
$\mathrm{C}_{2 s, 5}$	0.47665	0.52863	0.49531	0.52319	0.53066	0.56743	0.53148	0.58624	0.61232	0.65800	0.62678°	0.62255
$\mathrm{C}_{2 s, 6}$	0.1377 .0	-•••	-•••	-•••	$\cdots \cdot$ • •	-•••	- . . \cdot
$\epsilon_{2 p}$	-0.18098	-0.72994	-0.70271	-0.87141	-0.85034	-1.60663	-1.55267	-1.81602 ${ }^{-}$	-1.79719	-2.74429	-2.66306	-3.01964
cusp	-4.53215	-4.51761	-4.46597	-4.40926	-5.00030	-5.06068	-5.03668	-5.00627 ${ }^{\text {c }}$	-5.52223	-5.58134.	-5.55100	-5.49840
$c_{\text {2p,1 }}$	0.00800	0.01055	0.01380	c. 04764.	0.00930	0.00408	0.00473	0.00566	0.00784	0.00509	0.00619	0.01168
$\mathrm{c}_{2 \mathrm{p}, 2}$	0.20342	0.26789	0.27605	0.35674	0.24154	0.13743	0.14248	0.23853	0.23017	0.19601	0.21089	0.30104
$\mathrm{c}_{2 \mathrm{p}, 3}$	0.39809	0.49083	0.48600	0.47736	0.48233	0.42831	0.43100	0.45718	0.45558	0.42481	0.46037	0.57139
$\mathrm{C}_{2 p, 4}$	0.36280	0.32561	0.32218	0.21207	0.36532	0.50305	0.49736	0.37235	0.38418	0.43417	0.38511	0.17715
$\mathrm{C}_{2 \mathrm{p}, 5}$	0.17010		-•••	-•••	-•••		- . . -

*States which are not the lowest of a symmetry species.

TABLE L. SCF Orbitala and Energies for Cl^{-}and $\mathrm{n} \boldsymbol{\ell}$-hole States of Cl^{-}, Accurate Babib Sets

*States which are not the lowest of a symmetry species.

TABLE III. SCF Orbitalig and Energies for Argon and $\boldsymbol{n} \ell$-hole States of Argon, Accurate Basis Sats

	$\operatorname{Ar}\left({ }^{1} \mathrm{~S}\right)$	$\begin{aligned} & \mathrm{Ar}^{+}\left({ }^{2} \mathrm{~F}\right) \\ & 3 p-\text { hole } \end{aligned}$	$\begin{aligned} & A C^{+}\left({ }^{2} S\right) \\ & 3 \mathrm{~s} \text {-hole } \end{aligned}$	$\begin{aligned} & \mathrm{Ar}^{+}\left({ }^{2} \mathrm{P}\right)^{*} \\ & 2 \mathrm{p}-\mathrm{hole} \end{aligned}$	$\begin{aligned} & \mathrm{Ar}^{+}\left({ }^{2} \mathrm{~S}\right)^{*} \\ & 2 \mathrm{~s}-\mathrm{hole} \end{aligned}$	$\begin{aligned} & \mathrm{Ar}^{+}\left({ }^{2} \mathrm{~S}\right)^{+} \\ & 2 \mathrm{~B}-\mathrm{hole} \end{aligned}$
E	-526.8175	-526.2745	-525.5977	-517.6690	-514.8795	-409.3890
V / T	-2.000000	-1.999999	-1.999999	-1.999999	-2.000001	-2.000000
$5_{1}(18)$	20.750	20.750	20.735	20.700	20.615	20.080
$5_{2}(2 s)$	14.900	14.900	14.900	24.945	15.000	16.845
$5{ }_{3}(38)$	16.500	16.500	16.500	16.500	16.500	18.500
54 (38)	10.500	10.584	10.758	10.628	10.543	10.863
$\zeta_{5}(28)$	6.206	6.224	6.253	6.451	6.498	6.544
$5_{5}(38)$	3.166	3.259	3.232	3.458	3.382	3.532
57 (3a)	1.993	2.185	2.201	2.311	2.278	2.340
$\zeta_{1}(2 p)$	16.220	16.160	16.195	17.020	17.460	17.720
$\zeta_{2}(2 p)$	8.230	8.180	8.200	8.410	8.500	9.055
$\zeta_{3}(2 p)$	5.000	4.795	-4.865	5.000	5.115	5.450
54 (4D)	8.000	8.000	8.000	8.500	8.500	8.900
$\zeta_{5}(3 p)$	2.970	2.955	2.976	3.157	3.159	3.214
$S_{6}\left(4{ }^{\text {p }}\right.$)	2.211	2.209	2.442	2.359	2.350	1:305
$\zeta_{7}(3 p)$	1.370	1.550	1.550	1.620	1.620	1.650
ϵ_{18}	-118:61014	-119.13309	-119.19462	-120.65776	-120.39576	-127.27956
cusp	-18.00366	-18.00349	-18.00287	-18.00005	-18.00218	-18.00163
$\mathrm{C}_{18,1}$	0.78751	0.18754	0.78834	0.79073	0.79512	0.03865
$\mathrm{c}_{18,2}$	0.41319	0.41322	0.41103	0.40339	0.38653	0.23192
$\mathrm{C}_{18,3}$	-0.17634	-0.17640	-0.17492	-0.17014	-0.15765	-0.05294
$\mathrm{C}_{18,4}$	-0.00008	-0.00004	-0.00022	0.00027	0.00121	0.00265
$\mathrm{C}_{18,5}$	-0.00011	-0.00016	-0.00006	-0.00047	-0.00020	0.01419
$c_{18,6}$	0.00007	0.00011	0.00006	0.00009	0.00011	-0.00213
$\mathrm{c}_{18,7}$	-0.00006	-0.00008	-0.00008	-0.00008	-0.00008	-0.00203
${ }^{\boldsymbol{1} \text { ¢ }}$	-12.32193	-12.83568	-12.88311	-13.61576	-13.77370	-14.17473
Cusp	-17.99649	-18.00356	-18.01242	-18.01453	-18.02974	-17.95176
$\mathrm{c}_{23,1}$	-0.22353	-0.22365	-0.22356	-0.22847	-0.22912	-0.25356
$\mathrm{C}_{28,2}$	-0.21917	-0.22087	-0.22339	-0.23284	-0.22911	-0.15950
$\mathrm{C}_{23 \text {; }}$	0.08753	0.08586	0.08258	0.08007	0.07458	0.02281
$\mathrm{C}_{2 \mathrm{~s}, 4}$	0.16903	0.16072	0.14166	0.13434	0.11753	0.15781
$\mathrm{C}_{2 s, 5}$	0.90732	0.91795	0.93996	0.95521	0.96271	0.92791
$\mathrm{c}_{23,6}$	0.00708	0.00704	0.00956	0.00977	0.02490	0.00833
$\mathrm{c}_{2 s, 7}$	-0.00043	-0.00048	-0.00049	-0.00085	0.00965	-0.00047
${ }^{6} 38$	-1.27725	-1.71114	-1.81793	-1.89228	-1.87409	-1.90809
Cusp	-17.96890	-17.94414	-17.92541	-17.97576	-18.00103.	-17.96324
$\mathrm{c}_{3 \mathrm{~B}, 1}$	0.06982	0.07189	0.07327	0.07702	0.08092	0.08360
$\mathrm{c}_{33,2}$	0.08792	0.09287	0.09574	0.10727	0.11101	0.07415
$\mathrm{C}_{3 \mathrm{~s}, 3}$	-0.02628	-0.02782	-0.02893	-0.02530	-0.02355	-0.00188
$\mathrm{C}_{33,4}$	0.00341	0.01304	0.01863	0.04101	0.05414	0.03755
$\mathrm{c}_{38,5}$	-0.45394	-0.48178	-0.49483	-0.55249	-0.58015	-0.53655
$\mathrm{c}_{38,6}$	0.66908	0.60576	0.63355	0.60842 .	0.62943	0.59459
$\mathrm{c}_{38,7}$	0.46963	0.53030	0.50098	0.54305	0.51521	0.55658
$\epsilon_{2 p}$	-9.57127	-10.08324	-10.14966	-11.10837	-10.86746	-11.71786
Cusp	- 8.92591	-8.91125	-8.91441	-8.92308	-8.96769	-8.98739
$\mathrm{c}_{2 p, 1}$	0.01876	0.01845	0.01832	0.01284	0.01174	0.00570
$c_{2 p, 2}$	0.63009	0.66020	0.65271	0.64006	0.61717	0.59627
$\mathrm{c}_{2 p, 3}$	0.27207	0.23154	0.24110	0.25810	0.29030	0.30855
$\mathrm{c}_{2 p, 4}$	0.19409	0.14874	0.14644	0.13301	0.13460	0.14165
$\mathrm{c}_{2 p, 5}$	0.00309	0.00086	0.00001	0.01590	-0.00093	0.00252
$c_{2 p, 6}$	-0.00058	0.00171	0.00061	0.01386	0.00165	-0.00075
$\mathrm{c}_{2 \mathrm{p}, 7}$	0.00028	-0.00037	-0.00031	0.00155	-0.00088	0.00047
$\epsilon_{3 p}$	-0.59092	-1.04532	-1.03104	-1.15880	-1.15303	-1.17532
cusp	-8.88089	-8.88838	-8.86398	-8.89927	-8.89853	-8.93455
$\mathrm{c}_{3 \mathrm{p}, 1}$	-0.00346	-0.00391	-0.00345	-0.00290	-0.00204	0.00005
$\mathrm{C}_{3 \mathrm{p}, 2}$	-0.18973	-0.20843	-0.21009	-0.22991.	-0.20638	-0.19549
$c_{3 p, 3}$	-0.06049	-0.06140	-0.05246	-0.08803	-0.08549	-0.08377
$\mathrm{C}_{3 \mathrm{p}, 4}$	-0.06178	-0.06560	-0.07057	-0.06915	-0.06887	-0.06753
$\mathrm{c}_{3 \mathrm{p}, 5}$	0.60487	0.66790	0.65321	0.68195	0.68125	0.68076
$\mathrm{c}_{3 p, 6}$	0.30887	0.33443	0.32329	0.33574	0.33983	0.33549
$c_{3 p, 7}$	0.22836	0.12476	0.14980	0.11967	0:11682	0.11520

[^3]

	$\mathrm{k}^{+}\left({ }^{1} \mathrm{~s}\right.$)	$\begin{aligned} & \mathrm{x}^{+++} \hat{\mathrm{h}}_{\mathrm{p}} \mathrm{3p-hole} \end{aligned}$	$\begin{aligned} & \left.\mathrm{c}^{++1} 2^{2} \mathrm{~s}\right) \\ & 3 \mathrm{a}-\mathrm{hole} \end{aligned}$			$\begin{aligned} & \mathrm{K}^{++\left({ }^{2}{ }^{2}\right){ }^{*}} \\ & \text { 1s-hole } \end{aligned}$
E	-599.0175	-597.8915	-597.1039	-587.6833	-584.6720	-466.4285
v / T	-1.999999	-2.000000	-1.999999	-2.000000	-2.000002	-1.999997
$\zeta_{1}(18)$	21.530	21.545	21.685	21.480	21.300	20.400
$\zeta_{2}\left(2{ }^{\text {(2) }}\right.$	15.255	15.220	15.095	15.300	15.400	17.200
$5_{3}(38)$	17.000	17.000	17.000	17.000	17.000	19.000
$54.38)$	21.085	11.258	11:323	10.957	11.262	11.560
$5_{5}(28)$	6.687	6.724	6.711	6.878	7.010	7.025
$5_{6}(38)$	3.502	3.520	3.599	3.787	3.660	3.814
$5_{7}(38)$	2.338	2.491	2.573	2.658	2.600	2.668
$\zeta_{1}(2 \mathrm{p})$	17.000	17.000	17.020	17.800	18.460	20.000
$5{ }_{5}$ (2p)	8.890	8.820	8.855	9.075	9.210	9.920
$5_{3}(2 \mathrm{p})$	5.450	5.260	5.315	5.610	5.712	6.100
$5_{4}(4 \mathrm{D})$	8.800	8.800	8.800	9.300	9.300	9.800
55 (3p)	3.253	3.358	3.371	3.562	3.563	3.546
56 (4p)	2.412					2.726
$5_{7}(3 \mathrm{P})$	1.650	2.182	2.173	2.294	2.295	2.000
5_{18}	-133.75212	-134.40390	-234.45519	-136.06387	-235.76859	-143.07522
cusp	-19.00074	-19.00027	-29.00610	-18.99684	-18.99330	-19.00584
$\mathrm{c}_{10,1}$	0.80888	0.80805	0.80027	0.82209	0.882183	0.88850
${ }^{\text {c }} 18$, 2	0.38950.	0.39410	0.42346	0.37982	0.34675	0.15967
$\mathrm{c}_{13,3}$	-0.17686	-0.18025	-0.20056	-0.17085	-0.24743	-0.03669
$\mathrm{C}_{18,4}$	-0.00081	-0.00177	-0.00439	-0.00043	-0.00018	0.00249
$\mathrm{c}_{18,5}$	-0.00024	0.00010	0.0007 .4	-0.00055	0.00047	0.01358
$\mathrm{c}_{18,6}$	0.00011	0.00008	0.00001	0.00013	-0.00003	-0.00199
$\mathrm{C}_{18,7}$	-0.00009	-0.00008	-0.00007	-0.00011	-0.00002	-0.00208
$\epsilon_{\text {2s }}$	- -14.70798	-15.33970	-15.37648	-16.18376	-16.34603	-16.79208
cusp	-19.00163	-19.00951	-29.01782	-19.00269	-19.03162	-18.95758
$\mathrm{c}_{28,1}$	-0.23231	-0.23224	-0.22961	-0.23712	-0.23933	-0.27074
$\mathrm{c}_{2 \mathrm{~s}, 2}$	-0.22932	-0.23548	-0.24544	-0.23674	-0.23878	-0.15189
$\mathrm{c}_{28,3}$	0.09750	0.09623	0.10367	0.09486	0.07919	0.02290
${ }^{\text {P25,4,4 }}$	0.15504	0.14050	0.14292	0.170344	U.vyčel	U.14430
$\mathrm{c}_{2 s, 5}$	0.92363 0.00901	0.94521 0.00953	0.94423 0.01023	0.93077 0.01075	0.99761 0.02701	0.94824 0.00953
${ }_{c_{28,6}}$	0.00901 -0.00103	0.00953 -0.00166	0.01023 -0.00050	0.01075 -0.00133	${ }_{0}$	-0.00100
${ }^{\text {c } 28,7}$	-0.00103	-0.00166	-0.00050	-0.00133	0.0077	-0.0010
ε_{38}	-1.96377	-2.47767	-2.58881	-2.68728	-2.66588.	-2.71203
Cusp	-18.97447	-18.95978	-18.92907	-19.01150	-19.00299	-18.96578
$\mathrm{C}_{3 \mathrm{sa}, 1}$	0.07649	0.07862	0.07904	0.08360	0.08803	0.09344
$\mathrm{c}_{38,2}$	0.10123	0.10710	0.11452	0.11897	0.12444	0.07854
$\mathrm{C}_{38,3}$	-0.09137	-0.03343	-0.03861	-0.02901	-0.02732	-0.00258
$\mathrm{C}_{35,4}$	0.01616	0.02255	0.02791	0.04360	0.06713	0.04315
$\mathrm{c}_{3 \mathrm{~s}, 5}$	-0.50319	-0.52525	-0.54237	-0.59121	-0.62553	-0.57324
$\mathrm{C}_{39,6}$.	0.63772	0.62378	0.57022	0.57719	0.62575	0.58574
$\mathrm{c}_{38,7}$	0.50386	0.51400	0.57145	0.58011	0.52008	0.56280
	-11.73810	-12.36843	-12.42720	-13.48122	-13.21615	-14.14872
cusp	-9.40153	-9.40961	-9.39849	-9.42043	-9.45892	-9.47034
$\mathrm{r}_{2 \mathrm{p}, 1}$	0.01736	0.01746	0.01681	0.01262	0.01054	0.00253
${ }_{\text {ep, }}$	0.60440	0.63378	0.68810	0.59657	0.57059	0.52985
$\mathrm{c}_{2 \mathrm{p}, 3}$	0.30758	0.27199	0.27634	0.31579	0.35027	0.39164
$\mathrm{c}_{2 \mathrm{p}, 4}$	0.12274	0.13211	0.13435	0.11239	0.11647	0.12198
$\mathrm{c}_{2 p, 5}$	0.00147	-0.00149	-0.00177	0.01286	0.00072	0.00433
$\mathrm{c}_{2 p, 6}$	0.00039	\cdots		. . . ${ }^{\text {a }}$		-0.00201
$\mathrm{c}_{2 \mathrm{p}, 7}$	-0.00023	0.00228	0.00077	0.01746	0.00040	0.00129
	-1.17047	-1.71131	-1.68867	-1.85275	-1.84608	-1.88069
cusp	-9.40818	-9.41311	-9.39637	-9.43034	-9.42898	-9.41764
$\mathrm{c}_{3 \mathrm{p}, 1}$	-0.00387	-0.00406	-0.00374	-0.00323	-0.00207	0.00057
$\mathrm{c}_{3 \mathrm{p}, 2}$	-0.19057	-0.21305	-0.21027	-0.22120	-0.19844	-0.18219
	-0.09892	-0.09160	-0.09122	-0.13117	-0.12730	-0.12897
$\mathrm{c}_{\text {cp, }}$	-0.05412	-0.06176	-0.06274	-0.06004	-0.06202	-0.06243
${ }^{\text {c }}$ 3p,5	0.67017	0.52926	0.52899	0.54360	0.54095	
${ }_{\text {c }} \mathbf{3 p , 6}$	0.34285					
${ }_{\text {c }}^{3 p}$, 7	0.12328	0.57550	0.57691	0.57136	0.57394	0.10617

[^4]TABle V. SCF Orbitale and Energies for F^{-}, Ne , and $\mathrm{Na}^{+}{ }^{+}$and $n \ell$-hole States of F^{-}, Ne, and Na^{+}, Simple Babie Sets

	$\mathrm{F}^{-}\left({ }^{1} \mathrm{~s}\right)$	$\begin{gathered} \mathrm{F}\left(\mathrm{t}^{2} \mathrm{P}\right) \\ 2 \mathrm{p}-\mathrm{hole} \end{gathered}$	$\begin{gathered} \mathrm{P}^{\left({ }^{2} \mathrm{~s}\right)} \\ 2 \mathrm{~s} \text {-hole } . \end{gathered}$	$\underset{1 \mathrm{~s}-\mathrm{hole}}{\mathrm{~F}\left({ }^{2} \mathrm{~s}\right)^{*}}$	$\mathrm{Ne}\left({ }^{1} \mathrm{~s}\right.$)	$\begin{aligned} & \mathrm{Ne}^{+}\left({ }^{2} \mathrm{P}\right) \\ & 2 \mathrm{P}-\mathrm{hol}) \end{aligned}$	$\begin{aligned} & \mathrm{Ne}^{+}\left({ }^{2} \mathrm{~S}\right) \\ & 2 \mathrm{~s}-\mathrm{holel} \end{aligned}$	$\begin{aligned} & \mathrm{Ne}^{+}\left({ }^{2} \mathrm{~s}\right)^{*} \\ & 1 \mathrm{~s}-\mathrm{hole} \end{aligned}$	$\mathrm{Na}^{+}\left(\dot{l}_{\text {S }}{ }^{\text {s }}\right.$	$\begin{aligned} & \dddot{\mathrm{Na}^{+}}\left({ }^{2} \mathrm{p}\right) \\ & \text { 2p-hole } \end{aligned}$	$\begin{gathered} \left.\mathrm{Na}^{+4+} \mathrm{c}^{2} \mathrm{~s}\right) \\ 2 \mathrm{~s}-\mathrm{Hole} \end{gathered}$	$\underset{1 \mathrm{a}-\mathrm{hole}}{\mathrm{Na}^{++}\left({ }^{2} \mathrm{~s}\right)^{*}}$
E	-99.45785	-99.40893	-98.53085	-74.52382	-128.5465	-127.8176	-126.7346	-96.62555	-161.6766	-159.9972	-158.709 ${ }^{\circ}$	-121.7423
V / T	-2.000002	-2.000004	-1.999999	-1.999993	-2.000008.	-2.000018	-2.000004	-1.999990	-2.000002	-2.000013	-1.999996	-1.999995
$\zeta_{1}(18)$	13.220	13.198	12.810	12.758	14.319	13.623	13.859	12.382	15.314	14.403	14.659	12.211
$\zeta_{2}(18)$	8.282	8.278	8.230	8.842	9.224	9.144	9.162	9.729	10.157	10.033	10.058	10.420
$\zeta_{3}(38)$	4.952	4.982	4.962	5.225	5.619	5.627	5.576	5.926	6.254	6.233	6.172	6.676
$5_{4}\left(2 s^{\prime}\right)$	2.094	2.246	2.293	2.369	2.518	2.700	2.734	2.840	2.966	3.161	3.289	3.328
$\zeta_{1}(2 p)$	5.219	6.165	6.112	5.695	6.620	7.588	7.405	6.665	8.000	9.058	8.759	7.515
$\zeta_{2}(2 p)$	2.599	3.176	3.144	3.208	: 3.484	3.991	3.926	3.955	4.316	4.794	4.715	4.624
$5_{3}(2 p)$	1.154	1.612	1.582	1.724	1.766.	2.164	2.122	2.276	2.325	2.698	2.651	2.799
${ }_{6} 18$	-25.82687	-26.38217	-26.42007	-29.53598	-32.77162	-33.61208	-33.61587	-37.16972	-40.75946	-41.86265	-41.83046	-45.82011
cusp	-9.012 ${ }^{2} 2$	-9.01302	-9.00866	-9.02632	-10.01011	-9.99551	-10.00523	-10.02222	-11.00542	-10.98715	-10.99733	-11.01931
$\mathrm{C}_{18,1}$	0.07956	0.08056	0.09582^{4}	0.02797	0.08650	0.11485	0.10566	0.08021	0.09647	0.14038	0.12778	0.28471
. $\mathrm{Cl}_{18,2}$	0.92438	0.92348	0.90835	0.96451	0.91716	0.88966	0.89831	0.91277	0.90707	0.86426	0.87630	0.70895
$\mathrm{C}_{19,3}$	0.00594	0.00580	0.00607	0.01658	0.00595	0.00408	0.00588	0.01441	0.00573	0.00315	0.00501	0.01183
$\mathrm{C}_{18,4}$	-0.00032	-0.00044	0.00019	0.01639	-0.00029	0.00019	0.00015	0.01595	-0.00031	0.00045	0.00034	0.01596
						-.						
$\epsilon^{\text {2s }}$	-1.07236	-1.57205	-1.70549	-1.74516	-1.92975	-2.61894	-2.75289	-2.85336	-3.07347	-3.93044	-4.06561	-4.22285
Cusp	-9.07531	-8.99798	-9.00934	-8.94043	-10.01357	-9.95997	-9.96417	-9.95186	-10.96458	-10.93106	-10.93216	-10.97567
$\mathrm{C}_{28,1}$	-0.00824	-0.00411	-0.00583	0.01728	-0.00431	-0.00220	-0.00127	0.03807	-0.00001	0.00192	0.00298	0.05695
$\mathrm{C}_{25,2}$	-0.22858	-0.24286	-0.24667	-0.29148	-0.24635	-0.26184	-0.26625	-0.32867	-0.26474	-0.28137	-0.28516	-0.36558:
$\mathrm{C}_{2 s, 3}$	0.33891	0.29770	0.29412	0.30914	0.29901	0.26352	0.26319	0.26448	0.26942	0.23998	0.23945	0.22166
$\mathrm{c}_{28,4}$	0.73161	0.76464	0.76645	. 0.75408	0.76514	0.79565	0.79427	0.79696	0.79097	0.81852	0.81770	0.84308
${ }_{\text {¢ }}^{2} \times$		-0.72953	-0.70231	-0.87121	-0.84974	-1.60644.	-1.55239.	-1.81586	-1.79697	-2.74424	-2.66290	-3.01944
cusp	-4.02916	-4.19515	-4.20656	-4.32426	-4.67506	-4.78652	-4.78530	-4.86452	-5.26728	-5.3536.7.	-5.34729	-5.38621
$c_{2 p, 1}$	0.14234	0.07255	0.07692	0.13992	0.08944	0.04870	0.05544	$0.1016 ?$	0.06123	0.03406	0.04050	0.10024
$\mathrm{c}_{2 \mathrm{p}, 2}$	0.56283	0.48890	0.49372	0.49635	0.50024	0.43454	0.44020	0.44736	0.45069	0.39047	0.39581	0.40934
${ }^{\text {cpp, }}$	0.43109	0.53155	0.52539	0.45645	0.50722	0.58891	0.57919	0.51414	0.56481	0.63486	0.62536	0.55122

[^5]TABLE VI. SCF Orbitals and Energies for Cl^{-}and $n \ell$-hole States of Cl^{-}, Simple Basis Sets

