
'V". 0 

p 
•1̂ ' 
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Preface 

shielding technology has matured considerably in the last decade, and shield 
physics must routinely be translated into shield design. Since the publication 
in 1959 o( Fundamental Aspects of Reactor Shielding, by Herbert Goldstein, 
new generations of computers have become available to exploit techniques 
heretofore considered too costly, and new measurement techniques have 
been devised. The energy and angular distributions of neutrons and gamma 
rays can be followed, both in theory and in practice, throughout their 
transport histories. Such powerful tools have brought correspondingly large 
dividends to the shielding community. 

These advances and their underlying fundamentals are recorded in this 
volume, which is intended as a text for a two-semester course in reactor 
shielding directed at an advanced undergraduate or graduate level. The reader 
is assumed to have some familiarity with calculus through partial differential 
equations and with nuclear physics through particle interaction theory, 
although pertinent aspects of the latter are reviewed in Chap. 3. The material 
is arranged to cover fundamental transport considerations in the first 
semester; portions of Chap. 4 could be reserved for the second semester. The 
second semester could then consist of special topics, such as Monte Carlo 
techniques, albedos, ducts, shield-analysis projects, seminars on experimental 
shielding, and shield design. Instructors will doubtless follow plans of their 
own choosing. Chapters 2 through 6 have problems appended, with solutions 
given at the back of the book. Metric units have been used exclusively. 
Citations of classified literature have been avoided, and technical reports 
have been referenced only where no journal articles could be given. 

Although titled Reactor Shielding, this text should be applicable in related 
areas where neutron and gamma-ray attenuation are important, as in nuclear 
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weapons shielding and in isotope source applications. The study of space 
radiation and high-energy-accelerator shielding, although closely related to 
the present subject, has been considered outside the scope of this book. 

Dr. Samuel Glasstone originally conceived the idea for this text; he 
concluded that the book was needed and originally proposed to prepare it. 
In the preliminary planning of the project, the U. S. Atomic Energy 
Commission asked me to collaborate with Dr. Glasstone. Notwithstanding 
many plans and discussions for this collaboration, Dr. Glasstone had to 
relinquish his role in order to carry out a number of other projects. It is a 
pleasure to acknowledge his efforts in the planning of this book and his 
useful critiques of early drafts. I sincerely regret that our proposed 
association could not be continued. 

For their assistance in the preparation of this manuscript, I am greatly 
indebted to many people in a number of ways. First, no book on shielding 
could be readied for pubHcation at this time without acknowledgment of the 
pervasive influence of one man, the late E. P. Blizard. Not the least of his 
many contributions to the development of the technology was his 
encouragement of the efforts of others, including my own effort in preparing 
this manuscript. 

The many services and suggestions provided by the staff of the Radiation 
Shielding Information Center, Oak Ridge National Laboratory, were 
extremely helpful, particularly in scanning the current literature. It is a 
distinct pleasure to acknowledge many useful discussions with others at 
ORNL: Lorraine Abbott , Clyde Claiborne, Charles Clifford, Paul Stevens, 
and Dave Trubey, each of whom supplied references and data in addition to 
contributions cited elsewhere. My colleagues Mike Wells and Bob French 
have also contributed in this way and in their forbearance. 

I owe thanks for reviews and comments on various portions of the 
manuscript to Arthur Chilton and his students at the University of Illinois, 
Don Dudziak of Los Alamos Scientific Laboratory, Charles Eisenhauer of 
National Bureau of Standards, Cliff Horton of Rolls Royce, Ltd., 
Richard Faw of Kansas State University, Norman Francis, David Mesh, and 
their associates of General Electric Knolls Atomic Power Laboratory, 
Gene Hungerford of Purdue University, John Lamarsh of New York Uni
versity, Fred Maienschein of Oak Ridge National Laboratory, Ed Profio of 
University of California at Santa Barbara, and Leigh Secrest of Texas 
Christian University. I am particularly indebted to Lew Spencer of National 
Bureau of Standards for his detailed review of the complete manuscript and 
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for his many useful suggestions. Most of these reviewers provided recommen
dations based on teaching experience in shielding. 

The guidance and counsel of John Inglima during the planning stages and 
of Robert Pigeon during the manuscript drafting, both of the U. S. Atomic 
Energy Commission, is gratefully acknowledged. For technical editing I am 
grateful to Jean Smith and Marian Fox, also of the U. S. Atomic Energy 
Commission, and, for typing a difficult manuscript, to Monsita Quave of 
Radiation Research Associates, Inc. I am especially grateful to Ceil Schaeffer 
for relieving me of many burdensome proofing tasks and, most of all, for her 
understanding and encouragement. 

N. M. Schaeffer 

May 1973 

Note to Reader 

The occasion of the 1981 reprinting gives me the opportunity to 
comment on the currency of this text, now eight years after initial 
publication. Several observations should be made: (1) The methodology of 
shield analysis as described here continues in general use. Many computer 
programs are now available which are successors to those mentioned in the 
text; the newer versions tend to be more-efficient or more-convenient 
versions of the forebears that were originally described. (2) Many of the 
tabulated data originally included for the reader's convenience have been 
superseded by newer results. We urge the user to check for later references 
with the Radiation Shielding Information Center, Oak Ridge National 
Laboratory, if the accuracy of his results is important or if he is in doubt 
about the latest available computer programs. (3) The shield designs 
reviewed in Chap. 10 are obviously dated but should retain some classroom 
value for discussion of the principal design considerations. 

The general acceptance and use of this text has been particularly 
gratifying, and I thank the numerous teachers and students who have offered 
suggestions and corrections, which have been incorporated where possible. 

August 1981 

N. M. Schaeffer 
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Historical Background 

N. M. SCHAEFFER J_ 

Early reactor shields were largely a matter of educated guesses. The complex 
of phenomena that had to be considered for an accurate shield analysis was 
an imposing obstacle. Microscopic-particle interaction processes were reason
ably well understood, but their relative importance depended on largely 
unknown physical parameters called cross sections. Bulk attenuation 
properties of materials for two principal radiations of interest, neutrons and 
gamma rays, were also unknown. Even for an empirical approach, there was 
no opportunity under the wartime pressures of the Manhattan Project to 
launch a systematic investigation of the attenuation properties of materials. 
It was obvious that hydrogenous materials were needed for neutrons and 
dense materials for gamma rays. It was also evident that simple exponential 
attenuation based on the total cross section was a thoroughly inadequate 
concept for determining layer thicknesses. The shield of concrete and 
paraffinized wood for the Argonne National Laboratory graphite pile in 
1943 was adequate for gamma rays and was overdesigned for neutrons. The 
X-10 reactor at Oak Ridge National Laboratory (ORNL) included a 2.1-m 
concrete shield, of which the central 1.5 m contained a special mixture 
incorporating the mineral haydite. The large water-of-crystallization content 
of haydite made it appear especially useful for neutron attenuation. This 
shield was also overdesigned for neutrons and about adequate for gamma 
rays, although streaming problems were evident for both radiations around 
access holes in the shield.! 

The special requirement for a thin shield for the Hanford reactor was 
dictated in 1944 by the maximum length of aluminum tubing that could be 

tHistorical material for this chapter has been drawn from H. Goldstein, Everitt Pinnel Blizard, 
1916-1966, Nuclear Science and Engineering, 27: 145 (1967), the dedication of a special issue 
prepared as a memorial to E. P. Blizard. Additional information was graciously provided by Mrs. L. S. 
Abbott from the archives of the Neutron Physics Division, Oak Ridge National Laboratory. Mr, C. C. 
Horton of Rolls Royce, Ltd., has kindly provided reminiscences of British developments. 

1 
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drawn. E. Fermi and W. Zinn had made some provisional attenuation 
measurements in Chicago in 1943. H. Newson and L. Slotin made some 
gold-foil measurements for masonite and iron slabs in the core hole at the 
rear of the X-10 pile in 1944. A young engineer, C. E. Clifford, was assigned 
to help them. The Hanford reactor shield was built of iron slabs sandwiched 
between masonite layers. Although initially a good neutron attenuator, the 
masonite suffered severe radiation damage and decomposed. The CP-3 
(Chicago Pile-3, 1944) shield was composed of ordinary concrete; although 
thicker than necessary, it performed satisfactorily. 

The early reactor projects clearly demonstrated that the design of a 
shield for neutrons and gamma rays that was optimal, efficient, or 
economical required answers to a great many questions. In 1946 the Navy 
initiated an intensive study program for a nuclear-powered submarine, and 
the Air Force, a similar study for a nuclear-powered aircraft. Space and 
weight limitations for these nuclear applications added more impetus to the 
open questions in shielding. In the spring of 1947, E. P. Blizard, then a Navy 
physicist assigned by Capt. H. Rickover to ORNL, was directed to start a 
program of shielding measurements. He proposed a program of neutron and 
gamma-ray attenuation measurements through several types of concrete 
placed in the rear core hole (a 60-cm square aperture) of the X-10 reactor. 
C. E. Clifford of the laboratory staff was assigned to work with him because 
of his experience with measurements for the Hanford shield in 1944. Slabs 
of material were placed in the aperture, and detectors were positioned within 
and beyond the slabs. This effort marked the first organized research 
program in reactor shielding. A spiral-duct mock-up placed in the hole 
demonstrated that properly designed passages could penetrate the shield 
without transmitting excessive radiation. These studies also led to the 
recognition that the production of secondary gamma rays by neutron 
interactions in the shield was clearly a significant design consideration. 

By 1948 shielding studies supporting various reactor projects were in 
progress at Hanford, Knolls Atomic Power Laboratory, Bettis Atomic Power 
Laboratory, and Massachusetts Institute of Technology (MIT). As additional 
results of measurements in the X-10 core hole were made, Blizard became 
convinced that too much radiation streamed around the test samples for 
accurate measurements and a better facility was needed. He concluded that a 
fission plate—a thin disk of enriched uranium covering the core h o l e -
would provide a local source of fission neutrons and would be more 
accessible for attenuation measurements. Clifford suggested that a tank of 
water be placed adjacent to the fission plate so that materials and 
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instruments could be submerged, which would greatly reduce the radiation 
background. These two ideas culminated in the Lid Tank Shielding Facility, 
which began operating in 1949. 

In the United Kingdom shielding research efforts were started in 1948 
and were geared to the British philosophy of reactor development: large 
gas-cooled reactors for plutonium production to be followed by develop
ment of these systems for electricity generation. The research reactor BEPO 
had just been completed; it had a 15-cm iron thermal shield followed by a 
bulk shield of barytes concrete and had a layout similar to the Oak Ridge 
X-10 reactor. The Windscale reactors were under construction in 1948 and 
included a thermal shield similar to BEPO but Portland concrete was used 
rather than barytes. Early design calculations were made by B. T. Price, D. J. 
Littler, and F. W. Penning. 

A shielding group was set up under C. C. Horton as part of Fenning's 
reactor physics group at Harwell to investigate shielding problems connected 
with large concrete shields, heating effects, and radiation streaming in the 
large ducts that are integral to gas-cooled systems. In these systems heat 
generation in the first 30 cm or so of the shields was recognized to be an 
important problem, and Horton, later with K. Spinney, developed some 
models to predict the distribution of heat generation by neutrons and 
gamma rays. Horton, J. R. Harrison, and D. Halliday of the Harwell group 
also initiated a program of duct-streaming measurements in 1952 at the 
BEPO facility. 

During an intensive working session at ORNL in shielding in the summer 
of 1949 with interested participants from a number of installations (one of 
many organized by Blizard), T. A. Welton of MIT developed the concept of 
the removal cross section for treating neutron attenuation in heavy materials 
mixed with hydrogenous materials. Recognizing the importance of the 
removal concept, Blizard initiated a new series of measurements in the Lid 
Tank to verify apphcability and to obtain removal cross sections for many 
materials. The removal-cross-section concept quickly came into widespread 
use and became the principal method of treating neutron attenuation. Two 
decades later it is still regarded as a useful, valid technique for many 
apphcations. So great were the demands on the Lid Tank that a second 
fission-plate facility was constructed on the reactor at Brookhaven National 
Laboratory, and a program of additional removal-cross-section measurements 
was carried out under the direction of R. Shamberger (Chap. 4). 

Blizard proposed an additional test apparatus for complete 47r shields 
since they could not be tested in the Lid Tank. Tests for the mock-up for the 
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Materials Testing Reactor (MTR) indicated that this type of reactor would 
make a useful source for shield tests. Construction was authorized, and the 
Bulk Shielding Reactor (BSR) was completed in 1950. The facility was so 
versatile that it became the pattern for swimming-pool research reactors 
around the world. The BSR group included L. Meem, F. Maienschein, and 
R. Peelle. Numerous basic and applied results were forthcoming on materials, 
shield mock-ups, and a definitive measurement of the fission gamma-ray 
spectrum (Chap. 2). 

The British workers also realized the need for a special facility; they 
required data to support the design of large shields for power reactors. A 
group under the direction of Penning was set up to design and build this 
reactor. Horton was responsible for the physics and general layout of the 
facility. The reactor (LIDO) was completed in 1956. Unlike the Oak Ridge 
facility, the entire pool was constructed above the ground to allow access to 
three caves in the shield wall, in which substantial dry mock-ups could be 
placed. The reactor could be traversed through the pool to provide a source 
for these mock-ups, and an important design criterion for the pool layout 
was that construction of a mock-up in one cave could be carried out while 
experiments were continuing in another. 

Aircraft shielding required measurements away from the ground; thus 
Blizard and Clifford conceived the idea in 1952 of a facility in which a 
reactor might be suspended at a sufficient height to eliminate the effects of 
ground scattering. They planned an arrangement of four towers in a 
rectangle with cable hoists for elevating a BSR-type reactor and crew 
compartment 60 m above ground. The Oak Ridge Tower Shielding Facility 
began operation under Clifford's direction in 1954, and it proved versatile in 
applications far beyond the ill-fated nuclear aircraft program (Chap. 9). 

Although destined for cancellation in 1961, the aircraft nuclear 
propulsion (ANP) program produced a number of other useful shielding 
efforts. The Nuclear Aerospace Research Facility at Convair, Fort Worth, 
Tex., included two reactors: the Ground Test Reactor (GTR), a copy of the 
BSR, and the Aircraft Shield Test Reactor (ASTR). In 1954 B. Leonard and 
N. Schaeffer proposed a program of ground and flight studies with these 
reactors to resolve the major shielding uncertainties affecting airframe 
design. The GTR was operated in a small water tank suspended from a crane 
at a height of 30 m to obtain an early measurement of ground scattering. It 
was also placed in a mock-up consisting of the empty fuselage of a retired 
aircraft (the XB-36) with a shielded cylinder representing a crew compart
ment. From these measurements and concurrent air-transport results at the 
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Oak Ridge towers, the large contribution of secondary gamma rays produced 
by neutron radiative capture in air was first observed in 1955. The 
importance of these secondary gamma rays was a surprise to both groups; 
previous estimates of the probability for gamma-ray production by neutron 
capture in nitrogen had been too low, and these measurements were the first 
to reveal the discrepancy. The ASTR was carried in the aft bomb bay of a 
specially modified B-36 in a series of test flights from 1955 to 1957 at 
altitudes from sea level to 11 km. The program provided data on radiation 
transfer by air and aircraft structure from reactor to shielded crew 
compartment. The program culminated with a joint effort at ORNL in which 
the ASTR and the crew compartment were suspended at the towers in the 
same relative positions as when installed in the B-36 (Chap. 8). 

The decade from 1951 to 1961 is the period when shield technology 
came into its own. The major facilities were all in operation from 1954 
onward, and large shielding groups at General Electric in Cincinnati, Ohio, 
Pratt and Whitney in Hartford, Conn., Convair in Fort Worth, Tex., and 
Lockheed in Marietta, Ga., were participating in the ANP program. The 
submarine effort was concentrated at the Westinghouse Bettis Laboratory 
near Pittsburgh, Pa., and the General Electric Knolls Atomic Power 
Laboratory in Schenectady, N. Y. The Oak Ridge group was extremely busy 
supporting both efforts. These groups contributed to the technology by 
developing design methods, by measuring attenuation through shield 
materials (including mock-ups of various shield designs), and by devising new 
experimental and analytical approaches. The demise of the ANP program 
and the successes of the nuclear submarine are well known. The U.S.S. 
Nautilus sailed on nuclear power for the first time in January 1955. This 
date is to be compared with 1954, 1956, and 1957, the years in which 
nuclear-fueled electric plants first went on line in Russia, Great Britain, and 
the United States, respectively. 

The nuclear-apphcations programs gave impetus to the development of 
shield-analysis methods as well as to large-scale experimental programs. By 
the early 1950s an intensive program in radiation physics was under way at 
the National Bureau of Standards (NBS) under the direction of U. Fano. 
G. W. Grodstein published a definitive set of X-ray attenuation coefficients, 
and L. V. Spencer's method-of-moments solution of the Boltzmann trans
port equation was first described. Shortly afterward a group at Nuclear 
Development Associates, Inc., under the direction of H. Goldstein joined 
with Spencer and Fano in an intensive program of moments-method 
calculations, which culminated in 1954 with publication of the Goldstein 
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and Wilkins report on gamma-ray buildup factors. R. Aronson, J. Certaine, 
M. Kalos, and P. Mittelman, with Goldstein, appHed the method to neutrons. 
Fano, Spencer, and M. J. Berger published a definitive exposition of 
gamma-ray penetration in 1959, which included a summary of the moments 
method as well as other techniques (Chap. 4). 

Work on neutron attenuation in the United Kingdom followed a 
somewhat different path from the efforts in the United States. Horton and 
J. D. Jones devised the removal-diffusion method, the first results of which 
were reported at the second Atoms for Peace conference at Geneva in 1958. 
Since 1956, A. Avery and J. Butler have further developed these techniques 
at Harwell (Chap. 4). 

Although H. Kahn of Rand Corporation published two papers on the 
apphcation of Monte Carlo techniques to shielding in 1950, in which he 
identified virtually all the principal concepts, widespread use of the 
technique and its subsequent development had to await the improvement of 
the digital computer. Prominent among early contributors in delineating the 
techniques and concepts were E. Cashwell and C. Everett of Los Alamos 
Scientific Laboratory (LASL) and G. Goertzel and M. Kalos of Nuclear 
Development Associates, Inc. Kalos and P. Clark of ORNL reported on the 
theory of importance sampling and finite variance estimators. At NBS, 
E. Hayward and J. Hubbell reported photon albedo calculations in 1953; 
M. Berger and J. Doggett extended their results in 1955. The first successful 
Monte Carlo applications in air scattering were reported in 1957—1958 by 
Berger, C. Zerby of ORNL, and M. Wells of Convair. The completion of the 
0 5 R system of Monte Carlo programs by R. Coveyou at ORNL in 1958 
must be regarded as a significant advance in shield technology. The 0 5 R 
system required a great deal of its users, but it was extremely flexible and 
widely used. At the Geneva (Atoms for Peace) conference in 1964, Blizard 
and Mittelman reported on eight major Monte Carlo programs in use in the 
United States. The MORSE Monte Carlo code of E. Straker, P. Stevens, 
D. Irving, and V. Cain was completed in 1969; it has produced results in 
excellent agreement with analytic solutions (Chap. 5). 

Monte Carlo has been regarded as one of the sophisticated techniques, 
but the workhorse method of shield design has been the point-kernel 
approach. Blizard, J. Miller, D. Trubey, and G. Chapman of ORNL and 
J. MacDonald, W. Edwards, and J. Moteff of General Electric (GE) made 
notable contributions to the use of removal cross sections. K. Shure of 
Westinghouse Electric Corporation developed an analysis technique for 
metal—hydrogenous shields based on a combination of point kernel and a 
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numerical method using spherical harmonics called a Pj multigroup (later a 
P3) solution of the one-dimensional transport equation. In the development 
and application of gamma-ray buildup factors to kernel techniques, the work 
of J. Taylor of Westinghouse, M. Capo of GE, M. Berger and J. Hubbell of 
NBS, R. French of Convair, M. Grotenhuis of Argonne, P. Clark and 
D. Trubey of ORNL, and A. Chilton of the University of Illinois should be 
listed as principals in devising empirical representations of the data and 
simplified schemes for its application (Chaps. 4, 6, and 8). 

From the outset many investigators in shield analysis sought manageable 
numerical techniques for achieving analytical solutions of the Boltzmann 
equation. Of all the efforts in this direction, such as the method of moments, 
spherical harmonics, numerical integration, and invariant imbedding, perhaps 
the most significant in terms of present usage is the discrete-ordinates 
method. B. Carlson of LASL had developed a discrete-ordinate method 
for reactivity calculations in 1955 which became known as S„ and which has 
been successfully apphed to a variety of transport problems. F. Mynatt and 
W. Engle of ORNL developed ANISN in 1965, which incorporated improved 
differencing and convergence techniques and made the method more suitable 
for shielding applications. A two-dimensional version of ANISN called DOT 
was described a year later by P. Mynatt, P. Muckenthaler, and P. Stevens 
(Chap. 4). 

The Sn programs, although not without problems in some geometries, 
have been used with a great deal of success in obtaining detailed radiation 
distributions in comphcated two-dimensional geometries. Several labora
tories have recently studied the utility and applicability of coupling Monte 
Carlo and discrete-ordinate calculational links. Thus the latter is used for 
those portions of a geometry reducible to two dimensions and the former 
where the description requires three dimensions. 

A more complete historical survey would include the developments and 
researchers in nuclear instrumentation for shielding. As shield analysis has 
been paced by the development of the digital computer, so shielding 
experimentation has been gaited to innovations in particle detectors and fast 
electronics. A survey of neutron and gamma-ray detectors is given in 
Chap .9 . 

In the foregoing chronology we have been limited to an outline of 
United States shielding research with only brief insertions of corresponding 
British activities. Significant and occasionally large shielding efforts have also 
been maintained elsewhere, notably, Belgium, Canada, France, Italy, Japan, 
the Netherlands, Norway, Russia, Sweden, and West Germany. These 
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programs principally support national power reactor developments, although 
the hterature also contains many reports of maritime and space reactor 
shielding studies from Europe and Asia. 

We have used some terms that will be meaningless to the uninitiated. 
However, the chapter references will aid the curious in locating the 
appropriate explanations; the objective here has been to trace the early 
developments and to introduce some of the literature. 

The newcomer will find the following earlier books on this subject to be 
useful references: The first handbook in reactor shielding was published in 
1956 and was edited by T. Rockwell, ' who had been in the original shielding 
group at Oak Ridge. B. Price, C. Horton, and K. Spinney^ of the British 
group active in reactor shielding wrote the first text to appear (in 1957) on 
the subject. The text by Goldstein^ was published in report form in 1957 
and appeared in hard cover in 1959. The Shielding volume of the Reactor 
Handbook, edited by Blizard and Abbott,** was published in 1962. 
T. Jaeger^ wrote a text on Principles of Radiation Protection Engineering, 
which was pubHshed in 1960 in German and translated by L. Dresner of 
ORNL for pubhcation in English in 1965. From the standpoint of 
dissemination of shielding information, probably the most important event 
was not a publication date but the founding in 1962 of the Radiation 
Shielding Information Center (RSIC) at Oak Ridge. Originally organized by 
K. Penny, D. Trubey, and B. Maskewitz, RSIC has performed a remarkable 
job of serving the needs of the shielding community. The specialized needs 
of civil defense have lead to a separate technology of fallout shielding, which 
is available in a 1962 monograph by Spencer^ and a 1966 collection edited 
by Kimel. ' 

From 1966 to 1970, ORNL published Chaps. 2, 3, 4, and 5 of the 
Weapons Radiation Shielding Handbook, edited by Abbott, Claiborne, and 
Clifford.^ Authors for this handbook contributed revised material from the 
earlier publication to the present text. Recently the Engineering Compen
dium on Radiation Shielding,^ R. G. Jaeger, editor-in-chief, was published. 
Vol. I in 1968, Vol. Ill in 1970, and Vol. II in press. This compendium is 
sponsored by the International Atomic Energy Agency, Vienna, and is an 
excellent source for the international shielding literature. 

The extensive Russian shielding literature deserves further mention here 
since it is referenced in only a few instances elsewhere in this work. A 
guide to the Soviet literature was published by J. Lewin, J. Gurney, and 
D. Trubey* ° for RSIC in 1968. A recent computer scan of Russian 
entries in the RSIC bibliography produced over 200 entries. Most of these 
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articles are available in English translation 1 to 2 years after their original 

Russian publication. Current reports will be found in Soviet Atomic Energy 

(Atomnaya Energiya).^^ Collections that are useful reports of current 

progress are found in a series entitled Problems in the Physics of Reactor 

shielding; Vol. 4 is the most recent volume available in English.' ^ 
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Sources of Radiation 

W. E. SELPH and C. W. GARRETT * ^ 

Shield analysis is usually subdivided into three or four phases; separate 
calculations are performed for the radiation components that are significant 
at each phase. Occasionally two or more of the phases may be combined, but 
each represents a distinct consideration in a shield analysis. The first phase 
involves defining the source in sufficient detail to provide the parameters for 
input to the succeeding phases. The second phase involves calculating the 
intensity and distribution of the radiation that penetrates the shield about 
the source; it is the principal phase in the analysis of a reactor shield. The 
third phase consists in determining the intensity and distribution of radiation 
traveling from the shield to the receiver. "Receiver" describes the points or 
region for which the radiation intensity is desired, e.g., a radiation detector 
(real or hypothetical), a human for whom biological exposure is desired, or 
equipment for which the exposure is desired to assess possible radiation 
damage. This third phase typically involves a calculation of radiation 
interactions in air. A fourth phase may be defined if the receiver has a 
separate shield, e.g., for some applications of nuclear propulsion it is 
advantageous to divide the shielding and use separate shields at the reactor 
(the source) and the crew (the receiver). 

Thus the first task in a shield analysis or a shield design is to define and 
characterize the radiation sources. This chapter contains a classification of 
the various types of sources encountered in reactor shielding and a brief 
description of each in a form convenient for shield analyses; the character
istics important to the shield designer are emphasized. 

Discussions of the nuclear and atomic processes that give rise to the 
emission of radiation are given in any nuclear physics text. Also, the 
shield designer is primarily concerned with the characteristics of the emitted 
radiation, so only a cursory description of the physics of radiation 
production is given here. In addition, some mathematical and fundamental 
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radiation physics concepts are reviewed which are necessary for the 
development of the material in this and succeeding chapters. 

Subsequent chapters are devoted to the other phases of shield analysis 
and to topics relevant to their application. 

2.1 GAMMA-RAY AND NEUTRON SOURCES 

The primary concern in reactor shield design is the specification of 
suitable barriers around sources of neutrons and gamma rays to limit the 
radiation exposure to biological systems or equipment that must function in 
proximity to these sources. Both types of radiation are sufficiently 
penetrating to be difficult to attenuate; yet they are sufficiently interacting 
to be damaging to tissue and other materials. 

Several other types of radiation arise from the fission event or from the 
interaction of fission neutrons with nuclei. These include charged particles 
and neutrinos. 

Neutrinos, which possess no charge, mass, or magnetic moment, cannot 
interact with matter except through the very weak, purely nuclear forces. 
Thus, despite the fact that they carry away 5% of the power of a reactor, 
they do not pose a shielding problem because they are incapable of causing 
damage. 

Conversely, charged particles are of little concern because they are so 
highly interacting that relatively small amounts of material provide an 
adequate barrier. The absorption of energy associated with charged particles 
may, however, be an important consideration in the thermal design of a 
system. 

The sources of radiations of primary interest in a reactor, neutrons and 
gamma rays, are discussed in the following sections. 

2.1.1 Gamma-Ray Sources 

A variety of sources contribute to the gamma radiation produced by a 
fission reactor. The relative importance of these sources to the total 
gamma-ray intensity depends primarily on the reactor design; within a given 
reactor the importance of the components may vary with position in the 
reactor and with reactor operating history. For example, at a point near the 
reactor core, the prompt fission gamma rays may be most important during 
reactor operation, the fission-product gamma rays may predominate for the 
first few hours after shutdown, and subsequently the gamma rays from 
activated materials in the vicinity may be more important. 
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In power reactors the most intense gamma-ray component penetrating 
the shield is frequently that from neutron interactions in the thermal shield, 
pressure vessel, or biological shield. However, in special situations any of the 
sources discussed in the following paragraphs may be of importance, and 
each must be considered as a potentially significant source by the shield 
designer. 

(a) Fission Gamma Rays. The discussion on gamma rays from fission 
and fission products is limited to those from ^ ^ ^ U. Spectral distributions 
and energy partitions are not known as well for other fissionable materials; 
similarity to ^ •̂  ^ U is frequently assumed, but some differences have been 
observed. Strictly speaking, gamma-ray energy released in fission is divided 
into four time ranges, the first and last contributing more than 90% of the 
total energy released as gamma rays. These time {t) ranges are: 

Prompt, ^ < 0.05 Msec (7.25 MeV). 
Short-life, 0.05 <t<1.0 Msec (0.43 MeV). 
Intermediate-life, 1.0 Msec < f < 1.0 sec (0.55 MeV). 
Delayed, t> 1.0 sec (6.65 MeV). 

The values in parentheses are for the gamma energy released per ^ ^ ^ U fission 
and were taken from an evaluation by Holden, Mendelson, and Dudley' 
except the value for prompt fission, which is quoted from a recent note by 
Peelle and Maienschein.^ Prompt fission gamma rays have energies from 
10 keV to 10 MeV. An average of 8.1 ± 0.3 photons are released per fission, 
and these photons carry off 7.25 ± 0.26 MeV per fission event. Prompt 
fission gamma rays can contribute a significant amount to the total 
gamma-ray field at points near the reactor core during reactor operation and 
should be included in the core-shield analysis. The energy distribution of 
prompt gamma rays is discussed in Sec. 2.4.1. 

The short-life interval is similar to the prompt in energy distribution and 
accounts for 5.9% (0.43 MeV) of the prompt gamma-ray energy release. 

The intermediate-life interval is also usually assumed to have the same 
energy distribution as the prompt interval with an energy release of about 
0.55 MeV. 

(b) Fission-Product-Decay Gamma Rays. The two middleweight nuclei 
resulting from a fission event are called fission fragments or fission products. 
Because of an excess of neutrons, most of approximately 80 possible initial 
fission-product isotopes are radioactive, initially decaying by beta emission. 
The beta decay is followed by gamma emission whenever the beta decay 
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results in an excited state of the daughter nucleus. In a few special cases, 
only gamma radiation is emitted. 

The vast majority of daughter products of the initial fission fragments 
are also radioactive, decaying with the emission of beta particles and gamma 
rays. Having, on the average, about three stages of radioactive decay before 
they become stable, fission products form a complex mixture of gamma-ray 
emitters with half-lives ranging from less than a second to millions of years. 
Of the approximately 21.5 MeV per fission emitted by fission products, the 
greatest fraction is carried by beta particles and neutrinos. About 6.65 MeV 
per ^^^U fission is emitted by the fission product as delayed gamma rays; 
over three-quarters of this energy is released with 10^ sec following fission. 

Fission-product activity will not dictate the thickness of the shield 
surrounding an operating reactor. There are a few shield-design situations, 
however, where protection from fission-product activity is the primary 
criterion. Included in this category are primary loops in circulating-fuel 
reactors and enclosures for the shipment or dismantling of used fuel rods or 
assemblies. Knowledge of the dose rates from fission products is essential to 
the formulation of procedures to be followed in any maintenance involving 
compromise of the primary shield. 

Delayed gamma rays can be classified into two groups, depending on the 
time of their emission following fission. Early fission-product gamma rays 
are those emitted within a few minutes after fission; they contribute to the 
total core source during the operation of a reactor. They can also be of 
prime importance in regions external to the core during the operation of a 
circulating-fuel reactor. Late fission-product gamma rays (those which are 
emitted several minutes or longer after fission) are not of much importance 
during reactor operation, but they can be a very significant source following 
reactor shutdown. 

Because most of the fission-product energy is contained in the early 
fission products, fission-product intensity reaches a state of quasi-
equilibrium in a reactor core that has operated at steady state for only a few 
hours. Thus the early decay gammas are sometimes lumped with the prompt 
fission gamma rays and are considered a part of the prompt source. Energy 
spectra for both the early and late fission products are discussed in 
Sec. 2.4.1. 

(c) Capture Gamma Rays. Radiative capture of neutrons by nuclei at 
thermal and epithermal energies produces secondary gamma rays, commonly 
called capture gamma rays. They are emitted promptly after neutron capture 
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to relieve an unstable energy situation generated within the compound 
nucleus. 

The total energy available for gamma rays from capture is the sum of the 
kinetic energy of the incident neutron and its binding energy in the 
compound nucleus. Since the probability of capture decreases rapidly with 
increasing kinetic energy, capture reactions generally are of importance only 
for neutrons with kinetic energies below 25 keV. Typically, neutron binding 
energies are in the region of 6 to 8 MeV, although they can range from 2.2 to 
about 11 MeV. Thus binding energy is the greatest component of the total 
gamma energy emitted. 

Although this energy may be carried off by only one photon, it most 
often is shared by two or more photons as the compound nucleus decays 
through several excited states. The energy distribution of capture gamma 
rays can range from sharp discrete line spectra to almost continuous spectra 
produced by cascading decay; the capture interaction process is further 
discussed in Chap. 3. 

Since investigators studying capture spectra are primarily interested in 
nuclear processes, many times only discrete spectral lines with significant 
intensities are reported. In using such data, we must be careful to ascertain 
whether or not the entire neutron binding energy is contained in the 
reported gamma spectrum. Where it is not (differences can be as much as 
30%), adjustments should be made by increasing the number of photons 
emitted to account for the total amount since this energy is usually an 
important contributor to the radiation that penetrates the shield. 

Capture gamma rays are a significant source and occasionally constitute 
the most important consideration in shield design because of their high 
energy and the fact that they are generated throughout the shield. 

(d) Inelastic-Scattering Gamma Rays. In neutron inelastic scattering, 
part of the energy of the incident neutron is carried off by the scattered 
neutron and part is absorbed by the target nucleus. The latter is left in an 
excited state and subsequently decays by gamma-ray emission. An alterna
tive process that may be involved is the formation of a neutron—heavy 
compound nucleus by union of the target nucleus and the incident neutron. 
The extra neutron is then emitted, and the target nucleus is left in an excited 
state. The time between neutron interaction and gamma-ray emission is 
negligible (10" ' ' ' sec). 

As with capture gamma rays, the excess energy may be carried off by 
one or more photons. However, gamma rays from this source are generally 
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less penetrating than those from neutron capture; their energies range from a 
fraction of 1 MeV to several MeV. Since the energy of the incident neutron 
must exceed the energy of the first excited level of the target nucleus, 
inelastic scattering becomes more important as the neutron energy increases. 
In general, neutrons must be in the MeV region to generate significant 
gamma rays by this process. 

(e) Reaction-Product Gamma Rays. The reaction-product source results 
from a process resembling that of inelastic scattering except that some 
particle other than a neutron is ejected from the nucleus. The nucleus is left 
unstable and emits a gamma ray. An example is the'°B(fi,a)^Li interaction, 
which is accompanied by the emission of a gamma ray of approximately 
0.5 MeV. Sources of this type are significant only in materials containing 
isotopes which have a reasonable probability of undergoing a particular 
reaction and which are located in strong neutron fields. In reactors 
boron-containing materials generally are the only materials that fit these 
criteria. 

(f) Activation-Product Gamma Rays. Capture and inelastic-scattering 
gamma rays are emitted simultaneously with the neutron—target nucleus 
interaction. However, the nucleus formed by a neutron interaction may be 
radioactive and decay with a half-life that can range from seconds to years, 
emitting photons and other radiations in the process. These activation-
product gamma rays may be of importance to the shield analysis and are of 
particular concern after reactor shutdown. They may also be emitted in 
significant quantities from materials which have been exposed to the high 
neutron flux of the core and which are subsequently circulated in regions 
external to the reactor shield. Irradiated samples and reactor coolants both 
fit this description. 

For example, the ' ^ 0 ( n , p ) ' ^ N reaction produced by fast-neutron 
activation of water emits gamma rays with energies of 6.1 and 7.1 MeV. The 
half-life of ' ^ N is 7.13 sec, short enough to produce high activities in 
irradiated-water-coolant streams. Liquid-metal fuels and coolants must also 
be considered as a source of activation-product gamma rays. In sodium 
mixtures, ^^Na(n,7)^' 'Na produces 1.38- and 2.76-MeV photons with a 
half-life of 14.8 hr. 

(g) Annihilation Radiation. A few activated materials decay by the 
emission of positrons, which are annihilated by subsequent combination 
with electrons. Because of the relatively short distance that positrons travel 
before annihilation, the process can be considered to occur at the time of 
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decay and at the site of the activated nucleus. Two 0.511-MeV photons are 
emitted from each positron—electron reaction. High-energy gamma rays also 
can react in a converse process called pair production (discussed in Chap. 3) 
to produce electron—positron pairs. These positrons also are annihilated near 
their source in an identical manner and contribute further to the source of 
0.511-MeV gamma rays. 

(h) Bremsstrahlung. The acceleration and deceleration of electrons in 
the atomic electric field produces electromagnetic radiation called brems
strahlung. The process is identical to that occurring in the X-ray tube and is 
an important consideration only where high-energy beta particles (or 
accelerated electrons) interact with materials of high atomic number. An 
example is found in the use of lithium as a coolant. Neutron absorption in 
^Li produces ^Li. The latter undergoes decay to ^Be by emission of beta 
particles with energies as high as 13 MeV. Bremsstrahlung produced by these 
high-energy electrons as they slow down in piping or containment materials 
requires evaluation as a gamma-ray source. 

2.1.2 Neutron Sources 

By far the greatest neutron source in an operating reactor is that created 
by the fission process itself, in which, along with the prompt gamma rays, 
free neutrons are released as part of the fission event. However, other 
reactions can also produce neutron sources of importance to the shield 
designer, and all sources discussed in this section should be considered in a 
shield analysis. 

(a) Fission Neutrons. Approximately 2.5 neutrons are emitted per 
fission event in ^^^U by thermal neutrons (more in other cases), and they 
carry away a total energy of approximately 5 MeV. Although energies can 
range from the eV region to beyond 18 MeV, the average energy of a ^^^U 
fission neutron is about 2 MeV, and an upper limit is often taken to be 
14 MeV. In fact, less than 1% of the total energy of fission neutrons is shared 
by neutrons whose energies exceed 10 MeV. However, these high-energy 
neutrons are very penetrating, and in some cases they can be of overriding 
importance. Prompt fission-neutron spectra are discussed more fully in 
Sec. 2.4.2. 

For shielding purposes, fission neutrons may be assumed to be evolved 
simultaneously with the fission event. The very small fraction (<1%) with 
delayed emissions requires consideration as a separate source only in the case 



18 REACTOR SHIELDING FOR NUCLEAR ENGINEERS 

of a circulating-fuel reactor where the fuel loop extends beyond the core 
shield. 

(b) Activation Neutrons. Under certain circumstances the decay of a 
radioactive nucleus can be followed by the emission of a neutron. This 
occurs when the energy of excitation of the daughter nucleus is in excess of 
the binding energy of the last neutron in the nucleus. In fact, when such an 
energy imbalance exists, neutron emission is the preferred mode of release. 
An example is the beta decay of ' ^N with a 4.14-sec half-life, which leaves 
an * ^O nucleus with more than enough excitation energy to eject a neutron. 
Neutrons from this source have a most probable energy around 1.0 MeV. 
Nitrogen-17 is formed by the ' ^0 (n ,p ) ' ^N reaction and can be important in 
fast-neutron bombardment of water. 

(c) Photoneutrons. A photon whose energy is greater than the neutron 
binding energy of a nucleus can impart enough energy to the nucleus to 
cause neutron emission. The photon energy required to make such a reaction 
possible exceeds 7 MeV for all but a few nuclei, and the probability for the 
photoneutron reaction is quite low until photon energies above 10 MeV are 
reached. Thus photoneutrons do not contribute a significant source 
component in the vast majority of reactor shielding problems. The few 
nuclei whose neutron binding energies are low enough to create a possible 
problem in reactor shielding include ^D, ' B e , ' ^ C , and ^Li. The threshold 
photon energies for these isotopes are 2.23, 1.67, 4.9, and 5.3 MeV, 
respectively. Since all four occur in moderator materials, these exceptions 
are occasionally important. 

(d) Particle-Reaction Neutrons. The interaction of alpha particles with 
nuclei of lithium, beryllium, oxygen, boron, and fluorine produces neutrons. 
Thus these elements are often combined with alpha-active isotopes, such as 
polonium or plutonium, to form neutron sources for use in experimentation 
or reactor start-up. Neutrons from this source may be important to shielding 
and safety during assembly or in the pre-start-up environment of reactors 
containing beryllium in the fuel-element material. Similarly, neutrons from 
{(x,n) reactions in oxygen may be dominant in oxide fuel elements. 

The energy distribution of these neutrons is broad since the neutron 
kinetic energy depends on its angle of emission relative to the direction of 
the incident alpha particle as well as on the kinetic energy of the alpha 
particle. In polonium—beryllium and plutonium—beryllium sources, for 
example, emergent-neutron energies range from < 1 to > 1 0 MeV. 
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Neutrons may be generated by other charged-particle interactions, but 
they have not been important in reactor designs to date. Incident neutrons 
with energies above 10 MeV can excite a compound nucleus sufficiently to 
emit two or more neutrons. Such reactions are rarely of importance in 
reactor shield design. 

2.2 BASIC MATHEMATICAL AND PHYSICAL CONCEPTS 

The physical properties of radiation sources and fields are discussed in 
the remaining sections of this chapter and in subsequent chapters. The 
manner in which these properties are characterized requires an understanding 
of certain basic concepts, including differential and integral distributions, 
normalization and averaging techniques, solid-angle concepts, and definitions 
of flux density and current density. This section contains a review of these 
necessary basic considerations. 

2.2.1 Differential Distributions 

Most properties that characterize radiation fields and sources are 
functions of one or, more often, several independent variables. Mathematical 
functions may be used to describe the dependence of such a property on its 
variables; functions of this type are called differential distributions. Errors in 
the treatment of these distribution functions are among the more common 
mistakes in shielding practice. Because of the need for precision in these 
concepts, a careful explanation of the methods of treating such distributions 
is in order. 

Consider, for example, a radiation source nonuniformly distributed in a 
three-dimensional slab whose emission rate varies with both time and one 
spatial dimension. Such a source can be described by a function of four 
variables, P{x,t'AV,At). Its values give the number of source particles 
emitted in time interval A^ centered about time t from a spatial volume 
element of size AV centered at point x in the slab. The dependent variables 
AV and A^ are functions of the independent variables x and t, respectively. 
Such a function is sufficient to characterize completely the spatial and 
temporal properties of the source. 

The concept can be generalized to any number of variables. The general 
form can be vvTitten as 

P{x,y,z, . . .; Ax,Ay,Az, . . .) = D{x,y,z, . . .) Ax Ay Az . . . (2.2-1) 
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The function D{x,y,z, . . .) is called a differential distribution function,t and 
Its values give the number of events per unit measure of each of the 
independent variables, x,y,z, . . ., involved. 

In the radiation-source example, the differential distribution 

^^""'^^ AVAt ^^-^'^^ 

gives the number of source emissions that occur per unit volume and per unit 
time in volume element AV about x and in time interval At about t. It has 
units of r^ t~ ' , for example, particles per cubic centimeter per second. 

Differential distributions are often used to describe energy spectra of 
sources and fields. For example, if D(£) is a differential distribution 
describing the continuous energy spectrum of a photon field, the values of 
D(E) give the number of photons per unit energy interval about E, and 
D{J1) AE is the number of photons whose energies are in the energy interval 
AE containing energy E 

Although differential distributions are useful in conjunction with finite 
intervals (i.e., AV,At,AE), which need not be infinitesimals, they are 
frequently applied to differentials. Thus D{x,y,z, . .) dx dy dz specifies, 
for a distribution of events, the amount that lies in the differential volume 
element dx dy dz containing the point {x,y,z, .). The integral of a 

differential distribution function over the entire domain of all variables gives 
N, the total number of events or quantity contained in the distribution, 

N^lxly . D{x,y, . . .)dxdy . . . (2.2 3) 

In our two examples, /^ Jj D{x,t) dt dx is the total number of particles 
emitted from the radiation source and / E D{E) dE is the total number of 
photons of all energies contained in the energy distribution. Differential 
distributions may be displayed in graphical form, as shown in Fig. 2 .1 . 

It IS important to recognize that the value of D{x)t at a selected value of 
X, say Xi , does not give the number of events occurring at point v , . Rather, 
D[xi) IS the number of events occurring in a unit interval of x that contains 
the point Xi. Thus, although the unit selected to measure the independent 

tMathematicians reserve the term dtstrtbution function for integral distributions [ le , ^i(3c) and 
1-2(x), Eqs 2 2 4 and 2 2 S] however, our use of the term here is consistent with common usage in 
the radiation shielding field 

tTh^ discussion that follows is easily extended to many independent variables 
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Fig. 2 .1—Different ial distr ibution. 

variable x is arbitrary (i.e., if x is a length, centimeters, feet, yards, etc., can 
be used), it is essential that this unit be specified in order for the distribution 
function and its plot to have meaning. 

Distributions are sometimes expressed in other forms. The cumulative 
distribution function for a differential distribution of one variable is defined 
by 

F, (x) = fl D(x') dx' (2.2-4) 

where Fj (x) gives the amount of the distribution that lies below x . t 
Alternatively, the function 

'̂'2 (^) ~ J.x D ( x ' ) dx' (2.2-5) 

gives the amount of the distribution above x. It is sometimes called the 
survivorship function. 

often, distributions are normalized to the total distribution, an 
operation that is valuable in comparing different distributions of the same 
variables: 

/ i W 

D(x) _ D(x) 
N fZD{x)dx 

^Pijx)^!! D[x')dx 

N / I D(x) dx 

(2.2-6) 

(2.2-7) 

t in Eqs. 2.2-4 and 2.2-5, —"• and >» can be replaced by any a,b such that a< x <b\ this merely 
alters the range of the distribution. 
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E2 (x) _ fx D(x ) dx 

SlD{x) dx 
J2{x) j ^ „̂ ^ , , J (2.2-8) 

where the function /(x) is the fraction of the distribution per unit interval 
about X, / , (x) is the fraction of the distribution lying below x, and/2 (x) is 
the fraction lying above x. Note t h a t / ( x ) , / i (x), and/2(x) are constrained to 
the interval [ 0,1 ] , and / j (x) + /^ (x) = 1. If xj, and x„ denote the lower and 
upper bounds of the distribution, 

/ . ( ^ b ) = / 2 ( ^ « ) = 0 (2.2-9) 

/ . ( ^ u ) = / 2 ( ^ b ) = l (2.2-10) 

and 

Ixbf{x)dx=\ (2.2-11) 

Differential distribution functions can be used to obtain the portion of 
the distribution or the number of events that occur over a specified region. 
In the photon-field energy-spectrum example, 

Jfi, D{E) dE 

gives the number of photons with energies between £ j and £2 • Such integral 
distributions may be plotted in histogram form (Fig. 2.2). The ordinate 
D(Ax,) is given by 

D(Ax,-) =/'^'•'•i D(x) cfx (2.2-12) 

and gives the total number of events within Ax,-, where Ax,- = x,--i-i — x,-. 
Observe that the shape of a histogram depends on the selection of the 
increments. Ax,-. The distribution function that is plotted in Fig. 2.2 with 
equal increments could give a histogram of the form shown in Fig. 2.3 if 
different increment sizes were chosen. However, if a differential histogram is 
constructed in which 

D'(Ax,-) = - ^ X.7+1 D(x) dx (2.2-13) 
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Fig. 2.2—Histogram for constant intervals. 
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Fig. 2.3—Histogram for variable intervals. 

the shape of the histogram always approximates the distribution function 
D(x), and the approximation improves as the number of intervals is 
increased. Note that 

N- L D(Ax,-) = E D'(Ax,-) Ax,- (2.2-14) 

If a differential distribution function has more than one independent 
variable, new differential distributions are obtained when an integration is 
performed over some, but not all, of the variables. Consider the following 
differential distribution function, which can be derived for the radiation-
source example: 

D'{t)=j^,,.^^,D{x,t)dV (2.2-15) 
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Most of the time, differential data presented in shielding analyses have been 
integrated (either mathematically or through the inherent characteristics of 
an experimental device) over one or more of the variables involved. Such 
data are commonly denoted singly differentiated, doubly differentiated, etc., 
depending on the number of independent variables that remain after 
integration of the fundamental multidimensional distribution. 

2.2.2 Average and Most-Probable Values 

Several parameters derived from differential distributions are of value in 
characterizing the distribution. One is the integral value N (Eq. 2.2-3), which 
gives the total number of events in the distribution and is often used for 
normalizing purposes. 

The average value of an independent variable within a distribution is 
obtained by computing the integral 

^=Jj f^Iy •••=<: ' D{x,y, ...)dxdy... 

= fjy...x-f{x,y,...)dxdy... (2.2-16) 

which is called the first moment of the differential distribution. 

The most-probable value of an independent variable of a differential 
distribution is its value where the distribution function has its maximum 
value. Note that the most-probable value may not be unique; for example, if 
D(x) is constant over all x, every value of x is a most-probable value. 

At times, higher moments of differential distributions are useful (e.g., in 
the computation of standard deviations and variances). The nth moment 
about the variable x is defined by 

^^"^ - ^ / , /y • - • ̂ " • D{x,y ...)dxdy... (2.2-17) 

Examples of calculations of average and most-probable values are given in 

the exercises. 

2.2.3 Solid Angle 

Directional characteristics are essential to a complete description of 
radiation fields and sources. Since the concept of solid angle is used in 
specifying directional properties, some elementary definitions are reviewed. 
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The solid angle subtended at a point by a surface is the projection of the 
surface on a sphere of unit radius surrounding the point. Consider the solid 
angle subtended at the point D by iC, in Fig. 2.4. (We could consider K2 or a 
surface of any other shape.) The area of the projection of K^ on the sphere 
of unit radius is a solid angle. A unit of solid angle is called a steradian. Since 
the area of a sphere is 47rr^ and that of a unit sphere is 47r, there are Ait 

Fig. 2 .4—Sol id angle. 

steradians about a point. If the unit vector normal to surface K^ is n and the 
unit vector along r through K^ is J2, then the solid angle is the scalar product 
n • fi (i<Ci / r^) , t when r is the length of the radius vector to X j . 

Radiation-source and -field angle distributions are defined by differential 
functions of the form D(I2), where D{Q,) gives the distribution per unit solid 

angle along the direction of vector fi. In polar coordinates, where 6 measures 
polar and 0 measures azimuthal angles,$ the differential area on a unit 
sphere is given by 

dA-^ sm e dd d(t> (2.2-18) 

and is numerically equal to the differential solid angle, c/fl, subtended by 
dA. Thus, if D(fl) is the differential angle distribution of a point radiation 

tStrictly speaking, this formula is accurate only when JC, < r^. 
tPolar and azimuthal angles are defined in Sec 2.3.2., where directional characteristics of 

radiation sources are discussed. 
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source located at the center of the sphere, D(J2) sin 6 dO (i0 particles are 
emitted which pass through dA, and 

fe: C;D{n) sine d9d(l> 

gives the number of source particles having directions bounded by polar 
angles 0i and 0^ and by azimuthal angles 0i and 02- Note that in the 
preceding discussion, the angles 6 and 0 define the directional vector, fl, 
which has a unit magnitude. 

2.2.4 Measures of Radiation Intensity 

Essential to a discussion of intensity is the concept of a receiver, or a 
detector, a mathematical concept used in defining the necessary units and 
describing the fields. As will be seen, theoretical detectors take the form of 
points, surfaces, and volumes, depending on the quantity being measured. 
Measures of radiation intensity commonly used in shield analysis include 
particle density, flux density, current density, absorbed dose rate, kerma 
rate, and exposure rate. The first three are used to characterize a radiation 
field and are defined in this section. The last three are used to characterize 
radiation interactions with matter and are discussed in Chap. 3. The time 
integral of the last three quantities over an operating cycle or exposure 
duration provides a basis for estimating the damaging effect of the radiation 
involved. 

The quantities discussed in this section are obtained by taking a limit of 
measured radiation-particle densities! in a finite volume or passing through a 
finite area as the volume or area approaches zero in size. This is a very special 
limiting process that requires careful definition to avoid a contradiction 
between the mathematical concept of a differential and the physical reality 
of the random nature of particle tracks. In moving to such a conceptual 
limit, we can reach a point where the detector size is so small that for further 
reductions in volume the probability of finding a particle within it also 
approaches zero, and thus the limit of the particle density is zero. In the 
special limiting process implied in the definitions that follow, this is not 

tThe terms particle and density are used in a general sense. Particle refers both to particles having 
rest mass and to photons. Density refers to a differential function of one or more variables, i.e., 
particles/cm' , particles/cm', MeV cm"' sec"', etc. 
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allowed to occur. Rather, in setting the limit, we stop shrinking the detector 
volume or area as soon as a further reduction in size would not change the 
value of the density quantity being measured. At the same time, we must 
keep the detecting volume large enough to contain a statistically significant 
number of particles or particle interactions. In radiation fields with very 
steep gradients, this special limiting process raises difficulties because the 
two conflicting requirements on detector size may be mutually exclusive. In 
such cases we introduce an averaging process to overcome the conceptual 
problem. 

A complete description of a radiation field includes the number of 
particles of a given type and energy which at a given time exist at a given 
position and travel in a given direction, all particle types, energies, positions, 
and directions being considered at all times. Such complete descriptions are 
seldom required, however, except in the most sophisticated particle-
transport calculations, and a radiation field cannot be measured in such 
detail. Therefore particle populations are usually described in terms of a 
lesser number of parameters. 

Instead of the indefinite number of variables used in the previous 
discussion on distributions in general (x,y,z, . . .), we now limit the 
discussion to the seven dimensions needed to define the kinematics of a 
particle. These are the three spatial coordinates: the particle kinetic energy 
(velocity is used alternatively), two angles defining direction, and time. The 
three spatial coordinates can be specified as the radius vector, r, and the two 
direction angles reduced to a unit direction vector, J2. These variables define 
phase space, which is indicated functionally as/(r,F,J2,^). 

The following discussion of particle, flux, and current densities is 
adapted from a recent report by Stevens and Claiborne.^ They have followed 
the recommendations of the International Commission on Radiation Units 
and Measurements,^'^ which this text has also attempted to follow. 

(a) Particle Densities. Knowledge of the particle density over all phase 
space is equivalent to a complete solution of a particle-transport problem 
and comprises more information than is available from most calculational 
schemes now in use. When given in seven-dimensional phase space, particle 
density is defined by 

n{r,E,n,t) dE dn 
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the number of particles per unit volume at space point r and time t having 
energies in dE about energy E and directions in c/J2 about the unit direction 
vector fi. 

The particle density so defined is doubly differential, in energy and in 
direction, and less detailed forms will often suffice. For example, we may 
use the steady-statet particle-density differential in energy only, commonly 
called the differential particle density and defined by 

n{r,E) dE 

the number of particles per unit volume at space point r having energies in 
dE about E. 

n{r,E) dE - /^^ n{r,E,n) dn dE (2.2-19) 

Or one may use the steady-state total particle density, defined as the number 
of particles per unit volume at space point r and given by 

"(r) = L io "(••'-E.n) dE da - f^ n{r,E) dE (2.2-20) 

(b) Flux Densities. Even though the concept of particle density is 
basically simple and has a unique interpretation, experience has shown that 
the flux density,^ or, as it is commonly called, the flux,t serves better as the 
dependent variable in solutions of the transport equation (discussed in 
Chap. 4). The flux density is related to the particle density through the 
particle's speed, and, when described in terms of seven-dimensional phase 
space, the flux density is given by 

^{r,E,a,t) = V n{r,E,n,t) (2.2-21) 

where v is the particle's speed and corresponds to the energy E. (The speed is 
the scalar magnitude of the particle's velocity vector, v.) 

tThe steady state, or time independent, condition is denoted in phase space notation by dropping 
the time symbol (, seven-dimensional phase space becomes six dimensional and in phase space notation 
IS given by (r,E,n) 

JAlthough this quantity is truly a density and the International Commission on Radiation Units 
and Measurements'* recommends the use of the term flux density, the simpler term flux is ingrained in 
shielding terminology and is used extensively elsewhere. We have used flux density exclusively in this 
text. 
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The flux density defined in the preceding paragraph is doubly differen
tial and is usually referred to as the angular flux density. Greater insight into 
the use of the angular flux density as the dependent variable in mathematical 
descriptions of particle transport is provided by its interpretation either as 
the track lengths traversed per unit volume and time or as the flow of 
particles per unit area and time. 

Flux density is a measure of a radiation field in terms of its potential for 
interaction with the material through which it is passing and is measured 
with volume detectors. In the theory of radiation interactions, nuclear forces 
(or coulomb forces) are additive; i.e., no shadowing of nuclei or electrons by 
others occurs. This implies that the probability of a radiation particle 
interacting with matter is directly proportional to the number of nuclei (or 
electrons) in whose vicinity it passes. This number, in turn, is proportional to 
the distance traveled by the radiation particle. Thus the total interaction 
probability of a radiation field with matter is proportional to the sum of the 
distances, or total track length, traveled by all the radiation particles 
traversing the medium, and the interaction rate is proportional to the total 
track length generated per unit of time. 

The track length interpretation of angular flux density follows from the 
observation that the speed of an individual particle can be considered as its 
scalar track length per unit time. The product of particle density and speed is 
then the sum of the track lengths traced by all the particles within a unit 
volume per unit t ime,t in which case the definition of the angular flux 
density would be 

^{r,E,n,t) dE da 

the total track lengths traversed per unit volume and time at space point r 
and time t by particles having energies in dE about energy E and directions 
in da about a. 

The interpretation of the angular flux density as a flow of particles per 
unit area and time is closely related to the concept of angular current (to be 
discussed in the next section). It will be shown in the discussion on current 
that the angular flux density is identical to the magnitude of the current 
vector J and thus can be interpreted as 

tNote that the per-unit-time units of the flux density are associated with the particle's speed, 
which is a function only of the energy. However, the time dependence of the flux density is a 
consequence of the time behavior of the particle density, which does not have time units even though 
the time symbol, t, is included in the phase-space notation to denote a dependence on time. 
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^{r,E,a,t) dE da 

the flow per unit area and time at space point r and time t of particles having 
energies in dE about E and directions in da about a. 

When the transport and the deposition of the particle kinetic energy are 
of interest, the energy-flux-density differential in energy and angle is often 
used. This quantity, called the angular energy-flux density, is defined by 

J{T,E,a,t) dE da 

the energy flow per unit area and time at space point r and time t due to 
particles having energies in dE about E and directions in da about a, and is 
related to the angular flux density by 

I{r,E,a,t) = E ^{t,E,a,t) (2.2-22) 

Many calculational models employ less detailed descriptions of the flux 
density; for example, they may use a description in which steady state is 
assumed and the angular dependencies are removed by the appropriate 
solid-angle integration. This reduces the description to four-dimensional 
phase space and results in a dependent variable representing the particle-
flux-density differential in energy. Commonly known as the differential flux 
density, this quantity is given by 

^{r,E) = f,„ ^{r,E,a) da (2.2-23) 

Like the angular flux density, the differential flux density can be 
interpreted in terms of track length per unit volume and time or in terms of 
the number of particles that enter a unit sphere per unit time. In the latter 
case, the solid-angle integration can be regarded as a summing of particles 
that enter a sphere of unit cross section regardless of their directions of 
motion. The sphere is, in effect, generated by the rotation of a circular unit 
area during the integration over a 47r solid angle (see Fig. 2.5). In this 
context the definition for the differential flux density can be restated as 

^(r^F) dE 

number of particles having energies in dE about E which enter a sphere of 
unit cross section per unit time at space point r. 
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A>4 (Projected area) 

Fig. 2.5—Incremental sphere concept of flux density. 

Although this definition of the differential flux density is descriptive, it 
is not exact. The mathematically rigorous definition is 

^{r,E)dE= lim 
N{E) dE 

AA 
(2.2-24) 

which implies the limit process AA -^ 0, with N{E) dE denoting the number 
of particles having energies in dE about E which enter an incremental sphere 
of cross section AA per unit time. 

The concept of the incremental sphere is the best way to visualize the 
energy-flux-density differential in energy. Referred to as the differential 
energy-flux density, this quantity may be defined by 

/(r ,£) dE 

the energy flow per unit time into a sphere of unit cross section at space 
point r due to particles having energies in dE about E. The differential 
energy-flux density is given by 

/(r,£) dE = X,̂  I{r,E,a) da dE = E 4>(r,£) dE (2.2-25) 

Other quantities used are the total flux density, the total energy-flux 
density, the group flux density, and the ^rowp angular flux density. The total 
flux density, defined alternatively as the total particle track length per unit 
volume and time at space point r or as the number of particles that enter a 
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sphere of unit cross section per unit time at space point r, is obtained by 
integrating the differential flux over all energies: 

4 > ( r ) = / ; 4 . ( r , F ) d F (2.2-26) 

Similarly, the total energy-flux density, defined as the total energy flow 
per unit time into a sphere of unit cross section at space point r, is obtained 
by an integration of the differential energy-flux density over all energies: 

/(r) = / ; /(r,£) dE (2.2-27) 

The total flux density has only limited application to practical shielding 
problems because of the strongly energy-dependent nature of the particle 
behavior. A more useful approach is to divide the total energy range into L 
energy intervals, called energy groups,! 

A F c ^ / i ^ - F ^ + j C = 1 , 2 , . . . , L 

and to define the group flux density as the integral of the differential flux 
density over the corresponding energy group, 

^G{^) = f^^_^^^{r,B)dE (2.2-28) 

with the constraint that 

* ( r ) = 2 4>G(r) (2.2-29) 

The group angular flux density (group flux density differential in angle) 
has a similar definition and is obtained by integrating the angular flux 
density over a specific energy group: 

4>G(r,fi)=ff^ ^{T,E,a)dE (2.2-30) 

tThe subscripts g and g + 1 refer to the upper and lower limits, respectively, of the Gth energy 
group, and G = 1 corresponds to the highest energy group. An alternate convention would associate 
G = 1 with the lowest energy group; the subscripts g + i and g would then correspond to the upper 
and lower energy limits. L is the number of groups. 
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For problems that involve directional symmetry, the group angular flux 
density can be rewritten in terms of a new angular variable /Lt = fl • r/|r|, the 
direction cosine: 

^c{r,n)d(Ji = <pG{^,a)da (2.2-31) 

The group angular flux density can then be defined as the total particle track 
length per unit volume and time at space point r of particles with energies 
within energy group AEQ and directions defined by direction cosines that lie 
in dfi about ju. 

In neutron physics, another variable used to characterize a neutron speed 
is lethargy. The lethargy, u, of a particle with energy F is given by 

M = In ^ (2.2-32) 

where EQ is an upper limit of F , often taken to be 10 MeV in fission 
reactors. Appropriately, lethargy increases as energy decreases and 

4>(r,M) = F 4>(r,F) (2.2-33) 

where ^{T,U) is the differential flux density per unit lethargy at point r. 
A useful measure of total exposure to a flux density for applications 

involving energy deposition is the integral quantity caWed fluence. Fluence is 
defined by the International Commission on Radiation Units and Measure
ments'* ' ' as the quotient of AN divided by AA, where AN is the number of 
particles that enter a sphere of cross-sectional area A^ and the A's imply the 
special hmiting process described at the beginning of Sec. 2.2.4. This 
definition is equivalent to regarding fluence as a time-integrated flux density 
over some specified time interval. As such, the fluence can be written 

E = (''^''^^'^It) dt (2.2-34) 
• i 

where A^ corresponds to some specified time interval and ^{t) can be any 
one of the several kinds of flux density described in the preceding text. For 
example, the energy fluence is 

E{r) = f^'y''^""' I{r,t)dt (2.2-35) 
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(c) Current Densities. The characteristic property of the current vari
able is its close relation to the convective (leakage) effects in the theoretical 
description of particle transport. The most general form of the current 
variable is differential both in energy (or speed) and in angle. Called the 
angular current density, or, more frequently, the angular current, this 
quantity is symbolized by ]{r,v,a,t) and is defined as the directed flow per 
unit area (normal to the a direction) and time at the space point r and time 
t of particles having speeds in dv about v and directions in da about a. 

The relation between current and particle density can be established by 
considering that (1) the product of v and the particle density can be regarded 
as a vector sum of the individual codirectional velocity vectors (v), yielding 
the resultant vector J = n v or (2) that the [v x dt x dA x N) particles 
contained within the volume element shown in Fig. 2.6 will all exit through 

Fig. 2.6—Particle flow concept of current. The particles contained within the volume 
element will all exit through the differential area dA within dt if v = il. 

the differential area dA within differential time dt if v = va. These models 
can be expressed mathematically in terms of the angular current as 

]{r,v,a,t) dv da = av n{r,v,a,t) dv da (2.2-36) 

and, since the particle's kinetic energy is a function of its speed, Eq. 2.2-36 
can be rewritten 

]{r,E,a,t) dE da = av n{r,E,a,t) dE da (2.2-37) 

where ]{r,E,a,t) dE = ]{r,v,a,t) dv and n{r,E,a,t) dE = n{t,v,a,t) dv. Then, 
when V n{r,E,a,t) is identified as the angular flux density, the relation 
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between the angular flux density and the angular current noted in Sec. (b), 
above, is obtained: 

j{r,E,a,t) dEda = a ^{r,E,a,t) dE da (2.2-38) 

Other less detailed forms of the angular current are the group angular 
current, ]Q{r,a), and the total angular current, J{r,a), which are obtained 
by integrations over an energy group and all energies, respectively: 

JG (r,n) - Sl;^ ]{r,E,a) dE = a^c («-.") (2-2-39) 

J(r.") ^ /o" ](r,E,a) dE - a^{T,a) (2.2-40) 

It is apparent that the angular current variables all have essentially the same 
simple relation with the corresponding angular flux density because the 
energy integrations are performed directly on the flux density. For example, 
in the case of the group angular current, 

JG('-.n) = ft, a^{v,E,a)dE 

^a f':s ^{r,E,a)dE = a^c{T,a) (2.2-41) 

The integral of the angular current over all directions (47r solid angle) 
constitutes a vector summation, and the resultant vector is regarded as the 
net current, often called simply current. 

The net current differential in energy only, referred to as the differential 
net current, is defined as the net flow per unit area and time at space point r 
and time t of particles having energies in dE about E, where the unit area is 
normal to the direction of the resultant vector J(r,E,^), or J(r,F,^) dE, 

]{r,E,t) dE = Xĵ  ]{r,E,a,t) da dE 

= j^^a^{r,E,a,t) da dE (2.2-42) 

which is the angular flux-weighted vector summation of the unit vectors a 
over a 47r solid angle. The group net current, JQ{T), and total net current, 
J(r), are 4ir solid-angle integrations of the group angular current and total 
angular current, respectively: 
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JG (r) - L JG (>•'") da = /,^ a^c (>-.") d^ (2.2-43) 

j(r) = /̂ ^ j(r,n) c?n = /,^ n<i>(r,n) dn (2.2-44) 

The flow of ^-directed particles across an arbitrarily oriented differential 
area is a necessary concept in the description of the directed flow of particles 
in terms of a specific coordinate system and can be related to the angular 
current, J ( f i ) , t by consideration of Fig 2.7, where the direction vector, n, is 

J(W 

dA (Differential area 
normal to n ) 

Fig 2 7 — S c h e m a t i c diagram of particle flow across an arbitrarily oriented surface 

normal to the differential area The number of fi-directed particles crossing 
the differential area dA per unit time is equal to J(f i) • [ndA). A scalar 
current, J^{a), that describes the flow of the a directed particles per unit 
area normal to the direction n is defined as 

J„{a)dA=]{a) -{ndA) (2.2 45) 

It follows that 

J„{a) = n • ]{a) = a • n *(«) = cos 9 4>(n) (2 2-46) 

where n = the unit vector corresponding to an arbitrary direction 
M = a coordinate-identifying subscript, for example, n = x when n = i 

J„{a) = the flow of fi-directed particles per unit area (normal to the 
direction n) and time 

t in this further discussion of current the notation J (n ) will be used to denote any of the angular 
currents and J tht corresponding net current for example ]{fi) may represent J(r,£,fi,f) J(;(r,fi,f)> 
orj(rfl) and J may represent J(r,f f) J G ( ' ' ) oi'J(r) 
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$(f2) = the angular flux variable corresponding to the angular current 
]{a) 

Note that J„{a) is a scalar quantity but is uniquely related to the 
coordinate system through the direction unit vector n. The corresponding 
vector current is given by 

J„{a)=nJ„{a) = n]{a)'n (2.2-47) 

where the vector ]„{a) is the component of the vector J(f2) with respect to 
the n direction and J„{a) is the projection of the vector J ( n ) on the n axis 
and also the magnitude of the component J„(X7). 

The three components of J(S2) in cartesian coordinates are given by 

]^{a) = ij^{a) = i^{a){i-a) 

jy{a)=ijy{a)=i^{a){i'a) (2.2-48) 

],{a) = kf,{a) = k^{a){k'a) 

and ]{a) is equal to the vector sum of the three components: 

]{a)-]^{a) + ]y{a)+],{a) 

= ij^{a)+jjy{a) + kj,{a) (2.2-49) 

It is important to recognize that, although they have the same units, the 
scalar quantity flux density is not equivalent to the vector quantity current 
density. The latter includes directional properties of the radiation field but 
the former does not. Current density should be considered as a measure of 
the passage of particles through a surface (a density per unit area), and flux 
density should be considered as a measure of track length in a volume (a 
density per unit volume). Only in rare instances are the two numerically 
equal at a point in a radiation field. The following examples illustrate this 
point. 

A plane source Sj (Fig. 2.8) emits monodirectional and monoenergetic 
particles at the rate of 1 0 ' ° particles cm~^ sec"' in a direction normal to the 
surface. Let us compute the current density and flux density: 

(a) At a point in a plane A whose normal n^ is parallel to that of S j . 

(b) At a point in a plane B whose normal ng is at an angle 0 with respect 
t o n ^ . 
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Fig. 2.8—Plane sources. 

We proceed as follows: 
(a) The flow of particles per unit time and area in the positive direction 

through plane A is 1 0 ' ° particles cm~^ sec"'. The flow rate in the 
opposite direction is zero. Therefore the net current density, J, is in 
the direction n^ and is 1 0 ' " particles cm~^ sec"'. To obtain the flux 
density, <I>, consider a unit cube (1 by 1 by 1 cm) whose center lies in 
A with two faces parallel to A; 10 ' ° particles/sec enter the cube, and 
each generates a track length of 1 cm in crossing the cube. Thus the 
total track length generated in the cube per unit time is 10' " cm/sec, 
and, since the cube volume is 1 c m ' , the flux density is 1 0 ' ° 
cm/sec "̂  1 c m ' = 10' ° particles cm"^ sec" ' . 

(b) The net flow rate through a unit area of plane B is cos 6 times that 
through a unit area of plane A; i.e., the component of J in the 
direction n^ is J • ng , and the current density in the direction of ng 
is cos 0 X 1 0 ' ° particles cm"^ sec"'. The flux density is not a 
function of the direction n^ and is 10 ' ° particles cm"^ sec"'. 

Suppose now that we add a second plane source, 52, also shown in 
Fig. 2.8, which emits monodirectional particles with the same energy but in 
a direction opposite to that of Sj at a rate of 6 X 10^ particles cm~^ sec"'. 
We compute the current density in the direction n^ and the flux density at a 
point in p l aned when both sources are emitting particles simultaneously. 
The particle flow rate is 6 x 1 0 ' particles cm~^ sec"' in the negative 
direction and 1 0 ' ° particles cm"^ sec"' in the positive direction. Thus the 
net current density is 4 x 1 0 ' particles cm~^ sec"'. The track length 
contribution from S2 is 6 x 1 0 ' cm sec"' cm"' . The flux density is thus 
1.6 X 10 ' ° particles cm"^ sec"'. 
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2.3 SPATIAL AND DIRECTIONAL CHARACTERISTICS 

A number of parameters are needed to characterize a source. It may be 
distributed in space and emit a variety of radiation types, its intensity may 
vary with time, and the radiation it emits may be distributed in both energy 
and direction of emission. Spatial and directional properties of typical 
radiation sources are discussed in this section; important energy and time 
distributions are considered in the following section. 

2.3.1 Spatial Distributions 

Radiation sources are classified into four spatial categories, point, line, 
surface, and volume, depending on the number of dimensions they 
encompass. Often, however, a source of two or more dimensions is 
considered as a configuration of sources of lower dimension. For example, a 
volume source may be viewed as an aggregate of point sources distributed 
throughout the volume. 

The spatial variables describing sources are independent of each other 
and of other source parameters. Thus sources of any number of dimensions 
and any spatial distribution within those dimensions can have independent 
distributions in radiation type, direction of emission, energy, and time. 
Direction, energy, and time distributions may vary from point to point in 
the spatial distribution. 

(a) Point Source. A source emitting radiation from a single point in 
space may be considered the fundamental source configuration since all 
other sources can be constructed from numbers of such point sources. Total 
point-source strengths arc measured in units of particles or MeV per second. 
When point sources have distributions in direction, energy, and time, 
differential distributions characterizing such dependencies have typical units 
of particles sec"' MeV"' steradian"'. Differential point sources are of great 
value in developing analytic functions of radiation-source and -field 
properties. For example, at point r let S(r) be the emissions cm"^ sec"' of a 
volume-distributed source. A differential point source is then given by S(r) 
dV particles/sec. I f / ( r ; r ) is a function relating a radiation-field property at 
r' to a point source of unit strength at r, the field property generated at r ' by 
the entire volume source is given by 

P{r')=ffS f{r;r')S{r)dV (2.3-1) 
source 

volume 
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In fact, functions relating two spatial positions, such as / above, play an 
important role in shield analysis. They are called point kernels and are 
discussed more fully in Chap. 6. 

A source need not be infinitesimal in size to be classified as a point 
source. When a radiation field at a detector point is being evaluated, a 
point-source approximation may be used to represent a volume or area 
source if the source dimensions are small compared to the source—detector 
distance. In making such an approximation for volume-distributed source 
configurations, we must be careful to consider radiation interactions that 
occur within the source volume (self-shielding), and adjustments should be 
made if required. 

(b) Line Source. A source with emission confined to a line is a line 
source; total line-source strengths have typical units of particles or MeV per 
second per unit length of the source. Like all sources, line sources can have 
differential energy, angle, and time distributions that may vary along their 
length. Typical units of differential distribution describing such line sources 
are particles sec"' MeV"' steradian"' cm"' or MeV sec"' MeV"' steradian"' 
cm"' . Examples of approximate line sources encountered in reactor shielding 
problems include pipes carrying radioactive material and long, thin fuel pins. 

(c) Surface Source. A surface source is one in which radiation emanates 
from a plane or other two-dimensional surface. The units of source strength 
are particles or MeV per unit time per unit source area (i.e., particles sec"' 
cm"^). Since surface source strengths have the same units as flux and current 
density, care must be taken not to confuse the three quantities. 
Surface-source strength is a scalar, specified in terms of a particle emission 
rate per unit area of source surface. The need for such care is illustrated in 
Sec. 2.3.2, where it is shown that a differential surface-source strength 
function, although sharing the same units, may not be the same as the 
differential function defining the flux density generated by that surface 
source. 

