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TUNNEL DIODE CIRCUIT ANALYSIS
by

Ronald G . Roddick

ABSTRACT

Several graphical and graphico-analytical methods
for solving nonlinear differential equations are analyzed and
used in the solution of the most common configurations for
tunnel diode circuits. The general procedure is to perform
a first integration in the phase plane and then obtain the
time-dependent solutions by a second graphical integration.

The operating modes and stability of tunnel diode
circuits are analyzed, and a useful parameter diagram is
presented. Examples are analyzed in connection with the
different methods.

Thoughtunnel diode circuits may be solved by means
of an electronic computer, it is believed that these simple
and easily applied methods give a valuable insight into the
behavior of circuits under various operating conditions.

1. Introduction

Electronic circuits have been successfully studied with systems of
linear differential equations serving as a mathematical model. These
equations have been the subject of intense study, and the existence of
well-known forms of solutions is now established. Their use depends
upon the assumption that the circuit elements can be described by cer-
tain constant parameters. One example of this is the equivalent circuit
of a triode, with the amplification factor and the plate resistance as con-
stant parameters.

A cursory examination of the tunnel diode characteristics shows
that it is an element that cannot be so easily "linearized." This is es-
pecially true when it is used as a switching element.

We have made an attempt to apply certain techniques for solving
nonlinear differential equations to the specific case of solving tunnel diode
circuits.

The tunnel diode equivalent circuit is shown in Fig. 1.0-1, in which
N is a nonlinear element with the characteristic shown in Fig. 1.0-2.(10)
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ij~e , characteristic of tunnel diode.
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Experience shows that for some applications resistance Rg and
impedance Lg may be neglected in the analysis. In this case, we have the
simplest possible circuit (Fig. 1.0-3). Sections 2.1.1 and 2.1.2 contain
methods for analyzing this circuit.

Fig. 1.0-3

&

Rg

A,

The simplest tunnel diode circuit:
one reactive element,

e o e o e i o s e ]

TUNNEL DIODE

If we neglect only Rg and suppose the existence of an external
generator with zero or pure inductive impedance, we have the circuit of
Fig. 1.0-4. This case is treated by means of the isocline method in Sec~-
tion 2.2, and could be analyzed with the Lienard method,(z) (see Section 2.3).
The Lienard method was invented for solving equations of the sort involved
in this case.

__________ Tunnel_diode
[FrmTm e e e m - S S e - -3

41111

)t
<)

Fig. 1,0-4

CLN circuit; two reactive elements,




The most interesting case includes all of the tunnel diode param-
eters and uses an external generator with an inductive impedance, as in
Fig. 1.0-5. This circuit is analyzed by means of a modification of the
Lienard method (see Section 2.3) which allows us to include Rg’ and by
singular point analysis (see Section 3).

Tunnel dlode

I
e/
[¢]
!
71
W
&2
o o i 0 e 0 e D e

Fig. 1.0-5
RCLN circuit,

In any of these cases, I_ and E;, may be dc generators, as when the
circuit is used as an oscillator, or they may be dc bias generators in
series with pulse or ac generators, as when the circuit is used as a binary
or as an amplifier.

Any change in Eg or I, will cause a change in the steady-state
operation of the circuit. For example, the diode may switch from one
stable operating point to another, or the wave form produced by an oscil-
lating circuit may change. The following analyses are readily applicable
to these transitions.



10

2.1.1 Solution of a Simple RCN Circuit(l)

In some cases, relatively simple solutions of a simple RCN circuit
are possible. For example, consider the circuit of Fig. 2.1.1-1, where
i, = f(er) as given in Fig. 2.1.1-2. We have

e, de,

I ='—R— +C—&t_ +f(er)

If the substitution t = C7 is made, this equation becomes,

de e

r o _ g __T _
dr I-x fle,)
Thus, we can obtain der/d'r as a function of e, (see Fig. 2.1.1-3) by means
of a graphical subtraction (see Fig. 2.1.1-2). This curve may be integrated
graphically to yield e, as a function of 7, the normalized time used to make
de/dT have units of current. A change of scale then vyields e
of t.

rasa function

o

I il’ T+
_ Fig. 2.11-1

%R A:c N el‘
l RCN circuit

80 =
70 =

60 =

Ipfma) <0<

L= =

|}
200 300 400 500 €00 700
e (mv)

g_...

Fig, 2.1.1-2

Tunnel diode characteristic and load line.




de,
dr
mao

Fig, 2.L1-3

The curve relates e, to its time derivative, The graphical integration
s performed by marking known time intervals on the curve.,

In order to perform the graphical integration, we must mark off
known AT intervals on the solution curve. The following derivation shows
a simple way to do this (see Fig. 2.1.1-4). Ify = der/d'r, then

Je
e ay R

(efz iYZ)
(erl 9 yl)

Aep

er
Aaremat - TEMPLATE
tan™ (£)

(efl i'Y|)

Fig. 2.1.1-4

Method for finding known time intervals,

he.
AT Vavg Vi 2 ’

from which we obtain
LAy = (Z/AT) Aer - 2y

This is the equation of a straight line
in the (Ay, Ax) coordinate system. The
point at which this line intersects the
solution curve satisfies both the equa-
tion of the line and the solution of the
circuit equation, and so the point
(er,y2) is reached ATafter (erl, V1)
Repetition of this process with suit-
able AT's will enable us to plot the
final solution curve (see Fig.2.1.1-5).

It may be helpful in some cases
to vary AT in order to keep the points
a convenient distance apart. For ex-~-

ample, we chose I = 75 ma, R = 8 ohms,

11
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N as in tunnel diode type 1N3130, and AT= 0.86 ohm. For initial conditions ‘
e, = 0 and 7= 0, we obtain an increasing voltage which approaches the op-

erating point asymptotically. If the initial voltage is chosen greater than

the operating point voltage, we obtain a decreasing voltage which approaches

the operating point voltage. Thus, we see that the operating point is stable.