	$\mathrm{Cl}^{-}\left({ }^{1} \mathrm{~s}\right)$	$\begin{aligned} & c 1\left(^{2} p\right) \\ & 3 p-\text { hole } \end{aligned}$	$\begin{aligned} & \mathrm{Cl}\left({ }^{2} \mathrm{~s}\right) \\ & 3 \mathrm{~s}-\mathrm{hole} \end{aligned}$	$\begin{aligned} & \mathrm{cl}\left({ }^{2} \mathrm{P}\right)^{*} \\ & 2 \mathrm{p}-\mathrm{hole} \end{aligned}$	$\begin{gathered} \mathrm{cl}\left(^{2} \mathrm{~s}\right)^{*} \\ 2 \mathrm{~s}-\mathrm{hole} \end{gathered}$	$\begin{aligned} & \mathrm{Cl}\left({ }^{2} \mathrm{~s}\right)^{*} \\ & 1 \mathrm{~s}-\mathrm{hole} \end{aligned}$
E	-459.5736	-459.4801.	-458.9148	-452.3332	-449.7638	-356.2814
V / T	-2.000000	-1.999993	-2.000007	-1.999991	-2.000000	-1.999988
$\zeta_{1}(18)$	18.575	18.674	18.629	18.474	18.095	17.749
$\zeta_{2}(2 s)$	16.329	16.439	16.385	16.245	15.621	16.424
$\zeta_{3}(3 s)$	10.217	10.190	10.219	10.021	10.386	10.381
ζ_{4} (2s)	5.798	5.785	5.795	5.895	6.062	6.082
ζ_{5} (3s)	2.823	2.904	2.878	3.140.	3.030	3.167
5_{6} (3s)	1.651	1.826	1.842	1.970	1.923	1.982
$\zeta_{1}(2 p)$	10.203	10.268	10.275	10.586	10.594	10.460
$\zeta_{2}(2 p)$	5.585	5.608	5.610	5.884	5.841	6.002
$5_{3}(3 p)$	2.497	2.612	2.617	2.787	2.798	2.881
$54(3 p)$	1.224	1.465	1.459	1.570	1.576	1.607
$\epsilon_{1 s}$	-104.50086	-104.88211	-104.95369	-106.26874	-106.03937	-112.50146
Cusp	-16.96350	-16.96634	-16.96577	-16.95669	-16.95214	-17.01951
$C_{1 s, 1}$	0.85189	0.84517	0.84820	0.85920	0.88567	0.92623
$\mathrm{C}_{1 s, 2}$	0.17649	0.18395	0.18062	0.16830	0.13937	0.07920
$\mathrm{C}_{1 s, 3}$	-0.00074	-0.00011	-0.00046	-0.00234	-0.00594	0.01076
${ }^{\text {C }} 18,4$	0.00245	0.00217	0.00237	0.00337	0.00593	0.01019
${ }_{\text {C }}^{1 s, 5}$	-0.00052	-0.00054	-0.00061	-0.00082	-0.00112	-0.00151
$\mathrm{c}_{10,6}$	0.00021	0.00024	0.00027	0.00034	0.00051	-0.00221
${ }^{\text {2 }}$ s	-10.22595	-10.60672	-10.66476	-11.32012	-11.47338	-11.83108
Cusp	-16.99022	-16.97968	--16.98170	-16.99964	-17.00832	-16.98680.
2s,1	-0.23882	-0.23691	-0.23743	-0.24544	-0.25239	$=0.27771$
$20,2$	0.11708	=0.1iysy	-0.1198?	-0.11900	-0.13056	-0.10274
$c_{2 s, 3}$	0.14005	0.14504	0.13795	0.17025	0.09289	0.15200
$\mathrm{C}_{2 s, 4}$	0.93670	0.93089	0.93755	0.91033	0.98751	0.93066
$\mathrm{C}_{2 s, 5}$	0.00654	0.00546	0.00782	0.00241	0.02434	0.00530
$\mathrm{c}_{2 s, 6}$	-0.00035	0.00010	-0.00001	0.00185	0.01004	0.00059
3 s	-0.73031	-1.07236	-1.17505	-1.22270	-1.20752	-1.23049
cusp	-16.76015	-16.72967	-16.74820	-16.62437	-16.83732	-16.69588
$c_{3 s, 1}$	0.07001	0.07132	0.07321	0.07805	0.08474	0.08627
$\mathrm{c}_{3 \mathrm{~s}, 2}$	0.04802	0.05010	0.05117	0.05897	0.06448	0.05180
$\mathrm{c}_{3 s, 3}$	0.01033	0.01482	0.01573	0.03488	0.04751	0.03199
$\mathrm{C}_{3 \mathrm{~s}, 4}$	-0.42149	-0.44112	-0.45062	-0.50811	-0.53027	-0.49176
$\mathrm{C}_{35,5}$	0.70660°	0.65189	0.68576	0.64632	0.67235	0.64391
$c_{3 s, 6}$	0.43162	0.48073	0.44446	0.50908	0.46670	0.50380
$2 p$	-7.69225	-0.07136	-8.14535	-9.00648	-8.78900	- 9.55916
Cuop	-8.06915	-8.08454	-8.08774	-8.12583	-8.14560	-8.32563
$c_{2 p, 1}$	0.21126	0.20561	0.20543	0.17599	0.17940	0.21911
$\mathrm{C}_{2 p, 2}$	0.81783	0.82121	0.82229	0.83577	0.84306	0.80592
$\mathrm{c}_{2 p, 3}$	0.01585	0.02020	0.01796	0.03725	0.01956	0.01500
$\mathrm{c}_{2 p, 4}$	-0.00394	-0.00457	-0.00509	0.01137	-0.00519	-0.00369
${ }^{\epsilon} 3 \mathrm{p}$	-0.14772	-0.50603	-0.50013	-0.58933	-0.58439.	-0.59575
Cusp	-8.14508	-8.12119	-8.12953	-8.12036	-8.13553	-8.37302
$\mathrm{C}_{3 p, 1}$	-0.05028	-0.05192	-0.05186	-0.05079	-0.04652	-0.05670
$\mathrm{c}_{3 p, 2}$	-0.21340	-0.23694	-0.23666	-0.28976	-0.26765	-0.24645
$\mathrm{c}_{3 \mathrm{p}, 3}$	0.61008	0.56419	0.57193	0.59434	0.59193	0.58595
${ }^{\text {c }}$, 4	0.52453	0.54343	0.53765	0.51794	0.52288	0.52859

[^6]TABLE VII. SCF Orbitals and Energies for Argon and $\boldsymbol{n} \boldsymbol{\ell}$-hole States of Argon, Simple Basis Sets

	$\operatorname{Ar}\left({ }^{1} \mathrm{~S}\right.$)	$\begin{aligned} & \mathrm{Ar}^{+}\left({ }^{2} \mathrm{P}\right) \\ & 3 \mathrm{p}-\mathrm{hole} \end{aligned}$	$\begin{aligned} & \mathrm{Ar}^{+}\left({ }^{2} \mathrm{~S}\right) \\ & 3 \mathrm{~s}-\mathrm{hole} \end{aligned}$	$\begin{aligned} & \mathrm{Ar}^{+}\left({ }^{2} \mathrm{p}\right)^{*} \\ & 2 \mathrm{p}-\text { hole. } \end{aligned}$	$\begin{aligned} & \mathrm{Ar}^{+}\left({ }^{2} \mathrm{~S}\right)^{*} \\ & 2 \mathrm{~s}-\mathrm{hole} \end{aligned}$	$\begin{aligned} & \mathrm{Ar}^{+}\left({ }^{2} \mathrm{~S}\right)^{*} \\ & \mathrm{ls}-\mathrm{hole} \end{aligned}$
E	-526.8155	-526.2729	-525.5961	-517.6676	-514.8779	-409.3884
V/T	-2.000001	-2.000001	-1.999997	-2.000000	-2.000002	-2.000015
$\zeta_{1}(18)$	19.419	19.412	19.454	19.138	19.045	18.566
$\zeta_{2}(2 s)$	17.034	17.024	17.075	16.639	16.371	16.958
5_{3} (3s)	10.943	10.941	10.896	10.896	11.085	11.082
$5_{4}(28)$	6.275	6.279	6.277	6.436	6.537	6.562
$\zeta_{5}(3 s)$	3.187	3.259	3.232	3.474	3.314	3.532
$5_{6}(38)$	2.005	2.185	2.201	2.311	2.230	2.340
$\dot{\zeta}_{1}(\hat{p} p)$	11.U®"	11.073	11.005	11 4np	11.417	11.208
$\zeta_{2}(2 p)$	6.095	6.113	6.120	6.388	6.345	6.498
$\zeta_{3}(3 p)$	2.886	2.956.	2.972	3.127	3.142	3.234
$\zeta_{4}(3 p)$	1.609	1.814	1.812	1.919	1.928	1.963
${ }^{\text {1s }}$	-118.60817	-119.13197	-119.19307	-120.65641	-120.39431	-127.27928
Cusp	-17.95816	-17.95800	-17.95995	-17.94695	-17.95166	-18.01716
$\mathrm{c}_{13,1}$	0.86927	0.86975	0.86693	0.88877	0.89477	0.94351
$\mathrm{c}_{18,2}$	0.15689	0.15636	0:15949	0.13538	0.12918	0.05966
$\mathrm{C}_{1 s, 3}$	-0.00245	-0.00272	-0.00237	-0.00638	-0.00748	0.00986
$\mathrm{C}_{1 \mathrm{~s} ; 4}$	0.00341	0.00368	0.00348	0.00583	0.00684	0.00999
$\mathrm{C}_{1 \mathrm{~s}, 5}$	-0.00079	-0.00095	-0.00096	-0.00141	-0.00142	-0.00123
$\mathrm{c}_{1 \mathrm{~s}, 6}$	0.00035	0.00046	0.00045	0.00063	0.00069	-0.00244
ϵ_{28}	-12.32139	-12.83595	-12.88297	-13.61587	-13.77364	-14.17480
Cusp	-17.98911	-17.99026	-17.99083	-18.00607	-18.02007	-18.03109
$\mathrm{C}_{23,1}$	-0.24687	-0.24712	-0.24592	-0.25697	-0.25799	-0.28557
$c_{2 s, 2}$	-0.12262	-0.12272	-0.12286	-0.12721	-0.13624	-0.10624
$\mathrm{c}_{2 s, 3}$	- 0.12399	0.12384	0.12284	0.12539	0.08266	0.14049
$\mathrm{c}_{2 s, 4}$	0.95830	0.95863	0.95768	.0.96574	1.00378	0.94875
$\mathrm{c}_{23,5}$	0.00745	0.00727	0.00963	0.00599	0.02491	0.00724
$\mathrm{C}_{2 \mathrm{~s}, 6}$	-0.00027	-0.00033	-0.00040	0.00090	0.00894	0.00010
	-1.27666	-1.71130	-1.81793	-1.89215	-1.87392	-1.90793
cusp	-17.75815	-17.75636	-17.74072	-17.72879	-17.83920	-17.75839
$\mathrm{C}_{3 \mathrm{~s}, 1}$	0.07681	0.07917	0.08033	0.08623	0.09084	0.09367
$\mathrm{c}_{3 \mathrm{~s}, 2}$	0.05492	0.05722	0.05843	0.06789	0.07238	0.05946
$\mathrm{C}_{3 \mathrm{~s}, 3}$	0.02678	0.03123	0.03317	0.05377	0.05842	0.04611
$\mathrm{C}_{3 \mathrm{~s}, 4}$	-0.47508	-0.49604	-0.50585	-0.56189	-0.57408	-0.54330
$\mathrm{C}_{3 \mathrm{~s}, 5}$	0.65610	0.60506	0.63491	0.60870	0.67677	0.59538
$\mathrm{c}_{3 \mathrm{~s}, 6}$	0.48338	0.53045	0.50004	0.54657	0.46372	0.55601
$\epsilon_{2 p}$	-9.57061	-10.08339	-10.14938	-11.10839	-10.86733	-11.71788
cusp	-8.60975	-8.61881	-8.62450	-8.65542	-8.67770	-8.84569
$\mathrm{C}_{2 \mathrm{p}, 1}$	0.19611	0.19240	0.19107	0.16434	0.16737	0.20753
$\mathrm{c}_{2 p, 2}$	0.82878	0.83062	0.83266	0.84393	0.85184	0.81457
$\mathrm{c}_{2 \mathrm{p}, 3}$	0.01861	0.02242	0.02061	0.03805	0.02168	0.01642
$\mathrm{c}_{2 p, 4}$	-0.00497	-0.00547	-0.00629	0.00967	-0.00620	-0.00428
${ }^{\text {E }}$ 3p	-0.59046	-1.04550	-1.03108	-1.15874	-1.15294	-1.17519
cusp	-8.63989	-8.63187	-8.63848	-8.62460	-8.63667	-8.86975
$\mathrm{C}_{3 \mathrm{p}, 1}$	-0.05049	-0.05249	-0.05178	-0.04946	-0.04559	-0.05682
$\mathrm{c}_{3 \mathrm{p}, 2}$	-0.25002	-0.27029	-0.26961	-0.31930	-0.29823	-0.27652
$c_{3 p, 3}$	0.58087	0.55695	0.55483	0.58189	0.57570	0.56927
$\mathrm{c}_{3 \mathrm{p}, 4}$	0.53221	0.54085	0.54469	0.52121	0.52995	0.53616

*States which are not the lowest of a symmetry species.

TABLE VII. SCF Orbitals and Energies for K^{+}and $n \ell$-hole States of K^{+}, Simple Basis Sets

	$\mathrm{K}^{+}\left({ }^{1} \mathrm{~S}\right.$)	$\begin{aligned} & K^{++}\left({ }^{2} \mathrm{P}\right) \\ & 3 \mathrm{p}-\text { hole } \end{aligned}$	$\begin{aligned} & \mathrm{K}^{++}\left({ }^{2} \mathrm{~s}\right) \\ & 3 \mathrm{~s} \text {-hole } \end{aligned}$	$\begin{aligned} & \mathrm{K}^{++}\left({ }^{2} \mathrm{p}\right)^{*} \\ & 2 \mathrm{p}-\mathrm{hole} \end{aligned}$	$\begin{aligned} & \mathrm{K}^{++}\left({ }^{2} \mathrm{~S}\right)^{*} \\ & 2 \mathrm{~s}-\mathrm{hole} \end{aligned}$	$\begin{aligned} & \mathrm{K}^{++}\left({ }^{2} \mathrm{~S}\right)^{*} \\ & \mathrm{ls}-\mathrm{hole} \end{aligned}$
E	-599.0159	-597.8901	-597.1025	-587.6820	-584.6705	-466.4280
V / T	-2.000002	-2.000002	-2.000002	-2.000002	-1.999998	-1.999995
$\zeta_{1}(18)$	20.222	20.200	20.339	19.998	20.006	19.464
$\zeta_{2}(28)$	17.611	17.568	17.799	17.194	17.116	17.522
$5_{3}(3 \mathrm{~s})$	11.812	11.804	11.603	11.868	11.962	12.155
$5{ }_{4}(2 s)$	6.793	6.805	6.762	6.999	7.049	7.134
ζ_{5} (3s)	3.502	3.520	3.599	3.787	3.660	3.814
5_{6} (3s)	2.338	2.491	2.573	2.658	2.600	2.662
$5_{1}(2 p)$	11.838	11.880	11.890	12.210	12.228	11.965
$5_{2}(2 p)$	6.601	6.619	6.621	6.889.	6.846	6.998
$5_{3}(3 p)$	3.239	3.290	3.300	3.441	3.453	3.561
$5_{4}(3 p)$	1.965	2.167	2.256	2.252	2.259	2.302
ϵ_{18}	-133.75073	-134.40246	-234.45380	-136.06274	-135.76712	-143.07576
cusp	-18.95218	-18.95205	-18.95638	-18.94390	-18.95098	-19.01711
$\mathrm{C}_{10,1}$	0.88800	0.88948	0.88039	0.90332	0.90230	0.95351
$\mathrm{C}_{1 \mathrm{~s}, 2}$	0.13603	0.13446	0.14429	0.11956	0.12092	0.04811
$\mathrm{C}_{1 \mathrm{~s}, 3}$	-0.00472	-0.00528	-0.00396	-0.00904	-0.00885	0.00779
$\mathrm{C}_{18,4}$	0.00458	0.00501	0.00448	0.00720	0.00749	0.01140
$\mathrm{c}_{18,5}$	-0.00112	-0.00136	-0.00132	-0.00185	-0.00174	-0.00128
$\mathrm{C}_{15,6}$	0.00053	0.00070	0.00066	0.00089	0.00090	-0.00243
$\epsilon_{2 s}$	-14.70793	-15.33966	-15.37635	-16.18405	-16.34594	-16.79222
Cusp	-18. 39464	-19.00240	-18.99354	-19.00464	-19.01649	-19.00922
$\mathrm{c}_{2 \mathrm{s,1}}$	-0.25518	-0.25580	-0.25269	-0.26397	-0. 26285	-0.29070
$c_{2 n, 2}$	-0.12988	-0.13038	-0.12747	-ก.1113!	$=0.14610$	-0.12283
$\mathrm{C}_{20, j}$	0.09460	0.09326	0.10736	. 0.07830	0.05739	0.08431
$\mathrm{c}_{2 s, 4}$	0.99545	0.99744	0.97862	- 1.02354	1.03674	1.01665
$\mathrm{c}_{28,5}$	0.01053	0.01133	0.01083	0.01144	0.02561	0.01163
$\mathrm{c}_{2 s, 6}$	-0.00135	-0.00225	-0.00055	-0.00115	0.00869	-0.00153
$\epsilon_{3 s}$	-1.96364	-2.47755	-2.58857	-2.68729	-2.66576	-2.71209
cusp	-18.81626	-18.82281	-18.73490	-18.82718	-18.88418	-18.86195
$\mathrm{c}_{3 \mathrm{~s}, 1}$	0.08380	0.08639	0.08671	0.09277	0.09651	0.10010
$\mathrm{c}_{3 \mathrm{~s}, 2}$	0.06244	0.06489	0.06623	0.07783	0.08153	0.06895
$\mathrm{C}_{3 \mathrm{~s}, 3}$	0.04043	0.04354	0.05050	0.06891	0.07410	0.06040
$\mathrm{C}_{3 \mathrm{se}, 4}$	-0.52140	-0.53996	-0.55866	-0.60641	-0.62185	-0.58590
$c_{3 s, 5}$	0.63334	0.62015	0.57039	0.56953	0.62156	0.58244
$\mathrm{c}_{3 s, 6}$	0.50598	0.51587	0.57106	0.58382	0.52239	0.56650
$\epsilon_{2 p}$	-11.73792	-12.36825	-12.42694	-13.48136	-13.21598	-14.14875
Cusp	-9.14c21	-9.14897	-9.15299	-9.18073	-9.20343	-9.36415
$\mathrm{c}_{2 \mathrm{p}, 1}$	0.18371	0.18054	0.18030	0.15466	0.15745	0.19632
$\mathrm{c}_{2 \mathrm{p}, 2}$	0.83783	0.83920	0.84055	0.85107	0.85924	0.82317
$\mathrm{c}_{2 p, 3}$	0.02070	0.02456	0.02220	0.03860	0.02333	0.01796
$\mathrm{c}_{2 p, 4}$	-0.00591	-0.00658	-0.00725	0.00778	-0.00728	-0.00510
$\epsilon_{3 p}$	-1.17044	-1.71127	-1.68849	-1.85283	-1.84601	-1.88080
Cusp	-9.14340	-9.14264	-9.14979	-9.13004	-9.14083	-9.37069
$\mathrm{c}_{3 \mathrm{p}, 1}$	-0.05010	-0.05196	-0.05152	-0.04788	-0.04447	-0.05596
$c_{3 p, 2}$	-0.28036	-0.29883	-0.29718	-0.34421	-0.32398	-0.30266
$\mathrm{C}_{3 \mathrm{p}, 3}$	0.56462	0.54277	0.54510	0.58046	0.57500	0.56238
$\mathrm{c}_{3 \mathrm{p}, 4}$	0.53895	0.55028	0.54969	0.51866 .	0.52659	0.53909

*States which are not the lowest of a symmetry species.

The accurate basis sets for the states of the light atoms (fluorine, neon, and sodium) are composed of five s and four p basis functions. The one exception is the basis set for F^{-}, which is composed of six x and five p basis functions.

The accurate basis sets for the states of the heavier atoms (chlorine, argon, and potassium) are composed of seven s and either six or seven p basis functions. The seven p sets used three basis functions to represent the outer loop of the 3 p orbital. The addition of a third basis function to represent this loup causcd only a small improvement in the total energy. For most of the states of K^{++}, a third basis function did not cause any improvement in the total energy. Only two bacis funr.tions were used to represent the loop for the se states.

The simple basis sets for the light atoms are composed of four s and three p basis functions. Two basis functions are used to represent each loop of the s orbitals. The simple basis sets for the heavier atoms are composed of six s and four p. basis functions; two basis functions are used to represent each loop of the orbitals. The automatic exponent variation procedures of the SCF program converge quickly to the optimum values of the exponents of the simple basis sets; almost no manual examination of the intermediate results, and consequent readjustment of the exponent variation parameters, are required. Thus, the calculation of the simple basis set functions is extremely automatic and requires the use of little human or machine time. Of the simple basis set SCF functions, the two which give the poorest approximations to the exact HF, functions are the functions for the negative ions F^{-}and Cl^{-}. (The simple basis sets for the light atoms were called nominal basis sets in an earlier.paper. (9) The reasons for the use of this name were explained in that paper.)

The optimum values of the exponents are not determined in all cases to the number of significant figures given in Tables I-VIII. This is especially true for the large exponents of the basis functions used to represent inner loops, and for the large, accurate, basis sets. Some of the exponents used to represent a loop are better determined than others. The exponents of the dominant basis functions (usually the basis functions with the largest vector coefficients $C_{n \ell, p}$) are often well-determined once the exponents of the less important basis functions are fixed. The largest exponents of the accurate basis sets of the heavier atoms were rounded. The largest exponents of the p basis functions of some of the states of Ne^{+}and Na^{++}were also rounded to simple values. Beyond this, we did not make a systematic attempt to round any of the other exponents but used them, rounded to three decimal places, as they were obtained from the SCF computer program. When exponents were rounded, the vector coefficients given are those determined from SCF calculations made using the rounded values of the exponents.

B. Accuracy of the SCF Wave Functions

Estimates were made of the effect of round-off errors on the SCF calculations. As a part of the round-off error, we include the extent to which the results are not self-consistent solutions of the matix HF equations. Our estimates of round-off error are based, primarily, on information gained in the following ways:

1. The examination of the convergence thresholds, for diagonalization and self-consistency met by the SCF vector coefficients.: These thresholds are part of the output of the computer program and are also set automatically by the program depending on the features of the calculation being performed. (4) Unfortunately, our experience indicatesthat these thresholds give a low estimate of the effects of round-off errors.
2. The comparison of the results of SCF calculations performed on the IBM 704 and on the IBM 7094. The most important difference between the 704 and 7094 programs is that in the 7.094 program the results of floating-point addition and multiplication are rounded, while in the 704 : program they are not. Thus a comparison of the results of SCF calculations, performed on the 704 and 7094 , should provide an estimate, most likely on the high side, of the effect of rounding errors on the 7094 results.
3. The comparison of the results of two SCF calculations, both performed on the 7094 and using the same basis set, but with somewhat different initial approximations for the SCF eigenvectors.

For the calculations performed with small basis sets, viz:, the simple sets for the heavier atoms (chlo'rine, argon, and potassium) and both the simple and accurate sets for the lighter atoms (fluorine, neon, and sodium), the estimates of round-off errors are the following: The round-off error in the total energy and V / T is probably less than or equal to five units in the eighth significant figure. For those states for which the total energy is just larger than 100 Hartrees, the round-off error in the total energy is probably less than two units in the eighth significant figure. Theround-off error in the $\epsilon_{n} \ell^{\prime} s$ and $C_{n} \ell, p$'s is probably less than or equal to one unit in the fifth decimal place (that is, one unit in the last figure given for these quantities in Tables I-VIII). The round-off error in the cusps is usually less than one unit in the fifth decimal place, but in some cases is probably about three or four units in the fifth decimal place.

For calculations with the accurate basis sets for the heavier atoms, the estimates of round-off error are the following: The round-off error in the total energy is probably less than four to eight units in the eighth significant figure. The round-off error in V / T is usually about five units in the eighth significant figure, but in a few cases it is as large
as four in the seventh significant figure. The round-off error for the $\epsilon_{\mathrm{n}} \ell^{\prime} \mathrm{s}$ and cusps varies depending on the orbital considered.(ls, 2s, 2p; etc.), but in any case is no more than one or two units in the fourth decimal place. The round-off error for the $C_{n} \ell, p$ 'sor s orbitals is about one unit in the fifth decimal place, and for p orbitals is less than one unit in the fourth place.

The round-off error is larger for the vector coefficients of p orbitals because the p basis functions form a more nearly linearly dependent set than the s basis functions. The diagonalization procedures lose accuracy as the basis set becomes linearly dependent. For cxample, for the accurate basis set for neutral argon, the determinant of the overlap matrix of the p basis functions is 0.5×10^{-6}; for the s basis functions it is 5.3×10^{-6}, a factor of 10 larger. But, because of the redundancy of the p basis functions, the round-off errors in the vector coefficients may not have a large effect on the numerical values of the p orbitals.

Although the vectors given in Tables I-VIII may not be SCF eigenvectors to the number of figures given, they do form an orthonormal set to the number of figures given.

It is important to obtain reliable estimates of the accuracy of the analytic SCF wave functions. By accuracy of the analytic functions we mean how closely they represent the exact HF solutions. Information on the accuracy of the analytic functions may be obtained in the following ways:

1. The comparison of analytic functions with solutions obtained by direct numerical integration. This method has limited usefulness; first, because numerical solutions are often not available and, second, because accurate analytic functions are often better than the available numerical solutions.
2. T'he comparison of different, good, analytic functions for the same state, calculated independently by different workers or with a different choice of principal quantum numbers for the basis functions, but with very nearly the same total energy. These calculations are not likely to have the same systematic errors because of individual peculiarities in the choice and optimization of the basis functions. Thus, it is reasonable that the differences between the results of these calculations should represent the random error of functions with this total energy. These differences provide a good basis for estimating the accuracy of the functions.
3. The examination of the convergence of the properties of the SCF functions obtained in the process of building. up the basis set from a small set to the final accurate set. This method is very powerful when the basis set is completely reoptimized at each step of the build-up so that the effects of systematic errors on the choice of basis functions to represent a
loop are minimized. These techniques and their application to first-row atoms are discussed elsewhere.(9)

The cusp is not useful as a guide to the accuracy of any fairly good analytic:SCF function. For all but very small basis sets, the cusp condition is satisfied well enough, if optimized basis functions are used, to insure against unreasonable behavior at the origin. This is because an analytic $S C F$ radial function $P_{n \ell}(\dot{r}), P_{n \ell}(\dot{r})=r F_{n \ell}(\dot{r})=r \sum R_{\ell P}(r) C_{n \ell, p}$, goes near the origin as

$$
\begin{equation*}
P_{\mathrm{n} \ell}(r)=\mathrm{A}_{0}(\mathrm{n} \ell) \mathrm{r}^{\ell+1}\left[1+\left(\text { Cusp }_{\mathrm{n}} \ell\right) \mathrm{r}+0\left(\mathrm{r}^{2}\right)\right] . \tag{13}
\end{equation*}
$$

The dominant term in this expansion is $A_{0}(n \ell)$, not the cusp, and $P_{n} \ell$ is not overly sensitive to errors in the cusp.

Fortunately, it is not necessary to apply the tests described above to every analytic SCF function that is calculated. When the SCF functions of a series of similar states have been calculated in a systematic way, as described in Section III of this paper, the accuracy of each function in the series may be inferred from careful estimates of the accuracy of the functions of only a few states. One must take some precautions when making these inferences of estimates of accuracy. It is important, for example, to remember that it may be more difficult to determine more diffuse orbitals, e.g., orbitals of negative ions, as accurately as less diffuse ones.

Tables IX-XII present comparisons of the results of several HF calculations of $\mathrm{Ne}, \mathrm{F}^{-}, \mathrm{Ar}$, and Cl^{-}with the results obtained with our accurate basis set functions. In each case, we give comparisons with results obtained by direct numerical integration of the HF equations;* and, except for Cl^{7}, we also give comparisons with analytic SCF functions with:very nearly the same energy as our accurate-set functions. The analytic functions whose tötal SCF energies differ only in the eighth significant figure. are grouped together with the accurate-set function at the left of the tables. Comparisons between these functions give information of the type 2 above. We have included, for each case, comparison with the results obtained with the simple basis set functions so that the accuracy of these functions may be determined.

For Ne and F^{-}, we include comparisons with the analytic SCF calculations of Allen, (36) and for Ar and C1 ${ }^{-}$, with the analytic SCF calculations of Watson and Freeman.(37) These calculations were performed without using techniques for the automatic optimization of the exponents of the basis functions.

[^7]TABLE IX. Comparison of Several Hartree-Fock Calculations of Neon
(Values are in a.u.)