Surfaces that can be described mathematically are of high value in 
specifying surface sources since many times functions describing such 
surfaces admit to analytic integration and are convenient in hand and 
computer numerical computations. Also, volume sources are often 
characterized by the radiation passing through their exterior surfaces. Such a 
representation often allows the shielding analysis to be divided into two 
phases: (1) determination of the radiation transport within the source, 
resulting in the definition of an equivalent surface source, and (2) analysis of 
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the radiation transport external to the source. In such an approach the 
calculations involved in phase (1) need not be repeated for shield-design 
parameter studies, which are a part of phase (2). Reactor-core and 
pressure-vessel surfaces are examples of often-used equivalent surface 
sources. 

(d) Volume Source. A radiation source distributed throughout a closed 
surface constitutes a volume source. Typical volume sources encountered 

^ 

Inlet 

p(o, z) 

\ Outlet 

Fig. 2 .9—Cylindr ical volume source. 

include cylinders, cubes, slabs, spheres, and other regular geometries in 
which total source strengths are expressed in particles or energy per unit 
volume per second. 

As an example of a common volume source, consider a cylindrical 
reactor core whose power distribution is symmetrical about its axis and 
whose radial and axial power distributions are separablet (see Fig. 2.9). Let 
p(r,0) and p(0,2) be the differential power distributions (watts/cm^) along 
the radius at z = 0 and along the reactor-core axis, respectively, if K 
particles/watt-sec are emitted in the fission process, the differential particle 
source density, S[r,z), at {r,z) is given by 

S[r,z) 
K 

p(0,0) 
p(r,0) p(0,2) particles cm~^ sec ' (2.3-2) 

tif a functionp(r,2) can be writtenp, (r) Pi(z), the variables are separable. 
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and the total reactor source is 

S = f^^ //Jo S{r,z) 27rr dz dr particles/sec (2.3-3) 

In more complex systems, power-distribution functions describing 
volume sources may not be separable. In such cases, if analytic expressions 
are unavailable or unwieldy, a power map can be constructed, and 
integrations can be performed numerically. 

2.3.2 Directional Distributions 

The directions of travel of radiation particles are another important 
characteristic of radiation fields and sources. As suggested in Sec. 2.2.3 on 
solid angle, particle directions are usually defined relative to the origin of a 
conveniently chosen coordinate system. Once such a coordinate system is 
established, a direction is specified by a vector, fi, parallel to the direction of 
travel and having unit magnitude. 

Frequently, a radiation field or source is symmetrical in direction about 
one or more lines or planes in space, and it is usually convenient to choose 
the coordinate system such that one or more axes lie in the plane or line of 
symmetry. In such cases directions can then be specified by a single angle. 
For example, Fig. 2.10 shows that two angles, 6 and 0, are required to 
specify direction without symmetry. The angle 6 is called the polar angle and 
the angle 0 the azimuthal angle in such a system. If a field is symmetrical 
about a line, aligning the 2:-axis with that line enables one to specify 
direction by use of the polar angle alone, and the field is said to have 
azimuthal symmetry. 

Although the direction of 12 is always taken to be parallel with the 
direction of travel of the radiation particles, there is no universal convention 
that specifies whether 12 points toward or opposite to that direction of 
travel. Thus care must be taken to specify accurately which is the case when 
direction distributions are defined. For example, when the directional 
properties of a point source are given, the coordinate system is usually 
chosen to have its origin at the point, and 12 points in the direction of travel 
of the emitted particles. However, when directional properties of a field at a 
point detector are given, the origin is again situated at the point, and thus 
the direction of 12 is opposite to the direction of travel of the particles 
arriving at the detector point. 

As with the other properties of fields and sources, directional properties 
are specified by differential distribution functions. Direction functions are 
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sometimes separable from other distribution functions describing the source 
or field, in which case, for example, the differential flux density, $ , may be 
written 

*(r,12,£,0 = F , ( r ,£ ,0F2(12) (2.3-4) 

and direction attributes can be examined independently of other parameters. 
In cases where the directional dependence is not separable and analytic 
manipulation of the total differential function is not possible, 
multidimensional maps may be constructed and numerical manipulations 
performed to obtain directional characteristics. 

Fig. 2.10—Direction vector 12. 

The following sections discuss some of the more common direction 
distributions encountered in shielding problems. The exercises at the end of 
this chapter provide additional insights into the definition and manipulation 
of direction distribution functions. 

(a) Isotropic Distributions. An isotropic direction distribution is one in 
which all directions of travel are equally likely. Since there are 47r steradians 
of solid angle surrounding a point, the normalized isotropic differential 
distribution function is a constant function, l/47r per steradian, independent 
of angle or direction. 

Many nuclear reactions that cause the emission of radiations are 
considered to be isotropic in nature. Thus the neutrons and gamma rays 
emitted from a fissioning nucleus, fission products, activated nuclei, and 
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electron—positron annihilations may be assumed to be isotropic. However, 
certain reactions, most notably those which involve a scattering process, are 
not isotropic, and assuming so can lead to significant errors (see Chap. 3). 

Point, surface, and volume-distributed sources can be isotropic. When 
analyzing isotropic surface sources, we must be careful to ascertain if the 
quoted source strength applies to one or to both sides of its surface. Suppose 

Fig. 2.11—Point isotropic sources in a plane. 

we are given a plane source that isotropically emits S^ particles sec"' cm"^. 
In some texts, S^ applies only to the 27r space above the plane; in others, S^ 
applies to 47r space. The two interpretations of S^ differ by a factor of 2. We 
will choose the latter alternative and assume, unless stated otherwise, that 47r 
emission is intended. 

Isotropic point sources distributed in a finite volume do not necessarily 
generate equivalent isotropic surface sources on the boundaries of the 
volume since particle interactions within the source medium may change the 
directional distribution of the emerging particles. Also, isotropic surface 
sources do not generate isotropic flux densities at detectors removed from 
the source plane, as shown by the following example. 

Consider a plane isotropic surface source approximated by equally 
spaced isotropic point sources spaced c centimeters apart, as shown in 
Fig. 2.11. 

As the polar angle 6 is increased, tracks of particles from the surface 
move closer together and consequently have a flux density that is higher by a 
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factor of 1/cos 0 than the particles emitted normal to the surface. The 
angular distribution of the flux density above such an isotropic surface 
source is given b y t 

I S 
^(&) - ~A 5 7. particles sec ' steradian ' cm"^ (2.3-5) 

47r c^ cos 0 ^ ^ ' 

where Slc^ is the total surface source strength (in particles sec"' cm"^). 

(b) Cosine Distribution. Radiation emerging from the surface of a 
volume-distributed source often depends on the cosine of the angle between 
the normal to the surface and the direction of emergence. In many cases the 
dependence closely approximates or is exactly a cosine distribution of that 

Fig. 2.12—Cosine distribution. 

angle. For such a source, if S^ particles sec"' cm~^ is the source strength, the 
differential source angle distribution function [demonstrated in Sec. 
2.3.2(d)] is {l/2ir)Sa cos 6 particles sec"' steradian"' cm~^ emitted along a 
direction inclined at an angle 6 to the normal (Fig. 2.12). As before, the 
tracks in direction 6 are closer together than those which are normal to the 
surface (0 = 0), and we must divide by cos 6 to obtain the flux density. The 
flux density at r is then 

-—2 particles cm"^ sec"' steradian"' 

(c) Other Distributions. Various other analytical expressions have been 
derived to fit observed or expected angular emittance patterns. Surface-angle 
functions of higher powers of cos 6 have been used to approximate the 

tProof is given in Problem 2.6. 
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leakage characteristics of a volume-distributed self-absorbing source whose 
activity per unit volume increases with depth into the source. If the 
differential angle surface-source function of such a source is proportional to 
cos" 0, the differential flux density above the surface is proportional to 
cos"" ' 6. However, in some cases the complexity of the leakage pattern may 
prohibit use of an analytical approximation, and numerical techniques must 
be employed. 

In the treatment of radiation reflection from a medium, the intensity 
varies with the azimuthal angle 0 between the incident and reflected 
directions as well as with the polar angle 0. In such cases the angular 
distribution will be a function of the variables 6 and 0, as shown in Fig. 2.13. 

Fig. 2.13—Reflection angles. 

The intensity in a given direction is still reported per steradian (or other 
designated increment), but both angles are required to designate the 
directional properties of the scattered radiation from a beam incident at a 
specified angle. 

(d) Normalization and Monodirectional Approximation. When an 
analytic expression has been used to represent the variation of emittance rate 
with angle, the expression may be normalized to the total source strength. 
So, by the relation 

5o = / n KG (12)cfl2 (2.3.-6) 

in which G(12) is the functional variation of the source with angle and Kis A 
normalization constant. Thus, for a cosine distribution from a plane surface 
source, G(12) = cos 0, and 
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So = C^ Igll K cos 0(sin e dd d<j>) (2.3-7) 

So - 2irK particles per unit time per unit area, and K = SQ/IIT. The source 
differential angular distribution function is then given by 

S{d) = KG{Sl) 

- SQ —— particles (unit t ime)"' steradian"' (unit area)"' (2.3-8) 

Occasionally other powers of the cosine are useful in describing an angular 
variation. For G(12) = cos" 6 (where n is an integer), the normalization is 

So = 2 S^" S^'^K cos" d sin 9 d<t> dd (2.3-9) 

and 

(« + l)So 
K = 

4lT 

S[d) = ^ ^ ^ ^ ^ i ^ cos" e (2.3-10) 

In a like manner we can show for an isotropic distribution from a plane 

surface source emitting So particles per unit time and area that G(12) = 1, 

iC = So/4Tr, and 

S(0) = 2 ^ particles (unit time)"' steradian"' (unit area)"' (2.3-11) 

For a calculation of the transport of radiation with variable angular 
distribution, it is sometimes convenient to assume monodirectional sources 
with representative directions. The results are combined and normalized to 
the incident distribution. Such an approximation assumes that the 
differential distribution shown in Fig. 2.14(a) may be approximated by the 
monodirectional beams shown in Fig. 2.14(b). In normalizing these two 
sources, we must assign representative solid-angle increments (All,) to each 
of the discrete sources and weight the monodirectional intensity by use of 
the relation 

JV(".-)= L n , '^G(12)rfn (2.3-12) 
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Q 
(a) (b) 

Fig. 2.14—Angular distribution represented by array of monodirectional sources. 

where Ar(12,-) is the monodirectional source strength of the fth source 
pointing in direction 12,-. The total source strength is given by 

S= L W(12.-) = X.i,n^G(12) c/12 (2.3-13) 

where n is the number of representative monodirectional sources used. 

2.4 ENERGY DISTRIBUTIONS 

Monoenergetic radiation fields are rarely encountered. A few 
monoenergetic gamma-ray sources are available in the form of separated 
isotopes with no daughter products, and monoenergetic neutrons are 
obtained from charged-particle reactions in accelerators. Even though only 
one radiation energy is emitted by these sources, interaction with 
environmental materials or within the source itself will lead to the presence 
of radiation of various degraded energies in the radiation field. 

Some isotope sources emit two or three discrete energies; other sources, 
such as fission, provide a continuum of evolved radiation energies within 
certain energy ranges. In analytic treatments an energy-distributed radiation 
field is often approximated as a series of monoenergetic sources. All the 
radiation within an energy increment is assumed to have the same energy, 
which may be chosen as the midpoint of the increment, the average energy 
within the increment, or some weighted average based on a particular 
interaction probability. This is analogous to approximations used in the 
other distributions, such as the use of a fixed direction to represent an 
angular increment, a point source to approximate a source-volume 
increment, etc. Methods that are used to select the representative energy of 
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an energy increment are discussed in Sec. 2.2.2. In particular, the average 
energy is often used, in which case the integral of Eq. 2.2-16 is carried out 
over the range of the energy increment. 

For many purposes an average energy will not suffice, and the actual 
energy distribution must be carried through the analysis from source to 
detector. The term spectrum is used interchangeably with energy 
distribution, following the practice of the spectroscopist. 

2.4.1 Energy Distributions of Gamma-Ray Sources 

A few relevant characteristics of the spectra of gamma-ray sources 
encountered in reactors were included in the discussion of the various source 
types (Sec. 2.1.1). The two most important sources are the prompt fission 
reactions and fission products; their energy spectra are discussed in the 
following two sections. Capture and inelastic neutron-scattering gamma-ray 
spectral data are given in Appendix A. 

(a) Prompt Fission Gamma-Ray Spectra. The spectrum of gamma rays 
given off simultaneously with the fission of ^ ^ ^ U has been rather extensively 
studied. The measurements of Peelle and Maienschein^ are the most accurate 
published data; they contain uncertainties of at most 15%, and, in most 
energy regions, the uncertainty is less. Figure 2.15 presents the differential 
energy distribution (photons fission"' MeV"') measured by Peelle and 
Maienschein.* Kirkbride^ found that the spectra for ^^^U and ^^ ' 'Puwere 
not significantly different from that for ^^^U. Even ^^ ^Cf, which fissions 
spontaneously, exhibits a prompt gamma-ray spectrum very similar to that 
of ^^^U (Ref. 8). The spectrum of Fig. 2.15 may be approximated by the 
segmented fit: 

r(£) 

6.6 0 . 1 < £ < 0 . 6 M e V 

2 0 . 2 e x p ( - 1 . 7 8 £ ) 0.6 < £ < 1.5 MeV (2.4-1) 

[7.2 exp ( -1 .09£) 1.5 < £ < 10.5 MeV 

The equation agrees with the experimental spectrum plus uncertainty to 
within 10% from 0.6 to 7.5 MeV except at 1.2 and ~5 .0MeV, where it 
deviates ~16%. The constant yield agrees with experiment from 0.1 to 
0.6 MeV to within ~ 2 0 % except at 0.26 MeV. An approximation for the 
energy region from 0.01 to 0.6 MeV, which may be adequate for shielding 
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GAMMA-RAY ENERGY, MeV 

Fig. 2.15—The energy spectrum of gamma rays emitted within 69 nsec after fission of 
^ ^ ' U by thermal neutrons. The two lines, which represent the random (largely 
propagated from counting statistics) 2/3 confidence limits on the spectrum, are drawn as 
straight lines between adjacent mean window energies. The nearly Gaussian shapes shown 
at the lower left and upper right indicate the energy resolution (From Peelle and 
Maienschein. ) 

calculations, is the emission of 3.75 photons/fission of average energy 
0.324 MeV. 

Although the approximation of Eq. 2.4-1 is useful, for most applications 
accuracy demands the use of a numerical representation of the spectrum 
rather than these less-precise analytical functions. Photon yields per fission 
in fine and broad energy groups are given in Appendix A. 
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10"^ 10"^10"* 10"2 10° 10^ 10* 10^ 10® 
TIME AFTER FISSION, sec 

Fig 2 16—Gamma ray energy release from fission of U as a function of time after 
fission The so called prompt fission gamma rays are emitted at times much shorter than 
those shown on the graph (From F C Maienschein, bngmeermg Compendtum on 
Radiation Shielding, Vol 1, p 76, Springer Verlag, New York, 1968 ) 

(b) Fission-Product Gamma Rays. Analysis of fission-product decay is 
often complicated by the time history of fission-product generation. Data on 
the decay of products of simultaneous fissions are of interest in the analysis 
of nuclear-weapon fallout or of a short reactor power burst. Of more general 
interest in reactor shielding is the decay of fission products built up during 
sustained operation or over complex operating cycles. 

Two types of events contribute gamma rays to fission-product decay. 
Between 10"* and 10"^ sec after fission of ^^^U, decay of isomers in excited 
states to the ground states contributes most of the decay gamma rays. After 
about 10"' sec, beta decays of the unstable nuclei contribute most of the 
decay gammas. Figure 2.16 illustrates the relationship of these processes. 

In an operating reactor the primary importance of the gamma rays from 
early decays is their contribution to the steady-state environment. Decay 
gamma rays reach saturation very soon after start-up. Gamma rays from 
these short-lived isotopes constitute the majority of all fission-product 
gamma rays; about 75% are released within 10^ sec after fission. If the 
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fission-product gammas are integrated over time, the magnitude and shape of 
the energy distribution is close to that for prompt fission gammas. 
Maienschein^ gives 

N{E) = 7.4 e " ' - ' " ^ photons fission"' MeV"' (2.4-2) 

as a simple, though approximate, expression for the fission-product 
spectrum. Equation 2.4-2 corresponds to an estimated total fission-product 
gamma-ray energy release of 6.8 ± 1.0 MeV/fission, which is composed of 
5.9 ± 0.7 MeV/fission for 1 sec < ^ < 10^ sec and E > 0.28 MeV; 
0.6 ± 0.6 MeV/fission, E <0 .28 MeV; and 0.3 ± 0.2 MeV/fission for f < 1 sec. 
As noted in Sec. 2.1.1, this component is often combined with the prompt 
fission gamma rays. 

Measurements of the gamma radiation evolved by decay of the fission 
products between 0.2 and 45 sec after fission were made by Engle and 
Fisher.' " Listed in Table 2.1 are the values of the total radiation integrated 
over energy and over the time period from 0.2 to 45 sec for four fissionable 
isotopes. Comparison of these values with the totals from the long-lived 
fission products shows that a significant fraction of the fission-product 
energy is evolved within the first 45 sec following fission. 

Table 2.1—RESULTS OF DELAYED GAMMA SPECTRA 
INTEGRATED OVER ENERGY AND TIME FROM 

0.20 TO 45.0 SEC AFTER FISSION' " 

Isotope 

233u 
2 3 5 u 

" « U 
" ' P u 

Photons/fission 

2.02 
3.31 
5.50 
3.26 

MeV/fission 

1.97 
3.18 
5.08 
2.86 

MeV/photon 

0.975 
0.961 
0.924 
0.877 

The energy spectra for five time intervals are shown in Fig. 2.17 for 
fission of ^^^U. Engle and Fisher '" give similar data for other fissionable 
isotopes, ^^*U, ^^^U, ^^^U, and ^^^Pu. It is worth noting that the spectra 
for these isotopes vary considerably from that of ^^^U (̂ 2 to 2 times) in this 
early time interval. 

The long-lived (late) fission products are unimportant during operation 
of the reactor, but they represent a significant source of radiation after 
shutdown, particularly for a reactor core with many hours of operating 
history. From a knowledge of the direct yield and half-life of each fission 
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Fig. 2.17—Photon spectra of gammas for different time intervals following U fission. 
(From Engle and Fisher.' °) 

fragment and the intensity and energy of each emitted gamma ray, along 
with similar data for each daughter isotope in each decay chain, it is possible 
to calculate the energy and time distributions of fission-product gamma rays 
as a. function of reactor operating time. In this manner the important gamma 
emitters in each time and energy interval can be identified, and more 
importantly a source term for the shutdown reactor core may be obtained 
for any operating history. Although the task is onerous and exacting, a 
number of investigators have tackled it with results that compare increas-
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ingly better with measurements as the number of identified decay chains 
increases. Perhaps the most authoritative work was published by Perkins and 
King' ' and later updated by Perkins. '^ The results of the later work are 
given in Appendix A. For instantaneous fission and 1, 10, 100, and 1000 hr 
of reactor operation, these data give disintegration rate, beta-ray energy 
release, and total gamma-ray energy release and further subdivide the gamma 
rays into seven energy intervals. Unfortunately, the uppermost energy 
interval contains everything above 2.6 MeV. Results calculated by Scoles' ^ 
avoid this shortcoming since his energy intervals are 1 MeV wide, except the 
topmost, which contains only one line at 5.4 MeV. These results were used 
considerably for some years since they were uniquely suited to shielding 
problems for times to 10^ hr of reactor operation and to 10"* hr after 
shutdown. Perhaps a reader of this text will update this work. 

For approximate calculations the total fission-product decay rate is given 
within 20% from 10 min to 30 days after fission by Goldstein' ^ 

r-fit) = 1.5r'-^ MeV fission"' sec"' (2.4-3) 

where t is the time (in seconds) after fission. 

2.4.2 Neutron Spectra from Fission 

The energy distribution of neutrons from fission is obviously one of the 
principal inputs in the preparation of the source term for a reactor. The 
energy range of importance in shielding for thermal fission in ^ ^ ^ U, 3 to 
17 MeV, was measured by Watt , '^ who also reviewed measurements by 
others in lower ranges and proposed an empirical expression to fit the data 
from 0.075 to 17 MeV: 

N{E) = 0.484e "^ sinh (2£)'* neutrons MeV"' fission"' (2.4-4) 

where •N{E) is the fraction of neutrons per unit energy interval emitted per 
fission and £ is neutron energy in MeV. The Watt fission spectrum was 
widely used until Cranberg, Frye, Nereson, and Rosen '^ reported new 
measurements from 0.18 to 12 MeV. 

These results were based on time-of-flight measurements to about 8 MeV 
and photographic emulsion exposures to 12 MeV. Cranberg et al. reported 
that 
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N(£) = 0.453£'-£/°-^*5 sinh (2.29£)'4 neutrons MeV"' fission"' (2.4-5) 

was a more accurate fit over the entire range. 
Note, however, that uncertainties in the measurements, 15% or less to 

8 MeV, were 30% or more at 12 MeV and above. Equation 2.4-5 is plotted in 
Fig. 2.18 and tabulated for numerical use in Ref. 14. The tabulation 

Fig. 2.18—Fraction of neutrons per MeV interval emitted at energy E from the thermal 
fission of ^^'U. (From Herbert Goldstein, Reactor Handbook, Second Edition, Vol. Ill, 
Part B, Shielding, E. P. Blizard (Ed.), p. 19, Interscience Publishers, a division of John 
Wiley & Sons, Inc., New York, 1962.) 

also gives the fraction of neutrons above £ and the energy per fission carried 
by neutrons above £ . 

An even simpler expression that is within 15% of Eq. 2.4-5 over its range 
of validity (and within 7%, 5 < £ < 13 MeV) is due to Goldstein: ' ^ 

N(£) = 1.75e"°' '*^^ neutrons MeV"' fission"' 

( 4 < £ < l 4 M e V ) (2.4-6) 

This form is very convenient in analytical manipulations and adequately 
covers the energy range of greatest interest in many reactor shielding 
problems. 

Both the spectrum and the total number of neutrons evolved in fission 
vary with the energy of the incident neutron and with the species of 
fissionable material. In experiments at Los Alamos, Grundl and Neuer' "̂  and 
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Leachman'^ compared the spectra from the fission of ^^^U, ^^^U, and 
^ ^ ' P u . Using the average energy, £ , as a parameter, they represented the 
spectra from all three isotopes by the formula 

N{E) cc E"^ e''^ ^ (2.4-7) 
£ 

From correlations of these and other data, Terrell '^ found that £ may be 
expressed in terms of V, the average number of neutrons given off per fission, 
by 

£=^0.78-1-0.621 (i^-Kl)^ MeV (2.4-8) 

Values of V for fissions resulting from thermal-neutron absorption in various 
isotopes are listed in Table 2.2. 

Table 2.2—NUMBER OF NEUTRONS PRODUCED BY FISSION 

Fissionable isotope V 

^ ^ ' U 2.54 + 0.04 
^ ^ ' U 2.46 ±0.03 
" ' P u 2.88 ±0.04 

The value for v increases almost linearly with energy as the incident-
neutron energy rises above thermal. For ^^^U 

v{E) ^ Vj + 0.15{E - Ej-) (2.4-9) 

where Vf is the value at thermal energy, Ej, and £ is the energy of the 
neutron-producing fission. From Eqs. 2.4-8 and 2.4-9, it is seen that the 
average emitted neutron energy, £ , increases at a rate of about 4% of the 
increase in incident-neutron energy. For most practical shielding problems, 
thi§ effect may be safely ignored. Variations between fissionable isotopes are 
more significant, however, and should be considered. The values of î  given in 
Table 2.2 indicate that a breeder reactor whose power is. evolved primarily 
from ^ ^ ' P u fissions will be a 20% stronger neutron source than an 
equivalent power reactor employing ^ ^ ^ U. 
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2.4.3 Effect of Medium on Spectra 

It is evident that the shape of the neutron or gamma-ray energy 
distribution depends on the type of source. However, it is not so obvious 
that the attenuation properties of the medium through which the radiation is 
transmitted also have a strong influence on the spectrum. In fact, the 
spectrum of the neutrons or gamma rays emerging from a reactor shield is 
determined by the shield moderator and structure layers and not by the type 
of fission. The detailed reasons for this will become apparent from the 
discussion on interactions in Chap. 3 and on transport in Chap. 4. For the 
present it will suffice to illustrate the importance of the medium for two 
familiar media, water and lead. 

Figure 2.19 shows the measured and calculated spectra from a 
fission-neutron source after the neutrons have penetrated various thicknesses 

NEUTRON ENERGY, MeV 

Fig. 2.19—Neutron spectrum vs. penetration through water measured in a direction 
normal to the slab with a coUimated detector. [From V. V. Verbinski, M. S. Bokhari, J. C. 
Courtney, and G. E. Whitesides, Nuclear Science and Engineering, 27: 283 (1967).] 
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Fig. 2.20—Differential energy spectrum for a 10-MeV plane monodirectional gamma-ray 
source vs. penetration depth through a lead slab. (From Goldstein and Wilkins. ) 

of a water shield. As the thickness increases, the lower energy neutrons 
become less important, and the higher energy neutrons become more 
important; i.e., the higher energy neutrons comprise a higher percentage of 
the total neutron-flux density. 
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Both the measurements and the calculations demonstrate the effect of 

the water medium. In this case the calculation is performed by direct 

integration of the Boltzmann equation, a technique discussed in Chap. 4. 

The effect of attenuation on photons from a plane monoenergetic source 

through various thicknesses of lead is shown in Fig. 2.20. In this illustration 

the initial source spectrum is a vertical bar at 10 MeV. Despite this the 

distribution is almost horizontal at 1.76 cm. Note that a pronounced peak 

develops between 2 and 3 MeV as the depth increases. 
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EXERCISES 

2.1 The survivorship function for the time dependence of radioactive decay is given by 

N ( 0 = N o e - ^ ' 

where N{t) is the number of radioactive atoms existing at time t, NQ = N(0), and X is 
a constant for a given isotope, (a) Find the differential time distribution function 
p{t), where p{t) dt gives the number of atoms disintegrating in interval dt. (b) Using 
the definitions given in Sec. 2.2.1, obtain the cumulative distribution Fi(t) 
(Eq. 2.2-4) and the fractional distributions fi{t) (Eq. 2.2-7). and/2(f) (Eq. 2.2-8). 
(c) Sketch these distributions, (d) Compute the number of atoms disintegrating 
between times T| and Tj . 

2.2 (a) Compute the solid angle 12 subtended by a circular disk of radius a at a point P 
that is located a distance R from the disk, where P lies on the normal n passing 
through the center of the disk, (b) As i? ^ 0 or a -* °°, J2 -> ? 

2.3 An isotropic surface source of S^ particles sec"' cm~^ is located on the surface of a 
sphere of radius R. Assuming a nonabsorbing medium within the sphere: 
(a) compute the flux density at the center of the sphere; (b) compute the net 
current density at the center of the sphere through a midplane. 

2.4 Compute (a) the flux density and (b) the current density for the geometry of 
Problem 2.3 when the surface source is located only on the hemisphere above the 
midplane. 

2.5 In the geometry shown by the following sketch, the plane P is parallel to the 
isotropic disk source S j , which emits S^ particles sec ' cm . Point source 
S2 is isotropic and emits S particles/sec. Compute (a) the flux density and (b) the 
net current density through plane P at point D. 
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Exercise 2.5—Disk plus point source. 

Derive Eq. 2.3-5 given in Sec. 2.3.2 for the flux density above a surface array of 

isotropic point sources; i.e., show 

5 
0(9) = 47rc cos 

— particles cm" sec"' steradian ' 

A slab of thickness X that is infinite in the other two dimensions (see sketch for this 
exercise) is nonabsorbing and contains a uniformly distributed volume source of S„ 
particles cm"^ sec"'. At a point P on the surface of the slab, compute the following: 
(a) Compute the surface source differential distribution G(d), where G(0)<iJ2 is the 
flux density emerging in solid-angle element dfl about fi . (S2 is inclined at an angle 6 
to the normal of the slab.) Compare the result with that of Problem 2.6 
(b) Compute the differential flux-density distribution 4>(0), where $(0) dS is 
particles sec"' steradian"' emitted into dO, about Q, from the slab surface element 
dS. (c) Compute the total surface flux (particles sec"' cm~^) emerging from the slab. 
(d) What is an equivalent isotropic flux? (e) Compute the differential angle flux 
density H(6), where H(0) d6 is the flux density of particles whose directions lie in 
angle element dd about i2, integrated over all 27r azimuthal angles, (f) Compute the 
relative total flux density in the following angle intervals o( 9: 0 to 10 , 40 to 50 , 
75° to 85°, 80° to 90°. 

^ ' i i 

Exercise 2.7—Nonabsorbing slab source. 
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2.8 A differential energy distribution for the fission spectrum is often chosen to be 

N(£) = 0 . 7 7 £ V ' ' - " * ^ 

because it is simpler than Eq. 2.4-7 and accurate within 12% for E <9 MeV. For this 
distribution, compute: (a) the most probable energy, JE; (b) the average energy, E, 
and its associated speed, v^; and (c) the average speed, v, and its associated energy 
E-jj. Recall that for E in MeV and v in cm /sec, 

£ = 0.525 X 1 0 " ' V 



Interactions of Radiation 
with Matter 

C. W. GARRETT, W. E. SELPH, P. N. STEVENS, and H. C. CLAIBORNE tj 

Once the source of radiation has been properly defined for a particular shield 
analysis, the second phase of the analysis can be performed. This phase 
involves the calculation of the intensity and distribution of the radiation that 
penetrates the shield or, alternatively, the attenuation afforded by the shield. 

Although radiation attenuation is simply the macroscopic ramification of 
the microscopic interaction processes between the particle and the atoms of 
the medium, the transition from the individual processes to the gross 
behavior of the radiation field is a complex one. Not only must some 
consideration be given to the statistical nature of these processes but also the 
relative importance of the various interactions must be considered for the 
type of radiation and the appropriate range of energy. Thus an understand
ing of the energy-transfer mechanisms involved in the various interactions 
and of the relative probabilities among the several possible interactions is 
fundamental to shield analysis. 

To begin a discussion of interactions, we will review the concept of cross 
section, the basic measure of a radiation interaction. Then we will review the 
atomic and nuclear processes important to photon and neutron transport and 
to attenuation calculations. We conclude the chapter with a discussion 
of some important interaction rates, namely, absorbed dose rate, kerma 
rate, and exposure rate, which are often used to characterize radiation 
fields. As in Chap. 2, for convenience we use the word particle to include 
photons as well as particles with mass. 

3.1 CROSS SECTIONS 

Consider a particle traversing a medium; numerous factors influence the 
probability of interaction with the nuclei and electrons of the medium. 
Some of the more important (but not necessarily independent) factors 

63 
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include (1) nuclides in the medium, (2) partial densities of each nuclide, 
(3) electron density within the medium, and (4) energy and direction 
distributions of the incident radiation. 

Other factors must sometimes be considered as well. For low-energy 
particles, particularly thermal neutrons, the physical state of the medium 
may be important; for example, a nucleus bound in a crystal lattice may 
have a different interaction probability associated with it than an identical 
but unbound nucleus. Further, although we usually assume in shield analyses 
that target nuclei are at rest, thermal motion of the nuclei can sometimes be 
significant. For example, when the shield design involves the analysis of 
thermal-neutron transport through high-temperature regions of a reactor, the 
shift in value of the thermal-neutron energy must be considered. 

3.1.1 Microscopic Cross Section 

The basic measure of the probability that a neutron or photon will 
interact with a nucleus, an electron, or an atom is a quantity called the 
microscopic cross section. Microscopic cross sections are functions of all the 
variables listed above and traditionally are denoted by the symbol a. 
Subscripts are used to denote specific interactions to which a cross section 
refers; e.g., a^ refers to an absorption cross section, CT,„ to an inelastic-
scattering cross section, a^ to scattering, and Of to a total cross section. 
Functional dependencies are often shown; e.g., o^{E) represents the value of 
an absorption microscopic cross section as a function of the energy, E, of the 
incident radiation. 

A microscopic cross section has units of area, hence the term cross 
section. It may be visualized as the effective projected cross-sectional area of 
a sphere centered about the target particle through which an incident 
radiation particle must pass if an interaction is to occur. In general, this 
effective area represents the range of the interaction force between incident 
particle and target nuclei and is not directly related to the size of the 
nucleus. The effective area for absorption (a^) may be very different from 
the effective area for scattering (a^) for the same target and incident 
radiation. 

Calculation and measurement of microscopic cross sections have been 
active fields of endeavor for many years, and extensive files of evaluated data 
on computer tape serve as a primary source for input to radiation shielding 
analysis. For a given target, radiation type, and interaction process, 
microscopic cross sections are usually tabulated as functions of incident 
radiation energy. Sometimes, however, cross sections are reported as average 
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values, the average being taken over a distribution in energy of the incident 
particle. For example, thermal-neutron cross sections are reported in this 
manner where the energy distribution of the neutrons is assumed to 
approximate a Maxwell—Boltzmann distribution. 

The body of information on neutron cross sections has grown so rapidly 
in the past 10 years that it is no longer feasible to revise and update 
compilations; they have become so large as to be practicable only through 
the use of a computer. The National Neutron Cross Section Center at 
Brookhaven National Laboratory has concentrated more on developing 
cross-section data files on computer tape than on updating publications (for 
example, those cited in the section on neutron interaction later in this 
chapter). Evaluated nuclear data files, abbreviated ENDF/B, are available 
from National Neutron Cross Section Center, Brookhaven National Labora
tory, Upton, New York 11973. 

If very current data are not needed, the compilations of neutron cross 
sections cited in the following sections should be helpful. Sources of 
gamma-ray cross-section data are also cited. 

Microscopic cross sections are usually measured in units of barns (b), 
millibarns (mb), and microbarns (jub). A barn is 10"^" cm^; a millibarn, 
10"^ ^ cm^ ; and a microbarn, 10"'' ° cm^. 

3.1.2 Macroscopic Cross Section 

Although microscopic cross sections deal with probabilities of the 
interaction of radiation with individual targets (nuclei and electrons), 
macroscopic cross sections are related to probabilities for interaction with 
the aggregate of targets that compose the medium through which the 
radiation is passing. Almost invariably shield analysis requires macroscopic 
cross sections that, as shown in the following text, are computed from a 
knowledge of microscopic cross sections and the constituents of the 
medium. Two symbols universally used to denote macroscopic cross sections 
are jU and 2 ; the former is most often applied to photon cross sections and 
the latter to neutron cross sections. As with microscopic cross sections, 
subscripts and functional dependencies are often used in conjunction with 
these symbols. 

if AT is the target particle density (nuclei/cm^), the relation between the 
macroscopic cross section, 2 , and the microscopic cross section, a, for a 
specified interaction as a function of incident-radiation energy, E, is 

2 (£ ) = N a{E) (3.1-1) 
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Macroscopic cross sections as defined by Eq. 3.1-1 thus have units of 
reciprocal length (usually c m ' ' ) and are often called linear cross sections or 
coefficients. (The term macroscopic cross section is used principally for 
neutrons; following historical precedent in attenuation of light, the term 
coefficient, with various modifiers to distinguish types, is used for gamma 
rays.) In fact, such a macroscopic cross section is the total apparent 
cross-sectional area of interaction presented to a radiation field per unit 
volume of material (i.e., cm^/cm^). 

For mixtures of target nuclides, the macroscopic cross section for a 
specified interaction process is given by 

2 (£) = 2:iV,.a,-(£) (3.1-2) 
i 

where iV,- is the volumetric density of the ith nucHde and a,-(£) is the 
microscopic cross section for the ith nuclide. It is easily shown that 

i:{E)=Y,^PiOi{E) (3.1-3) 
i 

where A^ is Avogadro's number (6.023 x 10^^), A{ is the atomic weight of 
the Ith nuclide, and p,- is the partial density (g/cm^) of the ith nuclide in the 
mixture. 

Macroscopic cross sections can be added. Thus, if 2^(iJ) and 2^(E) are 
scattering and absorption macroscopic cross sections, respectively, the cross 
section for both processes taken together is 2^(£) + 2^(£) . 

If Eq. 3.1-1, 3.1-2, or 3.1-3 is divided by the density, p , of the medium, 
the apparent cross-sectional area of interaction per unit mass of material 
(cm^/g) is obtained. Such mass attenuation coefficients are most often 
encountered in photon shielding calculations and are usually denoted by ju/p, 
H being the linear macroscopic cross section. 

3.1.3 Radiation Reaction Rates 

It was noted in the discussion of measures of radiation intensity 
(Sec. 2.2.4, Chap. 2) that interaction rates of a radiation field with its 
environment are important and often-used characterizations of radiation 
intensity. However, further discussion of the concept was deferred to this 
chapter so that the various microscopic processes of interaction could first 
be reviewed. 
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Many interaction processes can be used to measure a radiation field. With 
a photon field, for example, the total photon collision rate (number of 
photons interacting by all processes per unit volume per unit time) can be 
used. The rate of energy removal (MeV cm"^ sec'*) from the primary photon 
beam can also be used. A third example might be the rate of local energy 
deposition (MeV cm~^ sec"'), which has the same dimensions but may not 
equal the energy removal in the local region being considered because of the 
energy carried away from and/or delivered to the local site by secondary 
processes. Rates of these types are regularly used in the calculation and 
evaluation of reactor shields; they are discussed later in this chapter. First, 
however, some fundamental considerations are in order. 

The macroscopic cross section may be viewed as the reaction rate per 
unit number flux density of a radiation field. Thus, for a linear macroscopic 
cross section, the reaction-rate density is given by 

RR = n^ reactions cm"^ sec"' (3.1-4) 

if the cross section, n, is in units of cm"' and the flux density, 4>, is in units 
of cm"^ sec"'. Of course, the reaction or reactions whose rates are calculated 
by Eq. 3.3-1 are those associated with the particular macroscopic cross 
section used. 

In a similar manner, the reaction rate per unit mass density is given by 

RR = - $ reactions g"' sec ' (3.1-5) 

where 4> is again the flux density and nip is the mass macroscopic cross 
section. The total reaction rate over energy flux spectrum and volume, V, is 
given by the integral 

RR = j ^ j ^ n{E) * (r,£) dE c/F reactions/sec (3.1-6) 

in which the differential flux density, <J>(r,£), is defined by Eq. 2.2-23 of 
Sec. 2.2.4 and dV is the differential volume element. 

3.2 RADIATION INTERACTIONS 

The physics of important neutron and photon interaction processes for 
radiations having energies found in fission reactors is well known, and 
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thorough discussions can be found in nuclear science texts as well as in 
specialized treatments such as those of Foderaro, ' Blizard,^ and Goldstein.^ 
We will summarize the basic interactions here and make reference to sources 
of cross-section data for them. 

3.2.1 Photon Interactions 

The energy range of interest for gamma rays associated with fission or 
from fission-neutron interactions extends from the low keV range to about 
10 MeV. There are many possible mechanisms for the interaction of gamma 
rays in this energy range, but only three interactions contribute in a 
significant way to photon attenuation. These are the photoelectric effect, 
pair production, and Compton scattering. Of the numerous possible 
references to photon-interaction data, we will mention only two: Hubbell,^ 
a recent tabulation with summary discussions of the processes of interest, 
and Hubbell and Berger,^ an article prepared a year earlier and appearing in 
the Engineering Compendium on Radiation Shielding. 

(a) Photoelectric Effect. In the photoelectric process, a photon is 
absorbed and an orbital electron is emitted. The entire energy of the photon 
is transferred to the electron, which is ejected from its shell and emerges 
from the atom as a photoelectron. Momentum is conserved by recoil of the 
whole atom, and the more tightly bound electrons have the greatest 
probability of being ejected. The photoelectron is ejected from the atom 
with kinetic energy T=Ey — Bg, where Bg is the binding energy of the 
orbital electron. The orbital vacancy is then filled by transition of an outer 
electron; this transition is accompanied by emission of characteristic X rays 
called fluorescent radiation. Neither the photoelectron nor its fluorescent 
radiation is sufficiently energetic to be of further interest in shield analysis. 

Extensive tabulations of photoelectric cross sections are given by 
Hubbell'* and Hubbell and Berger.^ Qualitatively the photoelectric cross 
section depends on atomic number, Z, and incident gamma-ray energy, Ey 

Sly 

where n varies from 3 to 5. We see that the probability of interaction is 
proportional to the —3 power of the photon energy and to the third to fifth 
power of the atomic number of the target atom. Thus the importance of the 
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photoelectric effect is greater for the higher Z elements and diminishes 
rapidly with increasing photon energy for any element. 

Since the K-shell electrons are the most tightly bound, they have the 
highest probability of a photoelectric absorption. For incident-photon 
energy below the K-shell ionization energy, only L-shell or higher electrons 
are available (with a lower probability for interaction). Thus discontinuities 
in the cross sections for the photoelectric effect are found at the ionization 
energies of the various electron shells. Figure 3.1 illustrates this phenomenon 
for lead; both the X-edge and the L-edge are shown. 

20 40 60 80 

PHOTON ENERGY, keV 

Fig. 3.1—Photoelectric effect in lead. 

100 120 

The ionization energy for a given electron shell increases with increasing 
atomic number; the energy of the K-edge as a function of Z is shown in 
Table 3.1. Also shown in Table 3.1 is the photon energy at which the 
photoelectric effect accounts for half the total photon interaction probabil
ity. At energies above the £^4 value, the photoelectric effect diminishes in 
importance. At energies below Ei^, it becomes increasingly more important 
(see discussion on total attenuation coefficients at the end of this section). 

As shown in Table 3.1, the energies at which the photoelectric effect 
predominates lie well below the region of 0.5 to 10 MeV, which is of greatest 
concern in reactor shielding. Although not predominant, the effect is still 
significant within that range. However, the greatest significance of the 
photoelectric effect is that it establishes a lower limit to the photon energy 
requiring consideration in a shield analysis. Because of the rapid increase in 
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Table 3.1—ENERGY AT WHICH THE PHOTO
ELECTRIC EFFECT PROVIDES ONE-HALF 
THE TOTAL ABSORPTION COEFFICIENT 

(Ev ) AND ENERGY OF K-SHELL 
^ IONIZATION (£K)t 

z 

1 
4 
6 
8 

13 

20 
26 
42 
50 
74 

82 
92 

Element 

Hydrogen 
Beryllium 
Carbon 
Oxygen 
Aluminum 

Calcium 
Iron 
Molybdenum 
Tin 
Tungsten 

Lead 
Uranium 

£jC,MeV 

1.4 X 10"' 
2.2 X lO'" 
2.8 X lO""* 
5.2 X 10''* 
1.5 X 10"^ 

4.0 X 10"^ 
6.9 X 10"^ 
2.0 X 10"^ 
2.9 X 10"^ 

6.06 X 10'^ 

8.8 X 10"^ 
11.6 X 10"^ 

B^.MeV 

10^ 
0.011 
0.016 
0.025 
0.046 

0.079 
0.11 
0.195 
0.25 
0.42 

0.50 
0.62 

tFrom Goldstein. 

the photoelectric absorption cross section with decreasing photon energy, a 
point in energy is reached below which, for all practical purposes, no 
photons exist. 

(b) Compton Effect. The Compton effect is the scattering of a photon 
by a free electron. The photon imparts energy to the electron and is altered 
in direction and energy. A very important feature of this effect is the fact 
that, except when the scattering angle is large, the photon emerges from the 
interaction with a significant fraction of the incident-photon energy. This 
fact accounts for much of the complexity associated with gamma-ray 
transport analysis. 

In the analysis of the Compton effect, the electrons are assumed to be 
free, neither interacting among themselves nor bound within the atom. The 
Compton effect for an atom is therefore the additive effect of all its 
electrons, and the macroscopic cross section for Compton scattering is 
determined by the electron density. Thus the dependence of this process on 
atomic number is merely a linear dependence on the number of electrons per 
atom. Figure 3.2 illustrates the process. The photon is scattered through an 
angle Q and carries a portion of its incident energy. The remainder of the 
energy is taken up as kinetic energy by the recoiling electron, which scatters 
through an angle i//. 
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Scattered 
photon 

Incident 

photon 

Fig. 3.2—Compton scattering. 

The equations describing the angle and energy relations of the Compton 
process are most easily expressed when photon energies are measured either 
in units of the rest mass energy of an electron {m^c^) or in units of Compton 
wavelengths. In these units, if £ * is energy in units of MeV, the energy E in 
units of rrigC^ is given by 

^ = 0 5 1 1 (3-2-2) 

and the Compton wavelength is given by the reciprocal: 

^ 1 0-511 
^ = £ = - F - (3.2-3) 

One unit of Compton wavelength is equal to hlm^c, or 0.02426 A, where h 

is Planck's constant (6.625 x 10"^' erg-sec). Subsequent equations in this 
section on Compton scattering are written in terms of these units of energy 
and wavelength. 

From the conservation of energy and momentum, it may be shown that 
the relation between the incident-photon energy, £ , scattered-photon 
energy, £ ' , and scattering angle, 0, for a Compton collision is 

In terms of Compton wavelengths, the relation seems even simpler 

X' _ X = 1 - cos 0 (3.2-5) 

where X' refers to the scattered photon. 
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From these equations it is seen that straight-ahead scattering {6=0) 
results in no energy loss for the photon; the electron recoil angle, i//, is 90° in 
this case. A lower limit to the scattered photon energy occurs in backward 
scattering [6 — 180°), where 

£ 
1 + 2 £ £ m i n = T ^ ^ (3-2-6) 

and 

X m a x = ^ + 2 (3.2-7) 

The electron recoil angle, \p, is zero in this case. Thus the photon can scatter 
in any direction, but electron recoil is limited to forward (relative to the 
initial photon's track) directions. 

The energy of the scattered photon varies from the initial energy down 
to the lower limit. For initial energies much greater than 1 rest mass 
(>0.511 MeV), the lower limit is approximately £ /2 . 

The essence of the process is contained in the Klein—Nishina formula, 
which describes, to a very good approximation, the probability per electron 
that a photon will Compton scatter into a unit solid angle about a scattering 
angle, d. This differential function takes on a convenient form when the 
microscopic electron cross section is measured in Thomson units (T.U.). One 
T.U. = 87r/3(e^/mgC^ )^ = 0.665 b. In these units the Klein-Nishina rela
tion, expressed in terms of energy or Compton wavelength, is 

'̂ ^^^ " T I ~ (§" ) \W^^~ ^^^^ V ^'^' ^'^'^^'•°""' steradian"' (3.2-8) 

or 

'^(^^ " T 6 ~ ( x 7 \T '̂ "'V ~ ^^^^ V ^ ' ^" ^^^'^'^'•°""* steradian"' (3.2-9) 

[Since a[6) is a differential microscopic cross section (unit area per unit solid 
angle), some authors prefer to denote these functions by da/df i to 
emphasize the differential.] It should be noted that the variables £ ' , £ , and 
sin 6 (or X', X, and sin 6) are not independent in the preceding equations 
but are related through Eq. 3.2-4 (or 3.2-5). Thus a{6) is actually a function 
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only of initial and scattered photon energy or initial photon energy and 
scattering angle. This is explored in the exercises. 

The total cross section for Compton scattering by an electron may be 
obtained by integration of Eq. 3.2-8 over all scattering angles. 

"^(-)=f{^[^fe^-'"(-->] 
H-3£ 1 

(TTzEpj 
+ ^ In (1 + 2£) - ,,\:^^,i } T.U./electron (3.2-10) 

where Oc{E) is the microscopic cross section for Compton scattering per 
electron for a photon of energy £ . For very low energies ( £ - ^ 1 ) , Oc{E) 
approaches 1 T.U. In the other extreme (£ > 1), 

a^{E) « ^ (in 2£ + ^j T.U./electron (3.2-11) 

As noted in the preceding text, the energy of the incident photon is 
divided into two parts in a Compton collision: that contained in the kinetic 
energy of the recoiling electron and thus deposited very close to the site of 
the collision, and that carried away from the collision site by the scattered 
photon. The fraction, f{d), of energy deposited locally (i.e., transferred to 
the electron) as a function of scattering angle is given by 

fie)=^^^p^ (3.2-12) 

The average fractional energy loss per Compton collision, Z .̂, is given by 

7c=^fmo{d)dn (3.2-13) 

where the integration is carried out over all solid angle. The quantity 

Oca{E)=fcO,{E) (3.2-14) 

is a cross section reflecting the probabiUty of local energy deposition in a 
Compton collision and is called the Compton energy absorption cross 

section. 



74 REACTOR SHIELDING FOR NUCLEAR ENGINEERS 

The relations between initial- and scattered-photon energies, scattering 
angle, Compton cross section, and energy transferred to the electron are 
sufficiently complex that they are not intuitively obvious. Figure 3.3 
illustrates the relation between initial and scattered photon energies as a 
function of scattering angle. For initial photon energies of 0.1 MeV or less, 
there is little energy degradation. For larger initial energies, degradation is 
large for large scattering angles. Figure 3.4 shows the dependence of electron 
recoil energy on initial photon energy and scattering angle. Figure 3.5 shows 
the differential Compton cross section, a{d), for several representative initial 
photon energies. This graph shows that in the 1- to 10-MeV range the cross 
section is peaked in the forward direction and demonstrates that Compton 
scattering is highly forward. Figure 3.4 is taken from Nelms,* who presents 
over 80 graphs showing the interrelations of these parameters with scales 
sufficiently expanded to allow reasonable accuracy. Finally, Table 3.2 lists 
the total Compton cross section per electron, a ,̂, as a function of initial 
photon energy. Also given in this table are values of a^^ and a^ — a^^\ the 
former cross section relates to the energy deposited by the incident photon, 
and the latter is a cross section related to the energy carried off by the 
scattered photon. 

Some gamma-ray analysis methods require that the differential cross-
section data be put into some format other than that just given. For 
example, in many Monte Carlo calculations the integral probability 
distribution for scattering at an angle a^d is expressed as a function of 6. 
Such a function has the limits of 0 probability at 0 = 0° and 1 at 0 = 180°. 
All the more sophisticated methods require differential angle cross-section 
data in some form. 

(c) Pair Production. In the process of pair production, a photon 
interacts with the electric field of atomic electrons or the nucleus. The 
incident photon is completely annihilated, and its energy is converted into 
the mass of an electron—positron pair. Clearly, the incident photon must 
have at least enough energy to create the mass of the electron—positron pair. 
Thus a threshold for the pair-production process is 2mgC^, or 1.022 MeV. 
Any excess energy of the incident photon is given to the kinetic energies of 
the two charged particles produced in the process and to the recoiling 
nucleus. As in the photoelectric effect, the nucleus plays an essential part in 
pair production since its recoil is necessary to conserve momentum in the 
process. 

For a given nuclide the nuclear pair-production cross section increases 
rapidly from the threshold of 1.022 MeV to 10 MeV. This is illustrated in 
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Fig. 3.3—Reduction in gamma-ray energy by Compton scattering {EQ = initial energy; 

E = reduced energy). 
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Fig. 3.4—Recoil-electron energy vs. angle of recoil. (From Nelms.*) 

Fig. 3.6, which shows the dependence of the cross section on incident-
photon energy in lead. As a function of atomic number, pair production for 
interactions with atomic electrons is proportional to Z, and that for nuclear 
pair production, to Z^. This latter effect increases the dominance of nuclear 
pair production in reactor shield materials. In fact, below 10 MeV the 
probability of pair production with atomic electrons ranges from 10 to 30% 
of that for nuclear pair production in hydrogen and is negligible in high-Z 
materials such as lead. 
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Fig. 3.5—Differential Compton scattering cross sections. 
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Table 3.2—TOTAL AND ENERGY-ABSORPTION CROSS 
SECTIONS FOR THE COMPTON EFFECTt 

E.MeV 

0.0 
0.01 
0.015 
0.020 
0.030 

0.040 
0.050 
0.060 
0.080 
0.10 

0.150 
0.200 
0.300 
0.4 
0.5 

0.6 
0.8 
1.0 
1.5 
2.0 

3.0 
4.0 
5.0 
6.0 
8.0 

10.0 
15.0 

tFrom 

Ocb/electron 

0.665 
0.637 
0.627 
0.616 
0.596 

0.578 
0.561 
0.546 
0.517 
0.4929 

0.4436 
0.4066 
0.3535 
0.3167 
0.2892 

0.2675 
0.2350 
0.2112 
0.1716 
0.1464 

0.1151 
0.0960 
0.0828 
0.0732 
0.0599 

0.0510 
0.0377 

Goldstein.' 

Oca > b/electron i 

0 
0.0077 
0.0138 
0.0196 
0.0295 

0.0380 
0.0451 
0.0509 
0.061 
0.0685 

0.0812 
0.0886 
0.0958 
0.0982 
0.0984 

0.0984 
0.0959 
0.0929 
0.0849 
0.0777 

0.0664 
0.0582 
0.0519 
0.0471 
0.0399 

0.0349 
0.0268 

<Jc -Oca, hie] 

0.665 
0.629 
0.613 
0.596 
0.566 

0.540 
0.516 
0.459 
0.456 
0.4244 

0.3624 
0.3180 
0.2577 
0.2185 
0.2866 

0.1691 
0.1391 
0.1183 
0.0867 
0.0687 

0.0487 
0.0378 
0.0309 
0.0261 
0.0200 

0.0161 
0.0109 

As discussed in the next section, the photoelectric process, the Compton 
process, and pair production all compete for the absorption of the energy of 
a photon field. However, rarely are photoelectric effect and pair production 
simultaneously of importance. In low-Z materials, the photoelectric and 
Compton processes are dominant. Only in iron and higher Z elements does 
pair production account for over one-half the energy absorption for photons 
with an energy less than 10 MeV. Table 3.3 lists the photon energy above 
which pair production accounts for one-half or more of the total energy 
absorption. 
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Fig. 3.6—Pair-production cross section in lead. (From Hubbell.*) 

Hubbell'' and Hubbell and Berger^ give discussions of the models used to 
calculate pair-production cross sections and tabulations of both nuclear and 
electron pair-production cross-section data for a wide range of photon 
energies in many elements and several compounds and mixtures. 

Although pair production results in the annihilation of the incident 
photon and plays an important part in the attenuation of high-energy 
photons, it also results in a secondary photon source that should be 
considered in some shield analyses. The positron created in the process 
combines with an electron very close to the site of the pair production, and 
both the positron and electron are, in turn, annihilated. This gives rise to two 
0.511-MeV photons that emerge in opposite directions. For most purposes 
this secondary source may be considered to originate at the site of the initial 
pair-production event. This secondary source can account for as much as 5% 
of the total energy deposited. 
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Table 3 .3^ENERGY AT WHICH PAIR PRODUCTION 
PROVIDES ONE-HALF THE TOTAL ABSORPTION 

COEFFICIENTt 

z 

1 
4 
6 
8 

13 
20 

Element 

Hydrogen 
Beryllium 
Carbon 
Oxygen 
Aluminum 
Calcium 

£,MeV 

78 
35 
28 
20 
15 
12 

Z 

26 
42 
50 
74 
82 
92 

Element 

Iron 
Molybdenum 
Tin 
Tungsten 
Lead 
Uranium 

£,MeV 

9.5 
7.5 
6.5 
5.2 
5.0 
4.8 

tFrom Goldstein.^ 

(d) Other Processes. Several other photon interactions, such as coherent 
electron scattering, Thomson nuclear scattering, and Delbriick scattering, 
exist; however, coherent scattering, also called Rayleigh scattering, is the 
only one that has any possible significance in reactor shielding situations. 
These other interactions are summarized in Refs. 4 and 5. 

Coherent scattering is similar to Compton scattering in that the incident 
photon is scattered from an electron. However, in contrast to the Compton 
process, the binding forces of the orbital electrons are significant in coherent 
photon scattering. In this process the recoil momentum is assumed by the 
whole atom with the result that the scattered photon emerges with an energy 
that is, for all practical purposes, equal to that of the incident photon. 
Further, in the photon energy range of interest for fission sources, the 
photon scattering angles, 0, axe small, for example, less than 15° at 0.1 MeV 
and 2° at 1.0 MeV in aluminum. The practical effect of coherent scattering is 
to scatter a photon in the forward direction with no reduction in energy, and 
thus it may be treated as though no interaction took place. 

However, if coherent scattering is ignored, care must be taken with the 
cross sections used in photon-attenuation calculations. Often the cross 
section for coherent scattering is included in tabulations of total photon-
attenuation coefficients. Since such use would treat the coherent scatter as 
an attenuating event when, in fact, it has essentially no effect on photon 
attenuation, the coherent portion should be subtracted from the total cross 
section. The tabulations in Refs. 4 and 5 list such data both with and 
without the coherent portion. 

(e) Total Photon-Attenuation Coefficients. The three processes that 
contribute to photon attenuation in reactor shields are the photoelectric 
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effect, Compton scattering, and pair production. Each process causes some 
or all of the energy of the incident photon to be deposited at the site of the 
interaction, and the last two cause photons of reduced energy to be emitted 
in new directions. Thus the total microscopic cross section per atom of 
atomic number Z for photon attenuation is given by 

ôf = Ope + o^c + Opp (3.2-15) 

where a„g is the cross section per atom for the photoelectric effect. 
a^c = Za^, and a„„ is the cross section per atom for pair production. If we 

PP 
include coherent scattering as well as Compton scattering, we replace a^^ by 

^ to explicitly show that The term CT^C '^ sometimes written o^„^^ 
coherent scattering is not included. As functions of photon energy, Opg and 
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Fig. 3.7—Total gamma-ray cross sections for oxygen. (From Goldstein.') 

a^c decrease with increasing energy; o„„, however, increases as the 
incident-photon energy increases. Thus for all elements a minimum occurs in 
the total cross section at some energy. This behavior is illustrated in Figs. 3.7 
and 3.8, where all three components and the total cross section are plotted 
for oxygen and lead, respectively. The Compton effect is predominant for 
intermediate energies, 1 to 5 MeV for lead and other high-Z materials and a 
wider range for low-Z materials. In hydrogen the Compton effect accounts 
for the total cross section over the entire energy range of interest. As 
suggested by these two figures, the point in energy where the minimum in 
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Fig. 3.8—Total gamma-ray cross sections for lead. (From Goldstein.') 
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Fig. 3.9—Energy of minimum total photon cross section. (From Goldstein.') 

total cross section occurs decreases with increasing atomic number. 
Figure 3.9 is a plot of the location of the minimum as a function of Z. 

It should be noted that a macroscopic cross section computed from the 
total microscopic cross section of Eq, 3.2-15 is a total interaction coefficient 
and includes more than energy deposition by virtue of the fact that the 
entire Compton cross section is included. Thus these macroscopic cross 
sections are sometimes called narrow-beam absorption coefficients since all 
processes, including Compton events, effectively remove photons from a 
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coUimated beam. However, they are more commonly called attenuation 
coefficients. Thus Mf(= ^<^f) is called a linear attenuation coefficient, and 
jLif/p, a mass attenuation coefficient. The total interaction rate is sometimes 
called the reaction rate. The reaction rate per unit volume is simply the 
product ^fif. 

Another macroscopic cross section, which actually reflects the local 
energy removed from a photon field by an element of atomic number Z, is 
given by 

Ma = N{apg + Za,^ + a^^) (3.2-16) 

where N is the atomic density (atoms/cm') of the element and a^^, the 
Compton energy absorption cross section per electron, is defined by 
Eq. 3.2-14. The quantities M^ and lijp are known as linear and mass 
energy-deposition coefficients, respectively. 

The fact that electrons are reaction products of each of the three 
gamma-ray interactions important to transport through shields deserves one 
further comment. Bremsstrahlung (Sec. 2.1.1) is produced by the decelerat
ing electrons and represents an additional form of the initial gamma-ray 
energy. In this book we will usually assume that this radiation is absorbed at 
the point of formation, with one important exception, which is discussed in 
Sec. 3.3, Responses to Radiation. 

3.2.2 Neutron Reactions 

In several respects the processes associated with neutron attenuation 
contrast sharply with those associated with photons. For example, only 
three photon processes are significant at photon energies found in fission 
reactors, but many neutron reactions must be considered. Also, although all 
photon reactions of interest involve electrons, no neutron reactions are with 
electrons; they are all with nuclei. Most cross-section data for photons are 
accurately obtained by calculation (well verified by experiment); exactly the 
opposite is true for neutrons. The processes associated with nuclear 
interactions are far more complicated and, in many cases, are not well 
understood. Thus most neutron cross sections must be measured experimen
tally. Active experimental programs have been under way for many years; 
however, important gaps in certain data still exist. With the exception of the 
iC-edge, L-edge, etc., in the photoelectric cross section, photon-interaction 
probabilities are smooth functions of both energy and atomic number. In 
many neutron cross sections, however, resonance and threshold phenomena 
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cause abrupt excursions. Further, neutron cross sections are the ramification 
of complex interactions of nuclear forces, which depend on several factors in 
addition to simple atomic number and weight. Thus interpolations are in 
many instances impossible, and neutron cross sections must be determined 
nucleus by nucleus. It should be noted, however, that for certain neutron 
reactions theoretical considerations are effectively used in making interpola
tions. Foderaro ' discusses in detail the application of nuclear models to 
calculate neutron cross sections. 

The neutron has a mass of 1.00898 atomic mass units, slightly greater 
than the proton mass of 1.00759 amu. Since it does not possess electrical 
charge, a neutron is not affected by the atomic electric field. Consequently it 
travels through matter unhindered until it passes close enough to a nucleus 
to interact with the short-range nuclear forces. A nuclear interaction may 
alter the energy and direction of the neutron or may result in its absorption 
into the nucleus. Scattering may be either elastic, in which the kinetic energy 
of the system is conserved, or inelastic, in which some of the kinetic energy 
is transformed into excitation energy of the nucleus. As discussed in Chap. 2, 
a neutron absorption can result in the emission of one or more gamma rays, 
charged particles, and, at times, one or more neutrons. Inelastic scattering 
also produces secondary emissions, and, of course, neutron absorption can 
cause fission in certain isotopes. Thus all neutron interactions, except elastic 
scattering, produce a secondary source of radiation. 

As with photons, the total neutron cross section for an interaction with a 
specified nucleus is the sum of the absorption and scattering cross sections 

Of = a^ + Og b/nucleus (3.2-17) 

Most often the scattering probabihties are subdivided into elastic and 
inelastic portions, as are the various types of absorption reactions. Care must 
be used in the interpretation of the term absorption. In the present context 
absorption implies the disappearance of the incident neutron as a separate 
entity, the neutron becoming a part of the new nucleus created by the 
interaction. However, as mentioned in the section on inelastic reactions, 
certain scattering processes are also assumed to involve the absorption of a 
neutron by a nucleus followed by the emission of one or more secondary 
neutrons. 

Many nuclear processes have certain characteristics that are relatively 
invariant over broad bands of neutron energy. It is thus convenient to divide 
the energy spectrum of fission-produced neutrons into four energy groups. 
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Neutrons in the lowest group, ranging from 0 to about 0.4 eV, are called 
thermal, or slow, neutrons. Their energy distribution approximates the 
Maxwell—Boltzmann distribution given by 

^ « ( ^ ) ^ ] ^ ^ ' ^ ' ^ ' ' ' ^ (3.2-18) 

where / „ (£ ) is the fraction of neutrons per unit energy about energy £ , k is 
the Boltzmann constant (8.6 X 10"^ eV/°K), and T is the absolute 
temperature of the medium, t In the thermal range neutrons are assumed to 
be in equilibrium with the thermal agitation of the nuclei of the medium. 
Because neutron absorption often varies with the reciprocal of neutron speed 
in the thermal region, this region is also known as the 1/v region. 

The next higher energy region ranges from 0.4 eV to about 1 keV and is 
called the resonance, or epithermal, region because many cross sections 
exhibit one, a few, or many resonance peaks in this region. The cross 
sections at these peaks can have values several orders of magnitude above the 
base level; their effect on the average cross section across the resonance 
region depends on both their number and their widths. These latter 
quantities vary greatly among nuclei. 

Depending on the nucleus, the resonance region stops somewhere from 1 
to 50 keV. For convenience we call neutrons in the range from a few keV to 
500 keV intermediate neutrons. 

The highest energy region ranges from 0.5 MeV to the upper limit of 
energy of fission neutrons, about 18 MeV. In this fast-neutron region, some 
resonances are found, most often in the low-energy portion, but, for the 
most part, cross sections are relatively smooth and, in general, have lower 
values than those of the lower energy regions. 

Consistent with our treatment of photon interaction, we will briefly 
describe neutron reactions in this section and refer the reader to detailed 
discussions elsewhere. In particular, a recent text on neutron interactions by 
Foderaro' should be noted here since it is well-suited to the needs of 
shielding specialists. 

(a) Elastic Neutron Scattering. In elastic neutron scattering both kinetic 
energy and momentum are conserved. Thus the simple billiard-ball collision 

tStrictly speaking, the average neutron temperature equals the temperature of the medium only 
for nonabsorbing media. For absorbing media the average neutron temperature will be somewhat 
higher, and the distribution wrill depart from that of Maxwell—Boltzmann. 
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Fig. 3.10—Collision coordinate systems. 

model can be used to obtain the direction of motion and the speed of the 
scattered neutron and recoiling nucleus relative to the direction and speed 
(or energy) of the incident neutron. 

Actually two processes are assumed to produce elastic scattering of 
neutrons. The first is known as resonance, or capture, scattering. In this 
process the neutron is assumed to be absorbed by the target nucleus and 
reemitted in (possibly) another direction. The second process is called 
potential, or diffraction, scattering. In this process the neutron is assumed 
not to enter the target nucleus but rather to be elastically scattered by 
interaction with the potential well created around the nucleus by the 
short-range nuclear forces. The probability for elastic scatter is the sum of 
the probabilities for both processes; the cross section for elastic scattering is 
based on this sum and is often denoted by Og^. In adding these probabilities, 
we must take account of the spin states of the particles since coherent 
effects are involved. 

Resonance elastic scattering is most important at low or intermediate 
neutron energies, where it causes an oscillating behavior of the elastic-
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scattering cross section. At higher energies (i.e., the fast region), almost all 
resonance scattering is inelastic since the compound nucleus formed by 
resonance scattering results in an excited nucleus following neutron 
reemission. Kinetic energy is therefore not conserved, and some of the 
kinetic energy reappears as a photon. Potential scattering, which is generally 
a smooth function of neutron energy, is the predominant component of 
elastic scattering in the fast region. 

The scattering angle-energy relations for elastic interactions are given 
most simply in the center-of-mass coordinate system in which the total 
momentum is constant zero, and particle speeds after collision are equal to 
those before collision. Figure 3.10 illustrates the collision geometry in both 
the laboratory and the center-of-mass systems. 

The energy, £ , of the elastically scattered neutron is related to the 
energy, £ o , of the incident neutron, the atomic mass, A, of the target 
nucleus, and the scattering angle, 0 (in the center-of-mass system), by the 
equation 

£ _ ^ ^ -I- 2/1 cos 0 + 1 (3 2 19) 
£o {A + \f 

The scattering angle, 0, in the laboratory system is related to 0 by the 

equation 

fl_ 4COS0 + 1 / a o o n x 
cos Q = 7-7̂ 5—— \—rnz (3.2-20) 

( ^ 2 + 2 ^ cos 0 + 1)' ' ^ ' 

It is seen that for hydrogen scattering (^ = 1) the neutron can lose all its 

energy in just one collision. Maximum energy loss occurs where 0 = TT, and 

Eq. 3.2-19 becomes 

f=(4^) ' (̂ •̂ •̂ '̂ 

For low-energy neutrons elastic scattering is approximately isotropic in 
the center-of-mass system, and the average scattering angle in the laboratory 
system is given by 

cos 0 = ^ (3.2-22) 
jA 
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Equation 3.2-22 illustrates the point that scattering (in the laboratory 
system) is peaked in the forward direction (1 > cos 0 > 0) and that, as A 
increases, 6 approaches 7r/2. Thus, for low energies and heavy nuclei, 
scattering approaches isotropy in the laboratory system as well. 

However, the approximation of isotropic scattering in the center-of-mass 
system deteriorates as the incident-neutron energy increases, and above 
about 0.1 MeV scattering is anisotropic for all except the lightest nuclei. In 
this energy region Goldstein' quotes an approximate equation for 6 (where 
EQ is in units of MeV) 

^ ^ (£o)M^ ^^^'^^^ ^^-^-^^^ 

which indicates that for incident energies in the fast region anisotropy 
increases with increasing A. 

As with photon scattering, differential angle scattering probabilities for 
elastic neutron scattering play an important role in neutron-transport 
calculations. The compilation of experimentally determined angle-distribu
tion data by Goldberg, May, and Stehn' is widely used. 

(b) Inelastic Neutron Scattering. In inelastic neutron scattering the 
inelastic collision differs from an elastic event primarily in that a portion of 
the incident-neutron energy appears as excitation of the target nucleus. The 
excited nucleus subsequently decays by photon emission; thus inelastic 
neutron scattering was first introduced in Chap. 2 as a secondary gamma-ray 
source. The inelastically scattered neutron leaves the collision site usually 
altered in direction and generally with much-reduced energy as well. In fact, 
inelastic scattering is an important means of reducing fast (>1 MeV) neutron 
energies in reactor shields not only because a large amount of energy can be 
transferred to the nucleus in one inelastic collision but also because of the 
increasing importance of inelastic scattering with energy in the 1- to l4-MeV 
range. For most elements of interest, elastic-scattering cross sections are 
slowly oscillating, generally decreasing in the fast-energy region. Since 
inelastic scattering is a threshold reaction, the corresponding cross section 
usually increases with increasing energy. (An exception occurs if particle 
reactions are present; the inelastic cross section will decrease with energy if 
there are competing particle reactions.) 

Inelastic scattering cannot occur unless the incident neutron has a kinetic 
energy somewhat greater than the first excited state of the target nucleus. 
Depending on the nucleus, this threshold varies from 0.1 to 4 or 5 MeV. As 
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the neutron kinetic energy exceeds energy states of the nucleus above the 
first, these higher states may also become excited, and thus the neutron may 
excite the nucleus to any level up to the limit of the incident-neutron 
energy. As the excitation energy is increased, spacing between levels 
decreases until a continuum is reached. For a given nuclear species and 
neutron energy, there is a fixed probability for exciting each energy level. 
For all but the first level, there are alternate routes by which the nucleus 

Table 3.4—TYPICAL CROSS SECTIONS FOR NEUTRON 
INELASTIC SCATTERING AT FOUR ENERGIES! 

Element 

Tungsten 
0„n' [L] 
0„n' (C) 

Lead 
Onn' ( i ) 
Onn' (C) 

Nickel 
Onn' {L) 
Onn' (C) 

Carbon 

Onn' {L) 
Onn'(C) 

Approximate 
threshold 
energy, 

MeV 

0.0115 
0.99 

0.57 
3.13 

1.4 
4.02 

4.91 
9.4 

14 MeV 

0 
2.49 

0 
2.52 

0 
1.13 

0.268 
0.216 

Cross section, b 

5.16 MeV 

0.095 
2.47 

0 
2.06 

0 
1.17 

0.0436 
0 

2.0 MeV 

1.23 
1.35 

7.7 
0 

0.6 
0 

0 
0 

1.0 MeV 

2.34 
0.005 

0.34 
0 

0 
0 

0 
0 

tFrom Troubetzkoy et al. 

may release the excitation energy: one photon may be given off, dropping 
the nucleus to the ground state; or a cascade of photons may be emitted as a 
result of the presence of the intermediate levels. There is, therefore, one set 
of probabilities for exciting the various levels and another set of probabilities 
for alternate decay routes from each of the levels. Cross-section data that 
account for all these alternatives are necessarily somewhat complex. 

The total cross section for all inelastic events is often split into two 
components: CT„„'(L), which is the probability of excitation to any level 
from which discrete gamma rays are emitted, and a^^>{C), which is the 
probability for excitation to the region in which levels are so closely spaced 
that the emission is essentially continuous. Table 3.4 shows for four 
elements the neutron-energy threshold and the values of o„„'(C) and a„y^'{L) 
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for four energies. The general trend is for the inelastic cross section to 
increase as either the atomic weight of the target nucleus or the energy of 
the neutron increases. The threshold for inelastic scattering decreases with 
increasing Z. 

Inelastic-scattering cross sections useful for detailed radiation-transport 
calculations are often expressed in terms of the gamma-ray spectrum emitted 

Tjbk 3 5—NUMBER OF GAMMA RAYS EMITTED PER NEUTRON PRODUCING REACTION IN LEADt 

r .̂McV 
/ „ MeV 

1 802 X 10' 
1700 
1600 
1 500 
1450 

1 400 
1 350 
1 300 
1 250 
1 200 

I 150 
1 100 
1050 
1000 
9 500X 10° 

9000 
8 500 
8 000 
7500 
7000 

6 500 
6000 
5 500 
5000 
4 500 

4 000 
3 500 
3 250 
3 000 
2 750 

2 500 
2 250 
2 000 
1 750 
1 500 
1 250 

0 25 

0 539 
0 567 
0 579 
0 587 
0 587 

0 587 
0 583 
0 571 
0 559 
0 540 

0 522 
0 463 
0 404 
0 285 
0 205 

0 103 
0 054 
0 034 
0 025 
0 021 

0 022 
0 027 
0 029 
0 030 
0 026 

0018 
0 013 
0 006 

tFroin Troubtukoy 

0 75 

0 2730 
0 293 
0 301 
0 305 
0 305 

0 292 
0 269 
0 277 
0 261 
0 252 

0 248 
0 254 
0 259 
0 277 
0 292 

0 319 
0 351 
0 391 
0 429 
0 467 

0 491 
0 523 
0 553 
0 575 
0 623 

0 692 
0 745 
0 761 
0 870 
1 060 

1 126 
1 125 
1 095 
1 062 
1 037 
1 000 

. ( , / / " 

1 25 

0 168 
0 182 
0 188 
0 188 
0 186 

0180 
0 174 
0 164 
0 1547 
0 142 

0 134 
0 125 
0 117 
0112 
0111 

0 109 
0110 
0 112 
0113 
0 117 

0 120 
0 127 
0 133 
0 135 
0 137 

0 135 
0 120 
0 108 
0 092 
0 080 

0 057 
0 043 
0 027 
0 015 

175 

0 119 
0 130 
0 134 
0 132 
0 123 

0 123 
0119 
0 103 
0 087 
0 072 

0 056 
0 044 
0 040 
0 053 
0 065 

0 087 
0112 
0 140 
0 158 
0 183 

0 196 
0 208 
0213 
0 200 
0 182 

0 162 
0 130 
0 115 
0 104 
0 100 

0 068 
0 037 
0013 

2 25 

0 095 
0 099 
0 099 
0 095 
0 087 

0 079 
0 069 
0 059 
0 045 
0 032 

0 020 
0014 
0012 
0018 
0 026 

0 039 
0 050 
0 063 
0 072 
0 078 

0 073 
0 062 
0 046 
0 030 
0018 

0 006 

2 75 

0 069 
0 075 
0 071 
0 063 
0 057 

0 047 
0 035 
0 027 
0 023 
0 020 

0 020 
0 032 
0 052 
0 081 
0111 

0 153 
0 200 
0 246 
0 291 
0 331 

0 370 
0 393 
0 402 
0 395 
0 376 

0 337 
0 281 
0 231 
0 185 
0 080 

3 25 

0 059 
0 057 
0 053 
0 047 
0 039 

0 027 
0019 
0011 
0 009 
0 008 

0010 
0 014 
0 020 
0 032 
0 045 

0 058 
0 062 
0 065 
0 064 
0061 

0 055 
0 050 
0 043 
0 035 
0 026 

0012 

3 75 

0 047 
0 043 
0 035 
0 031 
0 023 

0015 
0 011 
0 009 
0 007 
0010 

0014 
0 022 
0 034 
0 048 
0 069 

0 089 
0 106 
0119 
0 124 
0 131 

0 133 
0 134 
0131 
0112 
0 069 

0018 

4 25 

0 035 
0 033 
0 025 
0017 
0011 

0 007 
0 005 
0 003 
0 003 
0 006 

0010 
0018 
0 028 
0 040 
0 059 

0 078 
0 098 
0110 
0113 
0113 

0 111 
0 101 
0 087 
0 060 
0 021 

4 75 

0 031 
0 023 
0015 
0 009 
0 005 

0 003 
0 003 
0 001 
0 003 
0 004 

0 008 
0012 
0 020 
0 032 
0 045 

0 058 
0 075 
0 089 
0 098 
0100 

0 093 
0 069 
0 038 
0010 

5 25 

0 023 
0 015 
0 009 
0 005 
0 003 

0 001 
0 001 
0 001 
0 001 
0 004 

0 006 
0012 
0018 
0 026 
0 037 

0045 
0 054 
0 057 
0 053 
0 043 

0 026 
0 007 

6 50 

0 062 
0 029 
0 009 
0 0026 
00019 

0 0015 
0 0019 
0 0036 
0 0047 
0 0138 

0 021 
0 038 
0 058 
0 080 
0 107 

0 133 
0 14! 
0 136 
0 091 
0 041 

0 015 

by the nucleus for specific incident-neutron energies. These data may include 
gamma rays from other nonelastic events, i.e., reactions other than elastic 
scattering including inelastic scattering, {n,2n), {n,p), etc. Data of this type 
are shown in Table 3.5, which gives the number of gamma rays given off at 
various gamma-ray energies per neutron-producing reaction in lead, {n,n') 
and {n,2n). These values are not interaction cross sections but rather give the 
distribution of gamma rays resulting from an interaction. The data were 
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obtained from the report of Troubetzkoy et al.,^ which is an evaluation of 
calculations, measurements, and extrapolation. Multiplication of these values 
by the total cross section for neutron-producing events would give the 
gamma rays produced per unit neutron-flux density. 