800 =~

400 -

e (mv) 300

200 =~

100 =~

1t —+— —t+—+—
o] 2 4 [ 8 | [o] 2 14 {6 i8 20 22 24 26 28 30
$
5eec [
Fig. 2.11-5

Solution of the RCN circuit when I # 75 ma, R =8 ohms, and N = IN3130. The initial con-
ditionise, =0fort =0,

2.1.2 RCN Case, Linear Approximation Method(l)

The circuit equations are (see Fig. 2.1.1-1)

de e
Loy = I-?randir = fle_)

Cdt r

The system is in equilibrium at the singular point (es, is) that satisfies

simultaneously
) eg ] ) de.,. _
ig = I-—x and ig = fleg), making 5w -0
Graphically, the singular point is the intersection of the load line with the ‘

tunnel diode characteristic (see Fig. 2.1.2-1).
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ig -o-vL
I
(T et(en Fig. 2.1.2-1
e Linear approximation to the tunnel diode characteris-
tic around the operating point (or singular point).
€
Ig% \(‘ -5

€r
Change of the variable e, to ey +h yields

dh €s h
- 4 + = o — o —
Cqr tflesth) =1- 5 -3

If only the linear terms of the power series of f(er) around eg are kept,
there is obtained

fleg+ h) Tig + (b/r)

Then we finally obtain

dh 1 1
— = e
Cdt h{R r] ?

where r is the tunnel diode resistance at (eg, ig).
Defining

1 1 1
= — 4 - =
Ry R " and T RtC s

we obtain the first-order linear differential equation:
dh
TEE' +h =0

The solution is

h = h, exp(- t :rto )

The definition eg = e, (ty) = e, + hy leads to

s

_ t -ty
e, -eg = (eg-eg) exp(- T )
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Taking the natural logarithm,

t-to = 1n eo-eS

T ey - €g

Thus, if T > 0, then ey approaches eg as t increases; if T< 0, then ]e - esl
increases.

Let us approximate the tunnel diode characteristic by a number of
straight lines. For this example, we
shall use four lines,as in Fig.2.1.2-2,
choosing R = 400 ohms,I = 1.325 ma,

' r; = diode resistance in region

| I =50 ohms,r, = 160 ohms, r; = o, and
ry = 50 ohms. Determination of the
singular points yields eg; = 50.1 mv,
eg; = =3.72 mv,eg; =490 mv, and

egqs = 458 mv. All except egy are vir-
tual singularities, that is, they occur
outside the region for which the cor-
responding straight line is a good ap-
proximation to the tunnel diode
characteristic. However, the circuit
acts as though the singularity were
real, as long as it is operating in the
corresponding region. Thus, in region
I we have

sz

12 eq

1 ]
o 160 200 360 460 500
ey (mv} €r - 59.1 _ (-t)

€ —- 59.1 - exp th ;
Fig. 2.1.2-2

Straight-line approximation to the tunnel diode Rt - Rr - (400 \(50) =
characteristic, R+r 400 + 50

44 .4 ohms;
this expression is valid as along as e, {50, the upper limit of region I.
Choosing as initial conditions ex = 0 and t = 0, we can calculate the time
t/C it takes to go from e, = 0 to ey = 50 mv:

t eg - eg _ 59.1-0 _
< Ri¢ In o - o = 44 .4 111————59.1-_50 83 ohms

Calculations for the four regions yields the table

Region: I i m XA
Initial Value e4(mv) 0 50 194 455
Final Value egimw 50 194 455 458
Singular point eglmv 59.1 - 372 490 458
Total Resistance Ryfohm) .4 -266 400 444

Time per Region ¥C{ohm} 83 339 855 @




We can now graph our results as in Fig. 2.1.2-3. Of course, for a more
accurate solution, one could use more straight lines to fit the diode char-
acteristic better.

2.2.0 Isocline Method(l:2)

400 The three methods we describe in

this and following sections deal with ways
of finding the solution to the system of

300~

el L two first-order equations:
001 d> dy
— = Plx I X
I (x,v) = = Qlx,y)
o I t )
1] 500 1000 1800
% (o) Later, we shall see that variables x and
) y are linearly related to a certain current
Fig. 2.1.2-3 and a certain voltage in the circuit under
Soluton curve for the case shown in Fig, 2.1,2-2,  analysis. Variable 7 is a normalizedtime.

We want to find the parametric solutions for the system:
x = x(r) and y = y(7)

If one differential equation is divided by the other, there is obtained a first-
order differential equation:

dy _ Qx,y)

dx Plx,v) ’

from which time has been eliminated. The solution to this equation is a
curve in the (x,y) plane, usually called the phase plane of the system.

The solution curve has a slope s = dy/dx for each point of the phase
plane, which can be calculated from

s = Qlx,y)/Plx,y)

Each point of the phase plane corresponds to a certain instantaneous energy
distribution in the systermn. This means that we need to know the initial
conditions, namely, %y and yg for 7 = 0. Drawing a small straight segment
with slope s, = Q(xg, vo)/P(xq, o) through point x,, vy, we find point x,, v, as
another instantaneous state of the system. By repeating this procedure, we
obtain the solution curve corresponding to the initial conditions. The con-
struction in general ends when the solution curve reaches a certain stable
condition. It can be either a point of the plane or a closed curve called the
limit cycle.

15
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To simplify the drawing of the solution curve, a set of curves called
isoclines is drawn in the phase plane. An isocline is the locus of all points
on the phase plane where dy/dx has a given value s;. Thus, Q(x,y) = 8§ Pix,y)
is the isocline algebraic equation.

Once an isocline is plotted on the phase plane, small line segments
are drawn all along it having the chosen slope s; (see Fig. 2.2.1-3).