		This Calculation Accurate set.	Fixed Cusp Set ${ }^{\text {a }}$	Clementi ${ }^{\text {b }}$	$\begin{gathered} \text { Worsley }{ }^{\text {c }} \\ \text { (Numericar } \\ \text { Integration) } \end{gathered}$	This Calculation Simple Set Simple Set	Allen ${ }^{\text {d }}$
E		-128.54709	-128.54703	-1288.54701	.	-128.54648	$\therefore 128.54319$
ΔE		\bigcirc	-0.00006	-0.00008	- . . .	-0.00061	-0.00390
$\epsilon_{1 s}^{\prime}$		-32.77233	-32.77299	-32.77277	$-3 \dot{2} .77_{5}$	-32.77162	-32.76740
$\Delta^{\text {E }}{ }_{1 s}$		0	-0:00004	+0.00044	$+0.003$	-0.000771	-0.00493
Cusp_{18}		-10.0250	-10.0000	-20.0049	-••••	-20.0101	-9.9994
$\triangle \mathrm{Cusp}_{18}$		+0.0250	- . . -	+0.0049	-••••	+0.0101	-0.0006
$\left\|A_{0}(10)\right\|$		6 6 .777	6 n .74	60.750	60.77	60.761	60.746
$\Delta\left\|A_{0}(1 s)\right\|$		-0.01	+0.03	+0.02	0	+0.01	+0.02
. $\left\rangle_{18}\right.$		0.15763	0.15763	0.15763	-••••	0.15763	0.15764
$\Delta\left\rangle_{2}\right.$		0	0.00000	0.00000	0.00000	-0.00001
$\left\langle^{\left\langle r^{2}\right\rangle_{18}}\right.$		0.03347	0.03347	0.03347	-••••	0.03347	0.03347
$\Delta\left\langle r^{\prime 2}\right\rangle_{18}$		0	0.00000	0.00000	- . . .	0.00000	0.00000
$\left[\int\left(\triangle P_{18}\right)^{2}\right]^{\frac{1}{2}}$	-	0	0.0005	0.0004	-•••	0.0005	0.0006
$\left\|{ }^{\prime} \mathrm{P}_{18}\right\|_{\text {max }}$	$0 \leq r<\infty$	0	0.0002	0.0003	0.003	0.0004	0.0005
$\epsilon_{2 s}$		-1.93031	-1.93031	-1.93048	-1.933	-1.92975	-1.92592
$\Delta \epsilon_{2 s}$		0	0.00000	+0.00017	+0.003	-0.00056	-0.00439
$\mathrm{Cusp}_{2 s}$		-10.0535	-10.0000	-10.0052	-••••	-10.0136	-10.3010
Cusp_{28}		+0.0535.	-	+0.0052	-••••	+0.0136	+0.3010
$\left\|A_{0}(2 s)\right\|$		14.280	14.253	14.264	14.27	14.269	14.344
$\Delta\left\|A_{0}(2 s)\right\|$		-0.01	+0.02	+0.01	0 -	0.00	-0.07
$\langle r\rangle_{2 s}$		0.89209	0.89207	- 0.89216	- • • •	0.89135	0.89267
$\Delta\langle r\rangle_{28}$		$\therefore \quad 0$	+0.00002	-0.00007	-••••	+0.00074	-0.00058
$\left.\mathrm{<r}^{2}\right\rangle_{2 s}$		0.96694	0.96691	0.96735	0.96359	0.96964
$\Delta\left\langle r^{2}\right\rangle_{2 s}$		0	+0.00003	-0.00041	-••••	+0.00335	-0.00270
$\left[\int\left(\triangle P^{\text {a }} \text {) }\right)^{2}\right]^{\frac{1}{2}}$		0	0.0014	0.0015	-••••	0.0054	0.0061
$\left\|\triangle P_{2 s}\right\|_{\text {max }}$	$0 \leq r<1.0$	0	0.0002	0.0004	0.0003	0.0015	0.0023
.	$1.0 \leq r<\infty$	0	0.0009	0.0012	0.001	0.0046	0.0046
${ }^{\epsilon} 2 \mathrm{p}$		-0.85034	-0.85033	-0.85048	-0.852_{5}	-0.84974	-0.84610
$\Delta \epsilon_{2 p}$		- 0	-0.00001	+0.00014	+0.002 2	-0.00060	-0.00424
$\mathrm{cusp}_{2 p}$:	-5.0003	-5.0000	-5.0000	-••••	-4.6751	-4.7356
- Cusp $^{\text {2p }}$	-	+0.0003	- . . .	0.0000	-••••	-0.3249	-0.2644
$\left\|A_{0}(2 p)\right\|$		27.804	27.732	27.861	27.87	27.159	27.479
$\Delta\left\|A_{0}(2 p)\right\|$		+0.07	+0.14	+0.01	0	+0.71	+0.39
$\langle\mathrm{r}\rangle_{2 p}$		0.96518	0.96519	0.96537	-••••	0.96477	0.96489
$\Delta\langle r\rangle 2 p$		0	-0.00001	-0.00019	-••••	+0.00041	+0.00029
${ }^{\left\langle r^{2}\right\rangle_{2 p}}$		1.22789	1.22787	1.22901	-••••	1.22516°	1.23800
$\Delta\left\langle r^{2}\right\rangle_{2 p}$		0	+0.00002	-0.00112	-•••••	+0.00273	-0.01011
$\left[\int\left(\Delta P_{2 p}\right)^{2}\right]^{\frac{1}{2}}$		\bigcirc	0.0010	0.0017	-•••	0.0037	0.0186
$\left\|\Delta P_{2 p}\right\|_{\text {max }}$	$0 \leq r<1.0$	0	0.0002	0.0006	0.0002	0.0011	0.0063
	$1.0 \leq r<\infty$	0	0.0006	0.0011	0.004	0.0026	0.0102

${ }^{\text {a P P S. Bagus, T. L. Gilbert, C. C. J. Roothanan, and H. D. Cohen (see Ref. 9). }}$
${ }^{\mathrm{b}}$ E. Clementi, C. C. J. Roothaan, and M. Yoshimine (see Ref. 7).
${ }^{\text {c B. }}$. H. Worsley (see Ref. 32).
${ }^{\mathrm{d}}$ L. C. Allen (see Ref. 36).

TABLE X. Comparison of Several Hartree-Fock Calculations of F^{-}
(Valueo are in a.u.)

		This Calculation Accurate Set	Fixed Cusp Set ${ }^{\text {a }}$	$\begin{gathered} \text { Froese }{ }^{\text {b }} \\ \text { (Numeracal } \\ \text { Integration) } \end{gathered}$	Clementi ${ }^{\text {c }}$	Allen ${ }^{\text {d }}$	This Calculation Simple Set
E		-99.459440	-99.459444	-•••	-99.459363	-99.458879	-99.457854
$\Delta \mathrm{E}$		0	+0.000004	-•••	-0.00007?	-0.000561	-0.001586
${ }^{\boldsymbol{1}} \mathrm{s}_{\text {. }}$. -	-25.82961	-25.82961	-25.822_{5}	-25.82944	-25.82957	-25.82687
- $\Delta \epsilon_{18}$		0	+0.00000	-0.0071	-0.00017	-0.00004	-0.00274
$\mathrm{Cusp}_{1 \mathrm{~s}}$		-9.0240	-9.0000	- . .	-9.0174	-9.0055	-9.012.4
$\triangle \mathrm{Cusp}_{1 \mathrm{l}}$.	+0.0240	- • . .	- . . .	+0.0174	+0.0055	+0.0124
$\left\|A_{0}(1 s)\right\|$		51.724	51.702	51.705	51.717	51.703	51.713
$\Delta\left\|A_{0}(1 s)\right\|$		-0.019	+0.003	0	-0.012	+0.002	-0.008
$\left.{ }^{\langle r}\right\rangle_{1 s}$		0.17576	0.17576	-•••	0.17576	0.17577	0.17575
.$\left.^{\langle r}\right\rangle_{1}$		0	0.00000	-•••	0.00000	-0.00001	+0.00001
. $\left\langle r^{2}\right\rangle_{18}$		0.04162	0.04162	-••	0.04162	0.04162	0.04161
$\Delta\left\langle r^{2}\right\rangle_{18}$		0	0.00000	- • •	0.00000	0.00000	+0.00001
$\left[\int\left(\Delta P_{i s}\right)^{2}\right]^{\frac{1}{2}}$		0	≤ 0.0002	-•••	0.0004	0.0004	0.0006
$\left\|\triangle P_{1 s}\right\|_{\text {max }}$	$0 \leqslant r<\infty$	0	0.0002	0.0003	0.0002	0.0004	0.0005
$\epsilon_{2 s}$		-1.07458	-1.07458	-1.076_{5}	-1.07435	-1.07468	-1.07236
${ }^{ \pm} 2 \mathrm{~s}$		0	0.00000	$+0.0019$	-0.00023	+0.00010	-0.00222
Cusp_{20}		-9.0678	-9.0000	-•••	-9.0345	-9.2576	-9.0753
$\mathrm{CCusp}_{2}{ }_{\text {s }}$		+0.0678	$\cdot \cdot$	- • -	+0.0345	+0.2576	+0.0753
$\left\|A_{0}(2 s)\right\|$		11.683	11.667	11.669	11.670	11.729	11.688
$\Delta\left\|A_{0}(2 s)\right\|$.	-0.014	+0.002	0	-0.001	--0:060	-0.019.
$\langle r\rangle_{2 s}$		1.03555	1.03556	-•••	1.03540	1.03617	1.03333
$\Delta\langle r\rangle^{\text {a }}$		0	-0.00001	-•••	+0.00215	-ก.00062	-0.0022
<n3)		1.31886	1.31903	-•••	1.31776	1.32219	1.30703
$\Delta\left\langle r^{2}\right\rangle_{2 s}$		0	-0.00017	. \because.	+0.00110	-0.00333	+0.01183
$\left[\int\left(\Delta \mathrm{P}_{2 s}\right)^{2}\right]^{\frac{1}{2}}$.		0	0.0009	- • •	0.0027°	0.0035	0.0118
$\left\|\Delta \mathrm{P}_{2 s}\right\|_{\text {max }}$	$0 \leqslant r<1.5$	0	0.0003	0.0005	0.0009	0.0015	0.0024
	$1.5 \leq r<\infty$	0	0.0006	0.0005	0.0018	0.0026	0.0088
$\epsilon_{2 p}$		-0.18098	-0.18098	-0.181_{5}	-0.18079	-0.18122	-0.17886
${ }^{\epsilon}{ }_{2 p}$		0	0.00000	$+0.000_{5}$	-0.00019	+0.00024	-0.00212
$\mathrm{Cusp}_{2 \mathrm{p}}$		-4.5322	-4.5000	-•••	-4.4282	-4.1523	-4.0292
$\mathrm{ACusp}_{2 p}$		+0.0322	-••	-	-0.0718.	-0.3477	-0.4708
$\left\|A_{0}(2 p)\right\|$		18.861	18.882	18.849	18.740	18.268	18.017
$\Delta\left\|A_{0}(2 p)\right\|$		-0.012	-0.033	0	+0.109.	+0.581	+0.832
$\langle r\rangle_{2 p}$		1.25556	1.25557	-•••	1.25512	1.25604	1.25206
$\Delta\langle r\rangle_{2 p}$		0	-0.00001	$\cdots \cdot$.	+0.00044	-0.00048	+0.00350
$\left.\mathrm{rr}^{2}\right\rangle^{2} \mathrm{p}$		2.20956	2.20971	- . ${ }^{\text {. }}$	2.205 .16	2.21748	2.17892 .
$\Delta r^{2}>2 p$. . 0	-0.00015	+0.00440	-0.00792	+0.03064
$\left[\int\left(\Delta P_{2 p}\right)^{2}\right]^{\frac{1}{2}}$		0	0.0007		0.0024	0.0076	- 0.0121
, $\left\|\Delta P_{2 p}\right\|_{\text {max }}$	$0 \leqslant r<1.5$	0	0.0002	0.0002	0.0002	0.0012	0.0021
	$1.5 \leq r<\infty$	0	0.0003_{5}	0.0005	0.0013	0.0034	0.0067

${ }^{\text {a }}$ P. S. Bagus, T. L. Gilbert, C. C. J. Roothaan, and H. Cohen (see Ref. 9).
${ }^{b} C$. Froese (see Ref. 33).
c_{E}. Clementi and A. D. McLean (see Ref. 38).
${ }^{d}$ L. C: Allen (see Ref. 36).

TABLE-XI. Comparison of Several Hartree-Fock Calculations of Argon
(Values are in a.u.)

		This Calculation Accurate set	Alternate ${ }^{\text {a }}$ Large Set 8 s and 7 p	$\begin{gathered} \text { Malli } \\ \text { (Fixed Cusp Set) } \end{gathered}$	$\begin{gathered} \text { Hartres } \\ \text { (Numerical } \\ \text { Integration) } \end{gathered}$	clementi ${ }^{\text {d }}$	This Calculation Simple Set	. Watson and Freeman ${ }^{\text {e }}$
E		-526.81746	-526.81745	-526.81743		-526.81707	-526.81553	-526.81463
ΔE		0	-0.00001	-0.00003		<0.00039	-0.00193	-0.00283
E_{18}		219.61014	-118 6ınap	-118.61020	-118.6	-118.60987	-218.60817.	-118.60950
$\Delta \epsilon_{1 s}$		0	+0.00028	+0.00016	0.0	-0.00027	-0.00197	- U. UUUB4
Cusp_{18}		-18.0037	-18.0063	-18.0000	-••••	-18.0298	-17.9582	-17.9727
\triangle Cusp $_{18}$		+0.0037.	+0.0063	- • . .	- . - .	+0.0298	-0.0418	-0.0273
$\left\|A_{0}(18)\right\|$.	148.87	148.88	148.85	148.8	148.92	148.77	248.81
$\Delta\left\|A_{0}(10)\right\|$		-0.1	-0.1	0.0	0	-0.1	0.0	0.0
- $\langle r\rangle_{1 s}$		0.08610	0.08610	0.08610	-••••	0.08610	0.08611	0.08610
$\Delta\langle r\rangle_{18}$		0	0.00000	0.00000	- • • •	0.00000	-0.00001	0.00000
$\left\langle r^{2}\right\rangle_{1 B}$	-	0.00996	0.00996	0.00996	0.010	0.00996	0.00996	0.00996
$\Delta\left\langle r^{2}\right\rangle_{1 s}$		0	0.00000	0.00000	0.000	0.00000	0.00000	0.00000
$\left[\int\left(\Delta P_{18}\right)^{2}\right)^{\frac{1}{2}}$		0	40.0001	$\underline{0.0002}$	- • • .	≤ 0.0003	0.0005	0.0004
$\left\|\Delta P_{18}\right\|_{\max }$	$0 \leqslant r<\infty$	0	0.0001	0.0002	0.007	0.0003	0.0008	0.0004
ϵ_{28}		-12.32193	-12.32220	-12.32214	-12.33	-12.32150	-12.32139	-12.32141
$\Delta \epsilon_{2 s}$		0	+0.00027	+0.00021	$+0.01$	-0.00043	${ }^{\circ} \cdot \mathrm{O} 0.00054$	-0.00052
Cusp_{28}		-17.9965	-18.0049	-18.0000	-••••	-17.9940	-17.9891	-18.2048
$\triangle \mathrm{Cusp}_{2 s}$		-0.0035	+0.0049	- • • •	- * * *	-0,0060	-0.0109	+0.2048
$\left\|A_{0}(2 s)\right\|$		42.257	42.266	. 42.244	42.25	42.254	42.252	42.276
$\Delta\left\|A_{0}(28)\right\|$		-0.01	-0.02	+0.01	0	0.00	0.00	-0.03
$\langle r\rangle_{2 s}$		0.41228	0.41227	0.41229	-••••	0.41228	0.41231	0.41228
$\Delta\langle r\rangle_{2 s}$		0	+0.00001	-0.00001	- • * -	0.00000	-0.00003	0.00000
$\left\langle r^{2}\right\rangle_{2 s}$		0.20123	0.20122	0.20123	0.201	0.20122	0.20125	0.20122
$\Delta\left\langle r^{2}\right\rangle_{2 s}$		0	+0.00001	0.00000	0.000	$+0.00001$	-0.00002	$+0.00001$
$\left[\int\left(\Delta P_{2 s}\right)^{2}\right]^{\frac{1}{2}}$		0	0.0005	0.0004	-•	0.0008	0.0005	0.0006
$\left\|\Delta \mathrm{P}_{2 \mathrm{a}}\right\|_{\text {max }}$	$0 \leq r<0.35$	0	0.0002	0.0002	0.002	0.0002	0.0004	0.0003
	$0.35 \leq r<\infty$	0	0.0005	0.0002	0.002	0.0006	0.0006	0.0005
$\epsilon_{3 s}$		-1.27725	-1.27734	-1.27735	-1.277_{5}	-1.27692	-1.27666:	-2.27649
$\Delta^{\epsilon}{ }_{3 s}$		0	+0.00009	+0.00010	$+0.000_{2}$	-0.00033	-0.00059	-0.00076
Cuseg_{38}		-17.9689	-17.9517	-18.0000	-••••	-18.0976	-17.7582	-17.9798
$\triangle \mathrm{Cusp}_{3}$		-0.0311	-0.0483	-••••	- . - .	+0.0976	-0.2418	-0.0202
$\left\|A_{0}(3 s)\right\|$		13.199	13.197	13.199	13.21	13.222	13.146	23.201
$\Delta\left\|A_{0}(3 s)\right\|$		+0.01	+0.01	+0.01	0	-0.01	+0.06	+0.01
$\mathrm{Cr}_{3}{ }_{3}$		1.42196	1.42228	1.42192	-••••	. 1.42256	1.42218	1.42252
$\Delta\langle r\rangle_{3 s}$,	0	-0.00032	+ +0.00004	- •••	-0.00060	-0.00022	-0.00056
$\mathrm{rr}^{2}>_{38}$		2.34912	2.35086	2:34888	2.348	2.35144	2.34981	2.35372
$\Delta\left\langle r^{2}\right\rangle_{3 s}$		0	-0.00174	+0.00024	+0.001	-0.00232	-0.00069	-0.00460
$\left[\int\left(\Delta P_{3 s}\right)^{2}\right]^{\frac{3}{2}}$		0	0.0009	0.0004	$\cdots \cdot$ •	0.0025	0.0006	0.0059
$\left.\left.\right\|_{\triangle P^{36}}\right\|_{\text {max }}$	$0 \leq r<1.2$	0	0.0002	0.0002	0.001	0.0009	0.0007	0.0003
	$1.2 \leq r<\infty$	0	0.0006	0.0002	0.001	0.0021	0.0004	0.0042

TABLE XI. Continued.
(Values are in a.u.)

		This Calculation Accurate Set	Alternate ${ }^{\text {a }}$ Large Set 8 s and 7p	$\begin{gathered} \text { Malli }{ }^{\text {b }} \\ \text { (Fixed Cusp Set) } \end{gathered}$	$\begin{gathered} \text { Hartree } \\ \text { (Numerical } \\ \text { Integration) } \end{gathered}$	Clement ${ }^{\text {d }}$	This Calculation Simple Set	Watson and Freeman
${ }^{\epsilon}{ }_{2 p}$		-9.57127	-9.57152	-9.57146	-9.575	-9.57083	-9.57061	-9.57072
$\Delta \epsilon_{2 p}$.	0	+0.00025	+0.00019	$+0.00{ }_{4}$	-0.00044	-0.00066	-0.00055
Cusp $_{2 p}$		-8.9259	-8.9577	-9.0000	- • • •	-8.9011	-8.6098	-8.7697
$\mathrm{ACusp}_{2 p}$		-0.0741	-0.0423	-••*	- * *	-0.0989	-0.3902	-0.2303
$\left\|A_{0}(2 p)\right\|$		181.89	182.07	182.14	282.35	181.81	179.21	180.54
$\Delta\left\|A_{0}(2 p)\right\|$		$+0.46$	$+0.28$	$+0.21$	0	$+0.54$	$+3.15$	$+1.81$
$\langle r\rangle_{2 p}$		0.37533	0.37533	0.37533	-••••	0.37529	0.37527	0.37536
$\Delta\langle r\rangle_{2 p}$		0	0.00000	0.00000	-•***	+0.00004	+0.00006i	-0.00003
$\left\langle r^{2}\right\rangle_{2 p}$		0.17434	0.17434	0.17434	0.174	0.17430	0.27427	0.17437
$\Delta\left\langle r^{2}\right\rangle_{2 p}$		0	0.00000	0.00000	0.000	+0.00004	+0.00007	-0.00003
$\left[\int\left(\Delta P_{2 p}\right)^{2}\right]^{\frac{1}{2}}$		0	0.0005	0.0004	-••••	0.0009	0.0028	0.0016
$\left\|\triangle \mathrm{P}_{2 \mathrm{p}}\right\|_{\text {max }}$	$0 \leq r<\infty$	0	0.0002	0.0003	0.002	0.0007	0.0026	0.0014
${ }^{6} 3$		-0.59092	-0.59102	-0.59099	-0.590_{5}	-0.59071	-0.59046	-0.58997
$\Delta \epsilon_{3 p}$		0	+0.00010	+0.00007	-0.000 4	-0.00021	-0.00046	-0.00095
$\mathrm{Cusp}_{3 n}$		$\therefore 8.8809$	-8.9171	-9.0000	-••••	-8.9816	-8.6399	-9.1924
		- 21181	. 0.0599	- * . -	- • • •	-0.0784	-0.3601	+0.1924
$\left\|A_{0}(3 p)\right\|$		50.707	50.824	50.804	50.97	50.790	50.018	51.638
$\Delta\left\|A_{0}(3 p)\right\|$		+0.26	+0.15	+0.17	0	+0.18	+0.95	-0.67
$\langle r\rangle_{3 p}$		1.66276	1.66289	1.66298	- • • .	1.66181	1.66156	1.66343
$\Delta\langle r\rangle_{3 p}$		0	-0.00013	-0.00022	-••••	+0.00095	+0.00120	-0.00067
$\left.{ }^{\left\langle r^{2}\right.}\right\rangle_{3}$		3.30917	3.31003	3.31087	3.312	3.30105	3.29947	3.32762
$\Delta\left\langle r^{2}\right\rangle_{3 p}$		0	-0.00086	-0.00170	-0.003	+0.00812	+0.00970	-0.01845
$\left[\int\left(\Delta P_{3 p}\right)^{2}\right]^{\frac{1}{2}}$		0	0.0006	0.0019	-	0.0051	0.0051	0.0179
$\left\|\triangle P_{3 p}\right\|_{\text {ma }}$	$0 \leq r<1.3$	0	0.0003	0.0002	0.001	0.0009	0.0007	0.0025
	$1.3 \leq r<\infty$	0	0.0004	0.0011	0.001	0.0032	0.0033	0.0096

ap. S. Bagus (uripublished).
${ }^{b_{G}}$. L. Malli (to be published).
$C_{\mathcal{D}}$. R. Hartree and W. Hartree (see Ref. 34) solved the $S C F$ equations with exchange only for the 3 s and l_{p} wave functions; the 1 s , 2 s , and 2 p wave functions with exchange were obtained from the functions without exchange and interpolation between the values for $\mathrm{Ca}^{++}, \mathrm{K}^{+}$, and Cl^{-}.
de. Clementi (see Ref. 39). Details of the function are not published in Clementi's paper but are available at the Library of Congress (see Ref. 40). ${ }^{\text {e R }}$. E. Watson and A. J. Freeman (see Ref. 3,7).

TABLE XIL. Comparison of Several Hartree-Fock Calculations of Cl^{-}
(Values are in a.u.)

		This Calculation Accurate Set	$\begin{gathered} \text { Hartree }{ }^{\text {a }} \\ \text { (Numerical } \\ \text { Integration) } \end{gathered}$	Watson and Freeman	This Calculation Simple Set Simple Set
E		-459.57684	-	-459.57499	-459.57362
$\triangle \mathrm{E}$		0	-••••	-0.00185	-0.00322
ϵ_{18}		-104.50546	-104.5_{5}	-104.50829	-104.50086
$\Delta \epsilon_{13}$		0	$+0.04$	+0.00283	-0.00460
$\mathrm{Cusp}_{1 s}$		-17.0048	- \therefore.	-16.9691	-16.9635
$\triangle \mathrm{Cusp}_{1 \mathrm{~s}}$		+0.0048	- • -	0.0309	=0.n365
$\left\|A_{0}(1 s)\right\|$		136.48	136.5	136:41.	136.40
$\Delta\left\|A_{0}(18)\right\|$.		0.0	0	+0.1	+0.1
$\left\langle{ }^{\langle }\right\rangle_{1 s}$		0.09130	-••••	0.09130	0.09130
$\Delta\langle r\rangle_{1 s}$		0	-••••	0.00000	0.00000
$\left\langle\mathrm{r}^{2}\right\rangle_{1 s}$		0.01120	0.011	. 0.01120	0.01120
$\Delta\left\langle r^{2}\right\rangle_{1 s}$		$0 \quad \therefore$	$0.00{ }_{0}$	0.00000	0.00000
$\begin{aligned} & {\left[\left(\Delta \mathrm{P}_{1 \mathrm{~s}}\right)^{2}\right]^{\frac{1}{2}}} \\ & \left.\underline{\Delta \mathrm{P}} \mathrm{P}_{1 \mathrm{~s}}\right\|_{\text {max }} \end{aligned}$		0	-••••	0.0004	0.0005
	$0 \leq r<\infty$	0	0.001	0.0005	0.0008
$\epsilon_{2 s}$		-10.22916	-10.23_{5}	-10.23225	-10.22595
$\Delta \epsilon_{2 s}$:	0	$+0.006$	+0.00309	-0.00321.
$\mathrm{Cusp}_{2 \mathrm{~s}}$.	-16.9933.	-••••	-17.0174	-16.9902
\triangle cuisp $_{2 s}$		-0.0067	-••••	+0.0174	-0.0098
$\left\|A_{0}(2 s)\right\|$		38.238	38.24	38.254	' 38.238
$\Delta\left\|A_{0}(2 d)\right\|$		0.00	0	-0.01	0.00
$\left\langle{ }^{\langle }\right\rangle_{2 s}$		0.44180	- • • •	0.44179	0.44181
$\Delta\langle r\rangle_{2 s}$		0	-••••	+0.00001	-0.00001
${\left.\stackrel{r}{ }{ }^{2}\right\rangle_{2 s} \text { d }}^{2}$		0.23129	0.231	0.23129	0.23130
$\left.\Delta \mathrm{r}^{2}\right\rangle_{2 s}$		0	0.000	0.00000	-0.00001
$\begin{aligned} & {\left[\int\left(\Delta P_{2 s}\right)^{2}\right]^{\frac{1}{2}}} \\ & \left\|\Delta P_{2 s}\right\|_{\text {max }} \end{aligned}$		0	- • • •	0.0006	≤ 0.0003
	$0 \leq r<0.35$	0	0.001	0.0003	0.0002
	$0.35 \leq r<\infty$	0	0.001	0.0004	0.0003
${ }^{\epsilon} 3 \mathrm{~s}$		-0.73320	-0.727	-0.73547	-0.73031
$\Delta \epsilon_{3 s}$		0	-0.006	+0.00227	-0.00289
$\mathrm{Cusp}_{3 \mathrm{~s}}$		-16.9622	-••••	-17.0158	-16.7602
$\triangle \mathrm{Cusp}_{3 \mathrm{~s}}$		-0.0378	-••••	+0.0158	-0.2398
$\left\|A_{0}(3 s)\right\|$		11.261	11.31	11.273	11.209
$\Delta\left\|A_{0}(3 s)\right\|$		+0.05	0	+0.04	+0.10
$\left\langle{ }^{2}\right\rangle_{3 s}$		1.60179	-••••	1.60163	1.60242
$\Delta\langle r\rangle_{3 s}$		0	- • • •	+0.00016	-0.00063
$\left\langle\mathrm{r}^{2}\right\rangle_{3 s}$		3.01041	3.012	3.01207	3.01262
$\Delta\left\langle r^{2}\right\rangle_{3 s}$		0	-0.002	-0.00166	-0.00221
$\left[\int\left(\Delta P_{3 s}\right)^{2}\right]^{\frac{1}{2}}$$\left\|\Delta P_{3 s}\right\|_{\text {max }}$		0	-•••	0.0051	0.0007
	$0 \leq r<1.3$.	0	0.001_{5}	0.0002	0.0010
	$1.3 \leq r<\infty$	0	0.002_{5}	0.0032	0.0003

TABLE XII. Continued
(Values are in a.u.)