In most stationary power reactors with concrete shields, gamma rays 
from inelastic scattering are usually not a determining factor in the shield 
design. In cases such as mobile reactors with lead or tungsten as gamma-ray 
shields, however, a careful analysis of inelastic scattering is required. Also, in 
fast reactors with high-Z materials in their structure, it may be necessary to 
include inelastic gamma rays from the core as a part of the source definition. 

As with elastic scattering, theoretical concepts have been used to 
describe the nature of inelastic neutron cross sections. For the most part, 
however, such treatments rely on parameters that must be determined by 
measurement. Reference 7 contains a compilation of measured neutron 
inelastic-scattering angle distributions. A summary of gamma rays from 
inelastic neutron scattering based on both calculation and measurement is 
given in Appendix A. 

(c) Neutron Radiative Capture. For neutron energies in the lower 
ranges, radiative capture competes in importance with the elastic-scattering 
process. In radiative capture the incident neutron is absorbed by the target 
nucleus; the compound nucleus is almost invariably left in an excited state 
and decays in a variety of ways, emitting one or more gamma rays. The total 
excitation energy is equal to the energy of the incident neutron plus the 
neutron binding energy. 

The binding energy of neutrons varies from 3.2 MeV in hydrogen to 11 
MeV in nitrogen, averaging about 7 MeV. Thus energetic gamma rays can be 
emitted. The probability for the emission of such a photon is highest in light 
and magic ^ nuclei. If, however, the compound nucleus formed by the 
absorption has energy levels lower than the combined binding and kinetic 
energies of the incident neutron, a gamma-ray cascade can result. Recent 
theoretical work in the prediction of the gamma-ray spectra from capture 
reactions is discussed by Foderaro,* Troubetzkoy et al.,^ Yost , ' and 
Howerton and Plechaty. * ° 

Experimental work on gamma-ray yields from neutron capture is a 
continuing effort of a number of laboratories (notably in Canada and the 
USSR). A compilation of data to 1960 is given in the Shielding volume of 

tThese are relatively more stable nuclei that contain 2, 8, 20, 52, 82, or 126 neutrons or protons. 
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the Reactor Handbook.^ More recent data can be found in the journal 
Nuclear Data.'' One to five gamma rays, ranging in energy from less than 1 
to 12 MeV, are emitted per capture. Typical emittance spectra taken from a 
compilation in the Reactor Handbook^ are shown in Fig. 3.11. 

The thermal-neutron cross sections for radiative capture in most 
elements and isotopes are given in the famous "barn book ." '^ Very few 
measurements have been made on the o{n,y) cross sections at neutron 
energies other than thermal. Generally, the capture cross section becomes 
quite small for neutron energies above 10 to 20 keV. Therefore the total 
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Fig. 3.11—Typical gamma-ray spectra from neutron capture, i> (E) (photons per MeV per 
capture) vs. gamma-ray energy, E. [From E. P. Blizard (Ed.), Reactor Handbook, 2nd ed.. 
Vol. Ill, Part B, Shielding, pp. 50-51, Interscience Publishers, a division of John 
Wiley & Sons, Inc., New York, 1962.] 
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energy emitted as gamma rays is almost equal to the neutron binding energy 
because the energy of the incident neutron is generally quite small by 
comparison. The gamma-ray spectra resulting from neutrons captured at 
epithermal energies may differ significantly from the thermal capture 
spectra. However, since the data are frequently lacking, gamma-ray yield 
data for thermal neutrons are often used for all capture energies. Yost and 
Solomito' ^ show that this assumption leads to considerable error in 
gamma-ray transport for many designs. Yost^ has developed a method for 
calculating the capture gamma-ray spectrum as a function of neutron energy. 

(d) Other Nonelastic Reactions. There are reactions other than inelastic 
scattering in which the kinetic energy of the system is not conserved. These 
include (n,2n), (n,fission), and (n,charged particle) reactions. The nonelastic 
neutron cross section, O^^, is defined by 

a„ , (£ ) = a , ( £ ) - a , , ( £ ) (3.2-24) 

in which a^ is the total neutron cross section and a^^ is the cross section for 
elastic scatter. Since a„g is easier to measure than the inelastic-scattering 
cross section, a,-„, it is often quoted. It should be recognized that a,-„ < a„g. 

Charged-particle reactions generally are produced by neutrons with 
energies greater than 1 MeV. At lower energy these reactions are generally 
inhibited either by the energetics of the process or by the Coulomb barrier, 
which must be penetrated by the charged reaction products. However, some 
light-particle thermal-neutron reactions do occur. One of these of impor
tance to shielding because of its high thermal-neutron absorption cross 
section is the "'B(n,a;)^ Li reaction, which is accompanied by the emission of 
a relatively soft 0.5-MeV gamma ray. Borated materials are widely used in 
reactor shields because ' ° B competes for the absorption of thermal neutrons 
and thus inhibits the production of more-energetic secondary gamma rays by 
reducing radiative capture in other isotopes. 

(e) Activation Cross Sections. Many neutron interactions result in the 
production of excited nuclei, which decay by a variety of means. Cross 
sections that describe the probability of the formation of a specific 
radioactive nucleus are often called activation cross sections and are specified 
in units of barns per nucleus. Thus the total radiative capture cross section of 
a nucleus may be the sum of several activation cross sections. On the other 
hand, the total activation cross section may include processes other than 
radiative capture. 
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Activation cross sections are useful in making estimates of secondary 
sources in reactor shields and materials, in radioisotope-production calcula
tions, and in the relatively new and rapidly growing field of activation 
analysis. The details of decay schemes, emitted-particle energies, branching 
ratios, etc., can be found in several sources. Perhaps the best current source 
for such data is Nuclear Data Sheets.''* Activation cross sections are also 
found in the barn book. ' ^ 

3.3 RESPONSES TO RADIATION 

It was noted in the discussion of measures of radiation intensity 
(Sec. 2.2.4) that interaction rates of a radiation field with its environment 
are important and are often-used characterizations of radiation intensity. 
However, further discussion of the concept was deferred to this chapter so 
that the various microscopic processes of interaction could first be reviewed. 

Calculations of radiation transport are fundamentally in terms of flux 
densities and currents (described in Chap. 2). However, the quantity most 
often measured and the quantity by which the shield design criteria are 
specified is a property of the radiation field called dose. We use the term in a 
generic sense to include any quantity that relates the energy deposited by 
the radiation field to biological damage. Therein lies the rub. Biological 
damage is intrinsically difficult to measure and even more difficult to 
predict. Fortunately we limit our shielding interest in biological effects to 
defining a proper interface between the shield designer and the radio-
biologist. 

In an ideal situation a given dose would always produce the same 
biological effect irrespective of the nature and energy of the radiation or of 
the body organ being irradiated. However, studies by radiobiologists in 
which doses and biological damage to specific organs have been correlated 
for known radiation fields have established that nature is not that simple. In 
addition to being a function of absorbed energy, biological responses are 
functions of the irradiated organ and of the type, rate, and energy of the 
radiation. From these studies the concept of relative biological effectiveness 
(RBE) has evolved. The RBE is a weighting factor that is used to compare 
the biological effects produced by the same physical dose (same amount of 
energy deposited) of a standard radiation with radiation of a different type 
and/or energy. When the physical dose is multiplied by the RBE, it becomes 
a biological dose. 
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The foregoing gives some indication of the problems associated with 
establishing doses for shield design that are related to biological hazards. The 
shield designer's task is further complicated by the perturbation of the 
radiation field by the human body, an effect not usually included in a 
typical shielding calculation. Obviously the dose received at a particular 
location within the body is not the same as the dose in a small detector at 
the same location in space with the body absent. It is apparent that shielding 
studies should include anthropomorphic phantoms as part of the shield 
configuration, a theoretically possible but usually impractical consideration. 

As an alternative, slab or cylindrical phantoms of a composition 
resembling that of the human body have been used, and the doses have been 
calculated or measured as a function of depth in the phantom for a given 
incident radiation field. The results are then used as response functions to 
relate an unperturbed radiation field (usually called a free field) to the dose 
in a human body had it been present. 

The following discussion on the various quantities used to define 
physical and biological doses reveals the confusion that has developed in the 
terminology and in the definition of units, both because of the burgeoning 
nuclear science and technology and because radiobiologists and shield 
designers basically differ in their viewpoints. The International Commission 
on Radiation Units and Measurements (ICRU) has as its principal objective 
the development of internationally acceptable recommendations regarding 
quantities and units of radiation and radioactivity, procedures suitable for 
the measurement and application of these quantities, and physical data 
needed in the application of these procedures. The ICRU recognized the 
confusion that existed, and in an effort to mitigate it recommended a 
consistent set of definitions and units. '^ Although shield designers have 
accepted most of the ICRU recommendations, they have continued to use 
terms not included in the recommendations because these terms are so 
ingrained in the shielding field and because the ICRU did not include all the 
concepts needed in shield design. In the following descriptions the ICRU 
recommendations and the traditional viewpoints are contrasted. 

Trubey '* describes the impact of the ICRU recommendations on the 
shielding community. 

3.3.1 Absorbed Dose 

Absorbed dose is the energy imparted by radiation to a unit mass of 
matter and as such is a physical quantity as opposed to a biological effect. A 
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formal definition for the energy imparted, Ej^, is: The energy imparted by 
ionizing radiationt to the matter in a volume is the difference between the 
sum of the energies of all the directly and indirectly ionizing particles which 
have entered the volume and the sum of the energies of all those which have 
left it plus the energy equivalent (QJ of any decrease in rest mass that took 
place in nuclear or elementary-particle reactions with the volume. For all 
practical purposes the energy imparted is usually equal to the heating effect, 
but in some cases part of the energy deposited may result in changes in 
interatomic-bond energies. 

As proposed by the ICRU,' ^ the energy imparted can be expressed as 

^D =2: £ , - „ - £ £ex + E Q (3-3-1) 

sum of the energies (excluding rest energies) of all those 

directly and indirectly ionizing particles which have entered 
the volume 
sum of the energies (excluding rest energies) of all those 
directly and indirectly ionizing particles which have left the 
volume 
sum of all the energies released minus the sum of all the 
energies expended in any nuclear reactions, transformations, 
and elementary-particle processes that have occurred within 
the volume 

The absorbed dose (D) is 

D ^ ^ ^ (3.3-2) 
AM 

where A E Q J is the energy imparted by ionizing radiation to the matter in a 
volume element and AM is the mass of the matter in that volume element. 

tlonizing radiation is a radiation consisting of directly or indirectly ionizing particles or a mixture 
of both. Directly ionizing particles are charged particles {electrons, protons, alpha particles, etc.) 
having sufficient kinetic energy to produce ionization by collision. Indirectly ionizing particles are 
uncharged particles (neutrons, gamma rays, etc.) which can liberate directly ionizing particles or can 
initiate a nuclear transformation. 

iThe notation AEr, implies that the volume element AV associated with the element of mass AM 
be of an appropriate size such that the limiting process D = AEj^jAM yields a meaningful estimate of 
the absorbed dose, and we invoke the special limiting process of Sec. 2.2.4. 

where £ £ , „ = 

2 : Q = 
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The special unit of absorbed dose is the rad: 

1 rad = 100 ergs/g (3.3-3) 

The absorbed dose rate is 

Absorbed dose rate = —r- (3.3-4) 

where AD is the increment in absorbed dose in time, A^ A special unit of 
absorbed dose rate is any quotient of the rad or its multiple or submultiple 
divided by a suitable unit of time (rads/sec, mrads/hr, etc.). 

Energy can be imparted to a volume of matter by many different particle 
reactions. Particles having the same initial energy do not necessarily deposit 
the same amount of energy because, of course, energy deposition depends 
not only on the initial energy but also on the type of radiation and the kinds 
of interactions that occur. Schematic representations of energy imparted to 
the matter contained within a volume element A V for two particles having 
initial energies EQ and JSQ ^ ^ shown in Fig. 3.12 (superscripts 1 and 2 
identify the reactions produced by particles 1 and 2, respectively). The 
corresponding equations for the energy imparted are 

AEl=El-E'p-E\-Q' (3.3-5) 

A E ^ = £ j - £ ^ + Q 2 (3.3.6) 

where AEj^ is the energy imparted to the matter within the volume element 
AV, Q is the energy equivalent of any change in the rest mass due to nuclear 
or elementary-particle reactions within the volume, and subscripts /J and y 

refer to the type of particle leaving the volume. In reaction 1 an incident 
gamma ray undergoes Compton scattering within volume element AV. The 
term Q ' indicates the binding energy of the Compton electron, which is 
usually of negligible magnitude. The Compton electron loses some of its 
energy through ionization within the volume and then departs with the 
energy Ea. The scattered (degraded) gamma ray also leaves the volume. In 
the second reaction a neutron undergoes radiative capture and a gamma ray 
is produced which leaves the volume. The term Q^ indicates the binding 
energy associated with neutron capture, which appears as excitation energy. 
Secondary collisions within the volume element were purposely omitted in 
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Fig. 3.12—Schematic representation of relation between absorbed dose (energy deposi
tion) and karma. 

this schematic representation to illustrate that the volume element AV 
should be large enough for many primary interactions to occur but 
sufficiently small so that a primary particle and/or secondary neutrons or 
gamma rays usually would not suffer collisions subsequent to the initial 
collision by the incident particle within the volume element AV. 

The average energy imparted to the matter within the volume element 
AV by all reactions of particles of a particular type and energy can be 
written as 

I Ri{E) Ef(E) 

i 

where ££>(£) = average energy imparted in ergs or MeV 
Ri{E) = rate of the ith type of reaction for particles of energy E 

within the volume element A V 
£,•(£) = energy imparted, in ergs or MeV, associated with a particle of 

energy £ undergoing reaction i within the volume element 
AV 
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3.3.2 First-Collision Dose and Kerma 

The quantity absorbed dose discussed in the previous section is a 
physical variable that is closely related to the biological effect of a radiation 
field but for a real situation is sometimes very difficult to calculate 
accurately or to relate to the response in a human being. Consequently other 
concepts have been devised and used. 

One of these concepts is the first-collision dose (also called the 
single-collision dose). This quantity has been subject to several interpreta
tions that differ from one another in subtle ways. We will discuss the two 
that are pertinent to the present discussion: 

1. The first-collision dose is the absorbed dose contributed by all 
particles incident on an isolated small mass (unless the term is explicitly 
modified to include only one component, e.g., neutrons) in which 
charged-particle equilibrium t exists. 

2. The first-collision dose is the energy transferred from uncharged 
incident radiation, regardless of origin, to the charged particles formed in a 
limitingly small probe that may be located anywhere. Charged-particle 
equilibrium in the probe is not a requirement. 

The small mass specified in the first interpretation means that the probe 
is small enough to leave the radiation field unperturbed and the probability 
is negligible that the incident particles will interact with the probe more than 
once or that secondary gamma rays$ produced within the mass will be 
absorbed v^dthin it. The small probe specified in the second interpretation 
has the same requirements, but it can be smaller than that required for the 
first interpretation because charged-particle equilibrium is not necessary. 

The first interpretation is widely used, particularly by experimentalists, 
and is often called the free-field dose, the air dose, or the free-air dose. 
However, in an attempt to alleviate confusion, the ICRU chose the second 
interpretation to use as a basis for an exact definition and called the quantity 
so defined the kerma {kinetic energy released in material). In fact, the 
ICRU' ^ encourages the exclusive use of the term kerma with the implication 
that the term first-collision dose and its other interpretations be avoided. 

tCharged-particle equilibrium may be viewed as that condition when, on the average, as many 
charged particles, such as electrons, enter the volume element AV as leak out, thereby resulting in an 
essentially zero net transfer of energy by the flow of electrons. 

i:As used here secondary gamma rays refer to those gamma rays produced by interaction of the 
incident neutrons with the medium (e.g., capture gamma rays and inelastic-scattering gamma rays). 
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The definition of kerma, K, as recommended by the ICRU' ^ is 

where AEj^ is the sum of the initial kinetic energies (ergs) of all the charged 
particles liberated by indirectly ionizing particles in a volume element of 
material A V and AM is the mass (grams) of the material contained in the 
volume element Al^. 

The kerma rate is 

AX 
Kerma rate = —— (3.3-9) 

At ^ ' 

where AK is the increment in kerma in time At. 

Since AEj^ is the sum of the initial kinetic energies of all charged 
particles liberated by indirectly ionizing particles, it includes not only the 
kinetic energy these charged particles expend in collisions but also the 
bremsstrahlung they radiate and the energy of any charged particles that are 
produced in secondary processes. Note also that no restriction is placed on 
the volume into which these secondary radiations penetrate. 

The kerma or kerma rate for a specified material in free space or at a 
point inside a different material will be that which would be obtained if a 
small quantity of the specified material were placed at the point of interest. 

With the definition of kerma in mind, we have interpreted the reactions 
shown in Fig. 3.12 in terms of the initial kinetic energy imparted to charged 
particles 

A £ ^ = £ i - £ ^ - Q ' (3.3-lOa) 

AE^ = £2 - £ ^ + Q ' (3.3-lOb) 

We can see that the expression for A£|^ and the expression given in Eq. 3.3-6 
for A £ ^ are the same. However, the expression for A£]f differs from that 
given in Eq. 3.3-5 for AEjj because the Compton electron produced by 
reaction 1 did not deposit all its energy in the volume element and there was 
no compensating inleakage of an electron; i.e., charged-particle equilibrium 
did not exist, and A E I ' > AE\,. If charged-particle equilibrium did exist, we 
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could assume that, on the average, a recoil electron with energy Eg would 
enter AK of Fig. 3.12 from an adjacent region. This would then increase 
A££, and make it equal AEj^ (latter is unaltered). 

The choice of the second interpretation was not a popular one for 
experimentalists. Aux ie r ' ' expressed the issue clearly. He argues that the 
first interpretation should be formally recognized as first-collision dose, 
principally because the quantity measured with ionization chambers, 
proportional counters, and other devices is absorbed energy and not 
transferred kinetic energy. 

Therefore, since measured doses cannot be interpreted as kerma, except 
by deduction, some dosimetrists are insisting on retaining the term 
first-collision dose. On the other hand, if charged-particle equilibrium exists, 
which it may or may not, and if bremsstrahlung radiation is ignored, then 
first-collision dose and kerma are equivalent. In bulk shields or large tissue 
masses, first-collision dose and kerma have nearly the same magnitude, but in 
thin layers, such as clothing or skin, they can be quite different. It is possible 
to find the factors by which fluence must be modified to convert to kerma. 
Such calculations have been made and are indispensable for comparing 
analytical results with measurement. 

The early calculations of first-collision dose per unit fluence were 
performed by Snyder' ^ for monoenergetic neutrons incident on a four-
element tissue model. Although the term kerma had not yet been 
introduced, the doses obtained by Snyder are those described by the second 
interpretation and thus are kerma per unit fluence. His calculations 
considered only neutron captures and elastic scatterings; the latter was 
assumed to take place isotropically in the center-of-mass system. Later, 
Henderson' ^ made similar calculations for neutrons for a four-element tissue 
model and for ethylene. He reported his results as absorbed dose (in rads per 
hour per unit flux), but they are actually kerma rate per unit flux. 

The most recent and most comprehensive calculations of neutron kerma 
factors (kerma per unit fluence) were made by Ritts, Solomito, and 
Stevens.^" They included essentially all reactions, considered anisotropic 
scattering in those reactions for which angular cross-section data were 
available, and in all cases used the most recent cross-section data. One of the 
models they used was an 11-element standard-man model in which all tissue 
organs and bone were homogenized; other models were for specific body 
organs. The elemental compositions used in the calculations, the reactions 
considered, and the neutron-fluence-to-kerma conversion factors for stan
dard man are given in Appendix B. The kerma factor for a particular 
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NEUTRON ENERGY, eV 

Fig. 3.13—Neutron-fluence-to-kerma factors for standard-man model and for elements 
contributing to standard-man model. (From Ritts et al.^ ) 

irradiated material can be found by summing the averages of the kinetic 
energies imparted to the struck nuclei and the energies associated with 
charged particles that are emitted. 

The kerma per unit fluence can be expressed as 

RK=lLcNi{E)aij{E)Eij (3.3-11) 

where N( = number density of element i (atoms/g) 
Of! = microscopic cross section of reaction j for element i (cm^ /atom) 
E{j = average energy deposited by reaction ; for element i (MeV) 

C = 1.602 X 10'* (ergs/MeV) 

Since the kerma values are given per unit fluence, they are fluence-to-
kerma conversion factors (usually referred to simply as kerma factors). Such 
kerma factors for the standard-man model are plotted in Fig. 3.13 and 
tabulated in Appendix B along with kerma factors for the individual 
elements making the greatest contributions to the total factor. 

Kerma-rate factors for monoenergetic gamma rays incident on carbon, 
air, and a four-element tissue model were calculated by Henderson'' and are 
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Fig. 3.14—Gamma-ray kerma-rate factors for air, carbon, and tissue. (From Hender
son. ) 

plotted in Fig. 3.14. (Henderson's gamma-ray results, like his neutron results, 
were actually reported as absorbed dose, the term kerma not having been 
introduced yet.) 

3.3.3 Exposure 

Exposure is a term that should be used only for gamma rays. Formerly 
called exposure dose, it came into common use after the problem of 
specifying biological dose associated with X rays was first encountered. As 
recommended by the ICRU, exposure (X) describes the deposition of energy 
in air by electromagnetic radiation and is defined by 

AQ 
^ ^ A M (3.3-12) 
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where AQ is the sum of the electrical charges of all the ions of one sign 
produced in air when all electrons liberated by photons in a volume of air 
AK are completely stoppedt and AM is the mass of the material contained in 
the volume element A V. Exposure rate is given by AX/At, where AX is the 
increment of exposure during the increment of time A^. 

The unit of exposure is the roentgen (R). It is the quantity of X or 
gamma radiation that produces, in air, ions carrying 1 electrostatic unit (esu) 
of charge per 0.001293 g of dry air (or 2.58 x 10"* coulomb/kg). In terms 
of ergs, the roentgen is equal to 87.7 ergs per gram of air or 96 ergs per gram 
of tissue. For gamma rays above 3 MeV in energy, the range of secondary 
electrons in low-atomic-number materials becomes comparable with the 
relaxation length of the gamma rays. Consequently the ionization produced 
in a small volume is no longer a sole measure of the intensity of the radiation 
at that point. The ICRU does not recommend the use of the roentgen above 
3 MeV; in practice, however, it is still used above 3 MeV with instruments 
calibrated in terms of energy absorption in air. 

Since 1 rad is equal to 100 ergs per gram of irradiated material, the 
roentgen and the rad are frequently interchanged when tissue exposure is 
referred to, the difference of 4% being no real consequence in shielding 
calculations. Strictly speaking, however, the rad should be reserved for 
describing an absorbed dose. 

Away from boundaries the distinction between kerma and exposure loses 
relevance if only the three principal processes (Compton scattering, 
photoelectric effect, and pair production) are considered and if the 
photoelectric effect and pair production are assumed to be absorptions. For 
this simple and widely used model,$ the fluence-to-exposure conversion 
factor is proportional t o the product of the photon energy and the 
energy-deposition coefficient, in which case exposure, absorbed dose, 
first-collision dose, and kerma in air are all equal in magnitude. 

In some calculations, however, a slightly more complex model is used in 
which pair production contributes to scattering as well as absorption. As in 
the preceding model the total kinetic energy of the electron pair created in 
the pair-production process is assumed to be absorbed at the point of its 
emission. However, the two 0.51-MeV gamma rays produced by the 

tThe ionization that would be produced by the bremsstrahlung associated with secondary 
electrons is not included in AQ. Except for this small difference, which is insignificant for photon 
energies less than 15 MeV, exposure is equivalent to kerma. 

tFor this and the subsequent model, the bremsstrahlung radiation that would be produced by the 
secondary electrons (and positrons) is assumed to be immediately absorbed. 
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annihilation of the positron are treated as scattered gamma rays, and pair 
production is also viewed as a scattering process. Absorption from pair 
production is described in terms of a modified cross section, which is given 
by 

' " p p . = ^PP ( l - ^ ) (^°' ^ > ^-^^^ ^ ' ^ ^ (^-^'^^^ 

where £ is the energy of the incident photon (MeV). 

3.3.4 RBE Dose; Dose Equivalent 

Whenever the biological response of a human organ to radiation exposure 
is of concern, merely knowing the absorbed dose (energy deposited) is not 
sufficient to predict the biological consequence. Biological responses vary 
both with the nature and energy of the radiation and with the composition 
and function of the irradiated organs. Thus, when an organ is exposed to a 
mixed radiation field or to a field of radiation comprised of one type of 
particle with various energies, the energy deposited by each "type of particle 
of a given energy must be weighted by some factor before the total 
biological dose received by the organ can be determined by a summing of the 
individual contributions. 

For a specific biological effect in a particular mass, the weighting factor 
is mainly a function of the linear rate of energy transfer (LET) to the system 
by charged particles set in motion by the interactions of incident radiation. 
The LET of a material is related to the linear stopping power, but the 
concepts are somewhat different. The linear stopping power is the average 
energy loss per unit path length by a charged particle in traversing a medium 
regardless of where the energy is absorbed. The LET, however, refers to 
energy imparted within a hmited volume. These two quantities are equal 
only in the special case when the LET includes the absorption of all 
secondary particles, in which case it is called LET^o. These quantities are 
described more completely by Trubey. ' * 

The LET-dependent weighting factor is called the relative biological 
effectiveness (RBE) and is defined as 

RBE = (rads o£ standard radiation producing a given 

biological effect)/(rads of another type of radiation 
producing the same effect) (3.3-14) 

The standard radiation referred to is X rays of 250 keV energy, and thus by 
definition the RBE for 250-keV X rays is 1. 
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When a dose given in rads is weighted by an RBE value, the resulting 
dose, sometimes referred to as the RBE dose, is given in rems, a unit derived 
from the term roentgen equivalent man: 

RBE dose in rems = dose in rads X RBE (3.3-15) 

It follows that for 250-keV X rays the rad dose and the rem dose are 
numerically equal. 

Table 3.6—QUALITY FACTOR AS A FUNCTION 
OF LINEAR ENERGY TRANSFER AND 

ION-PAIR FORMATION^ ' " 

QF 

1 
2 
5 

10 
20 

Average specific 
ionization. 

ion pairs/At of water 

<100 
200 
650 

1500 
2000 

Average LET, 
keV/jU of water 

<3.5 
7.0 

23 
53 

175 

The rem is quantitatively defined as the absorbed dose due to any 
ionizing radiation that has the same biological effectiveness as 1 rad of X 
rays with an average specific ionization of 100 ion pairs per micron of water 
in terms of its air equivalent. It turns out that X rays and gamma rays 
generally do not exceed this specific ionization (LET < 3.5 keV/ju), which is 
considered to be the boundary between low-LET and high-LET radiation 
and thus to be the limiting condition for RBE = 1. 

In the past RBE has been used in the fields of radiobiology and radiation 
protection, but this generated concern because of the differences in 
application and, to some extent, in concept. Consequently ICRU recom
mends that RBE be used only for correlating radiobiological experiments 
and that a new term, the quality factor (QF), be used in the field of 
radiation protection. Quality factors are actually those values of RBE which 
are intended to embrace all effects that are hazardous to human beings. In 
other words, QF values are not related to specific organs of the body as are 
some of the RBE values. When a QF value is used to weight absorbed dose. 
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the resulting dose, in rems, is identified as the dose equivalent (DE). Dose 
equivalents, like RBE doses, are assumed to be additive. 

Although the QF is defined in purely physical terms (that is, as a 
function of LET only, which, in turn, is a function of the number of ion 
pairs produced per centimeter of travel by charged particles), the basis of the 
legislated value is biological. Table 3.6 shows the recommendations of the 
International Commission on Radiological Protection (ICRP)^ ' '^^ for the 
relation between QF and both LET and ion-pair formation. 

The ICRP recommends a QF of 1 for X rays, gamma rays, electrons, and 
positrons of any specific ionization;^ ' QF values for neutrons, protons, and 
heavy recoil nuclei vary with energy. The ICRP recommendations for QF 
values for neutrons between 0.01 and 1000 MeV are plotted in Fig. 3.15. 
Tabulated values for lower energy neutrons are also shown. These values are 

11 

10 

g 7 
O 

< 
> 6 

< 
O 

2 -

10' 

Energy 

Thermal 
0.1 keV 
5.0 keV 

20.0 keV 

10" 

3 
2 
2.5 
5 

10" 10' 10^ lO-" 
ENERGY, MeV 

Fig. 3.15—Quality factors for neutrons. 
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based on the calculated results of Snyder and Neufeld.^ ^ As a rough and 
conservative approximation, a QF of 10 is applicable to protons and a QF of 
20 can be used for heavy recoil nuclei. 

The preceding QF values are assumed to be applicable for whole-body 
irradiation. When specific organs are being considered, additional modifying 
factors may be needed. For example, ICRP specifies that, when the lens of 
the eye is being irradiated, a modifying factor of 3 should be used if the 
QF > 10 and a modifying factor of 1 should be used when the QF = 1. 
Strangely enough, no recommendations are given for 1 < Q F < 1 0 . Pre
sumably, linear interpolation is to be used between these limits. 

When the dose in an organ is nonuniform, a dose distribution factor (DF) 
should also be appHed. These factors cannot be established with certainty, 
and only one, the relative damage factor applied in calculating the dose 
equivalent in bone from internal radiation, is in current use. 

In general, the shielding community has accepted the use of QF and DE, 
as is reflected by the latest shielding literature. From a practical viewpoint 
the change merely amounts to replacing RBE by QF and calling the product 
of the quality factor and absorbed dose the dose equivalent (DE) instead of 
the RBE dose. Consequently no confusion should exist when the older 
literature is consulted. It should be kept in mind, however, that QF values 
are chosen by such groups as the ICRP and thus are more subject to change 
than would be an RBE value based on experimental data. 

All quality factors and other modifying factors are intended solely for 
chronic exposure to low-level radiation fields, with genetic damage being the 
hazard considered. High accidental exposures must be assessed on the basis 
of particular circumstances. The ICRP has no recommendations for such 
exposures, but in many cases the absorbed dose will give a better indication 
of the biological risks than will the dose equivalent. In other words, for acute 
effects due to massive exposures, the QF should be taken as unity, which 
partially results because energy may be wasted from the standpoint of the 
production of biological effects. Consequently, for military applications 
during war, when early death or incapacitation is the effect to be considered, 
the dose, in rems, may be taken as numerically equal to the absorbed or 
physical dose until better information becomes available. 

3.3.5 Maximum Absorbed Dose; Maximum Dose Equivalent 

As was pointed out in the introduction to this section, the usual 
shielding calculation provides a detailed description of the unperturbed 
radiation field (free field): that is, perturbations of the field by a human 
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body are not considered. This greatly simplifies the analysis without 
seriously compromising the overall accuracy. However, the results must 
somehow be related to the hazards to a human being if he were exposed to 
such a radiation field. 

A correlation between the unperturbed radiation field and the dose in a 
human body has been accomplished through the use of slab and cylindrical 
phantoms, which have dimensions and compositions resembling those of the 
human body. Calculations (or measurements) of the absorbed dose or the 
biological dose were made as a function of depth in the phantom for given 
monoenergetic neutrons or gamma rays incident on the phantom. The 
incident angular distribution was a monodirectional beam or an isotropic 
flux. (Calculations for neutrons include the contribution to the dose by 
secondary gamma rays.) The maximum values in the depth—dose distribu
tions were identified as the maximum absorbed dose and maximum dose 
equivalent for the absorbed (physical) and biological doses, respectively. 
Since these values were obtained and reported on the basis of a unit particle 
entering the phantom, they can be used as response functions to relate an 
unperturbed field of mixed radiation to the maximum dose that would be 
received by some part of the body. Use of these maximum values is dictated 
by a conservative design philosophy that does not allow the permissible dose 
to be exceeded at any point in the body. 

(a) Neutron Doses in Phantoms. The first dose calculations in a 
phantom were performed by Snyder and Neufeld^ ^ for a beam of 
monoenergetic neutrons normally incident on a phantom represented by a 
slab of tissue. The slab, infinite in the transverse directions, was assumed to 
be 30 cm thick. Snyder and Neufeld determined the distribution of the 
absorbed dose tlrrough the slab and found that the maximum dose occurred 
at nearly the surface or within a few centimeters of the surface. In these 
calculations only neutron captures and elastic scatterings were considered, 
which limited the contribution by secondary gamma rays to capture gamma 
rays. The resulting maximum absorbed doses and biological doses as a 
function of the incident-neutron energy are shown in Table 3.7. These values 
have been used widely in reactor-shield design to convert neutron fluences to 
doses and have become virtual standards since these dose equivalents have 
been stipulated for use by the Federal Register.^^ 

In similar calculations, performed later by Auxier, Snyder, and Jones,^ ^ 
the infinite slab was replaced by a finite cylindrical phantom that more 
nearly represented a human body. The phantom was 60 cm high and 30 cm 
in diameter. It was divided into annular shells cut into 60° angular sectors 
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and five layers 15 cm high. This division yielded 150 volume elements. The 
maximum doses (averaged for a volume element) occurred in the outermost 
volume element at the midplane on the side facing the beam. These 
maximum doses are given in Appendix C, Table C. l . 

Table 3.7—MAXIMUM ABSORBED DOSE AND MAXIMUM DOSE 
EQUIVALENT FOR MONOENERGETIC NEUTRONS 

INCIDENT ON A SLAB TISSUE PHANTOMt 

Maximum absorbed Maximum dose 
Neutron energy, dose,f equivalent,§ Effective 

MeV mrad neutron cm mrem neutron cm QF 

Thermal 
0.0001 
0.005 
0.02 
0.1 

0.5 
1.0 
2.5 
5.0 
7.5 

10 

3.2 ( -7)§ 
6.9 ( -7) 
5.7 ( -7) 
5.7 (-7) 
1.10(-6) 

2.4 ( -6) 
3.8 ( -6) 
4.3 ( -6) 
5.8 ( -6) 
7.1 ( -6) 
7.0 ( -6) 

1.04(-6) 
1.39(-6) 
1.22(-6) 
2.35(-6) 
8.3 ( -6) 

2.30(-5) 
3.80(-5) 
3.41 ( -5) 
3.80(-5) 
4.16(-5) 
4.16(-5) 

3.25 
2.01 
2.14 
4.12 
7.55 

9.61 
10.0 

7.93 
6.55 
5.85 
5.94 

tFrom Snyder and Neufeld.^' 
t Multiply by 3600 to convert to (mrad/hr)/(neutron cm sec ) or to 

(mrem/hr)/(neutron/cm sec ). 
§Read: 3.2 X 10"'', etc. 

The effective quality factors shown in Tables 3.7 and C.l are the ratios 
of the maximum dose equivalent to the maximum absorbed dose for a given 
incident-neutron energy and phantom configuration. The magnitude of the 
effective quality factor is very close to but usually slightly less than that 
recommended by the ICRP (see Fig. 3.15). The differences in the values 
would be expected since the values recommended by the ICRP consider only 
the initial collision of the neutron whereas the values of the effective quality 
factors represent an average of all collisions experienced by the neutron 
within the phantom. 



INTERACTIONS OF RADIATION WITH MATTER 111 

(b) Gamma-Ray Doses in Phantoms. Claiborne and Trubey^ ^ recently 
calculated the dose delivered to a phantom by monoenergetic gamma rays. 
Using the discrete-ordinates method, with some checks by the Monte Carlo 
method (both of these transport methods are described in the next chapter), 
they calculated the dose distributed in a 30-cm-thick infinite-slab phantom 
having the standard-man composition shown in Appendix B, Table B.2. Their 
maximum dose rates, which occurred at nearly the surface or within the first 
2 cm of the surface, are compared in Fig. 3.16 with the experimental results 
of Jones .^ ' 
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Fig. 3.16—Maximum gamma-ray dose rate in slab phantom of standard-man composi
tion. Comparison with kerma calculations and with phantom measurements. (From 
Claiborne and Trubey. ) 
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3.3.6 Multicollision Dose 

The term multicollision dose, which until recently has been used solely 
for neutron exposure, is not recognized by the ICRU. The multicollision-
dose concept was developed by health physicists in an effort to relate the 
neutron flux or fluence incident upon a configuration of tissue representing 
the human body to the absorbed dose or to the dose equivalent. The 
multicollision dose could, in turn, be related to a maximum permissible dose 
(MPD) established by shield-design criteria. The term has tacitly been 
defined by common usage in shield design as the sum of the maximum dose 
equivalents (or maximum absorbed doses) delivered by each neutron-energy 
group to a slab of tissue as defined by Snyder and Neufeld^ ^ This includes 
the dose due to secondary gamma rays produced by the neutrons in the slab. 
This dose is calculated by 

Multicollision dose = L V'p D^^^ (£^) (3.3-16) 

where i//̂  is the group fluence and D^^^ (£„) is the maximum dose 
equivalent (or maximum absorbed dose) in the slab for an incident neutron 
of the energy corresponding to the _ t̂h neutron group. 

Gamma-ray multicollision doses are similarly calculated with Eq. 3.3-16, 
with, of course, i//„ and Dn^ax(^p) being the appropriate values for gamma 
rays. 

The total dose for a mixed-radiation field incident on a tissue slab is 
determined by adding the neutron and gamma-ray multicollision doses 
obtained separately for the slab. 

Although the concept of multicollision doses, or dose rate, is not 
recognized by the ICRU, it seems clear that, to fully implement the trend to 
preciseness in the fields of radiobiology and radiation protection, the dose 
calculated in shield design should be given recognition by some official body. 
Perhaps the term multicollision dose can be retained for the neutron-induced 
contribution, and the term total multicollision dose can be used when the 
incident gamma-ray contribution is also included. Or perhaps an entirely new 
term could be introduced; several have been suggested but none have been 
accepted as yet. 
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E X E R C I S E S 

3.1 Assume that air has the following composition by volume: nitrogen, 78.5%; oxygen, 
20.99%; and argon, 0.96%. Calculate, at standard temperature and pressure (273°K, 
76 cm Hg): (a) The partial density in air of each constituent, (b) The weight percent 
of each constituent, (c) The atomic density in air of each constituent, (d) The 
electron density of air. (e) The average atomic number of air. (Densities at STP are as 
follows: nitrogen, 0.00125 g/cm^; oxygen, 0.00143 g/cm^; argon, 0.00178 g/cm^; 
and air, 0.00129 g/cm'. Atomic numbers and weights, respectively, are nitrogen, 7 
and 14.0; oxygen, 8 and 16.0; and argon, 18 and 39.9.) 

3.2 It is often convenient to treat mixtures such as air and compounds such as water as 
homogeneous media made up of one pseudoelement. For water, compute the 
following properties of the pseudoelement: (a) Atomic density, (b) Electron density. 
(c) Atomic number. (Assume the density of water to be 1.0 g/cm^.) 
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3.3 At 0.10 and 3.0 MeV, Hubbell'' lists the photon microscopic cross sections shown in 
the table for Exercise 3.3. 

TABLE FOR EXERCISE 3.3, 
PHOTON CROSS SECTIONS 

E = 0.1 MeV 
Nitrogen 
Oxygen 
Argon 
Hydrogen 

E = 3.0 MeV 
Nitrogen 
Oxygen 
Argon 
Hydrogen 

"s-

With 
coherent 

3.54 
4.06 
9.85 
0.493 

b/atom 

Without 
coherent 

3.45 
3.94 
8.87 
0.493 

0.806 
0.921 
2.07 
0.1151 

"pe. 
b/atom 

0.041 
0.071 
3.6 

Opp, 
b/atom 

0.025 
0.032 
0.17 
0.00052 

(a) Explain the blanks in the table. 
(b) For nitrogen at STP, compute the total mass attenuation coefficient (cm^ /g) and 

the linear attenuation coefficient ( c m ' ) without coherent scattering at 0.1 MeV. 
(c) Using the results of Problem 3.1, compute the total mass and linear attenuation 

coefficients for air at 3.0 MeV. 
(d) What is the mean free path in air for 3.0 MeV photons? Express your answer in 

meters. 
(e) Compute the two scattering, the photoelectric, and the pair-production micro

scopic cross sections at 0.1 and 3.0 MeV for the water pseudoelement. Express the 
results in terms of barns per molecule. 

3.4 A thin (0.04 g/cm^) aluminum disk 2 cm in radius is subjected on one side to a 
monodirectional photon flux density of 10* ° photons cm"* sec ' ' , normal to the disk. 
The photon energy is 0.10 MeV. Hubbell* lists the following microscopic cross 
sections for aluminum whose density b 2.7 g/cm^ : 

°coh = 6.79 b/atom 

'^incoh = 6-41 b/atom 

Opg = 0.78 b/atom 

Compute: (a) The total reaction rate (photons per second) in the disk, (b) The rate at 
which photons are absorbed on their first collision in the disk, (c) The first-collision 
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scattering rate in the disk, (d) The exit flux density of 0.1-MeV photons. 
(e) Approximately what fraction of the disk's atoms are reacting with the photon 
beam per unit time? 

3.5 For scattering angle 6 (0 < ^ < 'r/4), the differential scattering cross section for 
Compton scattering of 1.25-MeV photons is closely approximated by 

a(0) = (29.5 - 78.3 cos d + 56.6 cos^ 6) X 10"^* cm^ electron'' steradian"' 

For the disk of Problem 3.4, compute the flux density of singly scattered photons at 
a point P located 2 cm from the center and on the opposite side of the disk from a 
normally incident 1.25-MeV photon flux density of l O ' " photons cm"^ sec"'. 

3.6 The differential speed distribution of thermal neutrons is given by 

n{v) dv = Av^ e dv neutrons/cm^ whose speed is in dv about v 

where A and k are constants, T is the neutron temperature, and m is the neutron 
mass. Show that, for a material whose cross section varies as 1/v [a(y) - Ch\, the 
average cross section for the reaction rate of neutrons with this speed distribution is 
given by 

O = C I . I (C IS a constant) 

and thus the energy for which a{v) = a is 4kT/n. 

3.7 The accompanying table gives the densities and mass energy transfer coefficients Mfe/P 
for four materials. Compute the kerma rate (ergs g ' sec"') in a small volume of each 
material (a, b , c, d) located in a vacuum 100 cm from a 1-Ci isotropic ^''Co point 
source. 

TABLE FOR EXERCISE 3.7 

HklP' 
cm'/g P, g/cm 

(a) Air 0.0268 0.00129 
(b) Water 0.0300 1.00 
(c) Iron 0.0253 7.90 
(d)Lead 0.0350 11.35 

(e) Compute the absorbed dose rate in tissue, where flf^ jp = 0.029 cm^ /g. Assume that 
charged-particle equilibrium exists and bremsstrahlung is negligible. Give the answer 
in radj per hour. 
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3.8 In Sec. 3.2.1, the energy—angle relation, expressed in units of Compton wavelength, 
was noted to be 

X' - X = 1 - cos 0 

and the differential angle scattering cross section was given as 

, , , da 3 / X \ V X ' X . 2 ^ . , , , , . -1 J- -1 

Show that, when reduced to its one independent variable, X , the differential angle 
scattering distribution of photons of initial wavelength X is given by 

(a) a{d) = ~ - \XA \Y + J> + ^iX -\') + [X - \')Ar.V. electron"' steradian"' 

and thus that 

x\^ + ~+2(k-\') + {\- \'A T.U. electron"' unit wavelength"' 

where a(X ) d\ la gives the probability that a photon of energy X which undergoes a 
Compton scatter has a scattered energy in wavelength interval d\ about X . 





Radiation Transport 

P. N. STEVENS, D. K. TRUBEY, C. W. GARRETT, and W. E. SELPH T ? 

Radiation transport is to neutron or photon interactions what dynamics of 
rigid bodies is to particle kinematics. In each case the former represents the 
macroscopic manifestation of the latter. The principal task in shield analysis 
is to solve the transport equation, in the following sections we will discuss 
some simple concepts and then develop the Boltzmann transport equation, 
which is not so simple. Subsequent sections are devoted to descriptions of 
several techniques for solving this equation by direct analysis and by 
alternate approaches. The Monte Carlo method of solution has been so 
successful in reactor shielding that we have devoted Chap. 5 exclusively to it. 

In many instances solutions are tabulated. Thus a shield designer must, at 
most, choose one method from several methods of solving the transport 
problem or, frequently, apply a predecessor's result. The selection of one of 
these techniques for application to a particular problem depends on the 
nature of the problem, the accuracy required, and, mundanely, the time and 
funds available. Of course, the most economical technique for handling the 
problem and obtaining the necessary accuracy is the optimum choice. 
However, there is no simple way in which to make this choice. We have 
attempted to describe the theory involved in the various methods in a 
manner that will allow the shield designer to utilize his best judgment in 
making a good selection. Subsequent chapters discuss the application of 
these methods in various practical situations. 

The radiation field at a point in space removed from the source can be 
divided into two components. The first is the uncollided, or, as it is 
sometimes called, the unscattered radiation (particles that arrive at the point 
without having undergone any interactions with the transporting medium). 
The second component is composed of the collided, or scattered, particles 
(particles that have undergone one or more interactions that have caused a 
change in direction or energy or both). Primary radiation particles and those 
generated in secondary reactions both may be so classified, although 

119 
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secondary particles are sometimes treated as a portion of the collided 
component of the primary beam. 

Solution of the generalized Boltzmann equation can result in the 
determination of both components simultaneously; however, the calculation 
is often divided into two parts, which are performed separately. The first is a 
computation of the uncollided component, and the second, a calculation of 
the scattered component. Analysis of the uncollided component is rather 
straightforward even though complexities of energy spectra and geometry 
sometimes require use of numerical techniques. Analysis of the scattered 
component, on the other hand, may become quite complicated, and it is 
toward this task that most of the efforts in shield analysis are devoted. 
Following scatter, a particle or photon will have altered interaction 
probabilities owing to a shift in energy, and subsequent scatters will further 
alter these probabilities. The distribution of absorptions within the shield is 
also complicated by scattering since absorptions can occur following 
scattering. 

As the radiation penetrates deeper into the shield, a higher percentage of 
the total flux density will be scattered radiation. The ratio of scattered to 
uncollided radiation may increase to some maximum value, which is a 
complex function of the incident spectrum and material cross sections, or (as 
is usually the case) the ratio may continue to increase indefinitely. Thus the 
thicker the shield, the more important the scattered radiation becomes. 

As will be seen in subsequent sections, most practical situations involve 
complicated geometries and source characteristics, and calculation of the 
scattered component requires the use of simplifying assurriptions. 

There has been an active effort to develop and refine methods for 
predicting scattered radiation. It is important to remain in close touch with 
the technical literature because new developments appear frequently. 

4.1 FUNDAMENTAL CONSIDERATIONS 

The flux density at a detector point is influenced by two factors: the 
geometric relation between the source and the detector (including the source 
angular distribution) and the character of the material between the source 
and the detector. These two factors combine in a multiplicative fashion in 
simple geometries and are illustrated in the following example. 

Consider the uncollided flux density at the detector point in Fig. 4 .1 . 
Even if the two slabs of materials are identical and the source strengths 
(particles cm"^ sec"' incident on the surface of the slab) are equal, the 
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Source 

Monodirectional source Isotropic source 

Fig. 4.1—Geometric differences due to sources. 

Fig. 4.2—Slab attenuation, monodirectional flux density. 

radiation intensity will be different at the two detectors owing to the 
different source angular distributions, i.e., different geometries. On the other 
hand, if the material in one slab were altered, the detector response behind 
that slab would change with no change in source—detector geometry. This 
illustrates the attenuation (sometimes called barrier) factor. 

In the absence of external forces, particles travel in straight lines. From 
this elementary statement it follows that the flux density in the beam of a 
plane monodirectional source does not vary with distance from the source 
unless, of course, it is attenuated by some material. This fact is useful in the 
analysis of individual components of a radiation field, and we apply it here 
to develop another elementary result. 

Consider the slab geometry of Fig. 4.2, in which a monodirectional 
source of $ Q particles cm"^ sec' ' is normally incident on a slab. Every 
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interaction within the slab removes a particle from the uncollided beam. We 
shall compute the flux density, ^{x), of uncollided particles that emerge 
from the slab. Incident on the differential slab volume dl^ of cross-sectional 
area dA and thickness dx' {dV = dA dx') are 4>(x') particles cm"^ sec"' , and 
emerging from dV are ^[x' + dx') particles cm"^ sec"'. As shown in Chap. 3, 
the interaction rate per unit volume occurring in dV is given by 2 ( ^{x'), 
where 2^ is the total linear attenuation coefficient (or total macroscopic 
cross section). Thus particle conservation in volume dl^ demands that 

^{x + dx') dA - 4>(x') dA=-i:t ^{x) dV (4.1-1) 

where the minus sign on the right side is introduced because collisions 
remove particles from the uncollided beam. After both sides have been 
divided by dA, Eq. 4.1-1 may be written 

d^{x') = - 2 t *(x ' ) dx' (4.1-2) 

or 

^ c/«I.(x') = - 2 , ck ' (4.1-3) 

This familiar differential equation has the solution 

*(x ' )=ce-^ '*^ ' (4.1-4) 

where c is a constant. By applying the condition that <I>(0) = <I>o, we obtain 

$(x ' ) = ^oe'^tx' {'^.l-S) 

Thus the exit flux density of the uncollided component is given by 

^{x) = ^Qe-'^tx (4.1-6) 

This exponential attenuation law is basic to the calculation of radiation 
transport through matter. 

Consider a point isotropic source at the center of a spherical shell of 
material, as shown in Fig. 4.3. With no shell material present, the flux 
density of uncollided particles at the detector would be given by 
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4>(R) =SI4ITR^ , where S is the source strength. However, the flux density 
passing through the shell is reduced by a factor of e'^f^. Thus 

S 
^W = 7~^ ^ - ^ ' " (4-1-7) 47rR 

the product of a geometric factor, l/4jrR^, and an attenuation factor, e'^t''. 

Fig. 4.3—Spherical shell attenuation. 

Successively complex radiation-transport calculations occur if (1) the 
radiation is allowed to scatter with no change in energy, (2) scattering with 
energy degradation is allowed, and (3) secondary radiations are taken into 
account. An accurate analysis of neutrons and gamma rays from a reactor 
source requires that energy degradation and secondaries be considered. 

Consider a material in which only scattering and absorption occur. The 
total macroscopic cross section, S j , consists of two components: 2^, the 
scattering cross section, and S,,, the absorption cross section. For a parallel 
monoenergetic beam incident to a slab, one component of the penetrating 
radiation will be that which has not interacted with the shield, given by 
<^Qe-^tx. The other penetrating component will be the radiation that has 
scattered one or more times within the shield. This scattered component will 
exit the shield in all directions and over a continuous energy distribution 
even though the incident radiation is of only one energy and one direction. 

4.2 THE BOLTZMANN TRANSPORT EQUATION 

The complex form of radiation transport in which scattering and energy 
degradation occur was originally described by the differential equation due 
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to Boltzmann. In a book on transport theory, Kuscer' notes that Boltzmann 
formulated this equation in 1872 to calculate the coefficient of self-diffusion 
for a gas in which the molecules were assumed to scatter as elastic spheres. 
The gas problem is equivalent to the radiation problem of interest here. 
Kuscer states that a solution of the equation was not achieved until early this 
century and contrasts the ease with which transport problems are formulated 
with the difficulties encountered in obtaining solutions. Basically this 
equation is a "bookkeeping" statement that accounts for additions to and 
subtractions from the radiation in a given increment of space, energy, and 
direction. Particles may be interpreted as either neutrons or gamma rays in 
the derivation. 

The differential flux density is a function of seven independent variables: 
three that define the spatial position of the detector point, two that define 
direction of particle motion, one that measures particle energy, and one that 
measures time. In vector notation these can be reduced to three quantities: a 
vector defining spatial position, a vector defining momentum (specifying 
both direction and energy), and one scalar time variable. A radiation field is 
completely defined (i.e., the radiation-transport problem of interest is 
solved) when the particle or energy-flux density at every spatial point within 
the region of interest is known. 

For shield analysis a steady state is ordinarily assumed, and the time 
variable is not required. It is also customary to use a unit vector for direction 
and an independent scalar variable for energy (or its equivalents, speed or 
wavelength). Thus we define 

<J>(r,J2,£) d^ dE particles unit area"' sec"' 

as the flux density (or track length per unit volume per second) of particles 
at spatial point r whose directions of travel lie in the solid angle dO, about J2 
and whose energies lie in the increment dE about E. We derive the 
Boltzmann equation using particle conservation in a differential volume 
dvd^ dE of six scalar dimensions, in which dV is a differential spatial 
volume element, as illustrated in Fig. 4.4. The six-dimensional system, of 
which dvdn dE is a differential element, is sometimes called a six-dimen
sional phase space, and the differential element, a differential phase-space 
cell. Care must be taken when using spherical coordinates for the spatial 
coordinate system; the polar [dr) and azimuthal (i//^) angles defining the 
direction of r must not be confused with the polar (0) and azimuthal (i//) 
angles defining unit vector SI, which measures particle direction. 
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Fig. 4.4—Volume element in phase space. 

Particles of the appropriate energy {dE about E) and direction (dS2 about 
n ) can be introduced into dV dn dE by the following processes: 

1. They can be born in c/K at the appropriate energy and direction by a 
source located there. 

2. They can flow into dV with the proper energy and direction from 
adjacent spatial regions. 

3. Particles bearing other directions or energies or both can undergo an 
interaction within dV such that the scattered particle is in dV d^ dE (the 
inscatter source). 

In a similar fashion, particles within dV d^ dE can be removed from that 
differential element by the following processes: 

1. They can undergo an interaction that causes them to be absorbed or 
changed in direction or energy or both. 

2. They can flow out of dl^ into adjacent spatial regions. 

In a steady state the losses from dVdQ.dE must equal the gains. Further, 

the leakage gains and losses into and out oi dV can be combined into one 

term: net leakage. Thus 

Net leakage + interactions = inscattering + source 

where, by convention, net leakage is defined as being positive in the outward 
direction (a loss). 

The net leakage term, NL, is equal to V*n<J»(r,n,E) dVdQ dE particles/ 
sec, a fact that we will demonstrate. Consider a small spatial volume element 

http://dVdQ.dE
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AV enclosed by surface AS (Fig. 4.5); dS is a surface differential area on AV 
with outward normal n, and dA is the projection of dS normal to 12. The 
particle flow through dS and dA in direction SI is given by 
4 > ( r , n , £ ) dSl dE dA p a r t i c l e s / s e c , w h i c h may be w r i t t e n 

Fig. 4.5—Differential surface element. 

4>(r,J2,£) dn dE [dAldS) dS. However, since dAldS = (n'Sl), the net leakage, 
d{NL), through dS is 

d(NL) = <i>(r,J2,£) dO, dE (n-Jl) dS (4.2-1) 

[Proof that Eq. 4.2-1 gives net rather than outward leakage through dS is 
given as one of the problems in the exercises.] The vector property 
(u"v) = v u enables us to write 

d{NL) = [fi*(r,J2,£) dQ dE] • n dS (4.2-2) 

The total net leakage from Al^is then given by 

ANL = 4 s d{NL) = /AS [J2<J>(r,n,£) dn dE] -n dS (4.2-3) 

But AV, AS, and 124>(r,f2,£) dCl dE meet the conditions for application of 
the divergence theorem (stated in Appendix D), and the net leakage from 
A K is thus 

ANL = / ^ ^ V-n4)(r ,f t ,£) dndEdV 

Now consider the limit as AI^ approaches dV. The function V"J24>(r,i2,£) 
dm dE becomes a constant with respect to r, and 

lim ANL=[VSl^{r,Sl,E)dSldE] lim S.^ dV 
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The limit of the integral is simply dV. Thus the net leakage, NL, from dV is 
given by 

NL = V'Sl^{r,Sl,E) dVdSl dE particles/sec (4.2-4) 

Every interaction within dV (except for coherent scattering without a 
change in direction) removes particles initially in dV dO, dE from that 
differential element. Thus the interaction loss term, IL, is given by 

IL = 2f(r,£) $ ( r , n , £ ) dVdO. dE particles/sec (4.2-5) 

The macroscopic loss coefficient is taken to be the total attenuation 
coefficient, Zf. 

The source term is handled formally, if S(r ,n ,£) is defined to be the 
differential source distribution (particles per second per unit volume, solid 
angle, and energy), the total source in dVdQ dE is 

S = S{r,Sl,E) dVda dE particles/sec (4.2-6) 

The remaining term expresses the inscattering. Let p{E'-*^E, Sl'^Sl) 
dOi dE be the probability that a particle of energy £ ' and direction Si' 
scatters into dE about £ and (iJ2 about SI. The rate at which scattering 
events in dV dO.'dE' occur is given by 'ZS{T^') ^(r,Sl'E') dVdO! dE' 
particles/sec, in which 'Lg{T,E') is the macroscopic scattering coefficient. 
Inscattering from dV dQ' dE' into dV dO, dE is then 

^ ^ ( r ^ ' ) p{E'-*E,Sl'^Sl) dn dE ^{r,Sl',E')dV dQ' dE' 

The total inscattering rate, IS, is given by 

IS = IE' /n' ^s{r^') p{E'^E,Sl'^n) dSl dE <J)(r,n',£') 

X aFdn'ciE'particles/sec (4.2-7) 

Conservation requires that losses equal gains: NL + IL = IS +S or 

Vn<i>(r,n,£) + Zt{r,E) 4>(r,n,£) 

= 4 ' /n' 2;s(r,£') p{E'^E,Sl'^Sl)^{T,Sl',E') dn' dE' + S{T,SI,E) (4.2-8) 
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in which the common factor dV dn dE has been cancelled from each term. 
Equation 4.2-8 is the integro-differential form of the Boltzmann equation 
and is that most often used as a starting point in the solution of the radiation 
transport problem, although other forms (i.e., purely integral) are sometimes 
encountered. Equation 4.2-8 is applicable to both neutron and photon 
transport. Simple transformations (some are given in the exercises) allow the 
Boltzmann equation to be expressed in terms of wavelength X (X = hvIE) 
rather than energy and differential energy-flux densities /(r,I2,£) and 
/(r,J2,X) rather than number-flux densities. In photon transport, because of 
the relatively simple expressions that result, the form involving /(r,n,X) = 
X4>(r,n,X) (X in units of Compton wavelength) is convenient. 

The appearance of the Boltzmann equation varies considerably with the 
coordinates involved, the type of radiation being considered, and whether 
energy degradation is allowed. For this discussion the vector notation is 
used, and various symbols representing interaction parameters are defined. 
Appendix D lists the transformation between the three common coordinate 
systems and defines various vector operators, functions, and theorems 
helpful in deriving and manipulating the Boltzmann equation. 

A direct, analytic solution of the Boltzmann equation can be found only 
in a few very simple and highly idealized cases. For the most part, 
approximate solutions are all that are possible in practical situations. 
Approximate solutions can be obtained in two ways: simplifying assump
tions can be made which alter the Boltzmann equation so that an analytic 
solution is obtainable or numerical methods can be used. An example of the 
first type is the elementary one-speed diffusion equation of reactor physics 
which, although usually derived differently, can be shown to be a form of 
Eq. 4.2-8 with the proper assumptions invoked. 

Successful numerical solutions to the Boltzmann equation have been 
obtained with difference methods and iterative procedures. These methods 
evolved in parallel with, and were influenced by, the development of 
high-speed computing machines, which are a necessary tool in their 
application. 

The approach generally used involves the derivation of a difference 
approximation to the Boltzmann equation for each point of a mesh filling 
the shield volume. Steps in such a calculation include: 

1. Choosing the division points between energy groups. 

2. Choosing a method of representing the differential scattering cross 
section and the angular dependence of the flux density. 
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3. Integrating the Boltzmann equation over each energy group (cross 

sections must be suitably averaged over each group). 

4. Approximating the equations relating the spatial derivatives of the 

differential (angle and energy) flux density as functions of r by a finite 

difference system at each mesh point. 

5. Solving the resulting system of equations by an iterative method. 

The various difference methods used in solving the Boltzmann equation 
differ primarily in their method of representing the angular dependence, 
although they may also differ in the iteration scheme indicated in step 5. 

Before proceeding to a review of various solution methods, we should 
point out that Eq. 4.2-8 includes some undefined functions, in particular 
those contained in the functions S{r,Sl,E) a n d p ( £ ' ^ £ , J 2 ^ Jl). To solve 
the Boltzmann equation, we must replace these expressions with functions 
that describe the processes involved in the problem being considered. 

4.3 SPHERICAL HARMONICS METHOD 

Although the method of spherical harmonics is not currently in 

widespread use, it was one of the first developed and embodies concepts 

used in other techniques in this chapter. The method as applied to the 

solution of the Boltzmann transport equation consists in representing the 

various angle-dependent terms as expansions in the spherical harmonics 

polynomials. These polynomials, commonly called associated spherical 

harmonics,^ vary in definition from one reference to another. We use the 

polynomials described by Weinberg and Wigner.^ 

Applying the spherical harmonics technique to the general transport 

problem is inherently complex. However, a simplified and lucid illustration 

of the method can be shown for a steady-state (no time dependence), 

one-speed (no energy dependence), one-dimensional (slab geometry with 

azimuthal symmetry), homogeneous (constant system parameters) neutron 

transport problem. Consistent with these simplifications, the general 

Boltzmann transport equation can be written $ 

M ^ ^ ^ + 2, *(x,ju) = S(x,M) + / . r 2,(M,M') *(^,/i') dfi' (4.3-1) 

tDefinitions and theorems of associated spherical harmonics and the related Legendre functions 
are given in Appendix D, 

:|:The derivation of Eq. 4.3-1 is given as a problem in the exercises. 
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where $(x,pi) = angular flux density (neutron-flux density per unit n) 

X - spatial variable in slab geometry, the direction of which is 
specified by the unit vector i 

fi = direction cosine with respect to the x-axis 
= Sl'i = cos 6 

Sf = total macroscopic cross section 
2s(/̂ >A' ) dn = A scattering cross section that describes the probability that a 

neutron with an incident direction cosine ju' will be scattered 
so that its emergent direction has a direction cosine in dfi 

about ju 

Mt^,ui') = /o" 2,(n,n') dxij 
2^(12,J2') = the macroscopic differential scattering cross section 

S(x,/x) = source particles per unit n, volume, and time 

The angle-dependent terms of Eq. 4.3-1 can be represented as a series of 
spherical harmonics of the first kind, the Legendre polynomials Pj{tx). 
Expanding the angular flux density and source term in terms of these 
polynomials yields 

*(x,M) = L 4.y(x) Pjin) (4.3-2) 
;=0 

S{x,n)= t Sjix)Pj{n) (4.3-3) 
;=0 

where $y(x) = position-dependent Legendre coefficients corresponding to 
the flux density: 

*y(^) = ̂ ^ / . r <l»(x,M) Py(/i) cf/x (/• = 0,1,2,...) (4.3-4) 

and 5;(x) = position-dependent Legendre coefficients corresponding to the 
source term: 

5y(x) = 5 L | 1 = S_l^ S(x,M) Pjifi) dn {j = 0,1,2,...) (4.3-5) 

Since for most practical situations the differential scattering cross section 

depends only on the change in direction given by Ho ~ ^'Sl', the series 

expansion for 2^(42,Jl') is made in terms of the Legendre polynomials 

^.-(Mo): 
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2,(J2,J2')= £ T/,-P,-(jUo) (4.3-6) 
1=0 

where the values of T?,- are the Legendre coefficients («= 0,1,2,...,<») 
corresponding to the differential scattering cross section 

Vi = ^ ^ S-? ̂ s{a,Sl') Pi{Ho) dno (4.3-7) 

The spherical harmonics form of the Boltzmann equation is obtained by 
introducing the preceding series representations for $(x,ju), 5(x,jLt), and 
2^(J2,n') into Eq. 4.3-1, multiplying each term by the Legendre polynomial 
P„(ju), and integrating over all M (—1 to +1). When Eqs. 4.3-2, 4.3-3, and 
4.3-6 are substituted into Eq. 4.3-1 and the orthogonality property of 
Legendre polynomials is used along with the addition theorem and a 
recursion relation,t the following set of coupled differential equations is 
obtained: 

" " • " I c f ^ , ^ " d ^ , , 47r ^ , , 

- 2 t ^ „ ( x ) + S„(x) (forn = 0,l,2,...,°o) (4.3-8) 

This set of equations, which no longer involves the directional variables and 
therefore is more amenable to solution than Eq. 4.3-1, is called the second 
(or spherical-harmonics component) form of the Boltzmann equation by 
Weinberg and Wigner^ and others. 

Practical methods of solution require that the series representations of 
^{x,n) be limited to a finite number of terms, say (n -•• 1) terms; n is 
commonly called the truncation number, and the corresponding calculation 
is called the P„ approximation. The Pj approximation is equivalent to 
diffusion theory (see Sec. 4.6) and involves only a linear representation of 
the flux density, which restricts its application to situations wherein the 
neutron-flux density is nearly isotropic, a severe limitation for deep-penetra
tion problems. 

The accuracy of the spherical-harmonics calculation is also influenced by 
the number of terms used to represent the differential scattering cross 
section. Only a few terms are necessary for nearly isotropic scattering, but a 

tThese properties are given in Appendix D. The use of the addition theorem makes possible the 
evaluation of the inscattering-integral term containing £ (̂(1,11 )̂, which is necessarily expanded in 
terms of Pj{n„) rather than Pdii). 



132 REACTOR SHIELDING FOR NUCLEAR ENGINEERS 

large number of terms are required for adequate treatment of anisotropic 
scattering; in the past this has limited the use of the spherical harmonics 
treatment. However, recent advances in cross-section technology and 
increased computer capacity have for all practical considerations removed 
this limitation. 

Shure'' found that a multigroup P3 approach in one dimension for 
calculating spatial and spectral neutron distributions in metal hydrogenous 
reactor shields yielded satisfactory estimates of neutron attenuation for 
reasonable amounts of computer time. Further, Lanning^ recognized that 
for some design problems the low-order approximations were sufficiently 
accurate. He successfully calculated the spatial distribution of the gamma-ray 
energy-flux density in one-dimensional slab geometry. 

4.4 DISCRETE-ORDINATES S„ METHODf 

The discrete-ordinates S„ method is a means of effecting a numerical 
solution of the Boltzmann transport equation. The most recent versions of 
the method permit anisotropic scattering to be included and thus make it 
suitable for both neutron and gamma-ray deep-penetration calculations in a 
wide variety of shielding problems. Since the method is fundamentally 
formulated as a finite-difference equation, a minimum number of limiting 
assumptions are required, and the solutions apparently approach the exact 
solution of the Boltzmann equation as the space, angle, and energy mesh 
approach differential size. The method can be applied without significant 
restrictions to the problem of calculating criticality, and it can be used for 
both homogeneous and laminated shields with a variety of source configura
tions, including surface- and volume-distributed sources. 

We should note that a finite-difference equation is defined as an algebraic 
statement relating values of the variable (in this instance, the discrete 
ordinate flux density) from point to point in phase space. To obtain the 
difference equations, we section phase space into a finite number of discrete 
points and relate the flux density at each point to the flux densities at 
adjacent points. As will be shown, this is accomplished by integrating the 
conservative form of the Boltzmann equation over a finite-difference cell in 
phase space. This procedure replaces the Boltzmann integro-differential 
equation with a system of simultaneous difference equations. The latter may 
then be solved numerically by an iterative technique. 

tThis section is primarily the work of F. R. Mynatt. 
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Early applications of discrete ordinates, such as the Wick^ —Chan-
drasekhar^ method, were limited to simple problems, such as the transport 
of monoenergetic neutrons isotropically scattered in one-dimensional slabs. 
The fundamental assumption in the Wick—Chandrasekhar method was that 
the integral in the Boltzmann equation could be approximated by a Gaussian 
quadrature formula; consequently functions involved in the integral had to 
be evaluated only at the angles corresponding to the Gaussian zeros. 
Although this original discrete-ordinates method could be extended to 
anisotropic scattering, it was limited to slab geometry. 

A discrete-ordinates technique that could be extended to spherical and 
cylindrical geometries was introduced by Carlson;^ this method is commonly 
called the discrete-ordinates 5^ method. 

Other approaches that can be classified as discrete-ordinates methods are 
the direct numerical integration techniques employed by the NIOBE^ and 
other codes, but these techniques have not been so widely used for shielding 
problems. 

Early versions of the S„ method assumed that the angular flux density 
varies with angle as connected line segments in an even number of equally 
spaced angular increments. This representation, although reasonably accurate 
for homogeneous one-dimensional systems, was found to be unsuitable for 
the general problem. Recursions involving many terms are required, and an 
extension of the method to two-dimensional geometries is most difficult. 
These shortcomings are largely alleviated by the use of the diamond 
difference technique described by Carlson, Lee, and Worlton,^ which relates 
the angular flux density within each particular angular increment in a general 
way to the end-point values of the increment. With the diamond difference 
method, the Boltzmann equation can be integrated over an angular 
increment, yielding, for the derivative terms, a two-point difference equation 
involving the angular flux density evaluated at the increment end points. 

The linear Boltzmann equation is a flow balance for a differential 
phase-space cell, treating the events causing an increase or a decrease in the 
number of particles contained in the cell. The discrete-ordinates difference 
equations can be formulated in an equivalent manner considering a 
finite-difference cell (it is presented this way in most references). For some 
time it was not clear that the difference equations would, in general, 
approach the analytic form of the Boltzmann equation as the finite-dif
ference phase-space cell approached differential size. Lathrop' '̂  showed that 
they would for the one-dimensional geometries, and this is established 
implicitly in the following paragraphs in which the difference equations for 
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spherical geometry are derived directly from the analytic Boltzmann 
equation. Spherical geometry, although simple, serves to illustrate all the 
characteristics of the discrete-ordinates equations except for discrete ray 
streaming, which occurs only in two- or three-dimensional geometry. 

4.4.1 Transport Equation and Phase-Space Geometry 

The derivation of the discrete-ordinates equations is given for the special 
case of spherical symmetry in spherical (position) coordinates. With only 
slight modifications these results can be made to apply to slab and 
infinite-cylinder geometries. This discussion also embodies the central 
features of two-dimensional derivations while avoiding much of the 
complexity. The differential phase-space cell is defined by three variables: 
the scalar value of the radius, r (Fig. 4.4), the cosine of the angle of the 
particle direction relative to the radius, jtx = (l/r)r*J2, and the energy of the 
particle, £ ; that is. 

Differential phase-space cell = dV d(Ji dE 

= 4irr^drdndE (4.4-1) 

The finite-difference cell is obtained by integrating Eq. 4.4-1 over 
selected finite intervals of radius, angle, and energy; it is given by 

Finite-difference cell = Vj A^D A £ G 

47r 
= y ( r ? + , - r? ) (Md+, - ^KEg^i - E^) (4.4-2) 

The following subscript notation is used throughout this section: 
subscripts /, D, and G denote functions whose values are associated with the 
/ th space interval, Dth angular interval, and Gth energy group, respectively; i 
and i + 1 refer to a function evaluated at the lower and upper limits of the 
/ th space interval, d and d + 1 refer to a function evaluated at the lower and 
upper limits of the Dth angular interval, and g and ^ + 1 refer to a function 
evaluated at the lower and upper limits of the Gth energy group. 

For this problem (one-dimensional spherical geometry), the following 
two analytic forms t of the Boltzmann transport equation can be considered: 

tDerivation of these equations is given as a problem in the exercises. 
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M I ^{r,n,E) + L ^ | . $(r,;u,£) +Zt^{r,n,E) 

= S[r,n,E) + /.r /o°° 2,(n£'^£,Mo) *(r,£',M') c/£' V (4.4-3) 

and 

^ | : [ r 2 * ( r , M , £ ) ] - H ^ | ^ [ ( l - M ^ ) * ( r , M , £ ) ] +2,(r ,£)*(r ,M,£) 

- S{r,yi,E) + C So 2 . ( r ,£ ' -* £,Mo )^{r,E',n')dE' dn' (4.4-4) 

where $(r, | i ,£) = particle track length per unit volume (flux density) 
about r, per unit time, per unit energy about E, and 
per unit direction cosine about n 

2((r ,£) = position- and energy-dependent macroscopic total 
cross section 

S5(r,£'-»-£,jUo) c?£'djLi'= differential scattering cross section describing the 
probability that a particle with an initial energy £ ' 
and direction cosine n undergoes a collision at r, 
resulting in a change of flight direction described 
by the cosine of the scattering angle no> which 
places it in a new direction that lies in dn about n 
with a new energy in dE about £ 

jLto = cosine of the scattering angle = J2" J2' 
n ,J2 ' = final and initial flight direction unit vectors, 

respectively 
S(r,jLiJS) = source particles per unit volume about r, per unit 

time, per unit energy about £, and per unit 
direction cosine about n 

Equation 4.4-4 is called the conservative form of the transport equation, 
and its integration over any phase-space volume results in interface terms, 
which may be identified as leakage terms, that satisfy the divergence 
theorem exactly. As a consequence the conservative equation is the preferred 
formal basis for numerical analyses. 