To illustrate these concepts, take a very simple differential equation:
—5 +x =0

with the well -known solution
x = K sin{r+¢) ,

where K and ¢ are constants. This equation can be split into a system of
two first-order equations:

=X = ¢ (by definition) and%');’; = -x

Dividing one by the other,

dy‘z_x

dx v

The phase-plane solution to this equation is a circle
x* +y?% = K?

as can be proven by integrating the equation analytically.
The parametric solutions are

y = K cos{T +¢) : x = K sin( 7+ ¢)
The isoclines y = -sx are straight lines radiating from the origin and per-
pendicular to the solution curve.

Returning to the general case, once we have the solution curve in the
phase plane, the next step is to find the parametric solution x = x (7). This
can be done by plotting the derivative dx/d’r = P(x,y) with respect to x.

The graphical integration explained in Section 2.1.1 is then used to
obtain x = x(7). The same procedure yields v = yv(7).
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2.2.1 LCN Case

The circuit to be solved is shown in Fig. 2.2.1-1. The method used
here can also be used to solve the RLCN case (see Section 2.3.1).

iL v ir = fley) The circuit equations are
diy,
+ + = E - 3 °
- c ;{: ?r o R g " & loop equation H
de..
C TR PR nodal equation :
Fig. 2.2.1-1 = flel) tunnel diode
LCN circuit, r - H\er characteristic

It is convenient to normalize the time variable by defining
t = ~/LCT. The new variable T is a-dimensional because ¥ LC is the
natural period of oscillation of the LC circuit. The substitution yields

ﬁﬂ_E
C 4t g~ °r

and

\/6 de, | .
T a LT
Since ’\/C/L has the dimensions of an impedance, we can also define

1= +/C/L E, and i= +v/C/L e,

g

These substitutions yield

di .
L ) di _ .
dr = 1«1 and E;_IL-II‘ R

which have the same form as the ones studied in the preceding section. We
can simplify them further by changing the coordinates. The new origin is
taken on the characteristic curve ati = I. We shall see in Section 3.0 that
this point of the phase plane is singular.

We define then:

i=1I+y : iL—IL-i-x s



where the constant Iy, comes from I, = f(Eg). We also define the new
function

ply) = fle) - 11,

where

r

er = Eg ++/L/C v

(see Fig. 2.2.1-2). Finally,

X The first equation shows that x increases
i 4 with time for points in the phase plane
& where y < 0 and decreases when y > 0 (see

Fig.2.2.1-2). Dividing one by the other,

o)
m
(=]
|
@
o
i

A general idea of the meaning of this for-
mula is obtained if we approximate ¢(y)
around the origin by a straight line:

Fig, 2.2.1-2

Phase plane of the LON circuit. The so- Qb(Y) = by
lution curve tends toward a nearly circu-

lar limit le when th 1 f./C/L
ar limit cycle when the value o \ﬁ df(e
is large, ]:
der = Eg ’
then
..d;y._ = __:S.{_. + b
dx v

If |b|<<1, then the equation becomes dy/dx = -x/y, whose solution,
as already shown, is a circle corresponding to a sinusoidal oscillator. Be-
cause b is not really zero, the solution in the (x,y) plane moves with in-
creasing amplitude (b<0) on a spiral around the origin. This spiral tends
to a limit cycle when the solution curve reaches regions over which
dqb(y)/dy>0. As an example, we solve a circuit with the following values
(see Fig. 2.2.1-1):

L =1.2 nhy ; C =12 pfd ; Eg = 200 mv H

N : IN3130 characteristic.



19

The normalizing factors are:

/L/C = 10 ohms and ,/LC = 120 p sec.

Fig. 2.2.1-3 shows the isoclines plotted with x = Fly) - sy, with

s=-dl=-2,—l,0and+l .
dx

The initial conditions are arbitrarily chosenast = 0, e, = 158 mv, and
iy, = 35 ma. The solution curve is easily traced starting at this point.

dy, §=0

Ss+|

- dx
YT u®

er

J

. [
4= Ter

Fig. 2.2.1-3

Isoclines and solution cutve. The initial conditions are: t = 0, e, = 158 myv, and i = 35 ma.
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In this example, the solution rapidly reaches the limit cycle. This
limit cycle does not depend on the initial conditions and represents the
steady-state operation of the oscillatory circuit.

Similarly to Sectiom 2.1.1, we have a curve relating x to its deriva-
tive y. We can then use the same graphical method of integration to obtain
e, = er(t). To obtain the solution curve shown in Fig. 2.2.1-4, we have
used, instead, the method of Section 2.3.0.

600+
500+
400+

3004

€y (mv)

200 Fig. 2.2.1-4

160- Solution curve.

0 | 2 3 4 5 6 7 8 9 10 Il 12 13 14 15
.60ns l.2nas .8ns
Radians

2.3.0 Modified Lienard Method

The chief disadvantage of the isocline method is that plotting the
isoclines entails considerable effort. This would not be too serious a dis=
advantage if the same isoclines were to be used for a number of different
initial conditions, but this is frequently not the case. The modified Lienard
method avoids the tedious plotting of isoclines, but has the disadvantage
that the construction must be repeated for each set of initial conditions.

The Lienard method that solves the equation

for z = z(x) has been modified in a way that makes it suitable for solving
the more general differential equation

d
dz ¢lz +Fx)] - x - 2 [FG)]

dx Z

where F and ¢ are arbitrary single -valued functions.

