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SCF EXCITED STATES AND
TRANSITION PROBABILITIES OF N
SOME NEON-LIKE AND ARGON-LIKE IONS

by

Paul S. Bagus

ABSTRACT

Analytic self-consistent field (SCF) wave functions were computed
for the ground states of the closed-shell atomic systems F~, Ne, Nat; and
Cl™, Ar, and K%, and for those ground and excited states of the open-shell

‘'systems that are obtained by removing a single electron [rom any one of

the occupied shells of these closed-shell systems. Details of the calcula-
tion of the functions are presented with emphasis on a justification of the .
procedures used for the calculations for excited states. A high accuracy
is obtained; the calculations for the closed-shell systems give the most
accurate analytic SCF wave furictiqns that have yet been reported. Ioniza-
tion potentials are calculated and compared with experimental values.
Computed ionization potentials for the removal of a 2s electron from Cl7,
Ar, and K%, for which no direct experimental data are available, are esti-
mated to be accurate to within 1%. It is found that the removal of an
electron from the outermost s shell increases the correlation energy, in
contradiction to the predictions of a recently proposed semi-empirical
scheme for estimating the correlation energy. For éxample, the magnitude
of the correlation energy of the lowest %S state of ArTis ~4 eVgreater:than
the magnitude of the correlation energy of neutral argon. The effect of the
nonzero off-diagonal Lagrangian multipliers is considered and found to be
important for the inner-shell hole states. The SCF functions have beenused
to compute dipole transition probabilities for photon emission. The tran-
sition probabilities are computed in several different ways to examine the
effects of various approximations. In particular, the results obtained using
length, velocity, and acceleration operators are compared. The calculated
radiation width for the K-state of argon is combined with an experimental
value of the K-fluorescence yield to obtain a value of the total K-state width
in agreement with experiment.

I. INTRODUCTION

In this paper, analytical self-consistent field (SCF) functions are
presented for the ground states of the closed-shell atomic systems F 7,
Ne, Nat, Cl7, Ar, and K*, and for those ground and excited states of the



open-shell systems that are obtained by removing a single electron from
any one of the occupied shells of these closed-shell systems. Specifically,
-vxpresent SCF functions for the ISZZSZZpS‘, 182282p6, and 1s2522p6 con-
.figurations of F, Ne't, and Na'™, which, for convenience, we refer to as the
2p-hole, 2s-hole, and ls-hole states, respectively; and SCF functions for
the 1s?25%2p®3523p®, 15225%2p®3s3pf, 15225%2p535%3p8, 152252pb3523p®, and
152522p63s7‘3p6 configurations of Cl, ArT, and K, which we refer to as the
3p-hole state, 3s-hole state, ete. These states are of interest for X-ray
emission and absorption phenomena. They are also useful, for example,
for calculating the effect of the electronic charge distribution on electron A
capture by the nucleus.(1) v

Several properties of the wave functions have been calculated.
Expectation values of r and r? are given for the SCF orbitals and overlap
integrals between total wave functions not orthogonal by symmetry. In the
final section of this paper, dipole transition matrix elements between the
wave functions are presented. ‘

The SCF wave functions were calculated using the Roothaan
analytic expansion method. This method was developed first for closed-shell
systems and then extended to a large class of open-shell systems. In its
present form, the method will treat a system with any number of open shells,
provided therﬁ is at most one open shell for each one-electron symmetry
species.\7’7?’

Extensive investigations have led to the development of reliable and
accurate numerical techniques to implement the application of the analysis.
These techniques have been incorporated into computer programs, written
for the IBM 704, 7090, and 7094, for the calculation of atomic SCF wave

functions.

Many SCF calculations have been performed, using the Roothaan
analysis, with the goal of obtaining accurate representations of the
Hartree-Fock functions.(5-9) However; these functions have been for
ground or low-lying excited states. The functions presented here are the
first analytic SCF calculations for X-ray excited states of atomic systems.
To our knowledge, the only numerical Hartree-Fock calculations for such
states that correctly take exchange into account are those of Sureau and o
Berthier on alumintim.(lo) -



II. THEORY

In the Roothaan expansion method, the SCF orbitals ¢, 4, omitting
spin, are given in terms of basis functions Xp,koc by

C (1)

Pira = Zp Xp,aaCin.p-

Here A labels the symmetry species, and a the subspecies; for atoms,
these are usually denoted by £/ and m. The principal quantum number is.
represented by i, and p labels different basis functions of the same sym-
metry. The complete spin-orbital is given by

VYiras = Pixa s’ (Z.a)

where

Ng = @ ormng = B. ' , (2b)

The set of basis functions used in an expansion SCF wave function is
referred to as the basis set of the function.

} The notation used in Egs. (1) and (2) is that adopted by Roothaan.(3:4)
. Since only atomic systems are considered in this paper, the standard -
notation for atomic orbitals, nfm, will be u'sed, hereafter, in place of
Roothaan's more genevral notation, iAa.

For atomic calculations, the basis functions are given by
Xp, bm(r:0.0) = Ryp(r)Yy.,(6.9), } | (3)

where Yﬂm(e@) are normalized spherical harmonics, and the radial
functions Rzp(r) are normalized nodeless Slater-type orbitals (STO's);
namely, :

1 S
Rzp(r;nﬁp',cﬂp) = [(2n, p)s]‘i'( ) Mptz Peptty CopT (4)

The integer ny is called the principal quantum number of the basis
function, and Lp the orbital exponent. Care should be taken not to
confuse the two different uses of "principal quantum number." The
principal quantum number of an orbital is the label that distinguishes
that orbital from other orbitals of the same symmetry species and sub-
species. The principal quantum number of an STO is merely a flexible
parameter of a basis function. For example, in our calculations on
argon, the ls orbital is expanded in terms of ls, 2s, and 3s STO's.
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The choice of Slater-type orbitals for the radial functions R, (r) is
physically reasonable, and the computation of necessary integrals between
STO's is simple (at least for atoms). Several expansion SCF calculations
have been made on atomic systems with the goal of obtaining accurate
functions using small basis sets of STO's. The results of these calculations
agree quite well with Hartree-Fock (HF)* functions obtained by direct
numerical integration.(g) '

The many-electron wave function is constructed frorh one Slater
determinant, or a linear combination of a few Slater determinants, of the
occupied SCF orbitals. The combination is made so that the wave function is
an eigenfunction of %‘?', E‘?‘, LZ,‘and S,- (Methods for constructing eigenfunctions
of angular momentum from Slater determinants are contained in Refs. 11
and 12.) The wave function is also an eigenfunction of the inversion operator
and has a definite parity. The variational principle is applied to obtain -
equations for the coefficients an,p[ Cix,p in Eq. (1)]. These equations are
then solved without further approximation. In ‘particular, the off-diagonal.
Lagrangian multipliers, that couple equations for open- and closed-shell
orbitals of the same symmetry are treated properly. (Procedures that
treat the off-diagonal Lagrangian multipliers in an approximate way are
contained in Refs. 13 and 14). It will be demonstrated in the discussion
of the results that neglect of the off-diagonal Lagrangian multipliers
significantly affects the SCF functions of certain excited states.

Equations (1), (2), and (3) place certain restrictions on the form of
the SCF orbitals that should be stated explicitly. Equation (2) requires that
the spin-orbital be factored into a product of a spatial function and a spin
function. Equations (1) and (3) introduce the central field approximation by
requiring that the orbital be factored into a product of a radial function and

-a spherical harmonic. A further consequence of Egs. (1) and (3) is that all

the electrons of a given shell have the same radial function. Thus, 0}
may be written as**

ndm

$n b (T:6,0) = Fpp(r)Y gy (6.9), (5)

where

Fplr) = 2p Rﬂlp(r—)cnﬂ,p' S : (6)

*The notations SCF and HF will be used almost intefchangeably. When
we wish to distinguish between analytic expansion orbitals as opposed
to exact solutions of the HF equations, we will use the notation SCF
orbitals as opposed to HF orbitals.

**The use of F(r) to represent-the radial portion of an orbital is an
unfortunate deviation from the standard notation which is, of course,
R(r). We do this to avoid confusion with the notation for the basis
function Ryp(r). . ‘
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These orbitals are symmetry adapted. i.e., they form bases for 1rreduc1-
ble representations of the symmetry group of the {atomic) Hamiltonian.
(For a discussion of the symmetry problem in the HF scheme, see Ref. 15.)

An additional requlrement is that the occupled SCF orbitals form an
orthonormal set,

<¢vnﬂm|;¢n'.€'m'>: énem,n'ﬂ'm" (7a)

Because the orbitals are symmetry-adapted; this reduces to the requirement
that

(o] . .
f ¥ (5)Fy, (n)x? dr = bp 0 (7b)
0 S A
In matrix notation, Eq. (7b) becomes

S;r;z§z£n'z = On,nv ‘ (7¢)

where cpf is a vector that collects the coefficients C 1 and §[’ is the
overlap matrix of basis functions of symmetry species £,

Sypq ° fo<R£p(r)_Rﬂq(r)'r2 ar. | (®)

In the numerical HF procedure, no assumption is made about the
form of the radial function F_ ,(r). The variational principle is applied for
arbitrary variations of the radial functions, subject to the constraint that
they form an orthonormal set, and integro-differential equations -for the
Fp Z'S are obtained.(2,3) (Reference 16 presents an excellent review
of numerical Hartree-Fock procedures. Reference 17 discusses the
applications of numerical techniques to high-speed digital computers.)

The solutions of the integro-differential equations satlsfy the
cusp condition, (18,19)

[(1/fg) (af p/dr)] = - 2/@ +1). ) (9)

=0

where
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The cusp condition may be used as a criterion for the accuracy of an ex-
pansion SCF orbital near the origin. Moreover, an orbital with a pdor cusp
yal{le may be a poor representation of an exact HF orbital, not only in the
region r—0, but also over the entire range of the function. The cusp con-
dition is a necessary but not a sufficient condition that the orbital be a so-
lution of the HF equations-v. A basis set can be chosen so that an expansion
SCF orbital will satisfy the cusp conditions exactly;(S) however, the orbital
may still be a poor approximation of the exact HF orbital.

The total Hamiltonian operator & for an atomic system may be
written, in atomic units, as ‘

H=g +P, » ‘ (10a)

where

(10Db)

and

@ = - Zi(Z'/ri) + Zi(j(l./rij)‘

This Hamiltonian is valid for a system with nonrelativistic Coulomb

interactions and an infinitely heavy nucleus.

If ¥ is an exact eigenfunction of ¥ for any bound state, then the
virial theorem, -

KHY|v> kel v> = -2, (1)

is satisfied. If ¥ is an approximate eigenfunction which contains a
variable scale factor k such:ithat ¥(xp...,x ) = ¥ (kxp...,kx,), and
k has been chosen to satisfy (0 /5 k) (< Y'I?(A‘l">/< Y1 ¥>) = 0, then
this approximate ¥ also satisfies Eq. (11).

Exact HF functions satisfy the virial theorem since arbitrary
variation of the radial part of the -orbitals includes, implicitly, variation
of a scale factor. Expansion SCF functions for an arbitrary basis set
will not, in gereral, satisfy the virial theorem. If, however, variation of

.the exponents, as well as the linear coefficients, is performed, the virial

theorem will be satisfied when all parameters have been optimized.

Hence, for expansion SCF functions, the virial theorem is a necessary,

but by no means sufficient, condition that an optimum basis set (in the sense
of satisfying‘vari‘ational equations) has been used.



Let {¥(a)} be a set of trial functions, where the .index a distinguishes
different members of the set from which we wish to choose an approximate
wave function for some state of a system. The index a may represent a
set of variable parameters, any one of which may be discrete.or continuous.
Let Y(A) be chosen from the set {¥a)} as the solution of equations determined
from application of the variational principle; i.e., ¥(A) satisfies

J[<¥(a) o] ¥ (@) /<¥ (@)} ¥(a»] = o (12)

If Y(A) is an approximate wave function for the ground state of the system
or for the lowest excited state of a symmetry (if the trial functions ¥(a) are

" symmetry-adapted), then ¥ (A) is the best function possible for the restricted
form of the trial functions - best in the sense that the expectation value of
the energy for ¥(A), <‘Y(A).|‘?/|‘I’(A)> = E(A), is more nearly equal to the
true energy eigenvalue E(t) than the expectation value of the energy for any
of the other trial functions ¥(a). Moreover, E(A) = E(t), and, if E(A) = E(t),
then ¥(A) is the true eigenfunction. 20,21) .

This is not true for excited states that are not the lowest states of
a symmetry unless the trial functions {¥(a)} are constrained to be orthogonal
to the exact eigenfunctions of all states of lower energy. The imposition of
this constraint is, of course, not possible in general since the_exact
eigenfunctions of the lower states are not known. One procedure would be to
require trial functions for excited states to be orthogonal to approximate
wave functions for lower states. In the calculation of excited-state SCF
functions, this is,not done; no explicit requirement of orthogonality to
lower SCF states is made.

We rely on the physical model of the choice of the form of the
SCF excited-state wave function to guarantee near-orthogonality to the
SCF wave functions for lower-lying states. This physical modelis,
of course, the orbital or shell structure of the atom. Indeed, the only
constraint that is imposed to obtain an excited-state, rather than a
ground-state, wave function is the specification of the electronic con-
figuration. For a ls-hole state, for example, the HF operators are
constructed on the assumption that the ls orbital is occupied by only one
electron. Eigenvectors of the HF operators are obtained and iterations
are performed in the usual way until the condition of self-consistency is
met; but the assumption that the ls orbital is singly occupied is maintained
throughout the process. The singly occupied ls orbital is chosen at each
iteration to be the eigenvector (of the appropriate HF operator) with the
lowest orbital energy. This choice is easily justified by the fact that the
orbital so chosen is the occupied orbital that is most similar to a hydro-
genic ls orbital.

The HF operators are functions of the electron density. The electron
density of a complex atom does not change drastically in going from groundto
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excited states. Thus, the HF operators for ground and excited states are not
drastically different, and SCF wave functions for excited states are very
nearly orthogonal to SCF wave functions for lower states. The 3s-hole
state of argon is the lowest %S state of Art; the Is-hole state, a very highly
excited %S state, lies about 3000 eV above the 3s-hole state. Even for this
extreme case, the overlap integral between the many-electron SCF wave
functions for these two states, < ‘l’s F(ls—hole)l YSCF (3s-hole)>, is

5x 107% The requirement that theqs—hole SCF wave function be o.rthogonal
to the 3s-hole SCF wave function would produce only a very small change

in the ls-hole wave function. Further, since the 3s-hole SCF wave function
is only an approximate eigenfunction, we do not know whether the constraint
of orthogonality would improve or worsen the ls-hole wave function.
Overlap integrals between many-electron SCF wave functions for all those
states, presented in this paper, that are not orthogonal by symmetry are
given in Table XV. [M. Cohen and A.Daglarno (22) ana D. Layzer(23)

have investigated the overlap of SCF excited states of the same symmetry
using expansions of SCF wave functions in powers of l/Z and find that

the overlap is zero to order (l/Z)Z-.] ' '

For a certain class of excited-state SCF wave functions, it is
possible to state easily tested conditions that must be fulfilled in orde(:r
that the SCF energy be an upper bound to the true energy of the state. 24)




III: DETAILS OF THE CALCULATION OF
THE SCF WAVE FUNCTIONS

To obtain analytic SCF orbitals that are good approximations to the
exact orbitals, it is necessary to use a basis set that very nearly spans the
true HF manifold. It is perhaps possible to do this by using large, more or
less arbitrarily chosen, basis sets, but if this is done, several difficulties
arise. Numerical processes that work well for basis sets of reasonable
size become troublesome, and round-off error becomes important when
large/basis sets are used. Long expansions of atomic functions are poor
starting points for molecular and solid-state calculations, while short ex-
pansions have proved to be excellent starting points for molecular SCF
calculations.(25) By using large basis sets, one loses much of the advan-

tage of simplicity that the analytic representation of SCF functions has over

numerical tables of orbitals. For large atomic systems, the finite size of -
the computer becomes an important limiting factor on the size of the basis
set.

For these reasons, we have used basis sets of limited size, making
a careful choice of the exponents and principal quantum numbers of the
STO's in order to minimize the total SCF energy. Particular emphasis is
placed on varying the exponents to find optimum values. This variation is
performed automatically by the computer program.(4) Our method of ex-
ponent variation is to perform several complete SCF calculations far dif-
fereunt values of the exponents and to interpolate between these values.

While we do not explicitly solve variational equations for the expo-
nents with this method, we do obtain a stationary value of the expectation
value of the energy with respect to the exponents. The particular station-
ary value that we obtain is a minimum. Explicit variational equations for
the exponents as well as the linear coefficients Cnig, have been given by
Dehn. 26) The equations for the exponents appear to be difficult to solve.
One important problem is that the basis functions used to represent an
SCF orbital Sto a given accuracy) are by no means uniquely deter-
mined.(27,28) Our brute-force variation of the exponents has proved to
be a quite satisfactory procedure.

When basis sets of limited size are used, it is important to build
up the basis set systematically to the final, accurate set. The initial cal-
culation for a state should be made with a rather small basis set. This
set can give only a crude approximation to the exact HF wave function,
but for a small set it is easy to find the optimum values of the principle
quantum numbers and exponents. This gives a first or base reference
point for more accurate calculations on the state. Additional exponents
are then introduced, usually one at a time, and the -exponents reopti-
mized. It is.not sufficient to optimize only the exponents of the new basis
functions; the exponents of old functions must also be adjusted when a new
function is added. In this way, it is possible to gauge the "need" for the
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new basis function, and to make an educated guess about the "need" for an
additional basis function. The intermediate sets, formed in this build-up
process, are often useful in themselves.

Because of the many SCF calculations involved in the optimization
of the basis set, the experience gained in the calculation of one state must
be applied to the calculation of similar states of the same or neighboring
atoms. Linear extrapolations and interpolations of the exponents for
states already computed provide good approximations to the optimized
exponents of a nearby state. This is particularly true for smaller basis
sets, since for these sets the optimum values of the exponents are
well-defined. For larger basis sets, where several different sels uf
values of the exponents will give functions with the same total energy, the
interpolated and extrapolated values provide a good starting point for
exponent variations that lead to the optimized values.

Thus the calculation of the functions of a series of states must be
done systematically, and the function for each state must not be computed
as a separate problem. This systematic procedure will also uncover
errors in optimization of basis sets. If an extrapolation or interpolation
to a neighboring state fails to work well, one has excellent reason to
suspect an error in one of the previously computed states. While the
calculation of the SCF wave function for a single state is laborious and
time-consuming, the calculation of wave functions for a series of states
is fairly economical.

It will be useful, for the following discussion, to introduce the notion
of a loop of an orbital. A hydrogenic radial function with quantum numbers
nf has n - £ - 1 nodes and n - £ loops between these nodes and the points
r = 0and r = . Similarly, the HF radial function Fn (r) generally has
n -4 -1nodes and n - £ loops. The contributions to the HF operator of
exchange terms and off-diagonal Lagrangian multipliers will introduce,

'in exceptional cases, extra nodes and loops near the tail of the orbital;*
‘but the function is very small in these loops, and for this discussion they

may be ignored. For HF orbitals of a particular state of a system, the

ls orbital and the inner loops of the 2s and 3s orbitals, in a rough sense,
occupy the same region of space. Similarly, the outer loop of the 2s orbital
and the middle loop of the 3s orbital occupy the same region of space.

Thus, for a given state of a éystem, the nth loops of HF orbitals of the same
symmetry roughly define a distinct range of values of r. The range is
rather well-defined, except for an outer loop. The outer loop of an orbital
always has a long "tail" going slowly to zero. This division of r into
distinct ranges permits us to consider groups of basis functions, where
each group is chosen to fit a particular loop.

*See Ref. 29 and the discussion in Section IV-E of this paper.
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The computer program used for the SCF calculations has facilities
for the coupled variation of the exponents of one, two, or three basis func-
tions. The choice of the exponents to be varied, if any, is part of the input
data to a run.

When the exponent of oné basis function is varied, the program per-
forms complete SCF calculations for different values of the exponent being
varied while all the other exponents are held fixed. An energy minimum is
found and bracketed by calculations for five values of the exponent at inter-
~vals of %AC The optimum value of the exponent is determined by interpo-
lation; a quartic is fit to these five points and its minimum is obtained.

The exponent variation increment, A{, is a flexible input parameter.

Care must be taken in the choice of ‘Af so that the interpolation may
be accurate. If AL is chosen too small, the differences of the calculated
SCF energies will be small and the interpolation will be in error because of
the round-off errors in the SCF energies.- This is not too serious since the
optimum value of the exponent is indeterminate because of this round-off
error in the SCF energies; however, fairly large amounts of computer time
may be wasted by trying to bracket the energy minimum too closely. More-
over, if the energy differences are small enough, a true energy minimum
may be missed because the round-off in the SCF energies causes an appar-
ent, but false, minimum. Since, for calculations of the size presented here,
the round-off error in the SCF energy appears to be a few units in the
eighth significant figure, we tried to choose A{ so that the SCF energy
changed by at least a few units in the seventh significant figure between
adjacent SCF calculations.

If Af is chosen too large, the interpolation will be in error because:
the points (in exponent space) at which SCF calculations are made are too
far apart to be fit meaningfully by a quartic. The usual symptom of this is
large changes in the SCF vector coefficients an’ between adjacent points.
These changes indicate that the basis function is being "used" in the SCF .
orbitals in qualitatively different ways for different values of the exponent.
The best, simple way to test whether A has been chosen too large is to
compare the interpolated value of the total energy with the energy obtained
from an SCF calculation using the interpolated value of the exponent. This
SCF calculation is automatically performed by the program.

The quartic interpolation scheme is sufficiently accurate so that,
for a properly chosen A, the predicted and computed values of the energy
will agree within round-off error. The range of acceptable values of AL
is, in fact, quite large, and only in ekceptional cases must A £ be given to
more than one or one and one-half significant figures.

The procedures for the coupled variation of two and three exponents
are an extension of those described above for the variation of a single
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exponent. However, while a one-dimensional variation requires at least
five SCF calculations, a two-dimensional variation requires at least 25
SCF calculations, and a three-dimensional variation requires at least 125.

Multidimensional variations should couple the exponents of basis
functions used to represent a loop of the orbitals. They should not couple
the exponents of basis functions used to represent different loops. A
multidimensional variation will usually give better values for the exponents
than a series of one-dimensional variations since a larger region of
exponent space is examined in a multidimensional variation. However, a
multidimensional variation may use more computer time than a series of
one-dimensional variations. The exponent variation procedures are
described in detail elsewhere.(4)

The principal quantum numbers of the STO's of a basis set can be
chosen in a special way so that the cusp condition of Eq. (9) is automatically
satisfied for all the SCF orbitals.(8) We call a basis set of STO's whose
principal quantum numbers have been chosen in this special way a fixed-cusp
set. Extensive experience, especially for first-row atoms, 9) but also for
some second-row atoms,'30) has shown that if fixed-cusp sets are not
used it is possible to obtain accurate SCF orbitals with adequate cusp
values using smaller basis sets. Often the best energies obtained using
these free-cusp sets were lower than the best energies obtained using
the larger fixed-cusp sets. For this reason, we choose to use free-cusp
sets.