For convenience we number the terms in Eq. 4.4-4 consecutively so that 
it becomes 

Ti + 7-2 + n = 1\ + Ts (4.4-4a) 
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4.4.2 Derivation of Finite-Difference Equation 

The discrete-ordinates difference equation is obtained by applying the 
following integral operator to the transport equation (Eq. 4.4-4) in a manner 
consistent with the classical technique for obtaining difference equations: 

Integral operator - XeKj/M«AMD JEeAEc'^T^r'^ dr dn dE (4.4-5) 

This operator integrates each term of the transport equation over the 
difference cell. [The integration limits are expressed symbolically by xeX, 
which implies a definite integral with respect to the variable x over the 
interval X. ] Application of the operator to the first term of Eq. 4.4-4 gives 

T, = f f f -^-^ \r^ ^(r,n,E)] 4TTr^ dr dn dE (4.4-6) 
' JreVj JneAnD jEeAEQ r^ dr ^ ^ ' ^ ' 

which when rearranged becomes 

'̂ = '- Lj LA,U ^l['' LAE^ (̂'-'̂ '̂ ) ^̂  ] ^̂  '̂- (4.4-7) 

The integral of the flux density over the energy group G may be identified as 
the group angular flux 

^G{r,n) = iEeAEc^i^'i'^E) dE (4.4-8) 

in which case Eq. 4.4-7 becomes 

T, =47t r ndn( ^ [ r ^ $G(r,M)] c/r (4.4-9) 
"tieAii-Q JreVjOr 

The volume integral in Eq. 4.4-9 can be modified and evaluated in the 
following manner: 

Lvjl^'" *G(r,M)] dr = l^^^d[r^^G{r,n)] 

= '-Hi*G,,-+i(M)-r?<J>G,,-(M) (4.4-10) 

where <i>G,i-i-i (M) = *G(''(-I-I ,M) and 4>G,,-(M) = ^G{U,I^)-
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Substitution of Eq. 4.4-10 into Eq. 4.4-9 yields the following expression for 
the first term: 

Ti = Alt /̂ eAMD MJ-̂ +i *G,i+i (M) dn - 47rXxeAMD M -̂ *G, , - (M) dn (4.4-11) 

It follows from the mean-value theorem that any integral can be approxi
mated by 

Jx, X f[x) dx ^ x f{x) Ax (for Xj < x <X2 , and Ax = X2 — Xj) (4.4-12) 

The parameter. X may be adjusted to give the equality; for well-behaved 
functions, the closer x is to the true mean, the better the approximation. 
Applying the mean-value theorem to Eq. 4.4-11 to evaluate the solid-angle 
intervals results in 

Ti = 47r(/i£) r?+, <J>G,,-I-I ,D AJUD - M D r? ^G,i,D AMD) (4.4-13) 

where <i>G ID — ^G «(MD) and )U£) is a mean-value approximation for the 
direction cosine over the direction increment Anj). Identifying the surface 
areas of the volume increment by 

Ai - 4iTrf 

^.•+i=47rr?+, (4.4-14) 

yields the final form for the first term: 

T, =nD A M D ( ^ , + I ^G, , -+i ,D-^«^G, i ,D) (4.4-15) 

The integral operator (Eq. 4.4-5) is next applied to the second term in 
Eq. 4.4-4, and the result is rearranged: 

"-''" L , L , , ' I; [<i -"') L^, *('•"•=)""]'" * c"-"̂ ' 
If we introduce the group angular flux as before, Eq. 4.4-16 becomes 

T^=4iT ( rdr f ^ [(1 -^u^) *G(nM)] dn (4.4-17) 
JreVj JfieAfij) On 
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The integration over jU is accomplished according to the procedure suggested 
by Eq. 4.4-10 with the following result 

Tj = 47r [IreViil -tJ-^+i) <E>G,d-n (0 '• dr 

-freVi{l-fJ^l)^G,d{r)rdr\ (4.4-18) 

The remaining integration over the radius variable is performed using the 
mean-value approximation (Eq. 4.4-12) 

T, = 47r[(l -n'd+,) ^G,d+i,l h Ari - (1 - n'd) ^G,d,I ^ Arj] (4.4-19) 

Equation 4.4-19 reduces to a two-point difference in the angle index 

T2 = {Bi,d+1 ^G,d+1,/ - Bi,d ^G,d,l) (4.4-20) 

if a curvature coefficient, Bi^d^ is defined by the expression 

Bi^d = ^-nriAri{\-nh) (4.4-21) 

Consistent with the conservation property of the technique, Eq. 4.4-19 
or Eq. 4.4-20 gives an overall neutron balance. This is apparent since a 
summation of Eq. 4.4-19 over M direction increments Aju^ yields 
[(1 - I'h+i) ^I,G,M+\ - (1 - Ml) * / ,G, i 1. which is identically zero since 
nM+\ ~ ~ 1 and ni ~ +1 ( ^ is the total number of angle increments). 
Equation 4.4-21, which defines the curvature coefficients, can be recast in 
the form of a recursion relation that involves the coefficients Bi d+i and 
Bi^d- First, Bi^d is subtracted from Bid+i (where Bid and Bid+i are given 
by Eq. 4.4-21)': 

Bl,d+x - Bl,d = - 47rrj Arj{n^d+i " ^'^d) (4.4-22) 

We assume that Tj in Eq. 4.4-22 is the arithmetic mean; that is, 

Then it follows that 

riArj = ^ Z l l 

(4.4-23) 

(4.4-24) 
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Following similar arguments, the factor (M^+I — MQI) can be expressed as 

(M^+i - M S ) = 2MD AMd (4.4-25) 

Introducing Eqs. 4.4-24 and 4.4-25 into Eq. 4.4-22 yields the following 
recursion relation: 

Bi,d+i - Bi,d = - 47r(r?+ i-rj)JiD AjU^ (4.4-26) 

The final form for the recursion relation is obtained by introducing the cell 
areas Ai+i and^,- (from Eq. 4.4-14) and rearranging: 

Bi,d+1 = Bj.d - M£, Ajujr, {Ai+, - Ai) (4.4-27) 

where B / , M + I = 0- Equation 4.4-27 is the form of the curvature coefficient 
found in the literature. The only approximation made in the preceding 
derivation is in the application of mean values. 

When the integral operator, Eq. 4.4-5, is applied to the fifth term of 
Eq. 4.4-4 (the inscattering integral), the result is 

Ts = ireVi JMeAMD JSeAEc /-I Jo ^^(r.E' ^ £,jUo ) 

X 4>(r,£',M') dE' dix 4irr^ dr dfx dE (4.4-28) 

The differential scattering cross section can be approximated by a truncated 
Legendre polynomial expansion in the cosine of the scattering angle: 

2:,(r,£' -^£,Mo) = | E 2«(r ,E' ^ £ ) P„(MO) (4.4-29) 

where the S " values are Legendre coefficients of the expansion. The 
Legendre polynomial, i'n(A'o)> of the scattering angle cosine, JUQ »is related to 
the initial and final angle direction cosines, /i,ju', by the addition theorem for 
Legendre polynomials, t which for spherically symmetric geometry is simply 

^n(Mo) = P«(M)i'«(iu') (4.4-30) 

tThe addition theorem is quoted in Appendix D. 
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In adapting Eq. 4.4-28 to a multigroup calculation, the integrals over all 
incident energies and all incident angles are replaced by sums of integrals 
over the primed phase-space cell. Symbolically this is denoted by 

i^f{E')dE'= t k'eAEc'AE')dE' 
G'=l ^ 

U Kix') dn' = Z^ /^.,v^ /(M') dn' (4.4-31) 

where L and M signify the number of energy groups and the number of 

angular increments, respectively. 
Combining Eqs. 4.4-29 and 4.4-30 with Eq. 4.4-28, expressing the 

incident energy and angle integrals by Eq. 4.4-31, and evaluating all 
remaining integrals by the mean-value theorem yields (after considerable 
rearrangement of terms) the following forms for the inscattering integral: 

where S"'/^_ is the nth Legendre moment of the multigroup scattering 
cross section (multigroup macroscopic transfer coefficient), defined by 

^"QKG - [471-XeK/ 4eABG •'E'6ABG' S " ( r , £ ' ^ £ ) 

X I A ^{r,E',tx') P„(M') dn' dE' dE r^ dr] 

^ilevj L'eAEc' /-I ' ^ ( ^ ^ ' ' M ' ) ^„(M') cf/x' dE' r^ cir]"' (4.4-33) 

and fj QI is the nth Legendre coefficient of the angular dependence of the 
group flux density, calculated from 

M 

ilG'= o-Si *J.G',D' ^«(MD') AMD' (4.4-34) 

Application of the integral operator (Eq. 4.4-5) to the removal term 
(third term) of Eq. 4.4-4 gives 

T3 = Lvi LeA^o ^EeAEG ^t{r,E) ^{t,ii,E) 4nr^ dr dn dE (4.4-35) 
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The evaluation of Eq. 4.4-35 requires some effort to avoid the 
assumption of angle—energy separability in the weighting of the multigroup 
cross sections. As the first step in evaluating Eq. 4.4-35 in terms of a cross 
section that is independent of angle, the energy integral of Eq. 4.4-35 is 
written as 

Tf =/£eAJSG 2((r,-B) ^{r,(x,E) dE 

= S^(r)<I>G(r, ju)-« (4.4-36) 

where R is the correction factor that is to be determined and ^ ^ ( r ) is the 
flux-density weighted group-G total cross section defined by 

^t keAEr ^t{r,E)f [r,E)dE 
^'ci')^ ° j ; „ i ) ' i (4.4-37) 

in which j " (r,£) is the zeroth Legendre coefficient of the angular dependence 
of the flux density; j°{r,E) is identical to the differential flux density, 
$(r,£). 

Rearrangement of Eq. 4.4-36 provides an explicit expression for R: 

R = SblO ^G{r,fJi) - LAEG ^ti^>E) <J>(r,M,£) dE (4.4-38) 

The correction factor, R, is determined by expressing the angular flux 
densities as truncated Legendre series and then combining the two terms that 
comprise Eq. 4.4-38. The truncated Legendre series representation of the 
flux density is 

V^ 2n + 1 
<I>(r,M,£) = X - ^ — r ( r , £ ) P„{n} (4.4-39) 

When Eq. 4.4-39 is substituted into Eq. 4.4-38, the result is 

„=o 2 
N 

V> 2M + 1 
^ },-^r-nr,E)Pn{\^)dE (4.4-40) 
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which can be written as 

N 
^ 2f 

«=o 

where 

R = S ^ ^ f^G(0 - 2*?(r)] /£(r) P„(M) (4.4-41) 

ihir) = LAEG ri'-'E) dE 

and the energy moments of the cross section are defined by 

,, ^ fEeAEc'^t{r,E)jn{r,E) dE 
^, ^ — - ^ - - - ' - (4.4-42) 

Substitution of Eq. 4.4-41 into Eq. 4.4-36 yields the final form for the 
energy integral: 

N 

0 

N 

- E ^ ^ [ ^ G ( 0 - 2g'(r)] ;g(r) P„(/x) (4.4-43) 
n=o 2 

With this form for the energy integral in Eq. 4.4-35, the remaining 
integrals are evaluated by the mean-value approximation; the result is 

Ta = Vj AM£, [^h^G,I,D 

- S ^ (2^,/ - 2^«,);- ,P„(M )̂] (4.4-44) 
«=o J 

The series in Eq. 4.4-44 is very similar in form to the inscattering integral 
term (T5) and may be included there by replacing ^Q^-^Q in Eq. 4.4-32 with 

^n^ffmod) = s " ' / , ^ -f (2n + 1) ( 2 ^ , - 5 :g , )6G,G' (4-4-45) 

w^ere 8Q Q' = 1 if G' = G and 0 if G' =5̂  G. The modified removal term then 
has the desired form 

T3 = ViAni, ^'G,I^G.I,D (4.4-46) 
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Application of the integral operator to the source term of Eq. 4.4-4 is 
straightforward since, with the exception of multigroup constants, the 
mean-value approximation is used for all variables. The final result for a 
general fixed source is 

T, = Vj AMD SI^CD (4.4-47) 

If multipHcation (fission) is present, the source term is represented by 

S{r,^,E) = Y—X{E) 4°° u'Ef{r,E'] f {r,E'} dE ' (4.4-48) 

which gives 

T, = V, AMD ^ i^ '^,G'JIG' (4-4-49) 

where kgff = effective multiplication constant of the system 
2X p = macroscopic fission cross section at energy G' 

V = number of neutrons per fission by neutrons of energy G 
XG ~ fission spectrum defined by 

XG = k.AEG X(^) ^ ^ 

r /£ ' .A£G' ' '^/(^ ') i /(E') 

^AG' = W-, ^ }I,G' 

The discrete-ordinates difference equation is obtained by substituting the 
derived expressions for each of the five terms into Eq. 4.4-4 and then 
dividing through by AjU£). The result is 

M D ( ^ , + I * G , , + I , D -^,-^G,.-.D) + ^ ( ^ d + i ^G,I,D+i -Bd^G,I,d) 

^ Vl^h,I^G,I,D = Vl^G,l,D ^ ^ i ^«(MD) I , 2«'/i-«^^ 

M 
X I * / ,G ' ,D '^«(MD') AMD' (4.4-50) 

D'=l 
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Although derived for spherical geometry, that is, for Ai = 47rr? and Vj = 
(47r/3)(r?+i — r?), Eq. 4.4-50 is the general discrete-ordinates difference 
equation for one-dimensional geometries. The equations for the other 
geometries can be obtained from Eq. 4.4-50, vdth Af = 1.0 and Vj = Arj for 
a slab and Ai = 2iTri and Vj = 7r(r?+j — rj) for a cylinder. 

4.4.3 Numerical Solution of the Discrete-Ordinates Equation 

Equation 4.4-50 contains discrete flux-density variables having both 
centered and end-point subscripts. This in effect increases the number of 
unknowns such that an insufficient number of determining relations are 
available for their solution. This difficulty can be resolved by relating the 
centered and end-point flux densities in some consistent fashion. The 
diamond difference technique is the most widely used method for this 
purpose and includes two relations for the spatial variable, 

* G , / , D = ^ * G , , + i,D + ( l - ^ ) * G . , - , D ( f o r M > 0 ) (4.4-51) 

and 

^G,I,D = (1 - ^ ) *G,,+ i,D +^*G,.-,D (forM< 0) (4.4-52) 

and a single expression for the angular variable 

^G,I,D = B^G,I,d+i + (1 - -B) ^G,I,d (4-4-53) 

where A and B are constants that can be assigned values of the interval 
(1/2,1). When A = B = 1/2, Eqs. 4.4-51 and 4.4-52 are the same for all values 
of JU and, together with Eq. 4.4-53, are known as the ordinary diamond 
difference equations, which we rewrite: 

^G,,+ i ,D = 2*G,/,D - ^G,i,D (for MD > 0) (4.4-54) 

or 

^G,i,D = ^^G,I,D - ^G,i+i,D (for MD < 0) (4.4-55) 

and 

*G,/,cf+i = ^^G,I,D - ^G,I,d (4-4-56) 
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These equations form the basis for most current computer solutions. For a 
spatial sweep when Hjj > 0, Eqs. 4.4-54 through 4.4-56 are combined to 
provide the following explicit expression for the centered discrete-ordinate 

f lux,*G,/ ,D = 

^G,I.D = [ M D ( ^ , - + , + ^ . ) ^G,i,D + (l/AMD)(B/.d+i + %,<i) ^G,I,d 

+ yiS'G,I,D] [ M D ( 2 ^ , - + I ) + (2B/,d+i/AMD) + Vj ^h,l]'' ^"^-"^-"^ 

\^^ere the source term SQ J J) includes the fixed source and all inscattering 
sources. For a typical spatial mesh sweep (pjj > 0), Eq. 4.4-57 is used to 
solve for the centered flux ^Q J £>. Then the end-point fluxes ^ G J+I D ^""^ 
<I>G I d+i ^re calculated by Eqs. 4.4-54 and 4.4-55, respectively. The next 
centered flux ^Q J + J £> is then calculated again with Eq. 4.4-57 and so on. if 
the flux is decreasing so rapidly that the centered flux <J>G / D î  less than 
one-half of either previous end-point flux, ^Q ,• £> or $ G / d' then the newly 
calculated end-point flux, ^Q ,+ J jy or <i»G / rf+i > will be negative. This 
phenomenon is called diamond difference breakdown and will result in a 
meaningless positive—negative oscillation of the calculated fluxes. The 
calculation may be modified by refining the space or angle mesh or both to 
remedy this, but this would necessarily increase the computational time. 
However, most problems are reasonably well behaved except possibly for a 
few points. A technique called negative flux fix-up has been used where 
negative values occur. The troublesome fluxes are immediately recalculated 
wdth the step difference equations, which always yield positive fluxes. 

If ^ = B = 1 in Eqs. 4.4-51 through 4.4-53, the step-function relation is 
obtained which equates the centered fluxes to the appropriate end-point 
fluxes. The step difference equations are: 

^G,i+1 ,D = ^G,I,D (for MD > 0) (4.4-58) 

or 

^G,i,D = ^G,I,D (for jUD < 0) (4.4-59) 

and 

*G,/,ci+i -^G,I,D (4.4-60) 
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An explicit expression for the centered flux ^Q / D is obtained for the 
HD > 0 spatial mesh sweep by substituting Eqs. 4.4-58 and 4.4-60 into 
Eq. 4.4-50. The result is 

* _ MD^, -^G, , - ,D + (l/AMp)(Bj^d^G,J,d) + yiS'G,I,D . , , . . • 

G. ' .0 - MD ,̂--H, + (5/,cf+i / A M D ) + Vi ^b,I ^ ' 

These difference equations are solved by the same calculational sequence 
described earlier for the ordinary diamond difference equations. The 
step—function relation is less accurate than the ordinary diamond difference 
scheme for the same mesh; however, it has the advantage of always giving 
positive flux densities for positive sources. 

The choice of the discrete directions plays an important role in the 
discrete-ordinates 5„ method. It does not appear that a most accurate (or 
best) quadrature scheme for a specific problem can be selected in advance. 
The efficiency of a given set of discrete directions (quadrature set) depends 
on problem parameters, such as geometry, optical thickness, energy-group 
structure, spatial mesh size, etc., and a generalization of these dependencies 
is not possible. 

The discrete directions and associated weights (which represent solid 
angle) define the quadrature used in the inscattering integral; the directions 
also define the mean values for the angles, such as Jij), and thus affect the 
approximations in the convection term. 

In all S„ codes the discrete directions are represented as points on the 
surface of a unit sphere located at the point in space for which the flux 
density is to be defined and oriented in a fixed manner with respect to the 
coordinate system. The points or directions are located on the sphere 
symmetrically with respect to the three planes defining an octant such that 
the point description of one octant defines the whole sphere. This is not an 
absolute necessity but is usually required because of reflecting boundaries. 

The more recent S„ codes allow specification of direction weights as well 
as the directions themselves. Lee ' developed an elegant method of areas 
which computes directions and direction weights that are symmetric with 
respect to rotational interchange of the axes of the unit sphere. Although the 
directions and weights in this method are somewhat adjustable, the best 
results occur with the recommended values, which satisfy various approxi
mate moment conditions and asymptotic theories. The area method has the 
advantage of rotation symmetry and the important advantage of all positive 
weights for any order of S„. 
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Although rotation-reflection symmetry has desirable qualities, only 
three-dimensional calculations would benefit from full symmetry; two-
dimensional problems thus require twofold symmetry, and one-dimensional 
problems require no symmetry conditions within the octant. Thus for one-
and two-dimensional geometries, and especially for problems where other 
conditions outweigh the symmetry considerations, some liberty in choosing 
directions may be exercised. 

The selection of a set of directions and the weights (biasing scheme) is 
particularly important and is geometry dependent. The recommendation of 
the programmer should be followed when his machine program is used. A 
bad direction set will lead to implausible flux densities in particular 
directions. 

A typical computer solution of the discrete-ordinates problem is a 
procedure for iterating the solution to some prescribed degree of conver
gence. The sweep of the mesh points (i.e., the sequence for moving through 
the discrete points) is carefully ordered to follow the neutrons (or gamma 
rays). For shielding problems all particles undergoing scattering will always 
be degraded in energy. Therefore the calculation will begin with the highest 
energy group (G = 1) and progress sequentially through the lower energy 
groups. The angular sweep is performed in the direction of increasing D 
(decreasing Jij)) beginning vwth D = 1, which for most penetration problems 
corresponds to the most important direction. The spatial sweep begins at a 
boundary along which the inwardly directed flux values are specified, and 
the sweep is made to the other boundary and then repeated for the next 
angle. The spatial sweep for negative JU£) begins at the other boundary, at 
which point the reentrant fluxes are usually specified as zero, and proceeds 
to the source boundary. After the spatial sweep has progressed through all 
angles at one energy, the next lower energy group is treated in a similar 
manner and so on. 

In the solution of Eq. 4.4-57 or Eq. 4.4-61 for the centered flux $ G / D> 
some of the required discrete-ordinate fluxes have not yet been calculated; 
e.g., the within group scattering involves some as yet undetermined fluxes, 
those which correspond to angles ju^)', where D' > D. Therefore the solution 
is obtained through the process of inner iteration, whereby values for the 
unknown fluxes are taken as their previous iterate estimates. Details of the 
various iteration schemes and of the related convergence problem are 
omitted here. Several iteration schemes are described by Mynatt* * as part of 
a detailed development and experimental evaluation of the two-dimensional 
equation in his dissertation. An iterative technique called the synthetic 
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method was developed by Kopp '^ to calculate neutron transport and has 
been adapted by Gelbard and Hageman'^ to accelerate convergence of S„ 
calculations. 

4.4.4 Advantages and Disadvantages 

From the results of calculations made with 5„ codes, the discrete-
ordinates methods appear to have the following advantages for shielding 
applications: 

1. Depending somewhat on the sophistication desired, the S„ calcula
tions are easy to prepare. 

2. The method is not stochastic, and flux-density errors at deep 
penetration are systematic rather than statistical. 

3. A series of problems having similar characteristics benefit from 
knowledge of flux densities calculated in a similar case. 

4. Secondary gamma rays can be calculated by the same method, either 
as a second calculation or simultaneously with neutrons. The gamma-ray 
yield distribution may also be made a function of the energy of the captured 
neutron. 

5. The range of neutron energies from highest fission energies to thermal, 
including upscattering in energy, can be calculated by the same method. 

6. The one-dimensional calculations are much faster (in computer time) 
than similar Monte Carlo calculations (see Chap. 5). In two dimensions the 
type of problem and the desired answers determine whether S„ or Monte 
Carlo is better. 

The following disadvantages are evident, but proponents believe that 
additional development can alleviate or eliminate them: 

1. Convergence of an iteration method is not always uniform and 
well-defined. The best method currently used is to determine from each 
iterate the maximum deviation in the scalar flux density at any point in 
space relative to the previous iterate value. Iterations proceed until the 
maximum deviation falls below a specified limit. 

2. Flux-density aberrations are frequently observed in two dimensions 
owing to localized sources and the propagation of neutrons in discrete 
directions (this is sometimes called the ray effect). 

3. No basic ground rules exist to define for a particular problem the best 
direction set, space mesh, multigroup structure, and polynomial expansion 
limit. 
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4.5 MOMENTS METHOD 

The method of moments was formulated by Spencer and Fano* ^ and 
was the first technique to be successfully applied to the Boltzmann equation 
for solutions useful to reactor shielding. In addition to its historical 
prominence, this technique has some important advantages not shared by 
other methods, one being that foreknowledge about the behavior of the 
solution can be incorporated analytically in a very natural way, thereby 
often reducing the effort required to achieve a specific result or a desired 
accuracy or both. Another is that the type of recursion relation developed 
precludes a truncation at a crucial part of the calculation; that is, a finite 
number of moments can be calculated exactly (ignoring errors due to the 
numerical solution) without considering the influence of higher moments. 

In the moments method one considers first the formal definition for the 
moments and the manner in which they relate to some system parameter of 
interest, say f{x). li f{x) is defined for all x within the interval A ^x ^B, 
then the nth moment o( f{x) is 

M„ = SA x» f{x) dx (4.5-1) 

provided the integral exists. Only nonnegative integer values of n are 
considered in practical applications. 

Definite interpretations may be associated with the various moments. 
For example, the zeroth moment is a normalizing number, and the first, 
second, third, and fourth moments are closely related to the mean value, 
variance, skewness, and kurtosis, respectively. In the physics of statics and 
dynamics, the first moment of the mass is the center of gravity and the 
second is the moment of inertia. 

No such particular meanings are given to the moments as they are used in 
the solution of radiation-transport problems (although the second moment 
of the flux density is proportional to the Fermi age). Rather, they are 
regarded as a transform, much the same as Laplace, Fourier, or finite 
trigonometric transforms. The major portion of the calculation is performed 
in terms of the transform (moments) space; then, by an appropriate 
inversion, the desired answer is reconstructed. 

The application of the moments method to the solution of the 
Boltzmann transport equation is limited wdth respect to the source—shield 
configuration. It is usually applied only to infinite homogeneous media vdth 
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plane, line, or point sources. The method as applied to gamma rays has been 
described by Fano, Spencer, and Berger*' and by Goldstein and Wilkins,** 
and, as applied to neutrons, by Goldstein.'^ The technique is basically the 
same for both neutrons and gamma rays, and a description for one should 
suffice for the other. The most significant differences lie in the treatment of 
the scattering integral and in the more complex nature of the neutron cross 
sections. The following description is for slab geometry in terms of the 
simpler gamma-ray problem in which the dependent variable is the angular 
energy-flux density, I{x,'K,n) and the Compton wavelength is taken as the 
energy variable. 

Consider the following specialized form of the Boltzmann equation: t 

H^ + 2(X) /(x,X,M) = X X r A^A',M')efe(V,X) 

X^-^^^^^^^;^~^^:^dn'dK' + S{\,n)8{x) (4.5-2) 

where I{x,\,n) dE d(x = energy-flux density (MeV per unit area and time) 
due to gamma rays with energies in dE about E and 
direction cosines that lie in dfi about fi 

X = spatial coordinate in slab geometry 
X = gamma-ray energy after scattering expressed in terms 

of its Compton wavelength 
X' = gamma-ray wavelength prior to scattering 
JU = direction cosine with respect to the x-axis 

2(X) = total macroscopic cross section evaluated at the 
energy corresponding to the gamma-ray wavelength, 
X 

I2*n' = cos 6 = cosine of the scattering angle between initial 
and final gamma-ray directions, where Si' and SI are 
the initial and final unit direction vectors, respec
tively 

e = electron density 
fe(X',X) = 27r (X/X') a(X',0) 

a(X',0) = microscopic cross section per electron for Compton 
scattering given by the Klein—Nishina formula 

tThe derivation is given as a problem in the exercises. 



RADIATION TRANSPORT 151 

8{x) = Dirac delta function! that locates the plane at x = 0 
5(1 + X'— X — J2*J2') = Dirac delta function! that prescribes that the 

angular change {SI'Si') be consistent with the change 
in wavelength (X — X') as given by the Compton 
scattering equation, X — X ' = l — Jl 'O 

S(X,ju) dE dfi = plane source of gamma rays (energy emission per 
unit area and time of gamma rays with energies in 
dE about E and direction cosines that lie in dn about 

Solving Eq. 4.5-2 by the moments method is similar to using the 
spherical-harmonics treatment (see Sec. 4.3) in that the angular energy-flux 
density is first expanded as a Legendre polynomial series: 

/(x,X,ju) = 2 ^ ;̂(̂ A) PjW (4.5-3) 
7-0 

where the Legendre coefficients are given by 

Ij{x,X) = /-!' /(x,X,ju) Py(ju) dn (4.5-4) 

It can be shown that IQ{X,\) is the energy-flux density and that / i (x,X) is the 
energy-current density. 

With this series representation for the angular energy-flux density, the 
integro-differential equation (Eq. 4.5-2) with the dependent variable/(x,X,/u) 
and three continuous independent variables can be transformed into a 
sequence of integro-differential equations for the variables Jy(a;,X), which are 
dependent on only two independent variables. This desired result is obtained 
by multiplying Eq. 4.5-2 by the Legendre polynomial i'y(ju) and integrating 
over all solid angle. The result (after some manipulation) is the following 
sequence of equations: 

/ + 1 9/,-+i j 9//.1 fX 

k ^ ^ W+i^^2(^)^;(^» = 5/(^)«(^) + 0̂ ^y(i + ^ - ^ ) 

X efe(X',X) Ij{x,\') cfX' (j = 0,l,2,...,oo) (4.5-5) 

tProperties of the Dirac delta function are fpven in Appendix D. 
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The spatial variable in this sequence of equations is eliminated by 
applying the moments of the Legendre coefficients of the angular energy-
flux density, which are defined as 

KiW = - \ - SSliix.X) x'' dx (4.5-6) 

where So is the total macroscopic cross section evaluated at the source 
energy. The equations satisfied by bnj(\) are obtained by multiplying 
Eq. 4.5-6 by T Q ^ ' (x"/n!) and integrating with respect to x from —oo to -t-oo. 
Because of this integration over all space, the application of the moments 
method to the transport problem becomes restricted to the infinite-medium 
geometry. With the use of Eq. 4.5-6, the original Boltzmann equation can be 
reduced to the following doubly indexed sequence of linear integral 
equations (the variable upper limit in the integral classifies it as the Volterra 
type): 

2(X) bnjiX) = fo fe(X',X) P,(l+X'-X) fo„y(X') d \ ' + ^ ^ [(/• + 1) bn-i ,i+i 

+ ibn-i,j-i] +MoSy(X)5„o (4.5-7) 

where / = 0, 1, 2, ..., oô  and n = 0, 1, 2, ..., oo. The Kronecker delta function 
5„o = l i f ^ = 0 ,6„o = 0 i f n ^ 0 . 

The moments for a given problem can be evaluated by a straightforward 
numerical solution of Eq. 4.5-7. The ease of numerical calculation depends 
on the form of the source function 5y(X). Many problems involve 
monoenergetic sources, and the S;(X) are given by Xo5.-5(X — XQ), where XQ is 
the Compton wavelength of the source energy. Since the presence of the 
delta function is undesirable for machine calculation, the following trans
formation is made: 

fc„y(X) = B„y(X) + Xo 5(X-Xo) Cnj (4.5-8) 

Introducing the transformation defined by Eq. 4.5-8 into Eq. 4.5-7 yields 
the defining equations for B„j and C„J: 

mnj = i l efe(X',X) Py(l-HX'-X) B„y(X') d\' + ^ ^ [(/' + 1) 

X Bn-i ,y+i +jB„.i j . j ] + Xofe(Xo,X) Py(l+Xo-X) C„j (4.5-9) 
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ZCrtj - ^0 (̂ 2/ + 1 ^n-i,j+i + ^y-ljT^ C„-i,y-i) + 2oSy6„o (4.5-10) 

The equations that define C„j are similar in form to the equations that 

define b„j and B^y except that the inscattering integral does not appear. It 

follows that Xo5(X—XQ) C^y are the moments for the unscattered-energy-flux 

density. Therefore the transformation given by Eq. 4.5-8 separates the 

unscattered-energy-flux density (energy-flux density corresponding to C„j) 

from the total energy-flux density (energy-flux density corresponding to 

bftj). The solution to Eq. 4.5-9 requires values of Cy,j as input, and the 

calculated moments JB„y are associated only with the scattered-energy-flux 

density. This is convenient since the uncollided angular energy-flux density, 

/°(x,X,iu), is easily calculated, and values of C„j are then uniquely 

determined. 

For a typical calculation, the quantity of greatest interest is usually the 

total, or scalar, energy-flux density, IQ{X,X). Therefore only the moments 

Bno {^ ~ 0,1,2,...,N) are required. However, the calculation of a given B„y 

requires the prior calculation of Bn-i j + i and Bn-i,y-i '< therefore moments 

other than the JB„O moments must be calculated. In general, the moments 

Boj 0 ~ 0,1,2,...,/) can be calculated directly, but a JB„y moment cannot be 

calculated until calculations have been made of all the jB„'y"s for which 

(n + j) — (n +y ) is a nonnegative even integer (including zero) and n' < n. 

Table 4.1 illustrates a typical calculation sequence (for n = 5). As noted, all 

Tal 

n 

ble 4.1—SEQUENCE OF MOMENTS CALCULATION FOR M = 5 

B„j 

y = o y = i y = 2 y = 3 y = 4 y = 5 

Boo ^BQI ^BO2 ^BQ2 ^ . 

> . ^ ^ ^ >.^^^**C > . ^ ^ ^ ^ > r ^ ^ ^ ^ 
Bio ^-Bii ^B\2 ^ ^ ^ 

^2 0 ^Bi\ ^B-ii ^B X >< 
•B30 ^Bii ^B-ji 
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the moments shown in the table must be calculated to determine B„o for 
n < 5 . 

We rewrite the Eq. 4.5-9 integral in the following form: 

2(X„) HX„) = S^H(X„X) v(X') d\' + T(X„) (4.5-11) 

where X„ = XQ + nAX 
AX = arbitrary increment of wavelength 

viX„) = B„y(X„) 
HrX„,X') = efe(X',X„)Py(l-t-X'-X„) 

7XX„) = [20/(2;+!)][(;•+l)B„-i,y+, +yB„-i,y-n] + XoH(X„,Xo) C„y 

This type of integral equation (Volterra type) is characterized by (1) the 
limit of integration being the independent variable X„; (2) the value of the 
dependent variable v(\„) depending on the values of t'(X') if X' < X„ but not 
if X >X„; and (3) T(X„) involving only known or previously calculated 
quantities. A numerical evaluation of the integral is required, and several 
schemes are available. Regardless of which scheme is used, there are 
coefficients M„fe such that Eq. 4,5-11 can be rewritten as 

^i\n)v(K)=L HiX„,Xk) v(\k) M„k 
k=0 

-H H(X„,X„) v(X„) M„„ + T(X„) (4.5-12) 

W; here 

H(X„,Xn) = fe(X„,X„) Py(l-^X„-X„) = I (4.5-13) 

Trapezoidal rule is used for the (n = 1) interval for which M„„ = AX/2, and 
the following explicit expression for v(Xi) is obtained: 

, 0 , -nX.)+H(X.,Xo).(Xo)(AX/2) 
" 2(Xi)-(3AX/8) ^ • ' 

For n > 1, M„n = AX/3, and Eq. 4.5-12 is rewritten 

H - l 

, , , nK)+^=oH(K,U)viXk)Mnk 
v(X„) = '^-^ (4.5-15) 

"' X(Xn) - (AX/4) ^ '' 
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The coefficients M„k for n even are determined by Simpson's rule. For 
n = 3, the following coefficients are used: M30 = 5/16, M3 j = 1 , and 
Mj2 = 5/4; for n odd but greater than 3, the integral from Xo to X3 is 
evaluated using the special (n = 3) coefficients, and the integral from X3 to 
X„ is evaluated by Simpson's rule. The gamma-ray scattering process is such 
that 

H(X„,Xfe) = 0 (when X„ > Xĵ  -I- 2) (4.5-16) 

Therefore the sums on the index k involve only a fixed number of terms. 
Also 

H(X„,Xo) = 0 (when X„ > Xo + 2) (4.5-17) 

and the second term in r(X„ > Xo + 2) also vanishes; H(X„,Xfe) can be 
calculated directly since only the Klein—Nishina formula and the Legendre 
polynomials are involved. 

At this point we assume that the moments for a given problem can be 
calculated and consider the problem of reconstructing the flux densities. It 
should be emphasized that the calculation to this point can be performed 
with very few approximations,! excluding the approximations involved in 
the numerical procedures. The major source of error vdll lie in the 
subsequent reconstruction process since only a finite number of moments 
are available. In fact, for a finite number of moments, there is an infinite 
number of allowable functions. The problem is basically one of choice: the 
selection of a functional form that will come as close as possible to 
describing the spatial dependence of Jy(x,X). 

Two methods have been used to reconstruct the flux densities: the 
polynomial expansion method and the method of undetermined parameters. 
Both were developed by Spencer and Fano.*'* A more recent description is 
given by Spencer.*^ The polynomial expansion method assumes that/y(p,X) 
behaves roughly as some trial function / (p) , where p is measured in mean 
free paths at the initial energy; i.e., p = ^QX. Then 

Ij{p,X) = f(p)gj(p,X) (4.5-18) 

tThese few assumptions can be very limiting, however, since they include the assumptions of 
homogeneity and infinite extent of the transporting medium. 
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where gj{p,X) contains the X dependence of the / th coefficient and provides a 
correction for the p dependence. If a reasonable choice of /(p) can be made, 
then g-(p,X), need be only a gently varying smooth function of p ; for 
example, a polynomial of degree N in p when {N -I- 1) moments are available. 
The gAp,X) could be represented as an infinite series with respect to a set of 
orthogonal polynomials of degree n: 

gj(p,X)=L^A„jiX)p„(p)t (4.5-19) 

The orthogonality relation is given by 

C^Pnix) Pm [x) f{x) dx = 8nm (4.5-20) 

where f{x) is a weighting function as well as the trial function / (p) . In 
practice this representation oi gj{p,X) is limited to a finite number of terms 
since, given [N + 1) moments, only {N + 1) values of/l„y can be obtained. 

The approximation for/^(p,X) can then be vwitten 

/ / ( p , X ) = / ( p ) 2 ; Anj{X)P„{p) (4.5-21) 
•' «=o 

where lUp,X) is the y'th Legendre coefficient of the scattered component of 
the angular flux density. This assumes that values of (NH- 1) moments B„y 
are available for the reconstruction of lUp,X), which is accomplished by 
evaluating the {N + \) coefficient Anj in terms of the known (N-l-1) 
moments B„y for a given value of j . To this end lKp,X) is multiplied by 
Pmip) dp, and the product is integrated from —°° to -l-°°: 

AnjiX'} = jT //(p,X) p„{p) dp (4.5-22) 

The polynomial p^ip) can be written 

p^{p) = i a:pi (4.5-23) 

where the AJ-'S are known parameters for a given type of polynomial. The 
expression for y4„y(X) then becomes 

Anj{X) = I a,- / . r //(p,X) pi dp (4.5-24) 

tThe polynomial set (p„) is any orthogonal set, one of which is the Legendre polynomial set. 
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The moments JB,y are defined as 

^y<^) - ji J"--°°^y(P'̂ ) P' dp (4.5-25) 

Elimination of the integrals between the preceding expressions for /4„y(X) 
and Bij{n) provides the desired relation 

^„y(X) =,£(«•!) a,-B,y (4.5-26) 

Practical considerations will usually restrict accurate calculation to the 
differential energy-flux density /o(p,X), and then only the A„Q(Xys are 
required; that is, 

lUpM=f(p)L ^„o(X)p„(p) (4.5-27) 
n=0 

where 

AnoO<)= i {i^-)AiBio 
(=0 

In principle, A„j(X) for / > 0 can be calculated. However, since the angular 
flux density J(x,X,ju) is usually highly peaked in the forward direction, the 
series 

; 

I 
3=0 

P[x,x,p) = YJ ^ ŷ (^» Pŷ '̂ ) (4-5-28) 

converges slowly, thereby requiring a large number of values of J?(x,X), 
which, in turn, would require a large number of moments. Finally, 
unscattered-energy-flux densities are easily obtained for most simple 
geometries and combined with the scattered energy-flux densities: 

Io[x,X) = Po{x,X) + Ii{x,X) (4.5-29) 

The polynomial expansion method described in the preceding text is 
most often used for reconstructing the energy-flux density of the gamma-ray 
problem. This is partly for historical reasons and partly due to the ability of 
the method to make full use of large numbers of moments within the same 
systematic framework of analysis. For the neutron problem the selection of 
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a suitable weighting (or test) function is not obvious, and the method loses 
much of its flexibility. 

When the method of undetermined parameters is used to reconstruct the 
flux densities, /.•(p,X) is represented as 

Ij(p,X) = L a,y(X) hij(p) (4.5-30) 

where hij(p) is a function having the general expected behavior of Jy(p,X) but 
containing one or more undetermined parameters, and the aji are undeter
mined parameters that include the X dependence. In particular, lety = 0 and 
assume that {N + 1) values of the B„o(X) moments are known; then 

/S(p,X)=2:a,-o(X)^;o(p) (4.5-31) 
i 

The moments corresponding to / = 0 can be written as 

B„o(X) = --Il°°Ii(p,X)p^dp (n = 0,l,2,...A) (4.5-32) 
n! 

Substituting Eq. 4.5-31 into 4.5-32 yields the following set of (N-i-1) 
equations: 

BnoOO = 4 2 aioiX) PKoip) p« dp {n = 0,1,2,...,N) (4.5-33) 
n\ I 

Values of hi^ip) should be selected so that the above integration can be 
evaluated either analytically or numerically, and, if (N+1) moments are 
available, then a total of (N+ 1) undetermined parameters are allowed. 

Problems not amenable to other methods can sometimes be solved by 
the method of undetermined parameters because of the much greater choice 
that can be made in the ^,y(p) values. As a result this method has been more 
widely applied to the neutron-penetration problem. A characteristic of the 
method is when it fails, it fails catastrophically, leaving no doubt about its 
applicability. Usually not all the moments available are needed to obtain a 
satisfactory solution. The surplus moments can be used to check the 
accuracy by constructing moments corresponding to the unused moments, a 
feature not so easily accomplished by the other methods. 

The application of the moments method to neutron-transport problems 
is similar in many respects to the gamma-ray formulation. The primary 
differences are the use of differential neutron-scattering cross sections rather 
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than Compton scattering cross sections, particle-flux density, ^{r,E,Sl), 
rather than energy-flux density, and the use of neutron lethargy in 
performing integrals over energy. 

The spatial moments in the neutron case are defined as 

Inl{u) = —f /-~ Il{u,x) x " dx (4.5-34) 

and the set of interlocked integral equations has the form 

Ot{u) I„i{u) = 27r E /.I Inl{u') On,i{u'} fi{u',Pi) Pi{ai) dm 

+ ^ j [ ( / + l ) V i , / + i + / V i , / - i ] +S„l{u) (4.5-35) 

where w is a variable based on the neutron energy, u = l n ( £ / £ o ) ; M is the 
cosine of the scattering angle in the center-of-mass system; and a is the 
cosine of the scattering angle in the laboratory system. 

Differences also appear in the means of reconstructing the flux density 
from the moments. For neutrons the results are more sensitive to the choice 

of / (p) . 
Cross sections change more rapidly with energy for neutrons, and the 

scattering integral hmits vary from element to element. For hydrogen the 
scattering integral may be integrated directly by numerical means as was 
done for gamma rays. For all other elements, three optional approaches are 
available, depending on whether energy degradation in scattering is treated 
exactly or approximately or ignored entirely. 

For sufficiently large nuclei, the energy degradation may be ignored. The 
minimum mass for which this approximation can be made will depend on 
the other constituents of the material. For example, energy degradation by 
oxygen may be ignored in the presence of hydrogen but not in a thick shield 
consisting primarily of heavy elements. 

The approximate treatment consists in ignoring degradation for heavy 
elements but accounting for it with hydrogen scattering. This treatment has 
been found to give results within 20% of the exact treatment for a mass of 6 
or 7 amu where hydrogen accounts for most of the slowing down. Similar 
accuracy is obtained at 10 to 20 mean free paths for atomic masses above 20 
in the absence of lower weight elements. A method for a more exact 
treatment of degradation was developed by Cer t a ine . " 



160 REACTOR SHIELDING FOR NUCLEAR ENGINEERS 

4.6 APPLICATION OF DIFFUSION THEORY 

An approach to the particle-transport problem which neglects the 
detailed directional aspects of particle motion comes from diffusion theory. 
If we consider the neutron balance in a medium, the equation of continuity 
is a statement that the neutron gains are equal to the losses in a given volume 
element. We assume no energy degradation and that all neutrons have one 
velocity. 

[ rate of gain 1 _ [ soi 
per unit volume] [uni 

source per 

unit volume 

[ absorption 1 F 
per unit volume] [ 

leakage 1 
per unit volume] 

In four-dimensional phase space, (r,f), this statement becomes 

^ ^ = S{r,t) - S , $ ( r , 0 - V • J{r,t) (4.6-1) 

where M(r,^) = neutron density (neutrons/cm^) 
Sa = macroscopic absorption cross section (cm"') 

S{T,t) = general source term (neutrons cm"^ sec"') 
$(r,f) = total neutron-flux density (neutrons cm"^ sec ' ' ) 
J{T,t) = net neutron-current density (neutrons cm"^ sec"') 
dn/dt = time rate of change of the neutron density (neutrons cm"^ 

sec"') 
2^ $(r,^) = loss of neutrons due to absorption (neutrons cm"^ sec"') 
V 'J{i:,t) = loss of neutrons due to convection (neutrons cm"^ sec"') 

Equation 4.6-1 can be regarded as'a precise relation that can be applied 
wdthout restriction to the general problem of particle transport. However, a 
basic limitation in its use is that, except for certain very restricted situations, 
a tractable form for the net neutron current, J{r,t), does not exist. If we 
assume that absorption is small compared with scattering and confine 
ourselves to steady-state (time-independent) conditions, the net current 
density depends on the change in neutron flux with position 

/ ( r ) = -D V4>(r) (4.6-2) 

where D is the position-independent diffusion coefficient (cm) and V^(r) is 
the gradient of the total neutron flux. It is noted that with the steady-state 
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assumption, phase space has been reduced to three position variables 
denoted by the vector (r). Equation 4.6-2 is known as Fick's law, which 
simply states that the net diffusion of particles (or molecules) in liquids and 
gases will be from regions of high particle density to regions of low particle 
density, with the gradient of the particle-flux density as the driving 
potential. 

Substitution of Eq. 4.6-2 into the steady-state form of Eq. 4.6-1 leads to 
the diffusion equation 

D V^ *(r) - Za *(r) + S(r) = 0 (4.6-3) 

Equation 4.6-3 has the same form as the steady-state form of the Pj 
approximation to the spherical-harmonics treatment of the Boltzmann 
equation (see Sec. 4.3). 

Certain limitations are inherent to diffusion theory: (1) the scattering 
process is assumed to be isotropic in the laboratory frame of reference (the 
use of a "transport-corrected" diffusion coefficient, D = l / 3 2 ( r > removes 
this limitation); (2) the directional distribution of the particle-flux density is 
nearly isotropic; (3) the diffusing medium must be a poor absorber, i.e., 
2a •'̂  2^; and (4) the results are invalid for regions within two to three mean 
free paths of boundaries, strong sources, and strong sinks. The existence of 
these limitations is a clear indication of the approximate nature of diffusion 
theory insofar as the physical situation is concerned. In reality, the preceding 
conditions of applicability for diffusion theory are seldom satisfied. 
However, with the judicious selection of system parameters, the diffusion-
theory solutions of certain problems! compare favorably with solutions 
obtained with more exact theories or wdth the physical situation itself. 

A neutron shielding problem would involve a continuous energy 
spectrum over a wide energy range (typically from a low keV region to 
10 MeV); thus a group approach is required to adequately describe the 
diffusion process. The energy range is divided into G energy groups with the 
^th group corresponding to the energy width Eg+i — Eg. 

The group-diffusion equation for the ^th group is given by 

D . V^^gir) - 2 | $(r) + S^(r) = 0 (4.6-4) 

tFor example, diffusion theory is used in fast reactor shielding design since the leakage spectrum 
peaks below 0.5 MeV and the materials involved are nonhydrogenous (sodium and graphite). Also, the 
small source (reactor core) requires two-dimensional calculations, which are much simpler with 
diffusion theory. 
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where Dg = group-averaged diffusion coefficient 

/ V ' D(£) $(r,£) dE 
__f£ 

^g{r) 

$^(r) = total flux density corresponding to the ^th energy group {g = 
1,2,...,G) 

= rf^ '̂*(r,£)ci£ 

2^ = group-averaged macroscopic absorption cross section 

f^p Za{E) *(r,£) dE 

Sg{i) = general source term! for the/ th group 

= / ? " ' S{r,E)dE 

However, the typical neutron shielding problem is not amenable to solution 
by the straightforward application of diffusion theory, because the neutrons 
are on the average very energetic and possess a strong forward directional 
bias. The limitations of diffusion theory under these conditions are clearly 
violated, and results thus obtained would be meaningless. However, when 
applied to certain special problems in combination with other methods, 
diffusion theory has proved useful. Applications of diffusion theory to the 
neutron shielding problem are discussed further in Sec. 4.8. 

The use of diffusion theory to predict gamma-ray energy-flux densities 
seems to be unjustified on superficial examination of the gamma-ray-trans
port phenomenon. Certainly deep penetration by gamma radiation cannot be 
described by diffusion theory, because the resultant gamma-ray-flux density 
is due to photons that have maintained a strong directional correlation. 
However, diffusion theory seems to be adequate for small-to-moderate 
penetrations relatively near the source under conditions where the low-
energy end of the spectrum predominates and the scattering is more nearly 
isotropic. These restricted conditions exist, for example, for most gamma-ray 
heating calculations. 

tObserve that the source term includes both particles born in energy group (£^£0+1) and particles 
that have scattered into that energy interval from other groups. Thus the set of equations 4.6-4 
{g = 1,2,.,.,G) is coupled through the source term. 
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4.7 INVARIANT IMBEDDING METHOD 

The method of invariant imbedding is not another method for solving 
the Boltzmann transport equation; rather, it is a different fundamental 
approach to the mathematical description of particle transport. The method 
has for its historical basis the early works of a Russian astrophysicist, 
Ambarzumian,^" whose interest was in the transport problems of astro
physics. Recent investigations of Bellman, Kalaba, and Wing^' and Wing^^ 
have shown that the invariant imbedding approach can be applied with 
high-speed computers to a much broader class of problems, including the 
neutron- and gamma-ray-transport problems encountered in radiation shield
ing. 

The dependent variables of the invariant imbedding formulation are the 
reflection and transmission functions, with the region dimensions (shield 
thickness) and the energy and direction of the particle comprising a 
six-dimensional phase space. In this context a particular shielding problem is 
viewed as being imbedded in a more general class of shields having different 
dimensions. Characteristically, and in contrast with solutions of the 
Boltzmann transport equation, the invariant imbedding method provides 
transmission and reflection information for a large variety of shields as well 
as for the specific problem of interest. However, the detailed behavior of the 
radiation during transport through the shield is not explicit during the 
analysis and for that reason is unavailable, a not too serious shortcoming, if 
not a real advantage, for the typical shielding problem. The pertinent 
equations can be derived by applying the usual conservation principles of 
radiation transport to a shield system, the dimensions of which are allowed 
to vary by differential amounts. For simplicity and greater clarity, the 
derivations are performed in slab geometry wdth azimuthal symmetry. Phase 
space becomes three dimensional: the shield thickness, X, the energy 
variable, E, and the direction variable, ju (= cos 6). A schematic representa
tion of this configuration is shown in Fig. 4.6. 

The reflection function R{X;P.,E;PQ,EQ) dp dE is defined as the number of 
particles reflected from a slab of thickness X with energies in dE about E and 
directions that lie in dp about ju per incident particle with energy EQ and 
direction JUQ ; the function can be regarded as an angular flux density within 
the differential slab thickness dX. The reflection equation describes the 
change in the reflection function due to changes in the shield thickness and 
is formulated without involving the transmission function. The derivation is 
accomplished by equating the difference in the reflection functions for slabs 
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Incident particles 

• - X 

Transmitted X = 0 X X + d X Reflected 
particles 

particles 

Fig. 4.6—Geometry for invariant imbedding technique. 

of thicknesses X + dX and X with the net change in the reflection function 
which results from collisions suffered by the particles within the differential 
slab dX: 

R{X+dX;,x,E;fXo,Eo) dfi dE - R (X;M,£ ;MO,£O) dfX dE 

= - Sf(X,£o) R{X;n,E;Ho,Eo) — dtidE 
Mo 

- Xt{X,E) R{X;iJi,E;Ho,Eo) — dfx dE + — 2 , (X ;M,£ ; /XO,£O) 
M Mo 

dfi' I dE' 2,(X;/X',£';MO,£O) R{X;H, E;(X',E') —dy. dE 
1 ^0 Mo 

+ r ^ rdE' R(X;ix',E';lio,Eo) i:s{X;Ui,E;ix',E') dX dix dE 
Jo M •'0 

+ X f/̂ '̂ "X^^^ '̂X"'̂ ^"^^ '̂'̂ ''̂ '̂ -̂ "^ 
X 2,(X;jU ,£ ;M ,£ ) R{X;ii,E;(x",E") dX djx dE (4.7-1) 

where 2^(X,£o) is the position-dependent total macroscopic cross section 
evaluated at the particle energy EQ and S^(X;M' ,£ ' ' ;MO,£O) dn' dE' represents 
the position-dependent differential scattering cross section which describes 
the probability that a particle with an initial energy EQ and an initial 
direction JUQ undergoes a scattering collision that places it into a direction 
which lies in dfX about jU wdth a new energy in dE about E . 
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The first and second terms on the right-hand side of Eq. 4.7-1 represent 
the particle losses due to collisions within dXt (any collision is presumed to 
alter the particle's energy and direction). The first term is the loss of incident 
particles scattered within dX such that they do not enter the slab of 
thickness X, and the second term is the loss of particles that are scattered 
within dX such that they are prevented from emerging from the slab of 
thickness X + dX. The third, fourth, fifth, and sixth terms represent the 
inscattering gains due to scattering collisions within dX. The fourth term is 
the gain from particles that scatter from dX into the slab of thickness X with 
energies in dE' about £ ' and directions dfx' about M' and then are reflected 
from the slab of thickness X with the proper emergent angle and direction. 
The fifth term is the gain from particles that scatter from the slab of 
thickness X into dX with energies in dE' about £ ' and directions dn' about n' 
and then are scattered within dX with the proper emergent energy and 
direction. The sixth term is the gain from particles that scatter from the slab 
of thickness X into dX with energies in dE about £ and direction dn about 
/x , are scattered back into the slab of thickness X with energies in dE ' about 
E" and direction dfi" about ix", and are finally reflected from the slab of 
thickness X with the proper emergent energy and direction. A rearrangement 
of terms leads to the usual form of the reflection equation 

-J- R{X;[i,E;iJLo,Eo) = — 2^ (X;M,£;MO.J5O) - ltiMol + 
M J Mo 

X R{X;n,E;Ho,Eo) + J ° dfx' £ dE' 2:,(X;M',£';Mo,î ô) 

X R{X;n,E;^l',E') — + r ^ rdE' R ( X ; M ' , £ ' ; M O , £ O ) 
Mo •'0 M ^0 

X Xs{X;n,E;n',E')+ C ^ Cdix" TdE'TdE" 
Jo fl J-i Jo Jo 

X R(X;M',£ ' ;MO,JSO) 2 , ( X ; M " , £ " ; M ' , £ ' ) R{X;II,E;H",E") (4.7-2) 

with the initial condition that 

R(0;M,H;MO.£O) = 0 (4.7-3) 

tThe flight paths within the volume element dX are dXln„ and dXIfi for the first and second 
terms, respectively. 
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The transmission function T{X;n,E;tiQ,E(i) dy dE is defined as the 
number of particles that are transmitted through a slab of thickness X and 
emerge with energies in dE about £ and directions in dfx about M per incident 
particle with energy £o and direction JUQ-

The transmission equation is derived in a manner similar to that used to 
derive the reflection equation, making use of the fact that the difference in 
the transmission functions for slabs of thickness X + dX and S is due to 
collisions suffered by the particles within the differential slab dX. A familiar 
form of the transmission equation is 

^ T{X;n,E;iio,Eo) = - ^ ^ ^ ^ ^ T(X;M,£;MO,£O) 

+ £ dfi' £° d£'2,(X;/x',£';Mo>-Bo) 

X T(X;M,£;M',£')- + C ^ Cdn" fdE' r dE" 
Mo Jo M J-i Jo Jo 

X R{X;n',E';Ho,Eo) 'LS{X;H",E";H',E') 

X T{X;y.,E;ix",E") (4.7-4) 

with the initial condition that 

TiO;n,E;Ho,Eo} dn dE = 8{n - Mo) 5(£ - £o) cf/x dE (4.7-5) 

The first term on the right-hand side of Eq. 4.7-4 represents the loss of 
incident particles due to collisions suffered within dX (any collision is 
assumed to alter particle energy and direction). The second and third terms 
represent the inscattering gains due to scattering collisions within dX. The 
second term is the gain from particles that scatter from dX into the slab of 
thickness X with energies in dE' about £ ' and directions in dn' about fi' and 
finally emerge with energies in dE about £ and directions in dn about fx. The 
third term is the gain from particles that are reflected from the slab of 
thickness X into dX and are then scattered back into the slab of thickness X, 
finally emei^ing with energies in dE about £ and directions in dfi about ju. 

The reflection equation (Eq, 4.7-2) and the transmission equation 
(Eq. 4.7-4) are both nonlinear integro-differential equations that for the 
radiation-transport problems of nuclear engineering form problems of the 
initial-value type. The reflection equation involves only the reflection 
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function as the dependent variable; thus it can be solved without 
consideration of the transmission equation. The transmission equation 
appears simpler in form (fewer terms) but contains the reflection function, 
which must be known before a solution can be effected. Therefore a typical 
shielding transmission problem (initial value) would involve the solution of a 
coupled pair of nonlinear integro-differential equations. This is in contrast to 
the Boltzmann equation, which is a linear integro-differential equation and 
for the same application forms a boundary-value-type problem. 

Analytical solutions of the reflection and transmission equations for 
practical problems are not possible because of their complexity. Conse
quently all useful solutions are numerical in nature and are accomplished 
with digital computers. The numerical techniques are similar to those used to 
solve the Boltzmann equation by the discrete-ordinates technique, in which a 
specific combination of the independent variables defines discrete values of 
the neutron flux ^G,I,D (see Sec. 4.4 for a more complete description). 

In invariant imbedding specific combinations of the energy and direction 
of the particle define the ith particle state. In this context the discrete 
reflection variable Rij{X) is the number of particles in state i reflected by a 
slab of thickness X due to a unit source of particles in state j that are 
incident on the slab. The discrete transmission variable T',y(X) is the number 
of particles in state i that penetrate a slab of thickness X due to a unit source 
of particles in state j that are incident on the slab. The reflection and 
transmission equations in discrete-variable notation, along with a general 
description of the numerical techniques used in their solution, are given by 
Mathews, Hansen, and Mason.^ ̂  

The paper of Mathews et al. also describes the application of invariant 
imbedding to practical energy-dependent neutron shielding problems, such as 
for a thick water shield and a thinner heterogeneous iron—polyethylene-
iron shield. A very detailed set of reflection and transmission equations in 
particle-state notation for the monoenergetic-neutron-transport problem in 
slab geometry is given by Mingle,^ ^ who includes applications of the method 
of escape probabilities, blackness coefficients, and critical-size determina
tions. Solutions for the gamma-ray-transport problem in slab geometry, 
including results for slabs of iron, water, lead, and concrete, are given by 
Shimizu and Mizuta.^ ̂  

The advantages and disadvantages of the invariant imbedding method 
relative to other techniques should strongly influence the extent and 
direction of future applications. The advantages of the method are that it 
yields very detailed solutions (gives energy and angular distributions), is 
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efficient for deep penetrations with reasonably short computer times, is well 
suited for heterogeneous shield configurations, the effects of boundaries are 
implicitly and exactly included in the solution, and it has the computational 
advantages of being an initial-value problem. The disadvantages of the 
method are that it is inefficient for thin shields (the method is very slow 
during initial phases of solution), difficult to apply to other than slab 
geometries, and does not generate detailed particle-state information within 
the shield (actually an advantage from a computational point of view). 
Furthermore, the basic equations are nonlinear (not too serious if the 
solution is obtained numerically), and the calculational techniques and 
computer programs are not as advanced as those for the solutions of the 
Boltzmann equation. 

4.8 KERNEL TECHNIQUE 

The kernel technique, which in the language of mathematical physics is 
knovwi as the method of Green's functions, is one of the more widely used 
methods for the solution of both gamma-ray and neutron shielding 
problems. The point kernel used in shielding, i<C(|r — r ' | ) , is formally the 
solution to the unit point-source problem and is defined as the desired 
response of a detector (particle-flux density, energy-flux density, dose, or 
energy absorption) at the space point r due to a unit point source of 
radiation at the space point r . This kernel provides the means for solving a 
variety of problems that involve distributed sources. As an illustration of the 
procedure, consider the surface-source problem. In terms of the point kernel, 
the detector response at a distance |r — r | = R away from a differential 
source area dA{R} of intensity SA{R) (particles cm"^ sec"') is 

d^ = [SA {R) dA{R)] K{R) (4.8-1) 

The differential area dA{R) is selected so that the term [Syi(R) dA{R)] can 
be considered as a point source located at a distance R from the detector. 
The total detector response (the desired answer to the surface-source 
problem) is obtained by integrating over the entire source surface: 

<t> = / (i<J) = X4 SA{R) K{R) dA{R) (4.8-2) 

The utility of the method is considerably enhanced if the integral can be 
evaluated analytically. 
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Kernels that are used in practical shielding calculations almost invariably 
result from solutions (either analytical or numerical) for infinite homoge
neous media. Consequently applications of these kernels to finite-geometry 
configurations require corrections for boundary effects. 

Kernel techniques for gamma-ray-penetration analysis have evolved 
somewhat differently than those for neutron-penetration analysis. For 
photon transport the parameters within the kernels have been developed 
primarily by numerical methods (predominantly Monte Carlo and moments 
calculations) and were validated by experimental measurement. On the other 
hand, most parameters used in neutron-attenuation kernels historically have 
been empirical quantities obtained by measurement. For certain cases, 
calculations have been made to verify the experimental results, and more 
recently Monte Carlo and moments calculations have also been effectively 
applied to the neutron problem. 

It is convenient to divide the discussion of kernel techniques into two 
parts. The following two sections discuss the basic concepts of kernel 
methods for photons and neutrons, respectively. Applications of these 
techniques are further discussed in Chaps. 6 and 8. 

4.8.1 Gamma-Ray Calculationst 

In the analysis of gamma-ray-transport problems, the uncoUided-flux 
density (i.e., the flux density due to source gamma rays that arrive at the 
point of interest without suffering an interaction) is usually easily calculated. 
For a monoenergetic point isotropic source in an infinite medium, the 
uncoUided-flux density (gamma rays cm"^ sec"') is given by 

e-M(£)R 
^'{R) = S - ^ ^ ^ (4.8-3) 

where S = source strength (gamma rays/sec) 
//(£) = macroscopic total cross section evaluated at the initial 

gamma-ray energy, £ (cm"') 
g-H{E)R = material attenuation factor, which is the probability that a 

gamma ray of energy E travels a distance R (cm) without 
suffering a collision 

[inR^)"' = geometric attenuation for a point source (cm"^ ) 

t in this section we will not need direction cosines, and we will return to the usual notation p for 
gamma-ray macroscopic cross section. 
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Calculation of the scattered-flux density is, in general, much more 
complex. The scattered component can be handled by introducing a buildup 
factor, which accounts for the increase (i.e., buildup) in the flux density at 
some point r that is due to the scattered gamma rays. This buildup factor, 
defined as 

B = [some desired property (particle-flux density, energy-flux density, 
dose, etc.) of the total gamma-ray-flux density at R] / [same property 
due to the uncollided-flux density at R] 

serves as the basis for formulating the point kernels required for gamma-ray 

shield analysis. For the calculation of dose, the kernel is given by 

^>^atiE)Ee-,iE)R 

A-nR^Pt 

where IXat{E) is the macroscopic energy-absorption cross section for tissue 
evaluated at the initial gamma-ray energy £ ; Pf is the density of tissue 
(usually taken as 1.0 g/cm^); and Br is the exposure buildup factor,! which 
is the ratio of the actual dose at R to the uncollided dose at R. Similarly, if 
the desired property is the energy absorbed per unit mass, the kernel is given 
by 

fia{E) E ^^{R) 

^ - W = Sp '^ 

pJE) Ee-l^iE)R 

where Ma(-E) is the macroscopic energy-absorption cross section evaluated at 
the initial gamma-ray energy £ for the material in which the energy is 
absorbed, and Ba is the energy-absorption (or energy-deposition) buildup 
factor, which is the ratio of the actual energy absorbed at R to the 
uncollided energy absorbed at R. 

tFormerly called dose buildup factor. Away from boundaries for energies pertinent to reactor 
shields, gamma-ray absorbed dose, kerma, and exposure are numerically equal (see Chap. 2). 
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The results of many accurate gamma-ray-attenuation calculations are 
reported in terms of buildup factors, which in combination with the kernel 
technique provide a relatively simple and, in many cases, accurate calcula
tional method. The primary source of buildup data is the collection of 
moments-method data reported by Goldstein and Wilkins'* for point 
isotropic and plane monodirectional sources. The point-source data are 
perhaps the most widely used because of their application to point-kernel 
solutions. The infinite-plane data also find use in approximations such as 
predicting the gamma-ray penetration through the side of a large cylindrical 
or rectangular shield surrounding a large, diffuse source. 

Tables of the exposure buildup factor vs. atomic number for various 
penetration depths and initial energies are shown in Appendix E for a point 
isotropic source and infinite-medium geometry. 

A variety of functions have been derived to fit the buildup data. Some of 
the more commonly used functions are: 

1. The linear form 

B(£,AtR) = l+Ai{E) ixR (4.8-6) 

with only one constant, Ai, to be evaluated as a function of energy. This 
form has the advantage of simplicity but does not provide a consistently 
accurate fit. 

2. The quadratic form 

B{E,}xR) = l+A2 (£) nR + b{E) iixRf (4.8-7) 

should be applied to deep-penetration calculations. 

3. The form due to Taylor^ * is 

B{E,ixR)=Ae-^iiE)t^ + {l - A)e-o'2{E)liR (4.8-8) 

4. The polynomial form is 

B{E,nR) = LME) {fxR)r' (4.8-9) 
n—U 

Capo^ ' published a set of the coefficient i3„(£) for a wide range of 
materials and gamma-ray energies. 

5. The form due to Berger^ ^ is 

B{E,fiR] = 1 + C(£) nReE>{E)lxR (4.8-10) 
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This two-parameter formula is only slightly more complicated than the linear 
form but provides better accuracy. 

Trubey^ ' published a review and evaluation of these and other empirical 
equations which contains values of the fitted parameters and comparisons of 
the expressions with the data of Goldstein and Wilkins.'* Some of the 
conclusions of his study are: 

1. The linear form is generally not adequate. 

2. The best fit is provided by the four-term polynomial fit by Capo. 

3. For most purposes the function proposed by Berger is recommended 

because it is simpler to apply and provides accuracy approaching that of the 

more complicated forms. 

Values of the coefficients for all these forms of the buildup factor are 
given for a variety of materials, photon energies, and source—detector 
distances in Appendix F. Data in all these tables are for a point isotropic 
source geometry. Applications of buildup factors to gamma-ray transport 
problems are discussed in Sec. 6.4.1 and to gamma-ray heating in Sec. 8.1.1. 

There are many other possible forms of buildup factors, such as those 
cited by Hubbell,^" but they are generally more complicated than the forms 
given here. Hubbell's power-series form, for example, converges adequately 
at short distances only and thus usually requires many terms, but it has the 
advantage of allowing separation of the variables dependent on the medium 
properties, geometry, and thickness. 

Sometimes solutions to photon shielding problems can be reasonably 
approximated from attenuation data for a disk or rectangular source and a 
slab shield. These simple plane-source problems are amenable to analytic or 
numerical solution by integrating a point kernel of the form of Eq. 4.8-3 
over the source area. The results when tabulated or plotted are directly 
usable in practical applications. 

Consider, for example, a detector shielded from a plane disk source that 
is uniformly emitting S monoenergetic photons cm"^ sec"' isotropically in 
47r steradians (see Fig. 4.7). When the point kernel as given by Eq. 4.8-3 is 
applied, the unscattered dose rate along the disk axis is 

Jf-o e-A(( sec e n-ifr) dr 

0 A J' ^^-^-^^^ 

in which G(£) is a particle-flux-density to dose-rate conversion function. Its 
units will determine the units of the dose calculated. 
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Source 
plane-i 

Off-a XI* 
position 

Fig. 4.7—Schematic diagram of disk source. 

Since i?^ = r̂  + 2^, Eq. 4.8-11 can be transformed to 

r(M^-/ro)=-^J^^ -ydy 

where y = ixt sec 6. When integrated, Eq. 4.8-12 becomes 

_ 5 G(£) 

(4.8-12) 

r{yt,z/ro)= ^ { £ i ( / i t ) - £ , [ M V l + (ro/2)']} (4.8-13) 

where £1 is the exponential integral function! of the first order and is 
defined by 

In general. 

—rdy 
X y 

£„(x) = x"-' ix e-yy" dy 

(4.8-14a) 

(4.8-14b) 

[Equation 4.8-13, as well as the following equations for computing 
uncollided doses, can be used to determine the total dose (uncollided plus 
scattered) by using the Taylor form of the buildup factor.] 

For an isotropic flux density ^(0) at the source plane, which is 
equivalent to a current density with a cos 9 angular distribution (as shown in 
Chap. 2), the unscattered dose rate is 

tGraphs of this function (as well as e'", Ê  , and £3) are given in Appendix G. 
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e^sece COS0 (27rr) dr (4.8-15) 
AnR^ 

which integrates to 

where £2 is the exponential function of the second order. 
The angular current density J{d) equivalent to $(0) in the forward 

hemisphere is [4>(0)/47r] cos 6, defined as the number of photons per unit 
solid angle crossing a unit area on the source plane in the directions within 
the interval — l < c o s 0 < l as measured normal to the source plane. 
Therefore 

7(0) = / ,. —r^ cos 9 dn= I — ^ 2ir 
•'̂  ' Jni2 An JO Air 

Xd{cos9) = ^ ^ (4.8-17) 

If the current density in the forward direction is used, 4/(0) must be 
substituted for 4>(0) in Eq. 4.8-16. 

In general, for the cos" 9 angular distribution in the forward direction, 

$(0) = ( " - ^ D ^ ' W c o s n e (4_g_,g^ 

w^iere 4>'(0) is the total or scalar flux density in the forward direction only, 
and 

£n+2 ll'lVi*('tl'r']\ 



RADIATION TRANSPORT 175 

For the off-axis position at a distance p measured perpendicularly to the 
disk axis (see Fig. 4.7), integrations must be done numerically. Hubbell, 
Bach, and Herbold" integrated an expression similar to Eq. 4.8-11, the 
isotropic source case, for off-axis positions and tabulated the results in terms 
of the parameters jxt, zlr^, and plr^. These results are shown in Appendix H. 
The quantity tabulated is Airr{p.t,z/rQ,p/rQ)l[S G(£)j, which is the same as 
An $°(/o/ro)/S, where <I>°(p/ro) is the uncollided-flux density at p/r^. 

Similarly, Trubey^^ determined the data for an isotropic flux density. 
The results are given in Appendix H as 2r(jU^,2/ro,p/ro)/[4>(0) G(£)] .which 
is the same as 2$*'/4>(0). 

Certain circular aperture and disk-source configurations to which these 
results might be applied are shown in Fig. 4.8. 

Semi-infinite medium 

Plane isotropic extended source 

Circular 
aperture 

Plane isotropic 
circular disk 
source 

j i ^ i -

— z 

WT-. 

Fig. 4.8—Some circular aperture or disk-source shield configurations to which point 
kernels are applicable (From Hubbell et a/. ^ ' ) 



176 REACTOR SHIELDING FOR NUCLEAR ENGINEERS 

A solution was developed by Hubbell, Bach, and Lamkin^^ for the 
uncollided-flux density at a distance z from a plane isotropic rectangular 
source. Expressed as the product of separable source and geometry 
functions, the uncollided-flux density is given by 

$ '[ci,b)=Yj 
2n+l 

gnPn{a,b) (4.8-20) 
n=0 

w^ere ^„ and p„(a,fo) are Legendre coefficients of the source and geometry 
functions, respectively. 

If a = H/z and b = W/z, where H and W are the height and width, 
respectively, of the source plane (see Fig. 4.9), then Eq. 4.8-20 gives the flux 
density at the corner position, that is, the flux density at a distance z along 
the normal to the corner of the rectangular source. It follows that the use of 

Detector 

Fig. 4.9—Schematic diagram demonstrating the use of the corner position of a 
rectangular source to calculate dose at an arbitrary position by point-kernel techniques. 
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the half-height and half-width gives one-fourth of the flux density at z along 
a normal to the center of the source plane. The source function is 

Sn = f-l ^(cos d) P„{cos 9) d{cos 9) (4.8-21) 

where ^(cos 9) represents the angular flux density at the source plane for the 
case of a slab shield of thickness t {z"^ t) located between the source and the 
detector at a distance z from the source; that is, 

c g-flt/cOS0 

Substituting Eq. 4.8-22 into Eq. 4.8-21, Hubbell et al.^'^ evaluated^„ andp„ 
numerically and solved Eq. 4.8-20. The results for a corner position 
{a = H/z, b = W/z) are given in Appendix H as 47rr/[S G(£)], or 4<I>°/S, in 
terms of the parameters ixt, a, and b. 

Similarly, Trubey^^ numerically evaluated the equivalent of Eq. 4.8-20 
for an isotropic flux density (cosine distribution of the angular current 
density), that is, for 

<^(0) e-M /̂cos& 
^(M .̂cos 9) =^^^^ (4.8-23) 

These results for a corner position are given in Appendix H as 2r/ [4>(0) G(£) ] , 
or 2$°/$(0), which is the same quantity tabulated for the disk source in 
Appendix H. For a square, the dose will be slightly greater than that for a 
disk of radius W. 

Although these results relate directly to the response of a detector in a 
corner position, they are also applicable to any arbitrary position lying 
within the projection of the source plane. It is obvious from Fig. 4.9 that the 
dose rate at the detector is 

r(H/z.w.) = r , [ f , i l ^ ] 

.r,(f.g^)^r, [";'"""-/'"'] 

, r . [ < i ^ , ^ ] (4.8-24) 
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4.8.2 Neutron Techniques 

As noted previously, the use of buildup factors in the attenuation 
function, or kernel, for neutrons has not developed to a large extent, 
primarily because neutron interactions are more complex than gamma-ray 
interactions. However, a simple kernel developed by Albert and Welton,^'' 
which uses an energy-dependent hydrogen cross section, has been widely 
applied to hydrogenous shields. This section contains a description of the 
Albert—Welton kernel and a discussion of removal cross sections that are 
required in the kernel when other shield materials are used in conjunction 
with the hydrogenous medium. 

Other kernels that can be used to calculate differential energy spectra of 
neutrons in hydrogenous media can be developed from the moments method 
or Monte Carlo calculations. For example, the moments-method code 
RENUPAK was used^^ to calculate the differential energy-flux density as a 
function of distance from a point fission source in an infinite medium of 
lithium hydride, and an empirical attenuation function based on the results 
was then incorporated in the point-kernel code QAD by Solomito and 
Stockton^ ^ for use in space-reactor shield designs. Since these kernels are for 
an infinite medium, some caution should be exercised in their use. However, 
simple neutron-dose attenuation functions determined from such calcula
tions can be used for preliminary shield-design applications, and some of 
these functions for concrete and several other materials are included in this 
section. 

(a) Removal Cross Sections. Measurements in the Oak Ridge National 
Laboratory (ORNL) Lid Tank Shielding Facility^ ^ showed that the insertion 
of relatively thin slabs of material between a fission source and a thick water 
shield gives an effect that can be correlated by a simple exponential 
attenuation factor that is characteristic of absorption processes alone. This 
behavior might not be expected since nonabsorption effects predominate in 
fast-neutron attenuation. However, the large thickness of water (at least 
6 g/cm^) filters out the neutrons deflected by the sample and thereby effects 
their complete removal. Therefore the effect of slabs of shield materials 
when followed by large thicknesses of hydrogenous material can be 
described by an equivalent absorption cross section averaged over energy, 
called the removal cross section. 

An ideal way to experimentally determine the validity of the concept 
would be to use a plane monodirectional source of fission neutrons incident 
on a tank of water. For such a configuration the removal-cross-section 
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concept would be valid if the doses measured at the source distance z in 
water could be correlated by 

D2(2) = D, (2)e -2R* (4.8-25) 

where D^ (2) is the observed neutron dose attenuated through a distance 2 of 
water, D j (2) is the observed neutron dose attenuated through a slab of 
material of thickness t (inserted between source and water) plus water of 
thickness 2, and S jj is the macroscopic removal cross section. 