As in the preceding section, there is a second equation relating the
two variables x and z to a normalized timeT:
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dx _

—_— = =g

dr

It is convenient to define a new variable y = z + F(x); substituting z by
y - F(x), we obtain:

dy . dF(x) - @(y) - X dF(X)
dx dx y - F(x) dx ’

and, simplifying,

dy _ ¢ly) - x dx

T y - FlE) ; F—F(X)'Y

The first of these equations solved by using the graphical construction is
shown in Fig. 2.3.0-1. Representing x on the vertical axis and y on the
horizontal axis, we can plot ¢(y)
and F(x) as shown. Choosing a
Fix) [ARBITRARY SHAPE] point Py corresponding to the ini-
y=Flx) 90&"% tial conditions, the construction be-
AS gins by drawing a line through P,
. x‘_"ﬂ) parallel to the x-axis until it inter-
! #y) sects the ¢(y) curve at Q, and a
R 5 [anerrary suaed - p4p through P, parallel to the y-axis
until it intersects the F(x) curve at
7 . S. Then, complete the defined rec-
tangle PyQRS and draw the diagonal
Fig.2.3.0-1 RPy;. Now draw a line segment
Modified Lienard graphical construction. through Py perpendicular to RP,.
This segment is tangent to the so-
lution curve at P;. We then choose a new point P, As from P; and on the
tangent segment, and repeat the construction.

To verify the construction, we note that angle RPyQ = angle SP,P,,.
F(x) -y
Then tan . RPyQ =tan L SPGP_, tan L RP,Q = - by construction,
; Fn R
and any curve that goes through point Py and is tangent to segment P, P, has
a derivative

dy _

To find v as a function of 7, we may mark off known AT intervals on
the solution curve and integrate graphically. A method for marking known
AT intervals during the construction follows.



Figure 2.3.0-2 shows that triangle RQP, is similar to triangle P;AP;;

then,
AS Ax
o Flx)-y ’
and also
As
tan = e
Aw 3
o ____
el \as Ay
A ]

P x—2(y)
- O_ ———n
“;— y=F(x) Q

Fig. 2.3.0-2

Method for marking known time intervals on
the solution curve.

A(D :As_
P

if Awis a small angle measured in
radians. Therefore,

Aa) = _.A_i__ ,
F(x) -y
and since
dx
ar F(x) -y »

we conclude that

Aw= AT

Thus, if we choose As in each construction so that Aw is known, we
will have known AT intervals between Py and P;. For performing the con-
struction, it is convenient to have a template for each value of Awthat is

used.

2.3.1 RLCN Case

We now give a physical meaning to the theory of the preceding

section. Consider the circuit of Fig.

L%Ii = E - Riy, -e, :
de, ) )
T P ;
where )
i. = f(er)

As in Section 2.2.1, we normalize
time and voltages by defining

®

2.3.1-1. We have

EE

. €@ —umi
L ;‘ L i ir=flep)
AN T o ey —
R L . $
ig

Fig. 2.3.1-1
RCLN circuit,




JicTt ;3 “¢c/LR
VC/LE =1 ;. VC/Le,

(gl
I
0

~

i
[N

Substitution in the above equations yields

di
L . .
o I- K1L -1
and
di .
dT—lL—lr—lL—qb(l) s
where

Dividing one by the other gives

di, I-Kip, -i

di iL - (i) !

an equation of the form treated in Section 2.3.0, with:
ip =x ; i=y ; Flx)=I-Kigy ; ¢y = )

This equation can be solved by the same construction, as shown in
Fig. 2.3.1-2. The equation has also the form dy/dx = Q(x,y)/P(x,y) already
seen in Section 2.2.0 and can thus be solved by the isocline method.

O

Y
AN
ip= flep) Fig. 2.3.1-2
/\ 4 The modified Lienard method in the case of
T & 3 the RLCN circuit, The same scale must be
X ) used for both axes. The relationships be-
tc tcln"'\/E R
i L tween voltages and currents are shown.
W ¥ g R
a
i
€
LK e : VE e Ry Ve
L VEe

23
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To find At from Aw, we have

AT = At/VIC

AW

Then

~/LC Aw

It is important to note that this method, unlike the isocline method, requires
the use of the same scale, in amperes, on both axes. The equation

At

shows that i increases for all
points of the phase plane where
iL>¢(i) and decreases for

ig,>¢ ).
Example 1.

Solve a RLCN circuit with
L 10 nhy, C = 20 pfd, R = 2.0 ohm
N as in tunnel diode type 1N3130,
E = 240 m volts; (see Fig. 2.3.1-3)

\/g = 0.0447 mhos

H

and
~VLC = 44.7p sec/radian
Choosing initial conditions i =i, =0

and performing the construction with
Aw= 0.1 or 0.2 radians as convenient,
the solution is the curve shown in
Fig. 2.3.1-3. The numbers along the
Fig. 2.3.1-3 curve are the cumulative number of
tenths of radians. Knowing that

i{amps)

Phase plane solution curve obtained by apply-

ing the modified Lienard method. The initial t = /LC¢ and that e =,\/Ei the wave
point (i=1 =0 for t= 0) is very near the T c )

limit cycle, shape shown in Fig. 2.3.1-4 is obtained.




5t

b =t

volts <_
er 3

2t

(o]
-l

?(’l Sec)

Fig. 2.3.1-4
Wave form produced by a RCLN circuit when R =2 ohms, L = 10 nhy, C = 20 pfd, N = IN3130,

E =240 mv. The circuit is a relaxation oscillator.

Example 2.

The circuit to be solved is again a RLCN. The parameters are

L 1.2 nhy 3 C = 12 pfd : R = 13.3 ohms :

N iN3130 characteristic
This circuit is the same LCN used as an example in Section 2.2.1, except
that it has a resistance R in series with the generator.

The generator is a combination of a bias voltage E; in series with
a pulse generator e, = E, [u(t) -u(t - T)], where E, is a constant and u is a
step function (see Fig. 2.3.1-5).

ez=E,p [u (t)-u (t-T)]

Fig. 2.3.1-5
ey Flip~flop circuit,

25
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The total voltage eg is a function of

:g time as shown in Fig. 2.3.1-6. If we choose
E, = 700 mv, we see that the load line for
R = 13.3 ohms cuts the characteristic curve
- * (see Fig. 2.3.1-7) in three points: L, M, and

O. We prove in the next section that points L
E, and O, are stable operating points of the
circuit and that M is unstable. We have then
0 T L a flip-flop. If the circuit is at point L for
negative times when a positive pulse e, of
200 mv is applied at t = 0, the load line is

Total voltage e (t). shifted as shown in Fig. 2.3.1-7. The new

load line only intersects the characteristic

curve at one point, O,. Being this point stable, the system is triggered
to singular point O,. The solution curve goes from L to O, as shown in
Fig. 2.3.1-7 if T is infinite.