	\checkmark	This Calculation Accurate Set	$\begin{gathered} \text { Hartree }{ }^{\mathrm{a}} \\ \text { (Numerical } \\ \text { Integration) } \end{gathered}$	Watson and Freeman	This Calculation Simple set
$\epsilon_{2 p}$		-7.69557	-7.695	-7.69866	-7.69225
$\Delta \epsilon_{2 p}$		\bigcirc	-0.001	+0.00309	-0.00332
$\mathrm{Cusp}_{2 p}$		-8.4401	-••••	-8.2818	-8.0692
\triangle cusp $^{2 p}$		-0.0599	-••••	-0.2182	-0.4308
$\left\|A_{0}(2 p)\right\|$		153.63	154.1	152.46	150.73
$\Delta\left\|A_{0}(2 p)\right\|$		+0.5	0	+1.6	+3.4
$\left\rangle_{2 p}\right.$		0.40538	-••••	0.40540	0.40525
$\Delta\langle r\rangle_{2 p}$		0	-••••	-0.00002	+0.00013
$\left.{ }^{\left\langle r^{2}\right.}\right\rangle_{2 p}$		- 0.20386	0.20_{4}	0.20387	0.20369
$\Delta\left\langle r^{2}\right\rangle_{2 p}$;	0	0.000	-0.00001	+0.00017
$\left[\int\left(\Delta P_{2 p}\right)^{2}\right]^{\frac{2}{2}}$		0	0.0012	0.0034
$\left\|\triangle \mathrm{P}_{2 p}\right\|_{\text {max }}$	$0 \leqslant r<\infty$	0	0.001	0.0009	0.0031
${ }^{\epsilon} 3$		-0.15017	-0.14855	-0.15172	-0.14772
$\Delta \epsilon_{3 p}$		0	-0.0016_{3}	+0.00155	-0.00245
$\mathrm{Cusp}_{3 \mathrm{p}}$		-8.3803	-•••••	-8.6557	-8.1451
$\mathrm{ACusp}_{3 \mathrm{p}}$		-0.1197	- •••	+0.1557	-0.3549
$\left\|A_{0}(3 p)\right\|$		37.927	38.02	38.601	37.468
$\Delta\left\|A_{0}(3 p)\right\|$		+0.09	\bigcirc	-0.58	+0.55
$\langle r\rangle_{3 p}$		2.02880	- - . -	2.03967	2.01910
$\Delta\langle r\rangle_{3 p}$		\bigcirc	- •••	-0.01087	+0.00970
$\left\langle\mathrm{r}^{2}\right\rangle_{3}{ }^{\text {p }}$		5.10806	5.137	5.22941	5.01079
$\Delta\left\langle r^{2}\right\rangle 3 p$		0	-0.029	-0.12135	+0.09727
$\left[\int\left(\Delta P_{3 p}\right)^{2}\right]^{\frac{1}{2}}$		0	- . . .	0.0207	0.0209
$\left\|\Delta P_{3 p}\right\|_{\max }$	$0 \leqslant r<1.5$	0	0.0015	0.0028	0.0021
	$1.5 \leq r<\infty$	0	0.0015	0.0102	0.0116

a_{D}. R. Hartree and W. Hartree (see Ref. 35).
$\mathrm{b}_{\text {R }}$. E. Watson and A. J. Freeman (see Ref. 37).

Where analytic calculations of other workers are reported, we have used their basis sets to recompute their functions with our program. This was done so that all the properties of each calculation would be available for comparison. Tables IX-XII present the results obtained from our recalculations. Our recalculations agree closely with the original calculations.

The total SCF energies in Tables IX-XII are given to eight significant figures. Although round-off error affects the eighth figure, this is the only way to distinguish the energies of several of the functions. For each orbital, we give the values of the orbital energy $\epsilon_{n \ell}$, cusp, $A_{0}(n \ell)$, the dominant term in the expansion of the radial-wave function near the origin [defined in Eq. (13)], and the expectation values of r and r^{2}.

Direct comparisons are also made for the radial wave functions $P_{n \ell}(r)$. For each orbital, we give values of the quantity

$$
\left[\int_{0}^{\infty}\left[P_{\text {accurate set }}(r)-P_{\text {comparison }}(r)\right]^{2} \mathrm{dr}\right]
$$

denoted in the tables by $\left[\int\left(\Delta P_{n} \ell\right)^{2}\right]^{1 / 2}$. This is a sum of the differences of the radial wave functions over their entire range and may be used as an overall figure of merit for the quality of the comparison function. (This comparison cannot be made with the numerical functions. The radial wave functions obtained with the accurate basis sets and by numerical methods usually agree within one or two units in the last figure given in the tabulation of the numerical functions, and $\left[\int\left(\Delta P_{n} l\right)^{2}\right]^{1 / 2}$ calculated from these differences would only reflect rounding errors.). The tables also give the maximum value of $|\Delta P(r)|=\left|P_{\text {accurate set }}(r)-P_{\text {comparison }}(r)\right|$. For some orbitals, $|\Delta P|_{\text {max }}$ is given for two ranges of r to indicate that the agreement between some of the radial wave functions is considerably better for the inner portion of the function than for the tail. The limit of the ranges is arbitrary. Except for a small range of values of r, usually at the tail of the orbital, $|\Delta P(r)|$ is smaller than $|\Delta P(r)|$ max. Thus $|\Delta P(r)|_{\text {max }}$ gives the worst view of the accuracy of the orbitals.

The differences given in Tables IX-XII ($\Delta \mathrm{E}, \Delta \epsilon$, etc.) are usually defined as

$$
\begin{align*}
\Delta \text { Property }= & \text { Property (accurate set) } \\
& - \text { Property (comparison function). } \tag{14a}
\end{align*}
$$

The exceptions are

$$
\begin{equation*}
\Delta \text { Cuspn}_{n} \ell=-\mathrm{Z} /(\ell+1)-\text { Cusp }_{\mathrm{n} \ell} \text { (comparison function), } \tag{14b}
\end{equation*}
$$

and

$$
\begin{align*}
\Delta \mid \mathrm{A}_{0}(\mathrm{n} \ell) \|= & \mid \mathrm{A}_{0}(\mathrm{n} \ell)[\text { numerical calculation }] \mid \\
& -\mid \mathrm{A}_{0}(\mathrm{n} \ell)[\text { comparison function }] \mid \tag{14c}
\end{align*}
$$

For $A_{0}(n \ell)$, numerical calculations were chosen as a standard of comparison because numerical techniques require that the radial functions be determined accurately at the origin. The numerical integration is started outward from $r=0$, and the results are sensitive to any error in the function at the origin.

The values of the radial wave functions obtained from the accurate basis SCF calculations agree strikingly well with the values obtained from numerical calculations.

Worsley (32) gives the neon radial functions, tabulated at logarithmic intervals, to four decimal places except for the tail region of each orbital where they are given to only three decimal places. Worsley claims that the functions are accurate to within two or three units in the last figure given. At every point Worsley tabulates, the difference between our accurate set results and her numerical results, $\left|\triangle^{\prime} P(r)\right|$, is within this limit except for four points. At the great majority of tabulated points, $|\Delta \mathrm{P}(\mathrm{r})|$ is 0 or 1 in the last figure Worsley gives.

Froese (33) claims that her radial wave functions for F^{-}, given to four decimal places, are accurate to 0.0002 . The differences with our accurate-set results are within this limit with only a few exceptions. At two points, $\mid \Delta \mathrm{P}_{1 \mathrm{~s}}(\mathrm{r}) \|=0.0003$; at ten points, $\left\|\Delta \mathrm{P}_{2 \mathrm{~S}}(\mathrm{r})\right\|$ is between 0.0003 and 0.0005 ; and at five points, $\left|\Delta \mathrm{P}_{2 \mathrm{p}}(\mathrm{r})\right| \mid$ is between 0.0003 and 0.0005 .

Hartree and Hartree $(34,35)$ give the radial wave functions for Ar and Cl^{-}to three decimal places; for the 3 s and 3 p orbitals of Cl^{-}, they tabulate $2 P(\dot{r})$ rather than $P(\dot{r})$ in order to obtain additional accuracy. For argon, $\left|\triangle P_{1 s}(\dot{r})\right|$ has its largest values at five consecutive points and is between 0.003 and 0.007 ; at several points of the 2 s and 2 p radial functions, $|\Delta P(r)|$ has its maximum value of 0.002 . For the argon 3 s and $3 p$ radial functions, $|\Delta P(r)|$ is usually 0.000 and is never larger than 0.001 (i.e., 0 or 1 in the last figure that Hartree and Hartree give). The relatively large disagreements for the $1 \mathrm{~s}, 2 \mathrm{~s}$, and 2 p radial functions occur because Hartree and Hartree did not obtain these functions by direct solution of the HF integro-differential equations but rather by an interpolation between results for Cl^{-}and K^{+}. Their 3 s and 3 p functions, on the other hand, were obtained as self-consistent numerical solutions of the HF equations. This explanation is supported by the fact that, for the $1 \mathrm{~s}, 2 \mathrm{~s}$, and 2p orbitals of the Hartree and Hartree calculation on $\mathrm{Cl}^{-},|\Delta \mathrm{P}(\mathrm{r})|$ is never larger than 0.001 . Although the agreement between our results and those
of Hartree and Hartree for the 3 s and 3 p orbitals of Cl^{-}is still good, it is not as good for these orbitals as for the others. For the 3s radial function, $2\|\Delta \dot{P}(\dot{r})\|$ is 0.005 at one point in the tail of the function, 0.004 at the two adjacent points, and 0.002 or 0.003 at several points; for the $3 p$ function, there are also several points for which $2|\triangle P(r)|$ is as large as 0.002 and 0.003 .

For $\mathrm{Ne}, \mathrm{F}^{-}, \mathrm{Ar}$, and Cl^{-}, the agreement between the numerical and accurate basis set analytic radial functions is, in almost all cases, within the error of the numerical calculations. The 3 s and 3 p radial functions of Cl^{-}obtained by Hartree and Hartree are slightly more accurate than the accurate basis set analytic functions.

The differences between the orbital energies $\epsilon_{\mathrm{n} \ell}$ obtained from the accurate set analytic SCF calculations and from the numerical calculations are sometimes larger than might be expected from the small differences between the radial wave functions. This can be explained from the different way that the ϵ^{\prime} s are obtained by the two methods. In the analytic method, the ϵ given is obtained directly as the expectation value of the Fock operator for the orbital, $\epsilon_{\mathrm{n} \ell}=\left\langle\phi_{\mathrm{n} \ell}\right| F\left|\phi_{\mathrm{n} \ell}\right\rangle$. In the numerical calculations discussed, ϵ is treated simply as a parameter to be adjusted until the solutions of the HF equations approximately satisfy the boundary conditions placed on them. The results of the accurate analytic SCF calculations should give better values of the $\epsilon^{\prime} s$ than the numerical calculations.

The accuracy of the accurate basis set SCF functions given in Tables I-IV has been estimated. The estimates used the techniques described above and, in large part, the information given in Tables IX-XII. The estimates are generous and probably indicate, for most of the functions, errors larger than the true errors.

The total SCF energy, ESCF, represents the exact HF total energy to within two units in the seventh significant figure, and the $\epsilon_{\mathrm{n}} \ell^{\prime} \mathrm{s}$ are accurate to about five units in the same decimal place that the error enters the total energy. When $E_{S C F}<100$, the $\epsilon_{n l} l^{\prime}$ s are accurate to five units in the fifth decimal place, and when ESCF ≥ 100, to five units in the fourth decimal place.

For the states of the heavier atoms (chlorine, argon, and potassium) the $1 \mathrm{~s}, 2 \mathrm{~s}$, and 2 p radial wave functions do not differ from the exact HF solutions, for any value of r, by more than 0.0005 . The ls radial function is probably accurate to within 0.0002 . The 3 s and 3 p radial functions are definitely accurate to within 0.0015 , and over much of the range of r are accurate to within 0.0005 . The only exception is the 3 s radial function of Cl^{-}, where the error is as large as 0.0025 for a fairly small range of r near the tail of the function.

For the states of the light atoms (fluorine, neon, and sodium), the radial functions are accurate to within 0.0005 . The ls radial function is accurate to within 0.0002 . The 2 s and 2 p radial functions have an error smaller than 0.0005 .

The radial wave function of the outermost s shell (2s for the light atoms, and 3 s for the heavier atoms) is the least accurate function for any given state. The outermost s shell makes the smallest contribution to the total energy and so is least well-determined by the exponent variation procedures which optimize the total energy.

The accurate set SCF functions given in Tables I-IV, except for Cl^{-}and the 1 s -hole state of K^{+}, represent the limit of accuracy which can be obtained using the single-precision, eight-significant-figure, floating-point arithmetic of the LBM 704 and 7094 computers. The Cl^{-}SCF function could probably be improved with the addition to the basis set of an s, and possibly a p, basis function. The function for the ls-hole state of K^{+}could be improved slightly if the numerical evaluation in the exponent variation procedures were altered to minimize round-off error. (This change has already been made in the latest versions of the SCF programs.)
C. Properties of the SCF Wave Functions

Expectation values of r and r^{2}, for all the states computed are given in Tables XIII and XIV. These expectation values were calculated from the accurate basis set.SCF functions. For each state, the expectation values of r and r^{2} given are taken with respect to each occupied orbital, $\langle\dot{r}\rangle_{n \ell}=\int_{0}^{\infty}\left[P_{n \ell}(\dot{r})\right]^{2} r d r$ and $\left\langle\mathrm{r}^{2}\right\rangle_{\mathrm{n} \ell}=\int_{0}^{\infty}\left[\mathrm{P}_{\mathrm{n} \ell}(\dot{\mathrm{r}})\right]^{2} \mathrm{r}^{2} \mathrm{dr}$. In addition, the average values of the $\langle r\rangle$ and $\left\langle r^{2}\right\rangle$ are given. The average value of $\langle r\rangle$ is defined by $\sum N_{n \ell}\langle r\rangle{ }_{n \ell} / \Sigma N_{n \ell}$, where $N_{n} \ell$ is the electronoccupation of the $n \ell$ th orbital and the sum is over all occupied orbitals. The values of $\langle r\rangle_{n \ell}$ and $\left\langle r^{2}\right\rangle_{n \ell}$ represent the exact $H F$ values to within a few units in the last figure given. The values of $\left\langle r^{2}\right\rangle_{n \ell}$ for the outermost s: and p orbitals of a system are least accurate; and the errors may.be as large as 20 units in the last figure. These estimates of accuracy may be checked by reference to the comparisons given in Tables IX-XII.

An extra figure is given for the average values of $\langle r\rangle$ and $\left\langle r^{2}\right\rangle$ to avoid round-off error if these values are multiplied by the total number of electrons in the system to give $\left\langle\Sigma \mathrm{r}_{\mathrm{i}}\right\rangle$ and $\left\langle\Sigma \mathrm{r}_{\mathrm{i}}^{2}\right\rangle$.

Nonzero overlap integrals between many-electron SCF wave functions, calculated from the accurate basis set SCF functions, are given in Table. XV. These results are presented in connection with the discussion, at the end of Section II, of the lack of orthogonality between excited- and ground-state SCF functions of the same symmetry.

TABLE XILI. Expectation Values of r and r^{2} for $\mathrm{F}^{-}, \mathrm{Ne}$, and Na^{+}and $\mathrm{n} \ell$-hole States of F^{-}; Ne , and Na^{+}
(Values are in a.u.; 1 Bohr $=0.52917 \mathrm{~A}$)

	$\mathrm{F}^{-}\left({ }^{1} \mathrm{~S}\right)$	$\begin{gathered} F\left({ }^{2} P\right) \\ 2 p-\text { hole } \end{gathered}$	$\begin{gathered} F\left({ }^{2} S\right) \\ 2 s-h o l e \end{gathered}$	$\begin{gathered} F\left({ }^{2} S\right) \\ I s-h o l e \end{gathered}$
$\langle\mathrm{r}\rangle_{1 \text { d }}$	0.1758	0.1757	0.1760	0.1718
$\langle\mathrm{r}\rangle_{2 s}$	1.0355	1.0011	0.9885	0.9435
$\langle\mathrm{r}\rangle_{2 p}$	1.2556	1.0847	1.0934	0.9659
$\mathrm{ZN}_{1}\langle r\rangle_{1} /{ }^{\prime} \mathrm{N}_{1}$	0.99560	0.86111	ก.8779n	0.87267
$\left\langle\mathrm{r}^{2}\right\rangle_{1 s}$	0.04162	0.04161	0.04177	0.04045
$\left\langle r^{2}\right\rangle_{2 s}$	1.3189	1.2164	1.1827	1.0836
$\left\langle r^{2}\right\rangle_{2 p}$	2.2096	1.5429	1.5738	1.2245
$\Sigma \mathrm{N}_{1}\left\langle\mathrm{r}^{2}\right\rangle_{1} / \Sigma \mathrm{N}_{1}$	1.59783	1.13672	1.18988	1.06166
	$\mathrm{Ne}\left({ }^{1} \mathrm{~S}\right.$)	$\begin{aligned} & \mathrm{Ne}^{+}\left({ }^{2} p\right) \\ & 2 \mathrm{p} \text {-hole } \end{aligned}$	$\begin{aligned} & \mathrm{Ne}^{+}\left({ }^{2} \mathrm{~S}\right) \\ & 2 \mathrm{~s} \text {-hole } \end{aligned}$	$\begin{aligned} & \mathrm{Ne}^{+}\left({ }^{2} \mathrm{~S}\right) \\ & 1 \mathrm{~s} \text {-hole } \end{aligned}$
$\left\langle{ }^{\langle }\right\rangle_{1 s}$	0.1576	0.1576	0.1578	0.1454
- $\langle r\rangle_{2 s}$	0.8921	0.8603	0.8536	0.8171
$\langle\mathrm{r}\rangle_{2}$ p	0.9652	0.8759	0.8841	0.7993
$\Sigma N_{1}\langle r\rangle_{1} / \Sigma N_{1}$	0.78905	0.71280	0.71931	0.73159
$\left\langle\dot{r}^{2}\right\rangle_{\text {ls }}$	0.03347	0.03344	0.03357	0.03260
$\left\langle r^{2}\right\rangle_{2 s}$	0.9669	0.8903	0.8751	0.8056
	1.2279	. 0.9820	1.0032	0.8196
$\Sigma \mathrm{N}_{1}\left\langle r^{2}\right\rangle_{1} / \Sigma \mathrm{N}_{1}$	0.93682	0.75081	0.77351	0.72903
	$\mathrm{Na}^{+}\left({ }^{1} \mathrm{~S}\right)$	$\begin{aligned} & \mathrm{Na}^{++}\left({ }^{2} \mathrm{p}\right) \\ & 2 \mathrm{p} \text {-hole } \end{aligned}$	$\begin{aligned} & \mathrm{Na}^{++}\left({ }^{2} \mathrm{~S}\right) \\ & 2 \mathrm{~s}-\text { hole } \end{aligned}$	$\begin{aligned} & \mathrm{Na}^{++}\left({ }^{2} \mathrm{~S}\right) \\ & \text { ls-hole } \end{aligned}$
$\langle r\rangle_{1 s}$	0.1429	0.1428	0.1430	0.1403
$\langle r\rangle_{2 s}$	0.7791	0.7530	0.7491	0.7196
$\langle r\rangle_{2 p}$	0.7962	0.7385	0.7453	0.6845
$\Sigma N_{1}\langle r\rangle_{1} / \Sigma N_{1}$	0.66214	0.60932	0.61190	0.63182
$\left\langle{ }^{2}\right\rangle_{1}$	0.02748	0.02744	0.02755	0.02681
$\left\langle r^{2}\right\rangle$	0.7314	0.6779	0.6703	0.6210
$\left\langle r^{2}\right\rangle_{2 p}$	0.8159	0.6889	0.7033	0.5932
$\Sigma \mathrm{N}_{1}\left\langle r^{2}\right\rangle_{i} / \Sigma \mathrm{N}_{1}$	0.64130	0.53945	0.54949	0.53645

TABLE XIV. Expectation Values of r and r^{2} for Cl^{-}; Ar, and. K^{+}and $n \ell$-hole States of $\mathrm{Cl}^{-}, \mathrm{Ar}$, and K^{+}
(Values are in a.u.i. i Bohr $=0.52917 \mathrm{~A}$)

	$\mathrm{Cl}^{-}\left({ }^{1} \mathrm{~S}\right.$)	$\begin{aligned} & c i\left({ }^{2} p\right) \\ & 3 p-h o l e \end{aligned}$	$\begin{aligned} & \mathrm{cl}^{2}\left({ }^{2} \mathrm{~S}\right) \\ & 3 \mathrm{~s} \text {-hole } \end{aligned}$	$\begin{aligned} & c 1\left({ }^{2} p\right) \\ & 2 p-h o l e \end{aligned}$	$\begin{aligned} & c 1\left({ }^{2} s\right) \\ & 2 s-h o l e \end{aligned}$	$\begin{aligned} & \mathrm{cl}\left({ }^{2} \mathrm{~S}\right) \\ & \text { ls-hole } \end{aligned}$
$\langle r\rangle_{\text {l }}$	0.09130	0.09130	0.09130	0.09121	0.09134	0.09031
〈r>2s	0.4418	0.4417	0.4424	0.4338	0.4390	0.4226
$\left\langle{ }^{<}\right\rangle_{3 s}$	1.6018	1.5557	1.5341	1.4696	1.4759	1.4514
$\left\rangle^{\text {Pp }}\right.$	0.4054	0.4057	0.4050	0.4004	0.3952	0.3776
$\langle r\rangle_{3 \text { p }}$	2.0288	1.8418	1:8380]. 6928	1.6992	1.6623
$\Sigma N_{1}\langle\mathbf{r}\rangle_{1} / \Sigma N_{1}$	1.04860	0.93065	0. 94469	0.94988	0.94942	0.94573
$\left\langle r^{2}\right\rangle_{1 s}$	0.01120	0.01120	0.01120	0.01117	0.01122	0.01105
$\left\langle r^{2}\right\rangle_{2 s}$	0.2313	0.2312	0.2321	0.2225	0.2300	0.2117°
$\left\langle\mathrm{r}^{2}\right\rangle_{3 s}$	3.0104	2.8131	2.7299	2.5069	2.5364	2.4472
$\left\langle r^{2}\right\rangle_{2 p}$	0.2039	0.2043	0.2034	0.2020	0.1930	0.1762
$\left\langle\mathrm{r}^{2}\right\rangle_{3 \mathrm{p}}$	5.1081	4.0575	4.0444	3.4404	3.4480	3.3052
$\Sigma \mathrm{N}_{1}\left\langle\mathrm{r}^{2}\right\rangle_{1} / \Sigma \mathrm{N}_{1}$	2.13207	1.62498	1.68842	1.59608	1.59830	1.54220
	$\operatorname{Ar}\left({ }^{1} \mathrm{~S}\right)$	$\begin{aligned} & { }^{\mathrm{Ar}^{+}}\left({ }^{2} \mathrm{P}\right) \\ & \cdot 3 \mathrm{p}-\mathrm{hole} \end{aligned}$	$\begin{gathered} \mathrm{Ar}^{+}\left({ }^{2} S\right) \\ 3 \mathrm{~s} \text {-hole } \end{gathered}$	$\begin{aligned} & \mathrm{Ar}^{+}\left({ }^{2} \mathrm{f}\right) \\ & 2 \mathrm{p} \text {-hole } \end{aligned}$	$\begin{aligned} & \mathrm{Ar}^{+}\left({ }^{2} \mathrm{~S}\right) \\ & 2 \mathrm{~S} \text {-hole } \end{aligned}$	$\begin{aligned} & \mathrm{Ar}^{+}\left({ }^{2} \mathrm{~S}\right) \\ & \text { ls-hole } \end{aligned}$
$\langle\mathrm{r}\rangle_{1 s}$	0.08610	0.08610	0.08611	0.08602	. 0.08614	0.08523
$\left\rangle_{2 s}\right.$	0.4123	0.4121	0.4128	0.4052	0.4100	0.3954
$\left\langle{ }^{\langle r}\right\rangle_{3}$	1.4220	1.3814	1.3679	1.3162.	1.3209	1. 3005
<r>>p	0.3753	0.3756	0.3749	0.3714	0.3667	0.3515
$\langle r\rangle_{3 p}$	1.6628	1.5584	1.5589	1.4560	1.4627	1.4321
$\Sigma N_{i}\langle r\rangle_{i} / \Sigma N_{1}$	0.89274	0.81205	0.82171	Q.83576	n.83531	0.83403
$\left\langle\mathrm{r}^{2}\right\rangle_{1 s}$	0.00996	0.00996	0.00996	0.00994	0.00997	0.00983
$\left\langle r^{2}\right\rangle_{\text {2 }}$	0.2012	0.2010	0.2019	0.1940	0.2003	0.1852
$\left\langle r^{2}\right\rangle_{3 s}$	2.3491	2.2018	2.1570	1.9980	2.0185	1.9517
$\left\langle r^{2}\right\rangle_{2 p}$	0.1743	0.1747 .	0.1739	0.1730	0.1658	0.1524
$\left\langle r^{2}\right\rangle_{3 p}$	3.3092	2.8601	2.8642	2.5102	2.5196	2.4179
$\Sigma \mathrm{N}_{1}^{\prime}\left\langle\mathrm{r}^{2}\right\rangle_{1} / \Sigma^{\prime} \mathrm{N}_{1}$	1.44565	1.18672	1.22406	1.19586.	1.19821	1.15911
	$\mathrm{K}^{+}\left({ }^{1} \mathrm{~S}\right.$)	$\begin{aligned} & K^{++}\left({ }^{2} p\right) \\ & 3 p-h o l e \end{aligned}$	$\begin{aligned} & \mathrm{K}^{++}\left({ }^{2} \mathrm{~S}\right) \\ & 3 \mathrm{~s}-\mathrm{hole} \end{aligned}$	$\begin{aligned} & \mathrm{K}^{++}\left({ }^{2} \mathrm{P}\right) \\ & 2 \mathrm{p}-\mathrm{hol} \end{aligned}$	$\begin{aligned} & \mathrm{K}^{++}\left({ }^{2} \mathrm{~S}\right) \\ & 2 \mathrm{~s}-\mathrm{hole} \end{aligned}$	$\begin{aligned} & K^{+i+}\left({ }^{2} S\right) \\ & 1 s-h o l e \end{aligned}$
$\langle\mathrm{r}\rangle_{1 \mathrm{~s}}$	0.08147	0.08146	0.08147	0.08139	0.08150	0.08069
$\langle\mathrm{r}\rangle_{2 s}$	0.3864	0.3861	0.3869	0.3801	0.3845	0.3715
$\left\langle{ }^{\langle r}\right\rangle_{3 s}$	1.2768	1.2435	1.2341	1.1922	1.1959	1.1787
$\langle r\rangle_{2 p}$	0.3494	0.3496	0.3490	0.3462	0.3419	0.3287
$\left\rangle_{3}{ }^{\text {p }}\right.$	1.4312	1:3611	1.3629	1.2850	1.2915	1.2657
$\Sigma \mathrm{N}_{1}\langle\mathrm{r}\rangle_{1} / \Sigma \mathrm{N}_{1}$	0.78740	0.72503	0.73189	0.74991	0.74942	0.74987
$\left\langle r^{2}\right\rangle_{1 s}$	0.00891	0.00891	0.00891	0.00889	0.00892	0.00880
$\left\langle\mathrm{r}^{2}\right\rangle_{2 s}$	0.1766	0.1763	0.1771	0.1706	0.1759	0.1634
$\left\langle\mathrm{r}^{2}\right\rangle_{3 s}$	1.8818	1.7761	1.7481	1.6320	1.6477	1.5962
$\left.\left\langle^{2}\right\rangle^{2}\right\rangle_{2 p}$	0.1508	0.1511	0.1504	0.1497	0.1439	0.1330
$\left\langle r^{2}\right\rangle_{3 p}$	2.4161	2.1646	2.1712	1.9402	1.9497	1.8741
$\Sigma \mathrm{N}_{1}\left\langle\mathrm{r}^{2}\right\rangle_{1} / \Sigma \mathrm{N}_{1}$	1.08532	0.92071	0.94407	0.94193	0.94416	0.91592

TABLE XV. Overlap Integrals between Total SCF Wave Functions of the nl-hole States

		F^{-}	Ne	Na^{+}
${ }^{2} \mathrm{~S}$ States	$\langle\Psi(2 s-h o l e)\| \Psi\left(1 s^{\text {s }}\right.$-hole $\left.)\right\rangle$	0.003984	0.003380	0.002876
	-	- Cl^{-}	Ar	K^{+}
${ }^{2}$ P States	$\langle\Psi(3 p-$ hole $)\| \Psi(2 p-$ hole $)\rangle$	0.009428	0.008299	0.007285
${ }^{2}$ S States	$\int\langle\Psi(3 s-h o l e)\| \Psi(2 s-$ hole $\left.)\right\rangle$	0.006062	0.005469	0.004906
	$\left\{\begin{array}{l}\langle\Psi(3 \mathrm{~s} \text {-hole })\| \Psi(1 \mathrm{~s} \text {-hole })\rangle\end{array}\right.$	-0.000514	0.000486	0.000457
	$\langle\Psi(2 s-h o l e) \mid \Psi(1 s-h o l e)\rangle$	0.001264	0.001131	0.001018

D. Validity of the Exponent Variation Procedure for Excited States

The basis-function exponent variation procedure, described in Section III, selects values of the exponents that minimize the total SCF energy. This is a valid procedure for ground states and excited:states. that are the lowest states of a symmetry species. SCF functions for these states give stationary values of the energy that are absolute minima. It is not known whether the SCF functions for the higher excited states of a symmetry species give stationary values of the energy that are relative minima or some other sort of extrema. The problem, for these excited states, is that exponents, chosen to minimize the total energy may not give SCF functions that are optimum representations of the true HF solutions.