In the experimental shielding facility where this concept was originally 
tested, the source was a finite isotropic disk rather than a plane 
monodirectional source. However, with a few simple assumptions about the 
behavior of neutron penetration, an analog to Eq. 4.8-25 was derived and 
used in obtaining removal cross sections from experimental da ta .^ ' 

Values of microscopic removal cross sections (CTR) determined from 
measurements at the Lid Tank Shielding Facility for several elements and 
compounds are shown in Table 4.2. Empirical functions useful for interpola
tion in the experimental data have been derived by Zoller:^^ 

^ = 0.19Z-»-''*3 cmVg ( f o r Z < 8 ) 

= 0.125Z-"-5 6 5 cmVg ( f o r Z > 8 ) (4.8-26) 

-^ = 0 .206^-^ 2-0.294 ^ Q 206 [AZ)-"^ (4.8-27) 

where Z is the atomic number. Most of the macroscopic removal cross 
sections given in Table 4.3 were obtained with Eq. 4.8-26. 

It should be emphasized that most of the removal cross sections 
determined by experiment were obtained for a slab-type configuration with 
water following the shield material and may not be applicable to other 
configurations. Trubey and Chapman^' reported that in a homogeneous 
medium the removal cross section for oxygen is 0.75 ± 0.05 b rather than 
0.99 ± 0.10 b as shown in Table 4.2. They also note that the removal cross 
section may vary with sample thickness (the value for oxygen obtained from 
the homogeneous-medium measurements increased from 0.72 b at a distance 
90 cm from the source to 0.79 b at a distance 140 cm from the source). 
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Table 4.2—MICROSCOPIC REMOVAL CROSS SECTIONS OF VARIOUS 
ELEMENTS AND COMPOUNDS MEASURED AT THE ORNL 

LID TANK SHIELDING FACILITYt 

Material 

Aluminum 
Beryllium 
Bismuth 
Boron 
Carbon 

Chlorine 
Copper 
Fluorine 
Iron 
Lead 

Lithium 
Nickel 
Oxygen 

a^ , b/atom 

1.31 ± 0.05 
1.07 ± 0.06 
3.49 ± 0.35 
0.97 ±0.10 
0.81 + 0.05 

1.2 ±0 .8 
2.04 ±0.11 
1.29 ±0.06 
1.98 ±0.08 
3.53 ± 0.30 

1.01 ±0.05 
1.89 + 0.10 
0.99 ±0.10 

Material 

Tungsten 
Zirconium 
Uranium 
Boric oxide, B2O3 
Boron carbide, B4C 

Fluorothene.CiFaCl 
Heavy water, D2O 
Hevimet (90 wt.% W, 

6wt.%Ni, 4wt.%Cu) 
Lithium fluoride, LiF 

Oil, CH2 
Paraffin, CaoHg2 
Perfluoroheptane, C7F16 

a^j, b/atom 

3.36 
2.36 + 0.12 

3.6 ± 0.4 
4.30 ± 0.41 

4.7 ±0 .3 

6.66 ± 0.8 
2.76 ±0.11 

3.22 ±0.18 
2.43 + 0.34 

2.84 ±0.11 
80.5 ± 5.2 
26.3 ± 0.8 

tFrom E. P. Blizard (Ed.), Reactor Handbook, 2nd ed., Vol. Ill, 
Part B, Shielding, p. 83, Interscience Publishers, a division of John 
Wiley & Sons, Inc., New York, 1962. 

There is really no reason to expect the removal cross section to remain 
constant with sample thickness since the removal concept is the result of a 
crude application of theoretical principles; however, the variation should not 
be very great up to about five relaxation lengths. 

Another point to be emphasized is that the removal cross section for a 
material can be applied only when that material is used in conjunction with a 
hydrogenous shield since hydrogen is required to moderate and absorb the 
scattered neutrons, as occurred in the experiments for determining the 
removal cross sections. Thus a minimum thickness of hydrogenous material 
following the sample is required to validate the use of removal theory. When 
the hydrogenous material is water, moments-method calculations have 
shown that about 60 cm is required, whereas experimental results indicate 
that about 45 cm is adequate. If the hydrogen thickness is less than that 
provided by this amount of water, the neutrons interacting with the heavier 
elements will not be adequately "removed", and the effective removal cross 
section will be decreased. 

It follows from the removal-cross-section concept that the removal cross 
sections of elements in a series of slabs or mixed together should be additive; 
i.e., the number of relaxation lengths becomes 
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I'^Riti 
t 

where the index i refers to the various elements. This additive property has 
been generally accepted, even though some discrepancies have been noted, 
particularly in regard to compounds. 

Removal cross sections can be predicted theoretically. Phenomenologi-
cally, the removal process can be considered equivalent to the total reaction 
rate minus the forward component of the scattering process. This su^es t s 
that an estimate of the removal cross section could be obtained from the 
transport cross section. As it turns out, 2 R =^tr for neutrons between 6 
and 8 MeV; therefore 

2 R = 'Etr = '^t-'^s COS 9 (4.8-28) 

where cos 9 is the average cosine of the neutron scattering angle per collision 
in the laboratory system. 

Removal cross sections can also be estimated from 

2 R = | 2 f (4.8-29) 

where 2^ is the average total macroscopic cross section between 6 and 
8 MeV, and from 

^ = 0.21^-°-5 8 (4.8-30) 
P 

where p is the density and A is the atomic weight. Figure 4.10 compares 
graphs of measured values of S ^ / p and 2^/p at 8 MeV as a function of 
atomic weight. A reasonably good fit to the curve for 4̂ > 10 is obtained by 
Eq. 4.8-30. 

(b) Removal Cross Sections for Hydrogen-Deficient Shields. The tradi
tional removal cross section as discussed in the preceding section is limited in 
application to a shield configuration that has a hydrogen density of at least 
6 g/cm^ in its outer layer. Recognizing the usefulness of a removal cross 
section that could be applied for shields that contain less hydrogen, Dudziak 
and Schmucker**" performed a series of calculations to investigate the effect 
on the removal cross section of varying the surface density of the hydrogen. 
Using a simplified P3 approximation to the transport equation, they 
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Table 4.3—FAST-NEUTRON REMOVAL CROSS SECTIONS 
AND MASS ATTENUATION COEFFICIENTS t 

Element 

Aluminum 
Antimony 
Argon 
Arsenic 
Barium 

Beryllium 
Bismuth 
Boron 
Bromine 
Cadmium 

Calcium 
Carbon 
Cerium 
Cesium 
Chlorine 

Chromium 
Cobalt 
Copper 
Dysprosium 
Erbium 

Europium 
Fluorine 
Gadolinium 
Gallium 
Germanium 

Gold 
Hafnium 
Helium 
Holmium 
Indium 

Iodine 
Iridium 
Iron 
Krypton 
Lanthanum 

Uad 
Lithium 
Lutetium 
Magnesium 
Manganese 
Mercury 
Molybdenum 

Atomic 
number 

13 
51 
18 
33 
56 

4 
83 

5 
35 
48 

20 
6 

58 
55 
17 

24 
27 
29 
66 
68 

63 
9 

64 
31 
32 

79 
72 

2 
67 
49 

53 
77 
26 
36 
57 

82 
3 

71 
12 
25 
80 
42 

P, 
g/cm' 

2.699 
6.691 

5.730 
3.500 

9.013 
9.747 
3.330 
3.120 
8.648 

1.540 
1.670 
6.900 
1.873 

6.920 
8.900 
8.940 
8.562 
4.770 

5.166 

7.868 
5.903 
5.460 

19.320 
13.300 

7.280 

4.930 
22.420 

7.865 

6.150 

11.347 
0.534 

1.741 
7.420 

13.546 
10.200 

2R/ /> 
(calc), 
cm'/g 

0.0293 
0.0136 
0.0244 
0.0173 
0.0129 

0.0678 
0.0103 
0.0575 
0.0168 
0.0140 

0.0230 
0.0502 
0.0126 
0.0130 
0.0252 

0.0208 
0.0194 
0.0186 
0.0117 
0.0115 

0.0120 
0.0361 
0.0119 
0.0180 
0.0176 

0.0106 
0.0112 
0.1135 
0.0116 
0.0139 

0.0133 
0.0107 
0.0198 
0.0165 
0.0127 

0.0104 
0.0840 
0.0112 
0.0307 
0.0203 
0.0105 
0.0151 

% cm 

0.0792 
0.0907 

0.0993 
0.0450 

0.1248 
0.1003 
0.1914 
0.0523 
0.1213 

0.0354 
0.0838 
0.0870 
0.0243 

0.1436 
0.1728 
0.1667 
0.1003 
0.0550 

0.0621 

0.0938 
0.1060 
0.0963 

0.2045 
0.1484 

0.1009 

0.0654 
0.2408 
0.1560 

0.0783 

0.1176 
0.0449 

0.0535 
0.1505 
0.1424 
0.1543 

2 R / P 
(exp.), 
cm /g 

0.0292 ±0.0012 

0.0717 ±0.0043 
0.010 ±0.0010 

0.0540 ± 0.0054 

0.0407 ± 0.0024 

0.020 ±0.014 

0.0194 ±0.0011 

0.0409 ± 0.0020 

0.0214 ±0.0009 

0.0103 ±0.0009 
0.094 ± 0.007 

tFrom L. K. Zoller, Nucleonics, 22(8): 129 (1964) 
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Table 4.3—(Continued) 

Element 

Neodymium 
Neon 
Nickel 
Niobium 
Nitrogen 

Osmium 
Oxygen 
Palladium 
Phosphorus 
Platinum 

Potassium 
Praseodymium 
Radium 
Rhenium 
Rhodium 

Rubidium 
Ruthenium 
Samarium 
Scandium 
Selenium 

Silicon 
Silver 
Sodium 
Strontium 
Sulfur 

Tantalum 
Tellurium 
Terbium 
Thallium 
Thorium 

Thulium 
Tin 
Titanium 
Tungsten 
Uranium 

Vanadium 
Xenon 
Ytterbium 
Yttrium 
Zinc 
Zirconium 

Atomic 
number 

60 
10 
28 
41 

7 

76 
8 

46 
15 
78 

19 
59 
88 
75 
45 

37 
44 
62 
21 
34 

14 
47 
11 
38 
16 

73 
52 
65 
81 
90 

69 
50 
22 
74 
92 

23 
54 
70 
39 
30 
40 

P. 
g/cm' 

6.960 

8.900 
8.400 

22.480 

12.160 
1.820 

21.370 

6.475 
6.500 
5.000 

20.530 
12.440 

1.532 
12.060 

7.750 
3.020 
4.800 

2.420 
10.503 

0.971 
2.540 
2.070 

16.600 
6.240 

11.860 
11.300 

6.550 
4.500 

19.300 
18.700 

5.960 

3.800 
7.140 
6.440 

S R / P 
(calc). 
cm^/g 

0.0124 
0.0340 
0.0190 
0.0153 
0.0448 

0.0108 
0.0405 
0.0144 
0.0271 
0.0107 

0.0237 
0.0125 
0.0100 
0.0109 
0.0145 

0.0163 
0.0147 
0.0121 
0.0224 
0.0170 

0.0281 
0.0142 
0.0322 
0.0160 
0.0261 

0.0111 
0.0134 
0.0118 
0.0104 
0.0098 

0.0114 
0.0137 
0.0218 
0.0110 
0.0097 

0.0213 
0.0131 
0.0113 
0.0158 
0.0183 
0.0156 

"^RIP 
S R , (exp.). 
c m ' cm /g 

0.0861 

0.1693 0.0190 ±0.0010 
0.1288 

0.2432 
0.031 ± 0.002 

0.1747 
0.0493 
0.2279 

0.1533 
0.0812 
0.0498 
0.2238 
0.1810 

0.0249 
0.1777 
0.0941 
0.0676 
0.0818 

0.0681 
0.1491 
0.0313 
0.0407 
0.0540 

0.1838 
0.0837 

0.1238 
0.1111 

0.0898 
0.0981 
0.2120 0.0082 ±0.0018 
0.1816 0.0091 ± 0.0010 

0.1267 

0.0599 
0.1306 
0.1001 
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Fig. 4.10—Removal cross sections per unit mass for fission neutrons as a function of 
atomic weight. (From Chapman and Storrs. ) 

calculated the transport of neutrons from a Po—Be source through lead 
followed by varying amounts of polyethylene in spherical geometry. They 
showed that removal cross sections for large thicknesses of polyethylene 
approached the asymptotic value of 0.116 ± 0.01 cm"^ (3.53 ± 0.30 b) 
reported from the Lid Tank Shielding Facility measurements with a fission 
source. They also found that by extrapolating the cross-section curve back to 
a zero thickness of polyethylene they obtained a value that was very close to 
the value of 0.128 cm"* for lead alone reported by Price and Dunn'* * on the 
basis of experiments with Po—Be neutrons. 

Dudziak'* ^ later performed calculations with better cross sections, more 
neutron-energy groups, and an SgPs approximation and reached essentially 
the same conclusions. The results of the calculations by Dudziak and 
Schmucker^° are shown in Table 4.4. The macroscopic removal cross 
sections given in the table were fit to within 1.4% by a least-squares 
procedure to an analytical expression given by 



RADIATION TRANSPORT 185 

ZR{t) = 0.1106 (1 - 0.9836 e-o-»09t^ (4.8-31) 

where t is the polyethylene thickness in centimeters. 

In calculations similar to those of Dudziak and Schmucker, but for a 
fission source, Shure, O'Brien, and Rothberg'*^ determined removal cross 
sections for both iron and lead followed by polyethylene thicknesses up to 
50 cm. They used two cutoff energies, E^, 302 keV and 0.625 eV, in their 
dose calculations. The resulting microscopic removal cross sections, shown in 
Table 4.5, indicate that, at least for small thicknesses of polyethylene, the 
removal cross sections are relatively insensitive to the cutoff energy chosen. 
Shure et al. also found that the asymptotic values for iron and lead are in 
very good agreement with the experimental values of 1.98 ± 0.08 b and 
3.53 ± 0.30 b, respectively, obtained from Lid Tank measurements.^ ' When 
no polyethylene was present, the value for lead of 0.74 b (0.0243 cm"') 
obtained for the fission source is nearly twice that for the Po—Be source, 
which could be expected since the Po—Be spectrum is harder. The fact that 
the asymptotic removal cross sections are in agreement for the two different 
sources shows that the inelastic scattering in lead apparently degrades the 
high-energy part of the spectra sufficiently to produce spectra that 
equilibrate about equally after traversing approximately 10 cm of polyeth
ylene. 

Table 4.4—EFFECTIVE MACROSCOPIC REMOVAL CROSS 
SECTIONS FOR LEAD FOLLOWED BY VARIOUS 

THICKNESSES OF POLYETHYLENE (Po-Be SOURCE)! 

yethylene 
lickness, 

cm 

3 
5 
7 
9 

15 

21 
25 
31 
35 
41 

Lead 
removal cross 
section, cm 

0.0328 
0.0473 
0.0597 
0.0701 
0.0901 

0.0999 
0.1036 
0.1069 
0.1081 
0.1093 

tFrom Dudziak and Schmucker.'"' 
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Table 4.5—EFFECTIVE MICROSCOPIC REMOVAL CROSS SECTIONS 
FOR IRON AND LEAD FOLLOWED BY VARIOUS 

POLYETHYLENE THICKNESSES (FISSION SOURCE)t 

Polyethylene 
thickness. 

cm 

0 
1 
2 
5 

10 
15 
20 
25 
30 
40 
50 

Iron 

£<- = 302 keV 

0.76 
0.94 
1.08 
1.37 
1.66 
1.84 
1.91 
1.95 
1.97 
1.99 
1.99 

Removal cross section, b 

£c = 0.625 eV 

0.61 
0.78 
0.91 
1.24 
1.60 
1.79 
1.89 
1.95 
1.97 
1.99 
1.99 

Lead 

Ec = 302 keV 

0.88 
1.17 
1.41 
1.92 
2.47 
2.83 
3.06 
3.20 
3.29 
3.37 
3.41 

E^ = 0.625 eV 

0.74 
1.00 
1.22 
1.74 
2.36 
2.77 
3.03 
3.19 
3.28 
3.37 
3.41 

tFrom K. Shure, J. A. O'Brien, and D. M. Kothherg, Nuclear Science and Engi
neering, 35: 373 (1969). 

Shure et al. also investigated the use of these removal cross sections for 
hydrogen-deficient shields with the technique that is normally used when 
removal cross sections are applied to large thicknesses of hydrogenous 
shielding following the laminations of nonhydrogenous material. The normal 
expression used to estimate the neutron dose transmitted through t cm of 
hydrogenous material and several slabs of nonhydrogenous materials is 

Dlam{x,t)=Dcalc{0,t) exp ( - I Af,-a,-̂ ,-) 

where Dcalc ~ calculated dose for the hydrogenous material alone 
Ni = density 

(4.8-32) 

= removal cross section 

= thickness of the ith nonhydrogenous material 

Equation 4.8-32 was applied to three different shield configurations using 
lead and iron followed by various thicknesses of polyethylene. Values of 
Dcalc were obtained, and values of a,- from Table 4.5 were used. A 
comparison of the resulting dose rates with dose rates obtained with a 
separate, complete transport calculation showed that the frequently used 
design technique exemplified by Eq. 4.8-32 does provide good estimates 
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(within 10%) of the dose rates when the removal cross sections for 
hydrogen-deficient shields are used. 

(c) Albert—Welton Kernel. The experimentally determined removal 
cross section provides a simple method for determining the attenuation 
through nonhydrogenous portions of shield material if there is a hydrog
enous portion of the shield. Albert and Welton^'' developed a semiempirical 
theory of neutron attenuation which provides a simple method for 
calculating neutron attenuation through the complete shield; this theory is 
based on the removal-cross-section concept. Basic to the Albert—Welton 
model is the assumption that any collision with hydrogen has the effect of 
an absorption. This, in effect, neglects the buildup of scattered neutrons that 
have undergone only small-angle scatterings by hydrogen. Inelastic scatter
ings with heavier nuclei are also regarded as absorptions because of the 
characteristically large energy loss. Other collisions are mainly small-angle 
elastic scatterings within the forward peak of the angular distribution, which 
amount to virtually no collisions. Attenuation through the materials in the 
shield is described in terms of removal cross sections. For hydrogen the 
removal cross section is taken to be its energy-dependent total cross section, 
and for the heavier nuclides it is taken to be an empirical energy-independent 
removal cross section, such as the removal cross sections described in the 
preceding paragraphs. Thus the Albert—Welton model provides a theoretical 
basis for the removal-cross-section concept. 

The Albert—Welton formulation for fission neutrons from a plane 
monodirectional source which penetrate through a mixture of water and 
heavy materials is given by 

4>(r) oc e x p ( - Lfi XR.r) f^ S{E) e-'^H{E)r ^^ (4.8-33) 

where <i>(r) = number flux density at a distance r from the source 

2 R J. = macroscopic removal cross section of ith element (other than 
hydrogen) 

fj = volume fraction of ith nonhydrogenous material 
S{E) dE = fraction of fission neutrons at E in interval dE for a total 

source of 1 fission cm"^ sec"' 
2 / / = total macroscopic cross section for hydrogen 

The proportionality constant included in the original Albert—Welton 
derivation has been removed from Eq. 4.8-33 to avoid the implication that 
the actual number flux density can be computed from this relation. 
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Integration of Eq. 4.8-33 yields the original Albert—Welton kernel for 
the hydrogenous portion of the shield, which is included in the first set of 
braces in the following relation: 

*(r) « {(/„,r)°-29 exp[-0.928Cf„,r)"--^«]} 

X e x p [ - / ^ r 2 i j „ - ( l - / ^ ) r Z ; / ; . Z R j (4.8-34) 

where f^ = volume fraction of water 

2 R P - removal cross section of oxygen 

^Ri - removal cross section of nonhydrogenous materials other than 
the oxygen in the water 

r = distance (in cm) from source 

Although the derivation was for a plane source, Eq. 4.8-34 holds for a 
point source when multiplied by the geometric factor l/47rr^, and the 
integral of S[E) is normalized to 1 fission/sec. The relation is also valid when 
slabs of heavy material are laminated with the water. A minimum of about 
50 or 60 cm of water is required between the dose point and the last of the 
heavy materials (whether as slabs or in a mixture) to comply with the 
limitations of the removal-cross-section concept. 

On the basis of more recent experimental results, Casper"* "* evaluated 
new constants for the Albert—Welton kernel. The result for a point 
fission-spectrum source is 

47rr2 D(r) = 2.78 X 10"5 [(^^,)0.349 ^-0.4 2 2 (/^r)0.6 98 J ^-0.0308/^r 

(4.8-35) 

where D{r) is the neutron dose rate r centimeters from the source [in 
(rads hr"' )/(neutrons sec" ' ) ] . When shield materials are inserted between the 
water and the fission source, Eq. 4.8-35 is multiplied by 

exp [ - ( 1 - / ^ ) E I ; R ^ ] 

to obtain the dose rate at the shield surface. 

4.9 COMBINATION REMOVAL-DIFFUSION METHODS 

The removal-cross-section concept described in Sec. 4.8.2 provides a 
method for calculating the dose rate due to high-energy neutrons that 
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penetrate a hydrogenous shield; however, the technique cannot be used to 
predict the dose rate due to neutrons that have been moderated to 
epithermal and thermal energies or to predict the thermal-neutron-flux 
density, which is used to obtain the capture gamma-ray source distribution 
within the shield, t 

The energy and spatial distributions of the moderated neutrons 
throughout a shield have sometimes been calculated by using the elementary 
theories of neutron diffusion and moderation (see Sec. 4.6). However, these 
methods of reactor physics are normally used to predict the average behavior 
of neutrons involved in reactor criticality problems, and, in the typical 
shielding problem, the neutron of significance is the unusual fission neutron 
that is born with an energy much greater than the average and contributes 
very little to reactor criticality. This unusual neutron penetrates into regions 
deep vdthin the shield. 

The inadequacy of both the removal concept and the elementary 
methods of reactor-core physics in calculations of the whole shielding 
problem has resulted in neutron transport's being regarded as a two-step 
process: a step in which a high-energy neutron penetrates to a position deep 
within the shield, where it suffers a collision that degrades its energy 
significantly, and a step in which the resulting low-energy neutron enters a 
diffusion process. Characteristically, the distance traveled by the neutron 
during the diffusion process is very much shorter than the distance it 
traveled as a fast neutron, and, once it has entered this second phase, the 
methods of elementary reactor physics conceivably could apply. Such 
reasoning prompted the first-flight correction to the age in Fermi age 
theory.^ This correction was necessary because a neutron cannot enter a 
process described as continuous slowing down (as required by Fermi age 
theory) until it has had at least one collision. 

The development of high-speed computers and the resulting extensive 
use of multigroup diffusion theory for reactor criticality problems made the 
development of a technique that utilized diffusion theory even more 
attractive. In one of the first attempts to develop such a technique, 
Haffner'*^ in 1958 used diffusion theory to calculate thermal-neutron-flux 
densities within a reactor shield and then normalized the results at each 
space point according to the fast-neutron dose rate obtained with the 
Albert—Welton kernel (see Sec. 4.8.2). Anderson and Shure^* used a similar 
technique when they applied a known pure-water kernel to normalize 

tCalcuIations of capture gamma-ray doses are discussed in Chap. 6. 
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diffusion (actually Pj multigroup) results for a metal—water mixture. In 
general, they obtained good results for laminated iron—water shields. 
(Shure^ '^ ' later showed that a straightforward Pj calculation without the 
use of a kernel also gave good results.) The main assumption in the 
Anderson—Shure technique is that the multigroup procedure correctly 
calculates the ratio between the flux densities in water and those in a 
metal—water mixture. 

After several attempts had been made to develop a technique by 
correcting diffusion-theory results, a different approach to the problem 
evolved: a first-flight correction was made before the diffusion-theory 
calculation was performed. In the early calculations this was done by 
computing the singly scattered neutron-flux density from the uncollided-flux 
density and then using it as a source for the diffusion-theory calculation. A 
difficulty inherent in this procedure, especially for hydrogenous media, is 
that the penetrating component does not consist of uncollided neutrons 
alone but rather is composed largely of neutrons that have had one or more 
collisions and have suffered only small angular deflections. When these 
neutrons were accounted for, the first successful two-step model for 
neutron-penetration calculations became available. The method, in which the 
fast-neutron removal concept and age-diffusion theory are combined, is 
commonly referred to as the Spinney method, after its chief developer. The 
remainder of this section is devoted to a description of the original version of 
this removal—age-diffusion method and subsequent variations of it. 

4.9.1 The Spinney Method 

The Spinney method as first described by Avery, Bendall, Butler, and 
Spinney"*^ is characterized by the following basic physical assumptions: 

1. The penetrating component of the source neutrons consists of the 
high-energy neutrons that suffer only small energy loss through small-angle 
elastic collisions and the uncollided neutrons. 

2. Neutrons that suffer large energy loss through either wide-angle elastic 
or inelastic scattering are regarded as being removed from the fast beam. 

3. The removed neutrons are degraded in energy in accordance with age 
theory and do not travel significantly from the point of removal. 

4. The removed neutrons have a spectral and spatial distribution closely 
described by the conventional age-diffusion theory near the source. 

5. Neutrons removed after they have penetrated deep into a homoge
neous medium develop an equilibrium spectrum and are attenuated at the 
same rate as the penetrating component. 
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6. The equilibrium spectrum of the degraded neutrons is disturbed near 
the boundaries between dissimilar media. [Note: Assumptions 4, 5, and 6 
are not required in recent versions of the Spinney method.] 

The neutron-flux density (removal flux) that corresponds to the 
penetrating component of the source neutrons is given by the kernel 

^°(^^= 4 ^ ('-̂ -̂ ^ 

where SQ is the source strength of high-energy neutrons of energy E, 2/^ is 
the removal cross section evaluated at the source energy E (determined 
experimentally or approximated by the transport cross section (see 
Sec. 4.8.2), and r is the distance traveled by the neutron to its first collision. 

The removed neutrons are regarded as a local source of degraded 
neutrons, the behavior of which can be adequately described by diffusion 
theory. The intensity of this source is given by 

S(r) = < I . O ( r ) S R = ^ ^ ^ ^ (4.9-2) 

These neutrons (i.e., the removed neutrons) are then introduced into the 
highest energy group of an appropriate set of multigroup diffusion equations 
to calculate the distribution of the low-energy neutron-flux density. The 
equations comprising the multigroup set are given by 

V̂  <i',(r)-fe? *i(r) 

V2 $ . ( , ) _ ^2 ,!,.(,) _ ^ $.(,) + ' - '-^_ '-'" = 0 (,• > 1) (4.9-3) 

where $,• = group flux density for the Jth group 
Zai = group-averaged macroscopic absorption cross section 
Di = group-averaged diffusion coefficient 
k'f = slowing-down length for the ith group 

The slowing-down length is calculated according to age theory and for 
the Ith group is given by 

2a 1 S{r) 

A-. fe?->*,--.{'-)_Q 

(,•=1) 

( ' • > ! ) 

[kj JEi.i 
dE , , « «> 

(4.9-4) 3^{E)J:s{E)^tr{E)E 
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where ^{E) is the average change in lethargy per collision for neutrons of 
energy E, ^^(E) is the macroscopic scattering cross section for neutrons of 
energy E, and 'Eff{E) is the macroscopic transport cross section for neutrons 
of energy E. 

In the original formulation of the Spinney method, five energy groups 
were taken for the multigroup diffusion calculation. The bottom group, 
which was a thermal group, had an upper energy of 2.81 kT 
(fe = 8.61 X 10"^ eV/°K), and the highest group (i = 1) had an upper energy 
of 2 MeV. All removed source neutrons were assumed to be placed directly 
into the highest group. Solution of the group-diffusion equations, of course, 
required that boundary conditions be specified at the inner and outer 
surfaces of the shield. A zero reentrant condition was imposed at the outer 
boundary; this was stated in terms of the extrapolated boundary condition, 
which requires that the flux densities vanish at a distance 3.13D,- beyond the 
physical boundary. The boundary conditions at the inner surface of the 
shield were established by requiring that the flux densities and current 
densities be equal to those determined from reactor-core calculations. 

The original formulation was used with some success in predicting the 
distribution of low-energy neutrons in concrete shields for existing graphite-
moderated reactors, but it was not suited for general application. Some of its 
inadequacies were that (1) all the removed neutrons were placed in one 
group, which neglected any additional diffusion-type transport that could 
have been accomplished at energies greater than 2 MeV; (2) not enough 
groups were used to adequately represent the continuous slowing-down 
process; and (3) the transfer of neutrons from one energy group to the next 
lower group did not describe the large energy losses experienced by neutrons 
that had suffered an inelastic scattering or a collision with hydrogen. 

4.9.2 Variations of the Spinney Method 

Many modifications and variations of the Spinney method have been 
developed, such as the RASH E, MAC, NRN, SABINE, and ATTOW codes.t 
In the RASH E formulation of Bendall'*^ and Butler,'*^ the modifications in
clude an increase in the number of groups to 16 and a broader energy range 
(0 to 10 MeV). Also, the multigroup equations have been modified to include 

tRASH E IS the latest member of the RASH family of codes utilizmg the Spmney method. 
RASH E is included m a FORTRAN code package known as COMPRASH and can be obtamed from 
the Radiation Sliielding Information Center. Oak Ridge National Laboiatory, Oak Ridgc, Tenn Code 
packages tor MAC, NRN, SABINE, and ATTOW are also .ivailable from this center 
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a direct source of removed neutrons into the nine highest energy groups. The 

equations so modified are as follows: 

V^ 4), (r) - k\ 4>. (r) - ^ <i., (r) + ^ = 0 (/ = 1) 

V^ $,.(r) - fe? <I.,-(r) - -^ 4),-(r) 

+ - ~ ^ ^i-i (O + ^ = 0 (/ = 2, 3, ..., 9) 

V ^ * , - ( r ) - f e ? * , - ( r ) - - ^ * , - ( r ) 

A-i fef-i 
+ — 5 ^ ^i-i{r) = 0 ( / = 1 0 , 1 1 , . . . , 15) 

V^ $ r ( r ) - ^ - * r ( r ) + — ^ 4 > , 5 ( r ) = 0 ( r = 1 6 ) (4.9-5) 
DT ^T 

where T corresponds to / = 16 and designates the thermal-group flux density. 
The source term for the I'th group resulting from removed neutrons is 

designated as i//,-(r) and is determined in the following manner. The fission 
spectrum is divided into 18 energy bands of 1-MeV width. Neutrons removed 
from the /th energy band are given by 

r % i r ( £ ) Zi>(E)e-^R(^) ' ' 
Sy(r) = SoJg . -^ ~ dE ( , -=1 ,2 , . . . ,18) (4.9-6) 

where SQ is a magnitude factor determined by the power level of the reactor 
and F[E) is the normalized fission spectrum. 

The neutrons from each of the removal bands in the energy range 0 to 
8 MeV {j = 18, 17, 16, . . ., 11) are introduced into the energy group whose 
upper energy limit corresponds to the mid-energy of the band. Neutrons 
from all the bands above 8 MeV (/' = 10, 4, 8, . . ., 1) have a mean energy of 
about 10 MeV and are all introduced into the highest energy group 
(group 1), which has an upper energy of 10.5 MeV. This transfer scheme, 
along wdth the removal-band and energy-group structures for RASH E, is 
given in Table 4.6. 
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Table 4.6— 

Band 
No. 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 

REMOVAL-BAND AND ENERGY-GROUP STRUCTURES 

Removal bands 

Energy 

Upper 

18 
17 
16 
15 
14 

13 
12 
1] 
10 

9 

8 
7 
6 
5 
4 

3 
2 
1 

limits, MeV 

Lower 

tFrom Bendall. 

17 
16 
15 
14 
13 

12 
11 
10 

9 
8 

7 
6 
5 
4 
3 

2 
] 

0 

4 9 

USED IN RASH Et 

Group 
No. 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 

Diffusion group IS 

Energy limits, MeV 

Upper 

1.05 X 10' 
7.5 X 10" 
6.5 X 10" 
5.5 X 10" 
4.5 X 10" 

3.5 X 10" 
2.5 X 10" 
1.5 X lO" 
5.0 X 10"' 
5.0 X 10'^ 

5.0 X 10"^ 
5.0 X 10"" 
5.0 X 10"' 
5.0 X 10"' 
5.5 X 10"'' 

Lower 

7.5 X lO" 
6.5 X 10" 
5.5 X 10" 
4.5 X 10" 
3.5 X 10" 

2.5 X 10" 
1.5 X 10" 
5.0 X 10"' 
5.0 X 10"^ 
5.0 X 10'^ 

5.0 X 10"" 
5.0 X 10"' 
5.0 X 10"* 
5.5 X 10"'' 
7.0 X 10"* 

Thermal 

Band-to-
group 

transfer 
scheme 

1 -> 1 
2 - > l 
3 ^ 1 
4-*' l 
5 ^ 1 

6 ^ 1 
7 ^ 1 
8 -> l 
9 - > l 

1 0 ^ 1 

11-^2 
1 2 ^ - 3 
13->4 
14->5 
15->6 

16->7 
17->8 
1 8 ^ 9 

In the MAC formulation of Peterson^' and Canali, llsemann, and 
Preusch,^ ^ the number of energy groups for the group-diffusion calculation 
is increased to 31 over an energy range from 0 to 10 MeV. Again the fission 
spectrum is divided into 18 removal bands of 1-MeV width. The flux density 
for the source of the removed neutrons (usually called removal flux) 

corresponding to the ^t\\ removal band, which is introduced into the ith 
energy group, is given by 

*̂ . = ^o/J V i F ( E ) e - ^ « ( ^ ) ' ' 

g A-nr^ 
dE (4.9-7) 

The removed neutrons are introduced into the five highest energy groups 
only. The transfer scheme, along with the removal-band and energy-group 
structures, is given in Table 4.7. 
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Table 4.7—REMOVAL-BAND AND ENERGY-GROUP STRUCTURES USED IN MACt 

Band 
No. 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 

Removal bands 

Energy limits, MeV 

Upper Lower 

18 
17 
16 
15 
14 

13 
12 
11 
10 

9 

8 
7 
6 
5 
4 

3 
2 
1 

17 
16 
15 
14 
13 

12 
11 
10 

9 
8 

7 
6 
5 
4 
3 

2 
1 
0 

Group 
No. 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 
31 

Diffusion groups 

Energy 1 

Lower 

6.065 X 10" 
3.679 X 10" 
2.231 X 10" 
1.353 X 10" 
8.208 X 10"' 

3.876 X 10"' 
1.830 X 10"' 
6.733 X 10"^ 
2.600 X 10"^ 
2.000 X 10"^ 

9.118 X 10'^ 
3.355 X 10"' 
1.234 X 10"' 
4.540 X 10"" 
3.199 X 10"" 

2.255 X 10'" 
1.120 X 10"" 
6.147 X 10"' 
3.374 X 10"' 
1.515 X 10"' 

1.016 X 10"' 
4.565 X 10"* 
1.375 X 10"* 
9.214 X lO"'' 
6.716 X lO"' 

4.140 X 10"'' 
2.775 X 10"' 
1.860 X 10"'' 
1.247 X 10"'' 
7.595 X 10"* 
0 

imits, MeV 

Upper 

1.000 X 10"' 
6.065 X 10" 
3.679 X 10" 
2.231 X 10" 
1.353 X 10" 

8.208 X 10"' 
3.876 X 10"' 
1.830 X 10"' 
6.733 X 10"^ 
2.600 X 10"^ 

2.000 X 10"^ 
9.118 X 10"' 
3.355 X 10"' 
1.234 X 10"' 
4.540 X 1 0 " 

3.199 X 10"" 
2.255 X 10"" 
1.120 X 10"" 
6.147 X 10"' 
3.374 X 10"' 

1.515 X 10"' 
1.016 X 10"' 
4.565 X 10"* 
1.375 X 10"* 
9.214 X 10"'' 

6.716 X 10"' 
4.140 X 10"' 
2.775 X lO"' 
1.860 X 10"' 
1.247 X 10"' 
7.595 X 10"* 

Band-to-

group 
transfer 
scheme 

1 ^ 1 
2 -^1 
3 ^ 1 
4 - > l 
5 ^ 1 

6 -> l 
7 ^ 1 
8 ^ 1 
9 ^ 1 

10->1 

11 -*1 
12^-1 
13->2 
1 4 ^ 2 
1 5 ^ 2 

1 6 ^ 3 
1 7 ^ 4 
18->5 

tFrom Peterson." 

The MAC formulation differs from the original Spinney method in two 
major respects: (1) the removal flux density is added directly to the 
group-diffusion flux density after the diffusion calculation has been 
performed, and the combined flux density is then used to calculate source 
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neutrons for the lower energy groups; and (2) the general treatment of the 
downscatter transfer of neutrons allows for a more accurate representation 
of inelastic scattering and collisions with hydrogen. 

The highest energy group (i = 1) in the diffusion part-of the calculation is 
not actually treated as a diffusion group. The collision density, 

which is based on the removal flux densities (corresponding to the energy 
bands 1 to 12), provides neutrons by downscattering from the first group 
into the feth group, k = 2, 3, . . .,K. The kinds of possible interactions, as 
described by their respective group-to-group removal cross section, 2 j ;^ , will 
determine the extent of the downscatter. A diffusion calculation is then 
performed on the second group, the neutrons removed from group 1 being 
used as the source. Solution of the group 2 diffusion equation 

D, V^ 4>2 (r) - E^ 22 fe $2 (r) - 2 , ^ -J-j (r) "̂  2 , ^ ( E^ ^ | , ) = 0 (4.9-8) 

yields the group-diffusion flux density *I'2(r)- The group 2 removal flux 
densities are then added to the diffusion flux density so that the downscatter 
source of neutrons from group 2 into the lower energy groups can be 
calculated. The downscatter source into group fe (fe = 3, 4, . . .,K) is given by 

2 2 f e [ * 2 ( r ) + E ^ * | 2 ( r ) ] 

The calculation proceeds in a similar fashion from one group to the next 
lower group and so on. In general, for i > 2 the group-diffusion equations are 
given by 

K 

Di V' ^.-(r) - E S,-fe $,-(r) - 2^,- $,-(r) 
fe=i+i 

+ E^ Zy,- [<J.y(r) + E ^Ij] = 0 (i = 3, 4, . . .) (4.9-9) 

and the downscatter source term from the ith group into the feth group is 

2,fe [*,-(r) + *°,] 

In the NRN formulation of Hjarne^^ and Hjarne and Leimdorfer,^" the 
energy structure for the removal bands and energy groups differs signifi-
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cantly from that used in the RASH and MAC formulations. The group 
structure for the group-diffusion calculation consists of 24 groups over an 
energy range 0 to 18 MeV, and the fission spectrum is divided into 30 bands 
of varying widths. The removal-band and energy-group structures are given in 
Table 4.8. 

Table 

Band 
No. 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

4.8—REMOVAL-BAND AND ENERGY-GROUP STRUCTURES USED IN NRNt 

Removal bands 

Energy 

Upper 

1.8 X 10' 
1.43 X 10' 

1.136 X 10 ' 
9.021 X 10" 
7.166 X 10" 

5.692 X 10" 
4.521 X 10" 
3.591 X 10° 
2.853 X 10" 
2.267 X 10" 

1.800 X 10" 
1.430 X 10" 
1.136 X 10" 
9.021 X 10"' 
7.166 X 10"' 

5.692 X 10"' 
4.521 X 10"' 
3.591 X 10"' 
2.853 X 10"' 
2.267 X 10"' 

1.800 X 10"' 
1.430 X 10"' 
1.136 X 10"' 
9.021 X 10"^ 
7.166 X 10"^ 

5.692 X 10"^ 
4.521 X 10"^ 
3.591 X 10"^ 
2.853 X 10"^ 
2.267 X 10"^ 

limits, MeV 

Lower 

1.43 X 10' 
1.136 X 10' 
9.021 X 10" 
7.166 X 10" 
5.692 X 10" 

4.521 X 10" 
3.591 X 10" 
2.853 X 10" 
2.267 X 10° 
1.800 X 10" 

1.430 X 10" 
1.136 X 10° 
9.021 X 10"' 
7.166 X 10"' 
5.692 X 10"' 

4.521 X 10"' 
3.591 X 10"' 
2.853 X 10"' 
2.267 X 10"' 
1.800 X 10"' 

1.430 X 10"' 
1.136 X 10"' 
9.021 X 10"^ 
7.166 X 10"^ 
5.692 X 10"^ 

4.521 X 10"^ 
3.591 X 10"^ 
2.853 X 10"^ 
2.267 X 10"^ 

1.80 X 10"^ 

Group 
No. 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 

Diffusion group 

Energy limits, MeV 

Upper 

1.8 X 10' 
1.35 X 10' 

1.0 X 10' 
7.8 X 10" 
5.9 X 10" 

4.4 X 10" 
3.4 X 10" 
2.6 X 10" 
2.0 X 10" 
1.5 X 10" 

1.2 X 10" 
9.0 X 10"' 
7.0 X 10"' 
5.1 X 10"' 
3.8 X 10"' 

3.0 X 10"' 
1.0 X 10"' 

3.10 X 10"^ 
1.10 X 10"^ 
1.10 X 10"' 

1.10 X 10"" 
1.10 X 10"' 
1.10 X 10* 

Lower 

1.35 X 10' 
1.0 X 10' 
7.8 X 10° 
5.9 X 10" 
4.4 X 10° 

3.4 X 10° 
2.6 X 10" 
2.0 X 10" 
1.5 X 10" 
1.2 X 10" 

9.0 X 10"' 
7.0 X 10"' 
5.1 X 10"' 
3.8 X 10"' 
3.0 X 10"' 

1.0 X 10"' 
3.10 X 10"^ 
1.10 X 10"^ 
1.10 X 10"' 
1.10 X 10"" 

1.10 X 10"' 
1.10 X 10'* 
1.05 X 10"' 

Thermal 

tFrom Hjarne.' 
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The NRN method allows for the transfer of removed neutrons from each 
removal band to many diffusion groups. The source for the I'th diffusion 
group arising from all removal collisions is 

where 4>2 is the removal flux density in the ^th energy band and S j ; is the 
energy-averaged removal cross section for the transfer of neutrons from the 
^th removal band into the ith energy group. 

The calculation also allows transfer from each diffusion group to all 
lower energy diffusion groups. The group-diffusion equation for the ith 
group is given by 

Di V^ 4.,-(r) - E , 2,-fe *,-(r) - Z„- <J>,-(r) 
R=I-H 

+ E^2y,*y(r) + 2 | , -4>«=0 (4.9-10) 

where the various diffusion-theory parameters have conventional definitions. 

The SABINE code, described by Ponti, Preusch, and Schubar t ' ' and by 
Nicks, Perline, and Ponti , ' ^ represents later European technology than 
RASH and NRN. SABINE uses 19 removal groups and 26 diffusion groups. 
The code is also one dimensional and can solve problems in slab, cylindrical, 
and spherical geometries. Particular attention has been paid to the coupling 
of the removal flux with the diffusion equations. The assumed model in 
SABINE makes use of the same transfer matrix for band-to-group and 
group-to-group transfers, i.e., 

2y,- = Zgi 

where the removal band g and diffusion group i correspond to the same 
energy and j "^ i. Within-group transfer of removal neutrons to the diffusion 
group of the same energy range is also included. 

Gamma-ray transport is accomplished by using seven energy groups and 
empirical region-dependent buildup factors based on transport calculations. 
Both primary sources (fission gamma rays) in the reactor core and secondary 
sources (capture and inelastic-scattering gamma rays) generated within the 
shield can be included. 

The ATTOW code is a recent British development described by Collier 
and Curtis^ ' and by Avery and Curtis.^^ It is a two-dimensional (finite 
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cylinder or 2D rectangular) diffusion code that can accept removal sources 
prepared by a built-in subroutine. The removal-source subroutine calculates 
sources at points determined by the routine and fits two-dimensional 
polynomials, of order chosen by the user, to the results. These data are put 
on tape in a form that can be used by ATTOW. The spatial integration over 
the reactor core is performed by a Gaussian scheme using a stored table of 
zeros and weights. 

Removal cross sections 2^,- are input to the program, allowing the user 
control of the removal assumptions. The full group-to-group transfer matrix 
2y,- is also assumed for the diffusion treatment. 

The ATTOW code has been used extensively in the United Kingdom for 
solving problems associated with fast breeder reactors. It was found that the 
results were somewhat sensitive to the energy-group structure chosen.^* A 
23-group structure was judged best. This sensitivity is most pronounced 
when materials such as graphite are present and is attributed to the 
continuous slowing-down (age theory) assumption, although even a full-
scatter matrix cannot preserve the energy—angle correlation in diffusion 
theory. These difficulties should not be apparent in hydrogenous materials, 
which generally have short diffusion lengths. 

4.9.3 Differences in Current Methods 

A comparison of the preceding formulations shows that, with respect to 
the removal-band and energy-group schemes, RASH E and MAC are similar 
in concept and identical in many respects. The NRN, SABINE, or ATTOW 
approach is more general and should provide the most accurate model if the 
required removal and transfer cross sections are known. 

With regard to removal cross sections, RASH E and MAC use the cross 
sections suggested by the original Spinney formulation, which has the 
general form 

S R = 2 ; , - / 2 ; e Z (4.9-11) 

where 2j^ = removal cross section 
2f = total macroscopic cross section 

Eel - elastic-scattering cross section 
/ = fraction of elastic collisions that can be regarded as glancing 

If / is taken to be the average cosine of scattering in the laboratory system, 
juo, the removal cross section becomes the transport cross section originally 
used by Spinney. In general, the parameter / cannot be determined 
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intrinsically, and thus a value must be assumed or determined empirically. 
This has been done for a large variety of typical shield configurations, and 
the removal cross sections thus determined are used with a high degree of 
confidence. 

The NRN removal cross sections are obtained by experimentally 
determining the angles of scatter above which elastic collisions can be 
considered as removals. The removal cross section is given by 

XR = 'Lt-2TT iLen o{d) d{cos 6) (4.9-12) 

where a(0) is the differential elastic-scattering cross section per unit solid 
angle about the scattering angle d in the center-of-mass system and 6^ is the 
scattering angle above which the collision is considered to be a removal. The 
value of 0R is determined by comparing predicted neutron reaction rates 
with experimental values. Aalto^ ^ obtained a best value of cos 0/{ = 0.45 for 
hydrogen, and cos 9ji - 0.60 was obtained for other nuclides. With these 
values of 0R, a full set of removal cross sections can be derived. 

The NRN removal cross sections may not have any advantage over the 
Spinney cross sections since each scheme involves only a single adjustable 
parameter, dg^ a n d / , respectively. 

The MAC scheme for transferring removed neutrons into energy groups 
differs significantly from that used by either RASH E or NRN. The 
procedure in MAC is to add the removal flux density to the newly calculated 
group-diffusion flux density to estabhsh the group-to-group downscatter 
source. In contrast, RASH E and NRN introduce the removed neutrons into 
given groups as source neutrons to that group, a more natural procedure for 
the group-diffusion calculation. The RASH E has a very restricted transfer 
scheme wherein the removed neutrons from a given removal band are 
introduced into a prescribed energy group and into no other. The NRN 
provides for a much more general scheme, using a removal matrix to describe 
the transfer of removed neutrons from a given removal band into any of the 
lower energy groups. 

Of the methods mentioned, the slowing-down model embodied in 
NRN, and especially in SABINE, gives the most accurate description of the 
slowing-down process. It involves a general-group to any lower energy-group 
transfer matrix using detailed elastic and inelastic scattering cross sections 
for all nuclides. A similar scheme is employed by MAC; however, some 
inaccuracy is allowed in the description of the nonhydrogen elastic 
scattering. 
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The RASH E uses a group-to-group transfer cross section based on the 

continuous slowing-down (age) model, which allows transfer to the next 

lower energy group only. This could lead to serious inaccuracies, particularly 

with respect to inelastic scatterings and collisions with hydrogen. 

In conclusion, we should note that the Spinney method, used much 

more in Europe than in the United States, provides reliable results. As with 

any empirical method, it should be applied with some caution. Before being 

used extensively for design, removal-diffusion results should be compared 

with rigorous calculational methods or experiments for similar configura

tions. The simplicity and speed of computation give the Spinney method a 

significant advantage over more-sophisticated methods in design work. 
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EXERCISES 

4.1 Explain why the expression 

^{r,n,E) dn dE {n-n)dS 

in Eq. 4.2-1 gives the net (outward minus inward) leakage through the differential 
surface dS. 

4.2 Transform the particle-flux-density form of the Boltzmann equation with energy as 
an independent variable (Eq. 4.2-8) into its equivalent form with the energy-flux 
density, / = £<!>, as the dependent variable and the wavelength, X, as an independent 
variable. [Hint:/(X) =/(£) . ] 

4.3 Starting with the Boltzmann equation (Eq. 4.2-8), show that for a one-speed 
one-dimensional slab geometry with azimuthal symmetry the equation reduces to 

/ i ^ ^ ^ + 2f *(x,/i) = s{x,fi) + -^ fo" io^ f-\2:,(n,n')*(x,n')*'d4>'dct> 
ox In 

in which jl = cos 6, where 6 is the polar angle of J2 with respect to the x-axis, thus 
verifying Eq. 4.3-1. 
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4 Show that for the one-dimensional spherical geometry the Boltzmann equation can 
be reduced to 

34>(r,M.E) ^ ( I - M ! ) 3 * ^ ) , ^ 
or r on 

+ S{r,H,E) + i.x /o Sj(r,E'->£,/io) ^{r,E',n') dE' dfj! 

thus proving Eq. 4.4-3. 
5 Using the form of the Boltzmann equation obtained as a result in problem 4.2, show 

that for a one-dimensional slab geometry photon transport is described by 

n ^ ^ ^ ^ ^ + 2,(X) i{x,\,n) = s(X,n) 5 (x) 
ox 

+ Jo hniix.x'jj-') 5;j(x',n'-n)^6(i - x -̂  x' - si'-si) dn' dx' 

in which /l/ = I2*i (i is the unit vector along the x-axis), 2((X) is the total attenuation 
coefficient, and 2s(X ,J2 'SI) is the differential macroscopic Compton cross section 
for scattering from wavelength X through an angle whose cosine is SI 'SI. This 
proves Eq. 4.5-2. 





Monte Carlo Methods 
for Radiation Transport 

W. E. SELPH and C. W. GARRETT KJ 

Monte Carlo techniques have been so important in shield analysis in the past 
decade that a separate chapter on this subject is warranted. For a more 
formal and detailed development of general Monte Carlo techniques, the 
reader is referred to one of the texts devoted to the subject. '" ' We will be 
concerned primarily with the step-by-step development of radiation-
transport applications of the method based on a knowledge of microscopic 
cross sections and elementary probability theory. A brief discussion on use 
of the method to solve integral equations is given as an aid to understanding 
the equivalence of this method witii other means of solving the Boltzmann 
transport equation. 

We assume that the reader has some grasp of the elementary concepts of 
probability, namely, that the probability of one of several possible events 
occurring will be approximately equal to the ratio of the number of 
times the desired event occurs to the total number of events observed in an 
unbiased manner. As the number of observations increases, this ratio should 
more closely approximate the true probability. Beyond this simple concept, 
more specific definitions will be developed as they are required. 

Much of the information available on the physics of individual nuclear 
interactions is obtained experimentally by observing the fate of large 
numbers of particles. In like manner, Monte Carlo may be considered as a 
means of repeatedly applying interaction probability data to individual 
particles selected randomly until a sufficient number of particles have been 
observed to allow conclusions to be drawn concerning the macroscopic 
multicollision behavior of the total population of particles within a material 
region. Dependence on such a mathematical experiment for the macroscopic 
probabilities (shield leakage, particle absorption density, etc.) is in many 
ways analogous to the laboratory determination of microscopic interaction 
cross sections. To be sure, the laboratory experiment may be based on the 
observation of a much larger sample than can be processed economically in 

207 
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the mathematical game, but the principles are the same. Research on the 
problem of increasing the sample size or employing other methods to reduce 
the uncertainty associated with Monte Carlo data has led to the development 
of special techniques combining analytical estimates with random particle 
tracking. 

It is possible to show how the various steps involved in a Monte Carlo 
solution correspond to terms of the Boltzmann transport equation. Although 
Monte Carlo may be considered a means of solving the Boltzmann equation, 
it is more properly a modeling of the principles from which the 
Boltzmann equation was developed; that is, the method may be developed 
and properly applied to radiation-transport problems without reference to a 
differential transport equation. The general course followed in this chapter is 
to develop individually, and in a logical sequence, the steps required to solve 
a radiation-transport problem by the Monte Carlo method. 

Before getting into the detailed operations involved in generating a 
particle track, we will first discuss the general organization of the tasks. 
Approaches to accomplishing these tasks then will be developed through the 
chapter. Since our objective is to explain the logical processes involved in 
applying the Monte Carlo method, little space is devoted to explaining how 
these operations are programmed for the computer. Programming is a strong 
function of the nature of the computer, its auxiliary equipment, and the 
language used. Further, a large number of general-purpose computer codes 
using the Monte Carlo method for shielding applications are readily available, 
and the probability is rather high that developing a new code for a particular 
application will not be required. 

Simply stated, the Monte Carlo approach requires that we construct case 
histories of the travel of individual particles through the geometry and then 
analyze these histories to derive relevant data, such as flux density and dose 
rate. One particle history includes the birth of a particle at its source, its 
random walk through the transporting medium as it undergoes various 
scattering interactions, and its death, which terminates the history. A death 
can occur when the particle becomes absorbed, leaves the geometric region 
of interest, or loses significance owing to other factors (e.g., low energy). 

If we assume for the moment that the source—shield geometry has been 
mathematically modeled, the major steps involved in generating a particle-
track history are shown in Fig. 5.1. 

The loop 2 through 4 is continued until the particle parameters fall 
outside some predetermined limit of values, such as geometrical bounds, 
minimum energy, or minimum statistical weight (a concept to be developed 
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later). This process only generates particle histories. Separate provision must 
be made for estimating desirable output quantities, such as flux density, 
current density, or interaction densities. The first three operations in Fig. 5.1 
involve the selection of parameters at random from a probability distribution 
of all possible values of these parameters. Thus a sufficiently large number of 

Choose 
source 
parameters 

(1) 

i 
Select 
path length 

(2) 

Select 
collision 
parameters 

(3) 

Compute 
particle 

after collision 
(4) 

Fig. 5.1—History generator. 

selections of a given parameter would be distributed in the same manner as 
the corresponding probabilities. The steps in making a random selection 
from such probability distributions are based on the use of numbers 
randomly distributed between the limits of 0 and 1. 

5.1 SAMPLING FROM PROBABILITY DISTRIBUTION FUNCTIONS 

As suggested earlier, all physical processes, including the emission of 
radiations from sources and their subsequent transport through material, are 
probabilistic; that is, one cannot predict, with certainty, exactly what will 
occur for every individual particle in the process. Nevertheless, such 
stochastic, or random, processes can be effectively characterized and 
predictions can be made by describing the average behavior of many 
elements or by estimating with a known degree of confidence (but never 
with certainty) the behavior of one element. Mathematically this charac
terization is accomplished through the use of various probability functions. 
Processes dependent on one or many independent variables may be so 
handled. 

An event is a physical occurrence, for example, a coin toss resulting in a 
head or a photon assuming a specific energy EQ. An event space is the set of 
all possible (mutually exclusive) events within the process under considera
tion. Event spaces, sometimes called sample spaces, may be finite and 
discrete (the coin-toss problem where it contains only two points, heads and 
tails), continuous (the visible electromagnetic spectrum), and/or infinite in 
extent. 
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Clearly, events such as heads and tails require numerical representation 
to be handled effectively from a mathematical standpoint. Thus events are 
mapped onto real numbers by a function called a random variable. For 
example, a coin-toss random variable might be a function that assigns 0 to 
tails and 1 to heads. To be precise, one must define the random-variable 
functions used. For the subject matter of this text, however, the event and 
the value assigned it by the random variable (e.g., a photon produced at 
energy E is assigned the value E) will be quite clear, and we will not 
explicitly define the mapping function. 

Inherent in the Monte Carlo procedure is the concept of the probability 
density function (PDF) (also called frequency functions and probability 
distributions). This concept is an extension of differential distribution 
functions introduced in Sec. 2.2.1. The probability density funct ion, /(x) , 
describes the relative frequency of occurrence of its random variable, x. Its 
domain (all possible values of x) constitutes the event space. 

Let P[X<XQ<X+AX) be the probability that a random variable XQ lies 
within the interval {x,x + Ax) of its event space. The PDF f{x)'\ is related to 
this probability by the equality 

P{X<XQ<X+AX) = f{x) Ax (5.1-1) 

as Ax becomes vanishingly small. Thus the PDF is central to the prediction 
problem, and knowledge of the PDF enables one to obtain the probability of 
occurrence of a specific event. Equation 5.1-1 shows that the PDF/ (x) gives 
the probability of occurrence per unit interval of the random variable x. 

Over larger intervals PDF's are used with differentials. Thus 

P{a<x<b) = j^^ f{x) dx (5.1-2) 

Since PDF's describe relative frequencies of occurrences of events within an 
event space, two properties of PDF's emerge; namely, 

0 < / ( x ) (5.1-3) 

and 

f^^f{x)dx = l (5.1-4) 

tAs with differential distributions, the concept is easUy extended to two or more variables and 
may be changed to phase-space notation by substitutingP for x, where P represents (r,Il,£). 
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Equation 5.1-4 states that the probability of finding a chosen event 
somewhere within its event space must be unity, and Eq. 5.1-3 accrues from 
the fact that relative frequencies (i.e., probability values) must be positive. 

The cumulative distribution function (CDF) gives the probability that 
the random variable x has a value less than or equal to some fixed value. It is 
given by 

P{x<Xo) = E{xo) = J "J f{x) dx (5.1-5) 

Two restrictions placed on F{x) that follow from Eqs. 5.1-3 and 5.1-4 are 

hm E{x) = 1 (5.1-6) 

anc 

lim F(x) = 0 (5.1-7) 

The probability P[a<x<b) of x lying within an interval {a,b) is thus given 
by 

P(a<x<fo) - f^^ f{x) dx = F{b) - F[a) (5.1-8) 

Clearly, if the variable x can only take on values within some finite range, 
then one may substitute the lower bound of that range for —°° and the upper 
bound for -H» in the preceding expressions. 

Various distribution functions may be encountered which are not 
probability density functions. For example, a variable may be limited to the 
region 2 < x < 4 and be distributed proportional to x^ in that region. The 
function x^ violates both of the preceding restrictions on probability values 
but may, with proper normalization, be converted to a PDF. In this case the 
PDF/ (x) is given by 

and 

J?" x̂  dx 
/z x^ dx 

^ ( ^ o ) = i r - 7 ^ - (5.1-10) 
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Or, stated more generally, where q[x) is any function of x that is positive for 
all values of x, 

/(x) = J^''^ (5.1-11) 
/_g(x)c/x 

anc 

r» q(x) dx 
F{xo) = ':Z^) ' - (5.1-12) 

J-oo q(x) dx 

Where the event space is discrete, the random variable can only take on 
selected values, and the PDF /(x,) is defined by 

P{xi.i<xi<xi+,)=f{xi) (1 = 1,2,...) (5.1-13) 

wnere 

£M-) = i 
i 

The CDF becomes 

Pixi<xn) = F(x„) = I f{xi) (5.1-14) 
( = 1 

The mean value of a distribution is given by 

x-Ui^=Lxif{xi) (5.1-15) 
1=1 

in the discrete case, or by 

X = HX = fZ, X f{x) dx (5.1-16) 

in the continuous case. Since the average of a large sample of values of x 
tends to this point, ju is sometimes called the expected value of x. 

The expected value of ^(x) is then 

g-Lg{xi)f{xi) (5.1-17) 
( = 1 
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and in the continuous case 

g = fZg{x)f{x)dx (5.1-18) 

Note that 

x2 = £ x ? / ( x ; ) (5.1-19) 
1=1 

The variance .of a distribution function is a measure of how closely the 
distribution is grouped about the mean. The variance, denoted a^, is defined 
as 

ol-t{xi-p)^ f[xi) (5.1-20) 
i=l 

in the discrete case or as 

ol = fZ {.X - n)^ f[x) dx (5.1-21) 

in the continuous case. A little manipulation will show that 

ffj = x^ - nl (5.1-22) 

in either of the preceding expressions. The standard deviation is often used 
instead of the variance as a measure of the dispersion about the mean. The 
standard deviation, a^, is given, logically enough, by 

Ox-(olf (5.1-23) 

In analyzing and solving problems involving random processes, one must 
randomly select events from distributions for which the PDF's are known, 
exactly or approximately. Thus the problem is first to choose a value of fix) 
[or its equivalent, F{x)] by some random process. Then, having obtained 

/ (x) , find X, which, of course, defines the desired event. Comprehending this 
inverse process is often difficult for the beginner, who is accustomed to 
calculating values of / (x ) , given x. It is common practice to use random 
numbers equally distributed between 0 and 1 to obtain random samples of a 
variable that will be distributed in the same manner as / (x ) . if a random 
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number n (0 < n < 1) is chosen, the value of the associated random variable 
X may be obtained by solving the inverse of the equation 

¥{x) (5.1-24) 

for X, where F(x) is a cumulative distribution function. We emphasize that 
the random number n is a value chosen from the range of the function F(x), 
whereas the desired random variable x is a value within the domain of F(x). 

fM 

Fig. 5.2—Rejection technique. 

It is also possible to select randomly from a continuous probability 
distribution by a powerful method known as a rejection technique. Consider 
the function /(x) as plotted in Fig. 5.2. The objective is to generate a 
sequence of values of x such that /(x) is approximated by the relative 
frequency of occurrence of values of x within the collection formed by the 
sequence. 

We first choose a value K that exceeds all values of /(x) within the 
region. Then, using appropriate techniques, we obtain a random number n, 
which is used to select a value x,- (xj < x,- < X2) by the relation 

X| — Xj \ n (X2 — "^i) (5.1-25) 
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The value of /(x,) is evaluated at the selected value of x,-. Taking another 
random number n , we next select a number N from a random distribution 
between 0 and K by setting 

N--n'K (5.1-26) 

if N > f{xi), the value of x,- is rejected. The process is repeated by generating 
new values of x,- and N until N < / ( x , ) . When this occurs the value of x,- is 
accepted and used as the random sample. The probability of a particular x,-
being accepted is given by f[xi)/K and the probability of rejection is |iC — 
f{xi)]IK. Thus, after a large number of determinations for various values of 
X, the distribution in x of the values accepted would approximate the 
function/(x). 

The efficiency of this technique for selecting from /(x) is given by the 
ratio of the area under the curve to the total area, or 

/x ' fix) dx 
H= ' •'^ ' (5.1-27) 

K (X2 — ^1 ) 

For highest efficiency, the value K should be the smallest possible value that 
always exceeds/(x) in the region. 

Within a computer program, random numbers may be taken from tables 
called into the machine memory or they may be generated by a subroutine 
as needed. Random-number-gencrator routines are available as standard 
software with most general-purpose computers. Numbers obtained in either 
way arc more properly termed pseudorandom because they are systemati
cally obtained. 

Despite their availability and short length, the codes that generate 
pseudorandom numbers are not trivial. In fact, a precise test to verify the 
randomness of a generator has yet to be defined. Various criteria can be 
applied which test for necessary conditions; the test for sufficiency awaits 
further research. It is sound practice when selecting a random-number-
generator code to examine the tests to which it has been put. In fact, some 
generators that had been used for years were found to be not so random 
after all when sophisticated tests were applied. Appendix I is an introduction 
to random-number generators, including descriptions of some in general use 
and a discussion of tests for randomness. 
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5.2 THE EVALUATION OF INTEGRALS 

A theorem of statistics called the law of large numbers provides the basis 
for evaluating integrals with the Monte Carlo method. To illustrate this 
theorem, we wOl consider the integral 

Z=/^ Z{x)f{x) dx (5.2-1) 

where /(x) is a probability distribution. The term Z is called the expected 
value of the function Z(x). The law of large numbers states that this integral 
may be approximated by 

y^N=j^LZ{xi) (5.2-2) 

and that Zjv will approach Z as a limit as N approaches °°. The Xj , X2 , . . .,XN 
are randomly selected from the PDF /(x) (the rejection technique could be 
used), and Zjv is called an estimate of Z. 

Biasing may be defined as any means of distorting the sampling 
technique to advantage and may be introduced into the evaluation of the 
preceding integral by means of a biasing function, h{x) 

,^_f_mMm^ (-3, 

This equation is then evaluated by sampling from a PDF given by the 
product [/(x) h[x)], and each sample is adjusted by l/h{x). A reasonable 
choice of the function h{x) is one that will encourage choices of x most 
likely to give values of Z lying at or near the expected value; that is, the 
variance of the distribution [/(x) h{x)] should be less than that o f / (x ) . A 
goal is that the product [/(x) h{x)] approach a constant such that there is 
zero variance and 

— Z(x) 
Z = y-p-^ for any choice of X (5.2-4) 

n{x) 

The integral Boltzmann transport equation may be expressed in a form 
similar to the preceding equation for Z. To evaluate the density $(P) of 
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particles emerging from collision in a unit of phase space dP, (e.g., dP = dE 
(iJ2 dr), we can write the Boltzmann equation 

4>(P) = / K{P' -> P) 4>(P') dP' + S{P) (5.2-5) 

The term K(P'->P) dP is the transfer kernel giving the probability of a 
particle emerging from a collision in increment dP about P given that one 
particle emerged from a collision at P'; S(P) is the density of the source 
generating particles in dP directly. In generating random-particle tracks 
through a medium, we are essentially generating a ^{P') by straightforward 
sampling. Performing a statistical estimation of the contribution to dP from 
each collision point is a means of evaluating the kernel K{P'^P). Evaluation 
of the estimates from each collision point then is equivalent to performing 
the integral over volume, energy, and angle. The transfer kernel may be 
decomposed into the form 

i<:(P'-*P) = T(r'^r|£',n') C(£'^E,n'-*S2|r) (5.2-6) 

That is, the transfer kernel K is expressed as a product of T, a transport 
kernel, and C, a collision kernel. The vertical line in the arguments of the 
two functions indicates quantities that are held constant; in T, r' -> r for a 
given E , Q, ; in C, both E' -^ E and J2 -> J2 for a given r. The function T 
would contain a delta function that vanishes everywhere except where r lies 
along the ray fi ; otherwise it is essentially the probability of interaction per 
unit length along the ray. 

Functions that are introduced into this equation to provide biasing of 
parameters are often called importance functions because they provide 
sampling in those areas most important to the answer. For example, an 
importance function depending on position alone may be introduced into 
the function T by defining 

r* = r(r'^rlE',n') ^ (5.2-7) 

The /(r) function often assumes an exponential form in penetration 
problems. This function can then be combined in whole or in part with the 
exponential in the transport kernel. A Monte Carlo application of position 
biasing is discussed in the section on selection of path lengths. 
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Other importance functions of energy, angle, or position may be 
introduced into the equation in a comparable manner. Goertzel and Kalos^ 
developed the Monte Carlo application to radiation transport in phase-space 
notation. 

A more systematic and generally successful approach to importance 
sampling is to use the value function, a solution to the equation adjoint to 
the Boltzmann equation. The value function has been shown by Coveyou, 
Cain, and Yost^ to be a very good, sometimes optimum, importance 
function for biasing the Monte Carlo procedure. Cain* has shown that the 
value function can be readily obtained by S„ methods and applied to the 
Monte Carlo problem. 

5.3 SOURCE PARAMETERS 

With this background in selecting from distributions, we are now ready 
to consider the first block in the history generator routine: choose source 
parameters. The source parameters will be assumed to include the energy, 
spatial point of origin, and direction of motion of the source particle, as well 
as biasing parameters. 

These parameters may be independent, or they may be interrelated in 
various ways. For example, where the energy distribution is dependent on 
the direction of motion, the order of selection would call first for selection 
of the initial angle and then for selection from the energy distribution 
applicable to that angle. When biasing parameters are used, they are tied to 
one or more of the other parameters. 

5.3.1 Selection from an Energy Distribution 

The most convenient form for expressing an energy distribution depends 
on the nature of the distribution. Some of the forms of distribution that 
may be available for input to the problem are discussed in Chap. 2. Where 
possible, a cumulative energy distribution should be input at frequent energy 
points such that interpolation may be used vwth reasonable accuracy. Most 
distributions can be input in this form without an undue amount of data 
handling. The source-energy selection process proceeds as shown in Fig. 5.3. 
For some types of problems, energy groups may be defined by using 
boundary values: Ei, . . ., £„+i for n groups. The particles may then be 
classified both by their energies and by the n groups to which they belong. 
This procedure adds one parameter which must be specified at the source 
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but which does not necessarily alter the procedure for selecting the source 
energy. 

5.3.2 Selection of Spatial Point of the Source Particle 

The problem of locating and tracking particles from point to point in 
material regions is primarily one of geometry. Physics becomes involved only 

Generate a 
random number 

n 

Set 

n = F(E) 

Evaluate E from 
stored values of 

E vs. F(E) 

Fig. 5.3—Selection of initial energy. 

in the determination of track lengths or in the fate of the particle at the 
interaction point. 

The means of expressing geometric parameters depends on the choice 
of the coordinate system; for example, infinite-medium calculations lend 
themselves to spherical geometry, but many reactor shielding problems are 
best handled in cylindrical or rectangular geometry. Some examples of the 
selection of source spatial position are discussed in the following paragraphs. 

For sources uniformly distributed on a disk, the probability density 
function describing the distribution of source points as a function of radius 
is Ittr/nR^, where 7?i is the radius of the disk, and the cumulative 
probability distribution is 

P{r) = f^f{r')dr'=^^ (5.3-1) 

Here a random number n used to select a value P{r) can be used to select 
a random value of r directly. Since 

n = P{r)=-^^ 

it follows that 

r = R i n ^ (5.3-2) 
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At a given r the source positions are equally distributed in azimuthal angle 0; 

thus 

n = PW = ^ (5.3-3) 

and 

0 = 27rM (5.3-4) 

if 0 is to be measured only to ±ir, then 

0 = 7 r ( 2 n - l ) (5.3-5) 

and 

0 + 7r 
1 - ^ ; — 27r (5.3-6) 

This may be extended to the case of a uniform cylindrical volume 
distribution by next selecting a Z coordinate equally distributed between the 
limits on Z. 

For a nonuniform spherical-shell distribution, consider a spherical shell 
bounded by radius limits rj and rj in which the volume density of source 
particles is given by 

p = kr (5.3-7) 

The distribution function in r is given by 

47rr2 [kr) 

nk [ri — r i ) 

The cumulative distribution is given by 

/ ; /(r ' ) dr' ,4 _ 4 
P ( r ) ^ ' ' = ̂  ^ (5.3-9) 

^' f;;f{r')dr' A-r\ ^ > 

And the randomly selected radius is given by 

r ^ [r1 + n [rt - rl]'^ (5.3-10) 
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The corresponding 6 and 0 coordinates would be selected for uniform 
distribution over the shell at radius r (Sec. 5.3.3). 

A variety of other distributions may be expressed analytically so that 
coordinates may be selected from a continuous distribution. In practical 
application it may not be possible to express the distribution analytically. In 
such cases the distribution may be numerically integrated to provide a 

Fig. 5.4—Integral for isotropic distribution. 

cumulative distribution in each dimension. Where the dimensional probabili
ties cannot be separated, i.e., where 7\r,0,0) cannot be expressed in terms of 
P[r) P{9) P{<p), it may be necessary to specify P{9) and P(0) or P{d,(p) for 
each interval in r. Two approximations arc then possible in making a random 
selection: either a value of r is classified as being within a given Ar increment 
and the P{0) and /'(0) values for that increment are selected or the P[d) and 
P(0) values arc interpolated between the two adjacent values of r for which 
they are input. 

5.3.3 Selection of Initial Direction of Source Particle 

We turn next to the problem of assigning a direction to a source particle. 
Consider first sources that are emitting isotropically. Picking a uniformly 
distributed direction is tantamount to selecting unit vectors terminating 
uniformly on the surface of a unit sphere. The cumulative probability 
function is therefore given by the integral over the spherical surface area 
shown schematically in Fig. 5.4. 
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The distribution in 0 is given by 

„ f 2-n%md' de' 1 

J„ 27r sm d dd 2 

and 

0 = cos"' (1 - 2M) (5.3-12) 

The angle 0 will be uniformly distributed between 0 and ±7r, or 

0 = 7 r ( 2 n - l ) (5.3-13) 

Note that the direction cosines are functions of these two angles and can 
be computed once the angles are known. 

For a surface source emitting isotropically, the direction would be 
selected randomly from a 27r half-space, or 

f 2n sin 6' dd' 

JT'^ 27r sin 6' dd' 
« = % . . ., ,., = 1 - cos 0 (5.3-14) 

and 

0 = cos"' (1 - n ) (5.3-15) 

or, since (1 — n) is distributed in the same manner as n, 

d = cos'^ n (5.3-16) 

In like manner, for a surface source emitting a cosine distribution, the PDF is 
given by sin 6' cos 6' and the angles 6 would be selected from 

cos^d = n (5.3-17) 

or 

0 = c o s ' ' V " (5.3-18) 

Any arbitrary distribution in direction may be put in terms of tabulated 
values of P{d) and P(0). When various source distributions are to be 
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considered incident on the same shield configuration, it may be advan
tageous to run individual unit source problems. The results obtained from 
the unit source problems can then be combined with various weightings to 
stimulate a variety of source distributions. 

5.3.4 Source-Biasing Parameters 

In certain calculations it may be desirable to prejudice the selection of 
one or more source parameters to favor those most likely to contribute to 

the quantity of interest, such as shield leakage or detector response. This can 
be done by selecting a larger number of the important source particles and 
assigning to each particle a number, called its weight, to adjust for the bias 
that was introduced. Figure 5.5 illustrates this concept. 

Consider an isotropic source located at A and a detector at B. Clearly, 
source particles leaving A in the direction of B will contribute more to the 
flux density at B than those leaving in opposite directions. (We assume, of 
course, that scattering is permitted in the transporting medium.) Suppose, in 
following 10,000 source particles, we estimate that 2000 would lie in Ai7 in 
the unbiased isotropic case. However, because of their greater importance, 
we desire to force 6000 of the 10,000 to lie in AJ2. The weight assigned to 
them is V^ to remove this bias. Further, the weight of the remaining 4000 
outside of AJ2 must be increased to 2 since each history in the biased case 
represents two particles in the unbiased case. Table 5.1 summarizes these 
facts. As each particle history is generated, its contribution, 0,-, to the total 
flux density at B can be determined. This total flux density is given by 

10,000 

<I> = K 21 Wi^i (5.3-19) 
1=1 

where IV,- is the weight [Y^ or 2) of the particle contributing $,• and JC is a 
source-normalization constant. (For a unit source strength, K= 1/10,000.) 
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When biasing is used, the summation of particle weights equals that of 
the unbiased case where the weights are identically 1. However, because of 
the altered statistical sample, a more representative answer is usually 
obtained for a fixed total number of source particles. 