Fig. 2.3.1-6

J
IL "‘\\\
\\\\\ f (ef)
L M ‘\\\
A
]
?
)
/[’
02
0
Ej Ej+E2
er
Fig. 2.3.1-7

Bistable RCLN phase plane. The phase-plane solution is always a con-
tinuous curve because neither the current through an inductor (i;) nor
the voltage across a capacitor (e;) can be discontinuous.

If the pulse duration is finite, then, when the solution curve has
reached a certain point J, the load line returns to its original position and
the system has again two stable points, L and O,. There is a certain
point J of no return. If the trigger pulse disappears before this point is
reached, the system goes back to point L.
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The solution curve from time T to infinity starts at point J and is
graphically computed by use of the load line O;ML.

The actual construction for the parameters we give above is shown
in Fig. 2.3.1-8. The solution curve splits in two branches at point J. So-
lution curve number 1 corresponds to the case T— w, and number 2 to the
case T =1.9/LC = 1.9 %x 0.120 nsec.

TOma=
60ma— I.o” 2
0.8 it 14
0.6 ) 1.5
. 16
\ 0.4, Og \7 .
0.3 18 solution curve
0.2 gl654 S ) #|
S0ma-+ Gi 3 2 P K
] A 2.0
L (¢} [3) 2.4
0l 2.0 2.2
1 sofution 2 3
40ma curve #2 22% o4
R RIZ.- 25 26 g
i 2.5
27 2.6
24 28,0 27
30 2.8
30ma+ 23 30 2.9
Rzt N 3.0
22.5
R locus #1 if Oz
&
o 22
20ma+t
i4 e
R locus #2 21
24
O
1
i0Oma +
20 16 ls20
Rig i7
Rig
i ] } i ¥ ¥ ) t t
100mv 200mv 300my 400mv 500mv €00mv 700 mv 800mv 900my =—€r

{Ome 20ma 30ma 40ma 50ma 60ma 70mao 80mao 90ma =i

Fig. 2.3.1-8

Phase-plane solution curve obtained by the modified Lienard method. The parameters are E;= 700 v,
Eg =200 v, R = 13.3 ohms, L = L.2 nhy, C = 12 pfd, and N = IN3130,

The locus of the R points is also shown for both cases. It may be
used during the construction of the solutions to evaluate the accuracy of
the approximations. While this construction is performed, it is possible
to evaluate qualitatively how near we are to the exact solution. When suc-
cessive R points get too far apart, it is convenient to choose a template
with smaller angles.



We can now plot the voltage across the tunnel diode against time. .
In the circuit of Fig. 2.3.1~-5 this voltage appears between points A and B:

eAB T ©r + ey,
(see Fig. 2.3.1-2). This curve is shown in Fig. 2.3.1-9.

600_

o
500 L
my
400 1
my
< 300_|
Y
200.L
my
100
™y
0.24nsec. 0.48n.sec.
o } t } } ; {
=1 0 | 2 3 4 5
T (Rodians}

Fig. 2.3.1-9

Switching transient of the bistable RCLN circuit.
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’ 3.0 Analysis of Singular Points(1,2)

This method is a combined analytical and graphical approach. The
method consists of:

a) location of the differential equation singularities;

b) determination by analytical methods of the solution curves
around the singularities. This is usually simple, because the
first two (linear) terms of a Taylor series can be used as an
approximation to the nonlinear functions in the vicinity of the
singularities;

c) approximate determination of the solution by observing the
location of the singularities and the nature of the solution
curves near them.

We wish to solve the system:

dx _ . dy _
5 " Plx,y) 3 Q(x,v)

Expanding in Taylor series about (xg,yg) and keeping only the linear terms,
there is obtained

d

L= Blxaye) +lrxs) At oy B
dy

Ir = Q(Xs:ys> + (X'Xs) C+(y-ys)D

The point (xg,yg) is a singularity when P(xg,yg) = Q(xs ,ys) = 0. Since the
time derivatives x and ¥ are zero at (xg,yg), we see that a singularity is a
point of equilibrium.

If a change is made to co-ordinates

X = xXg +hy ; vy = yg thy

then,

4oy a+n,B 3 Peon cin, D
a7 dar

This is a linear system equivalent to the original one near the singularity.
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The general solution is of the form:

hy = Hj; exp(MT) + Hyp expA,7)
h, = Hy exp(\T) + Hyy exp,7) ,

where H;;, Hyz, Hy;, and H,; are constants determined from the initial
conditions.

Constants A; and A, are calculated as follows. Write the differential
equation in matrix form:

h, A B hy
h, C D h,
where
dh, . dh,
hl - 'a_; and hz = —d_’T—: s

or, in a more condensed form,
[(h] = [M] [h]
Assuming
h = Hexp(A7)
as a solution, then
Afh] = [M][h]

from which we obtain

[M]-2[1]] = [0]

where [I] is the unit matrix and [0] is the null matrix. This matrix equation
is satisfied if for its determinant

or




The roots of this quadratic equation are called the eigenvalues of matrix [M]:

,z=%{(A+D V(A + D)? +4(BC-AD)}

{ i\/(A+D)Z+4BC}

We introduce now a linear transformation:

hy = Pyw + Pipuz 5 hy = Payug + Ppup
where the P's are constant. This transformation changes the (h;, h,) plane
into the (u;, u,) plane (see Fig. 3.0-1) in such a way that a straight line is

transformed into a straight line, but in general the angles are changed. In
this form a rectangle is transformed into a parallelogram.