Whereas the exponents, being continuous parameters, were optimized
by continuous variation, the principal quantum numbers of the basis func-
tions, being integers, need to be chosen more or less arbitrarily. Our pref-
erence was to choose principal quantum numbers for the STO's that are '
to represent the nth loop of a series of orbitals so that the STO's would
have the same power of r as hydrogenic functions representing that loop
have. Thus, for the states of the fluorine, neon, and sodium ions, we '
used 2p STO's to represent the 2p orbital; and for the states of the chlorine,
argon, and potassium ions, we used 3s STO's to represent the outer loop of
the 3s orbital. ‘

This was by no means a hard and fast rule; we did limited experi-
mentation with other values. The need for experimentation was usually
indicated by one of the following three factors:

1. The failure of the automatic exponent variation procedures of
our computer programs to operate efﬁcieni:ly. The program would vary
the exponents so as to cause the basis set to become nearly redundant;
that is, the basis functions at some stage of the exponent variation process
would form a nearly linearly dependent set.*

*a precise measure of the redundancy of a basis set is the value of the determinant of the overlap
matrix S of the basis functions.- As the determinant of S goes to zero, the basis set goes to complete
redundancy (exact linear dependence). )
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2. The failure of a subset of the full.basis set to adequately repre-
sent a loop. This is indicated when.a basis function that is important in a
region of space outside the loop does not have a small coefficient when it
contributes to the representation of the loop. Consider the 1s orbital of
neutral argon, for example. For the accurate SCF function (see Table III),
the principal quantum numbers of the basis functions that represent the
inner s-loop are 1, 2, and 3. The coefficients of these functions for the
1s orbital are large, and the 1s coefficients Cys,p of the remainder of the
s basis functions are of the order of 1 x 1074, _We tried to obtain an SCF
function of the same accuracy using two 1s and one 3s basis functions to
represent the inner s-loop. In this case, the 1s coefficients of the remain-
der of the s basis functions were as large as 2 x 1072,

3. The desirability of keeping the basis set as nearly linearly
independent as possible, For the states of the chlorine, argon, and potas-
sium ions, we believe that we have a less redundant basis set if we use
three 2p and one 4p basis functions to represent the inner p-loop, than
if we were to use four 2p basis functions., This consideration is important
only when we come to the final, largest basis sets used to obtain the most
accurate SCF wave functions. '

The minimization of the total SCF energy ESCF was the fundamental
criterion used to choose the basis sets for the SCF functions reported here,
The analytic SCF orbitals determined by using this criterion are not uni-
formly good approximations to the exact HF orbitals., The orbitals of the .
electrons that contribute most to Egcy, the core or inner-shell electrons,
are determined most accurately. The orbitals of the electrons which con-
tribute least to EgCF, the valence or outer-shell electrons, are determined
least accurately.

Because of the limitations of the computer, the total energy is only
computed to eight significant figures. The contribution of the outer shells
to Egcr is masked by the large contributions of the core, A rough mea-
sure of the contribution of an electron in the nf-shell to EgCF is the
orbital energy €. For neutral argon, we have the values ESCF = -526.817,
€1s = -119.610, and €55 = -1.277; the unit of energy is the Hartree (1 Har-
tree = 27.2098 eV). Thus, when exponent variations are performed on the
inner s-loop basis functions, there are effectively two more significant
figures in EgCF to examine than when exponent variations are performed
on the outer s-loop basis functions. To produce equal changes in ESCF,
larger changes must be made in the exponents (and therefore in the orbitals)
of the basis functions used to represent outer loops than in the exponents
of the basis functions used to represent inner loops.

Because it is more difficult to obtain accurate orbitals for the 3s
and 3p shells than for the inner shells, we paid close attention to small
changes in the total SCF energy when choosing the basis functions used to
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represent the outer loops of the 3s and 3p orbitals of the states of the
chlorine;-argon, and potassium ions, Small improvements in the total
energy obtained in fitting these loops are at least as important for the
general quality of the wave function as are larger improvements obtained
when fitting the inner-shell orbitals.

It was also necessary to look for small energy improvements,
when the most accurate functions were caomputed, so that the tails of the
orbitals would be fit properly. The tails of the orbitals make the smallest
contribution to the total energy. Thus, small expansion sets fit the orbitals
in the regions where they are large at the expense of the behavior of their
tails, and larger basis sets must be chosen carefully so that the tails will
be represented properly. '

The calculations reported here were performed with computer
programs written for the IBM 704 and 7090/4 by Professor C. C. J. Roothaan
and the author, with the assistance of various members of the Laboratory
of Molecular Structure and Spectra at The University of Chicago, The pro-
grams are available for distribution upon request.

e



IV. RESULTS AND DISCUSSION OF SCF CALCULATIONS

A. The SCF Wave Functioné

Tables I-IV present the most accurate SCF function computed for
each state. Tables V-VIII present a simpler, less accurate, but quite
useful SCF function for each state. The simple basis sets were obtained
with relatively little computational effort. They are a good starting point
for extending these calculations to other states of interest (for example,
to states formed in X-ray absbrption). In addition, the simple basis set
functions are sufficiently accurate for many purposes. Expectation values
of r and r?, dipole-transition matrix elements, and overlap of SCF ‘wave
functions were computed with the simple set SCF functions as well as the
accurate set SCF functions. The values obtained usually agree -quite well.
Some comparisons that indicate the extent of the agreement will be given
later.

The results in Tables I-VIII include the total energy for the non-
relativistic, electrostatic, fixed-nucleus Hamiltonian of Eq. (10) and the
virial coefficient V/T. Exponents of the basis functions are given for
each state. The principal quantum number and symmetry type of each
basis function are given in parentheses in the first column of each tablz.
The different basis functions are numbered consecutively within each
symmetry type. For each orbital, the SCF orbitdl energy €y, the
cusp [defined in Eq. (9)], and the vector coefficients Cng,p are given.
The numbering of the vector coefficients corresponds to the numbering
_of the basis functions. All energies are given in Hartrees. The results
reported in Tables I-VIII are from calculations performed on an IBM 7094,

The total wave functions for the states given in Tables I-VIII are
all single determinants. The 'S and S states have even parity, and the
’P states have odd parity. The parity follows immediately from the
electron configurations of the states.

'I‘he Is-hole states of F-, Ne, and Na™, and the ls-, 2s-, and
2p-hole states of C17, Ar, and KT are not the lowest states of their

symmetry spccies; these states are marked with asterisks in Tables I-VIII.

The 2s-hole states of Ne and Nat, and the 3s-hole states of Ar
and Kt are the first excited states of Net, Natt, Art, and K++, respec-
tively. They are the lowest %S states.

The Z2s-hole state of F~ is a highly excited state of fluorine; it is,
in fact, past the ionization limit. However, Moore(31) does not give any
other S state of even parity in the spectrum of fluorine. The 3s-hole
state of Cl~ is not observed, but no 2S states of even parity are obsérved

in the spectrum of chlorine. 31) Thus these states may be the lowest states

of their symmetry species.
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TABLE I. SCF Orbit.als and Energies for F~, Ne, and Nat, and nf-hole States of F~, Na, and Nat, Accurate Basis Sets

P : - R

(A4

Y ”2V 2 - 1 +e25y +2 Q0¥ - B o N
F('s F(°P - P(°s . LRBS) Ne("s) Ne™(°P) ne*(“s Ne*(%s)* +(L, ++2py. ++ 02 2
s) ZthOle 'Zsfho{e lé-héle 2p-hole 2s-éolg 1§-£olg» Na"(s) g;-hglg) g:-hglz) : N;:téoig!
E -99.450u4 -99.40933 -98.53123 -Th.52812 -128.5471 -127.8178 ~126:7348 -96.62571 -161.6770 -159.9974 -158.7088 -121.742%
v/T -1.999998 -1.999996 -1.999999 -2.,000000 -1.999998 ~2.000003 -2.000003 -1.999997 -2.000001 -2,000003 .  -2.000003 -2,00000;
;;(isj 13.958 14,201 13.901 15.308 .15.439 15.409 15.231 . 16,768 ° 15.949 .. 15.329 15.530 18.164
2,(18) 7.936 7.938 - 7.893 8.371 8.806 8.811 8.771 9.179 9.439 9.597 9.289 9.982
£5(30) 9.873 9.962 9.901 10.713 10.995 10.967 10.951 11.732 11.624 11.374 11.355 12.750
gy(2s) | 3.426 3:332 3.288 3.522 3.764 3.824 3.758 4,070 4,388 4,462 4§.372 4.566
g5 (28) 2.183 2.057 2.078 2.175 2.301 2.526 2.537 2.670 2.811 3.047 3.058 3.153
tg(2s) 1.500
él(ap) 9.788 | 9.435 8.793 6.809 10.5%2 12.548 12,000 10.835 12,048 13.437 12.730 . 10.580
£, (2p) 4,46 4.249 4,181 4,058 4,956 : 5.759 5.718 5.567 5.703 6.030 - 5.939 5.829
gyep) o 259 2.356 2.324 2,285 . 2,793 . 3.476 3.436 3.279 3.336 3.649 . 3.503 3.300
£y(ep) 1.511 1.434 1.40%4 1.487 1.623 2.086 2.047 2.142 2,156 2.522 2.433 2.409
¢g(2p) 0.869 N RN RN PPN e N RN e e SN e
€1g -25.,82961 -26.38265 -26.42069 -29,53630 -32.77233 -33.61235 -33.61629 -37.16999 :ko.75972 -41.86280 -41,83081 -45.82043
cusp -9.0240% ~9.02760 -9.02mi -9.01167 - -10.02496 -10.02477 ~10.02401 -10.01652 -11.01520 -11.00906 ~11.0187% -11,02114
bls(l 0.08975 0.08419 0,09403 0.CH171 © 0.09218 0.09256 0.09927 0.05077 0.13371 0.14458 0.15929 0.05067
L 0.9474T 0.95503 0.94586 0.99591 0.94891 0.94804 0.94216 0.99596 0.91835 0.89061 0.89684 0.99466
€16,3 -0.04015 -0.,04226" -0.04308 -0.05444 -0.04499 -0.04442 -0.04548 -0.06476 -0.05827 -0.03891 --0.06368 -0.07315
C1s,% 0.00377 0.00301 0.00374  0.01684 0.00308 0.00299 0.00377 0.01303 0.00156 0.00420 0.00238 . 0.01003
C1s,5 -0.00083 -0,00013 0.00014 0.01247 -0.00003 -0.00018 0.00004 0.01332 0.00060 _ -0.00067 0.00061 0.01359
16,6 0.00050 e e e e e e P e e e e e e e e e
_ea's -1.07458 -1.57245 -1.70583 . -1.74534 ~1,93031 -2.61917 -2.75317 " -2.85349 -3.07368 -3.93054 -4,06585 -4.22305
Cusp - -9.06777 -9,06608 +9.07213, -9.0k294 -10.05351 -10.05387 -10.06436"" -10.04150 -11.03456 ~11.02316 -11.02905 -11.02846
Cpq 1 o.. 00560 0.00519 0.00439 0.01255 0.00645 0.00718 0.00611 0.01275 0:00581 0.01251 0.00333 0.01304
Cos,2 -0,27435 -0.28031 -0.28538 -0.31567 -0,28821 -0.29829 -0.30146 -0.33112 -0.30875 -0.32313 -0.32328 -0.34522
Cas,3 -0.02865 -0.02805 -0,02678 -0.03023 -0.02632° -0.02831 -0.02674 -0.02983 -0.02404 -0.03062 -0.02199 -0.02807
Cag, 4 0.49528 0.56794 0.59904 0.57594 0.56972 0.52685 0.56055 0.51259 0.49163 0.44384 0.47343 0.47638
Cas.5 0.47665 0.52863 0.49531 0.52319 0.53066 0.56743 . 0.53148 0.58614 0.61232 0.65800 0.62678" 0.62255
Co6,6 0.13770 s e Cee e e e, e T e e e e Ce e P
ézp -0.18098  -0.72994 -0.70271 -0.87141 -0.85034 -1.60663 -1.55267 -1.81602 -1.79719 -2,74429 -2.66306 -3.01964
cusp -4.53215 -4.51761 -4. 46597 -4.40926 -5.00030 -5-060§8 -5.03668 -5.00617 -5.52223 -5.58134 -5.55100 -5,49840
o 0.00800 0.01055 0.01380 C.ONT6H - 0.00930 0.00408 0.00473 0.00566 0.00784 0.00509 0.00619 0.01168
Cap,2 0.20342 0.26789 0.27605 - 0.35674 0.24154 0.13743. 0.14248 0.23853 _ 0.23017 0.19601 0.21089 0.3010%4
Cop,3 0.39809 0.49083 0.48600 0.47736 0.48233 0.42831 0.43100 0.45718 0.45558 0,4248} 0.46037 - 0.57139
[ 0.36280 0.32561 0.32218 0.21207 0.36532 0.50305 0.49736 . 0.37235 0.38418 0.43417 0.38511 0.17715
Cap.5 0.17010 e e e PR e e e . . . e . ..

*States which are not the lowest of a symmetry specles,




TABLE U. SCF Orbitals and Energies for C1~ and nf-hole States of Cl~, Accurate Basia Sets

. <-:1'(13) c1(2p) c1(3s)

c1(®e)* c1(3s)* c1(3s)
3p-hole - 3e-hole- 2p-hole 2s-hole l1s-hole
'E -459.5768 -459. 4820 . -458.9167 -452.3349 -449,7655 ~356.2822
v/T -1.999999 ~2.000000 -2.000001 -2.,000001 -2.000001 -2,00000%
g,(1s) 19.955 19.840 19.830 .19.955 19.955 20.000
¢o(2s) 14.545 14,650 14,670 1%.530 14.505 16.500
;3(35) 16,000 16.000 16.000 16.000 16.000 18.000
ry(38) 9.951 9,940 9.932 9.684 9.954 10,166
1;5(25) 5.748 5.745 . 5.743 5.867 6.010 €.062
g (38) 2.823 .2.904 2.878 3.140 3.030 3.167
¢7(38) 1.651 1.826 - 1.842 1.970 1.923 1.982
;1(2p) 15.380 15,440 ) 15.525 16.345 16.600 16,900
talep) 7.535 7.550 7-555 7.790 7.845 0.310
;3(2p) 4,385 4,415 4,405 4.600 4,615 4,980
¢, (4p) 7.200 7.200 7.200 7.700 7‘A7°° 8.000
¢5(3p) 2.612 2.663 2.653 2,852 2,861 2.926
g (4p) 1,826 1.976 1.932 2.091 2.100 2.136
;7(3p) 0.920 -1.236 1.191 ° 1.307 1.310 1.311
€g -104.50546 -104.88431 -104.95559 -106.27042 -106.04136 -112.50264
Cusp -17.00483 -17.0022% -17.00306 -17.00187 -17.00641 -17.00392
cm'1 0.76554 0.77219 0.77275 0.76588 0.76542 0.77416
cls’2 0.43218 0.40836 0.40543 0.43389 0.43475 0.32382
C16,3 -0.16990 -0.15323 -0.15094 -0,17190 ° -0,17195 -0,07287
Cis,4 0.00060 0.00227 0.00272 -0.00055 -0,00072 0.00487
Cis,5 0.00005 -0.00060 -0.00082 0.00041 0.00107 0.01344
cls"s 0.00003 0.00013 0.00015 -0.00006 -0.00006 -0.00217
Cie,7 . =0.00004 -0.00009 -0.00011 - -0,00001 20500000 -0,00191
€og -10.22916 -10.60741 -10.66547 -11.32032 -11.47391 -11.83135
Cusp -16.99333 -16.99389 -16.99236 -16.9810% -17.02706 -16.94919
025'1 -0.21448 -0.21639 -0.21622 -0.21855° -0.21801 ~0.23204
Cog,2 -0.21001 -0,20133 -0.20016 -0,21460 -0.22715 -0.17324
Cas,3 0.07593 0.06997 0.06934 0.08022 0.07179 0.02477
Cos, b 0.17263 0.17368 0.17136 0.20563 0.13283 0.17350
Coy .5 0.90099 0.89900 0.90007 0.86777 0.84252 0.90538
C2s,6 n.0ngRe - 0.00558 0,00719 0.00513 0.004143 0.00693
Cos,7 -0.00023 -0.00015 | 0.00006 0.00042 0.00979 -0.00024
€35 -0.73320 . -1.07288 -1.17570 -1.22317 -1.20787 -1.23087
Cusp -16.96224 -16.94416 -16.94540 -16.97671 -17.00251 -16.98601
C3g,1 0.06317 0.06541 0.06693 0.07000 0.07341 0.07252
C35,5 0.07620 0.07656 | 0.07770 0.09087 0.09926 0.07018
c3s'3 -0.02132 -0,02034 -0.02053 -0.02158 -0.02157 -0.0018%
Cag, -0.00604 -0,00017 ~0.00059 0.01419 0.03314 0.02248
C34,5 ~0,450771 -0.42851 -0.43667 ~0,49099, -0.52027 -0.48357
3s,.6 0.70755 0.65176 0.68652 0.64384 0.67449 0.64311
38,7 0.43093 0.48089 0. 44414 0.51051 0.46565 0.50431
2p -7.69557 -8,07218 -8.14619 -9.00679 -8.78960 -9.55946
Cusp -8.44006 -8.43660 -8.54048 . -8. 44624 ~8.47497 -8.51969
c2p,1 0.01990 0301930 0.01875 0.01324 0.01236 ‘0.00767
Cap,2 0.68564 0.68305 0.68657 0.66057 0.65222 0,63922
Cap,3 0.1920) 0.19262 0.18707 0.22510 0.23727 0.24850
"ap 4 0.1648) 0,16636 0.17024 0.14711 0.15609 0.15979
2,5 0.00296 - 0.00516 0.00323 0.01950 0,00104 0.00535
2p,6 -0.00058 -0.00107 -0.00129 0.01128 0.00016 -0,00209
Cop,7 0.0002% 0.00111 0.00063 0.00531 0.00000 0.00100 -
€3p -0.15017 | -0.50640  -0.50063 -0.58967 -0,58465 -0.59605
Cusp -8.38032 -8.35998 -8.35630 -8.38535 -8.37179" -8.40151
C3p,1 -0.00350 -0,00346 -0.00331 -0.00274 -0.00199 -0.00022
32 -0.18172 -0.19968 -0,20013 -0.22358 -0,20251 -0.19667
35,3 -0,03172 -0.02837 -0,02733 -0.05978 - -0.05454 -0.04580
"°3p,u -0.06118 -0,07143 -0.07165 -0.07294%. -0,07260 -0.07359
C3p,5 0.59454 . 0.60295 0.62287 0.63710 0.63463 0.63024
c3p,6 0.36833 0.31482 0.33734 0.32628 0.3283% 0.3387§
C3p,7 0.21232 0.21687 0.17781 0.18060 0.18278 0.17251
*States which are not thg lowest of a symmetry species.
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TABLE IlI. SCF Orbitals and Energles for Argon and nf-hole States of Argon, Accurate Basis Sets

Ar+(28)‘ .

arls) ar*(%p) ar*(%g) art(2py* ac*(3s)”
3p-hole 3e-hole 2p-hole 25-ho}e ls-hole
E -526.8175 -526.,2745 -525.5977 -517.,6690 -514.8795 -409.3890
v/ -2.,000000 -1.999999 ~1.999999 -1.999999 -2.000001 -2.000000
¢y (18) 20.750 20.750 20.735 20,700 20.615 20.080
o(28) 14.900 14,900 14.900 14,945 15.000 16.85
;3(35) 16.500 16.500 16.500 16.500 16.500 18.500
£y (38) 10.500 10.58% 10.758 10.628 10.543 10.863
t5(2s) 6.206 6.224 6.253 6.451 6.498 6.544
;6(35) 3.166 3.259 3.232 3.458 3.382 3.532
(7(35) 1.993 2.185 2.201 2,311 2.278 2.340
;1(2p) 16.220 - 16.160 16.195 17.020 17.460 17.720
¢ (2p) 8.230 8.180 8,200 8.410 8.500 9.055
:3(2p) 5.000 4.795 4,865 5.000 5.115 5.450
2y (%p) 8.000 8.000 8.000 8.500 8.500 8.900
(5(39) 2.970 2.955 2.976 3.157 3.159 3.214
Lldp) .21l 2.2uy e.2he 2.359 2.330 £:30)
;7(3p) 1.370 1.550 1.550 1.620 1.620 1.650
€e -118.61014 ~119.13309 -119.19462 . -120.65776 -120.39576 -127.27956
Cusp -18.00366 -18.00349 -18.00287 -18.00005 -18.00218 -18.00163
C1s,1 0.78751 0. 18752 0.78834 - 0.79073 0.79512 0.03005
Cig,2 0.41319 0.41322 0.41103 0.40339 0.38653 0.23192
C1s,3 -0.17634 -0,17640 -0.17492 -0.17014 -0.15765 -0.05294
Ciq,4 -0.00008 -0,00004 -0.00022 0.00027 0.00121 0.00265
C1a,5 -0.00011 -0.0001‘6 -0.00006 -0.000k7 -0.00020 0.01419
14,6 0.00007 0.00011 0.00006 0,00009 0.00011 -0.00213
C1a,7 ~0.00006 -0.00008 -0.00008 -0.00008 -0.00008 -0.00203
€g -12.32193 -12.83568 -12.88311 -13.61576 -13.77370 ~Llb.17473
Cusp -17.99649 -18.00356 -18.01242 -18.01453 -18.02974 -17.95176 °
C25,1 -0.22353 -0.22365 -0.22356 -0,22847 -0.22912 -0.25356
C2q,2 -0.21917" -0.22087 -0,22339 -0.23284 -0,22911 -0.15950
Cas;3 0.08753 0.08586 0.08258 0.08007 0.07458 0.02281
Cag,4 0.16903 0.16072 0.14166 0.1343% 0.11753 0.15781
Cag,5 0.90732 0.91795 0.93996 0.95521 0.96271 0.92791
C2s,6 0.00708 0.00704 0.00956 0.00977 0.02490 0.00833
Cos,7 -0,00043 -0.00048 -0.00049 -0,00085 0.00965 -0.00047
€34 -1.27725 -1.71124 -1.81793 -1.89228 -1.87409 -1.90809
cusp -17.96890 -17.9441% -17.92541 -17.97576 -18,00103 -17.96324
C3q,1 0.06982 0.07189 0.07327 0.07702 0.08092 0.08360
C35,2 0.08792 0.09287 0.09574 0.10727 0.11101 0.07415 ..
';35,3 -0.02628 -0.02782 -0.02893 -0.02530 -0.02355 ~0.00188
C3s,3 0.00341 0.01304 0.01863 0.0%101 0.05414 0.03755
C3g,5 -0.4539% -0.48178 -0.49483 -0.55249 -0.58015 -0.53655
€3s,6 0.66908 , 0.60576 0.63355 0.60842: 0.62943 0.59459
C3q,7 0.46963 0.53030 0.50098 0.54305 0.51521 ] 0.55658
€2p -9.57127 ~10,08324 -10,14966 -11.10837 -10,86746 -11.71786
Cusp + -8.92591 -8.91125 -8.91451 -8.92308 -8.96769 -8.98739
°2p,1 0.01876 0.01845 0.01832 . 0.01284 0.01174 0.00570
2p,2 0.63009 0.66020 0.65271 0.64006 0.61717 0.59627
2p,3 0.27207 0.23154 0.24110 0.25810 0.29030 0.30855
2p,% 0.13409 ‘0.14874 0.14644 0.13301 0.13460 0.14165
2p,5 0.00309 0.00086 0.00001 0.01590 ° -0.00093 0.00252
C2p,6 -0.00058 0.00171 0.00061 0.01386 0.00165 -0,00075
Cop,7 0.00028 ~0.00037 -0.,00031 0.00155 -0.00088 0.00047
€3p -0.59092 -1,04532 -1.03104 -1.15880 -1.15303 -1.17532
Cusp -8.88089 -8.88838 - -8.86398 -8.89927 -8.89853 -8.93455
C3p,1 -0.00346 -0.00391 -0.00345 -0.00290 ~0,00204 0.00005
C3p,2 -0.18973 -0,20843 -0,21009 -0,22991 - -0,20638 -0,19549
C3p,3 -0.06049 -0.06140 -0.05246 -0.08803 -0,08549 -0.08377
C3p1 -0.06178 ~0,06560 -0.07057 -0.06915 -0,06887 -0,06753
C3p,5 ’ 0.60487 0.66790 0.65321 0.68195 0.68125 0.68076
°3p,6 0.30887 0.334343 0,32329 0.33574 0.33983 0.33549
Cp,7 0.22836 0.12476 0.14980 0.11967 0:11682 0.11520

*States which are not the loﬁeat of a aymmeiry species.