Table 5.1—WEIGHTS FOR BIASING ILLUSTRATION 

Histories in Af2 
Histories outside AS2 
Total No. of histories 

Unbiased case 

No. of 
histories 

2,000 
8,000 

10,000 

Particle 
weight 

1 
1 

Biased 

No. of 
histories 

6,000 
4,000 

10,000 

case 

Particle 
weight 

2 

To amplify the example, suppose the 180° range of 6 is divided into 18 
intervals of 10° each and the cumulative probability emission of a source 
particle in the / th increment is given by APy(0),y = 1, 2, . . ., 18: 

18 

lAPy(0) = l = P , 8 ( 0 ) (5.3.20) 

This distribution may be adjusted in any arbitrary manner by assigning 
probability values APj{0) and weights W- to each angular group such that 

Wj AP'j{d) = APj{d) (5.3-21) 

provided one does not violate the rule of probability that AP'j{d) < 1 and 
that 

18 

L AP'Ad) = 1 (5.3-22) 

As a second example, consider the case of a plane isotropic source where 
it is desired to bias the histories toward directions near the normal to the 
plane. The unbiased cumulative angular distribution at 6 = 10° (measured 
from the normal) as computed by Eq. 5.3-14 is 0.015. This value is to be 
increased by a factor of 5 such that 

P',(0) = 0.075 (5.3-23) 
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Particles generated within this interval will have a weight 0.2, and particles 
generated in all other categories will have probability increments 

1 — P' (\0°) 

^•(^^ ^^'j^^^ i-p\{io°) - ^•'^^^^J ^^-^'^"^^ 

and will have weights given by 

^l^,=-^ = | ^ = 1-065 (5.3-25) 

Thus the total particle weight generated by selecting N particles will be 

0.2(0.075)iV + 1.065(1 - 0.075)N = N (5.3-26) 

Situations where biasing might be used include: 

1. Selecting more source points near the periphery of a reactor. 
2. Selecting more particles with an initial direction toward the shield or 

detector. 
3. Selecting more particles with a high energy or with an energy 

corresponding to a low total cross section. 

Probability and weight adjustments can be developed for biasing the 
starting position or energy for a particular situation. It is important to 
remember that an adjustment in one category (e.g., angle interval or energy 
group) affects not only that group but the entire distribution. 

In summary, if the number of particles within a particular category is 
increased by a factor k, then their weight is decreased by a factor 1/k. The 
weight of particles in other categories is increased such that the summation 
of particle weights is equivalent to the number of particles generated. 

5.4 PATH LENGTH 

Thus far the geometry has been defined and a set of source-particle 
parameters has been selected. Next we determine the particle path length 
from the source to the point of interaction. The path length along with the 
parameters of initial direction defines the point at which an interaction 
occurs. 
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Assume initially a single infinite region through which particles are being 
tracked. If the total macroscopic cross section of the region is 2 f (£) , then 
the number of particles of energy E penetrating to depth L out of NQ trials is 

No e"^f(S) i 

and the probability of penetration to depth L is 

pn) - ""i"ber penetrating to L _ ^_s,fE) L >c,4_•^^^ 
number of trials 

The probability of particle interaction at some path length < L is thus given 

by 

P ' (L)= | ] - e - ^ f ( ^ ) ^ ] (5.4-2) 

if path lengths L to first collision are to be sampled at random, the random 
number, n, is set equal to P'{L), or 

n = l-e-^t{E)L (54.3^ 

from which 

since 1 — n is distributed in the same manner as n. 
Suppose now that a single region is bounded such that the boundary is 

encountered at path length L = A. if the randomly selected path length 
exceeds the value/I , then the particle will be assumed to have escaped the 
system. Thus values of L may be selected as shown above for an infinite 
medium and tested to determine whether they exceed A. if they do the 
particle has escaped and the history is terminated; if they do not, a collision 
is assumed to have occurred at the selected point, and collision parameters 
are calculated. The value of A will be a function of the initial direction of 
the particle and the geometry of the region boundary, and it should be 
calculated after the source direction has been selected so that it will be 
available for the test against L. 

Consider next a multiregion geometry with each region homogeneous. A 
ray extending in the direction of particle motion encounters region 



MONTE CARLO METHODS FOR RADIATION TRANSPORT 227 

thicknesses in the various regions given hy Ai, A2, . . ., Ax with associated 
total cross sections given by 2^ 1, 2^2 , • • -y^tx-

The effect of successive probabilities is such that the escape probability 
from the entire system is equal to the product of the individual 

b>X,,A^. 

NO 

1 - h/y 
"' 1 

YES (*. - V .1 . \ -s V A 
"" • " " ^ l " ' " f 2 " 2 

/ . = / l , + 

NO 

b-Z„A, 
2,2 

YES 

> £ r 3 ^ 3 

+ £,^/»,)l ETC. 

Fig. 5.6—Selection of path length. 

zone-penetration probabilities. Thus the fate of the particle along the track 
could be determined in the following way: 

Select a path length at random assuming an infinite medium with cross 
section "Lti • 

If Li exceeds Ai, move the particle to the point where its track 
intersects the boundary between region 1 and region 2. 

Select a path length at random, in the original direction, assuming an 
infinite medium with cross section 2^2-

If L2 exceeds A2, translate the particle to the region 2 — region 3 
boundary. This procedure is repeated until one of the L,-< Ai or until the 
particle escapes. 

The total escape probabihty will be given by 

PE = e x p - ( S f i ^ i +2:^2^2 •••'LtxAx) (5.4-5) 

Instead of selecting path lengths in each of the materials successively, as 

described above, it would perhaps be simpler to decide the fate of the 

particle by selecting only one random number. For this purpose we will 

define fo = E Sf,- Ai, where /I, is the thickness of material i lying along the 

particle path between the source point and the first collision. The value of h 

is selected at random from 

fo = In n (5.4-6) 

The process of finding the path length corresponding to the selected value of 
h is symbolized in Fig. 5.6. This search is continued until L is defined. Flow 
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charts for calculating boundary-intercept distances for several types of 
geometry are given by Cashwell and Everett.^ 

Biasing may be introduced into the path-length selection in a manner 
similar to that in source-particle selection; i.e., the true distribution is 
distorted in some arbitrary fashion, and the particle weight is adjusted to 
account for this distortion. The mechanics of track-length biasing depend on 
the motive for biasing. Where it is desired to improve the statistics on 
collisions internal to a region, particles may be prevented from escaping by 
picking collision points from a cumulative distribution which becomes 1.0 at 
the boundary; the weight of the colliding particle is then reduced by 
subtracting the fraction that would ordinarily escape the region. Where it is 
desired to improve the statistical data on particles penetrating a thick shield, 
particle track lengths may be stretched in a direction favoring penetration 
and reduced to the opposite direction with a commensurate adjustment in 
particle weight. In some cases the approximation is made to replace 
transport in an adjacent region by a surface effect or albedo, and one forces 
collisions to occur only at the boundary. 

To illustrate the first type of biasing in its simplest form, we return to 
the case of a single limited region. If the initial weight of a source particle is 
WQ and the path length to escape is /I i , then a particle of weight Wg = WQ 
Q-A i^t is allowed to escape, and a particle of weight 

It^= I V o ( l - e ' ^ f ^ i ) (5.4-7) 

is forced to have a collision prior to escape. The cumulative probability of 
collision P{L) is given by 

P{L)=nP{Ai) = n{l-e'^tAi^ (5.4-8) 

where P{L) is given by P{L) - 1 — e t . Solving for L, 

L - - J - I n [ 1 - n ( l - e ' ^ f ^ i ) ] (5.4-9) 
^t 

In a multiregion problem, this procedure could obviously be repeated for 
paths beyond the first, forcing the particle to remain within the region of 
interest until the history is terminated by minimum-weight or minimum-
energy criteria. 
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Biasing of track length to affect deeper penetration can be done by 
sampling from a linear rather than an exponential distribution with track 
length. For example, for a thick-slab shield with the incident radiation 
normal to the shield, the first-collision depth could be sampled from 
L - nAi, where L is the depth to first collision, n is a random number, and 
AI is the total shield thickness. For the linear distribution the probability of 
collision between some arbitrary path length Lj and Lj + dL is given by 
dL/Ai, whereas the probability in the true distribution is 2^ e'^t^i dj^^ A 
weighting function must be assigned to the particles such that the product of 
the number colliding times their weiglit is equivalent in the two systems, or 

-^ W= 2 . e ' ^ ' ^ i dL Wo (5.4-10) 

From this equality the weighting function 

W, 
= AiJ:^e''^tLi (5.4-11) 

is given, where W is the weight assigned to particles at depth Li and Wg is 
the initial particle weight in the unbiased system. Although the particle 
weight is less, a larger fraction of source particles penetrates to great depths, 
which increases the accuracy of the averaging there. 

Similarly, any other arbitrary distribution of collision densities may be 
used with the appropriate weighting schemes. One of these, the exponential 
transform, is designed to maintain approximately the same population of 
particles at any point within the shield. Since the particle population and 
flux density decrease approximately exponentially with travel through the 
shield, these quantities are weighted by a function that increases exponen
tially with shield penetration. In this scheme a solution is sought for the 
quantity 

$(r,a),£) = N(r,w,£') eS^''^'^") (5.4-12) 

where N = unbiased flux density 
r = spatial position 

CO - direction of particle motion 
E = particle energy 
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In a source-free region this amounts to biasing of track lengths only, but in a 
distributed source the same importance function is applied both to source 
starting positions and to track length. 

We will consider only the implications to initial track-length selection 
and particle weight in this section. 

For an exponential adjustment we may define a pseudo cross section 2 * 
given by 

2:; = 2 , ( £ ) - ^ ( r , a ; , £ ) (5.4-13) 

and select from a distribution of first collisions given by 

f[L) = ̂ *e-^f^ (5.4-14) 

The weight appHcable to a particle suffering a first collision at depth L can 
be obtained by equating the products of first-collision density times the 
weight in the biased and unbiased systems 

W{L) 2^ e'^f*^ dL = WQ 2 , e'^f^ dL (5.4-15) 

trom w hich 

™ = y ^ / ^ , e -^( ' - - -^)^ (5.4-16) 
Wo 2 f - ^ ( r , c o , £ ) ^ ' 

Thus, for positive values of g, the following observations may be made 
concerning the collisions occurring at a large value of L: 

1. A larger number of particles are available for interaction. 
2. The number of interactions occurring per unit flux density is smaller. 
3. The weight of interacting particles is smaller unless 2 f <̂  1. 

One form of the transform, first proposed by Kahn, ' is given by 

^(r,co,£) - e • wC (5.4-17) 

where e is a unit vector in the direction for which penetration is to be 
studied, w is the direction of particle motion, and C is a constant governing 
the magnitude of the transforming factor. In this form the magnitude of the 
transform is proportional to the cosine of the angle between e and CO [i.e.. 
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g{r,o},E) - C when the particle motion is in the direction e and 
^(r,Ci;,£) = —C in the opposite direction]. 

Eriksson^ has proposed a form 

g{r,03fi) = ±C [(X -xof + {y- yof + (̂  - ^ o ) ' ]'^ (5.4-18) 

which would give spherically inward or outward biasing (depending on the 
selection of sign) about the point (xo,3'o.^o)' Perkins and Burrell' have 
proposed the form 

2 ; = 2 , [ l - M ( a ; - e ) ] (5.4-19) 

and have made efficiency comparisons between this and the form 

2 * = 2j - C (cj • e) (5.4-20) 

No clear preference was indicated for either of these two methods from their 
study. 

One of the most persistent difficulties in applying the exponential 
transform is the possibility that the effective cross section 2 * may become 
negative. Some users^"' ° have prevented this by restricting the choice of ^ so 
that 2 f is positive for the minimum value of 2^ encountered in the 
problem. However, such a restriction in the choice of ^ may result in a severe 
limitation on the efficiency of application of the transform. 

Leimdorfer ' ' proposes two alternatives. The first is to set 

2 * = 2 ' > 0 (5.4-21) 

whenever 2 * becomes less than zero, where the value 2 is arbitrarily chosen 
by the user. The second method is simply to accept the negative value and 
select from the resulting distribution. This method is generally restricted to 
problems that have finite external boundaries at distance Tj in the direction 
of transport. Negative values are then allowed only for penetration < T j ; 
beyond the boundary they are replaced by an arbitrary positive value as 
above. Thus, along a particular track crossing the boundary, two weighting 
functions might be applied, one for each of the segments lying on either side 
of the boundary. 
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Extending these concepts to a track along which 2 * varies with the track 
length and negative values are permissible, the track-length distribution is 
given by 

E{L) = | 2 ; ( L ) | exp [^ f'^' 2 * (5) dS] (5.4-22) 

where 2<^(S) is the total cross section as a function of track length, or, if 
collision is to be forced between some limits 0 < L < T, then 

^ \Zt{L)\exp[-fi^t{S)dS] (5_4_23) 

^ ' / J { | 2 r ( L ) | exp [-S{^ 2,(S) dS]}dL 

As in previous cases, the weighting function is given by 

• » = ' ™ - (5.4-24) 

where the subscript zero refers to the unbiased values. 
Clark' ^ has prepared an excellent review of the exponential transform in 

which he discusses the efficiency of the method as a function of the form 
and magnitude of g[r,03,E). For high-energy (7 MeV) gamma-ray sources 
uniformly distributed through a 100-cm slab of ordinary concrete and for 
the transform given by 

g^co-eC (5.4-25) 

he found that the estimated relative errorf reached a minimum near C/2 = 1. 
Where the sources were distributed with slab thickness, Z, in accord with the 
function e"^-^ and Leimdorfcr's first scheme for treating negative values of 2 
was used, the minimum relative error was obtained at values of C72 lying on 
either side of 1.0 (e.g., 0.6 and 1.6) over a wide range of values of the 
parameter k (0.5 < fe < °°). As slab thickness is increased, the minimum error 
again occurs near C/2 = 1.0, although this minimum is a larger value owing 
to the increased penetration. When negative cross sections were dealt with 
and Leimdorfcr's second scheme was used, increased efficiency was noted, 
and the minimum relative error in all cases was C/2 - 1. 

tEstimated relative error = deviation of the mean/estimate of the mean = oln. 
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With various particle-weighting techniques, it occasionally happens that a 
particle arrives deep within the shield with a weight far in excess of the 
average weight of particles at that depth. The presence of these high-weight 
particles adversely affects the convergence of the value of flux density per 
unit source particle for the region. This can be prevented by use of the 
technique of splitting, which decreases the particle weight and increases the 
number of particles by the same factor. Splitting may be instituted at the 
point of collision or where previously defined boundaries are crossed. A 
parallel problem is that of particles scattering back into a region where their 
weight is so far below the average weight that further tracking would have 
little effect on the average flux density. This is adjusted by a game of 
Russian roulette. Whether or not the particle survives is determined by the 
ratio of particle weight to some arbitrary weight typical of the region. As 
discussed in the following text, a random number is used to determine the 
future of such particles. 

One may define certain minimum and maximum permissible particle-
weight values for a given region. When a particle appears with W < Il'min, a 
random number is obtained and compared with H'/H'rnin- if " < H /̂H^mim 
the particle is saved and its weight is increased by the ratio W„^[n/W so that 
it has weight li^min- i^ n> W/W^m, the particle perishes; i.e., its history is 
terminated. Any arbitrary value W between li^min and H^max (e-g-; an 
average of the two limits) could be set as the weight of particles surviving 
Russian roulette provided the corresponding ratio (W/W) is permitted to 
survive. When Ĥ  > H^mini a further test is made to determine whether 
W> H'tnax- if it is, the particle is spHt into a number of particles given by 
the integer value of the ratio IV/IV^ax) denoted as | fV/H^max j • Each particle 
resulting from the split is assigned a lower weight, WQ, given by 

and then each is tracked separately to its death. 
The boundaries at which splitting and Russian roulette occur may be 

arbitrarily defined without regard to region boundaries. The values of IVmax 
and It^rnin assigned to regions should be based on the expected behavior of 
the flux density. Where strong biasing is used in a particular direction, the 
flow of particles in the opposite direction may be adequately controlled by 
the biased track lengths so that Russian roulette is not necessary. Splitting 
may still be required, however, to cover cases where the weight-adjustment 
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quantity (2^/2^^) e~S^ becomes very large owing to approximately equal 
values of 2f and^. 

An alternative to the splitting and Russian roulette techniques is a 
technique that also performs the biasing function. In this method boundaries 
are defined at which particles crossing in one direction are automatically 
split into an arbitrary multiple, M, and those passing in the opposite 
direction suffer a fractional mortality equivalent to 1 — (1/A/). 

For example, such boundaries could be defined at surfaces where the 
flux density would be expected to decrease by a factor of 2, and the 
particles crossing the boundary toward the reduced-flux-density region 
would be doubled. In this manner the particle population would remain 
approximately at the same level through the shield, and the average particle 
weight would reflect the degree of attenuation. The efficiency of this 
method would depend in part on how well the flux-density behavior is 
predicted at the outset. 

5.5 COLLISION PARAMETERS 

When it has been determined on the basis of the total material cross 
section that a collision has occurred, it is then necessary to determine which 
of the possible nuclear species was involved and which of the possible 
interactions of that species took place. For this determination both the total 
and the individual interaction cross sections must be available to the 
computer for each nuclide over the energy range of interest. 

In a material containing several elements of atomic density p,- (nuclei/ 
cm^), and total cross section af,(cm^/nucleus), the total material macro
scopic cross section is given by 

2f =PlOti + P20t2 + • • • + PnOfn (5.5-1) 

and the probability of a particular species' being involved is given by the 
fraction of the total cross section represented by that species p,a(,72f. The 
nucleus involved in a collision can be obtained by selecting a random number 
r and comparing it to a cumulative distribution, 

k 

L PiOti 

P(k) = ~ ^ — " ^ ^^-^-^^ 

and sulvhig for fe, where k can be any integer between 1 and n, inclusive. 
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In a hke manner, the type of interaction can be determined by 
comparing another random number to 

I 

P{l)=-^~^- = r (5.5-3) 
Off 

where the a;,- are the various components of the different interactions 
making up the total cross section of element i. 

For neutrons the a;; would ordinarily be the cross sections for elastic 
scatter, absorption, fission, {n,n'), [n,2n), and {n,3n). Other identifiable 
reaction types can ordinarily be classed into one of these categories; e.g., 
{n,p), {n,a), {n,d), etc., are absorptions, and {n,n',(x) could be classed as 
[n,n ) since the resulting charged particles are of no interest except as they 
may affect the energy of the neutron given off. 

Secondary neutrons and gamma rays are associated with most of these 
interactions. Ordinarily the secondary neutrons would be included by 
tracking them in turn after the history of the incident neutron is terminated. 
The secondary gamma-ray source data would be stored for later processing 
by a gamma-ray transport program. 

For gamma rays only three cross-section components, photoelectric 
effect, compton scattering, and pair production, would be involved. Two of 
these, photoelectric effect and pair production, would terminate the history, 
although pair production would result in secondary gamma rays from 
positron annihilation, which should be included as a new isotropic source of 
0.511-MeV gamma ray. 

At first glance the choice of collision parameters would appear to be one 
of the simpler tasks in tracking a particle. This is deceptive, however, because 
the task of amassing the required cross-section data in the proper format can 
dwarf that of coding the problem. A distinguishing feature of the better 
Monte Carlo codes is the degree to which the cross-section preparation task 
has been automated (or the availability of an auxiliary code for that 
purpose). In addition to data at individual energy points, provision must be 
made (through interpolation or analytic fit) to cover all possible energies of 
interest. Schemes often used in this task include linear or logarithmic 
interpolations or polynomial fits to the data within certain energy bounds. 

An additional comphcating factor is the use of biasing in the selection of 
the interaction type. For example, incident neutrons may be assumed to 
scatter at every interaction point, and the weight of each after scattering will 
be reduced by the fraction 2^/2^, the ratio of the scattering to the total 
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cross section. In this manner the average scattering kernel will be the same as 
though the proper number of neutrons were allowed to scatter with no 
weight degradation, but the computing efficiency will generally be greater 
because histories will not be terminated by capture events. 

In practice the entire transport problem can be run with only scattering 
interactions being allowed to occur (making the proper weight reductions) 
and with the collision parameters at each interaction being stored for future 
processing. The collision parameters are then analyzed to determine 
absorption density, to make flux-density estimates (as discussed later in this 
chapter), or to calculate energy-absorption density. 

5.6 PARTICLE PARAMETERS AFTER COLLISION 

The next task is the determination of the parameters of the particle(s) 
that survive an interaction. These parameters include the type, number, 
energy, and direction of the surviving incident particle and of any 
secondaries created in the interaction. Depending on the purpose of the 
calculation, one may also wish to determine the energy deposited in the 
system. The determination of these parameters involves the application of 
differential cross-section data in even greater detail in the selection of the 
interaction type. The details of the method will necessarily depend on the 
format used in specifying cross sections. 

Rather than catalog the large number of possible nuclear interactions 
involving neutrons and gamma rays and the optional methods that may be 
employed in treating these in a Monte Carlo code, we will give examples 
illustrating the principles involved. 

Reference should be made to Chap. 3 for a discussion of the types of 
interactions and of some of the expressions for particle energy following 
collision. 

5.6.1 Neutron Elastic Scattering 

We recall that the angular distribution of elastically scattered neutrons is 
approximately isotropic in the center-of-mass system for the lighter elements 
and becomes more complicated for the heavier elements in which forward 
(and occasionally backward) scattering is usually favored. The anisotropic 
behavior generally intensifies with increasing energy of the incident neutron. 
Most Monte Carlo programs use scattering angles measured in the center-of-
mass system for selecting the scattering angle and computing energy after 
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scattering. The angle of the scattered neutron is then converted to the 
laboratory system for tracking. 

The scattering angle \p in the center-of-mass system, measured from the 
direction of travel of the neutron, will be selected randomly from an 
isotropic distribution by the formula 

cos \p = n = 2n - 1 (5.6-1) 

where n is a random number. This is identical to choosing the polar angle of 
emission from an isotropically emitting source. 

Where the isotropic scattering approximation cannot be used, the 
differential angular scattering cross sections, a(i//,£), must be used to 
determine the probability distribution of scattering angle. A customary 
procedure is to tabulate values of the cumulative scattering probability 

at discrete values of \p and £ and use interpolation in both dimensions. There 
are disadvantages to this method, however, from the standpoint of 
interpolation inaccuracies and machine-storage requirements. As an alterna
tive, the differential cross section a( >//,£) may be fit by a function such as 

o{\p,E)= AE+BE cos \P + CE cos^ yp (5.6-3) 

and the selection may be performed using the differential probabilities in 
conjunction with a rejection technique.t Values of the coefficients ^ g , B ^ , 
and CE may be input for various values of energy where the function 
provides an adequate fit. Where the function cannot provide an adequate fit, 
the differential form may still be used by selecting values at fixed values of \p 
and E and using interpolation in conjunction with a rejection technique. This 
latter method would be inferior to using the cumulative distribution where 
computing time is concerned, although input requirements for the differen
tial form are simpler. 

Once the scattering angle \p has been obtained in the center-of-mass 
system, the energy loss can be computed from the energy and momentum 

tWe should note that 0(1//,E) is often given by Legendre polynomial coefficients, providing an 
alternative to Eq. 5.6-3. 
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Select \p 
based on a{\p,E) 

Calculate E' 
(Eq. 5.6-4) 

Calculate 6 
(Eq. 5.6-5) 

Select 0 
0=n27r 

Fig. 5.7—Elastic scattering. 

balance equations and the laboratory scattering angle can be calculated. The 
equations involved in these two operations are given in Sec. 3.2.2. if, as 
before, we assume that the mass ratio of the target nucleus to the neutron is 

A, 

E[_ 1 + AJ + 2/1,-cos i// 

£ " [Ai+lf 
(5.6-4) 

and 

cos 6 = 
1 -I- Ai cos \p 

{1 + Aj + 2Ai cos ^)'^ (^-^"^^ 

where £ = energy after scatter 
£ = energy before scatter 

Ai = mass of a nucleus of type / (neutron mass = 1) 
6 = scattering angle in the laboratory system 
i// = scattering angle in the center-of-mass coordinates 

With £ ' and 6 known, the only parameter needed to resume tracking the 
neutron is the azimuthal angle 0, which is, in all cases (except where 
polarization is considered), selected from a distribution equally probable in 
the region 0 < 0 < 27r, or 0 = n27r. 

In summary, the basic operations in the neutron elastic-scattering routine 
are illustrated by Fig. 5.7. The directions of the neutron may then be 
translated into direction cosines taken relative to the geometry axes based on 
the known direction of the incident neutron and the deflection (0,0) from 
that direction. 

5.6.2 Neutron Inelastic Scattering 

An added parameter is included for neutron inelastic scattering, i.e., the 
amount of energy deposited in the target nucleus. The loss of energy by this 
means prevents the energy of the neutron after collision from being a unique 
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function of the scattering angle. The equations derived from energy and 
momentum conservationt corresponding to the elastic-scattering equations 
(Eqs. 5.6-4 and 5.6-5) then become 

1 + Ai COS \}j(l - ~ 
a - \ E 

cos a =-p 
^1 + Af (l - ^ y 2Ai cos yp 

where e is the excitation energy of the target nucleus. These equations 
reduce to the elastic-scattering relations when e = 0. For e > 0 and for Ai 
large, they become approximately E' = E — e and cos 6 = cos i//. As with 
elastic scattering, the distribution in i// must be an input quantity. 

A particular nucleus may have various excited states, each with its own 
excitation energy, e. The neutron energy required for excitation of a 
particular level is £ > [[A + 1)/A]e. When the energy of the neutron is 
sufficiently high that any one of several levels may become excited, the 
interaction probabilities may be expressed in a total inelastic-scattering cross 
section, a„„ ' (£ ) , with an associated probability distribution P{£) among the 
levels, or in terms of separate cross sections a„„ ' (£,e) associated with the 
levels. In light nuclei the levels may be dealt with individually. This may 
also be possible for some levels in heavy nuclei, but in many cases (notably 
at higher excitation energies) a large number of closely spaced levels may 
appear which require an alternate treatment. One procedure is to split the 
possible values of incident and deflected neutron energy into bands and use 
experimentally determined probabilities for group-to-group transfer. These 
are expressed as cumulative probabilities over the possible E' (energy after 
scatter) groups for a given incident group. Then E' is selected by search 
and interpolation as discussed previously. An alternative approach that can 
be used in some cases is to assume a distribution in the continuum region of 
£ ' 

f{E')=^e-^'/T (5.6-8) 

. ^ { l - l ) ' ' \ (5.6-6) 

Mrî  
(5.6-7) 

tEquations 5.6-4 to 5.6-7 are developed in detail by Cashwell and Everett.' 
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where T is a constant (or a function of E). This is a result of the statistical 
model of the nucleus developed by Blatt and Weisskopf ^ and frequently 
used in neutron-cross-section estimates. This function could be integrated to 
obtain P{E'), but it would be more appropriate to select E' from the / (£ ' ) 
distribution function using a rejection technique. 

More than one secondary energy law may be used for particles of a given 
incident energy. For example, the probability of exciting any one of several 
widely spaced levels may be 0.3, and the corresponding probability of falling 
into the continuous range may be 0.7. By generating a random number, the 
code could choose the technique to be used in calculating £ ' . 

5.6.3 Compton Scattering 

The treatment of Compton scattering collisions is similar to that for 
neutron elastic scattering in that the scattering angle is ordinarily picked 
from stored distributions and the photon energy is computed as a function 
of incident energy and scattering angle. Center-of-mass coordinates are no 
simpler in this case; thus laboratory coordinates are used. 

The photon energy after collision (discussed in Sec. 3.2.1) is given by 

'^'=l.Eitcos6) ^'-'-'^ 

where both E and E' are expressed in terms of the electron rest-mass energy 
{mc^ - 0.511 MeV). Extensive graphs and tables of the angular distribution 
are available*'*'^ for input to the program. Some investigators have elected 
to select scattering angles exactly by a rejection technique, using the 
Klein—Nishina formula (see Chap. 3) as the probability density function. 
Methods of making such an exact selection are given by Kahn' ^ and by 
Cashwell and Everett.^ 

5.6.4 Particle Absorptions 

There are no particle parameters to be calculated following an absorption 
interaction. This event simply terminates the particle history. However, a 
record of the particle parameters at the time of collision may be desired for 
collision analysis. 

As with neutrons, it may be desirable to increase the average number of 
photon scatterings per particle by forcing a scattering at each interaction 
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point and making the appropriate weight adjustment to account for the 

portion of photons that, in reality, are absorbed. 

In an absorption event secondary particles of the same type radiation as 
the incident particle may be tracked from the absorption point in the same 
calculation. If the secondary particle is of another type (e.g., gamma rays 
from neutron capture), the capture parameters will be used in formulating a 
source distribution for a separate calculation of the transport of the 
secondary particles. 

Fission of heavy nuclei is a special case of absorption in which secondary 
neutrons and gamma rays will be generated with a known yield, VQ, per 
interaction and a known energy distribution. With secondary neutrons, 
account must be taken of the weight, W, of the neutron initiating the fission. 
For example, one neutron could be generated with a weight VQW. 
Alternately, a number of neutrons could be selected from a distribution of 
integral values whose average is VQ and each of these assigned a weight W. In 
both cases the neutron energy would be determined by selection from a 
cumulative energy distribution, and the direction would be chosen from an 
isotropic distribution. 

5.6.5 Calculation of Emergent-Direction Cosines 

Usually particle directions are defined by recording the direction cosines 
of the particle-track vector. As discussed previously, scattering angles at a 
collision point are characterized by calculating the polar angle 8 (determined 
by the differential scattering cross section) and the azimuthal angle 4> (picked 
at random between 0 and In) of the scattered track relative to the incident 
track. If (a,|3,7) are the direction cosines of the incident particle, the 
direction cosines of the scattered particle {a'fi',^) are given by the set of 
equations: 

, . sin 5 cos 0 ^ sin 0 sin 6 

a=acose^yaj^-~^-P^^--^^ 

„i o . , ^ sin 0 cos 0 sin 6 sin 0 
^ = ^ c o s 0 - H 7 / J - ^ 3 — ^ ^ « ^ ^ — ^ 

y = 7 cos 0 - (1 - i^)^ sin d cos 0 (5.6-10) 



242 REACTOR SHIELDING FOR NUCLEAR ENGINEERS 

except in the case where 1—7^ approaches zero, in which case the 
degenerate form 

a = sin 0 cos 0 
j3' = sin 6 sin 0 
7' = 7 cos 0 (5.6-11) 

IS usee 

5.7 PARTICLE SCORING 

The discussions to this point have concerned the generation of source 
particles, tracking to the first collision, and the determination of the new 
particle direction and energy following collision. The process of picking 
track lengths and analyzing collisions may be continued until the particle 
history is terminated. The termination may, as previously mentioned, be the 
result of exceeding predetermined bounds placed upon energy, spatial 
position, and/or particle weight. 

We next consider the output of the Monte Carlo calculation. Specifically, 
answers are required for the following questions: What is the desired form of 
the output data? How do particle histories contribute to obtaining these 
answers? 

Consider the case of a point source and an infinite-slab shield of 
thickness T. Typical of the results that might be desired are the following: 

1. Flux density as a function of position, direction, and/or energy inside 
the shielding material. 

2. The penetrating dose or flux density. 
3. The energy and angular distribution of the penetrating particles. 

4. The distribution of penetrating particles relative to the number of 
collisions encountered before penetrating. 

5. The distribution in time of arriving particles. 

There are obviously many other possibilities. 
The flux density per unit source particle incident per unit area inside the 

infinite slab can be obtained by the sum 

* = nL^^^ (5-7-1) 
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of particles crossing a plane surface parallel to the sides of the slab, where 9 
is the angle between the particle direction and the normal to the plane. The 
result is normalized to a unit source by dividing by the number of case 
histories, n. 

The flux density at a particular location can be estimated by describing a 
volume region about that location and calculating the weight times the track 
length per unit volume of particles passing through the region. The flux 

Fig. 5.8—Statistical estimation. 

density at a point can be obtained by a method known as statistical 
estimation. This technique is used to estimate the scattered-radiation 
contribution to point detectors from scattering events within the shield and 
is often used with the forced-scattering technique discussed in Sec. 5.4. 
Consider, for example, a track within the shield in Fig. 5.8. The flux density 
at point D is estimated by determining the particle weight with which the 
particle would arrive at D (within a unit spherical detector) if it were forced 
to scatter in that direction from each point of interaction, S. if the angle 
between the incident-particle direction and the line of sight (S to D) is 6^ 
and the particle is incident on S with energy E, then the weight Wj of the 
particle forced to scatter to D is 

' ^ • • = ^ » ^ ^ ( * - ^ ) (5.7-2) 

where WQ = weight of the incident particle (at S) 
Os{E) = total scattering cross section of the element involved in the 

collision 
at{E) = total cross section of that element 

/(0^,i:) = probability density per steradian of scattering through angle dg 

Note that J f{6sfi) d^ = 1 and that the product Og f{0,E) is equivalent to the 
differential angular scattering cross section o{6,E). 
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The contribution <!>,• of the scattered particle to the flux density at D is 
given by 

e-2f(£')R 
* P Wi —^2 (5.7-3) 

where S( (£ ) is the total macroscopic cross section of the scattered particle. 
The flux density at point D is estimated by summing the contributions from 
all scattering interactions: 

'i'^-l^i (5.7-4) 
n ; 

This estimate is independent of the particle-tracking procedure and does 
not terminate the history. Ordinarily the only calculation common to both 
the estimator and the tracking routine is the determination of which nuclear 
species in the material was involved in the collision. In the estimating 
process, every collision is assumed to be a scatter in the direction of the 
detector, but, for tracking purposes, completely independent determinations 
are made of interaction type and particle parameters after collision. A better 
justification for this technique is given in Sec. 5.2. 

The problems of convergence using statistical estimation of this type 
have been examined by Kalos. '^ He shows that an infinite variance and a 
preferential tendency to converge from below (as the number of histories is 
increased) result. Nevertheless the process does converge, and it has been a 
very useful technique in many situations. 

Where surface detectors are of primary interest, a different form of 
estimator may be used. In this form flight-path length and direction are 
selected normally just as in statistical estimation, but estimates are made by 
extending flight paths in a straight line until a surface intersection is 
obtained. In one form, known as the last-flight estimate, this estimator 
consists in stretching every flight path that will provide an intersection. In 
another form, known as the first-flight estim.ate, the first-flight path length is 
adjusted, where possible, such that all collisions lie on the surface. Of course, 
appropriate weight adjustments must be made. 

To illustrate the last-flight estimator, let us consider a point source in an 
infinite medium with a spherical surface detector at radius R. Collision 
points in Fig. 5.9 are assumed at points A to D, and estimates are made by 
stretching each track until an intersection with the sphere is obtained. Note 
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that intersection is always possible for tracks inside the sphere. Projection of 
tracks from collision points outside the sphere may not intersect, but, when 
they do, there will be a double score since the particle penetrates the sphere 

Fig. 5.9—Last-flight estimator. 

twice. The estimate of flux density, $,-(i?), at the sphere for one particle 
flight will be given by 

4irR^c^i{R)=- — (5.7-5) 
Icos Pi I 

where Wi - particle weight on the ith flight 
di = total distance along the selected flight direction to the point of 

intersection 
j3,- = angle between the normal to the surface and the track at the 

point of crossing 
2,- = total cross section of the medium for particles on the ith flight 

Thus the weight of the particle is adjusted by the attrition probability of the 
total flight to the surface. For the path originating at point D (the 5th 
flight), the estimator will be 

to account for the double encounter with the surface. Here again the 
tracking continues independently of the estimates, but particle parameters 
after collision are used as a basis for making the estimates. 

The first-flight estimator is similar to the last-flight estimator except that 
adjustments are made in the first flight so that, where possible, each collision 
point lies on the surface of the sphere. In Fig. 5.10, the simulated tracks 
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involved in the estimate for each collision in the history shown in (a) are 
shown in (b) through (d). In (b) the first flight is adjusted to make the first 
collision point lie on the surface. In (c) the first flight is extended so that the 
randomly determined end point of the second flight is shifted (parallel to the 

(a) (b) 

(c) (d) 

Fig. 5.10—First-flight estimator, (a) True particle track, (b) Adjustment for first flight. 
(c) Adjustment for second flight, (d) Adjustment for third flight. 

first flight path) until it coincides with the surface. In (d) the first-flight 
length is reduced so that the third collision lies on the sphere. These tracks 
have been confined to a plane for ease of illustration, but adjustment of 
collision points lying outside the plane must still be in a direction parallel to 
the first flight. 
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Numerically, the flux value of the particle scored in each case is 

4 . R ^ ^ , W . " ' ' ^ ° - - " ° ' ^ (5.7-7) 
2,-|cos a\ 

where df = first-flight length after adjustment 
a = angle between the first-flight path and the normal at the point of 

intersection 
So = total cross section at the source particle energy 
Sj = total cross section on the ith flight 

This expression is similar to the last-flight estimator in that the path-length 
weighting factor is e . Primary differences are that the angle of 
intersection with the sphere is determined by the first flight rather than the 
last flight and that the weight is adjusted by S Q / ^ J to account for the fact 
that interaction occurs at energy during the ith flight rather than the source 
energy. In Fig. 5.10(d) the interaction point is outside the sphere; thus the 
first flight must be adjusted backward to provide intersection. The estimate 
cannot be made for points external to the sphere if projection in line with 
the first flight does not intersect the sphere or if the adjustment requires a 
negative first flight. The estimator on the first leg [Fig. 5.10(b)] will be 
numerically equivalent whether the first- or last-flight estimators are used. 

Trubey* ^ performed a series of calculations for point sources of fission 
neutrons and 14-MeV neutrons in water to compare the results of these two 
estimators. He concluded that either of the two forms may be applied with 
equal ease, but the first-flight estimator appeared to give better results, 
particularly in the low-energy (0.01 to 4 MeV) fission-neutron range. 

5.8 STATISTICAL VARIANCE 

The number of histories that must be followed to yield acceptable results 
in a given problem depends to a large extent on the nature of the answer 
desired. For example, a calculation could yield a value of total dose per 
source particle accurate to 1% and at the same time have a very large 
uncertainty associated with the current of neutrons in the range 
3 MeV < £ < 4 MeV and 10° < 0 < 30°. 

A theorem of mathematical statistics that may be invoked as a means of 
estimating statistical uncertainty is the central limit theorem. Consider an 
experiment that can result in K different ways, designated as li^i. . .Wf^ with 
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associated probabilities Pi. . . Pjc, where L Pi-1. In this case the average 
1=1 

(or mean) result may be defined as ju = E PK ^K and the dispersion (variance 
about the expected value) as 

ol =LPK {WK -lxf={LPKWJc)-lx^ (5.8-1) 

Suppose now that in a Monte Carlo penetration calculation N source 
particles are started and that the total penetrating weight (summed over N 
trials) of particles in a certain category is M. The central limit theorem states 
that 

This relates the probability that our answer will fall within some variation e 
about the true average to the number of trials and the desired maximum 
value of e 

erf(x) = - - ^ f^ e^^ du (5.8-3) 

t-^eN'^a'^ (5.8-4) 

PN ^ 0 as N ^ oo 

The value of PN would be given in terms of the third moment of the W 
distribution and for large N would not be a significant contribution. Thus, 
for a given level of probability (given value of t), the size of e is directly 
proportional to y/oJJW. Thus doubling the number of histories decreases the 
value of e only by a factor of 2" . This is a very general result; i.e., Eq. 5.8-2 
is true provided only that ju and Og exist. Spanier and Gelbard' discuss this 
and other aspects of statistical variance in some detail. 

In cases involving direct analog calculations with no particle weighting, it 
may be prohibitively expensive to increase N sufficiently to bring e within 
acceptable limits. Then an alternate means of decreasing e would be to 
decrease the dispersion, Og, by introducing biasing and weighting schemes 
that increase the number of samples for a particular output category per 
source particle, or give contributions that on the average lie closer to the 
average value, or that do both. 
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To illustrate how Og might be estimated in a particular problem, let us 
suppose N source particles are generated and their contributions to 
penetrating particles of a certain category are Xj^Xj, . . .,XAf.The average of 
this sample is defined as 

U = ~lXi (5.8-5) 
i 

and the sample variance is given by 

^lix^-y)' 

4p'-(^^ .̂y 
= X^ - Lf2 (5.8-6) 

It should be noted that U is not the true expected value; it is a computed 
average for the sample, which should approach the expected value for 
large N if the problem has been formulated properly. Thus Eq. 5.8-6 is only 
an estimate of the variance. 

The variance ol about the expected value a is related to the variance a^ 
about the average t7 of a series of observations by 

TJ - ol (5.8-7) 

Thus an estimate of a | is given by 

a | = ^ E X ? - ^ ( E X , ) ' (5.8-8) 

In some Monte Carlo programs, the X,- and X? are tabulated for use in 
calculating the variance of the answers obtained in one or more categories. In 
others qualitative judgments of the output are made on the basis of 
convergence and stability of the average as N increases. 

Some investigators have shown apparent reductions in the estimated 
variance by grouping the data, although this is not a real improvement in the 
certainty of the answer. Suppose, for example, a penetration calculation is to 
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be made with 4000 particle histories. The data may be subdivided into 40 
groups of 100 histories each and averages, jU,-, computed. The variance of 
these MI about an overall averj^e, JI, would ordinarily be much smaller than 
the variance of the individual data. 

The question frequently arises concerning the effect on variance of some 
biasing scheme. This question is not easily answered. As noted in Sec. 5.2, 
the optimum importance function gives zero variance, but we do not know it 
is optimum unless we have prior knowledge of the result we seek to 
calculate. Obviously, the importance function must reduce the variance of 
the result below that obtained from an unbiased calculation or it is useless. 
Furthermore, there are cases where the apparent (computed) variance is 
reduced, but the answer is clearly erroneous. Consequently the task of 
proving or demonstrating the adequacy of the importance function rests 
heavily on the shoulders of its advocate. Numerous schemes are used, e.g., 
comparisons with nonstochastic calculations, with measurement, and with 
unbiased, straight analog Monte Carlo. 

Systematic sampling is a technique used to obtain more representative 
answers when only a few histories are to be run—such as may be done in 
the check-out of a code. In this system the cumulative probability dis
tribution of an occurrence (e.g., source angle, track length, or scattering 
angle) may be divided into increments, and, instead of the random selection 
of variable values, selections are made by systematically rotating through the 
increments. Instead of 

F(X) = fl f{X) dX = n (5.8-9) 

one may use 

p ( X ) = i : ^ i p ) (5.8-10) 

where i = 1, 2 , . . ., N and N is the number of probability increments defined 
between 0 and 1.0. To relieve any bias that may be introduced by sampling 
from the midpoint of the increment, one may select from 

pi^)='-ir (5-8-11) 

where i = 1, 2,. . . ,N and n is a random number. In this system the increments 

are rotated but the position within an increment is selected at random. 
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5.9 DEMONSTRATION MONTE CARLO PROGRAM 

The previous sections of this chapter introduce a number of concepts 
used in a Monte Carlo calculation. A simple and obvious way to interrelate 
various segments of the problem is to formulate a Monte Carlo program. 
Following standard practice in devising a computer program, we will define 
the problem and list the major divisions of the program; in Appendix J we 
give a logic flow chart and a FORTRAN listing of the program. Appendix J 
also lists the input-data requirements and presents a test problem, including 
input and output, which an interested reader can use to verify that his copy 
of this program is running properly. Although this program does not include 
all the techniques discussed in earlier sections, its use should provide a 
first-hand appreciation of Monte Carlo methods. We have compiled and run 
this program on a small (8K core of 16-bit words) computer with only the 
card reader and printer and its FORTRAN compiler. 

The program listing contains a number of comments that describe what 
each set of statements accomplishes. Although the computer will ignore 
these comments (and they need not be included in working copies), they will 
be useful to the inexperienced programmer as explanatory notes to relate to 
the text. 

PROBLEM DEFINITION 

Neutron source: 

Shield: 

Assumptions: 

Point, monoenergetic, cosine current located on 
the face of the shield. 

Homogeneous semi-infinite slab of thickness t 

composed of a light element of atomic weight 
A. 

(1) Only capture and isotropic (center of mass) 
scattering are allowed. 

(2) No biasing. 
(3) No energy or geometry cutoff. 
(4) Cross-section handling will provide 2^(£) 

and 2^ on request. 
(5) A random-number-generating routine will 

provide random numbers on request. 

(6) Appropriate values of constants, such as 
source energy, shield thickness, maximum 
number of histories, flux-density-to-dose-rate 
conversion factors, and energy-dependent 
macroscopic cross sections, are input data. 
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Output requirements: Leakage energy and angle-dependent current, 
fluence, and dose for both shield surface and 
neutrons absorbed as a function of energy and 
z position within the shield. Neutrons leaving 
the shield at z = t are called transmitted 
neutrons, and those leaving at 2 == 0 are called 
reflected neutrons. 

Geometry: Fig. 5.11. 

Symbols used: n random number 
Q incident polar angle 
0 incident azimuthal angle 

fe cutoff angle below which Q is as

sumed to be zero 
£0 source energy 
£ energy after scattering 

M cosine of scattering angle in center-
of-mass system 

65 laboratory scattering angle 
05 azimuth of scattered direction 
H history number 
^max number of histories to be run 
L path length 
N{E,d) number of leakage neutrons 
F[E,Q) flux density of leakage neutrons 
D[E,d) dose transmitted by leakage neutrons 
Na{E,d) number of absorbed neutrons 
a,j3,7 direction cosines of particle 

z coordinate of particle in direction 
normal to shield {z = 0 is the 
shield surface on which particles 
are incident) 

K{E) Flux-density-to-dose-rate conversion 
factors 

No attempt is made to account for particle positions in the x-y plane. The 
only information desired from the leakage particles is their energy and the 
angle at which they penetrate eitiier shield surface. Calculation of the x,y 
coordinates could easily be added to the diagram, if desired, since the 
direction cosines and track length are known for each particle flight. 
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The cross-section handling subroutine, XSEC, and the random-number-
generating routine, RAND, which are included, are intended only for 
illustrative purposes and to allow the reader to duplicate results obtained in 
the text. The subroutine XSEC reads a set of cross-section data the first time 

Fig.5.11—Geometry for demonstration Monte Carlo program. 

it is called. Then a linear interpolation is performed to determine the total 
and scattering cross sections as the energy transferred to XSEC through its 
argument hst. After the first call of XSEC, no data are read, and only the 
interpolation is performed. The subroutine RAND is actually not a 
random-number generator but a table of 23 numbers and a stepping 
procedure to alter the sequence of using them. For a realistic computation, 
XSEC could be used provided the cross-section variation is approximately 
linear with energy; however, RAND should be replaced with an actual 
random-number generator. 

Major divisions of the program logic are numbered below in the same 
way as the flow chart (shaded connector symbols) in Appendix J and may be 
categorized as follows: 

1. Source-particle generation 

A. Select direction angles 6 and 0. 
B. Calculate direction cosines a, (3, and 7. 
C. Step history counter. 

D. Test for history completion. 
E. if all histories are complete, branch to print area. 



254 REACTOR SHIELDING FOR NUCLEAR ENGINEERS 

2. Path-length determination 

A. Calculate path length L. 
B. Calculate z coordinate. 
C. Test for penetration through either slab surface. 
D. if penetration occurs, store results and terminate history. 

3. Collision-parameter calculations 
A. Select scatter or absorption. 
B. If absorption, store absorption parameters and terminate history. 
C. If scattering, calculate scattering angle jtx. 
D. Calculate neutron energy £ after collision. 
E. Calculate direction angles Q^ ^^d 0^ of scattered neutron. 

4. New-particle-direction calculation 
A. Determine new direction cosines a' , j3 , and 7 ' using coordinate 

rotation equations (see second chart in Appendix J) . 
B. Return to (2) for next flight calculations. 

5. Analysis of leakage radiation 
A. Calculate dose rate per bin. 
B. Print out flux density and dose rate. 
C. Print out absorptions per increment. 

A listing of the FORTRAN coding of this problem is shown in 
Appendix J. Designation of input variables has been changed in some cases 
from those previously given for ease of coding. A table has been included to 
define input variables, Hmits, and input format requirements. Finally, the 
test problem is defined with specimen input and output. 

5.10 PROGRAMMING SUGGESTIONS 

A few additional remarks are in order concerning use of the Monte Carlo 
method for solving shielding problems. 

Monte Carlo codes tend to become quite large and complex as the 
various options on geometry, biasing, and analysis are incorporated. The 
programs are more manageable if they are broken into subroutines which are 
called into the computer fast memory only when needed (unless the fast 
memory is large enough to contain the whole program and working data). 
They have also been coded as completely separate routines linked by data 
tapes. For example, one code generates source-particle parameters and stores 
these on tape. Another code reads the source parameters and generates 
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collision histories. A third code analyzes the tape output of the collision-
history processor and calculates the desired output data, such as flux 
density, dose, and current. Each of those programs must have compatible 
features and use overlapping input data for geometry description, cross 
sections, etc. 

Checking or debugging Monte Carlo codes is a tedious and difficult task 
since the nondeterministic nature of the calculation may mask errors large 
enough to influence the answer but not large enough to make the answer 
appear unreasonable. Debugging is the step that separates the men from the 
boys. It has been found useful to debug each subroutine separately and in 
various aggregates prior to assembling the entire program. Simple problems 
can be devised to check individual calculations by allowing only one 
interaction or by inputting an extreme in geometry or energy. Additional 
output features can be inserted into the program for use during d e b u s i n g 
and complete particle histories can be printed out. If the sequence of path 
lengths, particle weights, and parameters after collision is available, errors are 
easier to detect. 

The energy cutoff specified in a fast-neutron calculation to a large extent 
will determine the average computing time required per history and thus 
should not be set lower than required by the accuracy of the problem. In 
problems designed to calculate fast-neutron dose, an energy cutoff near 0.1 
MeV is ordinarily used. 

A reasonably economical calculation can be made of thermal-neutron 
transport and diffusion from a source of thermal neutrons, but the 
epithermal region between fast and thermal is much more difficult to treat. 
The application of Monte Carlo to reactor criticality studies has been quite 
limited. The Monte Carlo method cannot compete with analytical and 
semiempirical methods because of the large number of collisions required to 
thermalize fast neutrons. It has found limited app l ica t ion , " ' ^" however, 
because of the ability to treat complex three-dimensional geometries. Monte 
Carlo has been successfully used to determine the thermal slowing-down 
density for the input to a thermal-neutron diffusion or transport code. The 
choice of a low-energy cutoff point is less important for gamma rays because 
of the rapid rise in the photoelectric cross section with decreasing energy. 
There is usually little or no incentive to track photons with energies below 
0.01 MeV. 

Monte Carlo techniques may be designed to reproduce a physical model 
in as much detail as is necessary and so provide a powerful tool for solving 
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problems with very few compromises with the physics. The Monte Carlo 
method can incorporate any geometry. To use Monte Carlo successfully, 
however, one generally must invest a considerable amount in analysis, 
programming, and computer machine time. The importance of machine time 
is often overemphasized, and analysis and programming are underempha-
sized. The user should keep in mind that a well-developed theory exists 
which specifies, in principle, a near-optimum procedure for solving a given 
problem. This procedure consists in obtaining the best possible approxima
tion to the value function for the problem and then using this function to 
obtain parameters for importance-sampling techniques or to guide develop
ment of new sampling techniques. 

As an aid to the programmer, the concept of a Monte Carlo programming 
system was developed. For example, the 05R system^' and its updated 
version 06R can, in principle, be used to solve any neutron-transport 
problem. The framework is there (cross-section handling, geometry-solving 
routines, random-walk procedures, etc.), but the programmer must incorpo
rate the special features he desires by adding subroutines to the framework. 

More recently a highly versatile and easy to use multipurpose neutron-
and gamma-ray-transport code, the MORSE code,^^ has been developed at 
the Oak Ridge National Laboratory. Some of its features include the ability 
to treat the transport of either neutrons or gamma rays or to simultaneously 
treat the transport of neutrons and secondary gamma rays; the incorporation 
of multigroup cross sections; an option for solving either the forward or 
adjoint problem; modular input—output; cross section, analysis, and geome
try modules; d e b u s i n g routines; time dependence for both shielding and 
criticality problems, and albedo option at any material boundary; one-, two-, 
and three-dimensional geometry packages; and several types of optional 
importance sampUng. 

Traditionally, Monte Carlo codes for solving neutron- and gamma-ray-
transport problems have frequently been separate codes because of the 
physics of the interaction processes and the corresponding cross-section 
information required. However, when multigroup cross sections are used, the 
energy group-to-^roup transfers contain the cross sections for all processes. 
Also, for anisotropic scattering each group-to-group transfer has an associ
ated angular distribution that is a weighted average over the various cross 
sections involved in the energy-transfer process. Thus these multigroup cross 
sections have the same format for both neutrons and gamma rays. In 
addition, the generation of secondary gamma rays may be considered as just 
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another group-to-group transfer. Therefore, when multigroup cross sections 

are used, the logic of the random-walk process (the process of being 

transported from one collision to another) is identical for both neutrons and 

gamma rays. 

In general, the Monte Carlo method is not the best method for 

one-dimensional problems since discrete-ordinates codes are likely to be 

much faster than Monte Carlo codes. For two-dimensional problems, Monte 

Carlo and discrete-ordinates methods are somewhat comparable, but for 

three-dimensional or two-dimensional time-dependent problems, there is no 

competitor to Monte Carlo for accurate solutions to transport problems. 
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EXERCISES 

5.1 Define the event (sample) space and specify a typical event for the following: (a) One 
die randomly tossed once, (b) Two dice randomly tossed together, (c) One die 
randomly tossed twice in sequence, (d) The fission-neutron spectrum, (e) A photon 
undergoing a Compton scatter. 

5.2 For 5.1(a), 5.1(b), and 5.1(c), describe and plot: (a) The probability density function 
(PDF), (b) The cumulative distribution function (CDF), (c) Were you forced to use a 
random-variable function? (Hint: Suppose the six sides of a die were labeled 
a,b,c,d,e,f rather than with spots). 

5.3 Figures 2.1 and 2.4 in Chap. 2 present spectral data, (a) Is either function a PDF? 
(b) Can the other functions be converted to a PDF? How? 

5.4 Using 1-MeV intervals, compute and plot the CDF for your answer to 5.3(a). 
5.5 A PDF is known to have the form f[x) = C sin x over the integral (0 < x < 7r), where 

C is a constant, (a) Compute C. Does the PDF satisfy Eqs. 5.1-3 and 5.1-4? 
(b) Compute the CDF. Does it satisfy Eqs. 5.1-6 and 5.1-7? (c) On one set of axes, 
plot the PDF and CDF. (d) Rather than generate random numbers, select an evenly 
distributed set of numbers in the interval (0.1) (e.g., at 0.1 intervals). Using the CDF 
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plotted in 5.5(c), obtain the values of x for each selected number. Use n = F(x) 
(Eq. 5.1-24). (e) Is the distribution of events obtained in 5.5(d) consistent with the 
PDF? (f) Would it have been so if the numbers had been selected randomly? (g) Note: 
5.5(d), 5.5(e), and 5.5(f) illustrate the principle of biasing as well as random sampUng. 
Why? 

5.6 The following experiment illustrates the rejection technique. As with any random 
process, no two experimenters should obtain exactly the same answer. One side of a 
die is labeled A, two sides B, and the remaining three sides C. The accompanying 
graph is a proper distribution function for one toss of such a die, as the student 
should verify. 

5 — 

4 - • 

N 3 — 

2 « 

1 — 

ol I I I 
A B C 

Graph for Exercise 5.6(a). Distribution function for one toss of a die. 

(a) Is this a graph of a PDF? Why? (b) Use a normal die to randomly select with equal 
probability a letter from A, B, or C. For example, let 1 or 2 = v4, 3 or 4 = B, and 5 
or 6 = C. From the graph find N associated with the selected letter. Then roll the 
normal die again to obtain N", a number from 1 to 6. If N ' < N , accept the letter 
choice. If N > N, reject it. Repeat the process until a sequence of accepted letters 
has been established. Tabulate the distribution within the sequence. If both you 
and your die were honest, the ratio of A's to B's to C's should approach 2:4:6. 





Shield Attenuation 
Calculations 

W. E. SELPH and C. W. GARRETT VJ 

Now we can turn to some of the practical considerations for applying data 
and empirical formulas to attenuation problems. Two previously mentioned 
observations are worth repeating. There are several levels of attenuation 
calculations, ranging from elegant and precise to improvised and approxi
mate. Since no one method satisfies all applications, the reader should 
become familiar with a number of techniques so that he can select the one 
most appropriate for a particular application. The second observation is that 
for most of these techniques a good bit of the calculation has already been 
done; a particular application usually reduces to assembling the appropriate 
data matrix from the existing literature and integrating over the particular 
shield geometry and composition of interest. 

6.1 ANALYSIS OF THE SOURCE 

Although this topic was discussed in an earlier chapter, some additional 
remarks are pertinent. There are, in general, two approaches to the analysis 
of the radiation source depending on the methods to be used in analyzing 
the shield. The direct approach is to treat the source and shield as an entity 
and to obtain as a single calculation the distributions of radiations leaving 
the shield which originated within the source, thus solving the source-
description and shield-penetration problems simultaneously. The direct 
approach is used for a "one-shot" calculation where the system can be 
precisely defined and only one set of answers is required. An example would 
be a final, detailed analysis of a reactor shield "as built." 

The alternate approach is to split the source description and shield 
penetration into two distinct phases. The first phase involves calculating the 
radiation leakage from the source region to obtain an energy and angular 
distribution incident to the shield. This distribution can then be applied to 
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shield-attenuation calculations. This method provides a useful means for 
comparing several designs based on parametric data and is more economical 
than the direct method where a number of designs are to be analyzed or 
where the effect of small variations in shield design is to be studied. 

The task of analyzing the radiation emitted by a reactor source is often 
as complex as the shield-attenuation calculation because of a plurality of 
sources. The source density must be determined for fission neutrons and 
gamma rays, fission-product gamma rays, secondary gamma rays from 
nonfission neutron interactions, and, in some instances, secondary neutrons 
from photoneutron interactions. This analysis requires a detailed knowledge 
of the density of fission events, the material compositions, and the neutron 
spectrum as a function of position within the reactor. 

For example, the local source strength of gamma rays (except for the 
fission-product source) in an energy group A£j^ will be given by 

FGk+ll^iNjOijYijk 

where F = local fission density 
G)i = yield of gamma rays per fission within A£j^ 
^i = local flux density of neutrons in energy group A£,-
Ny- = atomic density of e lement ; 

a,-.- = local microscopic cross section for radiative interaction of 
neutrons of energy i with element / 

^iik ~ yield of gamma rays per interaction 

To this sum the fission-product sources should be added. 
The method used in evaluating fission-product sources will vary with 

their relative importance and with the operating history of the reactor. Their 
intensity will increase with time of operation of the reactor at a given power 
level until some maximum or "saturation" level is attained. It is common 
practice to combine the saturation fission-product activity with the fission 
gamma-ray source and consider only this maximum condition. A source 
spectrum for this condition is given in Chap. 2. 

The fission density and low-energy neutron spectrum, as a function of 
position within the reactor core and reflector, are usually derived in an 
iterative process using transport and diffusion theory. These data, obtained 
in the process of reactor design, are ordinarily available to the shield 
designer, if only the fission density is available, the low-energy neutron-flux-
density spectrum may be calculated using a combination of transport and 
diffusion calculations, or an S„ (or P„) calculation. In general, the methods 
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used in shield analysis are not adequate for the task of determining the 
distribution of fissions within the reactor core or for determining criticality. 
The reverse is also true, most reactor analysis codes do not do an adequate 
job of predicting the radiation leakage from the reactor. Although the theory 
is analogous in reactor and shielding codes, the emphasis is different and the 
accuracy with which a particular reaction type is analyzed varies signifi
cantly. Two methods that do provide adequate results in both reactor and 
shield analysis are the Monte Carlo and the discrete ordinate S„. 

Once the position, energy, and intensity of all sources within the reactor 
have been evaluated, reactor leakage can be analyzed. The form used in 
expressing the energy and spatial distribution of the sources will vary with 
the intended method of performing the leakage calculation. The methods 
used in performing the leakage calculation are the same as those used for the 
analysis of shield penetration as discussed below. 

For a direct Monte Carlo solution, a separate source generator routine is 
used to generate particles with the appropriate distribution in energy, angle, 
and position. Biasing can be used to generate more of the particles expected 
to be important to shield penetration, such as those born at high energy, 
traveling in a radial direction, and/or originating near the periphery. In a 
discrete-ordinate 5„ calculation, the spatial variation of source strength can 
be expressed analytically, if existing data sets, either experimental or 
analytical, are used, then it is sometimes desirable to express the source as an 
equivalent simple source, such as a disk, an infinite plane, or a series of point 
sources. 

6.2 DIRECT SOLUTIONS 

One means of obtaining shield-attenuation data is the direct application 
of Monte Carlo, moments method, S„, or other similar methods that directly 
use the material cross sections. Chapters 4 and 5 are devoted to the general 
theory of the methods involved in direct solutions. Applications of these: 
methods invariably involve the use of rather sophisticated computer 
programs and an expenditure that some problems may not justify. 
Consequently direct solutions are not widely used in shield design and 
evaluation studies. They are mentioned here only to call attention to the fact 
that they may be applied directly to a shield-attenuation problem. 

To some extent a judgment based on analogy with similar designs or with 
the available basic data will assist in the selection of a method by 
determining which penetrating components are likely to be most important. 
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For example, where low-energy neutrons are not expected to be significant 
in heating or in the penetrating-radiation component, a Monte Carlo 
approach may provide the most accurate analysis, if gamma rays from 
thermal-neutron capture are expected to be the primary factor, then a 
moments method, S„, or a combination of transport and diffusion methods 
may be selected. 

6.3 APPLICATION OF PARAMETRIC DATA 

A variety of data is available from calculations and experiments that have 
been performed to determine the penetration of radiation from basic, typical 
sources of neutrons and gamma rays through materials of general interest. 
These data may be scaled to approximate the solution to a variety of 
attenuation problems. 

The concept of the unit source, introduced in Chap. 2, is integral to the 
understanding and application of parametric data. The term unit source 
generally refers to a source of unit strength, i.e., 1 particle/sec, 1 watt cm"^, 
1 MeV sec"' cm"^ , etc. All the radiation evolved from such a source need not 
necessarily come from the same point, be traveling in the same direction, or 
be of the same energy. Distributions in each of the independent variables 
(position, angle of emission, and energy) commonly chosen for unit-source 
characterization are listed below. Various combinations of the listed spatial, 
angular, and energy distributions have been used. 

The most frequently used spatial distributions are point, plane, disk, and 
line; angular distributions are usually isotropic, monodirectional, cosine, and 
(cosine)"; energy distributions are usually monoenergetic, uniformly distrib
uted, and fission spectra. 

For a given shield material, the number of dimensions involved in the 
parametric data is determined by the calculational method used to obtain 
the data, the shield geometry, and the type of detector assumed. For 
example, in the geometries represented by a point source in a spherical shield 
or an infinite-plane source and shield, the data can be applied to any point at 
a given radius or thickness. On the other hand, for a point source and slab 
geometry, the position on the exit face also becomes a parameter. Source 
energy and angle and exit energy and angle may also be parameters. Thus 
parametric data available for application to shield analysis vary from 
one-dimensional sets of dose vs. thickness to nine-dimensional sets involving 
all the parameters mentioned (two source angles, source energy, material 
thickness, two exit coordinates, two exit angles, and exit energy). In 
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specialized studies one might include additional parameters, such as the 
number of collisions suffered by the particle before exiting the shield or the 
time of flight from source to detector. 

In addition to direct apphcations of parametric-data matrices, interpola
tion (linear, logarithmic, or other) is often required between particular values 
of one or more of the parameters to improve accuracy. Graphical 
interpolation is one of the most widely practiced methods because together 
with simplicity it provides a more direct view of the behavior of the data 
with respect to a particular parameter. Computer programs have been 
written for complex interpolations between two or more variables where 
nonautomated methods would become quite tedious. In addition, some of 
the data sets have been fit with analytical functions. With these functions 
analytical representations of the parameters can be used for calculating 
transmission or reflection probabilities at any desired point. 

Occasionally the shape of an energy or angular distribution does not 
change with distance within some range. Such a distribution is said to be in 
equilibrium for that range. It is always desirable to observe such equilibrium 
conditions because of the resulting simplifications in representing the data. 
The existence of equilibrium with distance is an indication that the distance 
variable can be separated in the distribution function. 

The three types of data most likely to be available for application to a 
shielding problem include data resulting from moments-method calculations, 
Monte Carlo analyses, and experiments. These three categories are reviewed 
in the following sections. Other types of analytical data, particularly from S„ 
calculations, may be available and just as applicable to a particular shielding 
problem. In such cases the methods of application are analogous to those 
discussed in the following sections but have to be adjusted to the number 
and form of the variables considered. 

6.3.1 Moments-Method Differential Energy Spectra 

(a) Neutrons. The moments method has been applied to neutron 
penetration through a variety of materials. Data from these calculations have 
been summarized by Goldstein* and more recently by Krumbein and 
O'Reilly.^ Studies have included penetration of point isotropic fission 
sources through water, hydrogen, lithium, lithium hydride, lithium hydrox
ide, beryllium, carbon, and various combinations of carbon and hydrogen. In 
addition, data were obtained for penetration from monoenergetic sources 
through water and hydrogen. 
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E, MeV 

F ^ . 6.1—Differential number spectrum of neutrons in water from a point isotropic 
fission source emitting 1 neutron sec"'. (From Goldstein.') 

A sample of the data from these calculations is given in Fig. 6.1, which is 
a graph of the differential neutron spectrum for various penetration depths 
in water resulting from a point isotropic fission source of 1 neutron sec"'. 

The slope of the curves in Fig. 6.1 decreases with increasing penetration, 
indicating a hardening of the spectrum (increasing fraction of higher energy 
particles). This trend is followed in all materials containing significant 
concentrations of hydrogen and is a consequence of the dependence of the 
hydrogen cross section on neutron energy. As the neutron energy increases, 
the hydrogen cross section decreases, and higher energy neutrons then suffer 
fewer collisions in crossing a given thickness of hydrogenous material than 
lower energy neutrons. The energy loss in hydrogen is so great that neutrons 
will usually be thermalized very near their point of initial interaction. For 
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Fig. 6.2—Differential neutron-flux density (X 47rr^) vs. penetration (r) in carbon due to 
unit point isotropic fission-neutron source. (From Goldstein.') 

this reason the initial flight is quite important to the distribution deep within 
the shield. A larger fraction of the higher energy will be transmitted and will 
thus contribute to a reduction in slope (or hardening) of the energy 
distribution. 

Figure 6.2 shows similar graphs for carbon except that the parameters 
have been switched so that the flux density, as a function of depth, is 
plotted for various energies. Here the slopes are essentially equal beyond 
30 g cm"^, which indicates that an equilibrium spectrum is established. 
Moments-method neutron-penetration data for several materials are given in 
Appendix K in tabular form. 

In all these calculations the point source is assumed to be surroundedijy 
an infinite medium. Thus particle spectra calculated at a given depth include 
radiation that has been scattered back to that depth from more distant 
points. For a shield whose outer surface corresponds to that depth, the flux 
density at the surface is overpredicted by the infinite-medium data 
(particularly at lower energy where a large percentage of the flux density is 
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due to backscattering); thus corrections are necessary for applications of 
infinite-medium data to shield layers. A severe limitation of the moments-
method data is that angular-distribution information on the flux density is 
not given. 

This type of data can be applied to surface sources by breaking the 
surface into small increments and treating each increment as an equivalent 
point source. In like manner leakage from a volume-distributed source is 
usually represented by volume-distributed point sources or by points on the 
surface of the volume source. As an application of these data, consider the 
following problem: 

Find the flux density of neutrons lying above 2 MeV at a penetration 
depth of 60 cm in water from a small (assumed point) fission source 
generating 1 watt of power. The solution is obtained by multiplying the 
60-cm differential spectrum curve (Fig. 6.1) by the source strength (con
verted to neutrons sec"') and then integrating over energies above 2 MeV: 

S (source strength, neutrons sec~') = (3.1 x 10 ' ° fissions sec"' watt" ' ) 

X (2.47 neutrons fission"') 

= 7.56 X 10 ' ° neutrons sec"' 

^f.n = 
7.56 X 1 0 ' ° CE 

6 0 ~ /1„/AA\2 j ^ " " ' ' ' 4Trr^ No{r,E) dE (6.3-1) 
47r(60)' 

where the integral is carried out over the 60-cm curve given in Fig. 6.1. 

(b) Gamma Rays. The gamma-ray data generated by infinite-medium 
moments-method calculations have found wide application in shielding 
calculations. These data are quite extensive both in the number of materials 
and the variety of source types that have been considered. Extensive 
discussions of these calculations, their results, and their application are 
given by Goldstein.' '̂  The gamma-ray penetration data are more ex
tensive and also more precise than the neutron data. Goldstein has esti
mated the overall accuracy of the data at ±20%. Since backscattering for 
gamma rays is much less than for neutrons, interface effects are less 
important for gamma rays, and infinite-medium data can be applied to finite 
layers to a good approximation. 

Examples of the differential spectra are shown in Appendix L for the 
penetration of gamma rays of various energies through water and lead. One 
significant difference between these data and the neutron data discussed in 
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the preceding section is that the photon data at a given range have been 
multiplied by 47rr^e''o'', where JUQ is the linear absorption coefficient of the 
material at the source energy. Since the exponential factor accounts only for 
the attenuation of the unscattered component, the flux density at a given 
energy falls off less rapidly than e" ° . Thus these data, which have been 
multiplied by 47rr^e^o'', increase with increased penetration. 

These data have also been integrated over a flux-density-to-dose-rate 
response function and expressed as a ratio of total dose rate to the dose rate 
due to unscattered photons alone. These ratios, called dose buildup factors, 
are a more compact representation of the data that are useful for 
applications where biological dose is of primary importance and the 
spectrum is of only secondary interest. Buildup factors were discussed in 
Sec. 4.8.1 and values are found in Appendixes E and F. Applications of dose 
buildup factors are discussed in Sec. 6.4.1. 

The data for water indicate that an equilibrium spectrum is established at 
very shallow penetrations and does not vary greatly, even at penetration 
depths approaching 20 mean free paths. The spectra for lead exhibit a wider 
variation in distribution with penetration depth. Differences in the shape of 
the /io vs. E curves for water and lead are instructive in understanding the 
relative spectral shifts (see Chap. 3). 

Differential spectra for gamma rays are applied to shield attenuation 
calculations in much the same manner as the neutron data. An added benefit 
in the case of gamma rays is the broader range of materials for which data 
are available and the apparent smooth variation of the data with atomic 
number, which allows interpolation between elements for which data are 
available. A variety of computer programs have been written to perform this 
interpolation, also to interpolate between source energies and penetra
tion depths. One method of performing this interpolation is discussed in 
Sec. 6.3.4. These programs also integrate over a complex source geometry 
and estimate the combined effect of a mixture of elements in a shield. 
Integrations over a complex source are performed numerically by breaking 
the source into individual point sources representing volume increments and 
by breaking the source spectrum into individual monoenergetic sources 
representing energy increments. The programs are limited in that they 
consider only the materials lying in the straight-line path from a source point 
to the detector and also in that they must apply infinite-medium data and 
cannot account for the effects of interfaces along the path. The limitations 
are not severe in that interface effects are small (~10%) and may be 
compensated with appropriate corrections. 
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6.3.2 Monte Carlo 

The Monte Carlo method has an advantage over the moments method in 

that Monte Carlo techniques can accept a wider range of source types and 

can predict the angular distribution of the neutrons and gamma rays at the 

exterior surface or at any arbitrary internal point in the material. This 

feature, however, spreads the existing calculations through a wider range of 

possible parameter variations and thus decreases the probability of finding an 

existing set of data to fit a particular need. 

With few exceptions, Monte Carlo has been used more for obtaining 

precise answers to individual problems than for the generation of parametric 

data. This is probably the most economical approach since, as mentioned 

previously, it would be difficult and expensive to obtain data for all 

foreseeable parameter combinations. Data have been generated, however, for 

the penetration of unit sources through finite slabs and through infinite 

media of some materials. 

Monte Carlo neutron data have probably found wider application than 

gamma-ray data. This is due partially to the fact that the moments-

method gamma-ray data have proven to be widely adaptable and have 

compared favorably with experiments and other analyses, thus obviating 

the need for Monte Carlo photon data. 

With Monte Carlo techniques very complex penetration and reflection 

probabilities can be obtained. For example, consider a monoenergetic 

monodirectional beam incident on a laterally infinite slab at polar angle 0,-

and azimuthal angle 0,- (Fig. 6.3). Penetration probability values, 

P(0,-,^,£jt,0y;R,i3,0,0,£), and reflection probability values, a(0,-,£j^,0y; 

R',^',0',<!)',£'), are needed. In general practice, however, data of this nature 

are more expensive to obtain and more complex than most applications 

warrant. Furthermore, in any Monte Carlo study, as the number of variables 

increases, the accuracy of the differential data degenerates for a given total 

number of histories. Consequently the reflected energy E' can be 

eliminated by tabulating only the exit dose rate or the distance R' can be 

eliminated by integrating over the surface, or, indeed, all the exit parameters 

can be eliminated and only the total exit dose rate calculated. 

If the calculational model described in the preceding text is being used to 

simulate a collimated narrow beam of radiation incident on a shield, the 

variation of intensity with the position of exit is sometimes an important 

parameter to the design of the shield. The same model can be used for 

broad-beam incidence with the principle of reciprocity. The reciprocal 

relation of adjacent entrance and exit points indicates that the integral of the 
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Fig. 6.3—Particle history parameters. 

current density from a 1-cm^ beam is equivalent to the leakage per square 
centimeter from a broad beam of the same intensity per square centimeter as 
the collimated beam. Thus the integral 

/ 
over exit 
surface 

P{di,t,E^,<l>j;R,M.E)dA 

where the transmission probabilities in the integral are for a collimated 
source of 1 particle/sec, yields the probability of leakage per square 
centimeter due to a broad-beam source of 1 particle sec"' cm"^. 

The parameter E can be eliminated by integrating the leakage radiation 
to obtain a total particle current density, energy current density, or dose 
current. All these quantities are assumed to be dependent on the exit angle. 
There is little or no advantage to performing a parametric study by Monte 
Carlo unless the angular dependence is retained. The term dose current is 
used for the quantity that is given by the product of the differential angular 
current density (particles cm"^ sec"' steradian"') and the flux-density-to-
dose-rate conversion factor. This quantity is a convenient way of expressing 
the radiation intensity in terms of a dose response while maintaining the 
angular dependence. Dose current, D{9',<j>'), is given by 
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D{d',cl>') = fj{9',<]>',E) R{E) dE (6.3-2) 

where J[d',(j>',E) is the current density per steradian about the direction 
{Q'4>') and R{E) is the flux-density-to-dose-rate conversion factor. An 
application of the data reported in this form is illustrated by the fact that 
the dose rate at a point outside the shield from a differential area, dA, of the 
surface is 

D = \ J{d',(!)'^) R{E) dE dA = ^^ ; ' ^ ^ dA (6.3-3) 

where the detector is at distance r in the direction [d',(j>'). This quantity is 
integrated over the surface of the shield to obtain a total dose rate at the 
external point. The variation of the direction of the detector with position 
on the shield surface usually necessitates a numerical integration. The 
directional energy-current density or particle-current density can be applied 
in the same manner as discussed for the dose current. However, the total 
energy or particle-flux density at a detector is not generally as important as 
the biological dose rate. 