T8 Uy Py

Fig. 3.0-1

he Linear transformation between plane (hj, hg)
and plane (ui, ug). Corresponding points and
lines are indicated.

Pz

We can express the above transformation in matrix form:
[n] = [P] [u] if |[P|£0

and
[n] = [P] [a]

Substitution into the matrix equation yields

[P] [u] = [M] [P] [u]

or

31
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(0] = [N] [u]

where

Since [M]and [N] have the same eigenvalues, a suitable choice of [P] will

serve to diagonalize N. This means that

Then

and the parametric solutions are

w = Upexp (A7)

u; = U, exp (XZT)

To clarify this point, suppose that A; and A, are positive real
numbers. In this case, the solution curves on plane (u;, u,) may look like

the ones shown in Fig. 3.0-2.

Uy hy

N .

Ly

hy=mihg
Uz

hy=mgha

ha

N

Fig. 3.0-2.

The same set of solution curves is shown in
mormal form (left) and in general form (right).

Then
Ah]_ + th = SCh]_ + SDhZ

and

In the same figure the corresponding solution

curves are shown on the (h;, h,)
plane. The figure corresponds to
the case for which 0 < A< X, and
shows how the curves start from
the origin with the u; direction and
gradually tend to the u, direction.
It is important to notice that axes
u; and u, belong to the solution
curve family.

We can find the dirctions
of the axes u; and u, in the plane
(h;, h,) by using the isocline method.
Dividing one differential equation by
the other, there is obtained

dh, _Ah; + Bh,
dh, Ch; + Dh,

= s = slope.




sD - B
b =g o5e b

i

nh,

The isoclines are straight lines radiating from the singular point with slope

_sD-B
=R TsC
Axes u; and u, are solution curves for the problem; therefore, for
them the slope of the solution curve and the slope of the isocline coincide.
Let us call this particular slope

Then
~mD - B
m e Ao me
or
D-A B
2 = c—
m*~ + C m C 0

The roots are

1
ml,zzz—é-{A-DiJ(A-D)2+4Bc}=yi Vo .
Two other interesting isoclines are the ones corresponding to
s =0ands - «©, If s =0, then n0=-B/A. Ifs >, thenn_ = -D/.C.

It is also useful to know the slope of the solution curve for the axes
hl and hz. For

n—’w(hl axis) , s1=A/C,
and for
n=0 (h, axis) , s, =B/D

An example is shown in Fig. 3.0-3, where
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If we always chose

by g

= ™ >\_1=ﬁ+'\/5_ ; ?\2=,8=-"\/E’(T;
my =Y + VYO ; ma =7% =~ya

then the final directions of the
solution curves are parallel to
m; for t = + « and parallel to
* m; for t = -0,

ma=up

Up to this point we have
A only considered the case @ > 0.
m=2 mas ¥ If o < 0, then Xy, A,, my, and
r:l:i ns:i m, are complex numbers. There-
At Ag=- fore, the solution curves do not
have final directions. Instead,
the curves will spiral around the
4 singular point. The solution curve
can be drawn using the isoclines
ng and ne, and the slopes s; and

S3.

o

Fig. 3.0~3

The solution curve around the singularity can be found

from an isocline construction. . .
We can classify the sin-

gular point according to the nature
of A; and ), as shown in the following table:

A Az type of singularity
real, same sign node
real, opposite sign saddle point
pure imaginary vortex
complex conjugates focus

Singular points are points of stable or unstable equilibrium. A saddle point
is always a point of unstable equilibrium. Nodes and foci are stable when
B < 0 and unstable when 3 > 0.

This classification and conditions are shown in Fig. 3.0-4.
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5 Me=fV T 3.1 RCLN Case
JE POSITIVE NEGATIVE
UNSTABLE f::)DE o STABLE hl\:ODE In SeCtiOn 2.3.1 we
A V4 \ found for the circuit shown in
e p \ Fig. 2.3.1-1 the following nor-
v 7 “ malized equations:
S / é (
.
5 {ee 00 dlL
[4 SADDLE POINT SADDLE POINT —— T2 P i -
hy Ry feo - dr I KlL ’ ’
t=2+m ‘//// ///
<
; \ﬁ\//'r X7 di
i\z / \ hp / \ h2 -a-a:— = 1L -(Z)(l)
NN /‘\
fo= oo 40

The singular points are deter-
mined by solving the system
of equations:

UNSTABLE FOCUS STABLE FOCUS
\ by By
<

COMPLEX

(
N - yX 1-Ki; -i=0
~ L ’
N
ip -e@)=0
Fig, 3.0-4 The first one is a straight line

and the second one is the tunnel
diode characteristic. The char-
acteristic curve is such that we
have either one or three singular points. Calling the coordinates of the
singular point ig and iy, g and defining h; and h, by

Classification of singular points and typical solution curves,

i, = ipg + Iy

we obtain

dh . .
-(i—Tl:]{-ths-Khl-ls-h2 ;
dh . .

-‘a:l_i= i1.s + hy - @(15 +h2)

Expansion in a Taylor series arcund ig gives

o

p(is + ;) T ¢lis) + hy ¢'(ig)

Substitution and simplification yields

dh; _ dh, _ 1
T SEhmR s gE o
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If it is remembered that

o (i) = flexr)
where

i= ‘\/67fer ’
then

dp(i) _ dfler) der 1

di dey di r

Then

k=r JC/L ,

olF

where r stands for the tunnel diode resistance at the singular point (See

Fig. 3.1-1).
iL
h
ig '
.
SLOPE K
Fig, 3.1-1
hp Singular-point analysis of
a RCLN circuit,
¢ W e
i=I‘K“_
\ i
: ;
i
The matrix elements are; A = -K, B = -1,C = 1,D = -1/k.