K*(s) "kt (%p) .

K (2R

K" (s K (2 K+ (25 )
3p-hole 38-hole 2p-hole 2s-hole ‘ls-hole
E -599.0175 ' -597.8915 -597.1039 -587.6833 -584.6720 -466. 4285
v/T -1.999999 -2.000000 -1.999999 -2,000000 -2.000002 -1.999997
zy(1s) 21.530 21.545 21.685 21.480 21,300 20.400
£,(28) 15,255 15.220 15.095 15.300 15.400 17.200
3 (38) 17.000 17.000 17.000 17.000 17.000 19.000
ty(38) 11.085 11.258 11:323 10.957 11,262 11,560
;5(25) 6.687 6.724 6.711 6.878 7.010 7.025
gi38) 3.502 3.520 3.599 3.787 3.660 3.814
;7(33) 2.338 2.491 2.573 2.658 2.600 2.662
¢y (2p) 17.000 17.000 17.020 17.800 18,460 20.000
¢ (2p) 8.890 8.820 8.855 9.075 9.210 9.920
g5(2p) 5.450 5.260 .5.315 5.610 5.712 6.100
2, (4p) 8.800 8.800 8.800 9.300 9.300 9.800
25(3p) 3.253 . 3.358 3.371 3.562 3.563 3.546
Lg(tp) 2.412 e .o e s 2.726
(7(3p) 1.650 2.182 2.173 2.294 2.295 2.000
€ -133.,75212 -13%, 40330 -134.45519 -136.06387 -135.76859 -143,07622
Cusp -19.00074 -19.00027 -19.00610 -18.99684% -18.99330 ~19.0058%
°1u,1 0.80888 0.R0805 0.80027 0.81209 0.82183 0.88850
Cis,2 0.38950- 0.39410 0.42346 0.37982 0.34675 0.15967
Cs,3 -0.17686 -0.18025 -0.20056 =0.,17085 -0.14743 -0.03669
Cia,4 -0.00081 -0.00177 -0.00439 -0.00043 -0,00018 0.00249
Cis,5 -0.00024 © 0.00010 0,00074 -0.00055 0.00047 0.01358
Cis,6 0.00011 0.00008 0.00001 0.00013 -0,00003 -0,00199
Cis,7 -0,00009 -0.00008 -0.00007 -0.00011 -0.00002 -0.00208
€as -14.70798 -15.33970 -15.37648 -16.18376 -16.34603 -16.79208
Cusp -19.00163 -19.00951 -19.01782 -19.00269 -19.03162 -18.95758
Cog 1 -0,23231 -0.23224 -0.22961 ~0.23712 -0.23933 -0;27074%
ch'2 -0.22932  -0.23548 -0.24544 ~0.23674 -0.23878 -0.15189
cau'3 0.09750 ) 0.09623 0.10267 0,09486 0.07919 0.02290
o%’ M 0.1570Y 0,14600 5.15282 G, 10848 v Uyt U. 18850
025’5 0,92363 ) 0.94521 0.94423 0.93077 0.99761 0.94824
028’6 0.00901 0.00953 0.01023 0.01075 '0,02701 0.00953
°25:7 -0.00103 - -0,00166 -0.00050 -0.00133 0.00777 ~0,00100
€qg -1.96377 -2.47767 -2.58881 -2.68728 -2.66588. -2.71203
Casp -18.97447 -18.95978 -18.92907 -19.01150 -19.00299 -18.96578
c3B 1 0.07649 0,07862 0.07904 0.08360 0.08803 0.0934%4
c33"2 0.10123 0.10710 0.11452 0.11897 0.12444 0.07854
c3$’3 -0.08137 -0.03343 -0.03861 -0.02901 -0.02732 -0.00258
°3s,u 0.01616 0.02255 0.02791 0.04360 0.06713 0.04315
<:35"5 -0.50319 -0.52525 -0.54237 -0.59121 -0,62553 -0.57324
[ '6' 0.63772 0.62378 0.57022 0.57719 0.62575 0.58974
022’7 0.50386 . 0.51400 0.57145 0.58011 0.52008 0.56280
€op -11.73810 -12,36843 -12.42720 -13.48122 -13.,21615 -14.14872
Cusp -9.40153 -9.40961 -9.39849 -9.42043 -9.45892 -9.47034
Cap,1 0.01736 © 0.01746 0.01681 0.01262 ©.01054 0.00253
""'zp:2 0.604840 .. 0.63378 0.62810 0.59657 0.571059 0.52Y85
2p,3 0.30758 - 0.27199 0.27634 0.31579 0.35027 0.39164
Czp‘,u 0.12274 0.13211 0.13435 0.11239 0.11647 0.12198
ép,s 0.00147 -0,00149 -0,00177 0.01286 0.00072 0.00433
C2p,6 0.00039 C e e e P RN -0.00201
Cop,7 -0.00023 0.00228 0.00077 0.01746 0.00040 0.00129
€3p -1.17047 -1.71131 -1.68867 -1.85275 -1.84608 -1.88069
Cusp -9.40818 -9.41311 -9.39637 -9.43034 -9.42898 -9.41764
C3p,1 -0.00387 -0.00406 -0,00374 -0.00323 -0,00207 0.00057
C3p,2 -0.19057 -0.21305 -0,21027 -0,22120 -0.19844 -0.18219
e’ -0.09892 -0.09160 -0,09122 -0.13117 -0.12730 -0.12897
c3p'3 -0.05412 -0,06176 -0,06274 -0.,06004 -0.06202 -0,06243
02:'5 0.67017 0.52926 0.52899 0.54360 0.54095 0.69616
C3p:6 0.34285 e e e e 0.32599
CBP.T 0.12328 0.57550 0.57691 © 0.57136 0.5739% 0.10617 )
*States which are not the lowest of a symmetry specles.

25



TABLE V. SCF Orbitals and Energies for F~, Ne, and Na* and nf-hole States of F~, Ne, and Na*t, Simple Basis Sets

9?¢

7 (%) ?(%r) ?(3s) r(3s)" ve('s) re*(2p) we*(%s) re*(%s)* Na*(’s) Na** (%p) Na*t(%s) Nt (3s)"
2p-hole: 2s8-hole 1s-hole . A'2p-h91e 2s-hole ls-hole 2p-hole 2s-hole 1s-hole
E -99.45785 -99.40893 -98.53085 -74%.52382 -128.5465 -127.8176 -126.7346 -96.62555 -161.6766 R -159.9972 -158,7087 -121,7423 -
v/T -2.000002 -2.000004 -1.999999 -1.999993 -2.000008 - ~2.000018 -2.00000% -1.999930 -2.000002 -2.,000013 -1.999996 ~1.999995
g, (18) 13.220 13.198 12.810 12.758 14.319 13.623 13.859 12,382 .15.31% 14,403 14,659 12.211
¢,(18) 8.282 8.278 8.230 8.842 9,224 9.154 9.162 9.729 10.157 10.033 10.058 10.4%20
43(33) 4.952 4,982 4,962 5.225 5.619 5.627 5.576 5.926 - 6.254 6.233 6.172 6.676
¢y (28) 2.094 2.246 2.293 2.369 2,518 2.700 2.73% 2.840 2.966 3.161 3.189 3.328
2y(2p) 5.219 6.165 6.112 5.695 6.620 7.588 7.505 6.665 8.000 9.058 8.759 7.515
to(2p) 2.599 3.176 3.144 3.208 £ 3.48% 3.991 3.926 3.955 4.316 B.794 4,715 4.624
';3(2p) 1.154 1.612 -1.582 1.724 1.766 | 2.164 2.122 2.276 T 2.325 2.698 2.651 .2.799
€1a -25.82687 - -26.38217 -26.42007 -29.53598 -32.77162 -33.61208 -33.61587 -37.16972 -50.75946 -41.86265 - -41.83046 ~45,82011
Cusp -9.01242 -9.01302 -9.00866 <9.02632 -10.01011 -9.99551 -10.00523 -10.02222 -11.00542 -10.98715 -10.99733 ~11.01931
€1q,1 0.07956 0,08056 0.09582" 0.02797 0.08650 o.1iu85 0.10566 0.08021 . 0.09647 0.114038 10.12778 0.28471
18,2 0.92438 0.92348 .0.90835 0.96451 0.91716 0.88966 0.89831 0.91277 0.90707 0.86426 0.87630 0.70895
“Cg,3 0.00594 0.00580 ©0.00607 0.01658 0.00595 0.00408 0.00588 0.01441 0.00573 0.00315 0.00501 0.01183
Cis,3 - -0.00032 -0.00044% 0.00019 0.01639 -0.00029 0.00019 0.00015 0.01595 -0.00031 0.00045 0.0003% 0.01596
‘€ag -1.07236 -1.57205 ;1-705k9 -1,74516 -1.92975 -2.61894 -2.'}5283 -2,85336 -3.07347 ~3.93044 -4.06561 -4.2aé85
Cusp -9.07531 -8.99798 -9.00934% --8.94043 -10.01357 -9.95997 -9.96417 -9.95186 -10.96458 -10.93106 -10.93216 -10.97567
Cog,1 -0.00824 © _0.00411 -0.00583 ° 0.01728 -0.00431 ~0.00220 ~0.00127 0.03807 -0.00001 0.00192 0.00298 0.05695 -
) c,‘,s'.a -0.22858 -0.24286 -0.24667 ~-0.29148 -0.24635 -0.26184 -0.26625 -0.32867 -0.26474 -0.28137 -0.28516 -0,36558
Cag,3 0.33891 0.29770 ~ 0.29412 0.30914 0.29901 0.26352 0.26319 0.26448 0.26942 0.23998 0.23945 0.22166
Cos b 0.73161 0.76464 0.76645 .0.75408 0.76514 0.79565 " 0.79427 0.79696 0.79097 0.81852 0.81770 0.84308
€2p -0.17886 -0.72953 -0.70231 -0.87121 -0.84g74 -1.60644, -1.55239. -1.81586 -1.79697 -2.74424 -2,66290" -3.01944
Cusp -4.02916 -4.19515 ~4,20656 -4.32426 -4.67506 -4.78652 ~14.78530 -4.86452 -5.26728 -5.35367. -5.34729 -5.38621
°2;>,1 0.1423% 0.0725% 0.07692 0.13992 0.08944 0.04870 0.05544 0.11167 0.06123 0.03406 . 0.04050 0.1002%
Cop,2 0.56283 0.48890 0.49372 0.14963% 0.50024 0.33454 0.44020 0.44736 $0.45069 0.39047 0.39581 0.40934
C2p,3 0.43109 0.53155 0.52539 0.45645 0.50722 0.58891 0.57919 0.51414 0.56481 0.63486 0.62536 0.55122
*States which are not the lowest of a symmetry species.



TABLE VI. SCF Orbitals and Energies for C1~ and nf-hole States of Cl1~, Simple Basis Sets

c1”(ts) c1(%p) c1(%s) c1(3p)* c1(%s)* c1(3s)*
3p-hole 3s-hole 2p-hole 2s-hole 1s-hole
E -459.5736 -459.4801. -458.9148 . -452.3332 - -449.7638 -356.2814
v/T -2.,000000 -1.999993 -2.000007 -1.999991 -2.000000 -1.999988
gl(ls) 18.575 18.674 . 18.629 18.474 18.095 17.749
gylas) - 16.329 16.439 16.385 16.245 15.621 16.424
;3(35) 10.217 10,190 10.219 10.021 10.386 10.381
g, (28) 5.798 5.785 5.795 5,895 6.062 6.0082
;5(33) 2.823 2.904 2.878 3.140 . 3.030 3.167
Lg(38) 1,651 1.826 1,842 1.970 1.923 1.982
¢,(2p) 10,203 10.268 10,275 10.586 10.59% 10.460
¢o(2p) 5.585 5.608 . 5.610 5.884 5.841 6.002
;3(3p) 2.497 2.612 2.617 2.787 2.798 2.881
;4(3p) 1.224 1.465 1.459 1.570 1.576 1.607
€1g -104,50086 -104,88211 -104.95369 -106.26874 -106.03937 . . -112.501%6
Cusp -16.96350 -16.96634 -16.,96577 -16.95669 -16.95214 -17.01951
18,1 0.85189 0.84517 0.84820 0.85920 0.88567 0.92623
Cis 2 0.17649 0.18395 . 0.18062 0.16830 0.13937 0.07920
C1s,3 -0.00074 -0.00011 -0.00046 -0,00234 . -0.00594 0.01076
Cle,y 0.00245 0.00217 0.00237 0.00337 0.00593 0.01019
C1s,5 -0,00052 -0.00054 -0.00061 -0.00082 -0.00112 -0,00151
Cin,6 0.00021 0.00024 0.00027 0.0003% 0.00051 -0.00221:
g ~10.22595 -10.60672 -10.66476 -11.32012 -11.47338 -11.83108
Cusp -16.99022 .-16.97968 -16.98170 -16.99964 -17.00832 -16.98680
s 1 -0.23882 -0.23691 -0.23743 ~0.24544 -0.25239 =0.27771
an{z €.11908 =0.11y5y -0.11087 -0.11900 -0.13056 -0.10274
ces'3 0.14005 0.14504 - 0.13795 0.17025 0.09289 0.15200
Cog 1 0.93670 0.93089 0.93755 0.91033 0.98751 0.93066
25’5 0.00654 0.00546 0.00782 0.00241 0.02434 0.00530
‘023’6 -0,00035 0.00010 -0.,00001 0.00185 0.01004 0.00059
€35 -0.73031 -1,07236 -1.17505 -1,22270 -1.20752 -1,23049
Cusp -16.76015 -16.7296T -16.74820 -16.62437 -16.83732 -16.69588
€351 0.07001 0.07132 0.07321 0.07805 - 0.08474 0.08627
c35’2 0.04802 0.05010° 0.05117 0.05897 0.06448 0.05180
ch'3 0.01033 0.01482 0.01573 0.03488 0.04751 0.03199
Cio -0.42149 -0.44112 -0. 45062 -0.50811 -0.53027 -0.49176
35'5 0.70660° 0.65189 0.68576 0.64632 0.67235 0.64391
38,6 0.43162 0.48073 0.441146 0.50908 0.46670 0.50380
teay -7.6922 -8.07136 -8.114535 -9.00648 -8.78g0n ~9.55916
Cuop -8.06915 -8.08454 -8.08774 -8.12583 -8,14560 -8.32563
Cap,1 0.21126 .0.20561 0.20543 0.17599 0.17940 0.21911
cep'2 0.81783 0.82121 0.82229 0.83577 0.84306 0.80592
Cap,3 0.01585 0.02020 0.01796 0.03725 0.01956 0.01500
cep'u -0.0039% -0.00457 -0.00509 0.01137 -0.00519 -0.00369
‘€30 -0.14772 -0.50603 - -0.50013 -0.58933 -0.58439. -0.59575
Cusp -8.14508 -8,12119 ~-8.12953 -8.12036 -8.13553 -8.37302
C3p'i -0,05028 -0,05192 -0.05186 -0.05079 © -0.04652 -0.05670
'C3p'2 -0.21340 -0.23694 -0.23666 -0.28976 -0.26765 -0.24645
c3p'3 0.61008 0.56419 '0.57193 0.59434 0.59193 0.58595
°3p,u 0.52453 0.54343 0.53765 0.51794 0.52288 0.52859

*States which are not the lowest of a symmetry species.
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TABLE VIL. SCF Orbitals and Energies, for Argon and nf-hole States of Argon, Simple Basis Sets

ar('s) ar*(°p) ar*(%s) ar* (%) at sy art(%s)*
3p-hole 3s-hole 2p-hole- 2s-hole ls-hole
E -526.8155 -526.2729 -525.5961 -517.6676 -51#.8779: -409.3884
v/7 -2,000001 -2.000001 -1.999997 -2.000000 -2,000002 -2.,000015
¢, (1s) 19.419 19.412 19.454 19.138 19.045 18,566
Ly(2s) 17.034 17.024 17.075 16.639 16.371 16.958
;3(35) 10.943 10,941 10.896 10,896 11,085 11.082
¢y (28) 6.275 6.279 6.277 6.436 6.537 6.562
t5(38) 3.187 3.259 3.232 3.474 3.314 3.532
Cg(38) 2.005 2.185 2,200, 2,311 2.230 2,340
t,(2p) 11Uy 11,073 11.095 1 Ln? 11.17 11,208
£, (2p) 6.095 6.113 6.120 6.388 6.345 6.498
;3(3p) 2,886 2,956. 2.972 3.127 3.142 3.234
£y (3p) 1.609 1.814 1,812 1,919 1,928 1.963
€1s -118.60817 -119.13197 -119.19307 -120,65641 -120.39431 -127.27928
Cusp -17.95816 ~17.95800 -17.95995 -17.94695 -17.95166 -18.01716
Cla,1 0.86927 0.86975 0.86693 0.88877 0.89477 0.9%351
C15,2 0.15689 0.15636 0:15949 0.13538 0.12918 0,05966
C1s,3 -0.00245 -0.00272 -0.00237 -0.00638 -0.,00748 0.00986
18,4 0.00341 0.00368 0.00348 0.00583 0.00684 0,00999
C1s,5 -0.00079 -0.00095 -0.00096 -0,00141 -0.00142 -0,00123
15,6 0.00035 0.00046 0.00045 0.00063 0,00069 -0.00244
g -12,32139 -12.83595 -12.88297 -13,61587 -13.77364 -14,17480
Cusp -17.98911 ~17.99026 -17.99083 =18.00607 -18.02007 -18.03109
Cag,1 -0.24687 -0.24712 -0.24592 -0.25697 -0.25799 -0.28557
Cog o -0,12262 -0.12272 -0.12286 -0.12721 -0.13624 -0,10624
czs’3 -0.12399 0.12384 0.12284 0.12539 0.08266 0.14049
Cag,y 0.95830 0.95863 0.95768 | .0.965T74 1.00378 0.94875
Cas,5 0.00745 0.00727 0.00963 0.00599 0.02491 0.0072%
Cos 6 -0.00027 -0.00033 -0.00040 0.00050 0.0089% 0.00010
€34 -1.27666 -1.71130 -1.81793 -1.89215 -1.87392 -1.90793
" Cusp -17.75815 -17.75636 -17.74072 -17.72879 -17.83920 -17.75839
C35,1 0.07681 0.07917 0.08033 0.08623 0.09084 0.09367
C3g,2 0.05492 0.05722 0.05843 0.06789 0.07238 0.05946
°3s'3 0.02678 0.03123 0.03317 0.05377 0.05842 0.04611
C3g,4 -0.47508 -0. 149604 -0.50585 -0.56189 -0757408 -0.54330
c3s'5 0.65610 0.60506 0.63491 0.60870 - 0.67677 0.59538
033,6 0.48338 0.5305 . 0.50004 0.54657 0.46372 0.55601
€op -9.57061 -10.08339 -10,14938 -11.10839 -10.86733 -11.71788
Cusp -8.60975 -8.61881 -8.62450 -8.65542 -8.67770 -8.84569
Cop,1 0.19611 o.19éuo 0.19107 0.16434 0.16737 0.20753
Cop 2 0.82878 0.83062 0.83266 0.84393 0.8518% 0.81457
czp'3 0.01861 0.02242 0.02061 0.03805 0.02168 ~ 0.01642
C2p,4 -0.00497 -0.00547 -0.00629 0.00967 -0.00620 -0.00428
€3p -0.59046 -1.04550 -1.03108 -1.1587% -1.1529u -1.17519
Cusp -8.63989 -8.63187 -8.63848 -8.62460 -8.63667 -8.86975
c3p 1 -0.05049 -0.05249 -0.05178 -0.04946 -0.04559 -0.05682
cap’2 -0.25002 -0,27029 -0.26961 -0,31930 -0,29823 -0.27652
c3p’3 0.58087 0.55695 0.55483 0.58189 0.57570 0.56927
c3p'q 0.53221 0.54085 0.54469 0.52121 0.52995 0.53616
*states which are not the lowest of a symmetry specieé.



TABLE VII. SCF Orbitals and Eneréies for Kt and nf-hole States of K*, Simple Basis Sets

Ak*(ls)

kM (%p

x**(%s) K (2p ) K (%s)* Kt (Zs )
3p-hole 38-hdéle 2p-hole ) 2s-hole 1s-hole
E -599.0159 -597.8901 -597.1025 -587.6820 -584,6705 -466.4280
v/T -2.000002 -2.,000002 -2.000002 ~2.000002 -1.999998 -1,999995
¢, (18) 20,222 20,200 20.339 19.998 20.006 19.464
t,(2s) 17.611 17.568 17.799 17.19% 17.116 17.522
43(3s) 11,812 11,804 11,603 11.868 11,962 12.155
;u(25) 6.793 6.805 6.762 6.999 7.049 7.134
;5(3s) " 3.502 3.520 3.599 3.787 3.660 '3.814
g(3s) 2.338 2.491 2.573 2.658 2.600 2.662
;1(2p) 11.838 11;880 11.890 12.210 12.228 11.965
go(2p) 6.601 6.619 6.621 6.889 6.846 6.998
23(3e) 3.239 3.290 3.300 3.441 3.453 3.561
£y(3p) 1.965 2.167- 2.156 2.252 | 2,259 2,302
€16 ~133.75073 -134.40246 ~134.45380 7136.0637u -135.76712 -143,07576
Cusp -18.95218 -18.95205 .~ -18.95638 -18.94390 -18.95098 -19.01711
Cioy 0.88800 0.88948 0.88039 0.90332 0.90230 0.95351
cls'2 0.13603 0.13446 0.14429 0.11956 0.12092 0.04811
cls'3 -0.,00472 -0.00528 ~0.00396 -0.00904 -0,00885 0.00779
cls:u 0.00458 0.00501 0.00448 0.00720 0.00749 0.011%0
Cis,5 -0.00112 -0.00136 -0,00132 ©-0.00185 -0,00174 -0.00128
Cis.6 0.00053 0.00070 0.00066 0.0008g 0.00030 -0.00243
€sg -14.70793 -15.33966 ~15.37635 -16.18405 -16.34594 -16.79222
Cusp -18.99464 -1Y.00240 -18.99354 ~19.00464 -19,01649 -19,00922
Cog 1 -0.25518 -0.25580 -0.25269 -0.26397 -6.26285 -0.29070
Con 2 -0,12988 -0.13030 -0.12747 . 1013Y =0, 14810 -0.12283
025:3 0.09466 0.09326 0.10736 - 0.07830 0.05739 0.08431
Cas,y 0.99545 0.99744 0.97862 1.02354 1.03674 1.01665
Cas,5 0.01053 °0.01133 0.01083 0.01144 0.02561 0.01163
czs’6 -0.00135 -0,00225 -0,00055 -0,00115 0,00869 -0.00153
€38 -1.96364 -2.47755 -2.58857 -2.68729 -2.66576 -2.71209
Cusp -18.81626 -18.82281 ~18.73490 -18.82718 -18.88418 -18.86195
C3s,1 0.08380 0.08639 0.08671 0.09277 0.09651 0.10010
°3s:2 0.06244 0.06489 0.06623 0.07783 0.08153 0.06895
C3s,3 0.04043 0.04354 0.05050 0.06891 0.07410 0.06040
ch’u -0.52140 -0.53996 -0.55866 -0.60641 -0.62185 -0.58590
C36,5 0.63334 0.62015 0.57039 0.56953 0.62156 0.58244
035'6 0.50598 0.51587 0.57106 0.58382 0.52239 0.56650
€2p -11.73792 -12.36825 . -12. 42694 -13.48136 | -13.21598 -14,14875
Cusp -9.14221 -9.14897 ~9.15299 =9.18073 -9.20343 -9.36415
Cop,1 0.18371 0.18054 . 0.18030 0.15466 0.15745 0.19632
cen’2 0.53783 0.83920 0.84055 0.85107 0.85924 0.82317
C2p,3 0.02070 0.02456 0,02220 0.03860 0.02333 0.01796
Cop, 4 -0.00591 -0.00658 -0.00725 0.00778 -0.00728 -0.00510
€3p -1.17044 -1.71i27 -1.68849 -1.85283 -1.84601 -1.88080
Cusp -9.14340 ~-9.14264 -9.14979 -9.1300% -9,14083 -9.37069
c3p 1 -0.05010 -0.05196 -0.05152 -0.04788 -0.04447 =0.05596
C3p,2 -0.28036 -0.29883 -0.29718 -0.34421 -0.32398° -0.30266
C3p:3 0.56462 0.54277 0.54510 0.58046 0.57500 0.56238
C3p,1 0.53895 0.55028 0.54969 0.51866. 0.52659 0.53909

*states which are

not the lowest of a symmetry species.
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The accurate basis sets for the states of the light atoms (fluorine,
neon, and sodium) are composed of five s ana four p basis functions. The
one exception is the basis set for F-, which is composed of six x and f1ve
p basis functions.