Sample results of a typical Monte Carlo study are shown in Fig. 6.4 from 
a report by Allen, Futterer, and Wright.'' These investigators calculate the 
total neutron-energy distribution (integrated over angle) and a total angular 
distribution (integrated over energy) but not doubly differential data, i.e., 
energy distribution within a particular angular interval. The data result from 
a calculation for 2-MeV neutrons incident on a 60-cm-thick laterally infinite 
slab of water at an angle of 45° from the slab normal. In this analysis the 
calculation is performed for a thick slab, and the neutrons are tagged on 
their first and subsequent penetrations through a given thickness plane. In 
this manner both initial and multiple penetrations are tallied, and flux 
density vs. thickness and flux density vs. depth are calculated simulta
neously. The initial penetrations correspond to the flux density vs. thickness 
as though the slab had nothing beyond the plane; thus there is zero 
probability of scattering back into the material once the neutrons penetrate. 
Of course, the multiple-penetration calculations do contain the effects of 
backscattering. Figure 6.4 shows the curves of total flux density vs. thickness 
and flux density vs. depth resulting from these calculations. The data for 
flux density vs. thickness remain 30 to 50% below the data for flux density 
vs. depth over a wide range of material thickness, illustrating the effect at 
each depth into the slab of backscattering from deeper regions. 
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Fig. 6.4—Energy-dependent and total flux density vs. depth and total flux density vs. 
thickness. Slab, 60 cm water; incident energy, 2 MeV; angle of incidence, 0 . Flux density 
vs. depth: o, 2 MeV; V, 10 eV to 2 MeV. Flux density vs. thickness: D, 10 eV to 
2 MeV. Hollow symbols, run 1; solid symbols, run 2. (From Allen, Futterer, and 
Wright.*) 



274 REACTOR SHIELDING FOR NUCLEAR ENGINEERS 

6.3.3 Measured Data 

Experimental data can be applied directly to some shielding problems by 
properly scaling source intensities and by adjusting for geometry differences. 
Experiments are essential for the verification of an analysis or design and for 
obtaining cross-section information. In the early days of nuclear technology, 
empirical data were widely used either directly in design work or as the basis 
of semiempirical analysis methods (see, for example, Sec. 6.4.2). 

The source energies available naturally limit the parameter range of 
experimental results. Other parameters of the experiment, such as incident 
angle, exit angle, and energy at the detector, can be controlled or measured 
fairly accurately. Reactor-shield experiments are generally performed with 
either reactor sources or the cleaner source of fission neutrons and gamma 
rays from a fission-source plate. Other neutron sources include various 
pseudo-fission spectra (obtained in accelerators from boil-off in heavy-
element bombardment) and a few monoenergetic sources obtained from 
low-energy charged-particle interactions. Notable among the more useful 
particle interactions are the d—t interaction, obtained by accelerating 
deuterons into a tritium target, and the d—d interaction, obtained by 
accelerating deuterons into a deuterium target. The Q values (kinetic energy 
release) of these interactions are 17.58 and 3.26 MeV, respectively, and the 
neutrons evolved are approximately 14 and 2.5 MeV, respectively. Relatively 
low intensity neutron sources formed by combining a- or 7-emitting isotopes 
with light elements, such as deuterium, beryllium, lithium, boron, and 
fluorine, have been used for shield experimentation on a limited basis. 
Neutrons from these interactions are generally of little interest for shield 
measurements because they comprise mixed energies that do not approxi
mate any spectrum to which the shield will be subjected. 

Gamma-ray sources available for shielding experiments include fission 
gamma rays, fission-product gamma rays, and individual gamma-ray-emitting 
isotopes. Difficulties are encountered with fission gamma-ray sources 
because of the interference of secondary gamma rays from neutron 
interactions. The spectrum from fission products gives a lower average energy 
but is useful in testing containers for spent fuel elements and in 
weapons-fallout shielding analyses. Individual isotopes can provide useful 
monoenergetic photon sources for obtaining penetration data in the range 
below 1.5 MeV; however, most of the sources emitting gamma rays of energy 
above 1 MeV emit undesirable background energies. Three of the isotopes 
frequently used for shield measurements are ^"Co, which emits one 
1,17-MeV and one 1.33-MeV gamma ray per disintegration; ' ^ ' C s , whose 
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daughter, ' ^ ' B a , emits one 0.662-MeV gamma ray per disintegration; and 
"**Ce, which emits 17 gamma rays of energy 0.134 MeV per 100 
disintegrations accompanied by 2 at 0.1 MeV, 2 at 0.08 MeV, and 17 at 
0.04 MeV. 

Some of the experimental data quoted here were originally reported 
before the adoption of the terms kerma and absorbed dose (as defined in 
Chap. 2). We have converted the obsolete unit rep to the kerma unit on the 
basis that 1 rep = 100 ergs/g. Examples of data obtained with fission sources, 
either in fission plates or reactors, are shown in Figs. 6.5 through 6.7. 
Figure 6.5 shows the neutron dose rate vs. distance through water as 
measured along the center line of the Lid Tank Shielding Facility.^ This 
curve has been widely used as a check on the validity of methods for 
calculating neutron penetration through hydrogenous media. Figure 6.6 
shows typical results from an experiment using the Aerospace Shield Test 
Reactor^ housed in an aboveground tank. The angular distribution of 
neutrons exiting slabs of borated polyethylene was measured as a function of 
slab thickness. A narrowly collimated detector was rotated on a circle of 
4.9-m radius centered at a point on the exit face. The reactor neutrons 
incident on the shield were precoUimated into a 15.2-cm beam. Figure 6.7 
shows the variation in thermal-neutron-flux density as a function of range in 
air from the Tower Shielding Reactor. ' The influence of the ground is seen 
as an increase in the thermal-neutron-flux density as the detector height was 
decreased from 46 to 1.0 m. 

Figure 6.8 is an example^ of time-of-flight neutron measurements in 
which a boil-off spectrum from a lead target in a linear accelerator was used. 
Spectra are shown for the source and for the neutrons penetrating slabs of 
zirconium hydride of various thicknesses. With this method a very fine 
angular resolution of the penetrating neutrons can be obtained. The spectra 
shown are for penetrations normal to the slab along the source—shield-
detector axis. 

Data from experiments to determine the transport of ^ ' 'Co gamma rays 
through air from an isotropic source are shown in Fig. 6.9, taken from 
Burton.^ A collimated detector was used for measuring the relative 
gamma-ray spectra for a variety of detector polar angles about the 
source—detector axis. The data are therefore on a per-unit-solid-angle basis, 
which means that the total counts per angular increment were obtained by 
dividing by the solid angle intercepted by the increment. Figure 6.10 
shows the geometry and results obtained from measurements by Serduke 
and Smith' ° of ^'^Co gamma-ray penetration through iron. Here the angular 
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Fig. 6.5—Fast-neutron kerma rates measured in H2O vs. distance along the center line of 
the ORNL Lid Tank Shielding Facility. (From Casper.^) 

distribution is also given but this time as a cumulative distribution. This 

represents the integral of flux density over solid angle 

/w2*(^ ' ) 27rsin0'£i0' 

as the value of 6' ranges from 7r/2 to 6. 
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Fig. 6.6—Angular distribution of fast-neutron dose rate from particular thicknesses of 
3% borated polyethylene slabs. (From Western. ) 

6.3.4 Fitted-Parameter Data 

The data from a parametric shield analysis or experiment may comprise a 
bewildering collection of numbers that can be laborious to apply in design 
situations. It is, therefore, desirable to find some means of reducing the bulk 
of information without losing detail or accuracy. One solution is to fit 
analytical functions to the data. An advantage offered by this approach, in 
addition to the reduction of data, is that it may provide a means of 
analytically integrating over one or more parameters. As an example, 
consider the variation of exit current density with slab penetration thickness. 



278 REACTOR SHIELDING FOR NUCLEAR ENGINEERS 

5 X 10^ ' ' ' ' ' 
0 100 200 300 

R, m 

Fig. 6.7—CR^ ^th as » function of slant range (R) and detector height {Dff). Reactor 
height, approximately 53 m; C = An (0.093). (From Muckenthaler, Holland, and 
Maerker. ) 

This often fits an exponential function of the form 

J{t)=Joe' particles cm"^ sec"' (6.3-4) 

or in rare cases by a simpler exponent (b = 0). The variation with exit angle 
often approximates a function of the form 

J{t,e) ~J{t) k[a + b (cos 0)c] particles sec"' steradian"' (6.3-5) 

where the constant k normalizes to unity the integral of the function over 
the 27r solid angle at the exit face, that is. 
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Fig. 6.8—Time-of-flight measurement of neutron spectra penetrating zirconium hydride. 
[From W. E. Selph, Transactions of the American Nuclear Society, 7(1): 42 (June 
1964).] 

rT/2 
k fj [a + h (cos e)<=] 2ir sin 6 dd = 1 (6.3-6) 

Sometimes the angular distribution has been observed to be a function of 
penetration. When this occurs, the constants in the angular-distribution 
equation must be evaluated at each depth. At other times the distribution 
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ENERGY, MeV 

Fig. 6.9—Measured gamma-ray spectra and angular distribution from a Co source 
penetrating through 12.2 m of air. (From Burton. ') 

has reached an equilibrium after penetrating a depth of one relaxation length 
or less, which suffices for most requirements. 

The energy spectrum of the penetrating radiation is likely to require a 
more complex fitting function than the other distributions and consequently 
is usually left in numerical or graphical form. 

The problem of fitting a function to the energy spectrum is avoided if 
the calculation requires only the total particle-current density, energy-flux 
density, or dose rate of the exit radiation. Use of these units may also 
involve an angular distribution. For example, an angular distribution of the 
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Fig. 6.10—A family of integral curves for five mean free paths of iron with ^^Co as the 
irradiation source. Integral values of multiply-scattered photon number-flux density are 
plotted as a function of detection angle, (a) Geometry, (b) Measurements. (From Serduke 
and Smith. '") 
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dose rate can be obtained from that of the flux density or that of the current 
density. The dose rate due to flux density at angle 6 is given by 

D{d) = /^•^='^ <l>(0,£) R{E) dE (6.3-7) 

where 4>(0,£) is the flux density at energy E per unit solid angle about the 
polar angle 6 (azimuthal symmetry is assumed) and R{E) is the flux-density-
to-dose-rate conversion factor. 

In addition, the quantity called dose current (Sec. 6.3.2) is defined as 

Dc{9)= fp'"''' J{Qfi) ^ ( £ ) dE (6.3-8) 

where J{0^) is the current density per steradian per MeV exiting at polar 
angle Q. 

A set of data giving dose rate vs. depth and dose rate vs. angle is much 
more compact than triple differential data in depth, energy, and angle, 
particularly if one angular distribution can be used at most depths. 

The variations of dose rate with thickness and angle can be combined 
into a single equation. In rare cases a function can be found that fits dose 
rate vs. angle, thickness, and energy of the incident particle. 

In an attempt to fit all the parameters adequately, the empirical 
equations can become so complex and so difficult to apply that the 
advantage over raw tabular or graphical data is lost for hand calculations. 
Such complex equations may still have an advantage for computer 
applications in that the computer memory required for storing constants and 
evaluating the equations generally is less than that required for storing the 
original data and interpolating between data points. 

An example of such a fitted function is one developed by Peterson to 
represent the moments-method differential gamma-ray-energy spectra for use 
in the C-17 point-kernel computer program. ' ' The probabili ty,/ , of gamma 
rays' of source energy EQ being degraded to penetration energy E in 
penetrating a thickness /Uj t relaxation lengths was fitted by a quadratic in 
the variables Hit and the effective atomic number, Zgff, of the shield 
material. The form of the equation is 

+ ^42eff + ^ s ( 2 e f f ) ' + ^ 6 (6.3-9) 
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where a set of coefficients, /I,-, is given for each combination of source and 
final energy. For particular initial and final energies, this equation provides a 
continuous probability distribution over penetration thickness and material 
composition. The effective atomic number, Z^ff, is found by computing the 
quantity 

" ' t ^ (6.3-10, 
f 

summing over the constituents of the material. This value can be used to 
select a ^gff from a plot of (x, vs. Z. For most cases the Z^ff so determined 
will be very close to the average atomic number of the material. 

Although this form of curve fit results in a rather extensive library of 
coefficients, it is more efficient in application than attempting to store all 
the moments-method data. It can be compared to the use of the equation of 
a surface as opposed to a numerical listing of points on the surface. 

Equations can also be derived to fit parameters appearing in equations 
for dose rate vs. material thickness. Discussions in Sec. 4.8.1 and the 
following section on the buildup-factor approach to the moments-method 
gamma-ray data present examples of such equations. 

6.4 SIMPLIFIED SOLUTIONS 

It is natural that attempts should be made to simplify the solution to 
problems as complex as those associated with radiation transport. It is also 
inevitable that most simplifications result in some sacrifice in the number of 
parameters or in the precision associated with the solution. 

Simplifications of radiation-transport analyses can generally be classified 
as those resulting from (1) analysis of detailed analytical or experimental 
data which reveals a simpler means of obtaining some gross quantity, such as 
dose rate or total flux density, or (2) attempts to simplify the mathematical 
models of radiation-transport physics and thereby obtain (in an easier 
manner) data which are a little less precise but which are possibly as detailed 
as the more complex solutions. The use of gamma-ray-dose buildup factors 
and removal theory fall into the first category; the other methods are 
broadly classed in the second category. 
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6.4.1 Applications of Gamma-Ray Buildup Factors 

The definitions and theory of exposure and energy-deposition buildup 
factors were presented in Sec. 4 .8 .1 . In this section we describe some typical 
applications. 

For a thin shield and narrow beam (Fig. 6.11), the buildup factor is 
unity, B = i., because scattering events deflect the gamma rays out of the 

Source Detector 
o 

Fig. 6.11—Narrow-beam geometry. 

beam and thus away from the detector. Where t is small and the detector size 
can be neglected, the gamma-ray-flux density at the detector is given by 

4TTR^ 
(6.4-1) 

where 5 is the source strength, ju(£) is the linear attenuation coefficient 
(cm"'), and t is the shield thickness (cm). 

For the geometry of Fig. 6.12, as the thickness of the shield is increased 
so that multiple scatters become more prevalent or as the width of the beam 

Source 
Detector 

O 

Fig. 6.12—Wide-beam geometry. 
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is increased so that single scatters may reach the detector, the buildup factor 
increases to values greater than 1. The value of B continues to increase with 
increasing beam width or shield thickness. A saturation point is reached 
when the size of the beam forms a 2;r solid-angle intercept at the detector. 

The gamma-ray-flux density at the detector in this case is 

<J> = •^;^B{Eo,Ht)e 
•ll{Eo)t 

(6.4-2) 

Note that the value of B is dependent on the angular distribution of the 
source incident on the shield, the shield thickness, and the energy of the 
gamma rays. We should also recognize that this buildup factor applies only 
to the photon-flux density. As mentioned previously, the concept of buildup 
can be apphed to any detector response, but, for a given set of conditions, 
the dose buildup factor, flux-density buildup factor, or energy-flux-density 
buildup factor are not necessarily numerically equal. To be generally useful 
therefore, buUdup factors must be identified as to source—shield geometry, 
source energy, shield thickness, shield material, and detector response. An 
example is the dose buildup factor for an infinite-plane collimated source of 
2-MeV gamma rays shielded by an infinite-plane slab of lead four mean free 
paths thick. 

As an example of the application of buildup factors, consider the 
penetration of gamma rays from an infinite-plane source (Fig. 6.13). The 
source is assumed to emit monoenergetic gamma rays isotropically with a 
source strength of SQ photons cm"^ sec"'. 

The dose rate at the detector is given by 

D, = S„ F{E) f -HR 

AitR' 
B{E,IIR) 2-nrdr (6.4-3) 

Fig. 6.13—Buildup from infinite-plane source. 
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where r is the radius along the source plane to the source element, z is the 
distance of the detector from the source plane, and f (£) is the flux-density-
to-dose-rate conversion function. By changing the variable from r to R and 
replacing B{E^R) with the Berger formula, B(£,juR) = 1 + C{E) iiRe^(^)f^^ 
(see Sec. 4.8.1), the expression becomes 

r e-'^^ (l+CixReDuR)^ (6.4-4) j^^^S^iB) r.-t^R,..r^..o.DuR.dR 

Introducing the exponential integral 

£ „ ( x ) = x " - l / " e-yy-" dy (6.4-5) 

the expression becomes 

iJ, = ^ [ £ , « - ) - 1 ^ .-<'-"""] (6.4.6) 

Graphs of the function E^[x) for n = 1, 2, and 3 are available in 

Appendix G. 

6.4.2 Applications of Neutron-Removal-Theory Kernels 

In the discussion of neutron-removal-theory kernels (Sec. 4.8.2), the 
Albert—Welton kernel' ^ was discussed as one method of handling neutron 
attenuation in hydrogenous shields. The Albert—Welton kernel is especially 
useful in the following two applications: 

l .Th i s kernel can be used to correct measured or calculated data when 
small changes are made in the heavy elements of a shield. For example, 
suppose that a lead layer and a water layer surround a point source. If the 
lead layer is increased and the water thickness remains the same, the new 
dose rate is given by 

47rr| D(r2) = 4nr\ Dj (r i) e"^R ' (6.4-7) 

where Z^j = removal cross section for lead 
t = change in lead thickness = rj + f 

r2 = new distance from source 
D(r2) = new dose rate 

ri = original distance 
D j (fi) = original dose rate 
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Notice that the assumption is made that the water thickness (and its 
effect) remains unchanged. Consequently the dose rates are evaluated at 
different positions. 

2. The kernel can be used to correct results obtained for one hydroge
nous medium so that they apply for another hydrogenous medium. The 
assumption is that the hydrogen effect remains constant for a given 
hydrogen length, with the effects of other elements accounted on the basis 
of removal cross sections. Thus the hydrogen attenuation kernel in one 
medium is set equal to the hydrogen attenuation in the other, wJiich gives 

47rr^ D(r2)e^«2' '^ = 4 7 r r ? D , ( r , ) e ^ R . ' ' ' (6.4-8) 

with the constraint, to ensure the equivalence of the hydrogen effect, of 

P2'"2 = Piri (6.4-9) 

where P2 = hydrogen density in medium for whicli D{r2) is unknown 
Pi = hydrogen density in reference medium for which D i ( r i ) is 

known 

^ ^ 2 - removal cross section for all elements except hydrogen in the 
medium being analyzed 

^R) = removal cross section for all elements except hydrogen in the 
reference medium 

Combining the preceding equations yields 

D(r2) = D , ( P 2 r 2 / p , ) ( £ ! y exp ( S R , RlTl _ ^^^^^ (6.4-10) 

A word of caution is appropriate here. The preceding equations represent a 
simple model of rather complex phenomena, and rather large errors are 
possible. 

Although the differences are not great, values of the removal cross 
section measured in homogeneous—hydrogenous mixtures are slightly lower 
than those measured in slabs preceding hydrogenous materials. The value 
would be expected to vary slightly with the ratio of atomic densities of 
hydrogen to the material being measured. Table 6.1 shows the extent of 
these variations in some particular measurements given in the shielding 
volume of the Reactor Handbook.^ ^ 
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Table 6.1—COMPARISONS OF Sp AND 2 

Element 

Carbon 

Lithium 
Oxygen 

S^ measured in slab 
preceding H2 O 

0.81 ± 0.05 

1.01 ±0.05 
0.99 ± 0.01 

Measured in homogeneous mixture 

^DR 

0.72 ± 0.05 
0 . 7 - 0 . 8 

0.9 
0.92 ± 0.05 

Mixture 

C12H22O1, - H 2 O 
CH and CH2 (moments-

method calculation) 
LiH 
Oil and water 

In both neutron and gamma-ray calculations in all types of media, 
estimates of the approximate change in detector response with material 
thickness can occasionally be made with an effective relaxation length, Xeff> 
for the material. The effective relaxation length is defined as the material 
thickness required to reduce the response by a factor of e" ' , or 

— =e-'^^eff (6.4-11) 

neglecting any differences in geometric attenuation. The value of Xgff is 
determined from an examination of basic experimental or analytical data. 
The selection of a value for Xgff is fraught with hazards because it may be a 
function of many variables, such as distribution in energy, angle, and 
position of the source and the total thickness of the shielding material. Also, 
slight differences may be observed in the response as a function of thickness 
or in the response as a function of depth due to spectral shift with increasing 
penetration. Provided that data can be obtained under analogous circum
stances, use of an effective relaxation length can provide a quick and 
inexpensive estimate. 

6.4.3 Other Point-Kernel Applications 

The point-kernel method has been discussed in preceding sections, but 
not all applications of the method have been covered. It should be 
emphasized that this method is not a means of obtaining basic penetration 
data but is rather a widely used means of applying these data. This method 
can be used in combination with appropriate point-source, infinite-medium 
data to determine either dose rate or spectrum at a point due to a distributed 
source. It can also be used in combination with total-cross-section data to 
obtain the uncoUided component at a point due to a distributed source. 
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Fig. 6.14—Cylindrical point-kernel model. 

Other applications are distinguished by the nature of the source being 
analyzed. In the last-collision method (to be discussed at the end of this 
section), the source is proportional to the local scattering density. In the 
analysis of secondary radiation, the source is proportional to the local 
density of radiative interactions. 

(a) Numerical Techniques. The major steps in performing a numerical 
integration over the source volume are: (1) divide the source into increments 
that may be considered as point sources, (2) determine the source strength 
to be associated with each increment, (3) determine the attenuation along 
each source—detector ray, and (4) sum the contributions from individual 
sources to obtain a total detector response. 

These tasks are considered in order in the following discussion. As with 
all forms of numerical integration, the number and size of the increments 
selected and the means of averaging within an increment are critical to the 
accuracy that can be obtained. Consider the three detector positions near the 
cylindrical source shown in Fig. 6.14. Assuming uniform distribution of the 
source strength throughout the cylinder, the nearest region will account for 
most of the response at detector D j . Consequently nearby increments 
should be smaller in size than those at a greater distance so that the averaging 
in this region is at least as precise as that for more distant points. The 
increment size selected should be such that the distance from any point in 
the increment to the detector would be a very weak function of position in 
the increment. In addition, the material attenuation across the increment 
should be small. Under these conditions the midpoint of the volume element 
can be used as a representative average of all source points within the 
increment. The maximum acceptable increment size is therefore influenced 
both by the distance to the detector and by the relaxation length of the 
source region. For detectors at great distances from the source, the 
increment size is determined primarily by material relaxation length. For 
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nearby or internal detectors, particular caution should be exercised in laying 
out local increments lest a source point be so nearly coincident with the 
detector that its effect overshadows all others.t Other factors that will 
influence increment layout include source-density variations and shield 
inhomogeneities. The estimated relative importance of a given source region 
to total detector response should determine the precision in layout of the 
region. 

The source strength to be associated with each of the assumed central 
point sources is given by the integral of source density over the increment or, 
if the source density is fairly uniform, by the product of source density 
times volume associated with the increment: 

n= ( pdv = J!Av (6.4-12) 

The attenuation along each source—detector ray is generally determined 
from a set of basic penetration information. The material thickness along the 
ray (g cm"^) is the criterion used in normalizing to the basic data. The effect 
of a material mixture or laminate along the ray is assumed to be the same as 
that of each of the component materials taken individually and in sequence 
with no perturbation due to interface effects. 

Any of the various types of attenuation data that have been discussed in 
Sees. 4.8 and 6.3 may be used in this manner. The choice depends on 
whether spectrum or dose response is required at the detector and also on 
the availability of data for the elements involved. Depending on the type of 
attenuation data used, the summation of the contributions from the 
individual source points may be as simple as adding dose-rate values or as 
complicated as adding contributions to individual energy and angular 
increments. 

(b) Attenuation Kernels from Monte Carlo Calculations. Results from 
Monte Carlo calculations (or from other transport methods) for dose-rate 
transmission through slab shields with an incident beam of neutrons can be 
quite useful when expressed in terms of attenuation kernels, i.e., as plots of 
transmission factors or dose-rate attenuation as a function of slab thickness. 
With such graphs it is a simple matter to estimate the fraction of the dose 
rate that is transmitted for each incident-energy group of neutrons, the total 
dose rate being the sum of the dose rates from all energy groups. 

t l /4jrr ' gets very large as r gets very small. 
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Clark, Betz, and Brown*" performed Monte Carlo calculations for 
monoenergetic beams of neutrons normally incident on slabs of ordinary 
concrete and also on a semi-infinite medium (half-space) of concrete. The 
neutron energies were 0.7, 1.3, 2, 3, 4, 6, 8, 10, 12, and 14 MeV. The 
density of the concrete was assumed to be 2.43 g cm'^, and its composition, 
other than its water content, was representative of that given for ordinary 
concrete 01 in Report ANL-5800 (Ref. 15). The resulting curves for dose 
attenuation are shown in Appendix M (Figs. M-1 through M-10). In addition 
to being useful directly, these results can be helpful in adjusting the large 
body of infinite-medium neutron-attenuation data for concrete (for ex
ample, Trubey and Emmet t ' * ) to finite layers. After one or two relaxation 
lengths, the penetrating characteristics of neutrons in an infinite medium of 
concrete should differ very little from those of neutrons in a semi-infinite 
medium. Therefore data such as is shown in Figs. M-1 to M-10, which in all 
other respects appear to be appropriate for application to a particular 
situation, can be adapted to a finite system by correcting the data in 
proportion to the ratio of the curve for the semi-infinite medium (dashed 
curve) to the curve for the slab configuration (solid curve) at the proper 
penetration distance and energy. 

Other useful results were obtained by Allen and F u t t e r e r , " who 
determined the attenuation of the multicollision dose rate in the materials 
listed in Table M-1 due to monoenergetic neutron beams incident at various 
angles. The neutron energies used were 5, 3, 2, 1, and 0.5 MeV, and the 
results are plotted in Figs. M-11 through M-15. In order to use these curves, 
we must know the multicollision dose rate at the inner surface of a slab of 
one of these materials due to neutrons incident in a broad beam at an angle 
(or angle band) and energy (or energy band) close to the angle and energy 
for which the attenuation data are given. The attenuation factor appropriate 
to the material, thickness, energy, and angle is read from the curve, and the 
incident dose rate multiplied by that factor should approximate the dose 
rate that has penetrated the slab. 

(c) Formulas Derived from Kernel Integrations. Transformations of 
source geometries with kernel integrations are elucidated by Blizard, 
Foderaro, Goussev, and Kovalev.* ^ They have derived equations to relate 
dose rate (or other nondirectional radiation quantities) from one type of 
source geometry to that of another. For example, the dose rate from a finite 
disk source may be related to either that from a point source or that from an 
infinite-plane source. A cylindrical source may be shown equivalent to a line 
source buried within the cylinder. Additionally, the attenuation of various 
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sources in passing through slab shields can often be expressed in terms of 
standard integral equations whose values are well known as a function of the 
parameters involved. The formulas derived in this manner are useful in the 
evaluation of the recurring regular geometry problems that may require only 
a preliminary estimate of shield effectiveness. The exponential integral 
functions (Eq. 6.4-5) are involved in the formulas and are given for reference 
in Appendix G. The function 

F{d,nt) = j'e-^^'^^^'dd' (6.4-13) 

is known as Sievert's integral and is occasionally involved. Numerical values 
(detailed plots) are given by Blizard e t a l . ' ^ ' ' ^ We will summarize some 
useful cases using the following symbols for source intensities: 

Volume sources (S^), particles cm"^ sec"' 
Surface sources (5^), particles cm"^ sec' ' 
Line sources (S;), particles cm"' sec"' 
Point sources [SQ), particles sec"' 

Shield penetration depth is denoted by [ytt) as though only one material 
were involved. Where there is more than one shield material, the symbol 
should be interpreted as 2 /i,f,-. 

Basic point-source kernels are 

* = 4 ^ (6.4-14) 

for the direct-beam (uncoUided) component of an unshielded source, 

* = ^ (6.4.15, 

for the direct-beam component with an intervening absorbing shield, and 

$ = S O B ( M O ^ ^ (6.4-16) 

for the total (direct and scattered) component with an intervening absorbing 
and scattering shield where B[nt) is the buildup factor for shield thickness 
[yit) at the source energy. 



SHIELD ATTENUATION CALCULATIONS 293 

An element dl in an unshielded line source (Fig. 6.15) gives 

Sidl 

but, since 

d^ = 
4TT{a sec 6)'' 

dl = a sec^ 6 dO 

^-^^{6, .8,) 

(6.4-17) 

(6.4-18) 

(6.4-19) 

I cie-5 

i 
Fig. 6.15—Line source. 

if a shield is placed between the line source and the detector, the uncollided 
flux density is given by 

d^ = 
Sidle 

-fit sec 6 

4ir{a sec 0)^ 

-lit sec d 

'I Aira 
dd 

Si 
$ = ^ (/;• e-"'''' dd + i^'e-*"' ^" ̂ dd) 

Ana 
[F{d,,nt)+F{d^,Ht)] 

(6.4-20) 

(6.4-21) 

(6.4-22) 

(6.4-23) 

In like manner the integral over a disk source (Fig. 6.16) can be 
evaluated in terms of the exponential functions, £„ (x ) . 
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Fig. 6.16—Disk source. 

At point P on the axis of the disk, the uncollided flux-density 
contribution of the source increment in a differential ring at radius r from 
the center is given by 

d^ 
_Sa{2irrdr) _^t,,, Q' 

Airp^ 
(6.4-24) 

Substituting p^ = r̂  + a^, p dp = r dr, and sec 6' - pja 

S^dp ntp/a 

2 p 
(6.4-25) 

or, i( iJLtp/a = t . 

S^ r lit sec e _-' 

2 J ut t 
(6.4-26) 

[£i [lit) - El {fxt, sec 0) ] (6.4-27) 

Similar although more complex expressions can be derived for volume-
distributed sources, such as a cylinder or an infinite slab.' ^ 

(d) Special Applications. A first estimate of the scattered radiation can 
be obtained by performing a kernel integration over the density of first 
collisions within a medium. Consider Fig. 6.17 for a point source and slab 
shield. 
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Fig. 6.17—Single-scattering geometry. 

The uncollided flux density at cfl^is 

* i = 5 o 
- 2 ( t i sec 6 1 

4nRl (6.4-28) 

where 2^ is the total cross section. 
The density of first collisions within dV is 

^s^idV= y ^ , e x p ( - 2 , ^ , sec0,) (6.4-29) 

and the flux density at D due to single scatters within J F is 

d^o = ^1 d^—^2~ exp ( - Xfti sec 02) (6.4-30) 

where 2^(0) is the value of the angular-distribution function (macroscopic 
differential-scattering cross section) for scattering at angle 0, 
2^(0) =N a^(0). Integrating Eq. 6.4-30 over the entire scattering volume 
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yields the singly scattered flux density at point D. This method gives a 
reasonable estimate of the total scattered flux density in cases where the 
scattering medium is thin with respect to the relaxation length of the 
radiation, i.e., where there is a small probability of multiple scattering within 
the medium. In such cases, especially for problems of air scattering, it is 
common practice to neglect the attenuation within the scattering medium of 
both the unscattered and the singly scattered radiation, which approximately 
corrects for the buildup of the multiply scattered component. 

The last-collision method' ^ can be used in estimating the angular 
distribution of the radiation penetrating a shield. Prior knowledge of the 
approximate flux density vs. shield thickness must be available from other 
sources, however. The approach is similar to that for the single-scattering 
model except that a total flux density (rather than an uncollided flux 
density) is used in determining the density of scatters. The total-flux-
density-vs.-penetration data are taken from any of the basic sources 
discussed in Sec. 6.3. In this method we assume that the total flux density 
within the slab is coUimated in the direction of the incident beam and is of 
the same energy as the source. For a broad-beam flux density <i>o normally 
incident on a slab (Fig. 6.18), where the flux density vs. penetration depth 

e 

Fig. 6.18—Last-collision geometry for a slab. 

can be expressed in terms of an exponential function utilizing the removal 

cross section, exp [—2j^ (£o) ^] J the local scattering density is given by 

2 ^ $ d F = 2 , ( £ o ) 4)0 exp [ - 2 ^ ( £ o ) ^i ] dV (6.4-31) 

if we assume that the energy after scatter, E, is given by an elastic scatter of 
particles at the initial energy and that the cross section for scattering into a 
unit solid angle about the direction of the detector is 2^(£o>0)! then the flux 
density at the detector due to scattering in c/Fis given by 

11 ^ 

00 
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j $ = — L _ — ^ 4>o e x p - [ 2 ; j (£0)^1 + 2 ( ( £ ) 2̂ ] dV (6.4-32) 

The term 2^(£o,0) is the differential scattering cross section. Equa
tion 6.4-32 can be integrated over that portion of the shield lying within 
solid-angle increments as seen by the detector. A differential angular 
distribution at the detector can be obtained by expressing cZ4> on a per-unit 
soHd-angle basis. This is done by dividing by the differential solid angle 
[2iT sin 0 dd) and integrating along r. 

The last-collision method can be applied to any geometry using 
numerical techniques, and in certain simple geometries the integration can be 
carried out analytically. In the slab^eometry broad-beam normal-incidence 
case, the flux density per steradian incident at angle 0 per unit incident flux 
density at energy £0 is 

2 , ( £ o , 0 ) e x p [ - 2 ; i ( £ o ) ^ ^ ] 
0(0>^o) ^ 2 ^ ( £ ) - 2 ^ ( £ o ) c o s 0 

X (1 - e x p { - s e c 0 [ 2 ( ( £ ) - 2j^(£o) c o s 0 ] ^ ^ } ) (6.4-33) 

where t^ is the slab thickness. Evaluation of this equation at representative 
angles provides an estimate of the differential angular distribution at the 
detector. Where a spectrum of radiation is incident, an evaluation can be 
made at each angle for each incident-energy group. The energy spectrum at 
the detector is estimated by logging the contributions from the particular 
incident-energy—scattering-angle combinations into appropriate energy bins 
at the detector. This approach ignores the spectral shift likely to be 
encountered as the radiation penetrates the shield. However, energy loss due 
to the last collision is included. 

Consider another geometry: a detector on the axis of a cylindrical shield 
as shown in Fig. 6.19. Broad-beam incidence is assumed with all particles 
incident at angle ^ with respect to a plane through the axis of the cylinder. 
In this case the scattering angle is 0 and the reference angle at the detector is 
a. The integral equation for scattered flux density per steradian per incident 
neutron at energy £0 and direction |3 is 
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Fig. 6.19—Last collision for cylindrical geometry. 

*(«^^o ,P = d i T ^ J . ? fo""'' ^s{Eo,6) exp { - [2 ; , (£„) t, 

+ Zt{E)t2]}d(l>dr (6.4-34) 

where ^i = [(''2 — r^ sin^ < )̂̂  — r cos 0] esc j3 

^2 - {1' — ^1) CSC a 

•/•max = 2"^'^°^"'^'"'^''2^ 

In stating Eqs. 6.4-33 and 6.4-34, the flux density vs. penetration depth 
was given in terms of an exponential function. The method can also be 
applied with a basic set of spectrum-vs.-depth data, although the integrations 
could no longer be carried out analytically but would require a numerical 
solution. F r e n c h ' ' demonstrates that the simplified approach (ignoring 
spectral shift) gives results in reasonable agreement with experiment and 
Monte Carlo analyses for LiH shields of about 10- and 20-cm thickness. 

6.4.4 Methods for Estimating Low-Energy Neutron-Flux Density 

Estimating the ^^erma/-neutron-flux density as a function of position 
inside the shield presents a dilemma. The diffusion methods for analyzing 
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neutrons are generally inadequate for predicting the transport of higher 
energy components, which are the source of thermal neutrons deep within 
the shield. Likewise, some of the transport methods are extremely inefficient 
for obtaining thermal-flux density because of the many decades of energy 
degradation that must be considered. Various combinations of transport and 
diffusion methods have been used to resolve this dilemma. The assumption is 
made that at some energy around 1 keV the neutron angular distribution 
changes from forward-peaked, which is best treated by transport theory, to 
nearly isotropic, which is characteristic of diffusion. One of the earliest 
corrections to diffusion theory was the first-flight correction to the age in 
Fermi age theory.^° The correction is applied because the neutron cannot 
enter a process described by continuous slowing down (as Fermi age theory 
requires) until it has collided at least the first time. 

A calculational model formulated by Blizard^' equates the slowing-
down source to the rate of removal from the fast beam. The resulting 
equation for the equilibrium thermal-neutron-flux density (ignoring diffu
sion at thermal) is 

T(z] e'"/^^ 

^ '̂'̂ ^^^ X2 (̂ -"̂ "̂ ^̂  

where 'J'th(^) ~ thermal-neutron-flux density 
J{z) = fast-neutron current density 

X = relaxation length of J{z) 

2 ^ = thermal-neutron-absorption cross section 
T = average age of neutrons from removal to thermal 

Obvious limitations of this model are the need for empirically determined 
values of J{z), X, and T. These values are dependent on penetration depth, 
material, and geometry; thus values from one measurement do not 
necessarily apply to another set of conditions. 

The development of more sophisticated multigroup diffusion models 
made it possible to obtain reasonably good estimates of the thermal-to-fast-
neutron ratio in a material, even though the penetration of the fast 
component could not be treated in this way. Haffner^^ used such an 
approach and normalized the results to the fast-neutron distribution given by 
the Albert—Welton kernel. In this approach the corrected thermal-neutron 
flux is given by 
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fK,(E) ^(E,R) dE 
*th - D{R) ^ ' ^ \ (6.4-36) 

f K2{E)^{E,R)dE ^ ' 

where Kj (£) - response of detector used to measure thermal-neutron-flux 
density 

K2 (£) - response of a fast-neutron dosimeter 
D{R) = Albert—Welton kernel dose rate at position R 

$(£ ,R) = flux density computed by the multigroup diffusion code 

Good results were obtained with this method, but it is limited to cases where 
a reliable D{R) kernel is available. 

A refinement of the preceding method is to perform a multigroup 
diffusion calculation using as a source the neutrons recoiling from first 
collisions within the shield. Although this method has been used with some 
success by Schreiber and Kodras^^ in predicting thermal-neutron distribu
tions in beryllium oxide, difficulties are encountered in hydrogenous media 
owing to neutrons which have suffered one or more small-angle collisions but 
which have retained their directional character. Spinney^'* used a removal 
kernel rather than an uncollided kernel for the diffusion source to solve this 
difficulty. The removal concept was applied to individual source energies in 
order to approximate a transport kernel for individual energy groups which 
accounted for both the uncollided and the small-angle scattered components. 
Spinney first used age theory to predict slowing down of a removed neutron 
and later used the concept in multigroup diffusion calculations.^^ This 
combination of removal and diffusion theory has come to be known as the 
Spinney method, the theory of which is discussed in Sec. 4.9. 

Trubey^ * proposed a direct coupHng of a multigroup diffusion code to 
the results of a transport code such as RENUPAK (moments method), 
NIOBE (numerical integration of the Boltzmann equation), or Monte Carlo 
codes. In a trial calculation of the transfusion [transport diffusion) method, 
Trubey chose the RENUPAK transport code for fast-neutron calculations 
and the MODRIC diffusion code for the analysis of neutrons below 1 keV. 
MODRIC is a one-dimensional multigroup diffusion code written for the 
IBM 7090 computer. With RENUPAK, an energy spectrum of neutrons was 
calculated at various spatial points between 0 and 160 cm. These values were 
then interpolated to provide spectra at 226 spatial points. Two separate 
determinations were made with lower energy limits of 1 and 10 keV to test 
sensitivity. The spectral values were written on magnetic tape and used as a 
source distribution for the low-energy portion of the transfusion calculation. 
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Variation of the cutoff energy from 1 to 10 keV affected the thermal-flux 
density by only 1 to 5%. Figure 6.20 compares the thermal-neutron-flux 
density calculated by Trubey using the transfusion method with measure
ments in water at the Lid Tank Shielding Facility. The experimental data 
have been converted to an equivalent point source, and all data have been 
normalized to unit-source strength. The transfusion method provides a much 
closer fit to the measurements than does the application of diffusion theory 
alone. 

6.5 APPLICATION OF KERNEL TECHNIQUE TO CALCULATIONS 
OF SECONDARY GAMMA-RAY DOSEt 

Often a large fraction of the radiation dose rate behind reactor and 
shelter shields is the gamma-ray dose rate due to neutron capture and, in 
some instances, to inelastic scattering within the shield. If the spatial 
distribution of the neutron-flux density is known, the gamma-ray dose rate 
can be calculated for a large number of configurations by integrating the 
dose kernel over the source volume. With the kernel technique as 
exemplified by Eq. 4.8-4 and the slab geometry shown in Fig. 6.21, the dose 
rate, r{t,a,b), on the shield surface due to a distributed monoenergetic 
isotropic gamma-ray source, S{x), bounded by planes at a and b is given by 

/

b /•<« -yR 

S{x) dxj^ B.itiR) ^ lirp dp (6.5-1) 

where x = one-dimensional spatial coordinate measured from the reference 
plane 

t = shield thickness 

p = radial distance to source point measured from the detector axis 
R = distance from the source point to the detector 
fi = total macroscopic cross section for gamma rays of source energy E 

G(£) = flux density to dose rate in tissue conversion factor, which 
for conversion to rads/hr is 5.767 X 10"^ [)U^(£)/p]£, where ju^/p 
is the mass energy absorption coefficient for tissue 

Bj.[fiR) = dose buildup factor for gamma rays of energy £ 

tThis section by P. A. Stevens and D. K. Trubey is adapted from Methods for Calculating Neutron 
and Gamma Ray Attenuation, in Weapons Radiation Shielding Handbook, Chap. 3, USAEC Report 
DASA-1892-3, Oak Ridge National Laboratory, 1968. 
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Fig. 6.20—Comparison of measured and calculated thermal-neutron-flux densities as a 
function of distance from the source. (From Trubey. ) 
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DETECTOR 

Fig. 6.21—Geometry for integration over exponential source distribution. 

Since R'^ = p'^ + z'^, 

r{t,a,b) = ^ f S{x) dx f B,{yR)^dR (6.5-2) 
-HR 

The gamma-ray source term usually can be represented quite well either 
by fitting with several terms or by piecewise fitting of the thermal-neutron-
flux density distribution t (or of the fast-flux density distribution if inelastic 
scattering is being considered) with a function of the form 

S{x) - S^e -kx (6.5-3) 

tThe production of secondary gamma rays by the capture of nonthermal neutrons is usually 
insignificant for thermal reactors. It can be important in fast reactors and in thermal reactors where 
absorbing layers deplete the thermal flux. 
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where S^ is the gamma-ray source at A: = 0, which gives S{x) in the interval 
{a,b), and k is the reciprocal of the effective neutron relaxation length. 
Usually S^ can be calculated by 

5 ^ = 3 ; * ( a ) 2 (6.5-4) 

where y is the number of photons of energy £ released per neutron capture 
(or per inelastic scattering), 4>(a) is the neutron-flux density (usually 
thermal-flux density for capture and fast-flux density for inelastic scatter
ing), and 2 is the macroscopic neutron cross section for thermal-neutron 
capture (or for inelastic scattering). 

When exponential or polynomial forms of the buildup factor are used 
(see Sec. 4.8.1) together with the source description given by Eq. 6.5-3, then 
Eq. 6.5-2 can be integrated analytically, and very useful results can be 
obtained. In the following paragraphs examples of such integrations are given 
for two cases of interest: a slab shield of finite thickness t and a semi-infinite 
shield (f = o°), the latter corresponding to a real problem in which the shield 
is very thick. 

6.5.1 Calculation for Slab Shield 

Trubey^ ' calculated the secondary gamma-ray dose rate for a slab shield 
using the Berger form of the buildup factor 

B^{E,nR) = l + C{E) uRel^f^R (6.5-5) 

used in Eq. 6.5-2. The equation then becomes 

+ f°° C(£)eM(D-l)R d(/xR)] (6.5-6) 
J H{t-x) J 

where the uncollided dose rate, ro{t,a,b), is represented by the first term 
and the scattered dose rate, r^{t,a,b), is given by the second term. 

Letting jLt(̂  — x) = y and integrating the first term of Eq. 6.5-6 by parts, 
we find the dose rate from the uncollided gamma-ray dose rate is given by 
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-''^' • .-y G[E) S^e-

2ap 

-ayt r 
e«M(f-a) E, [;Lt(̂  - a)] - £ , [(1 - a)p{t - a)] 

roit,a,b)= ' "' (e-yE,iy) '^'^K P ^ - ' eay^ d^ 

G{E) S^e 

2(xp 

+ Ei[{l-a)p{t-b)] -e^'t^it-b) Ei[p[t-h)]K (6.5-7) 

where oc = k/p and £ , is an exponential function of the first order and is 
defined by 

'̂W=Xyci3^ (6.5-8) 

Appendix G contains graphs and other details of the exponential functions. 
If a = 1 or 0 (case of uniform source distribution) or if b = t, 

indeterminate forms result which may be resolved by I'Hospital's rule, by 
series expansions, or by integrating Eq. 6.5-6 for k = p, k = 0, and b = t, 
respectively. These cases are as follows: 

For b < t and a = 0 

G(£) S^ ( 
ro {t,a,b) = - ^ ^ j p{b-a) £, lp{t-b) ] 

+ ptEi[p{t-a)] -ptEi[p{t-b)][ (6.5-9) 

For b< t and a = 1 

ro{t,a,b) =—2ir^ ] e-""" £i [p{t-a)] 

Ei[p{t~b)]+e-^'ln^[ (6.5-1 

For b = t and a 9̂= 0 or 1 

To[t,a,t)= ^^^ [e ^ Ei[p{t-a)] 

e'°"^* { £ i [p{l-oc)[t-a)] + In ll - al}) (6.5-11) 
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For b = t and a = 0 

ro{t,a,t) ^ ^^ " {l+p{t-a) £ i [p{t-a)] -e"^^^"''^} (6.5-12) 

For b = t and a = 1 

ro{t,a,t) = -^—^ {e"^'' £ i [p{t-a)] - e-^* In yp[t-a)} (6.5-13) 

where 7 = 0.577215665. . ., Euler's constant. 
For the special case of b = ^ and a = 0, Eq. 6.5-11 can be represented by 

G(£) S^ 
To (^0,0 = i|/o (M^a) (6.5-14) 

where 

i//o(M^a) = ^ (£1 (MO - e ' ^ ^ ' i H i [(1 - OL)pt] + In ll - a l } ) (6.5-15) 

Equation 6.5-15 is plotted in Fig. N . l as a function of the number of 
mean-free-paths pt with a as a parameter. [Equations 6.5-9 through 6.5-15 
can be used to calculate the total gamma-ray dose (uncollided + scattered) 
when the Taylor form of the buildup factor is used (see Sec. 4.8.1).] 

Since z = t — x, the scattered dose rate behind a slab shield can be 
determined by expressing the second term of Eq. 6.5-6 (i.e., the Berger term) 
as 

G(£)C(£)S^e -"^* /•'-« r- , . „ , „ „ 
r,{t,a,b)= ^ J ^ ^ dzj e<^f^^ e-^^-^'^^ d{pR) (6.5-16) 

Integrating Eq. 6.5-16 gives 

ruab = ^ ( ^ ) ^ ( ^ ) V " ^ ' \ {l.D-a)p{t-b) _.{l-D.a)p{t-a)-\ ,6,5.17) 
i^ lM.o 2 ( l - D ) ( l - D - a ) M ^ J ^ ^ 
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Fig. 6.22—The coefficient D for the Berger form of the gamma-ray-dose buildup factor. 
(Based on data from Chilton. ) 

Equations 6.5-16 and 6.5-17 reveal that, unless D is less than 1, negative dose 
rates are obtained. However, D is always significantly less than 1, as is shown 
in Fig. 6.22 from the work of Chilton.^^ 

When a + D = 1, Eq. 6.5-17 gives an indeterminate form, which, when 
resolved, becomes 

-apt 

r,{t,a,b) = 
G(£) C(£) S^ e '̂  [b - a) 

2 ( 1 - D ) 

For the special case when b = t and a = 0, Eq. 6.5-18 can be expressed as 

G(£) C(£) S^ e^t^f 

(6.5-18) 

r,(^o,o=- H{l-D) ^liUtA') (6.5-19) 

w here 

^,ipt,a')=- ^V^ ^ (6.5-20) 

and a' = 0L + D. The function given by Eq. 6.5-20 is shown in Fig. N.2. 
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6.5.2 Calculation for Semi-Infinite Shield 

Solutions of Eq. 6.5-2 for a semi-infinite shield, i.e., for b -°°, give useful 
results that are generally applicable for the special case in which a = 0, 
particularly if one is interested in a gamma-ray heating rate within a shield. 
Using the polynomial form of the buildup factor 

B,{pR)= i A„{pR)^ (6.5-21) 
n=0 

Claiborne^ ^ determined solutions to Eq. 6.5-2 for this case which were all in 
the form 

G(£) S^ Y 
r(Mx) = - — 2J n\ ^„i//„ (6.5-22) 

The dose rate from the uncollided-flux density is represented by the first 
term and is given by 

'/'O(MO = ^ (fii m - e'"''' {̂ i [(l-«)Mf] - In |[^-^ I j (6.5-23) 

and the sum of the next three terms represents the scattered contribution. 
The terms are 

^ ' ( ^ ^ ) - — [ 1-a ^IT^J ^'-'-^'^ 

., , .. _ 4e-"^^ - (1 + a ) ^ 2 - a)e-^' - (1 +a)^( l - cx)pte->'' 
'/'a(MO- 4 ( l - a ) ^ l + a)^ ^^-^'^^^ 

^3(^^)=|̂ ^-^[(rr^^(TT^] 
-.apt e 

pt 
_ [ J f l ^ + _ J ^ + _ l 1 ^ (6.5-26) 

l 2 ( l - a ) (1 -a )^ ( 1 - a ) J 6 ^ ' 

When a = 0, an indeterminate form occurs in Eq. 6.5-23, and, when 
a = l , indeterminate forms occur in Eqs. 6.5-23 through 6.5-26. The 
toUowing equations result when the indeterminate forms are evaluated: 
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-pt 1 
Fora=0 ^^^^t) = 1+^ Ei{pt)-^ = 1--E^ipt) (6.5-27) 

F o r a - 1 ^ ^ ( ^ , ) . . ^ i M + ^ l n ( 2 7 M 0 (6-5-28) 

^Pl{pt) = ^^pt + -j-Y- (6.5-29) 

• -pt 
^lJ2{^Jit) = '^+[2{pt)^ + l ] ^ (6.5-30) 

3̂(M0 = - f ^ 4 ^ - ^ + 4 J ^ (6.5-31) 

The functions given by Eqs. 6.5-28 through 6.5-31 for the semi-infinite 
medium are plotted in Figs. N.3 and N.4 for various values of a. These 
figures can be compared with Figs. N . l and N.2, which are the corresponding 
functions evaluated for a slab shield. 

These solutions contain the contribution from the gamma-ray sources 
between the detector position at t and infinity since integration of Eq. 6.5-2 
from X = 0 to % = °° produces two integrals: one gives the contribution from 
the interval 0 < x < ^ and the other gives the contribution from the interval 
^ < X < oo. In the usual shield, however, the contribution from the second 
interval at deep penetrations is small, and the gamma-ray dose rate outside a 
shield of thickness pt will be only slightly less than that calculated for a 
distance pt within a semi-infinite shield. 

If Eq. 6.5-22 is used for gamma-ray heating calculations within a shield, 
the coefficients A^ must correspond to the polynomial fit of the 
energy-absorption buildup factor, and the conversion factor for expressing 
the heating rate (in watts g ' ' ) becomes 

G(£) = 1.6 X 10"' 3 — £ (6.5-32) 

where pjp is the mass energy absorption coefficient of the material in which 

heat is generated. 
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EXERCISES 

These exercises can be done with data given in this and previous chapters and the 
appendixes. 

6.1 Two isotropic fission point sources, A and B, are contained in a tank of water, as 
shown by the plan view in the accompanying sketch. Sources A and B both emit lO"* 
neutrons/sec. (a) Estimate the spectra at points 1 and 2 at the edge of the tank, (b) 
Estimate the total energy-flux density (MeV cm"* sec ' ) at points 1 and 2. (c) Make a 
rough estimate of the thermal-flux density at points 1 and 2. 

6.2 An ordinary concrete slab is to be used to shield a 15.25-cm-diameter beam tube from 
a fission reactor. The fast-neutron-flux density at the face of the core is known to be 
isotropic with a value of 10*^ neutrons cm"* sec"' at the core face. Estimate the 
thickness x required to reduce the neutron dose rate at point A to 1 mrad/hr. Neglect 
scattering in the walls of the beam tube. 



312 REACTOR SHIELDING FOR NUCLEAR ENGINEERS 

A 

1 \ o \ ' y 

1 \v \ 2 

1 

85 cm 

T 
• • 

Geometry of Exercise 6.1. 

Beam-tube geometry. Exercise 6.2 

6.3 In the beam-tube slab shield of Problem 6.2, estimate the thermal-flux density 
emerging at point A. 

6.4 A thin Co disk source 10 cm in radius with a strength of 5000 Ci is shielded in a 
large pool of water. Using the Berger form of the buildup factor: (a) Compute the 
dose rate (DR) at a point 75 cm from the disk along its axis, (b) Compute the buildup 
factor for this situation. Note: At 1.25 MeV, (Mf/p)H2 0 = 0.064 cm*/g and 
jUa/p = 0.03cm*/g. 

6.5 It was decided to add 5 cm of lead to the inside face of the concrete slab covering the 
beam tube of Problem 6.2 to lower the gamma dose rate. How does this addition 
affect the fast-neutron dose rate calculated in Problem 2? Use removal theory. 

6.6 Approximately what was the prompt fission gamma-ray dose-rate reduction that 
resulted from adding the 5 cm of lead in Problem 6.5? 



Albedos, Ducts, 
and Voids 

W. E. SELPH •_ 

We turn now to a number of subjects we might euphemistically call special 
topics. They are special only in the sense that they are necessities. In 
contrast to previous chapters that deal fundamentally with one topic, 
transport in dense media, this chapter and Chap. 8 deal with a number of 
topics equally important to shield design. We might call them engineering 
considerations, perhaps another euphemism. At any rate some of the 
following considerations will arise in any reactor-shield design. 

In this chapter we are concerned exclusively with an interface between 
two media, usually air and a shield material. The geometrical shape of the 
interface may be an infinite plane, a wall of a room, a cylindrical tube with 
several bends, or a spherical cavity. 

Because the most successful methods for analysis of these interfaces use 
an albedo concept, the first half of the chapter is devoted to the definition 
and description of albedos. The most important application of an albedo for 
a reactor-shield designer is the analysis of ducts that penetrate the shield. 
Accordingly, duct analysis occupies most of the last half of the chapter. A 
brief final section covers a closely related topic, voids. 

On the assumption that these topics are considered to be advanced in 
shielding and on our opinion that they are still in a state of development, we 
present this material in review form with a discussion of approaches taken by 
several laboratories. Experimental results play an important role here and are 
included in greater number than in earlier subjects for comparison with 
analysis and to illustrate trends. 

7.1 INTRODUCTION TO ALBEDOS 

Backscattering of radiation incident to a dense medium has been treated 
with some success as a reflection phenomenon. Borrowing the optical 
concept of albedo, we represent the scattering from interfaces, such as ducts 
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and walls, strictly as a surface effect. So long as the surface dimensions are 
large compared with the relaxation length of radiation in the medium, the 
approximation is valid and useful. 

When applied to nuclear radiation, the definition of albedo is much 
broader than the traditional one used in optics. Nuclear-radiation albedos 
include radiation that is scattered at depths of the order of a relaxation 
length rather than just from the surface of the medium since particles 
scattering from these depths contribute significantly to the total radiation 
emerging from the surface. The tacit assumption made in most applications 
of albedo theory is that particles emerge from the medium at the same 
points on the surface at which they were incident. Some nuclear-radiation 
albedos refer to mixed radiations; i.e., emergent particles are sometimes of a 
type different from the incident particles. Such albedos more properly carry 
the modifier effective, the emergent radiation being identified as a particular 
type of secondary radiation. For example, effective capture gamma-ray 
albedos are albedos specifying the gamma-ray dose emerging from a medium 
which is caused by incident neutrons being captured within the medium. 
This type of albedo is especially important since for some duct configura
tions the capture gamma-ray doses can exceed the scattered-neutron doses. 

Theoretically, calculations of nuclear-radiation albedos should be 
straightforward since a large body of information is available on interaction 
probabilities, the angular distribution of scattered radiation, and the 
emergent energy vs. scattering angle for a variety of incident energies and 
materials. However, even though the single-event probabilities are well 
known, the solution of the macroscopic multicollision albedo problem 
becomes complex. Consequently the value of the single-event probabilities 
lies primarily in their usefulness in predicting trends. For example, if the 
ratio of the scattering cross section to the absorption cross section is high, as 
it is for neutrons diffusing in concrete, the resulting albedo will tend to be 
high. If, however, the scattering is predominantly in the forward direction, as 
it is for high-energy gamma rays, the albedo will be low. The albedo 
properties of concrete have been thoroughly investigated since this material 
is used in virtually every type of fixed shield. Other materials have been 
studied, such as water, iron, lead, borated polyethylene, aluminum, and 
various soils, but the albedo data for each are generally more limited. 
Investigations have consisted primarily of calculations with the Monte Carlo 
machine programs. In addition, a number of measurements have been made 
to establish the validity of the calculated data. In nearly all cases the 
calculated results have been fitted to empirical expressions. 
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7.2 DEFINITIONS 

Traditionally, albedo refers to the ratio of the radiation current reflected 
from a surface to the current incident on that surface. Consider a 
monodirectional source of radiation of energy EQ incident on a surface at 
polar angle OQ (see Fig. 7.1). The reflected current of energy E per unit 
energy per unit solid angle at polar angle 6 and azimuthal angle <l> is given by 

J{E,e,<j>) = J{Eo,do) a{Eo,eo,E,d,<t>) (7.2-1) 

where7(£o,0o) is the incident current anda[E(),dQ,E,d,4>) is the albedo. 

Fig. 7.1—Geometry for calculating neutron and gamma-ray reflection from a surface. 

When applied to nuclear radiation, albedo is not always expressed as the 
ratio of the reflected current per incident current but instead may be given 
as the ratio of reflected current per unit incident flux density, of reflected 
dose per unit incident current, of reflected dose per incident dose, etc. 
Neutron and gamma-ray albedos are available in several forms. The form 
used in Eq. 7.2-1 is doubly differential; i.e., it is differential with respect to 
both the reflected energy, E, and the reflected direction (as determined by 6 
and 0). A singly differential albedo is integrated over either energy or 
direction. Dose albedos obtained experimentally as a function of exit 
directions are also examples of singly differential albedos since dose is an 
integral quantity with respect to energy. The term total albedo always 
implies that integration has been performed over both energy and direction. 
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In this text differential albedos are denoted by the symbol a, as in Eq. 7.2-1, 
and total albedos by the symbol A. 

Three different types of differential and total albedos have been used by 
various investigators in reporting their results on material reflectivity. The 
first type, denoted here by the subscript 1, is an albedo that represents an 
incident flux density of particles and an emergent current. The second and 
third types, denoted by subscripts 2 and 3, are albedos for which the 
incident and emergent particles are considered to be the same, current for 
the type 2 albedo and flux density for the type 3 albedo. Flux densities and 
currents are related functionally by the cosine of the entrance or exit angles. 
For example, if ^ (£ ,0 ,0 ) is the reflected differential flux density per unit 
energy per steradian, then the reflected current per unit energy per steradian, 
J{E,6,(t>), is equal to $(£ ,0 ,0) cos 6. 

If the albedo being considered represents some weighting of the 
particle-flux density, such as dose or energy-flux density, then the 
subscripted letter D or £ will precede the numerical subscript. In the 
following albedo definitions, the term dose or dose rate is used in the generic 
sense. The albedo definitions are not affected by the various types or names 
of doses that are used. The choice of the dose definition and the flux-to-dose 
conversion ratio govern whether the quantity is exposure, absorbed dose, 
kerma, or dose equivalent. A functional notation is used in conjunction with 
the albedo symbols to designate the independent variables for the particular 
albedo being considered. 

7.2.1 Differential-Dose Albedos 

The three types of differential albedos for which the particle-flux density 
has been weighted by a dose response function are defined as follows: 

The form a j j i (£o,0o>^>0) represents differential current out (in dose 
units) per incident flux density (in dose units). If the dose due to particles of 
energy £o incident at angle OQ is DQ, then the particle current (in dose units) 
per steradian reflected in the direction 9,<p is given by DQUDI. The 
reflected-particle current in dose units (or dose current) has no physical 
meaning but is merely a computational convenience. It is expressed 
mathematically by 

D(0,0) = / K{E) J{E,9,<P) dE (7.2-2) 

where / (£ ,0 ,0) = 0(£,0,0) cos 0 and K[E) is the flux-to-dose conversion 



ALBEDOS, DUCTS, AND VOIDS 317 

factor for particles of energy £ . The current measuring plane in these 
definitions is the material-interface plane. 

The form otDii^ofiofi^'t') is used for differential current out (in dose 
units) per incident current (in dose units). If the dose due to particles of 
energy EQ incident at angle ^o is DQ (flux density in dose units), then the 
particle current (in dose units) per steradian reflected in the direction 0,0 is 
given by DQ cos {0O)OI.D2, where DQ cos 0o is the incident-particle current in 
dose units. This type differs from the traditional current albedo only in that 
the current is weighted by a dose response function. 

The form ajr)3(£o,0o>^>0) is used for differential flux density out (in 
dose units) per incident flux density (in dose units). If the dose due to 
particles of energy EQ incident at angle SQ is ^o> then the dose per steradian 
due to particles reflected in the direction 0,0 is DQOCD^. If the incident-
particle current per unit surface area i s / ( £ o ) , then DQ = K{EQ) J{EQ) sec 9Q. 
If the reflected-particle current per unit surface area is J{E,9,^), then the 
reflected differential dose is 

D(0,0) = / K{E) J{E,9,^) sec 6 dE (7.2-3) 

where D[9,(t>) is the dose per steradian due to particles reflected in the 
direction 0,0. 

These three types of albedos are related by 

<^Di =<^D2 cos 00 -OiD^ cos 0 (7.2-4) 

7.2.2 Total-Dose Albedos 

Total-dose albedos are obtained by integrating differential-dose albedos 
over the solid angle represented by the exit hemisphere. Thus the three types 
of total-dose albedos corresponding to the differential albedos described in 
the preceding section are defined by 

^ D i ( £ o , 0 o ) - / « D i (£0,^0,0,0) c/n (7.2-5) 

AD2{EQ,9Q) = f aD2{EQ,9Q,9,(t>) d^ 

= sec 9Q faDi{Eo,9Q,9,(l>)dQ. (7.2-6) 
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AD3{EO,SO} = faD3{EQ,9o,9,(l>)da 

= f an I {EQ,9 Q,9,(1)) sec 9 dn 

= cos 00 / 01D2 {Eo ,00 fi,<t>) sec 0 dfi (7.2-7) 

where dO. = sin 0 d9 d<l> and the limits of integration are from 0 = 0 to 7r/2 
and from 0 = 0 to 2n. 

Differential data must be available when data for Aj^f^ are being 
compared with the other two types of total albedos, whereas yljr) j and ^2)2 
are directly related; i.e., Aj)i = cos 0o^D2 • 

7.2.3 Other Albedos 

Particle flux density or current- and energy-flux density or current 
albedos, which refer either to particle or energy flow, have also been used. In 
keeping with the previous nomenclature, these are 

AI or «! = particle current out per unit particle flux density in 
/12 or 012 = particle current out per unit particle current in 
A3 or a3 = particle flux density out per unit particle flux density in 

For the case in which energy flow is considered, chese particle-flow 
quantities are weighted by the energy and A^ ^ or «£ 1 = energy current out 
per unit energy-flux density in, etc. 

All the parameters involved in these albedo definitions are the same as in 
the dose albedo definitions except that neither the incident nor the reflected 
flux density (or current) is converted to dose units. 

An effective albedo may be defined for the emergence of secondary 
gamma rays from a material due to incident neutrons. Examples are capture 
gamma-ray albedo, inelastic gamma-ray albedo, or activation gamma-ray 
albedo. 

7.3 NEUTRON ALBEDOS 

The fundamental mechanisms that result in neutron backscattering are 
elastic and inelastic scattering, the two processes being distinguished by the 
condition of the target nucleus following its collision with the neutron. 
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Owing to the relatively weak variation of the dose response function 
with energy, neutron-dose albedos are more nearly proportional to the 
particle-flux-density albedo than to the total-energy albedo. Calculations of 
neutron albedos have been successfully performed and experimentally 
verified in a number of cases. Investigations fall into three major categories, 
distinguished by the energies of the reflected neutrons: fast neutrons, 
intermediate-energy neutrons, and thermal neutrons. Studies of thermal-
neutron albedos have been further categorized as relating to those resulting 
from incident thermal neutrons and those resulting from neutrons incident 
at energies higher than thermal energy. Since neutrons incident at thermal 
energy scatter in a more orderly process than do higher energy neutrons, this 
category has yielded to direct analytical approach more readily than the 
other categories. 

7.3.1 Fast-Neutron Albedos 

Major contributions to the data on fast-neutron albedos have resulted 
from studies made at Oak Ridge National Laboratory (ORNL) by Maerker 
and Muckenthaler' and at the U. S. Army Ballistic Research Laboratories 
(BRL) by Allen, Futterer, and Wright.^ Both groups performed detailed 
Monte Carlo calculations to determine the reflection of fast neutrons as a 
function of incident energy and angle. The results of Maerker and 
Muckenthaler are more detailed than those of Allen et al. in that the 
reflection data are differential with respect to both the reflected direction 
(see Fig. 7.1) and to the reflected energy. The data of Allen et al. are 
differential with respect to the direction only. The ORNL results are limited 
to concrete; the BRL studies include several additional materials. 

The calculations by Maerker and Muckenthaler were performed as part 
of an extensive analytical and experimental program that covered a wide 
range of neutron energies (see Sees. 7.3.2 and 7.3.3) and included an 
investigation of secondary gamma-ray albedos (see Sec. 7.5). In the 
measurements a 23-cm-thick concrete slab that was reinforced with steel bars 
at a depth of 3.8 cm from either side was used. For the fast-neutron 
calculations the steel was not considered, and the concrete composition was 
assumed to be a typical concrete of the composition shown in Table 7 .1 . 

Calculations were performed for six incident-energy bands covering the 
energy range between 0.2 and 8 MeV. In a given problem neutrons incident 
to the concrete were sampled uniformly from each incident-energy band, 
and a statistical estimation technique was used to obtain estimates of the 
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Table 7.1—COMPOSITION OF CONCRETE USED 
IN MONTE CARLO CALCULATIONS 

Composition, 
1 \ —3 

10 atoms cm 
Maerker and 

Muckenthaler' Allen et al} 

Element 
Hydrogen 9.43 13.75 
Oxygen 47.6 45.87 
Silicon 11.85 20.15 
Calcium 7.8 

Density, g cm"^ 2.35 2.26 

current emerging from the surface at various angles from a normal to the 
surface. 

Emergent angles were determined by the intersection points of a grid 
formed by nine space-fixed polar angles and six azimuthal angles. The 
results, obtained for distinct values of 0o,0, and 0, were grouped into energy 
bands A£o and A£. There were 10 reflected-energy bands, which, like the 
incident-energy bands, covered the range between 0.2 and 8 MeV. (Albedos 
that include neutrons reflected at energies less than 0.2 MeV were 
determined separately and are discussed in Sees. 7.3.2 and 7.3.3.) 

The differential albedo aj)2{EQ,9Q,E,9,^) calculated by Maerker and 
Muckenthaler is in units of reflected current (in single-collision dose units) 
per MeV per steradian per incident cvirrent (in single-collision dose units) of 
a "gun-barrel" beam source. The average statistical uncertainty associated 
with the Maerker—Muckenthaler data is about 10% for the doubly 
differential albedos and about 3% for singly differential albedos. 

Results from these calculations are shown in Figs. 7.2 through 7.5. 
Figure 7.2 shows the variation of the total albedo (integrated over both the 
reflected energy and the reflected angle) as a function of the incident angle 
and incident-energy band. Figures 7.3 and 7.4 show the dependence of the 
dfferential-dose albedo on the reflection angles 0 and 0; Fig. 7.4 clearly 
illustrates that an assumption of no dependence on the reflected azimuthal 
angle 0 can lead to considerable error in the differential albedo for some 
conditions. The dependence on the azimuthal angle is strongest for 
high-energy neutrons at grazing angles of incidence and emergence; it 
becomes very weak for low-energy neutrons or for values of 0 greater than 
45°. This trend is consistent with what would be expected since the first 
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COSSQ 

Fig. 7.2—Total single-collision dose albedo as a function of cos OQ and AEQ fo<" f*st 
neutrons (> 0.2 MeV) reflected from concrete. [From R. E. Maerker and F . J . Mucken
thaler, iVwcfear Science awd £n^(«een'«^, 22: 458 (1965).] 

scatterings of high-energy neutrons are in the forward direction and since 
neutrons that have scattered more than once tend to have "forgotten" their 
initial direction and thus emerge from the material in a random manner. 
Figure 7.5 shows how the ratio of the total-dose albedo for singly scattered 
neutrons to the total-dose albedo for singly plus multiply scattered neutrons 
increases with increasing values of the polar angle of incidence. 

Maerker and Muckenthaler developed an expression to fit their angular 
differential-dose-albedo data which reproduces their Monte Carlo results 
within 10%. The expression involves two terms: the first accounts only for 
singly scattered neutrons and the second includes all multiply scattered 
neutrons; it is assumed that the configuration is effectively a semi-infinite 
body of concrete. The expression is 

OCD2{AEQ,9O,9,(I>)^ 
cos 0 

COS0 +Ki{AEo) cos 00 

M 
X I G„ , (A£o)Pm(cos0 , ) + 

m=0 

X 2: Bk{AEQ)Pk{cos9s} 

cos 0 

cos0+iC2(A£o,0o.^) 

(7.3-1) 
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COS0 

Fig. 7.3—Differential single-collision dose albedo per steradian as a function of cos 6 and 
0 for 1.5- to 3-MeV neutrons incident on concrete at SQ = 60 . [From R. E. Maerker and 
F. J. Muckenthaler, Nuclear Science and Engineering, 22: 458 (1965).] 

To provide experimental verification of these data, Maerker and 
Muckenthaler used their differential albedos to predict reflected fast-neutron 
doses from a collimated beam of reactor neutrons incident at various angles 
to a 1.8-m-square, 23-cm-thick concrete slab and compared calculations with 
corresponding measurements at the ORNL Tower Shielding Facility (TSF). 
The values of the incident angles 0o covered in the calculations and the 
experiment were 0°, 45°, 60°, and 75°. The calculations were weighted by 
an incident spectrum that had been previously measured at the TSF, and the 
incident dose rate used was the dose rate determined by integrating the 
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measured dose rates over the effective cross-sectional area of the incident 
beam. 

Agreement was considered good in that the root-mean-square deviation 
between the predicted and measured values was 3.1% and the largest single 
deviation was 9%. Maerker and Muckenthaler subsequently incorporated 
these results in a duct calculation for comparison with a series of 

cos 9 

Fig. 7.4—Differential single-collision dose albedo per steradian as a function of cos 6 and 
0 for 6- to 8-MeV neutrons incident on concrete at 0o = 85 • [From R. E. Maerker and 
F. J. Muckenthaler, Nuclear Science and Engineering, 22: 458 (1965).] 

measurements in a three-legged duct. Their results are described later in this 
chapter. 

The Monte Carlo calculations performed by Allen et al.^ were used to 
determine the fraction of neutrons from monoenergetic sources that was 
transmitted through and reflected from infinite slabs of various materials, 
including concrete. The source energies were 0.10, 0.25, 0.50, 1.0, 2.0, 3.0, 
5.0, and 14 MeV, and the angles of incidence were 0° , 30°, 45°, and 70° 
from the normal to the slab. The low-energy cutoff was 10 eV. Transmitted 
and reflected neutrons were accumulated in energy and angle intervals, the 
reflected data yielding the multicollision-dose albedos OLJ)3{EQ,6O,6) and 
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Fig. 7 . 5 ^ R a t i o of total single-collision dose albedo for fast neutrons (>0.2 MeV) singly 
scattered from concrete to total albedo for singly plus multiply scattered neutrons as a 
function of cos OQ and Eg. [From R. E. Maerker and F . J . Muckenthaler, Nuclear Science 
and Engineering, 22: 458 (1965).] 

/ 1 D 3 ( £ O , 0 O ) - Energy spectra of the reflected flux were also determined for 
each incident energy—angle combination, but the albedo was not calculated 
as a function of the energy of reflected particles. 

In addition to concrete, the materials included in the calculations were 
water, iron, borated polyethylene (8% B4C by weight), and three Nevada 
Test Site (NTS) soils that differed only in moisture content. The densities 
and elemental content of the materials are given in Appendix O, Table O.2. 
In all cases the slabs were assumed to be sufficiently thick to yield albedo 
data approximating those for a semi-infinite geometry. 

Some results from the calculations of Allen et al.^ are shown in Figs. 7.6 
through 7.9. Figures 7.6 through 7.8 are plots of the total-dose albedos for 
the various materials as a function of the hydrogen content for incident 
source energies of 0 .1 , 2.0, and 14.0 MeV. Figure 7.9 gives the angular 
distributions of reflected neutrons from a 1.0-MeV source. 

French and Wells'* analyzed the differential data of Allen et al.^ and 
obtained a fit that is a function of the incident and reflected polar angles 
only. The lesser detail of the BRL results led to the conclusion that the 
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Fig. 7 . 6 — T o t a l multicollision dose albedo for 0.1-MeV neut rons incident on various 

materials. (F rom Allen, Fu t te re r , and Wright. ) 

dependence of the reflected azimuthal angle 0 was weak and for the most 
part irregular; thus the dose reflection data were averaged over 0. The 
dependence on the reflected polar angle was found to fit a cos 0 function, 
and the dependence on the incident angle was approximated by cos" 0o, 
which yielded an expression of the formt 

O;DI ~ ^[EQ) COS7^0O COS 0 (7.3-3) 

where fe(£o) is a normalizing constant that includes the effect of incident 
energy and reflecting material. Values of fe(£o) are shown in Appendix O, 
Table 0 .3 , for concrete, the three NTS soils, and iron for eight monoen-

tThe original data of Allen et al.^ were converted by French and Wells to a type 1 albedo (see 
Sec. 7.2). 
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30 40 
HYDROGEN, at. % 

Fig. 7.7—Total multicollision dose albedo for 2.0-MeV neutrons incident on various 
materials. (From Allen, Futterer, and Wright.') 

ergetic sources and a fission source. Equation 7.3-3 is assumed to be valid for 
all materials of low to moderate hydrogen content (S / / /2 f < 0.5). (The 
water data of Allen et al. show a less pronounced dependence on 0o ^"^ are 
not represented by Eq. 7.3-3.) 

French and Wells found that, except for incident energies near 
cross-section peaks of the elements in the material, the total-dose-albedo 
data of Allen et al.^ could be correlated by a hnear function of the ratio of 
the macroscopic hydrogen cross section of the material to its macroscopic 
total cross section. There is also an excellent correlation when the total 
albedo is averaged over the fission-neutron spectrum, as is shown in Fig. 7.10 
for normally incident and normally reflected fission neutrons. This should be 
a useful correlation in extrapolating to other materials for which calculations 
have not been performed. 

Song' used the Monte Carlo data of Allen et al.^ to obtain values of an 
energy-dependent parameter that would give the best fit to a semiempirical 
formula he had derived for the fast-neutron differential-dose albedo for 
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Fig. 7.8—Total multicollision dose albedo for 14.0-MeV neutrons incident on various 
materials. (From Allen, Futterer, and Wright.'') 

concrete. The formula, analogous to that used by Chilton and Huddleston* 
for gamma rays (given in Sec. 7.4), is 

E{Eo) cos 0 
aD2(£o,0o,e) = ,o3 0 ^ + , o s 0 

(7.3-4) 

where F{EQ) is the energy-dependent parameter. Song obtained values of this 
parameter from a least-squares analysis of the Monte Carlo data for concrete 
which gave the best fit to the equation. The values were then empirically 
correlated as a function of energy by 

f (£o) = £o exp (0.9719 - 2 . 895^1^ -i- 0.34l7£o) (7-3-5) 

Another investigation of fast-neutron albedos was performed by Henry, 
Mooney, and Prevost,' who studied the reflection of fast neutrons normally 
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Fig. 7.9—Angular distributions of fast neutrons reflected from concrete. (From Allen, 
Futterer, and Wright.') 

incident on various thicknesses of steel and 6% borated polyethylene. Their 
work included both Monte Carlo calculations and experiments utiUzing a 
well-collimated reactor beam. In the experiments total-dose albedos ( / I D a ) 
were evaluated from data obtained by traversing the beam area with a 
dosimeter in a plane adjacent to the slab and repeating the traverse in the 
same plane with the slab removed. Figure 7.11 shows experimental and 
calculated results. 