If explicit variational equations, e.g., those given by Dehn, (26) were solved for the exponents: of the basis functions, there would be no difficulty with the higher excited states: In this way, stationary values of the energy would be found with respect to variation of the exponents as well as the linear coefficients, $C_{n \ell, p}$. However, when our exponent variation procedure is used, a particular stationary value of the energy with respect to variation of the exponents is found in a brute-force fashion. This point was discussed in Section III. The particular stationary value found is a minimum. For all the exponent variations performed to obtain the SCF functions reported in this paper, this stationary value was found with no more difficulty for the excited states than for the ground states.

It seems unlikely, for an analytic-expansion SCF function of a particular state, that there will be more than one stationary value of the energy. It is reasonable that the solutions of variational equations for both the $\mathrm{C}_{\mathrm{n} \ell}, \mathrm{p}$'s and the exponents are unique. If this is true, then the use of our exponent variation procedure is justified.

The procedure may also be justified from the results of the SCF calculations. The virial theorem, which may be used as an indication of how well the exponents of the basis functions have been optimized, is satisfied equally well for the excited-state wave functions and the groundstate functions. The cusp condition is also satisfied equally well for the excited-state functions and the ground-state functions. This can be easily confirmed by reference to Tables I-VIII. Further, as may be seen from Table XVIII, the calculated ionization potentials, for the removal of innershell electrons, agree quite well with experimental values.

The success of our method of exponent variation implies that the total energy of analytic-expansion SCF functions, even for excited states, is an upper bound to the exact HF energy. The results in Table XVIII also show quite clearly that the SCF energies are, in fact, upper bounds to the exact, nonrelativistic, total energies. According to estimates made by Clementi, (43) the exact nonrelativistic energy is ~ 0.4 Hartree below the SCF energy for F^{-}, Ne , and $\mathrm{Na}^{+}\left(\mathrm{E}_{\mathrm{nr}}=\mathrm{E}_{\mathrm{SCF}}-0.4\right)$ and $\sim 0.7 \mathrm{Har}-$ tree below the $S C F$ energy for $\mathrm{Cl}^{-}, \mathrm{Ar}$, and $\mathrm{K}^{+}\left(\mathrm{E}_{\mathrm{nr}}=\mathrm{E}_{\mathrm{SCF}}-0.7\right)$. The calculated ionization potential $I P\left(\triangle E_{S C F}\right)$ is obtained by subtracting the SCF energy of the parent from that of the ion; i.e., IP $\left(\triangle \mathrm{E}_{S C F}\right)=$ $E_{S C F}($ ion $)-E_{S C F}$ (parent). Suppose the SCF energies of the inner-shell hole states were not upper bounds to the exact energies. Then. IP ($\triangle \mathrm{ESCF}$) for the removal of an inner-shell electron would have to be much smaller than the true nonrelativistic ionization potential; at least 0.4 smaller for the neon-like. ions and 0.7 smaller for the argon-like ions. This is obviously not the case.

E. Effect of the Off-diagonal Lagrangian Multipliers

The constraint, given in Eq. (7), that the SCF orbitals belonging to the same symmetry species be orthogonal is incorporated by introducing off-diagonal Lagrangian multipliers into the HF equations. (2-5) Orbitals of different symmetry are, of course, automatically orthogonal. For closed-shell systems, a unitary transformation can be found between the occupied orbitals that puts the matrix of Lagrangian multipliers into diagonal form. This additional requirement that the off-diagonal Lagrangian multipliers be zero serves, in fact, to uniquely define the SCF orbitals. For open-shell systems, it is possible to find a unitary Lransformation between the closed-shell orbitals for which the offdiagonal Lagrangian multipliers coupling the closed shells are zero. However, the Lagrangian multipliers that couple open and closed shells of the same symmetry cannot be reduced to zero. $(3,4)$

In other treatments, the nonzero off-diagonal Lagrangian multipliers are introduced into the HF equations as inhomogeneous terms; $(16,29)$ i.e.,

$$
\begin{equation*}
F \phi_{\mathrm{i}}=\epsilon_{\mathrm{i}} \phi_{\mathrm{i}}+\Sigma_{\mathrm{j} \neq \mathrm{i}} \theta_{\mathrm{j} i} \phi_{\mathrm{j}} \tag{15}
\end{equation*}
$$

Because of the difficulty of handling these additional inhomogeneous terms, the off-diagonal Lagrangian multipliers are often treated in an approximate way. $(13,14,42)$ Roothan $(3,4)$ has shown that it is possible, through the use of coupling operators, to absorb the terms involving the nonzero off-diagonal multipliers into the HF operator, thus preserving the pseudoeigenvalue form of the HF equations.

This method is especially suitable for the matrix form of the HF equations. The matrix HF operators(4) are

$$
\begin{equation*}
\underset{\sim}{\mathrm{F}} \mathrm{C} \ell=\underset{\sim}{\mathrm{H}} \ell+\underset{\sim}{\mathrm{P}} \ell+\underset{\sim}{\mathrm{R}} \ell, \tag{16}
\end{equation*}
$$

and

$$
\underset{\sim}{\mathrm{F}} \mathrm{O}_{\ell}={\underset{\sim}{\mathrm{H}} \ell}^{2}+\underset{\sim}{\mathrm{P}} \ell-{\underset{\sim}{Q}}_{\ell}+\underset{\sim}{\mathrm{R}} \mathrm{C} \ell .
$$

where $\underset{\sim}{F} C \ell$. and $\underset{\sim}{F} O \ell$ are closed-shell and open-shell Fock operators, respectively, for symmetry species $\ell,{\underset{\sim}{~ H}}_{\ell}$ is the one-electron operator, ${\underset{\sim}{P}}_{\ell}$ and \mathbb{Z}_{ℓ} are combinations of Coulomb and exchange operators, and ${ }_{\sim}^{R} O_{\ell}$ and ${\underset{\sim}{R}}^{\mathrm{R}} \ell$ are the coupling operators:. (The eigenvalue problem is $\underset{\sim}{F} \underset{\sim}{c}=\in \underset{\sim}{\mathcal{S}} \underset{\sim}{c}$ where $\underset{\sim}{S}$ is the overlap matrix.) Let the index k stand only for closed-shell orbitals, and m only for open-shell orbitals; the coupling operators are defined so that for self-consistent eigenvectors of $\mathrm{F}_{\mathrm{C}}^{\mathrm{C}} \ell$ and $\underset{\sim}{\mathrm{F}} \mathrm{O}$,

$$
\begin{equation*}
\underset{\sim}{\mathrm{R}} \mathrm{Ol} \underset{\sim}{\mathrm{k} \ell}=\Sigma\left(-\theta_{\mathrm{m}} \ell, \mathrm{k} \cdot \ell \mathrm{c}_{\mathrm{m} \ell}\right), \tag{17}
\end{equation*}
$$

and

$$
\underset{\sim}{\mathrm{R}} \mathrm{C} \ell \underset{\sim}{\mathrm{~m}} \ell=\Sigma\left(-\theta_{\mathrm{k}} \ell, \mathrm{~m} \ell \underset{\sim}{c} \ell\right) .
$$

The $\theta_{\mathrm{m} \ell, \mathrm{k} \ell}$ and $\theta_{\mathrm{k} \ell, \mathrm{m} \ell}$ are the off-diagonal Lagrangian multipliers that couple the open and closed shells; Note that they are not symmetric, but that

$$
\begin{equation*}
\mathrm{N}_{\mathrm{O} \ell} \theta_{\mathrm{k} \ell, \mathrm{~m} \ell}=\mathrm{N}_{\mathrm{C} \ell} \theta_{\mathrm{m} \ell, \mathrm{k} \ell \ell}, \tag{18}
\end{equation*}
$$

where N_{C}. and N_{O} e are the electron occupations of the closed shells and open shell, respectively, of symmetry ℓ.

The values of the nonzero off-diagonal Lagrangian multipliers for the $n \ell$-hole states of argon and neon are given in Table XVI. These values were computed with the accurate set SCF functions reported in Tables I-IV. While the off-diagonal Lagrangian multipliers are fairly small for states with open outer shells, they are more than an order of magnitude larger for states with open inner shells. The values of the off-diagonal Lagrangian multipliers for the nl-hole states of Cl^{-}and K^{+}, and F^{-}and Na^{+}are similar to the values given in Table XVI for argon and neon.

TABLE XVI. Off-diagonal Lagrangian Multipliers for the $\mathrm{n} \ell$-hole'States of Argon and Neon*

State	Open Shell	$\theta_{\text {open }}$ shell, closed shell		
		$\theta_{\mathrm{ns}}{ }^{\prime} \mathrm{l}$ s	$\theta_{\mathrm{ns}, 2 \mathrm{~s}}$	$\theta_{\mathrm{ns}, 3 \mathrm{~s}}$
$\mathrm{Ar}^{+}(3 \mathrm{~s}-\mathrm{hole})$	3 s	-0.00136	+0.01046	:
$\mathrm{Ar}^{+}(2 \mathrm{~s}$-hole $)$	2 s	+0.04518	-	+0.13093
Ar^{+}(1s-hole)	l s	+0.72661	-0.22742
		$\theta_{n p, 2 p}$		$\theta_{\mathrm{np}}, 3 \mathrm{p}$
$\mathrm{Ar}^{+}(3 \mathrm{p}-$ hole $)$	3 p	+0.01672
$\mathrm{Ar}^{+}(2 \mathrm{p}-\mathrm{hole})$	2p		+0.24923	
		$\theta_{\text {ns }} \mathrm{l} \mathrm{s}$		$\theta_{\text {ns }}, 2 \mathrm{~s}$
$\mathrm{Ne}^{+}(2 \mathrm{~s}$-hole)	2 s	+0.01644		
$\mathrm{Ne}^{+}(1 \mathrm{~s}$-hole)	1 s	+0.37522		

*The Lagrangian multipliers are not symmetric; $\theta_{\text {closed, open }}=$ $\left(\mathrm{N}_{\mathrm{c}} / \mathrm{N}_{\mathrm{O}}\right) \theta_{\text {open }}$, closed, where N_{c} and: N_{O} are the electron occupations of the closed and open shells; respectively.

The most striking effect of the inclusion of the off-diagonal Lagrangian multipliers is that the ls orbitals, of the ls-hole states of Cl^{-}, Ar, and K^{+}, have a node. In each of these cases, $\mathrm{P}_{1 \mathrm{~s}}(\mathrm{r})$ goes through zero and reaches a minimum value of -0.003 . For example, $P_{15}(r)$ for $\mathrm{Ar}^{+}(1 \mathrm{~s}$-hole) is zero for $\mathrm{r}=0.93 \mathrm{Bohr}$ and has a minimum of -0.0028 for $1.30 \leq r \leq 1.45$. For large r, the $H F$ equation for $P_{1 s}(r)$ becomes

$$
\begin{equation*}
\epsilon_{1 s} P_{1 s}(r) \cong-\theta_{2 s, 1 s} P_{2 s}(r)-\theta_{3 s, 1 s} P_{3 s}(r) \tag{19}
\end{equation*}
$$

For $\mathrm{Ar}^{+}(\mathrm{ls}-\mathrm{hole})$, when the values in Tables III and XVI are used, Eq. (19) becomes

$$
\begin{equation*}
\mathrm{P}_{1 \mathrm{~s}}(\mathrm{r}) \cong+0.01142 \mathrm{P}_{2 \mathrm{~s}}(\mathrm{r})-0.00357 \mathrm{P}_{3 \mathrm{~s}}(\mathrm{r}) \tag{20}
\end{equation*}
$$

and the second term is dominant since the 2 s radial function goes to zero much before the 3 s radial function does. For $\mathrm{r} \geq 1.2$ Bohrs, $\mathrm{P}_{1 \mathrm{~s}}(\mathrm{r}) \mathrm{cal}-$ culated from Eq. (20), using the accurate-set 2 s and 3 s radial functions, agrees with the accurate-set analytic SCF ls radial function to within
0.00006 . The error is always less than 3%; this is remarkably good agreement, especially since the analytic expansion method does not give exact solutions of the integro-differential HF equations.

The dominant terms, in the $H F$ equations, that determine the behavior of inner-shell orbitals at large r are the nonzero off-diagonal Lagrangian multipliers with the outer-shell:orbitals. With the exception of $\theta_{1 s, 3 s}$ for the 1 s -hole and 3 s -hole states of $\mathrm{Cl}^{-}, \mathrm{Ar}$, and K^{+}, the offdiagonal Lagrangian multipliers, for the states reported in this paper, are positive. The effect of the positive off-diagonal Lagrangian multipliers is to extend the tails of the orbitals rather than to introduce additional nodes.

The signs of the off-diagonal Lagrangian multipliers are determined by the sign conventions used for the SCF orbitals. The signs of the orbitals have been chosen so that the $1 s, 3 \mathrm{~s}$; and 2 p radial functions are positive as $r \rightarrow 0$, and the 2 s and 3 p radial functions are negative as $\mathrm{r} \rightarrow 0$. Because of this choice, the values of $P_{n \ell}(r)$ in the ($n-\ell$) th loop, usually the outermost loop of the orbital, will be positive. This is a departure from the convention usually used in numerical HF calculations, (16,32-35) which is that all radial functions are positive as $r \rightarrow 0$.

The negative value of $\theta_{3 \mathrm{~s}, 1 \mathrm{~s}}$ should introduce a node into the ls orbital of the 3 s -hole states. However, the maximumivalue of $\mathrm{P}_{1 \mathrm{~s}}(\mathrm{r})$ in the outer loop would be only -0.00001 . This is beyond the accuracy of the present calculation and too small to be of any interest.

To get further insight into the importance of the off-diagonal Lagrangian multipliers, an approximate treatment was developed. The matrices $\underset{\sim}{R} O \ell$ and $\underset{\sim}{R} C \ell$ were arbitrarily set equal to zero, and "selfconsistent" solutions using the operators,

$$
\begin{equation*}
\underset{\sim}{\mathrm{F}^{\prime}} \mathrm{C} \ell:=\underset{\sim}{\mathrm{H}} \ell+\underset{\sim}{\mathrm{P}} \ell \tag{21}
\end{equation*}
$$

and

$$
\underset{\sim}{F_{O}^{\prime}}=\underset{\sim}{H_{l}}+\underset{\sim}{P_{\ell}}-{\underset{\sim}{Q}}_{l} \text {, }
$$

rather than $\underset{\sim}{\mathrm{F}} \mathrm{C} \ell$ and $\underset{\underset{\sim}{\mathrm{F}}}{\mathrm{O}} \boldsymbol{\ell}$ of Eq. (16), were obtained. The occupied openshell eigenvector of $\underset{\sim}{F} O l$ is not orthogonal to the occupied closed-shell eigenvectors of $\underset{\sim}{F}{ }^{\prime}$ l. Since the operators of Eqs. (16) and (21) are assumed to be constructed from an orthogonal set of orbitals, the open-shell eigenvector was Schmidt-orthogonalized to the closed-shell eigenvectors. This Schmidt orthogonalization does not change the total determinantal wave function. A "self-consistent" solution was obtained when the Schmidtorthogonalized eigenvectors of $\underset{\sim}{F_{i}^{\prime}} \mathrm{O} \ell$ and ${\underset{\sim}{F}}^{\prime} \mathrm{C} \ell$ were the same, within convergence thresholds, as the orthogonal vectors used to construct the operators $\underset{\sim}{F_{O}^{\prime}}$ and $\underset{\sim}{F_{C}^{\prime}}$ l of Eq. (21).

Since this method neglects the off-diagonal Lagrangian multipliers in constructing the operators $\underset{\sim}{F} \mathrm{O} \ell$ and $\underset{\sim}{F}{ }^{\prime}(l$, "self-consistent" solutions obtained, using ${\underset{\sim}{F}}^{\prime} O l$ and $\underset{\sim}{F} C_{l}^{\prime}$, are denoted by NLM (Neglect Lagrangian Multipliers) to distinguish them from the SCF solutions obtained using the operators of Eq. (16).

NLM calculations were performed, using the accurate basis sets of Tables I and III, for the nb-hole states of argon and neon. The results of these calculations are given in Table XVII. The NLM calculations were performed on the IBM 704 and are compared with SCF calculations also performed on the 704. The values of $E(S C F)$ and $V / T(S C F)$ given in Table XVII differ slightly, because of round-off, from the values given in Tables I-IV. Values of the total energy E (in Hartrees), V / T, and the overlap integrals $S_{n} \ell, n^{\prime} \ell$ between the occupied eigenvector of ${\underset{\sim}{F}}_{\prime}^{\prime} O \ell$ and the occupied eigenvectors of $\underset{\sim}{F} \mathcal{C} \ell$ are given. The signs of the $S_{n \ell, n} \ell$ are determined by the sign conventions stated above for the SCF orbitals.

The NLM results for states with outer-shell vacancies are almost the same as the SCF results, and the $S_{n \ell, n^{\prime} \ell}$ are quite small. However, for the states with inner-shell vacancies, where the off-diagonal Lagrangian multipliers are large, the NLM results are quite different from the $S C F$ results, and the $S_{n \ell, n ' \ell}$ are large.
F. Comparison of SCF Ionization Potentials with Experiment

Experimental data are available for most of the ionization potentials (IP's) of the closed-shell systems of $\mathrm{F}^{-}, \mathrm{Ne}, \mathrm{Na}^{+}, \mathrm{Cl}^{-}, \mathrm{Ar}$, and K^{+}. This includes the IP's for the removal of an electron from any occupied shell. A comparison with experiment of IP's calculated from the SCF wave functions is presented in Table XVIII. The IP for the removal of an outer-shell electron (3s or 3 p shell of the argon-like ions, and 2 s or 2 p shell of the neon-iike ions) can usually be determined from Moore's optical data. (31) The electron affinities of F^{-}and Cl^{-} (i.e., the $2 p$-hole IP of F^{-}, and the $3 p$-hole IP of Cl^{-}) have been determined very accurately by Berry, Reimann, and Spokes. $(43,44)$ The - only state for which experimental data do not seem to be available is the 3 s -hole state of Cl^{-}; but Varsavsky ${ }^{(45)}$ reports an estimate made by Rohrlich of the term value of this state.

The IP for the removal of an inner-shell electron can be calculated from the experimental values of the energies of X -ray emission lines, combined with the IP for the removal of the appropriate outer-shell electron. For example, for the argon-like ions, the IP for the removal of a ls electron is

TABLE XVII. Effect of Neglecting the Off-diagonal Lagrangian Multipliers for the $n \ell$-hole States of Argon and Neon (the results for the correct treatment of the off-diagonal Lagrangian multipliers are denoted by SCF, the results for the approximate treatment by NLM)

[^8] from the values of these quantities given in Tables I and III, which are from calculations performed on the IBM 7094.
 (energies are in Hartree; 1 Hartree $=27.2098 \mathrm{eV}=2.194746 \times 10^{5} \mathrm{~cm}^{-1}$)

State			IP $(\exp)^{\text {a }}$	IP(nr) ${ }^{\text {a }}$	$\operatorname{IP}\left(-\varepsilon_{\cap!}\right)$	IP (exp $)^{\text {b }}$ - IP $\left(-\varepsilon_{n \ell}\right)$	$\underline{T P(\triangle E S C F)}$	IP(explb - IP ($\triangle E S C F)$
$2 p$-hole $1 s^{2} 2 s^{2} 2 p^{5}$	$\mathrm{F}^{-\mathrm{C}, \mathrm{d}}$		0.1273		0.1810	$\begin{aligned} & -0.0537 \\ & (-1.461 \mathrm{eV}) \end{aligned}$	0.0501	$\begin{aligned} & +0.0772 \\ & (+2.101 \mathrm{eV}) \end{aligned}$
	$\mathrm{Ne}{ }^{\text {d }}$		0.7937	. . .	0.8503	$\begin{aligned} & -0.0566 \\ & (-1.540 \mathrm{eV}) \end{aligned}$	0.7293	$\begin{gathered} +0.0644 \\ (+1.752 \mathrm{eV}) \end{gathered}$
	$\mathrm{Na}+{ }^{\text {d }}$		1.7404	. . .	1.7972	$\begin{gathered} -0.0568 \\ (-1.546 \mathrm{eV}) \end{gathered}$	1.6796	$\begin{aligned} & +0.0608 \\ & (+1.654 \mathrm{eV}) \end{aligned}$
$2 s$-hole $152 \underline{2 s} 2 p^{6}$	$\mathrm{F}^{-\mathrm{C}, \mathrm{d}}$		0.8947		1.0746	$\begin{gathered} -0.1799 \\ (-4.895 \mathrm{eV}) \end{gathered}$	0.9282	$\begin{gathered} -0.0335 \\ (-0.912 \mathrm{eV}) \end{gathered}$
	Ned		1.7814	. . .	1.9303	$\stackrel{-0.1489}{(-4.052 \mathrm{eV})}$	1.8123	$\begin{gathered} -0.0309 \\ (-0.841 \mathrm{eV}) \end{gathered}$
	$\mathrm{Na}+{ }^{+}$		2.9433	. . .	3.0737	$\begin{gathered} -0.1304 \\ (-3.548 \mathrm{eV}) \end{gathered}$	2.9682	$\begin{gathered} -0.0249 \\ (-0.678 \mathrm{eV}) \end{gathered}$
1s-hole $152 s 22 p 6$	$\mathrm{F}^{-\mathrm{e}}$		24.991	24.967°	25.8296	$\begin{gathered} -0.863 \\ (-23.48 \mathrm{eV}) \end{gathered}$	24.9353	$\begin{aligned} & +0.032 \\ & (+0.87 \mathrm{eV}) \end{aligned}$
	$\mathrm{Ne}{ }^{\text {e }}$		$\begin{aligned} & 31.97 \mathbf{0}^{\mathrm{f}} \\ & 31.984 \end{aligned}$	31.945^{9}	32.7723 \cdot.	$\begin{gathered} -0.827 \\ (-22.50 \mathrm{eV}) \end{gathered}$	31.9214	$\begin{gathered} +0.02 \mathrm{a} \\ (+0.65 \mathrm{eV}) \end{gathered}$
	Na^{+}		39.999 !	39.938	40.7597	$\stackrel{-0.822}{(-22.37 \mathrm{eV})}$	39.9345	$\begin{aligned} & +0.003 \\ & (+0.08 \\ & \mathrm{eV}) \end{aligned}$
3 p -hole $1 s^{22} 2 s^{2} 2 p^{63} s^{2} 3 p^{5}$	$\mathrm{Cl}^{-\mathrm{c}, \mathrm{d}}$		0.1341		0.1502	$\begin{gathered} -0.0161 \\ (-0.438 \mathrm{eV}) \end{gathered}$	0.0448	$\begin{gathered} +0.0393 \\ (+1.069 \mathrm{eV}) \end{gathered}$
	Ar ${ }^{\text {d }}$		0.5813	. . .	0.5909	$\begin{aligned} & -0.0096 \\ & (-0.26 \mathrm{eV}) \end{aligned}$	0.5430	$\begin{aligned} & \stackrel{+0.0383}{(+1.042 \mathrm{eV})} \end{aligned}$
	K^{+}		1.1726	. . .	, 1.1705	$\begin{gathered} +0.0021 \\ 1+0.057 \mathrm{eV}) \\ \hline \end{gathered}$	1.1260	$\begin{gathered} +0.0466 \\ (+1.268 \mathrm{eV}) \\ \hline \end{gathered}$
$3 s$-hole $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{3} 3 p^{6}$	$\mathrm{Cl}^{-\mathrm{c}, \mathrm{h}}$		0.526 ${ }^{\text {(? }}$)	. . .	0.7332	$\begin{aligned} & -0.207 \\ & (-5.63 \mathrm{eV}) \end{aligned}$	0.6601	$\begin{aligned} & -0.134 \\ & (-3.65 \mathrm{eV}) \end{aligned}$
	Ar ${ }^{\text {d }}$		1.0745	. . .	1.2773	$\begin{gathered} -0.2028 \\ (-5.518 \mathrm{eV}) \end{gathered}$	1.2198	$\begin{gathered} -0.1453 \\ (-3.954 \mathrm{eV}) \end{gathered}$
	K^{+d}		1.7644	. . .	1.9638	$\begin{gathered} -0.1994 \\ (-5.426 \mathrm{eV}) \\ \hline \end{gathered}$	1.9136	$\begin{gathered} -0.1492 \\ (-4.060 \mathrm{eV}) \end{gathered}$
$2 p$-hole $1 s^{2} 2 s^{2} 2 p^{5} 3 s^{23} 3 p^{6}$	$\mathrm{Cl}^{\text {e }}$	$\begin{aligned} & { }^{2} \mathrm{P}_{3 / 2} \\ & \left\langle\bar{P}_{1 / 2}\right. \end{aligned}$	$\begin{aligned} & 7.220^{\mathrm{i}} \\ & 7.242^{(?)}{ }^{\mathrm{i}} \\ & 1.219^{\mathrm{i}} \\ & 7.301_{1}(? \mathrm{i} \end{aligned}$	$7.2888^{\text {i }}$	7.6956	$\begin{gathered} -0.46_{8} \\ \left(-12 . \mathrm{I}_{\mathrm{tV}}\right) \end{gathered}$	7.2420	$\begin{aligned} & -0.0 \mathrm{i}_{4} \\ & \left(0.3_{8} \mathrm{cV}\right) \end{aligned}$
	Ar^{3}	${ }^{2} P_{3 / 2}$	$\begin{aligned} & 9.133^{i} \\ & 9.11^{i} \end{aligned}$	$9.142^{\text {i }}$	9.5713	$\begin{gathered} -0.429 \\ (-11.67 \mathrm{eV}) \end{gathered}$	9.1484	$\begin{gathered} -0.000_{6} \\ (-0.2 \mathrm{eV}) \end{gathered}$
		${ }^{2} \mathrm{P}_{1 / 2}$	$\begin{aligned} & 9.200^{i} \\ & 9.20^{j} \end{aligned}$					
	$\mathrm{x}^{+{ }^{\text {e }}}$	${ }^{2} P_{3 / 2}$	$\begin{aligned} & 11.306^{i} \\ & 11.308 \end{aligned}$	$11.315^{\text {i }}$	11.7381		11.3342	-0.019
		${ }^{2} \mathrm{P}_{1 / 2}$	${ }_{11.41]^{i}}{ }^{\mathrm{i}}$			(-11.51 ${ }^{\text {eV }}$)		$(-0.52 \mathrm{eV})$
$2 s$-hole $1 s^{2} 2 \underline{s} 2 p^{63 s}{ }^{2} 3 p^{6}$	$\mathrm{Cl}^{-\mathrm{k}}$		9.73 (?)		10.2292	. . .	9.8114	
	$\begin{aligned} & \mathrm{Ar}_{\mathrm{K}} \mathrm{k} \end{aligned}$		14.41 (?)	\cdots	$\begin{aligned} & 12.3219 \\ & 14.7080 \end{aligned}$	\cdots	$\begin{aligned} & 11.9380 \\ & 14.3455 \end{aligned}$	\cdots
1s-hole $152 s ? 2 p 63 s 23 p 6$	$\mathrm{Cl}^{-\mathrm{e}}$		$\begin{aligned} & 103.597^{1} \\ & 103.61 g(?)^{m, n} \end{aligned}$	103:18 ${ }^{1}$	104.5055	$\begin{gathered} -1.3_{3} \\ (-36.2 \mathrm{eV}) \end{gathered}$	103.2947	$\begin{gathered} -0.1_{1} \\ (-3.0 \mathrm{eV}) \end{gathered}$
	nre		$\begin{aligned} & 117.833^{1} \\ & 117.8359 \end{aligned}$	117.30	118.6101	$\stackrel{-1.3_{1}}{(-35.6 \mathrm{VV})}$	117,4884	$\stackrel{-0.13}{(-3.5 \mathrm{eV})}$
	x^{+e}		$\begin{aligned} & 113.093^{1} \\ & 133.095^{m} \\ & 133.088^{n} \end{aligned}$	132.42	133.7521	$\begin{gathered} -1.33 \\ (-36.2 \mathrm{eV}) \end{gathered}$	132.5890	$\begin{gathered} -0.17 \\ (-4.6 \mathrm{eV}) \end{gathered}$

aIP(exp) is the experimental value of the ionization potential. For ${ }^{2} \mathrm{P}$ terms, unless explicitly indicated otherwise, the $I P$ is given to the center of gravity of the term. IP(exp) does not include any correction for the finite mass of the nucleus. IP(nr) is the experimental ionization potential corrected for relativistic effects and the finite mass of the nucleus. The relativistic corrections are made with data taken from Pekeris (Ref. 46) and Scherr et al. (Ref. 47). For discussion of the
relativistic corrections, see the text.
${ }^{5}$ SCF values are compared with IP(exp) untess a value of IP(nr) is given; in the latter case, comparisons are made with IP(nr).