The accurate basis sets for the states of the heavier atoms
(chlorine, argon, and potassium) are composed of seven s and either

'six or seven p basis functions. The seven p sets used three.basis func-

tions to represent the outer loop of the 3p orbital. The addition of a third
basis function to represent this lovp causcd only a small improvement in
the total energy. For most of the states of K1+, a third basis function
did not cause any improvement in the total energy. Ouly two bacie func-
tions were used to represent the loop for these states.

The simple basis sets for the light atoms are composed of four s
and three p basis functions. Two basis functions are used to represerit each
loop of the s orbitals. The "simple basis sets for the heavier atoms are
ciomposed of six s and four p. basis functions; two basis functions are used
to represent each léop of .the orbitals. The automatic exponent variation
procedures of the SCF program converge quickly to the optimum values
of the exponents of the simple basis sets; almost no manual examination
of the intermediate results, and consequent readjustment of the exponent
variation parametefs, are required. Thus, the calculation of the simple
basis set functions is extremely automatic and requires the use of little .

‘human or machine time. Of the simple basis set SCF functions, the two

which give thée poorest approximations to the exact HF.functions are the
functions for the negative ions F- and Cl~. (The simple basis sets for
the light atoms were called nominal basis sets in an.earlier:paper.(())
The reasons for the use of this name were explained in that paper.)

The optimum values of the exponents are not: determined in all
cases to the number of significant flgures given in Tables I -VIII. This is
especially true for the large exponents of the basis functions used to rep-
resent inner loops, and for the large, accurate, basis sets. Some of the

-exponents used to represent a loop are better determined than others.

The exponents of the dominant basis functions (usually the basis functions
with the largest vector coefficients Cniy, p) are often well-determined once
the exponents of the less important basis functions are fixed.: The largest
exponents of the accurate basis sets of the. heav1er atoms were rounded.-
The largest exponents of the p basis functions of some of the states of
Ne't and Natt were also rounded to simple values. Beyond this, we did
not make-a systematic attempt to round.any of the other exponents but
used them, rounded to three decimal places, as-they were obtained from
the SCF computer program. When exponents were rounded, the vector
coefficients given are those determlned from SCF calculatlons made using
the rounded values of the exponents. '
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B. Accuracy of the SCF Wave Functions

Estimates were made of the effect of round-off errors on the SCF
calculations. As alpart of the round-off error, we include the extent to
which the results are not self-consistent solutions of the matrix HF equa-
tions. Our estimates of round-off error are based, primarily, on informa-
tion gained in the following ways:

1. The examination of the convergence thresholds, for diagonali-
zation and self-consistency met by the SCF vector coefficients. These
~ .thresholds are part of the output of the computer program and are also
set automatically by the program depending on the features of the calcula-
tion being.performed. 4) Unfortunately, our experience indicates:that
these thresholds give a low estimate of the effects of round-off errors.

2. The comparison of the results of SCF calculations performed
on the IBM 704 and on the IBM 7094. The most important difference be-
tween the 704 and 7094 programs is that in the 7094 program the results
of floating-point addition 'and multiplication.are rounded, while in the 704
program they are not. Thus a comparison of the results of SCF calcula- ‘ |
tions, performed on the 704 and 7094, should provide an.estimate, most
likely on the high side, of the effect of rounding errors on the 7094 results.

3. The comparison of the results of two SCF calculations, both
performed on the 7094 and using the same:basis set, but-with -somewhat
different initial approximations for the SCF eigenvectors.

For the calculations performed with small basis sets, viz., the
simple sets for the heavier atoms (chlorine, argon; and pota551um) and
both the simple and accurate sets for the 11ghter atoms (fluorme neon,
and sodlum) the estimates of round-off errors are the following: The
round-off error in the total energy and V/T is probably less than .or .
equal to five units in the eighth significant figure:. For those states for |
‘which the total energy is just larger-than 100 Hartrees, the round-off
error in the total energy is probably less than.two units in the eighth
significant figure. Theround-off error inthe €nf's and Cn ¢ e 's is probablyless
than or equal to one unit inthe fifth decimal place (that is, one unit' in the last
figure givén for these quantities in Tables I1-VIII). The round-off error
in the cusps is: usua'lly less than one unit in the fifth decimal place, but -
in some cases is probably about three or four units in the fifth decimal

place

For ‘calc'ulations‘with- the accurate basis .sets for the heavier
atoms, the estimates of round-off error are the following: The rQund—fo
error in the total energy is probably less than four to eight units in the
eighth significant figure. The round-off error in 'V/T is usually about
five units in the eighth significant figure, but in a few cases it is as large
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as four in the seventh significant figure. The round-off error -for the €,4's
and cusps varies depending on the orbital considered.(ls, 2s, 2p, etc.), but’
in any case.is no more-than one or two units in the fourth decimal place.
The round-off error for the an 's-for s orbitals is about one unit in the
fifth decimal place, and for p orbltals is less than one unit in the fourth
place.

The round-off error is larger for the vector coefficients of p
orbitals because the p basis functions form a more nearly linearly depen-
dent set than the s basis functions. The diagonalization procedures lose
accuracy as the basis set becomes linearly dependent. For cxample, for
the accurate basis set for neutral argon, the determinant of the overlap
matrix of the p basis functions is 0.5 x 1078, ; for the s basis functions it
is 5.3 x 10-%, a factor of 10 larger. But, because of the redundancy of the
p basis functions, the round off errors in the vector coefficients may not
have a large effect on.the numerical values of the :P orbitals.

Although the vectors given in Tables I-VIII may not be SCF eigen-
vectors to the number of figures given, they do forrn an orthonormal set
to the number of figures given. '

It is 'important to obtain reliable estimates of the accuracy of the
analytic SCF wave functions. By accuracy of the analytic functions we
mean how closely they represent the exact HF solutions. Information on
the accuracy of the analytic functions'may be obtained in the following ways:

1. The comparison of analyfic functions with solutions obtained by

_ direct numerical integration. This method has limited usefulness; first,

because numerical solutions are often not available and, second, because
accurate analytic functions are often better than the avallable numerlcal
solutions.

2. The comparison of different, good, analytic functions for the
same state, calculated independently by different workers or with a dif-
ferent choice of principal quantum numbers for the basis functions, but °
with very nearly the same total energy. These calculations are not likely
to'have the same systematic errors because of individual peculiarities in
the choice and optimization of the basis functions. Thus, it is reasonable

‘that the differences between the results of these calculat1ons should rep-

resent the random error of functions with this total energy. These differ-
ences provide a good basis for estimating the accuracy of the functions.

3. The examination of the ?coh'vergence of the properties of the
SCF .functions obtained in the process of building up the_basis set from a
small set to the final accurate set. This method-is very powerful when the
basis set is completely reoptimized at each step of the build-up so that the
effects of systematic errors on the choice. of basis functions to represent a
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loop. are minimized. These techniques and the1r application to first-row
atoms. are discussed elsewhere. (9)

The cusp is not useful as a guide to the accuracy of any fairly good
analytic:SCF function. For all but very small basis sets, the cusp condition’
is satisfied well enough, if optimized basis functions are-used, to insure
againstunreasonable behavior at the origin.. This is because ‘an analytic
-SCF radial function Pnﬂ( ), Prple) = ang(Ar). = rZRﬂp(r)an,p, goes near ;
‘the origin as - . : : :

Pryle) = Agng) b +(Cuspn£)i‘ POl (13)

The dominant term in this expansion is Ao(nﬂ) not the cusp, and P, g is
not overly sensitive to errors in the cusp. ' :

Fortunately, it is not necessary to apply the tests described above
to every analytic SCF function-that is calculated. When the SCF . functions
of a series of similar states have been calculatedin a systematic way, as
described in-Section III of this paper, the accuracy of each function in the
series may be inferred from careful estimates of the accuracy of the.
functions of only a few states. -One must take some precautions when making
these inferences of estimates of accuracy. It is important, for example, to
remember that it may be more.difficult to determine-more diffuse orbitals,
e.g., orbitals of negative ions, as ac’curately_ as less diffuse ones. .

Tables IX-XII present comparisons of the results of several HF
calculatiohs of Ne, F~, Ar, and Cl1~ with the results obtained with our ac-
curate basis set functions. In each case, we give comparisons with results
obtained by direct numerical integration of the HF equations;* and, except
for Cl7, we also give comparisons with analytic SCF functions with:very
nearly the same energy as our accurate-set-functions. The analytic func-
tions whose total SCF energies differ only in the eighth significant figure
are grouped together with the accurate-set function at the left of the tables.
Comparisons-between these functions give information of the type 2 above.
We have included, for each case, comparison with the results obtained with
the simmple basis set functions so.that the accuracy of these functions may
be determined.

For Né and .F~, we .include comparisons with the ana-lytic SCF cal-
culations of Allen,(v3(?) and for Ar and Cl17, withthe analytic SCF calcula-
tions of Watson and Freeman. (37) These calculations were performed
without using techniques for the automatic optlmlzatlon of the exponents of
the basis functlons

*For numerical HF calc_;ulat_i,ons of Ne, 7, Ar, and Cl1l~, see Refs. 32,
33, 34, and 35, respectively.




TABLE IX. Comparison of Several Hartree-Fock Calculations of Neon *

{values are in a.u.)

WOrsleyc
This Calculation a b (Numerical’ This Calculation a
Accurate Set. Fixed Cusp Set Clementi Integration) Simple Set Allen;
E -128.5&709" -128.54703 -128.54701 .. . . ... -128.54648 5128.54319
oE ) -0.00006 -0.00008 . . . . . -0.00061 -0.00390
€ -32.77233 -32.77229 -32.77277 -32.77 -32.77162 -32.76740
18 - 5 - .
ac), 0 -0.0000% +6.,00044 +0.003 -0.00071 -0.00493
Cuspy -10.0250 -10.0000 -10.0049 e -10,0101 -9.9994
atusp, +0,0250 C e e e s +0.0049 e e e +0.0101 -0.0006
1A, (10} ] 80,777 AN.T41 60.750 60.77 60.761 60.746
ala,(18)] -0,01 +0,03 +0,02 - 0 +0,01 +0,02 '
R 0.15763 1 0.15763 0.15763 . .. . . 0.15763 0.15764
8>y, ) 0.00000 0.00000 . . . . . 0.00000 -0.00001
254 0.03347 0.03347 0.03347 . .. .. 0.03347 0.03347
a<rd> g ] 0.00000 0.00000 . , . . . 0.00000 0.00000
(flar, )20 0 0.0005 o008 L .. .. 0.0005 0.0006
18Py o oy Oaer<m o - 0.0002 0.0003 0.003 0.0004 0.0005
. -1.93031 -1.93031 -1.93048 -1.933 -1.92975 -1.92592
A€y o . - © 0.00000 +0.00017 +0,003 -0.00056 ~0.00439
Cuspyy’ -10.0535 -10.0000 -10.0052 e -10.0136 -10.3010
ACuspy, +0.0335. e e +0.0052 e e +0.0136 +0.3010 o
18, (28)} 14.280 14,253 14.264 14.27 14,269 14.344 ‘
alag(es)| -0.01 +0.02 +0.01 o . 0.00 -0.07
<o 0.89209 0.89207 . 0.89216 . .. .. 0.89135 0.89267
IR . o0 +0.00002 -0,00007 e e +0,00074 -0.00058
<>, 0.96694 0.96691 0.96735 . . . .. 0.96359 0.96964
a<ry, g ) 0 +0.00003 -0.00041 e +0.00335 -0.00270
[f(AP?_R)z]é ) 0.001%4 0.0015 . 0.0054 0.0061
18P5g max 0<r ¢ 1.0 0 . 0.0002 " 0,0008 0.0003 0.0015 0.0023
l.0zr <o o 0.0009 0.0012 0.001 0.0046 0.0046
€op ’ -0.85034 -0.85033 Z0.85048 -0.852, -0.84974 -0.84610
b€y -0 -0.00001 +0.00014 +0.002,, -0.00060 -0.00424
Cusp,, -5.0003 * -5.0000 -5.0000 e -4,6751 _ -4,73%6
+ 8Cusp, . +0.0003 e 0.0000 e e -0.3249 -0.2644
Iy (25| 27.804 27.732 27.861 27.87 27.159 27479
alay(2p)] +0,07 +0;14 +0.,01 0 - 40,71 +0.39
<>2p 0.96518 0.96519 0.96537 .+« o . . 0.96477 0.96489
A<r>ay o . -0.00001 -0.00019 N +0.00041 +0.00029
<r:>2p 1.22789 "1.22787 1.22901 N 1.22516' 1.23800
- ATy o . +0.00002 -0.00112 e e +0.00273 -0.01011
[f(APzp)a]é 0o 0.0010 0.0017 e 0.0037 0.0186 )
18P0 lmax 0zr<1.0 0 0.0002 0.0006 0.0002 0.0011 0.0063
1.0gr<cw [¢] 0,0006 0.0011 0.004 - 0.0026 0.0102
3P. S. Bagus, T. L. Gilbert, C. C. J. Roothaan, and H. D. Cohen (see Ref. 9). . ’ .

bE. Clementi, C. C. J. Roothaan, and M. Yoshimine (see Ref. 7). * '
€B. H. Worsley (see Réf. 32). ) )
dL. C. Allen (see Ref. 36).



TABLE X. Comparison of Several Hartree-Fock Calculations of F~

(Values arc in a.u.)

. Fl:'oeseb
This Calculation a (Numerical c d This Calculation
Accurate Set Fixed Cusp Set Integration) Clementi Allen Simple Set
E -99. 459410 -99. 459444 C.i .. 7 -99.459363  -99.458879 -99. 457854
AE o +0.00000%4 ~ e -0.000077  '-0.000561 ~ -0.001586
€15 -25.82961 -25.82961 -25.822;  -25.82944.  25.82957 -25.82687
Beyg 0 +0.00000 -0.0074 -0.00017 -0.00004 -0, 00274
cusp, o -9.0240 ~9.0000 -9.0174 -9.0055 ~9.0124
aCusp, ¢ +0.02%0 .., L. . +0.0174 +0,0055 +0.0124
|a,(18)] 51.724 51.702 51.705 51.717 ... 51.703 51.713
alA (1s)) -0.019 +0.003 o -0.012 +0.002 -0.008
<r>yq 0.17576 0.17576 e 0.17576 0.17577 0.17575
-B<r> g 0 0.00000 . 0.00000 ©  -0.00001 +0.00001
.<r§>ls 0.04162 0,04162 . 0.04162 0.04162 0.04161
8Ly o 0.00000 0.00000 0.00000 +0,00001
[f(APl,s)?]é 0 £0.0003 e 0.0004 0.000Y 0.0006 "
16P) ¢ lnax 0£rce 0 0.0002 0,0003 0.0002 - 0.0004 0.0005
 €pg -1.07458 -1.07458 -1.0765 -1.07435 -1.07468 -1.07236
Bepg o 0.00000 +0.0014 -6.00023 +0.00010 -0.00222
cusp, -9.0678 -9.0000 -9.0345 -9.2576 -9.0753
aCaspyg +0.0678 e e +0.0345 +0,2576 +0.0753
1A,{23)] 11.683 11.667 11.669 11.670 11.729 11.688
al4,(28)) -0.01% +0.002 ) -0.001 0,060 -0.019 -
<I>5q 1.03555 1.03556 ’ 1.035!}0 1.03617 1.03333
<>, o -0.00001 . e +Q.00MmS =0,00062 +0.00822
g 1.3188b 1.31903 Ce s 1.31776 1.32219 1.30703
A<r2>28 o -0.00017 N +0.00110 -0.00333 +0.01183
[f(,gpgs)?lé . 0 0.0009 e 0.0027" 0.0035 0.0118
|8Psg I max 0<r<1l.5 o 0.0003 0.0005 0.0009 . 0.0015 0.002%
l5£r<Ke= 0 0.0006 0.0005 0.,0018 0.0026 0.,0088
[ .
'e2p -0.18098 -0.18098 -0.1815 -0.18079 ~-0.18122 -0.17886
degy o 0.00000 +0.000; -0.00019 +0.0002% -0.00212
Cusp,, -4.5322 -4,5000 -4.4282 -4,1523 -4,0292
ACusp, +0,0322 ... e e e -0.0718 . -0.3477 -0.4708
[A,(2p)] 18.861 18,882 18.849 18.740 . 18.268 18.017
ala (2p)l -0.012 -0.033 0 +0.109 " - ©  +0.581 +0.832
'<r>2p 1.25556 1.25557 1.2551:2 ' 1.25604 1.25206
a<T>pp .o . -0.00001 +0.00044 -0.,00048 +0,00350
<r2>2p 2.20956 2.20971 o 2.20516A 2.21748 2.17892-
acrly 0 -0.00015 +0.00440 -0.00792 +0.03064
([(aryy 0212 0 0.0007 Ce 0.0024 0.0076 _0.0121
loPoplyaxy 02T <5 0 0.0002- 0.0002 0.0002 0.0012 0.0021
’ l5<crce= 0 0.0003 0.0005 0.0013 0.0034 0.0067

2P, S. Bagus, T. L. Gilbert, C. C. J. Roothaan, and H. Cohen (see Ref. 9).

bC. Froese (Eee Ref. 33).
CE. Clementi and A. D. McLean (see Ref. 38).
dL.. C, Allen (see Ref. 36).
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TABLE-XI. Compariaon of Several Hartree-Fock Calculations of AArgon

{Values are in a.u.)

a
Alternate’ c
Qot )] Hartree

This Calculation Large Set Malli (Numerical This Calculatlon . Watson and

Accurate Set 8s and 7p (Fixed' Cusp Set)  yntegration) q1ementid Simple Set Preeman®
E -526.81746 -526.81745 -se6.81743 -526.81707 -526.81553 -526.81463
oE ° -0.00001 -0.00003 ., «0.00039 -0.00193 -0.00283
€14 119.6101h =118 A104? 2118.61030 -118.6 -118.60987 -118.60817 . -118.60950
beyg 0 +0.00028  °  +0.00016 0.0 -0.00027 -0.00197 ~U.yuuns
Cusp, -18.0037 ~18.0063 ~18.0000 e e e e -18.0298 -17.9582 ~17.,9727
sCusp, +0.0037. +0.0063 e e e T e e +0.0298 -0.0118 -0.0273

1a,(18)1 148,87 148.88 148,85 148.8 148.92 148,77 148,81

alag(1e)l -0.1 : -0.1 0.0 - [} < 20,1 0.0 0.0
S 0.08610 "0.08610 0.08610 Cee e 0.08610 0.08611 0.08610
<>y [+] - 0,00000 0.00000 “e e e s 0.00000 -0.00001 0.00000
(,.2>1.3 0.00996 0.0099 0.00996 . 0.010 0.00996 0.00996 '0.00996
A<!'2>ls 0 0.00000 0.00000 0.000 0.00000 0.00000 0.00000
[f(m’m)"’]i [} " 0.0001 £0.0002 e £0.0003 0.0005 0,0004
18P) ¢ 1nax 04r <w [¢] 0.0001 0.0002 - 0.007 0.0003 0,0008 0.000%
€09 -12.32193 -12,32220 -12,32214 -12.3,5 ' -12.32150 -12.32139 -12.32141
860y 0 ) © 40.00027 +0,00021 +0.0) -0.00043 *..-0.00054 -0,00052
Cusp,, -17.9965 -‘18_.0049 -18,0000 . . . . . -17.9940 -17.9891 -18.2048
ACusp, -0.0035 +0,0049 - e e e e e e e e -0,0060 -0.0109 +0,2048

1a,(28) | 42,257 ) 42.266 - 42,244 42.25 42.254 42,252 42.276

ala (2s)] -0.01 - -0.02 +0.01 - o 0.00 0.00 -0.03
Ty 0.41228 0.41227 0.41229 e e 0.41228 0.41231 0.41228
A<ED, [ T +0,00001 -0,00001 e e e . 0.00000 -0.00003 0.00000
<r2>25 0.20123 0.20122 0.20123 0.201 . 0.20122 0.20125 0.20122
A<P2>2 s ¢} +0.00001 0.00000 0.000 +0.00001 -0,00002 +0.00001
[f(APZS)eﬁ o 0.0005 . N 0.0008 0.0005 0.0006
18Psg | nax 0%r <035 0 0.0002 0.0002 0.002 0.0002 0.0004 0.0003
03541 <™ [} 0.0005 0.0002 0,002 0.0006 0.0006 0.0005
€3q -1.27725 -1.27734 -1.27735 -1.2775 -1.27692" ~1.27666° -1.27649
X 0 +0.00009 +0.00010 +0.000, -0.00033 -0,00059 ~0.00076
Cuspqg . -17.9689 -17.9517 ' -18.0000 e e e -~18.0976 -17.7582 -17.9798
aCusp, -0.0311 -0.0483 e e +0.0976 -0.2418 --0.0202

1a,(39)1 13.199 13.197 13.199 13.21 13.222 13.146 13.201

alA,(38)1 +0.01 +0.01 +0.01 o -0.01 +0.06 40,01
«535 1.42196 1.42228 ' 1.32192 e e e - 1.%2256 1.52218 1.42252
a<r>3, [ -0.00032 “+0.,00004 e e e -0,00060 -0, 00022 -0,00056
<"§>3s 2.34912 2.35086 2,34888 2.348 2.35144 2,34981 2.35372
B<ro>qg o © -0.001T4 +0.00024 +0.001 -0.00232 -0.00069 '-0.00460
[f(APBs)zlé X [ 0.,0009 0.0004 e e e 0.0025 . 0.0006 '0.0059
18P34 Imax 0gr<l.2 0 0.0002 0.0002 0.001 0.0009 0.,0007 0.0003
l.2ger¢e 0.0042

o 0.0006 0.0002 0.001 0.0021 0.000%



TABLE XI. Costinued |

(Values are in a.u.)