By means of the formulas of Section 3.0, we find

>¥12

9

flet) o

K 4=
k

)2-4(—%—+ 1)} ;




1)1 1 2
mj,, = Y% E:iav/zig' ) -4 ?

n0=-1/K ; n°0=1/k ; 5 = - K s, = k

The singular point can be found graphically, as shown in Fig. 3.1-1. If the
tangent to the characteristic curve be drawn, the value of k can be deter~
mined. Figure 3.0-3 is a construction based on the parameters obtained
from Fig. 3.1-1, and the solution curve so obtained is accurate if the dif-
ference between ¢(i) and if,g + (hy/k) is small.

3.1.1 Virtual Singular Points

Consider the situation, shown in Fig. 3.1.1-1, similar to the one
described in the second example of Section 2.3.1. The circuit has only one

stable state, located at s;. Therefore, all solution curves end at that point.

-SOLUTION
CURVE LOAD LINE

i=I-Kk

So=mQo

ﬁ_
I S
5
N s
o
S

Fig. 3.1.1-1

Singular point analysis in the case of a virtual saddle point.

The purpose of this section is to find the solution curve in regions
far from the singular point s,. Let us consider again the exact circuit
equations:

37
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di, . , di )
dTZI“’KlL”1 : --—-::1L_¢(l)

We can approximate the characteristic curve around point Q with
o~ 1o
¢(i) = ip, +—l'<‘<1 - iy)

within a certain region i; - 6; < i < i; + 6,. Substitution of ¢(i) into the dif-
ferential equation yields

dig, . . di ] i 1
T =1-Kp-t 5 gr=in-in -6 - i)

Equating to zero and solving, we determine the singular point s;. Graphi-
cally, s; is the intersection of the load line with the tangent to the charac-
teristic curve at ;. Point s; is virtual because it falls out of the region
under consideration. Moving the origin of coordinates to s;, we obtain

dhy o dh 1
dr ! a2 v dThhlm-E?"

From Fig. 3.1.1-1 we obtain K = 8/5 and k = 8/179 so that »; = 1.82;

A, = -1.30; m; = -0.292; and m, = -3.42. We can now plot the solution
curve within the region i, -~ &; < i { i3 + &,. The complete solution curve,
up to point s,, is obtained by approximating the characteristic curve with
a number of straight lines and dividing the plane in regions, as we did in
Fig. 2.1.2-2.

3.1.2 Classification of Singular Points

We can conclude from the preceding study that each point of the
characteristic curve can be classified in the way shown in Fig. 3.0-4.

Consider the eigenvalue formula

= (et D) e (B

for the RCLN case, where

df{e ) f
C C T C
K-M/L:R ; k‘\//‘ T . AT Fled

We classify now the singular points according to the values of K and l/k:




a) Stability: g= - (K +Tl<'>

K» - 1/k implies a stable point ;
K< - l/k implies an unstable point
The border line is K = - l/k

b) Type: Node - saddle point or focus.
D ey - (xox)
o = (K +—E> - 4 —k—-'l' 1 = K -'T{_ - 4

1 2
<K -—E-> > 4 implies either a node or a saddle point

°
9

1\2
(K -—E) L 4 implies a focus

The border line is

(K +_11;>2 = 40rK = (1/k) + 2

c) Type: Node or saddle

1\? 1\2 K
(K+—1;) 5 (K+T<-) ~4(?+1)

or

4(%—% l) > 0

implies a node, so that

K
— 1 -
4(1{ + > <~ 0

implies a saddle point. The border line is
K= -k

The results are shown graphically in Fig. 3.1.2-1,
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I Consider the first ex-~
/////// ample of Section2.3.1, in which
L = 10 nhy, C = 20 pid, and
R = 2(). For the only real
singular point,

r=-24Q.
Then
K = R +/C/L = 0.09
and
1
= bt/
Fig. 3.1.2-1 This corresponds to an unstable

node in the diagram; hence, the
circuit will oscillate, as is con-
firmed by the analysis in Sec-
tion 2.3.1. The oscillation reaches a limit cycle because the solution curve
spirals into regions where l/r becomes more positive., In the diagram, this
corresponds to points on a straight line parallel to axis l/k and to the left
of the one calculated above. An equilibrium is reached when the solution
curve spends part of the time in the stable focus region.

Parameter diagram of a RCLN circuit.

3.1.3 Operating Modes of RCLN Circuit

We have seen in previous sections that RCLN circuits can perform
different functions, depending on the values of the parameters. In Sec-
tion 2.3.1 we analyzed an oscillator and a binary. The mode of operation
is related directly to the location of the real and virtual singular points in
the diagram shown in Fig. 3.1.2-1.

To simplify the problem, we approximate the tunnel diode charac-
teristic with four straight lines. This implies the existence of four regions
(see Figs. 3.1.3-1 and Fig. 3.1.3-3). The current generator Ig and the re-
sistance R determine whether the singular point for each region is real or
virtual, The values of R, C, L, and r determine the character of the sin-
gular point and, therefore, the circuit behavior in each region,

Amplifiers and oscillators require only one real singular point in
the negative region of the characteristic. In the case of the amplifier, this
singularity has to be stable. Oscillators, on the other hand, require an un-
stable singularity. If the singularity falls in the unstable focus zone, near




the vortex line, the circuit will oscillate sinusoidally. If it falls within the
unstable node zone, then we have a relaxation oscillator. The three cases
are shown graphically in Fig. 3.1.3-2 (see also Fig. 3.1.2-1). The points
on the horizontal dotted lines correspond to the different regions of the

tunnel diode characteristic.

o}'F\
AN
o

T g

VA
[N P

(b} Amplifier

Fig. 3.1.3-1

Oscillators and amplifiers require only
one real singular point in the negative
resistance region.

v
(@) Oscillator Ig
iy
&
I ! |
I, o | I I 174
o |
Ig | I !
I | |
| | I
| |
|
| Slope B |
f I {/
! |
F T i ll T |I j ¥ T T G ll 7 i ’ el’
K=RE
Fig. 3.1.3-2
Typical singularity locations for amplifiers
and oscillators.
I r1
fm e = Qo e o = Q=D
I JUA
————— =00

Sinusoldal
Oscillator

X=Real singuler point.
O= Virtual singular point.