dexperimental data are from Vol. I by Moore (Ref. 31) and correction for ${ }^{2} \mathrm{P}$ separation of the 3 p -hole state of Cl^{-}in Vol. II.
${ }^{\text {e }}$ Ionization potentials are obtained by combining the ionization potentials for the outer-shell vacancy states with experimental data on X -ray emission lines. For
the ls-hole states of argon and neon, measurements of the K absorption edge are also used. For sources of X-ray data, see text.
fexperimental ionization potential are obtained from the relation IP(1)s-hole) - $\Delta E\left(K a_{1}\right)+I P\left(2 s-h o l e ;{ }^{2} P_{3 / 2}\right)$.
9_{K} absorption edge is as measured by Brogren (Ref. 49).
$\mathrm{h}_{\text {Estimate }}$ of the 3 s -hole term value is given by Varsavsky (Ref. 45).
iexperimental ionization potential is obtained from the relation $I P\left(2 p\right.$-hole; $2 P_{3 / 2,1 / 2)}=-\Delta E\left(K \mathcal{I}_{1,2}\right)+\Delta E\left(K \beta_{1}\right)+I P\left(3 p-\right.$ hole; $\left.{ }^{2} P_{3 / 2}\right)$.
jexperimental ionization potential is obtained from the relation IP $\left(2 \rho-\right.$ hole; $2 P_{3 / 2,1 / 2)} \cdot \Delta E(L \ell, \eta)+I P(3 s-$ hole).
KThe experimental ionization potential is obtained from a table of normal energy levels of atoms; Table 13146 of Landolt-Bobrnstein (Ref. 48). A correction is added to
account for the fact that the zero of energy of a free atom is not the same as that used in the Landoli-Börnstein table. The correction for K^{+}is +0.56 Hartree,
and for Cl^{-}is -0.17 Hartree.

- Experimental ionization potential is obtained from the relation $\mathrm{I}\left(15\right.$-hole $-\Delta E\left(K \beta_{1}\right)+\mathrm{IP}\left(3 \mathrm{p}\right.$-note; $\left.{ }^{2} \mathrm{P}_{3 / 2}\right)$.
mexperimental ionization potential is obtained from the relation IP(1s-hole) $\cdot \Delta E\left(K a_{1}\right)+\Delta E(L \mathcal{L})+I P(3 s$-hole $)$.
nexperimental ionization potential is obtained from the relation IP(1s-hole) $=\Delta E\left(K a_{2}\right)+\Delta E(L \eta)+\operatorname{IP}(3 s$-hole $)$.

$$
\begin{align*}
\operatorname{IP}\left(\text { ls -hole, }{ }^{2} \mathrm{~S}_{1 / 2}\right) & =\operatorname{IP}\left(3 \mathrm{p}-\text { hole, }{ }^{2} \mathrm{P}_{3 / 2}\right)+\Delta \mathrm{E}\left(\mathrm{~K} \beta_{1}\right) \\
& =\operatorname{IP}\left(3 \mathrm{~s} \text {-hole } ;{ }^{2} \mathrm{~S}_{1 / 2}\right)+\Delta \mathrm{E}(\mathrm{~L} \ell)+\Delta \mathrm{E}\left(\mathrm{~K} \alpha_{1}\right) \\
& =\operatorname{IP}\left(3 \mathrm{~s} \text {-hole, }{ }^{2} \mathrm{~S}_{1 / 2}\right)+\Delta \mathrm{E}(\mathrm{~L} \eta)+\Delta \mathrm{E}\left(\mathrm{~K} \alpha_{2}\right) \tag{22}
\end{align*}
$$

where the configuration and level of the final state of the ion are given in parentheses after IP, and $\Delta E\left(K \beta_{1}\right), \Delta E\left(K \alpha_{1}\right)$, etc., are the energies of the X-ray emission lines $K \beta_{1}, K \alpha_{1}$, etc., respectively. Standard X-ray notation is used to describe the emission lines.; $K \beta_{1}, K \alpha_{1}$, and $K \alpha_{2}$ denote the transitions ls-hole, ${ }^{2} S_{1 / 2} \rightarrow 3 p$-hole, ${ }^{2} P_{3 / 2}\left(\mathrm{KM} \mathrm{III}^{\prime}\right)$, ls-hole, ${ }^{2} \mathrm{~S}_{1 / 2} \rightarrow 2 \mathrm{p}$-hole, ${ }^{2} \mathrm{P}_{3 / 2}\left(\mathrm{KL}_{\mathrm{III}}\right)$, and ls-hole, ${ }^{2} \mathrm{~S}_{1,2} \rightarrow 2 \mathrm{p}$-hole. ${ }^{2} \mathrm{P}_{1 / 2}(\mathrm{KI}$ III $)$, respertively; and L, ℓ and $L \eta$ denote the transitions 2 p -hole, ${ }^{2} \mathrm{P}_{3 / 2} \rightarrow 3 \mathrm{~s}$-hole, ${ }^{2} \mathrm{~S}_{1 / 2}\left(\mathrm{~L}_{\mathrm{III}} \mathrm{M}_{\mathrm{I}}\right)$ and 2 p -hole, ${ }^{2} \mathrm{P}_{1 / 2} \rightarrow 3 \mathrm{~s}$-hole, ${ }^{2} \mathrm{~S}_{1 / 2}\left(\mathrm{~L}_{\mathrm{II}} \mathrm{M}_{\mathrm{I}}\right)$; respectively. For the ls-hole IP of neon and argon, the K absorption limits ($1 \mathrm{~s} \rightarrow \infty$) of gaseous neon and argon, determined by Brogren, (49) may also be used. (We have used absorption limit here in the same sense as series limit is used for optical spectra; that is, the removal of the electron to infinity with zero kinetic energy.)

Except for the inert gases, argon and neon, the X-ray measurements used have not been on free atomic systems. The emission lines used to calculate IP's for the removal of inner-shell electrons were obtained from the emission spectra of atoms in crystals. The wavelength and shape of these lines will, of course, be affected by the chemical structure of the solids. The lines involving the outermost shells of the atom will be most affected. This chemical effect, for the systems considered here, appears to be small and about the same order of magnitude as: the accuracy of the experimental measurements. For example, the full width at half-maximum of the $K \beta_{1,3}$ line of Cl^{-}in KCl , with no correction made for the unresolved doublet $K_{\text {II }}$ and KMIII, has been experimentally determined by Deslattes (50) to be $1.00 \pm 0.05 \mathrm{eV}$. Deslattes estimates that $0.4 \mathrm{eV}=$ 0.015 Hartree of this width is attributable to solid-state effects (i.e., the band structure of the 3 p band of Cl^{-}). This is to be compared with the wavelength of the line, as measured by Valasek, (51) which is $4394.91 \pm$ $0.14 \mathrm{XU}=103.464 \pm 0.003$ Hartrees. [The conversion from XU's to A's, as given in Sections 13 and 68 of Sandström's review article, (52) is $1000 \mathrm{XU}=(1.00202 \pm 0.00002) \mathrm{A}$.$] The wavelength shift of the K \beta_{1}$ (or $\mathrm{K} \beta_{1,3}$) line of Cl^{-}as measured in various substances is also small. Valasek $(51,53)$ gives $4394.90^{\circ} \pm 0.07 \mathrm{XU}$ for Cl^{-}in $\mathrm{NaCl}, 4394.91 \pm 0.14 \mathrm{XU}$ for Cl^{-}- in KCl , and 4394.61 XU for Cl^{-}in CaCl_{2}. Theresults of an earlier measurement of the $\mathrm{K} \beta_{1}$ line of Cl^{-}in the same substances, given by Lindh and Lundquist,(54) are $4394.2 \mathrm{XU}, 4394.1 \mathrm{XU}$, and 4394.2 XU , respectively.

In several cases, the results of more than one measurement of the same line were available. Our choice of which result to use was generally
guided by the choices made by Sandström* and Landolt-Bornstein(48) for their compilations of X-ray emission lines. When measurements were. made for an atom in several compounds, the values for the atom. in an alkali halide compound were usually used. The sources of the experimental data for the X-ray emission lines used are the following: $\mathrm{F}^{-}, \mathrm{K} \alpha_{1,2}$ Tyrén; (55) $\mathrm{Ne}, \mathrm{K} \alpha_{1,2}$ Moore and Chalklin; (56) $\mathrm{Na}^{+}, \mathrm{K} \alpha_{1,2}$ Johnson; (57) $\mathrm{Cl}^{-}, \mathrm{K} \alpha_{1}$ and $\mathrm{K} \alpha_{2}$ Shearer; (58) $\mathrm{K} \beta_{1}$ Valasek; (51) L η and Ll Siegbahn and Magnusson; (59) Ar, $K \alpha_{1}, K \alpha_{2}$, and $K \beta_{1}$ Lindh and Nilsson; (60) L η and L ℓ Bačkovskýy and Dolejšek; (61) $\mathrm{K}^{+}, \mathrm{K} \alpha_{1}$ Siegbahn and Dolejšek; (62) $K \alpha_{2}$ Sandström;* K β_{1} Parrat and Jossem; (63) and L η and Ll Tyrén. (64)

Unfortunately, the method described above cannot be used to determine the IP for removal of a 2 s electron from the argon-like ions. According to Sandström* and Landolt-Bornstein, (48) no X-ray emission lines are observed that involve transitions from the 2 s-hole state for atoms between chromium and sulfur.

Landolt-Bornstein (48) give a table of the normal energy levels of atoms in which they include values for the 2 s -hole (L_{I}) levels: of chlorine and potassium. The levels in this table were determined using a combination of X-ray emission lines and absorption limits. The procedure for determining the levels is much like that discussed above, except that X-ray absorption limits of atoms in crystals, rather than optical series limits of free atoms, are used. The values given for the 2 s -hole states of chlorine and potassium were not obtained directly from experimental data; they are interpolations made by Tomboulian and Cady. (65) The interpolation was based on rules for the $\mathrm{L}_{\mathrm{I}}-\mathrm{L}_{\mathrm{II}}\left(2 \mathrm{~s}\right.$-hole, ${ }^{2} \mathrm{~S}_{1 / 2}$ $2 p$-hole, ${ }^{2} \mathrm{P}_{1 / 2}$) screening-doublet splitting.

The levels in the Landolt-Bornstein table may not be used directly as IP's of free atoms because the zero of energy chosen for the atom in the crystal is not the same as the zero of energy of the free atom. (66)

The correction for the 2 s -hole IP that must be made to account for the different zeros of energy was determined by comparing the normal energy level given by Landolt-Bornstein for the : $2 p$-hole, ${ }^{2} P_{1 / 2}\left(L_{\text {II }}\right)$ state with the: IP obtained as described above. The 2 s -hole experimental IP's, IP (exp), of Cl^{-}and K^{+}given in Table XVIII are the Landolt-Bornstein values, with the corrections -0.17 and +0.56 Har tree, espectively. These values are included only to give a rough indication of the experimental values.

When the experimental IP's are compared with the IP's obtained from the SCF wave functions, the experimental values should be corrected for relativistic effects. The SCF functions were calculated using a
*See Ref. 52, Section 53. See also the discussion of the accuracy of measurements of X-ray emission spectra in Sections 50-52 in Ref. 52.
nonrelativistic, electrostatic Hamiltonian. The total experimental energy of a system Eexp may be written as

$$
\begin{equation*}
E_{\mathrm{exp}}=E_{\mathrm{nr}}+E_{\mathrm{rel}} \tag{23}
\end{equation*}
$$

where $E_{n r}$ is the exact energy eigenvalue of the Hamiltonian of Eq. (10), and $E_{r e l}$ is the relativistic correction to the total energy. (To be precise, the reduced mass of the electron should be used in the nonrelativistic Hamiltonian, and mass-polarization corrections should be included in $E_{r e l}$.) Then the nonrelativistic IP, IP (nr), is

$$
\begin{equation*}
\operatorname{IP}(\mathrm{nr})=F_{\mathrm{nr}}(\mathrm{i} \cap \mathrm{n})-\mathrm{E}_{111^{\prime}}(\mathrm{parcnt})=\operatorname{IP}(\mathrm{esp})=\Delta I P(r e l), \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta I P(\text { rel })=E_{r e l}(\text { ion })-E_{r e l}(\text { parent }), \tag{25}
\end{equation*}
$$

where $\triangle I P(r e l)$ is the relativistic correction to $I P(\exp)$. The term ion is used here to refer to the system after an electron has been removed from the parent.

For the ls-hole IP of an atom, $\triangle I P(r e l)$ is assumed to be equal to the relativistic correction to the IP of the two-electron ion of that atom (IP for $1 \mathrm{~s}^{2}$ to $1 \mathrm{~s}^{1}$). Pekeris, (46) using his extremely accurate nonrelativistic wave functions, has calculated the relativistic corrections to the IP's of the two-electron ions of hydrogen through neon. His calculations include the mass polarization correction, relativistic corrections to order α^{2}, and the Lamb shift corrections to order α^{3}. Scherr and Silverman, (67) using an expansion in powers of Z^{-1}, have extrapolated Pekeris's calculations to calcium $(Z=20)$. The results of Pekeris and Scherr and Silverman have been used for $\triangle I P(r e l)$ for the ls-hole IP's.

For the $2 p-$ hole $I P$ of an argon-like ion, $\triangle I P(r e l)$ is assumed to be equal to the relativistic correction to the IP of the ten-electron ion (IP for $1 s^{2} 2 s^{2} 2 p^{6}$ to $1 s^{2} 2 s^{2} 2 p^{5}$). Scherr, Silverman, and Matsen (47) have calculated these corrections using.screened nuclear charges to evaluate the Dirac one-electron energy and the one-electron Lamb shift to order α^{3}.

For the 2 p-hole IP's of the neon-like ions and the $3 p-h o l e$ IP's of the argon-like ions, the only relativistic correction made is that IP (exp) in Table XVIII is given for the center of gravity of the ${ }^{2} \cdot \mathrm{P}$ term of the ion. No relativistic corrections are given for the 2 s -hole IP!s of the neon-like ions and the 2 s - and. 3 s -hole IP's of the argon-like ions.

In several cases, IP(exp), given in Table XVIII, is determined in more than one way; this is done to indicateroughly the reliability of the experimental data. When the different ways give different values of
$\operatorname{IP}(\mathrm{n} \dot{\mathrm{r}})$, the method used to obtain IP(nr) is indicated. A correction for the finite mass of the nucleus is included in. IP(nr), but not in IP(exp). This correction affects the values of $I P(\exp)$ and $I P(n r)$ by no more than two units in the last place given.

The IP of a system can be calculated in two ways from SCF wave functions. One way is to use the frozen-orbital approximation. In the frozen-orbital approximation, an SCF calculation is performed for the parent system, and the SCF orbitals of the parent are also used as the orbitals of the ion. In this approximation, the IP for the removal of an electron from the $n \ell-$ shell of a closed-shell system ${ }^{2}$ is $-\epsilon_{n} \ell$; this result is known as Koopmans's theorem. The second way is to perform separate SCF calculations for the parent and the ion. In this case, the $I P$ is the difference of the $S C \subset$ energies $\triangle E_{S C F}$ of the two systems. The accurate-set SCF functions of Tables I-IV have been used to calculate the IP in these two ways. The results, $\operatorname{IP}\left(-\epsilon_{\mathrm{n} \ell}\right)$ and $\operatorname{IP}\left(\triangle \mathrm{E}_{\mathrm{SCF}}\right)$, are given in Table XVIII together with their differences with IP (exp), or with $\operatorname{IP}(\mathrm{nr})$, when $\operatorname{IP}(\mathrm{nr})$ is given.

The true value of a quantity, in the sense that it is used in the following discussion, is the exact nonrelativistic value obtained from solutions of the Hamiltonian of Eq. (10). The error of an approximate value of a quantity is the error with respect to this true value. The values of TP (exp) or IP (nr) given in Table XVIII are taken to be good approximations to the true IP's. The choice of IP(exp) or IP(ni) depends, of course, on whether the electron has been removed from an inner or outer shell of the parent.

The data in Table XVIII show that when an electron is removed from the outermost shell ($2 p$ shell of the neon-like ions, and $3 p$ shell of the argon-like ions $)$, $\operatorname{IP}\left(-\epsilon_{\mathrm{n} \ell}\right)$ is a better approximation than $\operatorname{IP}\left(\triangle \mathrm{E}_{\mathrm{SCF}}\right)$ to the true IP. The frozen-orbital wave function for the ion is always a poorer approximation than the SCF wave function to the true wave function of the ion. For the lowest state of a symmetry species, the error in the energy of the ion in the frozen-orbital approximation must be larger than the correlation energy of the ion (the error of the SCF energy of the ion). However, in the cases mentioned above, the correlation energy of the parent is more nearly equal to the error in the energy of the ion in the frozen-orbital approximation than to the correlation energy of the ion. The errors in the energies of the parent and ion more nearly cancel, and $\operatorname{IP}\left(-\epsilon_{n \ell}\right)$ is a better approximation than $\operatorname{IP}\left(\triangle E_{S C F}\right)$ to $\operatorname{IP}(\mathrm{nr})$.

The error in the energy of the ion in the frozen-orbital approximation is usually larger than the correlation energy of the parent. Because of this, $\operatorname{IP}\left(-\epsilon_{\mathrm{n} \ell}\right)$ is usually larger than the true IP. This is not always the case; for $\mathrm{K}^{+}, \operatorname{IP}\left(-\epsilon_{3 p}\right)$ is 0.06 eV smaller than $\operatorname{IP}(\exp)$ for the removal of a $3 p$ electron.

Note that $\operatorname{IP}\left(-\epsilon_{\mathrm{n} \ell}\right)$ is larger than the true IP when an inner-shell electron has been removed. If the ion is not in the lowest'state of a symmetry species, it is not necessary that the expectation value of the energy for an approximate wave function be an upper bound to the true energy. If the expectation value of the energy in the frozen-orbital approximation for ions in these states was not larger than the true energy, then $\operatorname{IP}\left(-\epsilon_{\mathrm{n}} \ell\right)$ would be considerably smaller than the true IP.

When an electron is removed from any but the outermost shell, $I P\left(\Delta \mathrm{E}_{\mathrm{SCF}}\right)$ is a better approximation than IP $\left(-\epsilon_{\mathrm{n} \ell}\right)$ to the true IP. When an electron is removed from an inner shell (ls shell of the neon-like ions, and $1 \mathrm{~s}, 2 \mathrm{~s}$, or 2 p shell of the argon-like ions), the SCF orbitals of the ion are considerably different from the SCF orbitals of the parent (cf., $\langle r\rangle$ and $\left\langle r^{2}\right\rangle$ in Tables XIII and XIV). Consequently, the error in using the orbitals of the closed-shell parent for these ions is quite large.

The SCF orbitals of the states that have a hole in the outermost s shell are not very different from the SCF orbitals of the states with a hole in the outermost p shell. The $\operatorname{IP}\left(-\epsilon_{n l}\right)$ was a good approximation to the IP for the removal of an outermost p electron, but not for an outermost s electron. For these s-hole states, there is another reason why. $\operatorname{IP}\left(-\epsilon_{\mathrm{n} \ell}\right)$ is a poorer approximation than $\operatorname{IP}\left(\triangle \mathrm{E}_{\mathrm{SCF}}\right)$. As discussed in Section IV-A, these s-hole states are likely to be the lowest ${ }^{2} S$ states of even parity of their ionic systems. The only states for which this is at all in doubt are $\mathrm{F}(2 \mathrm{~s}$-hole $)$ and $\mathrm{Cl}(3 \mathrm{~s}$-hole). When the ion is the lowest state of a symmetry species, $\operatorname{IP}\left(-\epsilon_{\mathrm{n} \ell}\right)$ must be greater than $\operatorname{IP}\left(\triangle E_{S C F}\right)$. Now, IP ($\triangle E S C F$) for the removal of an outermost's electron is already larger than the true IP. Since $I P\left(\epsilon_{\mathrm{n} \ell}\right)$ must be still larger, it is a poorer approximation to the true IP. The surprising fact that $I P\left(\triangle E_{S C F}\right)$ is larger than the true IP is discussed in Section G below.

The agreement of $\operatorname{IP}\left(\triangle \mathrm{E}_{\mathrm{SCF}}\right)$ with $\operatorname{IP}(\mathrm{nr})$ for the removal of an inner-shell electron is remarkably good. [Comparisons of $\operatorname{IP}\left(\triangle E_{S C F}\right)$ with IP(nr) for the removal of a 2 s electron from an argon-like ion cannot be made since there is no accurate experimental data available.] The error of $\operatorname{IP}\left(\triangle E_{S C F}\right)$, for these cases; is alw'ays less than 0.2% and often no more than 0.1%. Thus, $\operatorname{IP}\left(\triangle E_{S C F}\right)$ often agrees with $\operatorname{IP}(\mathrm{n} \dot{\mathrm{r}})$ to four significant figures.

This good agreement is due, at least in part, to the fact that the importance of the one-electron contributions to the HF operator relative to the two-electron contributions (the kinetic energy and nuclear attraction terms relative to the Coulomb and exchange terms), is considerably greater for inner-shell orbitals than for outer-shell orbitals. The best results are obtained with the $H F$ one-electron approximation when the two-electron terms are a small perturbation on the one-electron terms. Since the error :of the HF treatment of the outer-shell orbitals can be
expected to be roughly the same whether the inner-shell electron is present or not, $\operatorname{IP}\left(\triangle \mathrm{E}_{\mathrm{SCF}}\right)$ for the removal of an inner-shell electron should give reasonably goodagreement with the true IP.

Thus, $\operatorname{IP}\left(\triangle E_{S C F}\right)$ for the removal of a 2 s electron from an argon-like ion should be in good agreement with the true nonrelativistic IP. The relativistic correction to these IP's, estimated from the data of Scherr, Silverman, and Matsen, (47) is probably no more than 0.1 Hartree. Even without relativistic corrections, the values of $\operatorname{IP}\left(\triangle E_{S C F}\right)$, given in Table XVIII, should agree with the correct experimental values to within 1%; because of the relativistic corrections, they should be smaller than the correct experimental values. No direct experimental data are available for these 2 s -hole IP's; the values of IP (exp), given in Table XVIII, were obtained through interpolation. (65)

G. Anomalous Behavior of the Correlation Energy

The correlation energies of some of the hole-state systems:have anomalous values. The correlation energy $\mathrm{E}_{\text {corr }}$ is the error of the total SCF energy ESCF and is defined by the relation

$$
\begin{equation*}
\mathrm{E}_{\mathrm{nr}}=\mathrm{E}_{\mathrm{SCF}}+\mathrm{E}_{\mathrm{Corr}}, \tag{26}
\end{equation*}
$$

where E_{nr} is the exact nonrelativistic solution of the Hamiltonian of Eq. (10). The sign has been chosen so that $E_{\text {corr }}$ is negative for all the systems considered here and is always negative for the lowest state of a symmetry species. It follows immediately from Eq. (26) that

$$
\begin{equation*}
\operatorname{IP}(\mathrm{n} \dot{r})-\operatorname{IP}\left(\triangle E_{S C F}\right)=E_{\operatorname{Corr}}(\text { ion })-E_{\operatorname{Corr}}(\text { parent }) . \tag{27}
\end{equation*}
$$

The error of $\operatorname{IP}\left(\triangle E_{S C F}\right)$, given in the last column of Table XVIII, is the difference of $E_{\text {corr }}$ between the parent and the ion.

Usually $\operatorname{IP}\left(\triangle E_{S C F}\right)$ is less than the true IP. The orbitals of the ion are not drastically different from those of the parent. The ion has one fewer electron than the parent, and it is reasonable to expect that $\mid E_{\text {corr }}$ (ion) $|<| E_{\text {corr }}($ parent $) \mid$. As shown in Table XVIII, this usual case occurs when an electron is removed from the outermost p shell of any of the closed-shell systems considered.