. v Alternate? Hartree®

This Calculation Large Set Malll (Numerical a Thie Calculation Watson a d

Accurate Set 8s and Tp (Pixed Cusp Set) 1Integration) Clementi Simple Set Preeman
€2p -9.57127 -9.57152 -9.57146 -9.57g -9.57083 -9.57061 -9‘-57072
e, [} +0.00025 +0,00019 +0.00, -0.00044 -0.00066 -0.00055
Cuspy, -8.9259 -8.957T -9,0000 e e e -8.9011 -8.6098 -8.7697
aCusp, -0.0741 -0.0423 e e e e -0.0989 -0.3902 -0.2303

'|A°(2p§| '181.89 182.07 182.14 182.35 181.81 179.21 180.54

A|A°(2p)| i -0:0.‘66 +0.2g +0.2; - . [} +0.5; +3-15 +l.81
@y '0.37533 0.37533 0.37533 . . 0.37529 0.37527 0.37536
A<y, [} 0.00000 0.00000 e +0.00004 +0.00006 ', -0.,00003
<x-2>2p 0.17434 0.17434 0.17434 0.174 0.17430 0.17427 0.17437
A<r2>2p [+ 0.00000 0.00000 0.000 +0.00004 +0.00007 ~-0.00003
[‘/‘(APQP)ZJé 4 0.0065 0.0004 e 0.0009 0.0028 0.0016
|AP2p|mx 0er¢ew [ 0.0002 0.0003 0.002 0.0007 0.0026 0.0014
3 -0.59092 '-0.59102 ~0.59099 -0.590, -0.59071 -0.59046 -0.58997
se3p <} +0.00010 +0,00007 -0.000, -0.00021 ~0,00046 -0.00095
Cuspy, . -8.8809 -8.9472 -9.0000 - -8.9216 -8.6399 -9,1924
Amsp” 0 1191 10,0509 e e e PR -0.0784 -0,3601 +0,1924
ba,(3p)1 50,707 50.824 50,804 50.97 50,790 50.018 51.638

INENE S +0.26 +0.15 +0.17 o +0.18 +0.95 -0.67
T35 1.66276 1.66289 1.66298 1.66181 1.66156 1.66343
a<ryg, o -0.00013 -0.00022 e +0.00095 +0,00120 - =0.00067
<x-"’>3p 3.30917 3.31003 3.31087 3.312 3.30105 3.29947 3.32762
A<r2>3p ¢} -0.00086 -0.,00170 -0.003 +0.00812 +0.00970 ~0,01845
[f(u3p)2]§ o 0.0006 0.0019 e 0.0051 0.0051 0.0179
18P0 I nax 0Ozr¢l.3 0 0.0003 0.0002 0.001 0.0009 0.0007 0.0025
"l.3£r < o 0.0004 0.0011 0.001 0.0032 0.0033 0.0096

3P. S. Bagus (uripublished).

bG. L. Malli (to be published).

P, R. Hartree and W. Hartree (see Ref. 34) solved the SCF equations with exchange only for the 3s and 3p wave functions; the 1s, 2s, and 2p wave

functions with exchange were obtained from the functions without exchange and interpolation between the values for Catt, Kt, and C1™.

dE. Clementi (see Ref. 39). Details of the function are not published in Ciementi's paper but are available at the Library of Congress {see Ref. 40).

CR. E. Watson and A. J. Freeman {see Ref. 17},
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TABLE XII. Comparison of ‘Several Hartree-Fock Calculations of C1~

(Values are in'a.u.)

a

Hartree
This Calculation (Numerical Watson agd This Calculation
..Accurate Set Integration)  Freeman Simple Set
E -459.57684 . -459.57499 -459.57362
AE 0 e e -0.00185 -0.00322
€15 -104.,50546 -104.5. -104.,50829 -10%,50086
b€, 0 +0.0,, +0,00283 -0.00460
Cusp, ¢ -17.0048 .. -16.9691 216.9635
ACusp, o +0.0048 . v i 0.0309 =0.N360%
1A, (18)] 136.48 136.5 136,41 136.40
.AIAo(ls)I. 0.0 0 +0.1 +0.1
<F>1g 0.09130 e e e .,0.09130 0.09130
A<Dy g [¢] e e e e 0,00000 0,00000
<r2>ls 0.01120 0.01; . -0,01120 0.01120
A<r2>ls ) : : 0,00, 0.00000 0.00000 .
[f(APl.s)z]% 0 e e 0.000} 0.0005
VS S0 N Ocercw ) 0.001 0,0005 0.0008
£2g -10.22916 -10.23 ~10.23225 -10.22595
I o +0.00g “+0.00309 -0.00321.
Cusp, g -16.9933 . i . -17.0174 -16.9902
ACu'sp23 -0.0067 o« et . "+0.0174 -0.0098
la (2s)l 38.238 38.24 38.254 138.238
ala (28)] 0.00 " - 0 -0.01 0.00
<o -0.44180 . . 0.44179 0.44181
BT Dng o .. +0,00001 -0.00001
<r2’>23 0.23129 0.23; 0.23129 0.23130
acr?s, 0 0.00, 0.00000 -0,00001
N 4
[f(Ast)e]? 0 C e 0.0006 £0.0003
laPoglnax 0<r<o.35 0 0.001 0.0003 0.0002
03547 < o 0 0.001 . 0.000%4 0.0003
€3 -0.73320 -0.727 -0.73547 '-0.73031
aegg 0 -0.006 +0.00227 ~-0.00289
Cusp,, -16.9622 . -17.0158 ~16.7602
ACusp .-0.,0378 e e +0.0158 -0.2398
[8,(38)] 11.261 11.31 11.273 11.209
A|A°(3s)|' +0.05 (o] +0,04 +0.10
T34 1.60179 . 1.60163 1.60242
B<TS4g 0 .. +0.,00016 -0.00063
<r2>3s 3.01041 3.01, 3.01207 - 3.01262
A<r2>3s 0 -0.00, -0.00166 -0.00221"
N .
[f(m>3s)2]2 0 e 0.0051 0.0007
|8P3g | max 0zr<1l.3 0 0.001 0.0002 0.0010
1.34r<w 0 0.002g 0.0032 0.0003



TABLE XII. Continued

(Values are in a.u.)
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. 'Hartree® )
This Calculation * (Numerical - Watson agd This Calculation
Accura’ge Set . Ir_ltegration) Freeman Simple Set
€2p -7.69557 . ~T.695 -7.69866 -7.69225
Bepp - o} -0 -0.00, "+0.00309 -0.00332
cusp,, -8.4401 Cee -8.2818 -8.0692
ACusp, -0.0599 e e e e e -0.2182 -0.4308
|A°(2pg| 153.63 154.1 152,46 150.73
ala,(2p)] “+0.5 " - o +1.6 +3.4
Top 0.40538 e 0.40540 0.40525
A<D 0 e e e -0.00002 +0.00013
@2>2p . 0.20386 0.20, 0.20387 0.20369
A<I‘2>2p 0 0.060,, -0.00001 +0.00017
[f(APzp)Q]% 0 ce e ~0.0012 0.0034
1850 I max 0srco 9 ) 0.001 o..ooc)9 0.0031
€3p -0.15017 . -0,1485 . =0.15172 -0.14772
Beg, 0 . -0.0016, +0.00155 -0.00245
‘Cusp3p -8.3803 e e e e . -8.6557 -8.1451
ACuspy -0.1197 e e +0.1557 -0.3549
le(3p§l 37.927 38.02 38.601 37.468
ala,(3p)] +0.09 . 0 -0.58 +0.55
<r>q, 2.02880 e e e 2.03967 2.01910
B<I >, 0 e e e -0.01087 ] +0,00970
<’r2>3p 5,10806 5:13, 5.22941 5.01079
a<r®s o - -0.02 -0.12135 +0.09727
3p 9 B
[f(AP3p)2]% o e e e 0.0207 0.0209
\Ap3p|max 0gr<l.5 0 i 0.001 o.002§3 10.0021
1.54r<cw 0 0,001 0.0102 0.0116

ap. R. Hartree and W. Hartree (see Ref. 35). »

bRr. E. Watson and A. J. Freeman (see Ref. 37).
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AN

Where analytic calculations of other workers are reported, we have
used their basis sets to recompute their functions with our program. This
was done so that all the properties of each calculation would be available

" for comparison.: Tables IX-XII present the results obtained from our re-

calculations. Our recalculations agree closely with the original
calculations. S

The total SCF energies in Tables IX-XII are given to eight significant
figures. Although round-off error affects the eighth figure, this is the only
way to distinguish the energies of several of the functions. For each orbital,
we give the values of the orbital energy €5y, cusp, Ay(nf), the dominant
term in the expansion of the radial-wave function near the origin [defined in
Eq. (13)], and the expectation values of r and r2.

Direct comparisons are also made for the radial wave functions
Pphy(r). For each orbital, we give values of the quantity"

[o0]
[f [Paccurate set(r) - Pcomparison(r)]zdr:l
0 .

" denoted in the tables by [ [(AP,7)?]Y%. This is a sum of the differences of

the radial wave functions over their entire range and may be used as an
overall figure of merit for the quality of the comparison function. (This -
comparison cannot be made with the numerical functions. The radial
wave functions obtained with the accurate basis sets and by numerical
methods usually agree within one or two units in the last £1gure given in
the tabulation of the numerical functions, and [ [(APp)?]"? calculated from
these differences would only reflect rounding errors.). The tables also
give the maximum value of [AP(r)| = |P,ccurate set(r) - Pcomparison(t)]-
For some orbitals, IAleax is given for two ranges of r to indicate that
the agreement between some of the radial wave functions is considerably
better for the inner portion of the function than for the tail. The limit of
the ranges is arbitrary. Except for a small range of values of r, usually
at the tail of the orbital, IAP | is smaller than IAP |max Thus
|AP(x |max gives the worst view of the accuracy of the or'bitals. '

The differences given in Tables IX-XII (AE A€, etc.) are usually
defined as

AProperty = Property (accurate set)
- Property (comparison function). (14a)

The exceptions are

ACusppy = -Z/(ﬁ +1) - Cusp,, gy (comparison function), (14b)



‘A |Bo(ng) [ = |Ao(n£) [numerical‘calcu'lat_ion]l

- |Ao(nt) [comparison function]|. (14c)

For Ay(nf), numerical calculations were chosen as a standard of compari-
son because numerical techniques require that the radial functions be de-
termined. accura’cely at the origin. The numerical integration is:started
outward from r'= 0, and the results are sensitive to any error in the

function at the origin.

The values of the radial wave functions obtained from the accurate
basis SCE calculations agree strikingly well W1th the values obtained from
numerlcal calculations. :

Worsley(32) gives the neon radial functions, tabulated at logarithmic
intervals, to four decimal places exéept for the tail region of each orbital
where they are given to only three decimal places. Worsley claims that
the functions are accurate to within two or three units in the last figure
given. At every point Worsley tabulates, the difference between our-accurate
set results and her numerical results, IA'P )I, is'within this limit except
for four points. At the great majority of tabulated p01nts, IAP I is 0or 1
in the last figure Worsley gives. :

Froes_e(33) .claims.that her radial wave functions for F~, given to
four decimal places, are accurate to 0.0002. - The differences with our
accurate-set results are within this limit with only a few exceptions. At
two points, AP, (r)|] = 0.0003; at ten points, |AP,g(r)| is between.0.0003
and 0.0005; and at five points, ]APzp(r)li is between 0.0003 and 0.0005.

Hartree and Hartree(34,35) give the radial wave functions for Ar
and Cl~ to three decimal places; for the 3s and 3p orbitals of Cl-, they
tabulate 2P(¢) rather than P(r) in order-to obtain additional accuracy.’

For argon, I/_\,P )ﬂ has its largest values at five consecutive points and
is between 0. 003 and 0.007; at several points of the 2s and 2p radial '
functions, |AP(r)| has its maximum value of 0.002. For the ar gon .3s and
3p radial functions, |AP(r I is usually 0.000 and is never larger than

0.001 (i.e., 0 or 1 in the last figure that Hartree and Hartree give). The .
relatively large disagreements for the ls, 2s, and 2p radial functions occur

‘because Hartree and Hartree did not obtain these functions by direct solu--

tion of the HF -integro-differential equations but rather by an interpolation
between results for Cl~ and ‘K*. Their 3s and 3p functions, on the other

‘hand, were obtained as self-consistent numerical solutions of the HF equa-

tions. This explanation is supported by the. fact that, for the ls, 2s, and

.2p orbitals of the Hartree and Hartree calculation on CI-, iAP [ is never -

larger than 0.001. Although the agreement between our results and those
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.cf Hartree and Hartree for fhe 3s and 3p orbitals of Cl~ is still good, it

is not-as good for these orbitals as for the others. For 'the 3s radial
function, 2|AP(r )| is 0.005 at one point in'the tail of the function, 0.004 at
the two adjacent points, and 0.002 or 0.003 at several p01nts for the 3p
function, there are also several points for which ZIAP l is as large as
0.002 and 0.003.

For Ne, F°, .Ar, and Cl1°, the agfeement between the numerical
and accurate basis set analytic radial functions is, in almost all cases,.
within the error of the numerical calculations. The 3s and. 3p radial
functions of Cl~ obtained by Hartree and Hartree are slightly: more ‘ac-
curate than the accurate basis set analytlc functlons .

The diff'ere'nces between the orbital energies l€-n,@ obtained from ‘the

~accurate set analytic SCF calculations and from the numerical calculations:

are sometimes larger than might be expected from the small differences
between the radial wave functlons This can be explained from the different
way that the €'s are obtained by the two. methods.: In the analytic method,

'the € given is obtained directly as the expectation value of the Fock operator

for the orbital, €ng =< Pny IF'¢n£> In the numerical calculations dis-
cussed, € is treated simply as'a parameter to be adJusted until the solutions
of the HF equations approximately satlsfy the boundary conditions placed

on them. The results of the accurate analytlc SCF calculations should give
better values of the €'s than the numerlcal calculations.

The accuracy of the accurate basis set SCF functions given in
Tables I-IV has been estimated. The estimates used the téchniques de-
scribed -above and, in large part, the 1nformat10n given in Tables IX-XII.
The estimates are generous and probably indicate, for' most of the.func—
tions, errors larger than the true errors. -

The total SCF energy, EgCF, represents the exact' HF total
energy to within two units in the seventh significant figure, and the
€n£'s are accurate to about five units in the same decimal place that the
error enters-the total energy. When Egcp <100, the €,4's are accurate
to five -units in the fifth decimal place, and when EscF = 100, to f1ve units
in the fourth decimal place.

For the states of the heavier atoms (chlorine, argon, and potassium)
the 1s, 2s, and 2p radial wave functions do not differ from the exact HF
solutions, for any value of r, by more than 0.0005. The ls radial function
is probably accurate to within 0.0002. The 3s and 3p radial functions are
definitely accurate to within 0.0015, and over much of the range of r are
accurate to within 0.0005. The only exception is the 3s radial function
of Cl17, where the error is as large as 0.0025 for a falrly small range of
r near the tail of the functlon
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For the states of the light atoms (fluorine, neon, and sodium), the
radial functions are accurate to within 0.0005. The 1ls radial function is
accurate-to within 0.0002. The -2s and 2p radial functions-have an error
smaller than 0.0005.

The radial wave function of the outermost s shell (2s for the llght
atoms, and 3s-for the heavier atoms) is the least accurate-function for
any given state. The outermost s shell makes the smallest contribution
to the total energy and so is least well-determined by the exponent variation
procedures which optimize the total energy. .

The accurate set SCF functions givén in Tables I-1IV, except er
Cl~ and the ls-hole state of K*, represent the limit of accuracy which
can be obtained using the single-precision, eight-significant-figure,
floating -point arithmetic of the: IBM.,704 and 7094 computers. The Cl- ‘SCF
function could probably be improved with the addition to the basis set of an
s, and possibly a p, basis function. The function for the ls-hole state of
KT could be improved slightly if the numerical evaluation in the exponent
variation procedures were altered.to minimize round-off error. (This
change has already been made-in the latest versions of the SCF programs.)

C. Properties Iof_ the SCF Wave Functions

Expec‘;ation-vahies of r and r2, for all the states computed are
given in Tables XIII and XIV. These expectation values were calculated
from the accurate basis set SCF functions. For each state, the expecta-

tion values of r and r® given are taken with respect to each occupied

orbital, <z>,y = fooo [Png(Ar)]Zrdr and <r?>pg = fom'[Png(r).]Zr’-dr. In

addition, the average values of the <r> and <r2> aregiven. The average
value of <{r> is defined by ZNn£<r>n£/ZNn£,where Nnf is the electronoccu-
pation of the nfgth orbital and.the sum is over all occupied orbitals. The
values of <{r> ni and <r%®> nf represent the exact HF values to within a

few units in the last figure given. The values of <r2>n[/ for the outermost -

s. and p orbitals of a system are least accurate, and the errors may be

as large as 20 units in the last figure.  These estimates of accuracy may

be checked by reference to the comparisons given in-Tables IX-XII.

"An extra figure.is given for the average values of <r> and <r?>
to avoid round-off error if these values are multiplied by the -total number
of electrons in the system to give <Zr;> and <Zri)>.

Nonzero overlap integrals between mahy—electron SCF wave.func-
- tions, calculated from the accurate-basis set SCF functions, are givén in
Table . XV. These results are presented in connection with the.discussion,
at the end of Section II, of the lack of orthogonality between excited- and
ground state’ SCF functions of the same symmetry.
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TABLE XIII. Expectation Values of r aﬁd r? for F-, Ne, and Na?t and )
. nf-hole States of F~, Ne, and Nat
(Values are in a.u.; 1 Bohr = 0.52917A)
F(1s) ®(°p) F(°s) F(°s) .
2p-hole 28-hole 1s-hole
<T>ig 0.1758 0.1757 0.1760 0.1718
<T>oq 1.0355 1.0011 0.9885 © 0.9435
<T>pp 1.2556 1.0847 1.0934 0.9659
IN ISy /2Ny 0.99560 0.86111 0. A7790 0.87267
<r2>1s 0.04162 0.04161 0.04177 0.04045
<re>, g 1.3189 1.2164 1.1827 1.0836
<r2>2p 2.2096 1.5429 1.5738 1.2245
ZN&<r2>1/zNi 1.59783 1.13672 1.18988 1.06166
Ne (1s) Net(°p) Net(%s) Ne*(%s)
2p-hole 2s-hole ls-hole
<r>ig 0.1576 0.1576 0.1578 0.1454
<o 0.8921 0.8603 0.8536 0.8171
<T>pr 0.9652 " 0.8759 0.8841 0.7993
zN3<r>i/§N1 0.78905 ° 0.71280 0.71931 0.73159
<25 g 0.03347 -0.03344 0.03357 0.03260 -
<o 0.9669 0.8903 0.8751 0.8056
<r2>2p 1.2279 .0.9820 "1.0032 0.8196
SNy <r2>, /5Ny 0.93682" 0.75081 0.77351 0.72903
Na*t(1s) Natt (p) Nat*(®s) Natt(2s)
2p-hole 2s-hole .1s-hole
<> 0.1429 0.1428 0.1430 0.1403
<r>25 0.7791 0.7530 0.7491 9.7196
<r>2p . 0.7962 0.7385 0.7453 0.6845
2Ny <>y /2Ny 0.66214 0.60932. 0.61190 0.63182
-.<r2>ls 0.02748 0.02744 0;02f55_ 0.02681
<>, 0.731%4 0.6779 0.6703 0.6210
re 0.8159 0.6889 0.7033 0.5932
<> )
zNi<r2>i/zNi 0.64130 . 0.53945. . 0.54949 . ©0.53645




TABLE XIV. Expectatlon Values of r and r? for Cl-, Ar, and Kt and nf-hole States
, Ar, and K*

of Cl

(Values are in a.u.;. 1 Bohr = 0. 52917A)

c1”(*s) c1(%p) c1(®s) c1(%p) c1(%s) c1(3s)
: 3p-hole 3s-hole 2p-hole 2s-hole 1s-hole
<>ig 0.09130 0.09130 0.09130 0.09121 0.09134 . 0,09031
Copg . 0.4418 0. 4417 0. 4424 0.4338 0.4390 0.4226
T3 1.6018 1.5557 1.5341 - 1.4696 1.4759 1.451%
<>pp 0.4054 0.4057 ‘o.goso 0.400k4 ‘>o.3952 0.3776
E>3p 2.0288 1.8418 '1:.8380° 1.6928 1.6992 1.6623
IN; <P /5Ny 1.04860 0.93065 0.94469 0.94988 0.94942 0.94573
<r?>ls 0.01120 0.01120 0.01120 0.01117 0.01122 0.01105
<r2>2s 0.2313 0.2312 0.2321 0.2225 0.2300 0.2117
<r >3S 3.010% 2.8131 2.7299 2.5069 2.5364 2.4472
<r? >2p 0.2039 0.2043 | 0.2034 0.2020 0.1930 0.1762
<r2>3p 5.1081 4.0575 4,044 3.4504 . 3.4480 3.3052
zni<r >1/zN1 2,13207 1.62498 1.68842 1.59608 1.59830 1.54220
ar(*s) - ‘art(®p) art(®sy Art(®p) art(%s) Art(3s)
. - 3p-hole 3s-hole 2p-hole 2s-hole 1s-hole
> 0.08610  0.08610  0.08611 6.08602A 0.08614 . 0.08523
<Toog 0.4123 T 0.4121 0.4128 0.4052 0.4100 0.3954
<T>3q 1.4220 1.381% 1.3679 1.3162. 1.3209 1.3005
<Tpp 0.3753 0.3756. . 0.3749 10.3714 0.3667 0.3515
<3, 1.6628 1.5584 1.5589 1.4560 T 1.4627 1.4321
2N1<rxi/aﬂl 0.89274 . 0.81205 0.82171 0.83576 n.83531 0.83408
<r? >1s 0.00996 0.00996 0.00996 0.00994 0.00997 0.00983
<r2 >2s 0.2012 0.2010 0.2019 0.1940 0.2003 0.1852
<r? >3s 2.3491 2.2018 2.1570 1.9980 2,0185 1.9517
<r? >2p 0.1743 . 0.1747 0.1739 0.1730- 0.1658 < 0.1524
<r >3p 3.3092 - 2.8601 2.8642 2.5102 = 2.5196. -2.4179
N, <r >1/>;Ni 1.44565 1.18672 1.22406 1.19586. 1.19821 1.15911
K+(ls) : AK++(2P) , Kf*(zs) K++k2P) K++(2S) K++(2S)
. . 3p-hole 3s-hole 2p-hole 2s-hole 1s-hole
{r>ls 0.08147 0.08146 0.08147 0.98139‘_ . 0.08150 0.08069
oy 0.3864 0.3861 0.3869 0.3801 0.3845 0.3715
<I>yq 1.2768 i.2§35 1.2341 " 1.1922 o 1.1959 1.1787
<Tpp 0.3494 0.3496 0.3490 0.3462 " 0.3419 0.3287
T3 1.4312 1.3611 1.3629 ;.2850 1.2915 1.2657
ZN3<P>1/2N1 0.78740 0.72503 0.73189 0.74991 0.74942 0.74987
<r2>ls 0.00891 0.00891 0.00891 0.00889  0.00892 0.00880
&r2 >25 0.1766 0.1763 0.1771 0.1706 0.1759 0.1634
. <r? >3s 1.8818 . 1.7761 1.7481 1.6320 _ 1.6477 1.5962
<r? >2p 0.1508 0.1511 0.1504 0.1497 0.1439 0.1330
<r? >3 2.4161 2,1646 2,1712 :1.9402 - 1.9497 1.8741 -
Ny < >1/§N 1.08532 0.92071 0.94%07 0.94193 0.94416 . 0.91592

45
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TABLE XV. Overlap Integrals between Total SCF Wave
Functions of the nf-hole States

F- Ne Nat

‘23 States <¥(2s-hole) | ¥(ls-hole)> 0.003984 0.003380 0.002876

Cl- Ar Kt
2P States  <¥(3p-hole)|¥(2p-hole)> ' 0.009428 . 0.008299 0.007285,
<¥(3s-hole) | ¥(2s-hole)> 0.006062 * 0.005469 0.004906
%S.States <¥(3s-hole) |¥(ls-hole)> -0.000514 0,000486 0.000457
<¥(2s-hole) | ¥ ls—.hole)> 0.001264  0.001131 0.001018

D. Validity of the Exponent Variation Procedure for Excited States

The basis-function exponent variation procedure, described in
Section III, selects values of the exponents that minimize the total SCF
energy. This is a valid procedure for ground states and excited: states:
that are the lowest states of a symmetry species. SCF functions for
these states give stationary values of the energy that are absolute minima.
It is not known whether the 'SCF functions for the higher excited states -
of a symmetry species give stationary values of the eriergy that are
relative minima or some other sort of extrema. The problem, for these
excited states, is that exponents.chosen to minimize the total energy may
not give SCF functions that are opt1mum representations of the.true
HF solutions.