Amplifier

1 Relaxation
~° gscillator

'+i

{HE
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In the case of a bistable circuit the requirement is that R > |r [ .
The load line intersects the tunnel diode characteristic in three points,
two stable and one saddle point (see Figs. 3.1.3-3 and 3.1.3-4). We see
then that the diagram of Fig. 3.1.2-1 gives us a criterion for choosing the
circuit parameters for each mode of operation.

vl i
v L 'y |
T t1jr1] m | m
|
[ ‘ {
Ig | I i
| ]
- 0% ° g N |
A\ !
' i I
I lope |
S -
(c) Bistable @ ! P R
Ig ' b ey
Fig. 3.1.3-3
Bistable circuit.
Ke RS
X= Real singular point.
/ 0= Virtual singuiar point.
Fig. 3.1.3-4
Typical singularity locations fora bistable circuit.
n/ T

3.1.4 The Goto Pairl7)

Omne circuit which deserves mention is that of Fig. 3.1.4-1. The
circuit is a flip-flop using a Goto pair. Neglecting for the moment the
capacitance present in the diodes and assuming R;<{ < R, we have the cir-
cuit of Fig. 3.1.4-2, in which E £ R;I. We wish to find e; as a function of
i;. We have

i = irz = irl = f(erz) - f(erl) s

where




Thus,

iy = £(E + &) -£(E - e)) = F(ey)

as in Fig. 3.1.4-3.

s

O

Fig. 3.1,4-2

DC equivalent circuit
of a Goto pair,

e
i,'
e"lsf(iﬁ)
2
- ¥ h L -
% ! irz
e, @

fle+e,)

fle-e))

\+E

-

Fle)

+E

€

Fig. 3.1.4-3

Combined characteristic
curve of a Goto pair.
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Figure 3.1.4-4 shows the circuit with the capacitances included. '
Figure 3.1.4-5 shows an equivalent circuit, where NT has the (iy, e;) char-
acteristic found in Fig. 3.1.4-3. Given the initial conditions, we can now
apply the methods used to solve a RCLN circuit.

i

i

3}
(s

o

+ . - Fig. 3.1.4-4

LRI AN AC equivalent circuit
of a Goto pair.

&
Fig. 3.1.4-5 Nr% e

RCLN7 equivalent circuit —=2¢ §
of a Goto pair.




4. Experimental Data and Calculated Results

The methods described have been applied to actual circuits, and
reasonable agreement has been obtained between calculated and observed
results. The relaxation oscillator shown in Fig. 4-1 illustrates this point.
The pulse generator delivers a train of rectangular voltage pulses to the
input. During each pulse the load line is shifted to the negative region of
the tunnel diode characteristic and the circuit oscillates. We photographed
the wave forms at points A and B (with respect to ground) using a double
trace~sampling scope, which was synchronized by the input pulses
(see Fig. 4-2).
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The electrical characteristics of the type T 1925 tunnel diode are:

Peak point current = Ip = 1.0 ma

Valley point current = Iy = 0.13 ma

Peak point voltage = Ep = 55 mv

Valley point voltage = Ey = 320 mv

Forward peak point current voltage = Ef = 475 mv
Total capacity = C = 9.0 pid

Ls = 1.0 nhy

Series inductance

Series resistance = Rg 1.5 ohms

Inflection point negative resistance = r = -120 ohms.

The tunnel diode characteristic curve is shown in Fig. 4-3. The circuit
can be reduced by the Thevenin Theorem to the equivalent RCLN one
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shown in Fig. 4-1. The normalizing factors are

~/L/C = 1000  4/2.9/9 ohm = 566 ohms;
v~/ LC = 4/2.9x%x9 nsec

= 5.11 nsec.
The parameters K and l/k are
9+ 1.5
= R L =~ = 0. ;
K c/ 558 0185 ;

(l/r) ’\/L/C = -—?2—8= -4.72 (negative region).

1/k
The real singularity falls in the unstable node region of the parameter
diagram (see Fig. 3.1.2-1).

The modified Lienard method gives the phase-plane solution curve
shown in Fig. 4~3. The initial conditions for t = 0 are er = 0, i, = 0,
and ei/lo = 120 mv. Finally, the voltage eB as a function of time is ob-
tained (Fig. 4-4). If we compare this wave shape with the ones obtained
experimentally (see Fig. 4-2), we see that they agree reasonably well. The
period of the calculatedwave form is T = 54.16 nsec. This value is close
to the 57 nsec observed in the photographs.
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We shall end with a few remarks.

Disagreement between experimental and theoretical results can be
attributed, in our case, to the following causes:

a) The equivalent circuit of the tunnel diode is not exactly the one
presented in Fig. 1.0-~1

b} Some of the parameters of the equivalent circuit, for instance
the capacity, are not constant and depend on the voltage ey, on
the current i1,, or on both.

c) The graphical methods, being only exact for infinitesimal in-
crements, are intrinsically approximate.

Our feeling is that we can rule out cause a) as being minor com-
pared with cause b). On the other hand, the equivalent circuit appears to
be physically sound

Cause b) is the most serious one. It is well known(lo) that the
junction capacity depends on the bias ey. If this effect is taken into ac-
count, the mathematics will be complicated excessively, making the theory
too difficult to apply-

Cause c) is not too grave because it is always possible to improve
the accuracy by choosing smaller increments.

Though tunnel diode circuits may be solved by means of an elec-
tronic cornputer,(l 1,12) it is believed that the simple and easily applied
methods presented in this paper not only give acceptable solutions but
also valuable insight into the behavior of nonlinear systems in general
and tunnel diodes in particular.
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