When an electron is removed from the outermost s shell, $\operatorname{IP}\left(\triangle E_{S C F}\right)$ is larger than the true IP. The magnitude of $\mathrm{E}_{\mathrm{corr}}$ of $\mathrm{Ne}^{+}\left(2 \mathrm{~s}\right.$-hole) is 0.84 eV larger than the magnitude of $\mathrm{E}_{\text {corr }}$ of neon; $\left\|E_{\text {corr }}\right\|$ of $\mathrm{Ar}^{+}(3 \mathrm{~s}-\mathrm{hole})$ is 3.95 eV larger than $\left|\mathrm{E}_{\text {corr }}\right|$ of argon.

When an electron is removed from the 2 p or the 1 s shell of one of the argon-like ions, $\left|E_{\text {corr }}\right|$ of the resulting ion is also larger than $\| E_{\text {cor }}$ il of the parent. The uncertainties of the experimental data and
the relativistic corrections make this conclusion somewhat doubtful for the 2 p -hole states. For the 1 s -hole states, however, the increase of $\left|\mathrm{E}_{\mathrm{corr}}\right|$ is larger than these uncertainties.

This anomalous behavior of the correlation energy is extremely important in light of the recent work of Clementi $(41,68)$ and in particular of Allen, Clementi, and Gladney (69) to obtain semiempirical rules for the calculation of $E_{\text {corr }}$. Such rules, if they could:be successfully applied, would be very useful since SCF wave functions may now be easily obtained for a large class of systems. The analysis of Allen, Clementi, and Gladney is based on a decomposition of $E_{\text {corr }}$ into pair-correlation energies. For atoms, the pair-correlation energy is denoted by $\mathrm{E}_{\text {corr }}\left(\mathrm{n}, \ell, \mathrm{m}_{\ell}, \mathrm{m}_{\mathrm{s}} ; \mathrm{n}^{\prime}, \ell^{\prime}, \mathrm{m}_{\ell}, \mathrm{m}_{\mathrm{s}}^{\prime}\right)$, where $\mathrm{n}, \ell, \mathrm{m}_{\ell}, \mathrm{m}_{\mathrm{s}}$ are the usual oneelectron quantum numbers. Allen et al. (69) explicitly make the following three assumptions about this decomposition: (1) The total correlation energy is, to a very good-approximation, the sum of the pair-correlation energies,

$$
\begin{equation*}
E_{\text {corr }}=\Sigma E_{\text {corr }}\left(n, \ell, m_{\ell}, m_{s} ; n^{\prime}, \ell^{\prime}, m_{\ell}^{\prime}, m_{s}^{\prime}\right) . \tag{28}
\end{equation*}
$$

(2) The most important pair-correlation energies are for electrons which differ only in their spin quantum numbers, and these correlation energies are independent of m_{ℓ}; i.e., $E_{c o r \dot{r}}\left(n, \ell, m_{\ell}, \alpha_{i} n, \ell, m_{\ell}, \beta\right)=$ $\mathrm{E}_{\mathrm{corr}}(\mathrm{n}, \ell, \alpha ; \mathrm{n}, \ell, \beta)$. (3) The pair-correlation energy, with only minor qualifications, is a function only of the quantum numbers of the pair of electrons and the nuclear charge Z; in particular, it does not depend on the total electronic configuration of the system. The third assumption is a key one since Allen, Clementi, and Gladney obtained the paircorrelation energies for an atom by subtracting the total correlation energies of various ions of the atom.

The first two assumptions are quite reasonable. The anomalous behavior of the correlation energy, discussed above, shows that the third assumption is not correct.

From the assumptions and Eq. (27), it follows that when an electron is removed from a closed shell with quantum numbers $\mathrm{n} \ell$,
$-\mathrm{E}_{\mathrm{corr}}(\mathrm{n}, \ell, \alpha ; \mathrm{n}, \ell, \beta) \cong \mathrm{E}_{\mathrm{corr}}(\mathrm{ion})-\mathrm{E}_{\mathrm{corr}}($ parent $)=\operatorname{IP}(\mathrm{nr})-\operatorname{IP}\left(\Delta \mathrm{E}_{\mathrm{SCF}}\right)$.

For neon, Allen, Clementi, and Gladney find that $-\mathrm{E}_{\operatorname{corr}}(2 p \alpha, 2 p \beta) \cong$ $+1.7 \mathrm{eV},-\mathrm{E}_{\mathrm{corr}}(2 \mathrm{~s} \alpha, 2 \mathrm{~s} \beta) \cong+3.2 \mathrm{eV}$, and $-\mathrm{E}_{\mathrm{corr}}(1 \mathrm{~s} \alpha, 1 \mathrm{~s} \beta) \cong$ +1.2 eV . The results given in Table XVIII show that $\mathrm{E}_{\mathrm{corr}}\left(\mathrm{Ne}^{+} ; 2 \mathrm{p}-\mathrm{hole}\right)$ $E_{\text {corr }}(\mathrm{Ne})=+1.75 \mathrm{eV}, \mathrm{E}_{\mathrm{corr}}\left(\mathrm{Ne}^{+} ; 2 \mathrm{~s} \div \mathrm{hole}\right)-\mathrm{E}_{\mathrm{corr}}(\mathrm{Ne})=-0.84 \cdot \mathrm{eV}$, and $\mathrm{E}_{\mathrm{corr}}\left(\mathrm{Ne}^{+}\right.$ils-hole $)-\mathrm{E}_{\mathrm{corr}}(\mathrm{Ne})=+0.65 \mathrm{eV}$. When a 2 p electron is removed, Allen, Clementi, and Gladney correctly predict the change in the total correlation energy; this is hardly surprising since this change was
part of the data used in their semiempirical analysis. However, when a 2 s electron is removed, they predict a decrease of $\mid \mathrm{E}_{\text {corr }} \|$ of $\sim 3.2 \mathrm{eV}$; but, in fact, $\left|E_{\text {corr }}\right|$ increases by 0.84 eV . When a ls electron is removed, they predict a decrease of $\sim 1.2 \mathrm{eV}$, but there is a decrease of only-half that. Allen, Clementi, and Gladney also give pair correlations for fluorine and sodium. Theiri predictions for the correlation energies of the $\mathrm{n} \ell$-hole states of F^{-}- and Na^{+}are very similár to their predictions for neon.

Clearly the values that the Allen, Clementi, and Gladney analysis gives for $E_{\text {corr }}(2 s \alpha, 2 s \beta)$ and $E_{\text {corr }}(1 s \alpha, 1 s \beta)$ are not correct. Kestner (70) has considered the anomalous correlation energy of $\mathrm{Ne}^{+}(2 \mathrm{~s}$-hole) using the formalism of Sinonaglu. He claims that he has accounted for the increase of $\left|E_{\text {corr }}\right|$ to the accuracy of his calculation.

Kestner explains that. the anomalous correlation energy of the 2 s -hole state of neon is due to the increased importance of configuration interaction for the SCF function of this state. The $1 s^{2} 2 s 2 p^{6}$ configuration of the $2 s$-hole state of Ne^{+}. can interact with the configurations $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} \mathrm{ep}^{4} \mathrm{~ns}$, $1 s^{2} 2 s 2 p^{5} n p$, and $1 s^{2} 2 s^{2} 2 p^{4} n$. The configurations $1 s^{2} 2 s^{2} 2 p^{6}$ and $1 s^{2} 2 s^{2} 2 p^{5}$ of neutral neon and the $2 p$-hole state of neon can interact only with configurations formed by exciting two electrons into orbitals with principal quantum numbers $n>2$. The energies of some of the excited configurations that mix with the SCF configuration of the 2 s -hole state of neon are closer to the cnergy of that state, than the energies of the exicted configurations for neon and $\mathrm{Ne}^{+}(2 \mathrm{p}$-hole $)$ are to the energies of these states. Thus, the mixing of configurations will be larger for the 2 s -hole state than for the neutral atom or the $2 p$-hole state. When the effects of configuration interaction are more important, the SCF one-configuration function gives a poorer approximation to the:true wave function, and the magnitude of the correlation energy is larger.

Similar arguments can be made about the $3 s$-hole states of the argon-like ions. It will be interesting to see if Kestner's treatment can account.for the increase of $\left|\mathrm{E}_{\text {corr }}\right|$ for these states. The increase of $\left|E_{\text {corr }}\right|$ for these states is more than four times as large as the increase of $\left|E_{\text {corr }}\right|$ for the 2 s -hole states of the neon-like ions.

V. TRANSITION PROBABILITIES BETWEEN THE SCF WAVE FUNCTIONS

A. Theory

To calculate electric-dipole transition probabilities, it is necessary to evaluate matrix elements I of the form

$$
\begin{equation*}
I=\left\langle\Psi_{I}\right| \Sigma \underset{\sim}{r}(\mathrm{i})\left|\Psi_{F}\right\rangle \tag{30}
\end{equation*}
$$

where Ψ_{I} and Ψ_{F} are the normalized many-electron wave functions of the initial and final states, $\underset{\sim}{r}(i)$ is the position vector of the $i^{\text {th }}$ electron, and the sum is over all the electrons in the atom. In this calculation, Ψ_{I} and Ψ_{F} are approximated by SCF wave functions. For the states considered here, the SCF function is given by a single Slater determinant and is an eigenfunction of L^{2} and S^{2}, but not j^{2}. Since Ψ_{I} and Ψ_{F} were obtained as separate SCF solutions of the variational equations, the SCF one-electron orbitals for the two states have no special relation to each other. In particular, the overlap integrals of the orbitals $\phi_{n}(\mathrm{I}){ }_{\mathrm{l}}$ of Ψ_{I} with the orbitals $\left.\phi_{n^{\prime}}^{(\mathrm{F}}\right\}_{\mathrm{m}}$ of Ψ_{F} are not zero or one; that is, $\left\langle\phi_{\mathrm{n}}^{(\mathrm{I})} \mathrm{l}_{\mathrm{m}} \mid \phi_{\mathrm{n}}(\mathrm{F})_{\mathrm{m}}\right\rangle \neq \delta_{\mathrm{n}, \mathrm{n}^{\prime}}$.

It is common practice $(45,71,72)$ to approximate the dipole transition matrix element I of Eq. (3.0) by

$$
\begin{equation*}
\left.I=\left\langle\Psi_{I}\right| \sum_{\underset{\sim}{r}}(i)\left|\Psi_{F}\right\rangle \cong \underset{\sim}{W} \int_{0}^{\infty} P_{n}^{(I}\right)_{l}(r) r P_{n}(F)_{\ell^{\prime}}(r) d r . \tag{31}
\end{equation*}
$$

Here $P_{n}^{(I)}$ and $P_{n^{\prime}}^{(F)} l^{\prime}$ are the radial wave functions of the active electron (the electron making the transition) for the initial and final states. The radial functions $P_{n}^{(I)}$ and $P_{n}^{(} F_{\ell^{\prime}}$ need not be $S C F$ functions. $(45,71)$ The vector $\underset{\sim}{W}$ includes the angular integrations and also depends on the symmetry species and subspecies of the initial and final states. The approximation of Eq. (31) is equivalent to assuming that the orthonormality relations

$$
\begin{equation*}
\left\langle\phi_{n \ell m}^{(I)} \mid \phi_{n^{\prime} \ell m}^{(F)}\right\rangle=\int_{0}^{\infty} P_{n \ell}^{(I)}(r) P_{n^{\prime} \ell}^{(F)}(r) d r=\delta_{n, n^{\prime}} \tag{32}
\end{equation*}
$$

hold. We shall refer to this approximation as the active electron approximation.

With SCF functions, or with any total wave functions which are expressed as combination of Slater determinants, it is not necessary to use the active electron approximation. Löwdin(73) has given an expression for the matrix element of a one-electron operator $\Sigma \mathrm{O}(\mathrm{i})$ between two arbitrary Slater determinants, Ψ_{U} and Ψ_{V}. Löwdin showed that

$$
\begin{equation*}
\left\langle\Psi_{\mathrm{U}}\right| \Sigma O(\mathrm{i})\left|\Psi_{\mathrm{V}}\right\rangle=\Sigma_{\mathrm{k}, \ell}\left\langle\psi_{\mathrm{k}}^{(\mathrm{U})}(1)\right| O(1)\left|\psi_{\ell}^{(\mathrm{V})}(1)\right\rangle \mathrm{D}_{\mathrm{UV}}(\mathrm{k} \mid \ell) \tag{33}
\end{equation*}
$$

where $\psi_{\mathrm{k}}^{(\mathrm{U})}$ and $\psi_{\ell}^{(\mathrm{V})}$ are spin-orbitals of the determinants Ψ_{U} and Ψ_{V} respectively, the double sum k, ℓ is over all the occupied spin-orbitals, and $D_{U V}(k \mid \ell)$ is the signed minor, formed by removing the $k^{\text {th }}$ row and ℓ th column, of the matrix D_{UV}. The elements of D_{UV}. are the overlap integrals between the spin-orbitals of the two determinants; the $k \ell$ element of $D_{U V}$ is

$$
\begin{equation*}
\left(\mathrm{D}_{\mathrm{UV}}\right)_{\mathrm{k} \ell}=\left\langle\left.\psi_{\mathrm{k}}^{(\mathrm{U})}\right|_{\ell} ^{(\mathrm{V})}\right\rangle \tag{34}
\end{equation*}
$$

The SCF spin-orbitals were defined in Eq. (2).
The evaluation of the sum in Eq. (33) is simple because the SCF spinorbitals are symmetry-adapted and because there is only radial function for each shell [cf., Eqs. (2) and (5)]. In fact, for the transitions considered, it was never necessary to evaluate a determinant larger than 3×3. The dipole transition matrix elements required for this calculation were, therefore, evaluated by means of Eq. (33).

The results of the dipole transition calculations will be given as total absolute multiplet strengths $S(M)$ IF. In the electric dipole approximation, $S(M)$ IF is defined, in atomic units, by
$\left.S(M)_{I F}=\sum_{M_{S}, M_{S}^{\prime}} \sum_{M_{L}, M_{L}^{\prime}}\left|\left\langle\Psi_{I}\left(L, S, M_{L}, M_{S}\right)\right|{\underset{\sim}{r}}_{r}(i)\right| \Psi_{F}\left(L^{1}, S, M_{L}^{\prime}, M_{S}^{\prime}\right)\right\rangle\left.\right|^{2}$,
where L, S, M_{L}, and M_{S} are the usual orbital and spin angular momentum quantum numbers for the many-electron system. The sum is over all the states of the initial and final terms. This sum need not be evaluated explicitly; sum rules* for the sum over M_{L} and M_{L}^{\prime}, and the fact that the operator $\sum \underset{\sim}{r}(i)$ does not involve the spin, may be used to reduce the sum. For the rase of interest here (transitions between ${ }^{2} S$ and ${ }^{2} P$ states with $\Delta L=1), S(M)_{\text {IF }}$ becomes
$\left.S\left(M_{I F}=(2 S+1)(L+1)(2 L+3)\left|\left\langle\Psi_{I}\left(L+i, S, M_{L}=L, M_{S}=S\right)\right| \sum z(i)\right| \Psi_{F}\left(L, S, M_{L}=L, M_{S}=S\right)\right\rangle\right|^{2}$,
where $z(i)$ is the z coordinate of the $i^{\text {th }}$ electron.
*Feenberg and Pake ${ }^{(74)}$ present a complete statement and derivation. of the sum rules.

- Absolute line strengths may be obtained from $S(M)$ IF by using the relative strengths of lines in multiplets. Oscillator strengths and spontaneous transition probabilities may also be obtained from $S(M)$ IF by using either experimental or SCF transition energies. Summaries of current notation and definitions of terms may be found elsewhere.(75) The general problem of emission and absorption of radiation is treated in detail elsewhere; see, for example, Bethe and Salpeter. (20)

For the sake of convenience, we give here the relations that will be required later for the discussion of the width of the ls-hole state; this width is referred to as the K-state width, or simply the K width.

The absolute line strength $\mathrm{S}(\mathrm{L})_{\text {IF }}$ is defined, in atomic units, by

$$
\begin{equation*}
\left.S(L)_{I F}=\sum_{M_{J}, M_{J}^{\prime}}\left|\left\langle\Psi_{I}\left(J, L, S, M_{J}\right)\right| \Sigma_{\sim}(i)\right| \Psi_{F}\left(J^{\prime}, L^{\prime}, S, M_{J}^{\prime}\right)\right\rangle\left.\right|^{2} \tag{37}
\end{equation*}
$$

The subscripts I and F for $S(L)_{I F}$ refer to levels (i.e., ${ }^{2 S+1} L_{J}$), while the subscripts for $S(M)_{I F}$ refer to terms (i.e., ${ }^{2 S+1} L$). For the transitions of interest here, $S(L)_{I F}$ is given in terms of $S(M)_{I F}$ by

$$
\left.\begin{array}{ll}
{ }^{2} \mathrm{~S}_{1 / 2} \longleftrightarrow{ }^{2} \mathrm{P}_{1 / 2} ; & \mathrm{S}(\mathrm{~L})_{I F}=(1 / 3) \mathrm{S}(\mathrm{M})_{\mathrm{IF}} \tag{38}\\
{ }^{2} \mathrm{~S}_{1 / 2} \longleftrightarrow{ }^{2} \mathrm{P}_{3 / 2} ; & \mathrm{S}(\mathrm{~L})_{I F}=(2 / 3) \mathrm{S}(\mathrm{M})_{I F} .
\end{array}\right\}
$$

The transition probability for spontaneous emission of a photon A_{IF} is given, in sec^{-1}, by

$$
\begin{equation*}
\mathrm{A}_{I F}=2.1419 \times 10^{10}\left[\left(\Delta \mathrm{E}_{\mathrm{IF}}\right)^{3} / \mathrm{g}_{\mathrm{I}}\right] \mathrm{S}_{\mathrm{IF}}(\mathrm{~L}), \tag{39}
\end{equation*}
$$

where $\Delta E_{I F}=E_{I}-E_{F}$ is the energy of the line in atomic units, $S_{I F}(L)$ is in atomic units, and g_{I} is the degeneracy of the initial level.

The total width of a level I, Γ_{I}, may be written as $\Gamma_{I}=\hbar P_{I}$, where $P_{\text {. }}$ is the total probability of transitions from the level I to all lower-lying levels. The partial width due to radiative transitions $\Gamma^{(R)}$, called the radiative width, is

$$
\begin{equation*}
\Gamma_{\mathrm{I}}^{(\mathrm{R})}=\hbar \sum_{\mathrm{F}} \mathrm{~A}_{I F}, \tag{40}
\end{equation*}
$$

where the sum is over all levels with lower energy, $\mathrm{E}_{\mathrm{F}}<\mathrm{E}_{\mathrm{I}}$. For innershell hole states; where radiationless transitions are important, the total width is given by:

$$
\begin{equation*}
\Gamma_{\mathrm{I}}=\Gamma_{\mathrm{I}}^{(\mathrm{R})}+\Gamma_{\mathrm{I}}^{(\mathrm{A})}, \tag{41}
\end{equation*}
$$

where $\Gamma_{I}^{(A)}$ is called the Auger width. The fluorescence yield $\bar{\omega}_{I}$, the fraction of the total transition rate due to radiative transitions, may be written as

$$
\begin{equation*}
\bar{\omega}_{\mathrm{I}}=\Gamma_{\mathrm{I}}^{(\mathrm{R})} /\left[\Gamma_{\mathrm{I}}^{(\mathrm{R})}+\Gamma_{\mathrm{I}}^{(\mathrm{A})}\right]=\Gamma_{\mathrm{I}}^{(\mathrm{R})} / \Gamma_{\mathrm{I}} . \tag{42}
\end{equation*}
$$

These matters are discussed in detail elsewhere (76)
The operator $\sum \underset{\sim}{x}(i)$ is called the dipole length operator. It is possible, through the use of commutation relations, to find alternate expressions for the dipole transition matrix element of Eq. (30). For the many-electron Hamiltonian of Eq. (10), we have the relations

$$
\begin{equation*}
[\Sigma \underset{\sim}{r}(\mathrm{k}), \mathscr{F}]=\mathrm{i} \sum_{\sim}^{p}(\mathrm{k})=\Sigma \underset{\sim}{\nabla}(\mathrm{k}), \tag{43a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\sum_{\underset{\sim}{p}}(\mathrm{k}), \mathscr{H}\right]=-\mathrm{i}[\Sigma \underset{\sim}{\underset{\sim}{\nabla}}(\mathrm{k})] \mathscr{Y}=-\mathrm{i} Z \underset{\sim}{\mathrm{r}}(\mathrm{k}) / \mathrm{r}(\mathrm{k})^{3}, \tag{43b}
\end{equation*}
$$

where Z is the nuclear charge and the commutation relations are expressed in atomic units. If Ψ_{I} and Ψ_{F} are exact eigenfunctions of \mathscr{F}, the dipole transition matrix element I, in atomic units, may be evaluated, using Eq. (3:0) or equivalently, as either

$$
\begin{equation*}
\mathrm{I}=\left\langle\Psi_{\mathrm{I}}\right|\left[-1 / \Delta \mathrm{E}_{\mathrm{IF}}\right] \Sigma \underset{\sim}{\nabla}(\mathrm{k})\left|\Psi_{\mathrm{F}}\right\rangle \tag{44a}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{I}=\left\langle\Psi_{\mathrm{I}} \|\left[\mathrm{Z} /\left(\Delta \mathrm{E}_{\mathrm{IF}}\right)^{2}\right] \Sigma \underset{\sim}{\mathrm{r}}(\mathrm{k}) / \mathrm{r}(\mathrm{k})^{3} \mid \Psi_{\mathrm{F}}\right\rangle \tag{44~b}
\end{equation*}
$$

where $\Delta E_{I F}=E_{I}-E_{F}$ is the difference between the exact nonrelativistic total energies of the initial and final states. The operators in Eqs. (44a) and (44b) are called the dipole-velocity and dipole-acceleration operators, respectively. Note that the dipole-acceleration operator was obtained from the exact many-electron potential energy and not from some average oneelectron potential.

When a dipole transition matrix element is evaluated using approximate wave functions (e.g., SCF functions), the length, velocity, and acceleration forms of the matrix element will not have the same value. The values obtained using the three operators do not necessarily bound the correct value of the matrix element. Even if the three values are in close agreement, they are not necessarily correct.. However, the main contributions to the matrix element come from different.regions of r for the three operators. The contributions to the value of the matrix element from comparatively large r are most important.for the dipole length operator, from intermediate values of r for the velocity operator, and from small values of r for the acceleration operator. Thus, if the three operators give approximately equal values for a transition matrix element, it ic not unreasonable to infer that these values are close to the true value. In any event, it is interesting to see how the results obtained using the length, velocity, and acceleration operators compare. Such a comparison will be made in Section B" below.

B. Results of the Dipole Transition Probability Calculations

A computer program was written for the IBM 704 to calculate all the one-electron overlap and electric-dipole transition integrals, between the expansion SCF orbitals of two states, needed for the evaluation of $S(M)_{\text {IF }}$. The one-electron overlap and transition integrals are defined in Eqs. (33) and (34). Transition integrals may be computed for the dipolelength, -velocity, and -acceleration operators'. Since the angular integration follows immediately from the properties of the spherical harmonics, only the radial portions of the transition integrals are calculated by the program. For the transitions reported here, the program was modified to calculate $S(M)$ IF directly, with the electric dipole transition matrix element evaluated exactly, as a matrix element between the many-electron $S C F$ wave functions. Actually, $S(M)$ IF is calculated when the length operator is used; but $\left(\Delta E_{I F}\right)^{2} S(M)$ IF and $\left(\Delta E_{I F}\right)^{4} Z^{-2} S(M)$ IF are calculated when the velocity and acceleration operators are used. In this way, experimertal, rather than SCF, energy differences may be used when the velocity and acceleration forms of $S(M)$ IF are evaluated.

For a given transition, the input to the transition moment program consists of two sets of punched cards. One of these sets contains the information necessary to describe the SCF function of the initial state; the other, the information necessary to describe the final state. While a set of cards may be prepared manually, it is available, optionally, as part of the output of an SCF calculation performed with the 7094 SCF program.

The values of $S(M)_{I F}$, in the electric dipole approximation, for all possible electric dipole transitions between the $n \ell$-hole states computed, are presented in Table XIX. The matrix elements were computed exactly, between many-electron SCF wave functions, using the expression of

Eq. (33). The matrix elements were evaluated using the dipole-length operator. The SCF functions used are the accurate-set functions reported in Tables I-IV. The values of $S(M)$ IF are given $:$ in atomic units.

TABLE XIX. Total Absolute Multiplet Strengths S(M) IF for Transitions between the $\mathrm{n} \ell$-hole States of $\mathrm{F}^{-}, \mathrm{Ne}, \mathrm{Na}^{+}, \mathrm{Cl}^{-}, \mathrm{Ar}$, and K^{+}. (Values of $S(M)_{\text {IF }}$ are in a.u:)

	F	Ne^{+}	$\mathrm{Na}+$
2 s -hole $\rightarrow 2 \mathrm{p}$-hole ultraviolet emission line	$\cdot 2.0652$	1.4632	1.0855
ls-hole $\rightarrow 2$ p-hole $\mathrm{K} \alpha$ emission line	0.02466	0.02193	0.01937
	Cl	Ar^{+}	K^{++}
3 s-hole $\rightarrow 3 p$-hole ultraviolet emission line	5.3584	4.1392	3.2995
2 p -hole $\rightarrow 3 \mathrm{~s}$-hole L ℓ, η emission lines	. 0.03430	0.02808	0.02324
$\begin{gathered} 2 s \text {-hole } \rightarrow 3 p-\text { hole } \\ \text { not observed } \end{gathered}$	0.02932	0.02991	0.02965
$2 \mathrm{~s} \text {-hole } \rightarrow 2 \mathrm{p} \text {-hole }$ not observed	0.3382	0.2923	0.2549
ls-hole $\rightarrow 3$ p-hole $\mathrm{K} \beta$ emission line	0.0006722	0.0007010	0.0007078
ls-hole $\rightarrow 2$ p-hole $\mathrm{K} \alpha$ emission line	. 0.009245	0.008354	0.007588

For most of the transitions given in Table XIX, $\mathrm{S}(\mathrm{M})_{\mathrm{IF}}$, for a given transition, decreases. with increasing Z. Along an isoelectronic sequence, the wave functions for a given state become more contracted as the nuclear charge increases (c.f., $\langle r\rangle$ and $\left\langle r^{2}\right\rangle$ given in Tables XIII and XIV). 'Thus, the main contributions to the dipole transition matrix element $\left\langle\Psi_{\mathrm{I}}\left\|\Sigma_{\mathrm{i}} \mathrm{r}(\mathrm{i})\right\|\right.$ $\Psi_{F}>$ come from smaller values of r for larger values of Z, and $S(M)$ IF becomes smaller with increasing Z. In fact, for the hydrogenic oneelectron ions, $S(M)$ IF goes as $1 / Z^{2}$.