If explicit variational equations, €.g., those given by Dehn (26)
were solved for the exponents; of the basis functions, there would be no
difficulty with the higher excited states:. In this way, stationary-values
of the energy would be found with respect to variation of the exponents
as well as the linear coefficients, nl,p: However, when our exponent
variation procedure is'used, a partlcular stationary value of the energy
with respect to variation of the exponents is found in a brute-force

-fashion. This point was discussed in Section III. The particular stationary

value found is a minimum. For all the exponent variations performed to
obtain the 'SCF functions reported in this paper, this stationary value was
found with no more difficulty for the excited states than for the ground
states. : : '

It seems unlikely, for an -analytic-expansion -SCF function of a
particular-state, that there will be more than one stationary value of the
energy. It is reasonable that the solutions of variational equations for °
both the Cpg p's and.the exponents are unique. If this is true, then the
use of our exponent variation ‘proc'edur‘.e. is justified..’



The procedure may also be justified from the results of the SCF
calculations. The virial theorem, which may be used as an indication of
how well the exponents of the basis functions have been optimized, is
satisfied equally well for the excited-state wave functions and the ground-
state functions. The cusp condition is-also satisfied equally well for the
excited-state functions and the ground-state functions. . This can be easily
confirmed by reference to Tables I-VIII. Further, as may be secen from
Table XVIII, the calculated ionization potentials, for the removal of inner-
shell electrons, agree quite well with experimental values.

The success of our method of exponent variation implies that the
total eriergy of analytic-expansion SCF functions, even for excited states,
is an upper bound to the exact HF energy. The results in Table XVIII
also show quite clearly that the SCF energies are, in fact, upper bounds
to the exact, nonrelativistic, total energies. According to estimates made
by Clementi,(43) the exact nonrelativistic energy is ~0.4 Hartree below
the SCF energy for F-, Ne, and Nat (E . = Egcp - 0.4) and ~0.7 Har-
tree below the SCF energy for Cl-, Ar, and K* (Enhr = Egcr - 0.7). The
calculated ionization potent1a1 IP(AESCF) is obtained by subtracting the
SCF energy of the parent from that of the ion; i.e., IP(AESCF) =
Egcplion) - ESCF(parent) Suppose the SCF energies of the inner-shell
hole states were not upper bounds to the exact energies. Then IP(AESCF)
for the removal of an inner-shell electron would have to be much smaller
than the true nonrelativistic ionization potential; at least 0.4 smaller for
the neon-like.ions and 0.7 smaller for the argon-like ions. This is ob-
viously not the case.

E. Effect of the Off-diagonal Lagrangian Multipliers

The constraint, given in Eq. (7), that the SCF orbitals belonging
to the same symmetry species be orthogonal is incorporated by intro-
ducing off-diagonal Lagrangian multipliers into the HF equations.(2'5)
Orbitals of different symmetry are, of course, automatically orthogonal.
For closed-shell systems, a unltary transformation can be found between
the occupied orbitals that puts the matrix of Lagrangian multipliers into
diagonal form. This additional requirement that the off-diagonal
Lagrangiah multipliers be zero serves, in fact, to uniquely define the
SCF orbitals. For open-shell systems, it is possible to find a unitary
(ransformation between the closed-shell orbitals for which the off-
diagonal Lagrangian multipliers coupling the closed shells are zero.
However, the Lagrangian multipliers that couple open and closed shells
~of the same symmetry cannb'p be reduced to zero.(3:'4_) '

In other treatments the nonzero off- dlagonal Lagrangian multi-

pliers are introduced into the HF equatlons as 1nhomogeneous terms;(16,29)

i.e.,

Fo; = €0 + 2j#i65i%;. S o (15)
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Because of the difficulty of handling these additional inhomogeneous terms,
the off-diagonal 'Lagrang‘i‘an multipliers are-often treated in an approximate
way.(13:14:42) Ro,othaan(3’4) has shown that it is possible, through the-use
of ‘coupling operators, to absorb the terms involving the nonzero off-diagonal .
multipliers into the HF operator, thus preserving the pseudoelgenvalue ‘

-form of ‘the "HF equations.

This m'ethod is especially suitable for the matrix form of the HF
equations. The matrix HF operators(4)A are

Ecg = Hy +B4 + Rog.

‘and. : : : ' ’ . | »(‘16>

Fog = Hy + By -Qp+ Rcui

where Ecy and Foy are closed-shell and open- shell Fock operators,
respectively, for symmetry species [, Hy is the one-electron.operator,
Py and Qg are combinations of Coulomb and exchange operators, and
RO,@ and Rcy are the coupling operators’. (The:eigenvalue problem is

Ec = €Sc where S is the overlap matrix.) Let the index k stand only
for closed-shell orbitals, and m only-for open-shell orbitals; the é‘oupling
operators are defined so that for self-consistent elgenvectors of ch and

Fou

and ; -l A R e (17)

RCoeml = H-Okf,mAgkh):

The 6., p kg and Ok g, my are-the off-diagonal Lagrangian multipliers that
couple the open and closed shells, Note that they'are not symmeétric, but
that : :

NogOkg,mg = NCgOmy, kg L - - (18)

where N g and Npg are the electron occupations of the closed: shells
and open shell, respectively, of symmetry ¥.

The values of the nonzero off-diagonal Lagfangian multipliers
for the nf-hole states of argon and neon are given in Table XVI. These
values were c'om-puted_iwi'th the ‘accurate set' SCF functions reported in
Tables I-IV. While the off-diagonal Lagrangian multipliers are fairly
small for states with open outer shells, they are more than an order of
magnitude larger for states with opern inner shells. The values of the
off-diagonal Lagrangian multipliers for the nf-hole states of Cl~ and K%,
and F~ and Nat are’similar to the values given in Table XVI for argon and
neon. :
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TABLE XVI. Off-diagonal Lagrangian Multipliers for the
. nf-hole'States of Argon and Neon* =

Open )
- State Shell . eopen shell, closed shell
Qnsf,ls - Ons,2s ' »»6ns,3sA
Art(3s-hole) . 3s --0.00136 +0.01046 :
Art(2s-hole) 2s +0.04518 . +0.13093
Art(ls-hole) Is S +0.72661 -0.22742
©np,2p énp,3p
Art(3p-hole) . 3p . +0.01672
Art(2p-hole) 2p S +0.24923
ens,ls ' ens,Zs.
Net(2s-hole) 2s ’ +0.01644
NeT(ls-hole) . 1s ’ e +0.37522

*The Lagrangian multipliers are not symmetric; 9.)psed, open =
(N./Ng) @pen, closed: Where N¢ and:N, are the electron occu-
pations of the closed and open shells; respectively.

The most striking effect of the inclusion of the off-diagonal
Lagrangian multipliers is that the ls orbitals, of the ls-hole states of
Cl™, Ar, and K%, have a node. In each of these cases, P,4(r) goes
through zero and reaches a minimum value of -0.003. For example,
P,g(r) for Ar? (ls-hole) is zero for r = 0.93 Bohr and.has-a minimum
of -0.0028 for 1.30 = r = 1.45. For large r, the HF equation for P 4(r)
becomes 4 ' .

€1sP15(r) = -65,15P25(r) - G55 15P35(r). (19)

For Art (ls-hole), when the values in Tables III and XVI are -used,
Eq. (19) becomes ' '

Ps(r) T +0.01142P,5(r) - 0.00357P;4(r), - (20)

and the second term is dominant since the 2s radial function goes to zero
much before the 3s radial function does. For r = 1.2 Bohrs, P,4(r) cal-
culated from Eq. (20), using the accurate-set 2s and .3s radial functions,
agrees with thé accurate-set analyfic SCF 1s radial function to within
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.0.00006. The error is‘always less than 3%; this is remarkably good agree-

ment, especially since the analytic expansion method does not give exact
solutions of the integro-differential HF equations.

The dominant terms, 'in the HF equations, that determine the be-
havior of inner-shell orbitals at large r are the nonzero off-diagonal
Lagrangian multipliers with the outer-shell . orbitals. With the exception
of 6,5 35 for the ls-hole and 3s-hole states of C1~, Ar, and K¥, the off-
diagonal Lagrangian multipliers, for the states reported in this paper, are
positive. The effect of the positive off~diagonal Lagrangian multipliers is:
to extend the tails of the orhitals rather than to introduce additional nodes.

The signs of the off-diagonal Lagrangian multipliers are determined
by the sign conventions used for the SCF orbitals. The signs of the orbitals
have been chosen so that the 1s, 3s, and 2p radial functions are positive
as r - 0, and the 2s and 3p radial functions are negative as r - 0. Be-
cause of this choice, the values of Ppy(z) ‘in the (n - £)th loop, usually the
outermost loop of the orbital, will be positive. This is a departure from
the convention usually used in numerical HF calculations, (16,32-35)

-which is that all radial functions are p031t1ve as r - 0.

The negative-value of O;5 g should 1ntroduce a node into the ls
orbital of the 3s-hole states. However the maximum value of P,g(r) in
the outer loop would be-only -0.00001. This is beyond the accuracy of the
present calculation and too small to be of any interest.: :

To get further insight into the importance of the off-diagonal
Lagrangian multipliers, an approximate treatment was developed. The
matrices Rpy and RCy were arbitrarily set equal to zero, and "self-
consistent" solutions using the operators,

Fcg =Hp + B2

and S | - C(21)

Fog = Hg + Bp - Qu»

rather than .EC)@ and Eojp of Eq. (16), were obtained. The -occupied open-
‘shell eigenvector. of E(y is not orthogonal to the occupied closed-shell

eigenvectors of Ebﬁ Since -the operators of Eqs. (16) and (21) are assumed
to be constructed from an orthogonal set of orbitals, the open-shell eigen-.
vector was Schmidt- orthogonahzed to.the closed-shell eigenvectors. This

- Schmidt orthogonallzatlon does not ¢hange the total determinantal wave

function. A "self- consistent” solution was obtained when the Schmidt-
orthogonalized eigenVvectors of Ey and Ecy were the same, within con-
vergence thresholds, as the orthogonal vectors -used.to construct the
operators Fny and ElCﬂ of Eq. (21).



Since this method neglects the off-diagonal Lagrangian multipliers
in constructing the dperators Ebﬂ ‘and E'CZ-’ "self-consistent" solutions
obtained, using Fny and F¢y, are denoted by NLM (Neglect Lagrangian
Multipliers) to distinguish them from the SCF solutions obtained using
the operators of Eq. (16).

NLM calculations were performed, using the accurate basis sets
of Tables I and III, for the nf-hole states of argon and neon. The results
of these calculations are given in Table XVII. The NLM calculations were
performed on the IBM 704 and are compared with SCF calculations also
performed on.the 704. The values of E(SCF) and V/T(SCF) given in
Table XVII differ slightly, because of round-off, from the values given in
Tables I-IV. Values of the total energy E (in Hartrees), V/T and the
overlap integrals Spj n'y between the occupied eigenvector of EOﬂ and
the occupied eigenvectors of Fry are given. The signs of the Sy ny
are determined by the sign conventions stated above for the SCF orbitals.

The NLM results for states with outer-shell vacancies are al-
most the same as the SCF results, and the'Snf,,nu § are-quite vsmall. : )
However, for the states with inner-shell vacancies, where the off-diagonal
Lagrangian multipliers are large, the NLM results are quite .different
from the SCF results, and the" Sng,n'y are large.

F. Comparison of SCF Ionization Potentials with Experiment

Experimental data are available for most of the ionization po-
tentials (IP's) of the closed-shell systems of F~, Ne, Na¥, Cl-, Ar,
and K*t. This includes the IP's for the removal of an electron from
any occupied shell. A comparison with éxperiment of IP's calculated
from the SCF wave functions is presented in Table XVIIL. The IP for
the removal of an outer-shell electron (3s or 3p shell of the argon-like
ions, and 2s or 2p shell of the neon-iike ions) can usually be determined
from Moore's optical data. 31) The electron affinities of F~ and C1~
(i.e., the 2p-hole IP of F~, and the 3p-hole IP of Cl-) have been de-
termined very accurately by Berry, Reimann, and Spokes.(43 44) The
sonly state for which experimental data do not seéem to be available is
the 3s-hole state of Cl~; but Varsavsky(45) reports an estunate made
by Rohrlich of the term value of thlS state. :

The IP for the removal of an inner—shell electron can be calcu-
lated from the experimental values of the energies of X-ray emission
lines, combined with the IP for the removal of the appropriate outer-shell
electron. For example, for the argon-like ions, the IP for the removal
of a ls electron is '




TABLE XVII. Effect of Neglecting the Off-diagonal Lagrangian Multipliers for the nf-hole States of
Argon and Neon (the results for the correct treatment of the off-diagonal Lagrangian multipliers

are denoted by SCF, the results for the approximate treatment.by NLM)

[ +0.00k12]

' E(NIM) Open Overlap Integrals between Open-
State E(SCF)* - [E(SCF)~E(N1M) ] V/T(SCF)* V/T(NIM) Shell and Closed-Shell Orbitals
Sns,ls Sns,?s Sns,3s
Ar+(3s-hole) -525,5976 -525.5976 -1.999999 -1.999972 38 -0.0000i +0.00093 e e e e
o (0.0000] :
Ar*(2s-hole) ~514.8794 -514,8808 -2,000000 <2,000242 28 +0.0003g5 . . . . -0.010%,
: [+0.0014]
Ar+(ls-—hole) -409.3890 -4C9,3941 -2.000000 -2.001786 1s e e s —0.00622 : +0.00176
. [+0.0051] )
Snp ] 1p Snp ,2p
ar*(3p-hole) -526.2744 -526.2744 ~1.999999 -1.999966 3p . +0.0003; .+ . . .
{0.0000)
ar*(2p-hole) -517.6690 -517.6746 ~2.000000 -2.000464 2p .+ ..  =0.0043g
. [+0.0056} '
Sns, 1ls ‘Sns,2s
Net(2s-hole) -126.7348 -126.7348 -2.000003 -1.999897 23 +0.0005; . . . .
[0.0000]}
Ne™(1s-hole) -96.62571 -96.62983 -1.999997 -2,003008 1s C e -0.0102,

*¥The results given in'this table are from calculations performed on the IBM 704. Thus E(SCF) andV/T(SCF) may differ slightly
from the values of these quantities given in Tables I and III, which are from calculations performed on the IBM 7094.

29



TABLE XVIH. Comparison of SCF and Experimental lonization Potentials for the n£-hote States of F-, Ne, Na*, CI-, Ar, and K*
{energies are in Hartree; 1 Hartree = 27.2098 eV = 2.194746 x 10° e”1)

53

TPlexplb - TP{-gnp)

State IPiexp)? IPinrid IP(-eng) TPIAESCE) IPlexplt - IPIAESCF)
fcd ‘0.1213 0.1810 -0,0537 0.0501 +0,0772
(-1.461 eV {+2.101 V)
2p-hole 1s22s22p5 Ned 0.7937 0.8503 -0.0566 0.7293 +0.0644
(-1.540 eV} {(+1.752 eV)
Na+d 1.7404 1.7972 -0.0568 1.679% +0.0608
(-1.546 eV) (+1.654 eV)
ped 0.8947 1.0746 ~0.1799 0.9282 -0.0335
. (-4,895 eV) (-0.912eV)
25-hole 152252p6 Ned 1.7814 19303 © -0.1489 1.8123 -0.0309
. {-4.052 V) ’ {-0.841 eV}
Na+d 2.9433 3.0737 -0.1304 2.9082 -0.0249
: (-3.548 eV) - {20.678eV) ,
Fe 2099 WSy - 25.829 -0.863 24.9353 +0.032
. (-23.48eV) . (+0.87 eV)
Is-hole 152522p6 Neé 31.970f 319459 2713 -0.827 31.9214 +0.024
31.9849 Do (-22.50 eV) (+0.65 ¢V)
Na+® 39.9%' 39.933 40.7597 -0.822 39.9345 +0.003
. (-22.37 eV) {+0.0g eV
ced 0.1341 0.1502 -0.0161 0,098 +0,0393
o (-0.438 eV {+1.069 eV}
3p-hole 1522522063523 Ard 0.5813 \ . 0.5909 -0.0096 0.5430 - +0,0383
. " (-0.261 eV) (+1.042 eV)
k+¢ 1.1726 , 11705 +0.0021 1.1260 +0,0466
{+0.057 eV) (+1.268 eV)
creh 0.524(?} 0.7332 -0.207 0.6601 -0.134
{-5.63 eV) {-3.65eV)
3s-hole 1s22522p6353p6  Ard 1.0745 12173 -0.2028 1.2198 - -0.1453
: Co {-5.518 eV) (-3.954 eV)
k+d 1.7644 1.9638 -0.19% 1.9136 -0.1492
{-5.426 eV) {-4.060 eV) i
2p 12200
3 7.285(2) )
ot ) 7.2241 7.69% -0.46g 7.2420 -0.014 :
Py ragh ‘ (-12.F5 ¢} (0.35¢¥) ) :
7.303(2))
i
L
2p-hole 1522s22p>3s23p6  Ar3 ) 9.14! 95113 -0.429 9.1484 -0.005
- 2p, 9.209! (-11.67 eV) (-0:9eV) .
9.2}
2p 11.3061
3 11.30g ) .
K+€ ) 11315 11.7381 -0.423 11.3342 -0.019
2py, 11.416! -11.5 eV) -0.5 V)
: 11419} .
ok 9.73(2) 10.2292 9.8114
2s-hole 152§2p63523p6 Ar e 123219 11.9380
K+k 14.41(?) 14.7080 14.3455
crt 103.59;' 103.1' 104.5055 -133 103.2947 0.1
103.61g(2)M.D {-36.7eV) {-3geV)
1s-hole 1s2s22pfi3s23p6  Ace 117.834! J17.3g 118.6101 -131 117,428 013 -
117.8359 (-35, 8V) 358V} |
. 113.003!
K* 133.095™ 13249 133.7521 -1.33 132.5890 0.7
133.083" : (-36.7 eV} {-4.6eV}

AIP(exp} is the experimental value of the ionization potential. For 2p terms, unless explicitly indicated otherwise, the IP is given to the center of gravity of the term. '
IP(exp) does not include any correction for the finite mass of the nucleus. IPinr) is the experimental ionization potential corrected for relativistic effects and the
finite mass of the nucleus. The relativistic corrections are made with data taken from Pekeris (Ref. 46) and Scherr et al. (Ref. 47). For discussion of the

relativistic corrections, see the text.

DSCF values are compared with [Plexp} unless a value of IP{nr) is given; in the latter case, comparisons are made with IP(nr).

CExperimental data for the electron affinity of F- and CI™ are from Berry and.Reimann (Ref. 43).
dexperimental data are from Vol. I by Moore (Ref. 31) and correction for 2P separation of the 3p-hole state of CI” in Vol.. III.

€lonization potentials are oblained by combining the ionization potentials for the outer-shell vacancy states with experimental data on X-ray emission lines. For
the 1s-hole states of argon and neon, measurements of the K absorption edge are also used. For sources of X-ray data, see text.
fExperimental ionization potential are obtained from the relation IP(1s-hole) = AE(Kay) + IP(2s-hole; 2P3/z).

9K absorption edge is as measured by Brogren
hﬁstimate of the 3s-hole term value is given by

{Ref. 49).
Varsavsky (Ref. 45),

iExperimental ionization potential is obtained from the relation IP(2p-hole; 2P3/2,1/2) = -AEIKa) 2) + AE(KB]) + TP(3p-hole; 2P3/2).
JExperimental fonization potential is obtained from the relation IP(Zp-hole; 2P3/z,1/2) . AE(Ll,'rﬁ + [P(3s-hole).
KThe experimental jonization potential is obtained from a table of normal energy levels of atoms; Table 13146 of Landolt-Bdrnstein (Ref. 48). A correction is added to
account for the fact that the zero of energy of a free atom is not the same as that used in the Landolt-Bornstein table. The correction for K* is +0.56 Hartree,

and for C1™ is -0.17 Hartree.

-Iexperimental ionization potential is obtained trom the relation Ir(1s-hole) = AE(KPY) + IP(3p-hole; 2P3).
Mexperimental fonization potential is obtained from the relation IP(1s-hole) » AE(Kaj) + AE(LA + IP(3s-hole).
NExperimental ionization potential is obtained from the relation IP(1s-hole) = AE(Kap) + AE(Ln) + IP(3s-hole).
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IP(ls-hole, 2S,,,) = IP(3p-hole, 2P, ;) + AE(KB,)

P(3s-hole; 25,,,) + AE(LL) + AE(Ka,)

IP(3s-hole, 2S,/2) + AE(LTM) + 'A'E(Kocz),‘ (22)

where the conflguratlon and level of the final state of the ion are given in
parentheses after IP, and AE(KB,), AE(Ka,), etc., are the energies of the
X-ray emission lines KB Ka,, etc., respectively. Standard X-ray notation
is used to describe the emission lines; KBI, Ka,, and-Ka, denote the
transitions ls-hole, %S,/ - 3p- -hole, ’Py/; (KMHI) ls-hole, 25,5 -~ 2p-hole,
’P,/,(KL11), and ls-hole, - 2517 = Zp -hole. °P,., (KT.H) reapectively; and L J
and L7 denote the transitions 2p-hole, *P;,, - 3s-hole, %S,/ (Li1M) and
2p-hole, ZP1/2 - 3s-hole, ZSI'/Z(LHMI)} respectively. For the ls-hole IP of
neon and argon, the K absorption limits (ls - ®) of gaseous neon and
argon, determined by Brogren,(49) may also be used. (We have used ab-
sorption limit here in the -same sense as series limit is used for optical
spectra; that is, the removal of the electron to infinity with'zero kinetic

energy.)

Except for the inert gases, argon and neon, the X-ray measurements
used have not been 'on free atomic systems. The' emission lines used to
calculate IP's for the removal of inner-shell electrons were obtained from
the emission spectra of atoms in erYStals The- wavelength and shape of
these lines will, of course, be affected by the chemical structure of the
solids. The lines involving the" outermost shells of the atom will be most
affected. This chemical effect, for the systems considered here, appears
to be small and about the same order of magnitude as' the accuracy of the
experimental measurements.. For example, the full width at half-maximum
of the" KB,,3 line of Cl1~ in KCl, with no correction made for the unre-
solved doublet KMj1 and KMIII, has been experimentally determined by
Deslattes(50) to be 1.00 + 0.05 eV. Deslattes estimates that 0.4 eV =
0.015 Hartree of this width is attributable to solid-state effects (i.e., the
band structure of the -3p band of Cl17). This is to be compared with the

‘wavelength-of the line, as measured by Valasek (51) which is 4394.91 *

0.14 XU = 103.464 + 0.003 Hartrees. [The conversion.from XU's to

A's, as given.in'Sectlons 13 and 68 of Sandstrém's review article,(52) is
1000 XU = (1.00202 + 0.00002) A.] The wavelength shift of the Kp; (or

KB, 3) line of C1” "as measured in various substances‘is also small.
Valasek(51,53) gives 4394.90°+ 0.07 XU for Cl- in-NaCl, 4394.91 + 0.14 XU
for Cl7 in KCI, and 4394.61 XU for Cl~ in CaCl,. The results of an
earlier measurement of the KB, line of .Cl”™ in the same substances, given

by Lindh and Lundqulst,§54) ate 4394.2:XU, 4394.1 XU, and 4394.2 XU,

respectively.

In several cases, the results of more than one measurement of the
same line were available. Our choice of which result to use was generally

iz
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guided by the choices made by Sandstrém* and Landolt-Bornstein(48) for
their compilations of X-ray emission lines. When measurements were
made for an atom in several compounds, the'-val‘ues for-the atom.in an
alkali halide compound were usually used. The sources of the experimental
data for the X-ray emission lines used are the following: F~, Ka,,

Tyren (55) Ne, Ka, , Moore and Chalklin; (56) Nat, Ka, , Johnson; i57)

Cl7, Ka; and Ka, Shearer (58) KB, Valasek; (51) Im and LZ. Siegbahn

and Magnusson,(59) Ar, Ka,, Ka,, and ‘KB, Lindh and Nilss»Qn;(éo) Ln and
L/ Balkovsky and Dolej¥ek;(61) K+, Ka, Siegbahn and Dolejsek;(62)

Kocz Sandstrém,;* KB, Parrat and Jossem;(63), and Lmn and .2 Tyre/n.(64)

- Unfortunately, the method described above cannot be used to de-
termine the IP for removal of a 2s electron from the argon-like ions.
- According to Sandstrém* and Landolt—Bornstein,(48) no X-ray emission .
lines are observed that involve transitions from the 2s-hole state for
atoms between chromium and sulfur. .

Landolt- Bornstein(48) give a table of the normal energy levels of
atoms in which they include values for the-2s-hole (L1) levels:of
chlorine and potassium. The levels in this table were determined using
a combination . of X-ray emission lines. and absorption limits. The proce-
dure for determining the levels is much like that discussed above, except
that X-ray absorption limits of atoms in crystals, rather than optical
series limits of free atoms, are used. The valyes given for the 2s-hole
states of chlorine and potassium were not obtained directly from ex-
perimental data; they are interpolations made by Tomboulian and Cady.(65)
The interpolation was based on rules for-the Li-Lj1 (2s-hole, ZSI/-Z -
2p-hole, 2Pl/z) screening-doublet splitting. N

' The levels in the Landolt- Bornstein table may not be'used directly
.as IP's of free -atoms because the zero of energy chosen for ‘the atom in
the crystal is not the same as the zero of energy of the free atom. (66)

The correction for the 2s-hole IP that must be made to account
for the different zeros of energy was determined by comparing the
normal energy level given by Landolt-Bornstein for the.2p-hole,

1/2(LII) state with-the. IP obtained.as described above. The 2s-hole
experimental IP's, IP(exp), of Cl- and K% given in Table XVIII are
‘the Landolt-Bornstein values, with the corrections -0.17 and +0.56 Har -
‘tree, espectlvely These values are included only to give a rough indica-
tion of the exper1rnenta1 values

When the expe'rimental IP's are compared with the IP's obtained
from the SCF wave functions, the experimental values should be corrected -
for relativistic effects. The SCF functions were calculated using a

*See Ref. 52, Section 53. See also the discussion of the accuracy of
measurements of X-ray emission spectra in Sections 50-52 in
Ref. 52.
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nonrelativistic, el‘ectrostat_ic'Harniltonian. The total exéerimentalA energy

. of a system ‘Eexp may be written as

. Eexp = Enr + Erels o . (23)

where E,r is the exact energy eigenvalie of the Hamiltonian of Eq. (10),
and Erel is-the relativistic correction .to the total energy. (To be precise,

. the reduced mass. of the electron should be-used in the nonrelativistic

Hamiltonian, and mass-polarization corrections should be.included in
Erel-) Then the nonrelativistic IP, IP(nr), is ‘ '

IP(nf) = Fnr(ion) - E, (parent) = IP(eap) = AIP(rel), (e4)
and
AIP(rel) = Erel(ion) —.'Erel(parent), _ | (25)

where AIP(rel) is the relativistic correction to IP(exp) The term ion is

‘used here to refer to the systern after an electron has been. removed from

the parent.

For the 1s-hole IP of an atom, AIP(rel) is assumed to be-equal to
the relativistic correction.to the IP of the two-electron ion of that atom

(IP: for 1s%to 1s!). Pekeris,(46) ‘using his extremely accurate nonrela-

tivistic wave -functions, has calculated.the relativistic corrections to the

"IP's of the two-electron ions of hydrogen through neon. His calculations

include the mass polarization correction, relativistic corrections to order
OLZ, and the Lamb shift corrections to order a3. Scherr and Sllverman,(67)

‘using an expansion in powers of Z~!, have extrapolated Pekeris's calcu-

lations to calcium (Z = 20). The results of Pekeris and Scherr and Silver-
man have.been-used for AIP(rel) for the ls-hole IP's

For the -2p-hole IP of an.argon-like.ion, AIP(rel) is assumed to.be.
equal to the relativistic correction to the IP of the ten-electron ion (IP for
ls?‘ZszZp6 to 1522s22p5). Scherr, Silverman, and Matsen(f”) have calculated
these corrections using screened nuclear charges.to evaluate the Dirac
one-electron energy and.the one-electron Lamb shift to order o’.

For the 2p-hole IP's of the neon-like ions and the 3p-hole IP's
of the argon-like ions, the only relativistic correction made is that
IP(exp) in Table XVIII is given for the center of gravity of the ?P term

of the.ion. No relat1v1st1c corrections are.given.for-the -2s-hole IP's of

the neon-like ions and the 2s- and.3s-hole IP's of the argon- -like ions.

In several cases, IP(exp), given in Table XVIII, is determined in
more- -than one way; this is done. to indicate roughly the reliability of the
experimental data. When the different ways give different values of
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IP(nr), the method used to. obtain IP(nr) is indicated. A correction for
the finite mass of the nucleus is included in. IP(nr), but not in IP('exp),
This correction affects the values of IP(exp) and IP(nr) by no more than
two units in the last place given.

The IP of a system can be calculated in two ways from SCF wave
functions. One way is to use the frozen-orbital approximation. In the
frozen-orbital approximation, an SCF calculation is performed for the
parent system, and the SCF orbitals of the parent are also used as the
orbitals of the ion. In this approximation, the IP for-the removal of an
electron from the nf-shell of a'closed-shell system? is ~€,4: this re-
sult is known as Koopmans's theorem. The second way is to perform
separate SCF calculations -for -the parent and the ion. In this case, the
IP is the difference of the SCF energies AEgcry of the two systems.
The accurate-set SCF functions of Tables I-IV have been used to cal-
culate the IP in these two ways. The results, IP(- -€ny) and IP(AESCF),
are given in Table XVIIL together with their differences with IP(exp)
or with IP(nr) when IP(nr) is given.

The true value of a quantity, in the sense that it is used in the
following discussion, is the exact nonrelativistic -value obtained from
solutions of the Hamiltonian of Eq. (10). The error of an approximate
‘value of a quantity is the error with respect to this true value. The
values of TP(exp) or IP(nr) given in Table XVIII are taken to be good -
approximations to the true IP's. The choice of IP({exp) ot IP(ni) de-
pends, of course, on whether the electron has. been removed from an
inner or outer shell of the parent.

The data in Table XVIII show that when an electron is removed from
the outermost shell (2p shell of the neon-like ions, and .3p shell of the
argon-like ions), IP(-€,y) is a better approximation than IP(AEgcE) to the
true IP. The frozen-orbital wave function for the ion is always a poorer
approximation than the SCF wave function to the true wave function of
the ion. For the lowest state of a symmetry species, the error in the
energy of the ion in the frozen-orbital approximation must be larger
‘than the correlation energy of the ion (the error of the SCF energy of
the ion). However, in the cases mentioned above, the correlation energy
. of the parent is more nearly equal to the error in the energy of the ion
in the frozen-orbital approximation than to the correlation energy of the
ion. The errors in the energies of the parent and ion more nearly cancel,
.and IP(-€,yp) is a better approximation than IP(AEsCF) to IP(nr).

The error-in the energy of the ion in the frozen-orbital approxi-
mation is usually larger -than the correlation energy of the parent. Be-
cause of this, IP(—€n1)/) is usually larger than the -true IP. This is not’
always the case; for KT, IP(—€3p) is 0.06 eV smaller-than IP(exp) for
the -removal of a 3p electron. o
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‘Note that IP(-€ny) is larger than the true IP when an inner-shell °
electron has been removed. If the ion is not in the lowest state of a
symmetry species, it is not necessary that the expectation-value of the
energy for an approximate wave function be an upper bound to the true
energy. If the expectation value of the energy in the frozen-orbital.-approx-.
imation for ions in these states was not larger than.the true energy, then
IP(-€, g) would be considerably smaller than the true IP.

When an electron is removed from any but the outermost shell,
P(AESCF) is-a better approximation.than IP(-€,g) to the true IP. When
an electron is removed from an inner shell (ls shell of the neon-like
ions, and ls, 2s, or 2p shell of the argon-like ions), the SCF orbitals
of the ion are considerably.different from the SCF orbitals of the parent
(cf., <r> and <r?> in Tables XIII and XIV). Consequently, the error in
using the orbitals of the closed-shell parent for -these ions is quite large.

The SCF orbitals of the states that have a hole in the outermost
s shell are not very different from the SCF orbitals of the states with a
hole in the outermost p shell. The IP(—€n£) was a good approximation
to the IP for the removal of an outermost p electron, but not for an
outermost s electron. For these s-hole states, there is another reason
why. IP(-€ny) is a poorer approximation.than IP(AEgcy). As discussed
in Section IV-A, these s-hole states are likely to be the lowest 2S states

of even parity of their ionic systems. The only states for which this is

at all in doubt are F(2s-hole) and Cl(3s-hole). When the ion is-the lowest
state of a symmetry species, IP(-€,y) must be greater than IP(AEgCE)-
Now, IP(AESCF) for the removal of an outermost s electron is already
larger than the true IP.  Since IP(€ng) must be 'still larger, it is a poorer

‘approximation to the true IP. The surprising fact that IP(AESCF) is

larger than the true IP is discussed in Section G below.

The agreement of IP(AEgcy) with IP(nr) for the removal of an
inner -shell electron is remarkably good. [Comparisons of IP(AEgcE)
with IP(nr) for the removal of a .2s electron from an. argon-like ion

-.cannot be made since there is no accurate experimental data available.]

The error of IP(AEgcy), for these cases, is always less than 0.2% and -
often no more than 0.1%. Thus,' IP(AESCF) often agrees'with IP(nr)
to four significant figures. '

This good. agreement is due, at least'in part to the fact that the
importance of the one-electron contributions to the HF operator relative
to the two-electron .contributions (the kinetic energy and nuclear attrac-
tion terms- relatlve to the Coulomb and|exchange terms), is ‘considerably
greater for inner-shell orbitals than for outer-shell orbitals. The.best
results are obtained with the HF one-electron approximation when the
two-electron terms. are a small perturbation.on the one-electron terms.
Since-the error ‘of the HF treatment of the outer-shell orbitals can be
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expected to be roughly the same whether the inner-shell electron is
present or not, IP(AEgcy) for the removal of an inner-shell electron
should give reasonably good agreement with the true IP.

Thus, IP(AEgcF) for the removal of a 2s electron from an

argon-like ion should be in good agreement with the true nonrelativistic

IP. - The relativistic correction to these IP's, estimated.from the data of
Scherr, Silverman, -and Matsen,(47) is probably no more than 0.1 Hartree.
Even without relativistic corrections, the values of IP(AE5CF), given in
Table X'VIII,'should agree with'the correct experimental values to within °
1%, because of the relativistic corrections, they should be ‘'smaller than

the correct experimental values. No direct experimental data are-available
for these 2s-hole IP's; the values of IP(exp), given in Table XVIII, were
obtained .through interpolation.(65) '

G. Anomalous Behavior of the Correlation Energy.

- The correlation energies.of some of the hole-state systems:have
anomalous-values. The correlation energy E.orr: is the error of the total
SCF energy Egcpr and is defined by the relation

Enpr = ESCF-+ Ecorr: ' (26)

where E ., is the exact nonrelativistic solution of the Hamiltonian.of
Eq. (10). The sign has been chosen so that Ecorr is negative for all
the systems considered here and is always negative for the lowest state
of a symmetry species. It follows imrnediately from Eq. (26) that

IP(nr) - IP(AESCF) = Ecorr(ion) - Ecorr(parent). ' (27)

The error of IP(AESCF) given in the last column of Table XVIII, is
the difference of -Ecorr between-the parent and the ion.

Usually IP(AESCF) is less than the true IP. The orbitals of the
ion are not drastically different from .those of the parent. The ion has one
fewer electron than the parent, and it is reasonable to expect that
I‘Ecorr ion)l < lEcorf(parent)[ As shown in Table XVIII, this-usual case
" occurs when an electron is removed from the outermost p shell of any of
the closed-shell systems considered.

When an electron is removed from the outermost s shell,
IP(AEgCEF) is larger than the true IP.. The magnitude of E.qory of
Ne*t(2s-hole) is 0.84 eV larger than the magnitude of E_g. of neon;
IEcorr| of Ari (3s hole) is 3.95 eV larger than |Ecorr| of argon.

When an electron is. removed.from.the 2p or the ls shell of one
of the argon-like ions, IEcorrI of the resulting ion is also larger than

I?Ecorxgil of the parent. The uncertainties of the experimental data and
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.the relativistic corrections make this conclusion somewhat doubtful for-the
" 2p-hole states. For-the ls-hole states, however, the increase of lEcorr]
"is larger than these uncertainties. :

This anomal'ous»b'ehavior of the correlation energy is extremely
important in light of the recent work of Clementi(41,68) and in particular
of Allen, Clementi, and Gladney(69) to obtain semiempirical rules for the
calculation of E.grr. Such ru'l.es, if they could be.successfully applied,
would be very useful since 'SCF wave functions may now be easily ob- ,
tained .for a large-class of systems. The analysis.of Allen, Clementi,
and Gladney is based on a decomposition of Ecorlf .into pair-correlation
energies. For atoms, the pair-correlation energy is denoted by
Ecorr(n,ﬂ,mg,ms; n',ﬂ',m:@‘,m's_), where n,f,my, mg. are the usual one-
electron quantum numbers. Allen et gl.(69) explicitly make the following
three assumptions about this decomposition: (1) The total correlation
energy is, to a very good approximation, the sum of the pair-correlation
energies,

Ecorz; = 2 Ecorr(n:ﬂ:.ml,’nfns; n':ﬂ',mjpmg)- , (28)

(2) The most important pair-correlation energies are - for electrons
which differ only in their spin quantum numbers, and these correlation

.energies. are independent of my; i.e., Ecofr(n,,ﬂ,mﬂ,.a; n,fmy,B) =

Ecorr(n, £,a; n,£,B). (3) The pair-correlation energy, with only minor
qualifications, is a function. only of the quantum numbers of the pair of"
electrons and the nuclear charge Z; in particular, it does not depend.on -

‘the total electronic configuration.of the system. The third assumption
is a key one since Allen, Clementi, and Gladney obtained the pair-

correlation energies for an atom by subtractlng the total correlation
energies of various ions.of the: atom.

The first two assumptions 'are-quite~reasonable. The anomalous
behavior of the correlation energy, discussed.above, shows that the- third
assumption is not correct.

From. the assumptions and Eq. (27), it follows that when an electron
is removed.from a closed shell with quantum numbers n/,

i~

Ecorr(ion) —'Ecérr(parent) = IP(nr) - IP(AEgCF)-
(29)

“Ecorr(n, £,0; n, £, B)

For neon; Allen, Clementi, and Gladney find that -'Ecorr(ZpOL ZpB)

+1.7 eV, -E 5rr(250,28B8) = +3.2 eV, and -Ecorp(lsa,lsp) =

t1.2 eV. The results given in Table XVIII show that E.qorr(Net;2p-hole) -
Ecorr (Ne) = +1.75 eV, Ecorr(NeT;2s=hole) -'Ecorr(Ne) = -0.84 eV, and
Ecorr(Ne ils-hole) - E.oprp(Neé) = 40.65 eV. When.a 2p electron is re-
moved, Allen, Clementi, and Gladney correctly predict the change in the

total correlatlon energy; this is-hardly surprls1ng since this change was



part of the data used in their semiempirical analysis. However, when-a
2s electron is removed, they predict a decrease of lEcorr” of ~3.2 eV;
but, in fact, lEcorrI increases by 0.84 eV. When a ls electron is re-
moved, they predict a decrease of ~1.2 eV, but there is a decrease of =
only-half that. Allen, Clementi, and Gladney also give pair correlations
for fluorine and sodium. Their: predictions for the correlation.energies
of the nf-hole states of +'~.and Nat are very similar to:their predictions
for neon. ' ' ' '

Clearly the -values that the Allen, Clementi, and Gladney analysis
gives for Ecorr(2sa,2sf) and Ecorr(lsa,lsB) are not correct. Kestner(70)
has considered the anomalous correlation energy of Ne't(2s-hole) using
‘the formalism of Sinonaglu. He claims that he has accounted for the in-
crease of ,Ecorrl ‘to the accuracy of his-calculation.

Kestner explains that.the-anomalous correlation.energy of the
2s-hole state of neon is due.to the increased importance of configuration
interaction for the SCF function of this state. The 1s22s2p® configuration
of the 2s-hole state of NeT can interact with the configurations 1s?2s?ep®ns,
1s%2s2p°np, and ls‘?ZsZZp4nd. The configurations 'ISZZSZZP.G’ and 1s%2s22p®
of neutral neon and the 2p-hole staté of neon can interact only -with con-

- figurations formed by exciting two electrons into orbitals with principal
quantum numbers n > 2. The energies of some of the excited configurations
that mix with the SCF configuration of the 2s-hole state of neon are closer
‘to the cnergy of that state, than the energies of the exicted configurations
for neon and Ne+(2p—hole) are to.the energies of these states. Thus, the
mixing of configurations will be larger for the 2s-hole state.than for the
neutral atom or the 2p-hole state. When:the effects of configuration inter-
action are more important, the SCF one-configuration function gives a
poorer approximation to the:true wave function, and the magnitude of the
correlation energy is larger. . |

Similar arguments can be-made about the 3s-hole states of the
-argon-like ions. It will beinteresting to see if Kestner's treatment can
-account .for the increase of IEcorrlf for these states. The . increase of
IEcorr|-for-these states is more -than four-times as large as-the increase
of IiEcorrI for the Zs-hole states of the neon-like ions.

61
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V. TRANﬁmnhqPROBABHJNESBETWEEN
THE SCF WAVE FUNCTIONS

A. Theory

To calculate electric-dipole transition probabilities,.it is necessary
to evaluate matrix elements ‘I of the form

I-= <Y IZr |1\1f >, o | (30) <

where ¥ .and Y_ are the normalized many-electron wave functions -of the

initial and final states, r(i) is'the position vector of the ith electron, and

the sum is over all the electrons in-the‘atom. In this calculation, ‘l’I and -
YF are approximated by SCF wave functions.  For the states considered
here, the SCF function is given by a single Slater determinant and is an
eigenfunction of 1? and S?%, but not J2. Since YI and \YF were obtained as
separate SCF solutions -of the variational equations,.the SCF one-electron
orbitals for the two states have no special relation to each other. - In par-

- ticular, the overlap 1ntegrals of the orbitals ¢>$l%m of ¥ with the orbitals

F%m of Y are not zero or one; that is, <ol ﬂmh’ F% > # oy

It is common practlce(45 71,72) to approx1rnate the dipole tran51t10n
matrix element I of Eq (30) by

n

e s > 2w [ e )

Here PS.II’)e and Psll.?')gng a'.re the radial wave fu;nctionfsbf the active electron

(the electron making the transition) for: the initial and final states. . The

radial functions P(I}Z and P( .)ﬂ. need not be’ SCF- functions. (45,71) The vec-
tor W includes the angular: integrations and also depends -on-the symmetry
species and subspecies of the initial and final states.  The approximation
of Eq.- (31) is equlvalent to assurnlng that the orthonormahty relations

N R T A s

hold. We shall refer to-this approximation as.the active electron
approximation. - - ' :

“With SCF funct'ions' or with any total wave functions which are ex-

‘pressed as comblna.tlon of Slater determinants, it is not necessary to use -

the active electron. approximation. Lowd1n(73) has given an expression for

the matrix element of a one-electron operator 3:0(i) between two arbitrary

Slater determinants, ‘I’U and ‘I’V Lowdin showed that
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LYyl 20(i)| ¥y> = 'z_k,£<w§(U)(1 Iw (1)>Dyy(kl4), (33)

where w(U) and w(ﬂV) are spin-orbitals of the determinants ¥, and ¥, re-
spectively, the double sum k, § is over all the occupied spin-orbitals, and
Dyv{k|4) is the signed minor, formed by removing the kth row and fth col-
umn, of the matrix Dyjy. The elements of Dyyy are the overlap integrals

~ between the spin-orbitals of the two determinants; the kﬂ element of Dyjy is

(DUV)k = <¢k lzl/ ' : (34)

The SCF spin-orbitals were defined in Eq. (2).

The evaluation of the sum in Eq. (33) is simple because the SCF spin-
orbitals are syrn'rne'try—adapted and because there is only radial function for ,
each shell [cf., Egs. (2) and (5)]. In fact, for the transitions considered, it 5
was never necessary to evaluate a determinant larger than 3 x 3. The dipole Bl
transition matrix elements required for this calculation were, therefore, |
evaluated by means of Eq. (33). '

The results of the dipole transition calculations will be given as
total absolute multiplet strengths S(M)_IF. In the electric dipole approxima- 4
tion, S(M)if is Jdefined, in atomic units, by '

S(M) g = z Z |<‘I’I(L S, ML,MS ) [Zx(i |‘1’F L',s, ML’MS>IZ (35)

where 1L, S, ML’ and MS are the usual orbital and spin angular momentum
quantum numbers for the many-electron system. The sum is over all the
states of the initial and final terms. This sum need not be evaluated ex~
plicitly; sum rules* for the sum over ML and ML, and the fact that the
operator Zg( ) does not involve the spin, may be used to reduce the sum.
For the case of interest here (transitions between 2S and %P states with
AL=1), 8(M)ip becomes

S(M)pp = (28+1)(L+1)(2L+3) [<¥{L+1,8,M,= L,Mg = 5)| 22(i) | ¥§(L,S,My,= L, Mg =5)>[%,

(36)

where z(i) is the z coordinate of the ith electron.

*Feenberg and Pake(74) present a complete statement and derlvatlon )
of the sum rules.
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"Absolute line strengths .‘rhay be obtained from S(M)IF by using the
relative strengths of lines- in multiplets. Oscillator strengths and spon-
taneous transition probabilities may also be obtained from S(M)r by using
either experimental or SCF transition energies. Summaries of current
notation and definitions of terms may be found elsewhere.(75) The general
problem of emission and absorption of radiation is treated in detail else-
where; see, for example, Bethe and Salpeter.(zo)

For the sake of convenience, we give here the relations that will be
requlred later for the .discussion of the width of the l1s-hole state; this
width is referred to as the K-state width, or simply the K width.

The absolute line strength S( L)1F is defined, in atomic units, by

S(L)p = z | <Y1, 1,8, M7) [ Zx(3) ITF(J',L',S,M3)>|Z. (37)

F 1
My, M}

The subscripts I and F for S(L)IF refer to levels (i.e. 2S+1LJ) while the -

subscripts for S(M)1r refer to terms (i.e., 2S+1L). For the transitions of

interest here, S(L)F is given in terms of S(M)rF by

2512 +—=2Py3; S(L)1g = (1/3)s(M
. (38)
2Sy2 =—=?P32;  S(L){p = (2/3)S(M
The trans1t10n probability for spontaneous emission of a photon AIF is
given, in sec™ ', by
Arp = 2.1419 x 10'° [(AE[)*/g1) S1p(L), - (39)

where AEIF = Ep - EF is the energy of the line in atomic units, SIF( )

in atomic units, and gy is the degeneracy of the 1n1t1a1 level.

The total width of a level I, FI’ may be written as I" = hPI, where
PI 1s the total probability of transitions from the level I to all lower-lying

-levels. The partial width due to radiative transitions I’ R , called the

radiative width, is

!