For the ls-hole $\rightarrow 3 p-h o l e$ and the 2 s -hole $\rightarrow 3 \mathrm{p}$-hole transitions of $\mathrm{Cl}, \mathrm{Ar}^{+}$, and K^{++}, however, $\mathrm{S}(\mathrm{M})$ IF does not have this behavior; for the ls-hole $\rightarrow 3$-hole transition, $S(M)$ IF increases with increasing Z 。Although all the SCF orbitals of a given state contract with increasing Z, the $3 p$ orbitals contract more than the 1 s or 2 s orbitals. The region of
important "overlap," the region where $\Psi_{I}^{*} \Psi_{F}$ is large, will increase, and, in some cases, this increase will be more important than the fact that the "overlap" occurs in a region of smaller r. As Z becomes larger, the contraction with increasing Z, of all the orbitals of a given state, becomes more nearly the same. For large enough $Z, S(M)_{I F}$ for any transition should decrease with increasing Z along an isoelectronic sequence; $\mathrm{S}(\mathrm{M})_{2 s \text {-hole, }}$ p-hole is smaller for K^{++}than for Ar^{+}, and it is likely that $\mathrm{S}(\mathrm{M})_{1 s-h o l e, 3 p-h o l e}$ will be smaller for Ca^{+3} than for K^{++}.

For transitions between the $\mathrm{n} \ell$-hole states of neon and argon, Table XX compares the effects, on $S(M)_{I F}$, of the use of several different approximations for the evaluation of the dipole transition matrix element. The results for these transitions are very similar to the results for the transitions of the other atoms. The values of $S(M)$ IF are given for the dipole length, velocity, and acceleration operators defined by Eqs. (30) and (44). For each operator, the transition matrix element was evaluated using the many-electron expression of Eq. (33), and also using the active-electron approximation of Eq. (31).

The notation $\langle\Psi($ ns-hole $)| \underset{\sim}{O}\left|\Psi\left(n^{\prime} p-h o l e\right)\right\rangle$ is used in Table $X X$ to ${ }^{\prime}$ indicate that the matrix element for $S(M)_{n s-h o l e, ~}$ ' p-hole was evaluated between many-electron SCF wave functions. In the active-electron approximation,

$$
\begin{equation*}
\left.S(M)_{n s-h o l e, n^{\prime} p-h o l e}=6\left|\left\langle\phi_{n^{\prime} p, m=0}^{(n s-h o l e)}\right| O_{z}\right| \phi_{n s, m=0}^{\left(n^{\prime} p-\text { hole }\right)}\right\rangle\left.\right|^{2} ; \tag{45}
\end{equation*}
$$

where

$$
\begin{aligned}
& O_{z}^{(\ell)}=z \\
& O_{z}^{(v)}=-\left(1 / \Delta E_{I F}\right) \frac{\partial}{\partial z}
\end{aligned}
$$

and

$$
\begin{equation*}
\mathrm{O}_{\mathrm{z}}^{(\mathrm{a})}=\left[\mathrm{z} /\left(\Delta \mathrm{E}_{\mathrm{IF}}\right)^{2}\right]\left[\mathrm{z} / \mathrm{r}^{3}\right] \tag{46}
\end{equation*}
$$

The notation $\left\langle\phi_{n}^{(I)}\right| Q\left|\phi_{n^{\prime} \ell^{\prime}}^{(F)}\right\rangle$ is used in Table $X X$ to indicate that the matrix element for $S(M)$ IF was evaluated using the active-electron approximation; for simplicity, the subscript m for the symmetry subspecies is not used. Matrix elements were evaluated in the active-electron approximation in two ways: first, using the appropriate orbitals from the SCF wave functions for the initial and final states of the transition, as indicated in Eq. (45); and second, using the orbitals from the SCF wave function for the closed-shell system, either neutral neon or argon.

TABLE XX: Total Absolute Multiplet Strengths $S(M)_{I F}$ Using Several Approximations for the

 Dipole Transition Matrix Element [$S(M)_{I F}$ and $\Delta E_{I F}$ are in a.u.]

[^9]The second case (the use of the SCF orbitals of a single state for the wave functions of both the initial and final states of a transition) may be regarded as a frozen-orbital approximation for $S(M)$ IF. It is, in a sense, similar to the use of Koopmans's Theorem for the IP of a system. In this case, the active-electron approximation gives the correct value for the
 $\delta_{n, n^{\prime}}$ are satisfied.

In Table XX, the superscript on the ϕ indicates the state for which the orbital was computed. The entry "wrong sign" in the table means that the sign of the transition matrix element for the acceleration operator was not the same as the sign for the length operator; for exact cigcnfunctions, the signs must be the same.

The nonrelativistic energy differences $\Delta \mathrm{E}_{\mathrm{IF}}$ were obtained by taking differences of the IP's given in Table XVII; IP(exp) was used for the 3p-and 3 s -hole states of the argon-like ions, and the 2 p - and 2 s -hole states of the neon-like ions; $\operatorname{IP}(\mathrm{nr})$ was used for the 2 p -hole states of the argon-like ions, and for all the 1 s -hole states; and $\operatorname{IP}\left(\triangle \mathrm{E}_{\mathrm{SCF}}\right)$ was used for the $2 \mathrm{~s}-$ hole states of the argon-like ions.

The calculations were performed using the accurate-set SCF functions given in Tables I-IV. The values of $S(M){ }_{I F}$ and $\Delta E_{I F}$ are given in atomic units. The column labeled "Diff." is the difference between $S(M)$ IF evaluated using the dipole-length operator, and $S(M)$ IF evaluated using the dipole-velocity or -acceleration operator. This difference is only given when the dipole matrix elements for $S(M)$ IF have been computed between the many-electron SCF wave functions.

For all but one of the transitions given in Table XX, the dipolelength form of $S(M)_{\text {IF }}$ obtained using the orbitals of the closed-shell system. (third line and first column for each transition) gives a significantly poorer result than that obtained using the orbitals for the initial and final states of the transition (first and second lines and first column for each transition). For the 3 s -hole $\rightarrow 3 \mathrm{p}$-hole transition of Ar^{+}, the improvement is 8%; for the ls-hole $\rightarrow 3 p$-hole transition of Ar^{+}, the improvement is 40%. Only for the 2 s -hole $\rightarrow 2$-hole transition of Ar^{+}is the improvement as small as 1.5%.

For the dipole-velocity form of $S(M)$ IF, the frozen-orbital approximation sometimes gives a better result than the use of the SCF functions of the initial and final states of the transition. Here, we mean better in the sense of being more nearly equal to the dipole-length value of $S(M)$ IF with the many-electron matrix element correctly evaluated. However, the agreement in these cases between the length and velocity forms of $S(M)$ iF is not very good, and the better result of the frozen-orbital approximation does not have much meaning.

It seems, from the results given in Table $X X$, that the use of the SCF functions of the initial and final states of a transition gives a significantly better value for $S(M)$ IF. than the use of the frozen-orbital approximation.

In several cases, the value of $S(M)$ IF obtained when the dipole transition matrix element is evaluated between total many-electron wave functions is quite different from the value obtained when the activeelectron approximation is used. The difference is largest for transitions between the ls-hole and the outermost p-hole states; it is smallest, and quite negligible, for transitions between the outermost s-hole and outermost p-hole states. The value of the many-electron matrix element cannot be much different from the active-electron approximation value unless the minors $D_{I F}(k)$, defined in Eqs. (33) and (34), are considerably different from one or zero.. This condition is met for the former transitions, but not for the latter, where the orbitals of the initial and final states are too similar.

Note that the value of $S(M)$ IF obtained using the many-electron expression for the matrix element is often larger than that obtained using the active-electron approximation. . It has been suggested $(7,7,7.8$) that the correct evaluation of the matrix element simply corrects the active-electron approximation for overlap effects. If this were true, then the many-electron expression for the matrix element would always give a smaller result than the active-electron approximation since overlap effects always introduce a factor less than one. In several cases, transition integrals between orbitals other than the transition integral of the active-electron approximation must make significant contributions to the value of the matrix element. The best example of this is the ls-hole $\rightarrow 3 p$-hole transition of Ar^{+}, where the value of dipole length form of $S(M)$ IF using the many-electron matrix element is 30% larger than value in the active electron approximation.

In discussing the use of the length, velocity, and acceleration forms of the dipole matrix element, we will consider only the cases where the matrix element is evaluated between the many-electron SCF functions of the initial and final states. That is, of the values of $S(M)_{I F}$ in Table $X X$, only the values in the first row of each transition will be compared.

The values of the length and velocity forms of $S(M)$ IF are always at least in reasonable, if not necessarily good, agreement. In the worst case, the 2 s -hole $\rightarrow 2 \mathrm{p}$-hole transition of Ar^{+}, the velocity form of $\mathrm{S}(\mathrm{M})_{\mathrm{IF}}$ is 30% smaller than the length form.

The acceleration form of $S(M)$ IF often has absurd values. For several transitions, the acceleration form of $S(M)_{I F}$ is larger than the length and velocity forms by a factor of between 100 and 1000 ; and for one transition, the sign of the acceleration form of the matrix element, Eq. (44b), is
different from the signs of the length and velocity forms of the matrixelement Eqs. (30) and (44a). However, for transitions from ls-hole states, the acceleration form of $S(M)_{I F}$ is in good agreement with the length and velocity forms. For the 1 s -hole $\rightarrow 2 \mathrm{p}$-hole transition of Ne^{+}and the ls-hole $\rightarrow 3 \mathrm{p}-$ hole transition of Ar^{+}, the difference between the length and acceleration forms of $S(M)_{I F}$ is, in fact, less than the difference between the length and velocity forms.

When the agreement between the length and acceleration forms of $S(M)$ IF is good, the important one-electron transition integrals are between orbitals with simple structure. The orbitals involved either have no radial nodes (i.e., ls and 2 p), or the contribution to the value of the integral from the region around and past the radial node is small (i.e., ls and 3 p). When the important, one-electron transition integrals are between orbitals whose nodal structure is important in determining the value of the integral, the acceleration form of $S(M)$ IF has poor values.

For transitions between outer-shell hole states, one might consider using some screened, effective, nuclear charge, $Z_{e f f}$, for the acceleration form of the dipole transition matrix element. In place of Eq. (44b), the expression

$$
\begin{equation*}
I \cong\left\langle\Psi_{I}\left[Z_{e f f} /\left(\Delta E_{I F}\right)^{2}\right] \sum_{r}(k) / r(k)^{3} \| \cdot \Psi_{F}\right\rangle \tag{47}
\end{equation*}
$$

would be used. For the 3 s -hole $\rightarrow 3 \mathrm{p}$-hole transition of $\mathrm{Ar}^{+}, \mathrm{Z}_{\text {eff }}=0.7$ would be required to bring the length and acceleration forms of $S(M)$ IF into agreement; for the 2 s -hole $\rightarrow .2 \mathrm{p}$-hole transition of $\mathrm{Ne}^{+}, \mathrm{Z}_{\text {eff }}=1$ would be required. However, a reasonable value of $Z_{\text {eff }}$ for these cases, based on arguments about the screening of the nuclear charge by the electron charge distribution (e.g., Slater's rules), must be $Z_{\text {eff }} \gtrsim 2$. Thus, even the use of a $\mathrm{Z}_{\text {eff }}$ will not give good values for the acceleration form of $\mathrm{S}(\mathrm{M})$ IF.

The length form of the dipole transition matrix clement has the advantage of being less sensitive than the velocity or acceleration forms to the precise shape of the approximate wave functions. The velocity operator involves derivatives of the orbitals. and the acceleration operator varies strongly and weighs different regions of r very differently. From the se considerations, it would seem best to use the length form of the matrix element to evaluate $S(M)_{I F}$.

Chandrasekhar (79) has pointed out that larger values of r are more important for the evaluation of the length form of the dipole matrix element than for the evaluation of the total energy; conversely, smaller values of r are more important for the evaluation of the acceleration form of the matrix element than for the evaluation of the energy. Thus, Chandrasekhar suggests that the velocity form of the matrix element is the most suitable
form when the wave functions used have been obtained from an application of the variational principle.

He used the three forms of the matrix element for the calculation of transitions from the ground state to continuum states of the H^{-}ion. The use of the velocity form of the matrix element did, indeed, give better results. But, 6-and l2-term Hylleraas-type functions were used for the ground-state wave function of H^{-}. These functions are considerably more accurate than HF functions, and the conclusion above may not apply when HF wave functions are used to evaluate the transition matrix elements.

Weiss (80) has calculated oscillator strengths for several transitions of helium. He compared the results, for both the length and velocity forms of the matrix element, obtained by using HF functions and by using the more accurate Hylleraas-type functions. For all but three of these transitions, when HF wave functions were used, the value obtained with the length form of the matrix element was more accurate than that obtained with the velocity form. For two transitions, the use of the velocity form of the matrix element gave very poor results, while the results obtained with the leng.th form were quite accurate. In the three cases in which the use of the velocity form of the matrix element gave better results, both the length and velocity forms gave good results; in these cases, the largest difference between the results obtained using the length and velocity forms with the HF wave functions was less than 5%. Bates and Damgaard(71) have compared the length and velocity forms of the multiplet strength, calculated using HF functions, with experimental values for several transitions of lithium and sodium. In all the cases they considered, the length form of the multiplet strength, although it sometimes gave poor values, was in better agreement with experiment than the velocity form. These calculations would seem to bear out the expectation that the use of the length form of the matrix element, when HF wave functions are used. will give more reliable results than the use of the velocity form.

The simple basis set SCF functions, given in Tables V-VIII, have also been used to calculate $S(M)_{I F}$. The agreement between the values obtained using the accurate-set SCF functions and the simple set SCF functions is quite good. For the length form of $S(M)_{I F}$, the differences between the values obtained using the simple and accurate set functions are never larger than 0.35%; for the velocity form of $S(M)$ IF, the differences are never larger than 0.10%. The greatest differences between the simple set and accurate set SCF orbitals are at the tails of the orbitals (c.f., Tables IXXII). It is not surprising, then, that the differences for the velocity form of $S(M)$ IF are sometimes less than those for the length form. For the acceleration form of $S(M)$ IF, the differences are somewhat larger than for the length and velocity forms, but only for the 2 p -hole $\rightarrow 3 \mathrm{~s}$-hole transitions of $\mathrm{Cl}, \mathrm{Ar}^{+}$, and K^{++}is the ag.reement rather poor.

Varsavsky, (47) using a method based on screened nuclear charges, gives values of $S(M)$ IF for a large number of ultraviolet transitions. Varsavsky's values and the values obtained from this calculation are compared in Table XXI. The values of $\mathrm{S}(\mathrm{M})_{\text {IF }}$ given for this calculation are taken from Table XIX. Varsavsky's values are all approximately twice as large as the values of this calculation. It seems likely that he made an error of a factor of 2 in calculating $S(M)$ fF from the value of the radial integral $\int_{0}^{\infty} P_{n p}^{(I)} r P_{n s}^{(F)} d r$. The values of $S(M)$ IF are, as usual, in atomic units.

TABLE XXI. Comparison of $S(M)$ IF with Calculations by Varsavsky (Values of $S(M)$ IF are in a.u.)

	2s-hole \rightarrow 2p-hole		
This calculation	F	Ne^{+}	Na^{++}
Varsavsky*	2.065	1.463	1.086
	5.011	2.991	1.977
3s-hole $\rightarrow 3 \mathrm{p}$-hole			
This calculation	Cl	Ar^{+}	K^{++}
Varsavsky*	5.36	4.14	3.30

*See Ref. 45.
Experimental data for the absolute or relative intensities of the X-ray lines computed here have not been found. However, a calculation of $\Gamma_{\mathrm{K}}^{(\mathrm{R})}$, the radiative width of the ls-hole state (or K state), can provide a comparison with experiment.

For the argon-like ions, ls-hole $\rightarrow 2 p-h o l e(K \alpha)$ and the 1 s -hole $\rightarrow 3 \mathrm{p}-$ hole ($\mathrm{K} \beta$) transitions make the most important contributions to $\Gamma(\mathrm{R})$. All other transitions from the ls-hole state involve at least double excitations (e.g., ls $2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \rightarrow 1 s^{2} 2 s^{2} 2 p^{6} 3 s 3 p^{5} n s, n \geq 4$) and are much less probable.

The value of $\Gamma_{K}^{(R)}$ for argon has been calculated using the values of $S(M)$ IF given in Table XIX, the experimental values for the energies of the $\mathrm{K} \alpha$ and $\mathrm{K} \beta$ emission lines $(62)\left[\Delta \mathrm{E}\left(\mathrm{K} \alpha_{1}\right)=108.70\right.$ Hartrees, $\triangle \mathrm{E}\left(\mathrm{K} \alpha_{2}\right)=$ 108.62 Hartrees, and $\Delta E\left(K \beta_{1}\right)=117.26$ Hartrees], and the relations of Eqs. (38-40). The value is found to be $\Gamma_{\mathrm{K}}^{(\mathrm{R})}=0.0835 \mathrm{eV}$. The K-shell
fluorescence yield for argon, as determined by Watanabe, Schnopper, and Cirillo, (81) is $\bar{\omega}_{\mathrm{K}}=0.140 \pm 0.014$. From Eq. (42), a value of the total width. of the K -state $\Gamma_{\mathrm{K}}=0.60 \pm 0.06 \mathrm{eV}$ is obtained. The uncertainty in Γ_{K} is taken entirely from the uncertainty in the value of $\bar{\omega}_{\mathrm{K}}$. Table XXII compares this value of Γ_{K} and values obtained directly from experimental data on X -ray emission and absorption by Watanabe (80) and by Deslattes. (52) The value which we have obtained is, within experimental uncertainties, in agreement with the experimental values.

TABLE XXII. A Comparison of
Several Values of Γ_{K} for Argon

Author	$\Gamma_{\mathrm{K}}(\mathrm{eV})$
Present Work	0.60 ± 0.06
Watanabe*	0.68 ± 0.03
Deslattes**	0.70 ± 0.05

*See Ref. 78.
**See Ref. 50.

ACKNOW LEDGMENTS

The author gratefully acknowledges many helpful discussions with, and encouragement from, Professor C. C. J. Roothaan and Dr. T. L. Gilbert, who jointly sponsored this research. He is indebted to Dr. Gilbert for pointing out the anomalous behavior of the correlation energy of the 2 s -hole state of neon, and to Dr. A. J. Freeman for having suggested these calculations.

The author wishes to thank Dr. O. C. Simpson and the Solid State Science Division for their hospitality during his stay at Argonne National Laboratory. The author wishes to acknowledge that preliminary work, at The University of Chicago, on this publication was supported by the Advanced Research Projects Agency, through the U. S. Army. Research Office (Durham), under Contract No. DA-11-ORD-022-3119, and by a grant from the National Science Foundation.

REFERENCES

1. J. N. Bahcall, Phys. Rev. 129, 2683 (1963) and Phys. Rev. 131, 1756 (1963).
2. C. C. J. Roothaan, Rev. Modern Phys. 23, 69 (1951).
3. C. C. J. Roothaan, Rev. Modern Phys. 32, 179 (1960).
4. C. C. J. Roothaan and P. S. Bagus, Methods in Computational Physics (Academic Press, New York, 1963) Vol. II.
5. C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev. Modern Phys. 32, 186 (1960).
6. L: M. Sachs, Phys. Rev. 124, 1283 (1961).
7. E. Clementi, C. C. J. Roothaan, and M. Yoshimine, Phys. Rev. 127, 1618 (1962).
8. C. C. J. Roothaan and P. S. Kelly, Phys. Rev: 131, 1177 (1963).
9. P. S. Bagus, T. L. Gilbert, C. C. J. Roothaan, and H. D. Cohen (to be published).
10. A. Sureau and G. Berthier, J. Phys. Radium 24, 672 (1963).
11. J. C. Slater, Quantum Theory of Atomic Structure (McGraw-Fill, New York, 1960), Vol. TT.
12. R. Fieschi and P. O. Löwdin, Technical Note No. 4, Quantum Chemistry Group, Uppsala University, 1957 (unpublished).
13. R. K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955).
14. R. E. Watson and A. J. Freeman, Phys. Rev. 123, 521 (1961).
15. P. O. Löwdin, Rev. Modern Phys. 35, 496 (1963).
16. D. R. Hartree, The Calculation of Atomic Structures (John Wiley and Sons, New York, 1957).
17. C. Froese, "Numerical Solution of the Hartrec-Fock Equations" (to be published).
18. C. C. J. Roothaan and A. W. Weiss, Rev. Modern Phys. 32, 194 (19.60).
19. P. O. Löwdin, Phys. Rev. 94, 1600 (1954).
20. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Academic Press, New York, 1957).
21. L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics (McGraw-Hill, New York, 1935).
22. M. Cohen and A. Dalgarno, Rev. Modern Phys. 35, 506 (1963).
23. D. Layzer, Phys. Rev. 132, 735 (1963).
24. P. S. Bagus (to be published).
25. A. C. Wahl, Analytic Self-consistent Field Wave Functions and Computed Properties for Homonuclear Diatomic Molecules, ANL-6931 (August 1964).
26. J. T. Dehn, J. Chem. Phys. 37, 2549 (1962).
27. J. C. Slater, Phys. Rev. 42, 33 (1932).
28. P. O. Lüwdin, Phys. Rev 90. 120 (1953).
29. D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) Al54, 588 (1936).
30. P. S. Bagus (in preparation).
31. C. E. Moore, Atomic Energy Levels, National Bureau of Standards Circular No. 467 (U. S. Government Printing Office, Washington, D. C., 1949) Vol. I, and corrections in Vol. II (1952) and Vol. III (1958).
32. B. H. Worsley, Can. J. Phys. 36, 289 (1958).
33. C. Froese, Proc. Cambridge Phil. Soc. 53, 206 (1957).
34. D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) Al66, 450 (1938).
35. D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) Al56, 45 (1936).
36. L. C. Allen, J. Chem. Phys. 34, 1156 (1961). (The cusp values given by Allen in Table 5 are incorrect.)
37. R. E. Watson and A. J. Freeman, Phys. Rev. 123, 521 (1961).
38. E. Clementi and A. D. McLean, Phys. Rev. 133, A419 (1964).
39. E. Clementi, J. Chem. Phys. 38, 1001 (1963).
40. Document No. 7440, ADI Auxiliary Publication Project, Library of Congress.
41. E. Clementi, J. Chem. Phys. 38, 2248 (1963).
42. C. Froese (private communication).
43. R. S. Berry and C. W. Reimann, J. Chem. Phys. 38, 1540 (1963).
44. R. S. Berry, C. W. Reimann, and G. N. Spokes, J. Chem. Phys. 37, 2278 (1962).
45. C. M. Varsavsky, Astrophys. J. Suppl. Ser. 6, No. 53, 75 (1961).
46. C. L. Pekeris, Phys. Rev. 112, 1649 (1958).
47. C. W. Scherr, J. N. Silverman, and F. A. Matsen, Phys. Rev. 127, 830 (1962).
48. Landolt-Bornstein (Springer-Verlag, Berlin, 1950) Vol. I, I, Teil $8^{\text {th }}$ Ed.
49. G. Brogren, Nova Acta Reg. Soc. Sci..Uppsala 142 Nr. 4 (1949).
50. R. D. Deslattes, Phys. Rev. 133, A390 (1964).
51. J. Valasek, Phys. Rev. 53, 274 (1938).
52. A. E. Sandström, Handbuch der Physik (Springer-Verlag, Berlin, 1957) Vol. XXX.
53. J. Valasek, Phys. Rev. 58, 213 (1940).
54. A. E. Lindh and O. Lundquist, Ark. Mat., Astronom. Fys. 18, Nr. 35 (1924).
55. F. Tyrén, Nova. Acta Reg. Soc. Sci. Uppṣala 12, Nr. 1 (1940).
56. H. R. Moore and F. C. Chalklin, Proc. Phys. Soc. (London) A68, 717 (1955).
57. N. G. Johnson, Phys. Rev. 53, 434 (1938).
58. J. Shearer, Phil. Mag. 21, 501 (1936).
59. M. Sicgbahn and T. Magnussnn, Z. Phycilc 25, 133 (1935).
60. A. E. Lindh and A. Nilsson, Ark. Mat. Astronom. Fys. Ser. A31, Nr. 7 (1944).
61. M. Bačkovský and V. Dolejšek, Nature 136, 643 (1935).
62. M. Siegḅahn and V. Doleǰ̌ek, Z. Physik 10, 159 (1922).
63. L. G. Parrat and E. L. Jossem, Phys. Rev. 97, 916 (1955).
64. F. Tyrén, Ark. Mat. Astronom. Fys. Ser. A25, Nr. 32 (1937).
65. D. H. Tomboulian and W. M. Cady, Phys. Rev. 59, 422 (1941).
66. J. C. Slater, Phys. Rev. 98, 1039 (1955).*
67. C. W. Scherr and J. N. Silverman, J. Chem. Phys. 37, 1154 (1962).
68. E. Clementi, J. Chem. Phys. 39, 175 (1963).
*Some care should be taken in using those IP's, given in this paper, that have been obtained from X-ray data. The conversion factor for wavelength from $k X U ' s$ to A 's, $1 \mathrm{k} X U=1.00202$ A, has been neglected; and most of the X-ray term levels given in Table II are toolarge by this factor.
69. L. C. Allen, E. Clementi, and H. M. Gladney, Revs. Moḍern Phys. 35, 465 (1963).
70. N. R. Kestner (to be published).
71. D. R. Bates and A. Damgaard, Phil. Trans. Roy. Soc. London, Ser. A, 242, 101 (1949).
72. P. S. Kelly (to be published).
73. P. O. Löwdin, Phys. Rev. 97, 1474 (1955).
74. E. Feenberg and G. E. Pake, Notes on the Quantum Theory of Angular Momentum' (Stanford University Press, Stanford, 1959).
75. R. W. Nicholls and A. L. Stewart, Atomic and Molecular Prucesses (Academic Press, New York, 1962) edited by D. R. Bates or C. W. Allen, Astrophysical Quantities (Athlone Press, London, 1963).
76. E. H. S. Burhop, The Auger Effect and Other Radiationless Transitions (Cambridge Press, Cambridge, 1952).
77. R. S. Knox, Phys. Rev. 110; 375 (1958).
78. T. Watanabe, Report No. 157, Materials Science Center, Cornell University (unpublished).
79. S. Chandrasekhar, Astrophys. J. 102, 223 (1945).
80. A. W. Weiss (private communication).
81. T. Watanabe, H. W. Schnopper, and F. N. Cirillo, Phys. Rev. 127, 2055 (1962).

[^0]: *The notations SCF and HF will be used almost interchangeably. When we wish to distinguish between analytic expansion orbitals as opposed to exact solutions of the HF equations, we will use the notation SCF orbitals as opposed to HF orbitals.
 **The use of $F(r)$ to represent the radial portion of an orbital is an unfortunate deviation from the standard notation which is, of course, $R(r)$. We do this to avoid confusion with the notation for the basis function $R_{\ell p}(r)$.

[^1]: *See Ref. 29 and the discussion in Section IV-E of this paper.

[^2]: * A precise measure of the redundancy of a basis set is the value of the determinant of the overlap matrix S of the basis functions. As the determinant of S goes to zero, the basis set goes to complete redundancy (exact linear dependence).

[^3]: *States which are not the lowest of a symmetry species

[^4]: *States which are not the lowest of a symmetry species.

[^5]: *States which are not the lowest of a symmetry species.

[^6]: *States which are not the lowest of a symmetry species.

[^7]: *For numerical HF calculations of $\mathrm{Ne}, \mathrm{F}^{-}$, Ar , and Cl^{-}, see Refs. 32, 33,34 , and 35 , respèctively.

[^8]: *The results given in this table are from calculations performed on the IBM 704. Thus E(SCF) andV/T(SCF) may differ slightly

[^9]: *This is the percent difference between $S(M)_{I F}$ evaluated using the length operator, and $S(M)_{I F}$ evaluated using the velocity or acceleration operator.
 **The sign of the transition matrix element for the acceleration operator is not the same as the sign of the matrix element for the length operator.