R) _
=h ) A__,
&IF
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where the sum is -over all levels with lower energy, E¢ < E; For inner-
shell hole states, where radiationless transitions are important, the total
-width is given by. : :

r = r{®apla, | | (41)

where F(A) is -called the Auger width. The fluorescence y1e1d ®.,.the frac-
‘tion of thc total transition rate due to rad1at1ve trans1t10ns may be written

as ‘
= _ (R /R, pa)] _ p(R), .
These.matters are =dls-cussed,in detail elsewhere'.(7§)

The operator 3r(i) is called the dipole length operator. It is pos-
sible,. through the use of commutation relations, to find alternate expres-
sions for the dipoéle transition matrix element of Eq/ (30) For the
‘many-electron Hamiltonian of Eq.-(10), we have the relations

[2x(X),5] = iZp(k) = SY(K), : | (432)

and

[2p(k),F] = -i[ZY(W]? = -iZZx(K)/r(K), (43D)
where Z is the nuclear charge and the commutation relations are expressed
in atomic units. - If ‘.{’ and ‘I’F are exact eigenfunctions of ¥, the dipole
transition matrix element I, in atomic units, may be evaluated using

‘Eq. (30) or equivalently, as e1ther

1= <Y[[-1/BEL]ZV(K) | ¥e>, A - (44a)

or

—
|

<Y |[2/(AB; )Y Ex(k /r >, o - (44D)

where AE1p = EI' "E is the difference between the exact nonrelat1v1st1c
total energies of the initial and final states. -'The operators-in Eqgs.. -(44a) and
(44Db) are called the dipole-velocity and dlpole ‘acceleration operators, re-
spectively. Note that the-dipole-acceleration operator was cobtained from

' the exact many-electron potential energy and not.from some average one-
‘electron potential.
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‘When a-dipole transition matrix element is evaluated using ap- -
proximate wave functions (e.g., SCF functions), the length, velocity, and
acceleration forms of the matrix element will not have the same value.

. The values-obtained using the ‘three operators-do not necessarily bound

the correct value of the matrix element. Even if the three values are-in
close agreement, they are not necessarily correct. - However, the main
contributions to the matrix element come from different.regions of r for

the three operators. The contributions to the value of the matrix.element

from comparatively large r are most important.for the -dipole length op-

erator, from intermediate values.of r for the velocity operator, and from

small values of r for the acceleration operator. Thus,. if the three opera-
tors give approximately equal values'for a transition matriv element, it is
not unreasonable to infer that these values are close to the true value. - In
any event, it is interesting-to see how the results obtained using the length,
velocity, and acceleration bperators_ compare. Such a comparison will be
made in Section B'below. ' '

B. Results of the Dipole Transition 'Probability Calculations

A computer program was written for.the IBM 704 to calculate all
the one-electron overlap and electric-dipole transition integrals, between
the expansion SCF orbitals of two states, needed for the evaluation of
S(M)IF The one-electron overlap and tran51t10n ‘integrals are defined in
Egs. (33) and (34). Transition-integrals may be computed for the dipole-
length, -velocity, and -acceleration operators. - Since the angular integra-

_ tion follows immediately -from the properties of the spherical harmonics,

only the radial portions of the-'traﬁsiti_on integrals are calculated by the

‘program. For the transitions reported here, the program was modified

to calculate S(M)f directly, with the electric dipole transition matrix
element evaluated exactly, as a matrix element between the many-electron
SCF wave functions. Actually, S(M)IF is calculated when the length opera-
toris used; but'(AEIF)ZS(M)IF and (AEIF)4Z_‘7?'S(M)IF'are calculated when
the velocity and acceleration operators are used. - In'this way, experimental,
rather than SCF, energy differences may be used when the velomty and ac-
celeration forms of: S(M)IF are evaluated. :

- For a given-traﬁsition,. the input to the transition moment program
consists of two-sets of punched cards. -One of these sets contains the in-
formation necessary to describe the SCF function of the initial state; the
other, the information ne-‘c‘ess_ary to describe the final state. While a set
of cards may be prepared manually, it is available, optionally, as part of
the output of an SCF calculatlon performed w1th the 7094 SCF program.

The values of S(M)IF,.in the electric dipole approximation, for all
possible electric dipole transitions between the nf-hole states ‘computed,
are presented in Table XIX.. The matrix elements were computed exactly,
between many-electron SCF wave functions, using ‘the expression of



Eq.-(33). The matrix elements were evaluated using-the dipole-length -
operator. The SCF functions used are the accurate-set functions reported
in Tables I-IV. The values of S(M);y are given:in atomic units.

TABLE XIX, ‘Total Absolute Multiplet Strengths S( ) iF for Tran51t10ns
between the nf-hole States of F~, Ne, Na%, Cl™, Ar, and K
(Values of S(M)1f are in a.u:)

F - Ne™ Natt
. 2s-hole = 2p-hole : '
ultraviolet emission line '2.0652 ' 1.4632 1.0855
"1s-hole = 2p-hole E :
‘Ko emission line 0.02466 0.02193 0.01937
Cl Art Ktt
3s-hole = 3p-hole
ultraviolet emission line 5.3584 4.1392 3.2995
2p-hole = 3s-hole
LZ,m emission lines -0.03430 0.02808 0.02324
2s-hole = 3p-hole ' : :
not observed 0.02932 0.02991 0.02965
2s-hole = 2p-hole :
not observed 0.3382 -~ 0.2923 0.2549
l1s-hole = 3p-hole '
‘KB emission line 10.0006722 0.0007010 0.0007078
~ 1s-hole - 2p-hole - . . | |
‘Ko, emission line -0.009245 - 0.008354 - 0.007588

For most of the transitions g_'iven in Table XIX, S(M)if,.for a given

-transition,.decreases. with increasing Z. -Along an isoelectronic sequence,
‘the:wave functions for'a given state become more contracted as-the nuclear

charge -increases (cf., <r> and <r?> given-in Tables XIII and XIV). Thus,

-the main contrlbutlons to the dipole- transition matrix element <¥ Il 2yr(i) H

\l’ > come from smaller values of r for larger values of Z, -and S( )IF
becomes smaller with 1ncrea31ng Z. -In-fact, for the hydrogenic.one-

‘electron ions, S(M)p goes as 1/ 22

For the ls-hole - 3p- hole’ and the 2s-hole =~ 3p-hole transitions of
Cl, Art, and Ktt, however, S does not have'this behavior; for the
1s-hole = 3p-hole transition, S M{IF increases with.increasing Z. Although
all the SCF orbitals of a given state contract with increasing Z, the
3p orbitals contract more than the ls or 2s orbitals. - The ~region of
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important "overlap,” the region where ‘i’f ¥Yg is large, will increase, and,
in some cases, this increase will be more important than the fact that the
"overlap" occurs in a region of smaller r. As Z becomes larger, the
contraction with increasing Z, of all the orbitals of a given state, becomes
more nearly the same. For large enough Z, S(M)ip for any transition
should decrease with increasing Z along an isoelectronic sequence;
S(M),s-hole,3p-hole is smaller for K'* than for Ar¥, and it is likely that
S(M),s-hole,sp-hole Will be smaller for Ca*? than for Kt+. ‘

For transitions between the nf-hole states of neon and argon,
Table XX compares the effects, on S(M)IF, of the use of several different
approximations for the evaluation of the dipole transition matrix element.
The fesults for these transitions are very similar to-the results for the
transitions of the other atoms. The values of S(M) 1y are given for the
dipole length, velocity, and acceleration operators defined by Eqs. (30) and
(44). For each operator, the transition matrix element was evaluated using
the many-electron expression of Eq. (33), and also using the active-electron
approximation of Eq. (31).

The notation <‘l’(ns-hole)lQ|‘l’(n'p-hole)> is used in Table XX to'
indicate that the matrix element for S(M)ns—hole,n'p-hole was evaluated
between many-electron SCF wave functions. In the active-electron ap-
proximation,

(ns—hole)lO |¢(n'p—h01€)> |2,
z b4

S(M)ns-hole,n’p-hole = 6|<(l)n'p,rn=0 ns,ms=o.

(45)

where

z ~ %

Q.
<
1

s)
> -(1/0E1R) 55
é.nd

old) = [2/(8E)12/7). | (46)

The notation <¢£II};/|QI¢£11'T1)}I,> is used in Table XX to indicate that the matrix
element for S(M);y was evaluated using the active-electron approximation;
for simplicity, the subscript m for the symmetry subspecies is not used.
‘Matrix elements were evaluated in the active-electron approximation in two
ways: first, using the appropriate orbitals from the SCF wave functions for
the initial and final states of the transition, as indicated in Eq. (45); and _
second, using the orbitals from the SCF wave function for the closed-shell
system, either neutral neon or argon.



TABLE XX, Total Absolute Multiplet Strengths S(M)[r Using Several Apprqximaftions for the
Dipole Transition Matrix Element [S(M)IF and AEJF are in a.u.]

Operator
Approximation for . . i
Transition Matrix Element Length Velocity pife.* Acceleration D:er..*'
<¥(2s-hole)|0|¥(2p-hole)> 1.463 1.166 20.3%
.
Ne'; 2s-hole - 2p-hole 28-hol 2p-hol
<¢§p ° e)lglwésp el 1.465 1.181 . ~150. C..
AE._ = 0.9877 < [
LEIF [ N N
1 <w£pe)lglwése)> 1.630 . 1.282 e
" <¥(1s-hole)[0|¥(2p-hole)> 0.02193 0.01979 9.8 0.02252 2.7%
.
Ne'; ls-hole —» 2p-hole (1s-hole) (2p-hole)
<9 Ole > 0.0211 6.02066 . 0.02 ..
AEIF = 39.151 2p <1¥1ls 19 0 355
N N
<¢épe)l9_lw§se)> 0.01549 0.01415 .. 0.01484 P
<#(3s-hole)|0|¥(3p-hole)> 4,139 4.791 15.8%
+ . . ’
Ar’; 3s-hole - 3p-hole (3s-hole) (3 .
- p-hole )
<P ole . ... o . e
NEgy = 0.4932 3 [gle3g > 4,143 4,798 . 3000
Ar Ar .
.<q>§p )|2|°§s S 4,460 5777 C. .
<¥{2p-hole)|0|¥(3s-hole)> 0.02808 0.02150 23.4% wrong sign™ C e
+ ’ ’
Ar’; 2p-hole - 3s-hole (2p-hole) (3s-hole) - .
<e ole. . .0 e . e
sEp, = 8.067 3s ieleg > 0.02492 0.02222 0.000003
A A
<w§;')|g|q>§p”)> 0.01981 0.01835 e . wrong sign** PN
<¥(2s-hole)|0|¥(3p-hole)> 0.02991 0.02413 19.3% 0.01056 64.7%
Ar; 2a-hole — 3p-hole (28-hole) (3p-hole) .
: <P 0{es3P > 0.028 0.0254 c. 0.0121 ...
MEgy = 1037 2 LPH .02893 U7 3
<w§£r)lglw£:")> 0.01954 0.01701 R 0.00562 R
<¥(28-hole) IQIY(Zp-hqle > 0.2923 - 0.2079 28.9%
"
Ar’; 2s-hole » 2p-hole _ -
) <‘?£§s hole)lgwgp hole)? 0.2842 0.2054 L . 50. L
OE1p = 2.796 4
@) 1910 A7), 0.2967 0.2262 Ce
<¥(1s-hole)|Q|¥(3p-hole)> 0,0007010° 0.0006519 7.0% 0.0007061 0.7%
.
Ar’; 1s-hole —» 3p-hole -h -ho]
! <¢§;5 ole)|ggi3p-hole), 0.0005358  0.0005433 e 0.0006001 c.
8Epp = 116.72
<¢§Qr)|g|w£‘s“‘)> 0.0004223  0,0004011 Ce 0.0004118 -
<¥(1s-hole) |g [¥(2p-hole)> 0.008354 0.008003 4.2¢ 0.000683 3.9%
4 .
Ar’; ls-hole - 2p-hole _ _
@égs hole)|g|y{2p-hole), 0.008470 0.008347 .. 0.009082 Ca
0Eqp = 108.16
' <wé2r)lglw£§r)> 0.007607 0.007208 C 0.007482 .

*This is the percent difference between S(M)IF evaluated using the length operator, and S(M)1F evaluated using the
velocity or acceleration operator. :

**The sign of the transition matrix element for the acceleration operator is not the same as the sign of the matrix
element for the length operator.
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The second case (the use of the SCF orbitals of a single state for
the wave functions of both the initial and final states of a transition) may
be regarded as a frozen-orbital approximation for S(M)p. It is, in a sense,
similar to the use of Koopmans's Theorem for the IP of a system. In this
case, the active-electron approximation gives the correct value for the
transition matrix element since the orthonormality conditions <¢(I% |¢(],52 > =
On,n' are satisfied. . pAmoonbm

In Table XX, the superscript on the ¢ indicates the state for which
the orbital was computed. The entry "wrong sign" in the table means that
the sign of the transition matrix element for the acceleration operator was
not the same as the sign for the length aperator; for exact cigenfunctions,
the signs must be the same.

The nonrelativistic energy differences AE|g were obtained by taking
differences of the IP's given in Table XVIII; IP(exp) was used for the 3p- and
3s-hole states of the argon-like ions, and the 2p- and 2s-hole states of the
neon-like ions; IP(nr) was used for the 2p-hole states of the argon-like
ions, and for all the 1s-hole states; and IP(AEgs ) was used for the 2s-
hole states of the argon-like ions. ‘

The calculations were performed using the accurate-set SCF func-
tions given in Tables I-IV. The values of S(M) ;p and AEg are given in
atomic units. The column labeled "Diff." is the difference between
S(M) i evaluated using the dipole-length operator, and S(M) ;g evaluated
using the dipole-velocity or -acceleration operator. This difference is
only given when the dipole matrix elements for S(M)IF have been -computed
between the many-electron SCF wave functions. ’ '

For all but one of the transitions given in Table XX, the dipole-
length form of S(M)IF obtained using the orbitals of the closed-shell "
system. (third line and first column for each transition) gives a signif-
icantly poorer result than that obtained using the orbitals for the initial
and final states of the transition (first and second lines and first column
for each transition). For the 3s-hole — 3p-hole transition of Ar+, the
improvement is 8%; for the 1s-hole — 3p-hole transition of ArT, the im-
provement is 40%. Only for the 2s-hole ~ 2p-hole transition of Art is
‘the improvement as small as 1.5%.

For the dipole-velocity form of S(M)IF’ the frozen-orbital ap-
proximation sometimes gives a better result than the use of the SCF func-
tions of the initial and final states of the transition. Here, we mean better
in the sense of being more nearly equal to the dipole-length value of
S(M) ;g with the many-electron matrix element correctly evaluated. How-
ever, the agreement in these cases between the length and velocity forms

of S(M)IF is not very good, and the better result of the frozen-orbital ap-
proximation does not have much meaning.



It seems, from the results given in Table XX, that the use of the
SCF functions of the initial and final states of a transition gives a sig-
nificantly better value for S(M)yp than the use of the frozen-orbital
approximation. ‘

In several cases, the value of S(M)IF obtained when the dipole
transition matrix element is evaluated between total many-electron wave
functions is quite different from the value obtained when the active-
electron approximation.is used. The difference is largest for transitions
between the ls-hole and the outermost p—hole states; it is smallest, and
quite negligible, for transitions between the outermost s-hole and outer-
most p-hole states. The value of the many-electron matrix element cannot
be much different from the active-electron approximation value unless the
minors DIF(kf[L@), defined in Eqgs. (33) and (34), are considerably different
from one or zero.. This condition is met. for the former .transitions, but
not for the latter, where the orbitals of the initial and final states are too
similar. ' ‘

Note that the value of §( )IF obtained using the many-electron ex—

‘pression for the matrix element is often larger than that obtained using the

active-electron approximation. -It has been suggested(77 78) that the correct
evaluation of the matrix element simply corrects the active-electron approx-
imation for overlap effects. - If this were true, then the many-electron ex-

‘pression for the matrix element would always give a smaller result than

the active-electron approximation.since overlap effects always introduce

a factor less than one. In several cases, transition integrals between or-
bitals other than the transition integral of the active-electron approximation
must make significant contributions to the value of the matrlx element. The
best example of this is the 1s-hole — 3p-hole transition of ArT, where the
value of dipole length form of S(M)1F using the many-electron matrix ele-

ment-is 30% larger than value in the active electron approximation.

In discussing the use of the length, velocity, and acceleration forms
of the dipole matrix element, -we will consider only the cases where the
matrix element is evaluated between the many-electron SCF functions of ;
the initial and final states. That is, of the values of S(M)IF in Table XX,
only the values in the first row of each transition will be 'compar-ed._

The values of the length and velocity forms of S(M)1p are always at
least in reasonable, if not necessarily good, agreement. -In the worst case,
the 2s-hole — 2p-hole transition of Ar+ the velocity form of -S(M)f is
30% smaller than the length form.

. . !

The acceleration form of S(M)F often has absurd values. For sev-
eral transitions, the acceleration form ‘of S(M) 1 is larger than the length
and velocity forms by a factor of between 100 and 1000;.and for one transi-

tion, .the 'sign of the acceleration form of the matrix element, Eq. (44b), is
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different from the signs of the lengthand velocity forms.of the matrixelement,
Eqgs. (30) and (44a). ‘However, for transitions from 1s-hole states, the ac-
celeration form of S(M)1F is in good agreement with the length'and velocity
forms. For the l1s-hole - 2p-hole transition of NeT-and the ls- hole — 3p-
hole transition of Art, the difference between the length and acceleration
forms of- S(M)IF is,.in fact, less than the difference between the length and
velocity forms o

When ‘the agreement between -the-length and acceleratmn forms of
S(M)IF is. good the important one-electron trans1t10n integrals are between
orbitals with simple structure. The orbitals involved either have no radial
nodes (i.e., 1s and 2p), or the contribution to the value of the integral from
the region around and past the radial node is -small (i.e., 1s and 3p). When
the important, one-electron transition integrals are between orbitals whose
nodal structure is important in determining the value -of the integral, the
acceleration form of S(M)IF has.poor values.

For transitions between outer-shell hole states, one might consider
using some screened,. effective, nuclear charge, Zeff, for the acceleration
form of the dipole transition matrix element. In place of Eq. (44b), the
expression o :

T'E <Yl Zess/(DEIR)ZIZE(K)/x(K)? | Y > (47)
would be used. For the 3s-hole - 3p-hole transition of Art, Zegf = 0.7
would be required to bring the length and acceleration forms of S(M)IF into
agreement; for the 2s-hole -~ 2p-hole transition of Net, Zoff = 1 would be
required. However, a reasonable value of Zeff for these cases, based on
arguments about the screening of the nuclear charge by the electron charge

distribution (e.g., Slater's rules), .must be Z‘eff2 2. Thus, even the use of

a Zeff will not give good values for the acceleration form of S(M)IF.

The length form of the dipole. transition matrix clement has the
advantage of being less :sensitive than the velocity .or acceleration forms
to the precise shape of the approximate wave functions. The velocity op-
erator involves derivatives -of the orbitals, -and the acceleration operator
varies strongly and -weighs different region"s of r. very differently. From
these considerations, it would seem best to use the: length form of the
matrix element to evaluate S(M)1p. '

Chandrasekhar(79) has pointed out that larger values of r are more

‘important for the evaluation 6f the length form of the .dipole matrix element

than for the evaluation of the total energy; conversely, smaller values of

r are more important for the evaluation of the acceleration form of the
matrix element than for the evaluation of the energy. Thus, Chandrasekhar
suggests that the velocity form .of the matrix element'is the most-suitable



form when the wave functions used have been obtained from an application
.of the variational principle. o ‘

He used the three forms of the matrix element for the calculation
of transitions from the g-rouhd state to continuum states-of the H™ ion.
The use of the velocity form of the matrix element did, indeed, give better
results. But, 6- and 12-term Hylleraas-type functions were used for the
ground-state wave function of H . These functions are considerably more
accurate than HF functions, and the conclusion above may not apply when
"HF wave functions are used to evaluate the transition matrix elements.

Weiss{80) has calculated oscillator strengths for several transitions
of helium. He compared the results, for both the length and velocity forms
of the matrix element, obtained by using HF functions and by using the more
accurate Hylleraas-type functions. For all but three of these transitions,
-when HF wave functions ‘were used, the value obtained with the length form
of the matrix element was more accurate than that obtained with the veloc-
ity form. For two transitions, the use of the velocity form of the matrix
element gave very poor results, while the results obtained with the length
form were quite accurate. In the three cases in which the use of the ve-
locity form of the matrix element gave better results, both the length and
velocity forms gave good results; in these cases, the largest difference
between the results obtained using the length and velocity forms with the
HF wave functions was less than 5%. Bates and Damgaard(71) have com-
pared the length and velocity forms of the multiplet strength, calculated
using HF functions, with experimental values for several transitions of
lithium and sodium. In all the cases they considered, the length form of
the multiplet strength, although it sometimes gave poor values, was in
better agreement with experiment than the velocity form. These calcula-
tions would seem to bear out the expectation-that the use -of the length form'
of the matrix element, when HF wave functions are used, will give more
‘reliable results than the use of the velocity form.

The simple basis set SCF functions, given in Tables V-VIII, have
also been used to calculate S(M)jF. The agreement between the values
obtained using the accurate-set SCF functions and the simple set SCF func-
tions is quite good. For the length form of S(M)f, the differences between
the values obtained using the simple and accurate set functions are never
larger than 0.35%; for the velocity form of S(M)IF, the differences are
never larger than'0.10%. The greatest differences between the simple set
and accurate set SCF orbitals are at the tails of the orbitals {c.f., Tables IX-
XII). It is not surprising, then, that the differences for the velocity form
of S(M)1F are sometimes less than those for the length form. For the ac-
-celeration form of S(M)IF, the differences are somewhat larger than for
the length and velocity forms, but only for the 2p-hole - 3s-hole transitions
-of Cl,'Ar+., and Kt is the agreement rather poor.
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Varsavsky,(47) using a method based on screened nuclear charges,
gives values of S(M)IF for a large number of ultraviolet transitions.
Varsavsky's values and the values obtained from this calculation are com-:
pared in Table XXI. The values of S(M)rf given for this calculation are
takeri from Table XIX. Varsavsky's values are all approximately twice as
large as the values of this calculation. It seems likely that he made an
error of a factor of 2 in calculating S(M)IF from the value of the radial

X @ (1) (F) ‘ ; :
integral Pr P dr. The values of S(M) are, as usual, in atomic
o np ns IF 0

units.

TABLE XXI. Comparison of (M) with Calculations
by Varsavsky (Values of $(M)jp are in g.u.)

2s-hole = 2p-hole

F Ne® Nat™
This calculation 2.065 1.463 1.086
Varsavsky* ’ 5,011 2.991 1.977

3s-hole = 3p-hole

Cl Art g+t
This calculation 5.36 4.14 3.30
Varsavsky* 11.53 8.30 6.23

*See Ref. 45.

Experimental data for the absolute or relative intensities of the
X-ray lines computed here have not been found. However, a calculation of
I"I? , the radiative width of the ls-hole state (or K state), can provide a
comparison with experiment.

For theAargon—li.ke ions, ls-hole - 2p-hole (Ka) and the ls-hole = 3p-

hole (KP) transitions make the most important contributions to I"'{R). All
other transitions from the ls-hole state involve at least double excitations’

(e.g., 1s25%2p®3s23p® -~ 15%25%2p®3s3p°ns, n =4) and are much less probable.

The value of l"(R) for argon has been calculated using the values of
S(M)IF given in Table XIX, the experimental values for the energies of the
Ka and Kp emission lines(62) [ AE(Ka,) = 108.70 Hartrees, AE(Ka,) =
108.62 Hartrees, and AE(KR,) = 117.26 Hartrees], and the relations of
Eqs. (38-40). The value is found to be F(Ig) = 0.0835 eV. The K-shell
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fluorescence yield for argon, as determined by Watanabe, Schnopper, and
Cirillo,(gl) is E\K = 0.140 + 0.014. From Eq. (42), a value of the toté.l width .
of the K-state PK = 0.60 £ 0.06 eV is obtained. T}_1_e, uncertainty in I"K is
taken entirely from the uncertainty in the value of Wi. Table XXII compares
this value of FK and values obtained directly from experimental data on
X-ray emission and absorption by Watanabe(80) and by Deslattes.(.52) The
value which we have obtained is, within experimental uncertainties, in agree-
ment with the 'experimental values. -

TABLE XXII. A Comparison of
Several Values of I'ix for Argon

Author 'k (eV)
Présen; Work . - 0.60 + 0.06
Watanabe* 0.68 + 0.03
Deslattes**l 4 0.70 + 0.0;

*See Ref. 78.

**See Ref. 50.
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