The data of Henry et al. are of particular interest because they show the 
dependence of the albedo on material thickness. In addition. Fig. 7.12 shows 
the reduction of the steel albedo caused by facing the steel slab with various 
thicknesses of polyethylene. In Fig. 7.11 it appears that the albedo for steel 
is approaching a value of nearly 0.6, which is lower than the value of 0.84 



ALBEDOS, DUCTS, AND VOIDS 329 

0.6 

0.5 

0.4 

^ 0 . 3 

0.2 

0.1 

Iron 

-Soil (5 D% satur 

1 
Concrete 

' •^^-Dry soil 

C 

"^.> 

.435 - C 

toil (100% saturated) 

.430 XH / s , ^ 
% Water 

• ^ 

" ^ ^ 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Fig. 7.10—Dependence of fast-neutron total multicollision dose albedo on hydrogen 
content of reflecting material (fission neutrons, EQ > 0.2 MeV). (From French and 
Wells.") 

0.6 

0.5 

0.4 

Q0.3 

0.2 

0.1 

/l 
/ 

/ 

/ 

/ 

> 

( 

» 

n f 

Measured 

.alculated 

r""̂—* 

10 15 20 
THICKNESS, cm 

25 30 

Fig. 7.11—Total single-collision dose albedos for fission neutrons normally incident on 
steel slabs: comparison with experiment. (From Henry, Mooney, and Prevost.') 



330 REACTOR SHIELDING FOR NUCLEAR ENGINEERS 

obtained when the data of Allen et al. are put in the AD^ form. The finite 
detector used in the experiments to traverse the interface approximates the 
slab detector assumed in the calculations of Allen et al. except for the 
low-energy cutoff, which was 0.2 MeV in the experiment and in the 
calculations performed by Henry et al. but was 10 eV in the calculations by 

2 4 6 
POLYETHYLENE THICKNESS, cm 

Fig. 7.12—Comparison with experiment of total single-collision dose albedos for fission 
neutrons normally incident on a laminated slab of steel and 6% borated polyethylene. 
(From Henry, Mooney, and Prevost.') 

Allen et al. When the contribution below 0.2 MeV is subtracted from the 
data of Allen et al. for representative energy groups, good agreement with 
the results of Henry et al. is obtained. 

The Monte Carlo results of Maerker and Muckenthaler* are the most 
complete available for neutron scattering from concrete, especially for 
grazing angles of incidence and emergence of high-energy neutrons where the 
dependence on azimuthal angle was found to be important. For water, soil, 
iron, and polyethylene, the Monte Carlo data of Allen et al. ^ can be used. 

The best accuracy is obtained when the Monte Carlo data are used 
directly in calculations; if the requirements on accuracy are not too 
stringent, the empirical expressions for the data can be applied, especially 
when an azimuthal dependence is not expected to be great. The analytical 
fits will generally provide less information on the distribution of the 
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scattered radiation, but they will allow the reflected dose to be expressed in 
compact form, which will greatly reduce the bulk of data needed for 
calculations. A less precise but expedient calculation can be made by using 
the fission-spectrum total albedo shown in Fig. 7.10 with an assumed 
cos'* 00 cos 0 angular dependence. 

7.3.2 Intermediate-Neutron Albedos 

Coleman, Maerker, Muckenthaler, and Stevens^ calculated albedos for 
neutrons whose incident and reflected energies both are in the intermediate-
energy range for steel-reinforced concrete. Using a Monte Carlo technique 
similar to the one used for the fast-neutron albedos,* they determined the 
distribution in energy and angle of neutrons reflected from the concrete for 
5 incident directions and 10 incident-energy groups in the energy range 
0.5 eV to 200 keV. The reflected distributions are given in terms of a doubly 
differential albedo for each of 54 different emergent directions for each 
group lying between and including the incident group and the lowest group 
(0.5 to 1.8 eV). 

Reinforced concrete was used in these calculations because they were a 
part of the ORNL albedo program mentioned earlier. In the experiment a 
23-cm-thick concrete slab that had steel reinforcing bars at a depth of 3.8 cm 
from either side was used; therefore all the calculations except the 
fast-neutron calculations were performed for a mock steel configuration in 
which each depth interval containing steel reinforcing rods was taken as a 
homogenized region of concrete and steel that was 2.5 cm thick. The result 
was a five-region slab that had ordinary concrete and reinforced-concrete 
layers. The effect of the iron on the intermediate-energy-neutron albedos 
was found to be negligible. 

A complete tabulation of the doubly differential albedos calculated by 
Coleman et al. is too lengthy to be included here. The results, however, were 
numerically integrated over all exit energies to produce singly differential 
albedos and over all exit energies and angles to produce total albedos. The 
integrated results were fitted by the following expressions to within 15% for 
differential albedos and to within 3% for total albedos: 

aMEQ,6Q,9,<i>) =M[6.+6,Mo-^K/? . -^^aMo)] 
' ^ ° ° ' ' n+yi +72M0 

x { l + ( l - i u ) ( l - M o ) W 2 c o s 2 0 - l ) 

+ b COS0 + C cos^ 0]} (7.3-6) 



332 REACTOR SHIELDING FOR NUCLEAR ENGINEERS 

and 

^2(A£o,0o) = 5i +62M0 (7.3-7) 

where ju = cos 9, HQ = cos 0o, and the constants are given in Appendix O, 
Table 0 .4 , for each incident-energy group. When the expression for the 
differential albedo was determined, all exit neutrons were assumed to have a 
1/JB energy distribution within each energy group. The expression for the 
total albedo was obtained by integrating Eq. 7.3-6 over all exit angles. 

7.3.3 Thermal-Neutron Albedos 

As mentioned previously, two types of thermal-neutron albedos can be 
considered: the purely thermal albedo, for which both the incident and the 
reflected neutrons are at thermal energy, and the albedo for emergent 
thermal neutrons that result from the moderation of neutrons that are 
incident at energies higher than thermal. These two categories are treated 
separately. 

(a) Neutrons Incident at Thermal Energy. Various approximations to 
the purely thermal albedo have been derived analytically, with isotropic 
scattering and capture being the only interactions allowed. In some 
approximations only the total albedo is derived, and it is expressed as a 
function of the incident angle, assuming that the reflected neutrons will 
emerge with isotropic or cosine distributions. In other approximations 
differential albedos that are functions of both the incident angle and the exit 
angle are obtained. 

In analytical treatments of purely thermal scattering, the exit current is 
independent of the azimuthal angle by virtue of the assumption of isotropic 
scattering. Monte Carlo calculations made with this assumption have shown 
reasonable agreement with the other forms of analysis; however, Monte 
Carlo calculations in which anisotropic scattering was assumed for hydrogen 
contained in the material have shown that the albedo exhibits an azimuthal 
dependence, although to a lesser extent than was shown for fast neutrons. 
Results from Monte Carlo calculations in which both types of scattering 
assumptions were used follow the discussion of various analytical 
approaches. 

Probably the first investigation of thermal-neutron reflection was 
performed by Fermi, ' who showed that for large values ofN {N = l^t/^a, the 
ratio of the total cross section to the absorption cross section) the total 
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albedo for thermal neutrons incident on an infinitely thick isotropically 
scattering medium bounded by a plane is given approximately by 

y/N - 1 
^ 2 ( 0 o ) = r- n, ^ (7.3-8) 

^^ °' y/N+y/3 cos 6Q ^ ' 

where ^2 (^0 ) is the number of thermal neutrons reflected per incident 
thermal neutron and 0o is the angle of incidence. 

A rigorous calculation was carried out later by Halpern, Lueneburg, and 
Clark,' ° who obtained the formula 

A. = 1 - ^ — - (7.3-9) 

where k = 2.91, 2.31, and 2.48 for normal, isotropic, and cosine angular 
distributions of incidence, respectively. 

Glasstone and Edlund' * derived a formula by use of diffusion theory 
which is given by 

where K is the reciprocal of the thermal-neutron diffusion length and D is 

the diffusion coefficient. 
Chandrasekhar* ^ treated radiation backscattering by a method that can, 

in general, be applied to any type of radiation that scatters isotropically with 
a relatively constant cross section, a condition that is approximately met by 
thermal-neutron scattering. The resulting backscattering angular distribution 
can be written in the form 

ot2{eofi,p) - f ^ - ^H{p, cos 0o) H{p, cos 0) (7.3-11) 
J. cos (7 "r cos VQ 

where p is the probability of nonabsorption in a single interaction 
[p = 'Lgl'Lt, the ratio of the scattering cross section to the total cross section) 
and Chandrasekhar's H function is tabulated* ^ for various values of p and 
cos 00- The total albedo as a function of 0o a n d p is obtained by integrating 
Eq. 7.3-11 over the exit angle 0. This integration yields 

/l2(0o,p) = l - V r ^ H ( p , c o s 0 o ) (7.3-12) 
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Spencer, Diaz, and Moses' ^ have applied Chandrasekhar's albedo to neutron 
duct penetration and compared it with the Monte Carlo data. 

Mockel'^ studied alternate approaches for determining the total 
thermal-neutron albedo for strongly absorbing media as a function of slab 
thickness. His objective was to develop a method that would be readily 
adaptable to computer usage and still provide good results with less 
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Fig. 7.13—Total albedos obtained by various methods for thermal neutrons isotropically 
incident on a strongly absorbing medium (2^/E( = 0.1). [From A. Mockel, Nuclear 
Science and Engineering, 22: 346 (1965).] 

computing time than is required for integration of the Boltzmann equation. 
A variational method with a constant trial function was found to give poor 
results except for thin slabs. In a search for better methods, three solutions 
were tried which were based on an approximation to the moments of the 
Chandrasekhar function, a variational solution with an exponential trial 
function, and a diffusion-like semiempirical formula. Figures 7.13 and 7.14 
compare the results from the three methods for isotropic incidence and two 
values of 2^ /2 f. Also shown are results obtained with a constant trial 
function and with numerical integration of the Boltzmann equation. 

The semiempirical formula provides a fit within 2% for an isotropically 
incident current (plane isotropic source) and within 1% for a current either 
normally incident or incident with a cosine distribution (isotropically 
incident flux). It has the form 
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A, = 
1 - e " •2 a x 

1 -Ae-^P'' [ i ^ .̂w] ("-") 
where p = ligI'Lt, as before, x is slab thickness in mean free paths, and values 
of the coefficients and functions are given in Appendix O, Table 0 . 5 , for 
three conditions of neutron incidence. 
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Fig. 7.14—Total albedos obtained by various methods for thermal neutrons isotropically 
incident on a strongly absorbing medium (S^/2( = 0.5). [From A. Mockel, Nuclear 
Science and Engineering, 22: 346 (1965).] 

Pomraning' ^ proposed a variational solution with an exponential trial 
function which yields for the total albedo the expression 

A. =• [ln(l + ^ ' ) - l^ ] 
^ {l+u)\n{l -v^) 

for normally incident thermal neutrons and the expression 

(7.3-14) 

2 " n - T i 5T [In(l +v) -v]^ 
p^ Inll — v^ ) 

A^ = (7.3-15) 
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for isotropically incident thermal neutrons. Here i' is a positive quantity 
satisfying the transcendental equation 

2v = l n ( i ^ ) (7.3-16) 

and c is the mean number of secondaries per collision. 
Values obtained with these relatively simple formulas compare very 

favorably wdth the results of exact solutions by Chandrasekhar,'^ the 
difference being generally less than 2%. 

Equations 7.3-14 and 7.3-15 are derived from the more general 
expression 

^2 = ^ ^ ^ ^ [ ! " ( !+» ' ) - ' ' ] (7.3-17) 

where 

.r^fi MB (Ml 

/o' n B{n) dn 
(7.3-18) 

in which ju is the cosine of the incident angle and B(ju) is the general 
expression for the angular distribution of the incident flux. The success of 
Eqs. 7.3-14 and 7.3-15 for normal and isotropic incidence suggests that 
Eq. 7.3-17 could be applied to other angular distributions with equal success. 

Wells' * determined total and differential thermal-neutron albedos for 
Portland concrete by analyzing Monte Carlo results obtained in a calculation 
that he had originally performed to establish the distribution of capture 
gamma-ray sources in concrete and air due to thermal neutrons incident on 
the concrete.' ' Expressions that he derived to fit the Monte Carlo results are 

.4j =O.66cos%0o (7.3-19) 

anc 

«! = 0.21 cos?^ 00 cos 0 (7.3-20) 

which, when converted to type 2 albedos, are given by 

^2 =0.66 cos"^00 (7.3-21) 
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and 

a2 = 0.21 cos-^00 cos 9 (7.3-22) 

A type 3 total albedo is obtained by integrating the differential albedo over 
the exit hemisphere as follows: 

A^ (portland) = / «! sec 0 dn 

= 51'^ So'' 0-21 cos?^00 sin 0 d6 d<t> 

= 1.32cos?^0o (7.3-23) 

Expression 7.3-23 is to be compared with an expression obtained by 
Wells for a particular concrete used in structures built at the ORNL Tower 
Shielding Facility (TSF): 

^3 (TSF) = 1.3 cos 00 (7.3-24) 

In both the preceding calculations the thermal neutrons were assumed to 
scatter isotropically in the center-of-mass system with no energy loss, and 
histories were terminated after a fixed number of interactions. Statistical 
estimates were made for each interaction point. The concrete compositions 
used in these calculations are given in Table 7.2. 

For their thermal-neutron albedos, Maerker and Muckenthaler' ^ per
formed single-velocity Monte Carlo calculations for a 23-cm-thick steel-
reinforced concrete slab. Two different scattering laws were used for the 

Table 7.2—ASSUMED CONCRETE COMPOSITIONS USED 
IN MONTE CARLO CALCULATION BY WELLS' * 

Element 

Hydrogen 
Oxygen 
Carbon 
Magnesium 
Aluminum 
Silicon 
Calcium 
Iron 

Portland concrete, 
10^' atoms cm ^ 

2.868 
43.260 

6.507 

9.899 
8.736 

TSF concrete. 
10^' atoms cm" 

15.6 
39.6 

5.42 
0.40 
1.32 

10.00 
7.40 
0.31 
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water contained in the concrete: (1) isotropic scattering in the laboratory 

system and (2) anisotropic scattering with an approximation based on 

experiments by Greenspan and Baksys' ^ at 0.0358 eV. Scattering from all 

other constituents in the concrete was assumed to be isotropic in the 

laboratory system. 
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Fig. 7.15—Differential albedos for thermal neutrons normally incident on steel-
reinforced concrete. A comparison of single-velocity Monte Carlo calculations and ORNL 
TSF experiments. [From R. E. Maerker and F . J . Muckenthaler, Nuclear Science and 
Engineering, 26: 345 (1966).] 

Typical results from the calculations are shown in Figs. 7.15 and 7.16, 
both of which illustrate that the best fit to the experimental data is obtained 
when the scattering in water is assumed to be anisotropic. Figure 7.16 also 
shows that even for thermal neutrons there is some dependence of the 
albedo on the azimuthal angle. 

From an analysis of their data, Maerker and Muckenthaler fitted their 
results for the differential albedo as follows: 

aj = 2:^^ZIil (1 + i.28ju)(l + 1.62MO - 0.42Mg) 

X [I + (I - Mo)(l - M)(-0.10 + 0.43 cos 0 + 0.20 cos^ 0)] (7.3-25) 
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where n = cos d and /Xo ~ cos do • A much simpler fit was obtained for the 
total thermal-neutron albedo (integrated over all exit angles): 

A2 = 0.86 - 0.19 cos 00 (7.3-26) 
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Fig. 7.16—Differential albedos of thermal neutrons incident at 75 on steel-reinforced 
concrete. A comparison of single-velocity Monte Carlo calculations and ORNL TSF 
experiments. [From R. E. Maerker and F . J . Muckenthaler, Nuclear Science and 
Engineering, 26: 346 (1966).] 

Results obtained for concrete with the various equations for thermal-
neutron albedos are compared in Table 7.3. Comparisons are made between 
the total-current albedo for various conditions of incidence. For all cases 
except do = 75°, there would appear to be ±10% ^reement between all the 
values. The formula due to Wells should be limited to angles of 0o< approxi
mately 60° because of its tendency to overpredict at grazing incidence. 

(b) Neutrons Incident at Nonthermal Energies. The only estimates 
available for albedos of reflected thermal neutrons resulting from incident 
neutrons of higher energy are those from the Monte Carlo calculations of 
Coleman et al.^ for 0.5-eV to 200-keV neutrons incident on the same 
steel-reinforced concrete described previously (see especially Sec. 7.3.2). 

file:///Aonte
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Expressions that reproduce the Monte Carlo values to within ±15% for the 
differential albedos and to within ±10% for the total albedos are given in 
Appendix O, Table O.6. The reflected angular distributions (differential 
albedos) for the six highest energy groups have a shape that is independent 
of Ho (the cosine of the incident polar angle) and identical to the shape 

Table 7.3—COMPARISON OF VARIOUS VALUES OF THE TOTAL ALBEDO FOR 
THERMAL NEUTRON REFLECTION FROM PORTLAND CONCRETE! 

Values of A 2 obtained with the formulas of 

Maerker 
and Glasstone 

Mucken- Pom- Halpern and Chandra-
Source thaler'* Wells'* raning" et aV Ed lund" Fermi' sekhar'^ 

Isotropic 
distribution 0.78 0.792 0.8 0.719 0.74 0.79 

Cosine 
distribution 0.734 0.698 

Monodirec-
tional 
source 

00 = 0° 0.67 0.66 0.698 0.645 0.745 0.691 
00 = 45° 0.72 0.74 0.78 0.730 
00 = 75° 0.855 0.996 0.82 0.82 

tSj /Sf = 0.9849 except for the Maerker—Muckenthaler results, which are based on the 
five-region concrete slab discussed in the text. 

derived by Fermi^ for the emergent angular distribution from a plane surface 
in the simplified case of thermal neutrons diffusing in a noncapturing and 
isotropically scattering semi-infinite medium. 

Some contribution is also made to the emergent thermal-neutron current 
from the moderation of incident neutrons with energies greater than 
200 keV. Coleman et al. accounted for these higher energy neutrons by 
extrapolating the results of Table 0 .6 to obtain expressions for energies up 
to 9.57 MeV (see Appendix O, Table 0 .7) . For the spectrum of neutrons 
from the ORNL Tower Shielding Reactor II, which was the source used in 
verifying the calculations, it was estimated that a consistent error of 20% in 
the extrapolated results would lead to an error of only about 8% in the 
predicted values of the differential thermal-neutron albedos. 
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7.4 GAMMA-RAY ALBEDOS 

The primary interaction that contributes to the backscattering or albedo 
of gamma rays is Compton scattering from electrons. In this interaction the 
photon rebounds with an energy that is directly dependent on the scattering 
angle and the incident energy and is given by the Klein—Nishina formula 
(Sec. 3.2.1). The higher the incident energy, the more strongly will the 
forward direction be favored. Thus the gamma-ray albedo has an inverse 
relation with the incident-photon energy. Owing to the strongly peaked 
forward scattering, the gamma-ray albedo also has a strong dependence on 
the azimuthal angle <j); i.e., the scattering angle dg (see Fig. 7.1) at 0 = 0° is 
smaller than the scattering angle at 0 = 180°, and hence the albedo decreases 
with increasing 0. The magnitude of the difference increases with increasing 
values of the incident polar angle OQ ; thus at grazing incidence the difference 
Hes between forward scattering (0 = 0°) and backscattering (0 = 180°). 

Another interaction that contributes to the reflected energy for incident 
gamma rays of high energy is pair production (Sec. 3.2.1). The positron 
created in this reaction is annihilated by combining with an atomic electron 
and releasing energy in the form of two new gamma rays. This reaction is 
possible only if the energy of the incoming gamma ray is greater than 
1.022 MeV, and it is predominant only at energies above about 5 MeV. Each 
of the photons created has an energy of 0.511 MeV, which is greater than 
the maximum energy possible for gamma rays scattered backward 
{dg - 180°) by Compton scattering. 

Leimdorfer^" investigated the relative contributions by positron anni
hilation and Compton scattering to the total gamma-ray albedo for concrete 
in a calculation that considered single scattering only. The results for 
normally incident gamma rays are shown in Fig. 7.17, in which the fraction 
of the albedo due to annihilation is plotted as a function of the incident 
gamma-ray energy. Also plotted is the same fraction from a calculation by 
Wells^ ' in which multiple scattering was considered. 

As with neutrons, most of the studies of gamma-ray albedos have been 
carried out either by Monte Carlo analysis or by experiments and most of 
them have been for concrete. Where both experimental and calculated data 
are available, there is good agreement (within 10%); however, experiments 
have been limited to low gamma-ray energies (<2 MeV) that can be obtained 
from isotope sources, and definitive Monte Carlo calculations have been 
performed for only a few materials. 



342 REACTOR SHIELDING FOR NUCLEAR ENGINEERS 

One of the earliest Monte Carlo calculations was performed by Berger 
and Doggett,^^ who obtained the total-dose albedo, / I D 3, for monoenergetic 
sources incident on iron, tin, lead, and water. From these calculations a 
quantitative measure of the dependence of the albedo on the thickness of 
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Fig. 7.17—Ratio of pair-production annihilation albedo to total albedo for gamma rays 
normally incident on concrete. (From Leimdorfer^" and Wells.^') 

the scattering material was obtained. This dependence is illustrated for iron 
and water in Table 7.4. 

Berger and Raso^^'^'* carried out an extensive series of Monte Carlo 
calculations to determine the total-energy albedo for monoenergetic gamma 
rays incident on a variety of materials, and in some cases they obtained 
energy and angular distributions. An interesting result of their work is the 
analysis of the variation in the total albedo with the atomic number of the 
scattering material. Plots of the albedo for normally incident gamma rays are 
shown in Fig. 7.18. These data may be fitted by smooth curves; however, 
data at intermediate Z values would greatly increase confidence in 
interpolation, particularly at the 2.0-MeV level. 



ALBEDOS, DUCTS, AND VOIDS 343 

Raso^^ performed additional calculations for concrete for source 
energies of 0.5, 1, 2, 4, 6, and 10 MeV and polar angles of incidence of 
cos 00 =0 .10 , 0.25, 0.50, 0.75, and 1.0. The emergent gamma rays were 
divided into 8 polar and 12 azimuthal angular increments, and differential-
dose albedos, a£)2 (£o J^O >^.0)i were obtained for all exit-angle combinations. 
Total albedos, ^ D 2 ( ^ O > ^ O ) ' were obtained for each incident energy and 

Table 7.4—DEPENDENCE OF GAMMA-RAY TOTAL-DOSE 
ALBEDO, ^D3, ON MATERIAL THICKNESSt 

Fraction of reflected 
photons reflected 
within depth of 

0.5 1.0 2.0 
£o) 00 > mean free mean free mean free 

Material MeV deg paths paths paths 

HjO 0.66 0 0.65 0.88 0.99 
0.66 60 0.61 0.96 1.0 

Iron 1.0 0 0.79 0.93 1.0 
1.0 60 0.89 0.98 1.0 

tAdapted from Berger and Doggett.^^ 

angle. Values of the differential- and total-dose albedos for normal incidence 
are shown in Figs. 7.19 and 7.20, respectively. 

Figures 7.19 and 7.20 also show Monte Carlo results obtained by 
Wells,^ * who calculated differential- and total-dose albedos for gamma-ray 
reflection from concrete by analysis of prior Monte Carlo data^* on 
gamma-ray scattering in air and concrete. The results of Raso and Wells are 
essentially in agreement on the total albedo for energies of 2 MeV and 
below; there are, however, some differences in the differential albedos at 
these energies. At energies above 2 MeV, there is a substantial disagreement 
between Raso and Wells on the magnitude of the total albedo, as shown in 
Fig. 7.20. The divergence of agreement with increasing energy could be 
attributed to the different manner in which pair production was treated in 
the two calculations. 

As is apparent from Fig. 7.19, the incident energies used in the 
calculations by Wells were 0.6, 1, 2, 4, and 7 MeV. The incident polar angles 
were 0, 30, 45 , 60, and 75°. The emergent angles varied with the individual 
problems, and no regularly spaced grid was used; however, by extrapolation 
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and interpolation, smooth curve fits were obtained for a^^ vs. 6 for 
azimuthal angles of 0 and 180°. Complete data sets are given in Ref. 21. 

Chilton and Huddleston* developed a semiempirical formula for the 
differential-dose albedo for concrete of the form 

0<-D2iEofiQ,&,<i>) = 
CK[es) X 10^^ -t-C' 

H - [(cos0o)/(cos0)] 
(7.4-1) 
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where K{6s) is the Klein—Nishina differential-energy scattering coefficient 
for the scattering angle dg, and C and C' are adjustable parameters that are 
dependent on the initial energy. Values of K{ds) can be obtained from 
Eq. 3.2-8 [K{6s) = o{d)]. Values of C and C' were obtained by Chilton, 
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Fig. 7.20—Total-dose albedos for gamma rays normally incident on concrete. (From 
Wells*' and Raso.**) 

Davisson, and Beach^' from an analysis of earlier Monte Carlo calculations 
performed by Davisson and Beach.* * Parameters were obtained by normal
ization to the total calculated albedo rather than to the differential data. The 
resulting values of C and C' are given in Appendix O, Table 0.8, for water, 
concrete, iron, and lead. Chilton*' later revised Eq. 7.4-1 by altering the 
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denominator and multiplying by a fraction with five adjustable constants. 
The newer formula has been applied only to concrete but is accurate within 
10% for ' 37cs Ĵ nJ eo^o. Chilton's formula is given in Table O.9. 

In most of the experimental studies of gamma-ray albedos, the sources 
used were ^^Co and ' ^ 'Cs . Examples are the data obtained for concrete by 

0.010 

0.008 

0.006 

0.004 

0.002 

0, deg 

Fig. 7.21—Comparison between calculated and measured differential-dose albedos for 
***Co gamma rays (1.25 MeV) normally incident on concrete. (From Wells.*') 

Clifford;^" Haggmark, Jones, Scofield, and Gurney;' ' Barrett and Wald-
man;^* and Berger and Morris.^ ̂  Comparisons of typical data from these 
investigations with results from some of the calculations discussed previously 
are shown in Figs. 7.21 through 7.23. For these figures all the values were 
converted to type 1 albedos, and, where necessary, the analytical data were 
interpolated to match the experimental energies. 
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Except for small angles of reflection, the experimental and calculated 
values generally are within 10%. For the single case shown in Fig. 7.22, the 
weighted values of Raso and the calculations by Wells are very similar. 
Figure 7.23 points up the strong dependence on 0 for obliquely incident 
radiation. 
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Fig. 7.22—Comparison between calculated and measured differential-dose albedos for 
' ^^Cs gamma rays (0.662 MeV) normally incident on concrete. (From Wells.* ' ) 

Haggmark et al.^^ found that their experimental data on differential-
dose albedos for concrete, iron, and aluminum could all be represented by 
the expression 

(XD3{Eo,do,ds)-b{Eo,eo) = e-^^s (7.4-2) 

where Og is the effective scattering angle shown in Fig. 7 .1 ; OL^^ is the 
differential-dose albedo described in Sec. 7.2 except that the exit direction is 
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expressed in terms of dg, which is a function of 6 and 0; and b is a. constant 
for a given OQ, EQ, and material. Figure 7.24 shows a comparison of 
Eq. 7.4-2 with the experimental data for iron, concrete, and aluminum 
reduced by the appropriate b value given in Appendix O, Table O.IO. 
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Fig. 7.23—Comparison between calculated and measured differential-dose albedos for 
^''Co gamma rays (1.25 MeV) incident on concrete at 60°. (From Wells.*') 

Equation 7.4-2 is a useful tool for extrapolating albedo data, but it is not 
valid for grazing angles since the measurements do not include 0., < 30°. 

Leimdorfer used the Monte Carlo method for calculating the total 
gamma-ray-energy-flux albedo from concrete slabs* " and also from spherically 
concave concrete walls.^^ An interesting result of the latter studies is shown 
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in Fig. 7.25, which gives the^energy-flux albedo, AE3, for 1-MeV gamma rays 
from a concrete wall surrounding a spherical cavity as a function of the 
radius of curvature of the wall. The point isotropic source is located in the 
center of an evacuated cavity in an infinite concrete medium. The AE^ is 
defined as the ratio of the collided to the uncoUided energy-flux density at 

0.08 

dc, radians 

Fig. 7.24 
function 
and W. J. 

—Gamma-ray differential-dose albedo for aluminum, iron, and concrete as a 
of the scattering angle 0^. [From L. G. Haggmark, T. H. Jones, N. E. Scofield, 
Gurney, Nuclear Science and Engineering, 23: 145 (1965).] 

the wall surface. The infinite-radius (flat-surface) albedo is calculated to be 
only about 2.5% higher than the albedo for a 500-cm radius spherical cavity. 
Other interesting conclusions drawn by Leimdorfer from these calculations 
are that reflections beyond the third or fourth order do not contribute 
appreciably to the energy-flux albedo in the spherical geometry and that at 
least 90% of the reflections occur within the first 24 g cm~* thickness for 
gamma-ray energies below 10 MeV. 

7.5 SECONDARY-GAMMA-RAY ALBEDOS 

* Secondary gamma rays, i.e., gamma rays produced by the interactions of 
neutrons with nuclei, can appreciably increase the number of gamma rays 



ALBEDOS, DUCTS, AND VOIDS 351 

reflected from a material surface. The most important neutron interaction 
involved is radiative capture, described in Chap. 3, which results in capture 
gamma rays. Since these gamma rays usually create the greatest problem for 
shield designers, the few studies of secondary-gamma-ray albedos that have 
been performed involve captures. Activation gamma rays and inelastic-
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Fig. 7.25—Gamma-ray-energy flux albedo as a function of the radius of the concrete 
reflecting wall (1-MeV source). (From Leimdorfer.^'') 

scattering gamma rays could be of concern in special situations. Albedo 
definitions given in Sec. 7.2 do not apply precisely to secondary^amma-ray 
albedos. To emphasize that the incident particles are neutrons and the 
emergent particles are gamma rays, we have included the notation (ny) in the 
subscripts associated with the albedo symbols. All albedos are based on an 
incident-particle current or flux density and an emergent gamma-ray dose 
current. 
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For capture gamma-ray albedos to be determined, the capture gamma-
ray source density within a medium must be known. The density at a point 
is given by 

SY{E') = lf OciiE) Yi{E') Ni * ( £ ) dE (7.5-1) 

where Oci{E) = the capture cross section of element i for neutrons of energy 
E 

Nf = the atomic density of element i 

$ ( £ ) = the scalar neutron-flux density at energy E 

Yi{E') = the yield per capture in material i of gamma rays of energy E' 

Equation 7.5-1 displays the quantities that must be known as a function 
of position within the absorbing material for a calculation of the gamma-ray 
production in the medium It also illustrates that a number of parameters 
must be duplicated if secondary-gamma-ray data obtained for one situation 
is to be applicable to another situation. In many cases sufficient accuracy 
can be obtained by considering only the thermal-neutron-flux-density profile 
and the capture cross sections averaged over the thermal group. 

Data on capture gamma-ray albedos are quite limited. Wells'* performed 
a series of Monte Carlo calculations from which he obtained capture 
gamma-ray albedos for the portland and TSF concrete compositions given in 
Table 7.2. Assuming that only thermal neutrons were incident, he arrived at 
the following expressions for the differential-dose albedo, which is given in 
rads hr~' steradian"* per unit thermal-neutron-flux density incident at angle 

do-. 

«D 1 {n,y){do fi) = 6.986 X 10"^ cos OQ cos 6 (7.5-2) 

for portland concrete and 

aDi(n,7)(0o,0) = 1-046 X lOr'^ cos54 0o cos%0 (7.5-3) 

for TSF concrete. In calculating the capture gamma-ray dose rate along the 
axis of a concrete-lined cylindrical hole. Wells found that the results 
obtained with the TSF albedo were higher by a factor of 40 to 50% than 
those obtained with the albedo for portland concrete, which demonstrates 
that variations in local aggregates cause variations in the capture gamma-ray 
albedo because of changes in both capture density and gamma-ray yield per 
capture. 
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Maerker and Muckenthaler'^ also obtained capture gamma-ray dose 
albedos from Monte Carlo calculations for thermal neutrons incident on 
concrete. In their case the concrete was the same five-region slab containing 
steel in two regions. The differentiaUalbedo data were fitted to the 
expression 

aD2{n,y)=(J^{l-01 + 1.67/Xo - 0 . 5 6 M § ) X lO" ' (7.5-4) 

where a;£)2 is given in rads hr~' steradian"' per incident unit thermal-neutron 
current and Ho ^^'^ M are the cosines of the incident and reflected polar 
angles, respectively. The corresponding expression for the total albedo is 

AD2{n,y) = 3.77 X 10-^(1.01 + 1.67/Xo - 0.56nl) (7.5-5) 

given in rads hr~' per incident unit thermal-neutron current. These equations 
fit the Monte Carlo data to within 15%. 

Figure 7.26 compares the differential albedos obtained with the 
Maerker—Muckenthaler expression with those obtained with the Wells 
expression for TSF concrete, the latter being converted to type 2 albedos. 
The data differ by a factor of approximately 2, which may have resulted 
from several causes. In the calculations by Wells, neutron histories were 
terminated after 50 collisions, whereas 200 collisions were allowed in the 
calculations by Maerker and Muckenthaler. According to additional studies 
performed by Maerker and Muckenthaler'* and later by Coleman et al.,^ 
this would account for no more than 20% of the difference. Other 
differences may appear in the gamma-ray yields, the minimum gamma-ray 
energy considered, and the concrete composition. In particular, the layered 
concrete slab used by Maerker and Muckenthaler had more iron nearer the 
surface than did the homogenized system used by Wells. The additional iron 
at this position probably resulted in more iron-capture gamma rays emerging 
from the surface. 

Coleman et al.^ calculated, also by Monte Carlo methods, the capture 
gamma-ray albedos resulting from the slowing down and capture of neutrons 
incident on concrete at intermediate energies (0.5 eV to 200 keV). As was 
the case for the other calculations by Maerker and Muckenthaler, the 
concrete was the same five-region slab containing two regions with iron; 
however, at most the iron contributed only 20% of the capture gamma-ray 
dose. 

The empirical equations representing the results of Coleman et al. are 
shown in Appendix O, Table 0 . 1 1 . The departure from unity of the last 
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term in parentheses in the expressions for the differential albedos reflects the 
contributions from captures occurring at nonthermal energies. These 
expressions reproduce the Monte Carlo values to within 15% for the 
differential albedos and to within 10% for the total albedos. 

cos 9 

Fig. 7.26—Capture gamma-ray differential albedos for thermal neutrons incident on 
concrete. (From Wells' * and Maerker and Muckenthaler.' *) 

Using thermal-neutron fluxes measured in TSF concrete, French, Wells, 
and Schaeffer^ ^ calculated the capture gamma source strength as a function 
of depth and obtained the resulting gamma-ray leakage from the concrete 
with a Monte Carlo code. The resulting angular dose rates were found to fit 

D{d) = 6.14 X 10-8 cos e (7.5-6) 

where D{Q) is the dose rate in rads hr~' steradian"' per unit thermal-
neutron-flux density at the concrete surface. 
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To approximate the capture gamma dose rate from this concrete, we 
integrate over the solid angle that the surface subtends at the detector 

D= f^^D{d)dn (7.5-7) 

where d{d) is given by Eq. 7.5-6 and $ is the thermal-neutron-flux density. 

7.6 APPLICATIONS OF ALBEDOS 

Albedos are invaluable in estimating the streaming through ducts, as will 
be seen in the remainder of this chapter. They are also useful in dealing with 

DETECTOR 

DIRECT-BEAM 
SHIELD 

SOURCE 

Fig. 7.27—Wall scattering. 

other interfaces, such as scattering from the ground in an air—ground 
geometry or scattering from the inside surfaces within a shielded room. As 
an illustration, consider the scattering from a wall, as shown in Fig. 7.27, 
where the detector is shielded from the direct radiation but is exposed to a 
wall that is irradiated by the source. 

We assume a monoenergetic isotropic point source of N particles/sec. 
The dose rate incident to wall-area increment dS is 

Dn = 
_NK{Eo) 

4irr] 
(7.6-1) 

where K{Eo) is the flux-to-dose conversion factor. If we use type 1 dose 
albedo data, then the dose reflected to the detector from the area increment 
will be 

^_DoOCDi{Eo,do,d,<i>) 
r* ^2 

(7.6-2) 
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The dose due to scattering from the entire surface will be 

DoaD,{Eo,do,d,(t>)dS 

s 71 ^^-^-^^ 

The integration over surface area in these equations would ordinarily be 
carried out numerically. The dose at the wall surface has two components, 
the uncollided dose arriving from the source and the scattered dose from the 
wall: 

D = Do[l+AD3{Eo,do)] 

= Do [l + / , '7o"«D3(£o,0o,0 ,<A) sin 6 dd c/0] (7.6-4) 

The interface effect is then expressed by the integral. 
The albedo of radiation from the floor, ceiling, and walls is often 

significant to the total dose inside shielded compartments. For example, the 
neutron dose at the center of an underground shielded compartment due to 
neutrons penetrating the cover shield is almost a factor of 2 higher than 
would be predicted on neutrons traveling directly from the shield to the 
detector. Most of this factor can be predicted by performing an albedo 
calculation over the inside walls. 

7.7 DUCTS 

Passages through the bulk attenuation layers of a reactor shield are 
ubiquitous. The working fluid must enter and leave the core. Controls and 
instruments must have mechanical or electrical conduits leading outside. 
Maintenance implies access to every region, and access implies door, plug, or 
labyrinth. The shield designer is inevitably faced with the problem of 
maintaining the integrity of the shield while providing workable means for 
the necessary communicating pathways to the outside world. Each shield 
penetration may be considered a duct, whether it is a 3-m length of 1-cm 
tubing through the primary shield or a 1- by 2-m passageway with three 
turns into the control room. 

Design and analysis of a straight duct is relatively uncomplicated. The 
line-of-sight component is obviously the most important. Radiation entering 
the duct from surrounding shield materials, either uncollided or scattered, is 
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another potentially significant component. Generally these components may 
be treated with a ray-analysis technique (described in Sec. 7.9). 

More-sophisticated approaches are needed for treating ducts with two or 
more legs (one or more bends) where the scattered component predomi
nates. Because of the importance of duct analysis in a shield design, a 
number of techniques have been advanced which range from simpleminded 
(with limited success) to quasi-mystical (adjust enough parameters and it will 
fit) to thoroughgoing, detailed procedures. 

As with other facets of shielding, notably those involving three spatial 
dimensions, Monte Carlo seems the best method for accurate results. 
However, a complete analog Monte Carlo calculation for a multibend duct 
geometry is usually an expensive undertaking, especially if parameter 
variations are sought in an effort to optimize the design. Consequently 
modified Monte Carlo programs have been developed which follow particle 
paths only within the duct (not in the surrounding shield medium) and 
employ albedo theory to estimate reflectance from the duct walls. In fact, 
some simplified albedo methods that do not require Monte Carlo (or any 
computer programs) have been devised with useful results. 

We shall review the current literature on each of these methods to 
provide some examples of the alternative approaches. The applicability and 
validity of each method is usually demonstrated by comparison with 
measurements. 

7.8 LINE-OF-SIGHT COMPONENT 

For a duct that penetrates straight through a thick shield and has 
dimensions that are large compared with the mean free path of the 
penetrating radiations, the line-of-sight radiation (that which travels directly 
from the source to the detector through the duct) usually is the most 
significant portion of the total radiation reaching the detector. If one 
assumes a plane source at the duct opening and a ratio of the duct length to 
the diameter > 1 , all line-of-sight points are approximately equidistant 
from the other end of the duct and may be treated collectively as an 
equivalent point source, if the plane source is treated as having isotropic 
current, the equivalent point intensity is the product SNo, where NQ is the 
particle emission rate per unit area and time and S is the area on the source 
plane that is viewed through the duct from the point of interest. For 
nonisotropic emitters each differential area element must be weighted by the 
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angular distribution when integration is performed over the source area. For 
many geometries and source angular distributions that can be expressed 
analytically, it is possible to derive formulas for the line-of-sight current 
through an opening. 

Several methods for computing the line-of-sight current in simple ducts 
of various geometries have been developed. The source is assumed to be a 
plane normal to the axis of the duct that covers the duct entrance. Two 
types of source angular current distributions are considered: an isotropic 
distribution and cosine distributions. Here isotropic distribution (as used in 
the previous paragraphs) refers to radiation that is given off in all directions 
in the forward hemisphere with equal probability but with no emission in 
the backward hemisphere. Thus, if a surface emission is NQ cm"* sec"' , then 
the number emitted into any unit solid angle is No/2ir cm"* steradian"' 
sec."' 

For cosine distributions the radiation leakage through a unit area on the 
surface of a self-absorbing volume-distributed source is most intense in the 
direction normal to the surface, and the variation with the angle 6 from the 
normal is approximated by a cosine function, in which case the number 
emitted per unit solid angle is {No cos d)ln cm"* steradian"' sec"'. 

Other functions have been used to describe sources that have more 
strongly peaked angular distributions than that given by cos 6. In general, 
most of these can be represented by cos" 6, where n may be as large as 20. 
The cos" d function has been useful in representing a current (or a flux) at a 
shield surface from an absorbing soiurce region in which the activity per unit 
volume increases with depth. 

Two types of plane sources have been used in analytical expressions 
derived for the transmission of uncollided particles through ducts. In one 
type the source strength is defined by an emission rate, which we designate 
NQ (cm"* sec"'). In the other type the source strength is defined by a flux 
density that will be designated here as 4>o (cnf^ sec"'). The latter source is 
the more natural one for use in shield design. 

When calculating the flux density in a duct, one must take care to ensure 
that the proper source angular distribution is used in a given situation since 
there are two basic source descriptions. A particle emission rate is a current 
and therefore is referenced to a unit of the source area, whereas a flux 
density is always referenced to a unit of area normal to the particle 
direction. Thus, to correct for the different orientation of the flux—source 
reference area, one must multiply the flux density passing through that area 
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by cos 6 to project the reference area on the source plane; i.e., the relation 
between the angular current J{d) and the angular flux 4>(0) is 

J{d) = ^{d)cosd (7.8-1) 

The effect of the difference in the two source descriptions can be shown 
by the following example. The uncollided flux density in a duct is to be 
calculated for a given angular distribution ^(cos 6) cm"^ steradian"' sec"' 
specified on the source plane. If _^(cos 0) is the normalized angular current 
[the normalization condition on ^(cos0) is fog{cos9) lit d{cosQ) = \], 
then the flux density at any point in the duct is 

£Nog(cose)f ^^g2) 

where NQ is the total emission rate, dS is a differential area on the source 
plane, S, and r is the distance between dS and the detector. If, on the other 
hand, ^(cos 0) is the normalized angular flux density, then the flux density 
in the duct is 

I COS 0 
<Po g{cos 6) — 2 - dS (7.8-3) 

where $o is the total or scalar flux density at the source plane. 
A general relation between the emission rate and the flux density can be 

derived for the very useful case of the cos" 9 distribution by defining the 
angular emission rate (angular current) as 

/ (cos d) = - ^ ^ No cos" d (7.8-4) 

That Eq. 7.8-4 is properly normalized is shown by calculating the total 
emission rate: 

f ^ ^ No cos" d 2n d{cos 6) = NQ (7.8-5) 
JQ 27r 

The corresponding expression for the total flux density, $ o , at the source 
plane is then 
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^ r^ M + 1 . . cos" 9 ^ ,, ., M -H 1 xr /I a A\ 
*o = ^ T ; r ^ o ^ 2 7 r d c o s 0 = — — ^ 0 (7.8-6) 

Jo ^Tt COS (7 " 

It is evident that Eq. 7.8-6 does not hold when n = 0; in fact, the flux cannot 
be defined at the source plane when the emission rate is isotropic. 

For all the different duct geometries included in the following 
discussion, the flux density, 4>, or leakage cur rent , / , at the exit plane of the 
duct is expressed in the same units as the source strength (particles cm"* 
sec"'). To obtain the total leakage flux density or current through the exit 
plane of the duct, one must integrate <I> or / over the exit area. 

7.8.1 Rectangular Ducts 

The work of Hubbell, Bach, and Lamkin^^ on radiation from uniform 
rectangular sources with arbitrary angular distributions is directly applicable 
to the calculation of the uncollided flux density along the axis of a 
rectangular duct. Radiation crossing a plane S (cross-sectional area of duct 
normal to axis) is assumed to be known and is designated by an arbitrary 
function, g[co%d), which is the angular flux density and represents the 
number of particles traveling in the direction 9 with respect to the duct axis 
per unit solid angle, unit time, and unit area normal to direction 9 (neutrons 
cm"* sec"' steradian"'). The flux density at any point along the axis is 
expressed by 

* = /s^(cos0)dn,(0) (7.8-7) 

where d€ls{9) is the differential solid angle subtended from an isotropic 
detector by the surface dS (see Fig. 7.28) and is cos 9 dS/r^. 

A solution to Eq. 7.8-7 was developed by Hubbell et al. in terms of 
completely separable source and geometry functions and is expressed as 

^ = Y,^^lPM^^ (7.8-8) 
1=0 

where a is the ratio of the half height {HI2) to the length (Z) of the duct, b is 
the ratio of the half width {WI2) to the length, a.nd gi a n d p ; are coefficients 
of Legendre polynomial expansions of the source and geometry functions, 
respectively. With these definitions of a and b, Eq. 7.8-8 gives the flux at a 
corner for the quarter plane limned in Fig. 7.28. The flux density at the 
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RADIANT SURFACE, S 

Fig. 7.28—Schematic drawing of source plane and detector position for a rectangular 
duct. 

center line for the full plane will be four times as great as that given by 
Eq. 7.8-8. 

The coefficients are calculated by 

gl =/^^ ^(cos 9) Pi{cos 9) d{cos 9) (7.8-9) 

and 

Pl{a,b)=f^Pl{cos9)dns{d) (7.8-10) 

where the values of P;(cos 9) are the Legendre polynomials. 
Although the solution of Eq. 7.8-10 is in terms of a finite series, the 

terms become progressively more complicated with increasing /, and only the 
first four pj values were evaluated analytically. Hubbell et al. numerically 
evaluated pj values for 0 < / < 13 over a grid of a and b values of 
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0.1 < b < a < 20. With these tabulated values and the^jvalues determined 
for any arbitrary ^(cos 6), the flux density along the axis or at the corner of 
a duct can be calculated with Eq. 7.8-8. 

For the special and useful case of the cos" 9 distribution, 

g(cos 9) = ^" '^^^ ^ ° cos" 9 (7.8-11) 

where 4>o is the source strength that is represented by a scalar flux density 
obtained by integrating the angular flux density over all angles in the 
direction of the duct entrance. Equation 7.8-11 is properly normalized since 

I ^n + 1 
2ir 

c o s " 0 2ird(cos0) = l (7.8-12) 

For integral values of M, Eq. 7.8-11 can be expanded into a finite number 
of Legendre polynomials, and, in principle, an analytical solution to 
Eq. 7.8-8 can be obtained. However, the solution rapidly becomes unwieldy 
for progressively higher values of n. The flux densities along the axis of a 
rectangular duct for the isotropic source (n = 0) and for more forwardly 
peaked sources (n = 1 and 2) from Maerker, Claiborne, and Clifford^' are 
given below. The flux density at a corner of a rectangle with dimensions 
W/2 X H/2 is one-fourth that calculated by Eqs. 7.8-13 through 7.8-15. 

F o r n = 0: 

* = ? ? : ^ t a n " ' - ^ = ^ L = (7.8-13) 

For 

For 

n = 

* 

n = 

1: 

_ 2 * , 
It 

2: 

tan ^ = ) (7.8-14) 

. 3$0 r -I <lb ab / I 1 \1 , ^ o , r ^ 

As the distance between the source and detector becomes large with 
spect to cross-section dimensions, the inverse tangent in Eq. 7.8-13 
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approaches ab and the terms in the parentheses in Eq. 7.8-14 and in the 
brackets in Eq. 7.8-15 approach 2ab or WH/2Z^. In general, it can be shown 
that for long thin ducts of rectangular cross section^ ̂  

_ ( n + l ) WH^o 
2ITZ^ ^ = ^ oiJr " (7.8-16) 

Equation 7.8-16 represents a lower limit for a point source (emitting 
only into the forward hemisphere) and also for a plane source (for a detector 
far away from the duct entrance) since the flux scattered from the wall of 
the duct is not included. In many practical cases the contribution to the dose 
by the scattered flux will be of the same order or smaller than the 
contribution by the uncollided flux. (The dose is calculated by summing the 
product of the flux density and the appropriate dose response function for 
each energy group of neutrons.) 

7.8.2 Rectangular Slots 

The geometry used in the derivations of the approximate equations for a 
rectangular slot is shown in Fig. 7.29. The dimensions of the duct adjacent 
to the source plane are W by H, and the distance from the source plane to 
the exit end of the slot is Z. When H> W (say, H/W> 5), the exposed 
source can be approximated by a line source, and the line-of-sight flux 
density, $ , and the leakage current, / , at any point P along the horizontal 
axis on the exit end of the slot can be approximated by 

* , - = ^ ( 0 i - ^ 0 2 ) (7.8-17) 

Ji=-^ {sin 9i+sin 9^) (7.8-18) 

* c = ^ ^ ^ ( s i n 0 i + s i n 0 2 ) (7.8-19) 

/ c = ^ ^ ^ [ s i n 201 -I-sin 202 "•" 2(0, +62)] (7.8-20) 

where NQ is source emission rate (or current) per unit area, 9 is in radians, 
and the subscripts i and c refer to isotropic and cosine sources, respectively. 
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Fig. 7.29—Rectangular slot geometry. Source plane and exit plane are normal to Z 
direction. 

If the slot dimensions are such that 0i + 0j -^ IT, the preceding equations 
become 

*.• 

Ji 

^c 

T 

_NoW 
2Z 

_NoW 
irZ 

_2NoW 
TTZ 

_NoW 
2Z 

(7.8-21) 

(7.8-22) 

(7.8-23) 

(7.8-24) 

The rectangular slot can be considered a special case of the rectangular 
duct for the condition when W^ 0, and Eq. 7.8-19 can be derived by taking 
the limit of Eq. 7.8-13 AS W ^ 0. In the limiting process an apparent anomaly 
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occurs; the answer is in terms of $o> ^^e flux density at the source. However, 
the flux densities on a line source for both isotropic and cosine distributions 
are always infinite. Consequently, when the limit of Eq. 7.8-13 is taken as 
W^ 0,^0 should be converted to an emission rate {2NQ). 

7.8.3 Cylindrical Ducts 

Consider a cylindrical duct of radius a normal and adjacent to a plane 
source with the detector a distance Z from the source plane and on the duct 

SOURCE • 
PLANE-^ 

^ : _ 

Fig. 7.30—Geometry for cylindrical duct adjacent to plane source. 

axis (Fig. 7.30). For an isotropic current or emission rate on the source 
plane, the line-of-sight flux density at any point P is given by 

and the current parallel to the axis of the cylinder is given by 

For a cosine current source 

$c = 2iVo fl , ^ 1 

(7.8-25) 

(7.8-26) 

(7.8-27) 
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and 

^'^z^[i + l/zf] ^^-^-^^^ 

Equations 7.8-27 and 7.8-28 can be expressed in terms of an isotropic flux 
density at the source plane by letting 2No = $o • 

For Z> a, say, Z/a > 5, these equations approach 

4 > , . / , . i ^ ^ ^ (7.8-29) 

which is the same result for a point source of strength NQ [ira^), and 

^'=J'=^-l^z^=^^ ^^-^'^^^ 

if the condition of a long duct of small cross-sectional area is met, 
Eqs. 7.8-29 and 7.8-30 will also hold for a straight duct of any cross-
sectional geometry if ita^ is replaced by the cross-sectional area of the duct. 

7.8.4 Cylindrical Annulus 

The geometry for a long cylindrical annular duct is shown in Fig. 7 .31. 
The duct is bounded by two cylindrical surfaces having radii aj and a^ • For 
the conditions Z> a2 — di, ^2 > aj — a i , and an isotropic source NQ, the 
average line-of-sight flux density, $ , along the duct axis can be approximated 
by 

27rZ2 
(2ai - a\) cos ' / — | - a^s/^ (7.8-31) 

The average leakage current, / , for the isotropic source NQ can also be 
obtained from Eq. 7.8-31 by setting M = 1. The equation given by Price, 
Horton, and Spinney^^ for the flux density at any radius r(ai < r < a2) 

within the annulus is 

--•(t)-(t)h(S)T} "--' 
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where M = 1 for an isotropic source, Af = 2 for a cosine source, and r and Z 
are the cylindrica:! coordinates of the point P at which the flux density is 
given. Equation 7.8-32 is equivalent to 

(7.8-33) 

where S is the area of the annulus on the source plane that is viewed from 
the point P{r,Z) (Ref. 38). 

Fig. 7 .31—Geometry for cylindrical annulus adjacent to plane source. 

7.9 WALI^PENETRATION COMPONENT 

In addition to the line-of-sight radiation, the flux reaching a detector 
located near the exit end of a simple duct includes radiation that enters the 
duct through its walls.t This contribution consists of two components: 

tRadiation that enters the mouth of the duct in a direction other than the direction of the 
detector but subsequently scatters in the duct wall toward the detector also contributes to the flux. 
For simple ducts where the soUd angle subtended by the walls at the detector is less than that 
subtended by the source, the contribution from the walls is usually small, but for ducts with bends it 
becomes the dominant component (see Sec. 7.10). 
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radiation that travels directly from the source to the detector through 
shielding material without an interaction (uncoUided flux) and radiation that 
scatters in the direction of the detector as a result of interactions with the 
shield. Ray analysis is a useful method for calculating these components. 

The assumption of the ray-analysis technique (actually a point-kernel 
method) is that the radiation transmission is a function only of the path 

Fig. 7.32—Geometry for ray-analysis calculation of radiation component arriving 
through wall of duct. 

lengths through each material or void encountered along a straight line 
between the source point and the detector. This assumption is entirely 
correct for predicting the uncoUided flux density; for geometries in which 
the scattered flux density becomes important, the collided flux densities can 
be estimated to a first approximation by using buildup factors for gamma 
rays and removal cross sections for neutrons. Although the accuracy of the 
method is highly dependent on the particular configuration being consid
ered, an approximation of limited accuracy for the scattered component can 
be applied to simple ducts since the radiation reaching the detector consists 
largely of the uncoUided component. 

To illustrate the method, we will consider a point detector P removed a 
distance r from a point source at Q, where the straight-line path between the 
two points passes through both shielding material and void (see Fig. 7.32). 
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The flux density at the detector is given by 

47rr2 (7.9-1) 

where Np is the point-source strength and K is the material attenuation 
kernel for all the materials located between the source and the detection 
point. 

if only the uncoUided flux density at P is considered, 

K=exp {-^tij) (7.9-2) 

where /,- is the mean free path of a particle and ti is the straight-line path 
through the ith material. When the radiation being considered consists of 
neutrons, 1/Z,- is usually expressed in terms of the total macroscopic cross 
section, Ef (cm"') , and ti is given in centimeters. When gamma rays are being 
treated, 1//,- is expressed as ju,-. 

Equation 7.9-2 can be modified to include an approximation of the 
scattered gamma radiation by multiplying the right-hand side by a buildup 
factor: 

K B{ti,t2, . . .) exp (- 2 tij^ (7.9-3) 

The equation can be modified similarly to include an approximation of 
scattered neutrons by substituting the neutron removal cross section t ^R 
for S^: 

K = exp-lJ:R.ti (7.9-4) 

In this discussion we assume that the flux density at the point P is the 
same as it would be if all the particles traveling from Q to P, including those 
that are scattered, encountered the amount of attenuating material that 
exists along the line from Q to P. If significantly less material is encountered 
by some particles, the total flux density at P determined by Eq. 7.9-1 may 

tRemoval cross sections are vaHd only when the shielding materials are followed by a thick layer 
of water or, to a lesser extent, when mixtures containing hydrogenous materials are used (see Chap. 6). 



370 REACTOR SHIELDING FOR NUCLEAR ENGINEERS 

be underestimated. Conversely, if significantly more material is encountered, 
the flux density may be overestimated. Also, Eq. 7.9-1 neglects the effects of 
material—void interfaces or interfaces between dissimilar materials 
encountered along the ray and in the surrounding regions. 

When the ray-analysis method is used for integration over a source plane 
or source volume, any inaccuracy involved in the contribution of a source 
region may be masked by the contributions from other points. There are, of 
course, complex geometries and material combinations for which the simple 
ray-analysis technique does not predict the radiation fluxes with a 
satisfactory degree of accuracy. However, ray analysis is adequate in many 
cases and is easily applied. 

There are also cases in which the accuracy requirements and the 
complexity of the geometry may prohibit the use of the approximations 
given here except as first estimates. In such situations numerical integration 
can be used to obtain a ray-analysis solution either by hand or by machine 
calculations. 

7.9.1 Application to Cylindrical Ducts 

if the duct shown in Fig. 7.32 were a cylindrical duct of radius a 
penetrating an infinite-slab shield adjacent to an infinite-plane isotropic 
source, the uncoUided flux density at P that would arrive through the duct 
walls would be 

*,- = No f"e- '^ ' (^^— (7.9-5) 
Jr„ r 

where NQ = surface emission rate or current 

l[r) = path length in the shield that lies along r 

ti = linear attenuation coefficient 

The corresponding flux density for a cosine source is given by 

<i>c = 2No f"e-('^i'')^dr (7.9-6) 
*f r ^ 
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Equations 7.9-5 and 7.9-6 are not amenable to straightforward analytical 
solutions, although values of the integrals can be found in tables of 
mathematical functions. Certain approximations, based on a Taylor 
expansion of /(r), have been given by Chase,^' but they are valid only for 
large values of alZ. Trubey' '" evaluated the equations numerically for a 
unit-surface-source intensity (for NQ = 1). The results are shown in 
Appendix P, Tables P.l and P.2, as a function of the ratio of the duct radius 
to the length (a/Z) and the shield thickness (juZ), where juZ is measured in 
relaxation lengths (or mean free paths determined from material cross 
sections). 

The data for the uncoUided flux density given in Tables P.l and P.2 can be 
used to estimate the total radiation arriving through the duct wall provided 
that the parameters alZ and /xZ are measured in terms of an effective 
relaxation length, X = l//i , which accounts for the radiation scattered in the 
direction of P by the shield. Relaxation lengths that include scattering can be 
obtained from experimental data or from basic calculations of penetration 
through the material. Relaxation lengths are necessarily a function of the 
radiation spectrum as well as of the material surrounding the duct. Neutron 
removal cross sections or gamma-ray buildup factors, both of which are 
derived from basic penetration data, can be used in obtaining values of X. In 
this use of the data, the approximation is made that the total attenuation is 
exponential; i.e., the relaxation length does not vary with penetration depth. 

Figures 7.33 and 7.34, which are based on data by Trubey,*" show the 
variation with shield thickness and duct size of the total flux density, 
including the line-of-sight component, reaching the center of the duct exit. 
All parameters are given in terms of the shield-material relaxation length. 
The flux density is given for an infinite-plane source of unit source strength 
(e.g., 1 particle cm~^ sec"*). 

The relative importance of the line-of-sight radiation discussed in Sec. 7.8 
and of the uncoUided radiation that leaks through a duct wall is illustrated 
by some additional calculations by Trubey in Appendix P, Table P.3. From 
these calculations it is apparent that the ratio of the line-of-sight component 
to the total uncoUided flux density depends strongly on the ratio of the duct 
radius to the length (a/Z) and on the shield thickness (juZ). These ratios 
represent an upper limit since the buUdup of the flux due to scattering has 
not been considered. The ratios are applicable to either fast neutrons or 
gamma rays provided the shield thickness is defined in terms of the number 
of relaxation lengths. Data in Table P.3 show, as one would expect, that the 
radiation that penetrates the side wall dominates over that from the source 
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Fig. 7.33—Effect of duct radius and shield thickness on total uncollided flux density 
reaching exit of cylindrical duct (isotropic source). 

in the mouth of the duct for small diameters penetrating thin shields. As the 
duct diameter increases or the shield thickness increases, or both, the 
line-of-sight component increases in importance. 

If the duct is filled with a lightly attenuating medium, formulas similar to 
those in the preceding sections could be derived which include exponential 
attenuation through the material filling the duct in the kernel integration. 
This condition would tend to decrease further the importance of the source 
at the mouth of the duct. 

7.9.2 Application to Partially Penetrating Cylindrical Ducts 

The radiation transmitted through the walls of a cylindrical duct that 
penetrates only part of the shield and is not adjacent to the source can be 
calculated by the ray-analysis technique in much the same manner as for a 
completely penetrating duct. Consider the duct shown in Fig. 7.35(a). 
Equations 7.9-5 and 7.9-6 can be applied to this geometry merely by 
changing the lower limit of integration from TQ to Z. As before, l{r) is that 
portion of r lying inside the shield. 

I I r n r 
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Fig. 7.34—Effect of duct radius and shield thickness on total uncoUided flux density 
reaching exit of cylindrical duct (cosine source). 
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Fig. 7.35—Geometries for ray-analysis calculations of radiation component arriving 
through walls of ducts that partially penetrate shield. 
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An alternative to numerical integration of these equations for each case 
would be to determine the flux density penetrating an infinite slab of 
thickness t (see Sec. 7.11.1), use this as a source-strength input to the ducted 
shield of thickness Z ~ t, and evaluate using the data given in Figs. 7.33 and 
7.34. In the absence of more definitive data, a more forwardly peaked 
distribution, such as a cosine distribution, should be used at the artificial 
interface if t is greater than one relaxation length. Even when the original 
source is isotropic, the radiation will have taken on a more directional 
character after penetrating one relaxation length. 

Simpler equations may be given for the flux density through partially 
penetrating ducts if the assumption is made that only the radiation 
penetrating the end of the particle duct need be considered.^ ^ In this case 
the flux density at P in Fig. 7.35(a) can be estimated by 

* = N o [ £ , ( M O - £ i ( M ^ s e c ^ ) ] (7.9-7) 

where St' = tan"' [a/{Z — t)]. Similarly, the flux density at P due to radiation 
entering the mouth of a duct that penetrates only part of the shield but is 
adjacent to the source [see Fig. 7.35(b)] is given by 

<J> = i V o [ £ , ( M O - £ i ( M ^ s e c ^ ' ) ] (7-9-8) 

where * ' = tan"' [a/Z). 

For the same shield and duct dimensions, the angle ^ ' is smaUer than ^ 
and the peak flux density increase at P due to the presence of the duct is 
greater in case b than in case a. For the approximation fxta^ < 2Z^, the 
integrated emergent current can be approximated by ira^Noe'^ [a^/2{Z — 
t)'^ ] for either case a or b. Thus, although the peak current tends to be 
greater in case b, the integrated current increase due to the void is 
approximately the same in both cases. 

7.9.3 Comparison with Experiment 

The ray-analysis technique has been used successfully many times in 
predicting measured values for both gamma-ray and neutron transmission in 
solid unpenetrated shields. In complex geometries involving ducts, the 
technique should give better results for gamma rays than for neutrons since 
neutrons on the average undergo more scatterings before they are absorbed 
or escape. However, as is demonstrated by the following comparisons, the 
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technique yields good results for neutrons transmitted through straight ducts 
abutting a reactor. 

Benenson and Fasano^' used the ray-analysis technique for analyzing 
experiments at the Brookhaven National Laboratory Shielding Facility on 
the transmission of fast neutrons through straight cylindrical ducts in a water 
shield. Neutrons from a fission source plate in the shielding facility entered 
the bottom of a water tank in which a duct had been vertically positioned, 
and neutrons that reached the detector at the opposite end of the duct 
arrived there either through the base of the duct or through its walls after 
passing through the surrounding water. The ducts were 5.1 to 40 cm in 
diameter. The ^^S(n,p)^^P reaction was used to measure the 
fast-neutron-flux density, and an experimentally determined relaxation 
length was used to analyze the penetration of neutrons above the ^^S 
threshold from the fission source. Figure 7.36, which is typical of the results 
of this work, shows that the ray-analysis method apparently yields good 
results when applied to streaming of very penetrating radiation from a 
diffuse source through simple ducts. 

Piercey and Bendall"^ also used the ray-analysis technique for 
calculating the flux density of fast neutrons transmitted through straight 
cylindrical ducts. Their calculations corresponded to measurements made for 
2.5-, 5-, and 9.5-cm-diameter aluminum ducts positioned in the water of the 
LIEXD Shielding Facility at Harwell, England. The duct lengths were up to 
200 duct radii. As in the Brookhaven experiment, the fast flux density was 
determined by the ^^S{n,p)^^P reaction. The calculations predicted the 
absolute sulfur reaction rate to within a factor of 2 over the experimental 
values. The poorest agreement occurred in the region of the duct nearest the 
reactor. Piercey and Bendall concluded that most of the discrepancy resulted 
because of the inhomogeneity of the system and particularly because of the 
aluminum layer between the duct face and the reactor. Figure 7.37 shows a 
comparison of the calculated and experimental results as an example of this 
work. 

7.10 WALL-SCATTERED COMPONENT 

We have seen in the preceding sections that for straight ducts the most 
important components contributing to the flux density at the detector are 
line-of-sight radiation and radiation that enters the duct through its wall at 
the proper angle to reach the detector. For more complicated geometries 
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Fig. 7.36—Comparison of ray-analysis calculations with measurements of fast-neutron-
flux density along axis of 20-cm-diameter straight cylindrical duct in a water shield; 
fission source at duct mouth. (From Benenson and Fasano.'" ) 

involving ducts with bends, the line-of-sight component disappears, and the 
dominant component becomes radiation that is transmitted through the duct 
by successive scatterings from the surrounding shield. Calculations of this 
contribution require more involved techniques than those described 
previously since on the average many scatterings are involved and several 
boundaries are crossed. 

7.10.1 Analog Monte Carlo Calculations 

Two types of Monte Carlo methods can be applied to duct transmission 
problems: analog Monte Carlo methods, described here, and albedo Monte 
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Fig. 7.37—Comparison of ray-analysis calculations with measurements of fast-neutron-
flux density along axis of 9.5-cm-diameter straight cylindrical duct in a water shield; duct 
mouth adjacent to reactor core. (From Piercey and Bendall. ) 

Carlo methods, described in the next section. The term analog is used to 
designate calculations in which the model solved is an analog of the 
interactions occurring as the particles traverse the duct and confining walls as 
opposed to the albedo calculations in which the particles traversing a duct 
are followed by a random-walk process but waU interactions are represented 
by a reflection coefficient. 
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The analog Monte Carlo method is not always practical because of the 
machine computing time required; nevertheless, several machine programs 
that have been developed are applicable to this type of calculation. 

Collins and McCleary''^ used a Monte Carlo code (called L05) to 
calculate the transmission of neutrons from a Po—Be source (3.08 x 10^ 
neutrons/sec) through 30-cm long, 7.6- and 15.2-cm-diameter straight 
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Fig. 7.38—Comparison of L05 analog Monte Carlo calculations with measurements of 
fast-neutron dose rates along the axes of 30-cm-long, 7.6- and 15.2-cm-diameter straight 
cylindrical ducts in water; Po—Be neutron source. (From Collins and McCleary. ) 

cylindrical ducts in water. The detector was positioned 7.6 cm from the duct 
mouth. The agreement they obtained between the measured and calculated 
data (Fig. 7.38) shows that the L 0 5 procedure predicts correctly for this 
simple case. 

The LOS code was then used by Marshall'*'* for calculations 
corresponding to measurements made of radiation transmitted through 
one-bend cylindrical ducts in water. The ducts were reconstructed of 
7.6-cm-diameter aluminum tubing and had one bend midway along their 
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lengths; the bend angle varied between 30 and 60°. The sources were 
14-MeV neutrons and ^°Co gamma rays positioned on the duct axis 7.6 cm 
from the mouth. The detector at the opposite end of the duct was also 
7.6 cm from the duct mouth. 
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Fig. 7.39—Comparison of L05 analog Monte Carlo calculations with measurements of 
the fast-neutron dose rate transmitted through a bent (30 ) duct (7.6 cm in diameter by 
46 cm long) in a water shield; 14-MeV neutron source. (From Marshall.^*) 

Figures 7.39 and 7.40 compare some typical experimental data and 
calculated results for a duct bent 30° which penetrates a 46-cm water shield. 
In general, MarshaU found that for shield thicknesses that exceeded 46 cm 
the calculated dose rates were in good agreement with the experimental data 
in shape but were too low in magnitude. 
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Fig. 7.40—Comparison of LOS analog Monte Carlo calculations with measurements of 
the gamma-ray dose rate transmitted through a bent (30 ) duct (7.6 cm in diameter by 
46 cm long) in a water shield; Co gamma-ray source. (From Marshall. ) 

7.10.2 Albedo Methods 

Perhaps the simplest albedo application to a duct is the case where only 
one reflection need be considered between the source and the detector. The 
albedo is integrated over duct surfaces that have an unobstructed line of 
sight to both the source and the detector. Consider the point source and 
simple duct shown in Fig. 7.41. The dose at P due to first-order reflection 
from the wall is 

£) = f Np R{Eo)aD2{Eo,do,d,(t>) cos ^p dS (y lO-l) 
-'.. 4irr?r2 

wall 
surface 

47rr 1 rl 
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where Np = source strength 
£0 ~ source energy 

R{EQ) = flux-to-dose conversion factor 
ô D2 (-Eo 5̂ 0 >̂ >'A) = differential-dose albedo (reflected current per incident 

current) (see definitions in Sec. 7.2) 
0 = azimuth angle separating the incident and reflected rays 

and f l , r2, OQ, and d are defined in Fig. 7.41. The reflected dose must, of 
course, be added to the line-of-sight dose to obtain the total. 

Fig. 7.41—Geometry for albedo calculation of singly reflected radiation in a simple duct 
(point source). 

The Simon and Clifford''^ equations for neutrons reflected through 
ducts having cylindrical geometry (discussed later in this section) resulted 
from an integration of Eq. 7.10-1 for an assumed functional form for a. For 
cases in which use of their expression for a is possible, the Simon—Clifford 
equations can be used. Other expressions can be derived which would allow 
the integration to be performed for simple geometries. 

If either the nature of a or the geometry prohibits analytical integration, 
Eq. 7.10-1 can be integrated numericaUy by dividing the duct wall into small 
scattering areas and assuming that all points within an elemental scattering 
area are the same distance from the source or detector and that they have 
the same angles of incidence and reflection. A numerical evaluation 
performed by LeDoux and Chilton'' ^ led to a set of equations for calculating 
singly reflected gamma rays propagated through bent rectangular ducts. (The 
LeDoux—Chilton technique is discussed later in this section.) 
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Fig. 7.42—Geometry for albedo calculation of doubly reflected radiation in a simple 
duct (broad-beam source). 

For a broad-beam source incident on the duct at an angle such as that 
shown in Fig. 7.42, no line-of-sight radiation reaches the detector and all 
reflected radiation must be evaluated, including that which has been 
reflected more than once. The singly reflected component at P is given by 

Dp, = / _ 
DiaD2{Eo,dQ,d,(l)) cos 00 '^'^i 

over 
illuminated 

(7.10-2) 

where D,- is the incident dose and r is the distance from the surface area 
element to the detector. The doubly reflected component is estimated by 

^ i ' 2 = / o v e r /all { [ A " ^ 2 (^0 .^0 >0,01 )coS 0o ^ S , 
illuminated area 

area 

X a D 2 ( £ , , 0 , , 0 2 , 0 2 ) c o s 0 , dS2] ( r?r i)}- ' (7.10-3) 

Complexities of the problem will almost always require the use of a 
computer program for numerical evaluation of these equations. Cain^' has 
shown that for low-energy neutrons numerical evaluation of these integrals 
becomes impractical because the number of reflection events that must be 
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considered to adequately calculate the penetrating radiation is so large. As an 
alternative, a method was developed that traces particles through successive 
reflection events by an albedo Monte Carlo technique (discussed later in this 
section). 

Fig. 7.43—Geometry for determining corner-lip transmission effect in two-legged 
rectangular duct. This geometry also iUustrates the LeDoux—Chilton technique (discussed 
later in this section). 

In most albedo calculations of the transmission of radiation through 
rectangular ducts with bends, the corner Up (the corner formed by the 
intersection of two legs) is assumed to be opaque to radiation in the main 
parts of the calculation, and a correction is made for its effect with a 
separate approximate calculation. This correction is usually broken down 
into two contributions: a transmission effect and an inscattering effect. 

Corner-lip transmission is illustrated in Fig. 7.43 by the dashed line that 
originates at the duct entrance and passes through the inside corner. The 
radiation penetrating the lip scatters from the opposite wall and contributes 
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to the dose at the detector. In accounting for this radiation, the albedo 
integrations of Eqs. 7.10-2 and 7.10-3 can be performed with the incident 
dose represented by a variable that depends on the path length in the 
duct-wall material of a ray that is paraUel to the initial direction of the 
radiation and terminates at the scattering point. An approximation can be 
made by assuming that aU particles that penetrate the material with a path 
length less than about a relaxation length are unattenuated and that all 
particles that penetrate more than a relaxation length are completely 
absorbed. (LeDoux and Chilton used the energy-absorption coefficient for 
estimating this effective relaxation length for gamma rays.) On this basis, the 
effect of the corner-lip penetration can be approximated by an increase in 
the number of scattering areas beyond the primary scattering areas. The 
areas designated a s / 4 i , / l 4 , ^ 5 , / l 6 , / l i i , and A12 in Fig. 7.43 show some of 
these additional scattering surfaces. 

Corner-lip inscattering is the process by which radiation is redirected 
toward the detector by scattering in the corner. This component can be 
evaluated with the last-collision technique of French,''* for which the 
geometry is shown in Fig. 7.44. The flux density at a distance tj in the 
corner lip is given by 

^ti) = ^o e"[*i' '^(^o)l (7.10-4) 

where X(£o) î  ^^^ effective relaxation length for the incident radiation in 
the material. The radiation per unit solid angle scattered toward P by the ith 
element in the material is given by 4> iC,-(JS,0) N,- dv, where Ki{E,6) is the 
differential angular scattering cross section of material i for radiation 
incident at energy E and iV,- is the atomic density of element i in the 
duct-wall material. The flux density at P due to radiation of energy E 
scattering in the lip is then 

$ = / (dy*oe-t^ ' /^(^°)]) 2:X,-(£o>e)N,-(e-[^2/M-Ei)])i- (7.10-5) 
K j R 

where £1 is the energy after scattering and V is the scattering volume. This 
technique is analogous to integrating a point kernel with the strength of the 
source point being used as the differential scattering density at that point. 
The scattering volume includes that portion of the corner for which ti + t2 
is between one and two relaxation lengths. 
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(a) Simon—Clifford Technique for Cylindrical Ducts. The albedo 
method of Simon and Clifford'*^ is one of the least complicated of the 
methods available for calculating the transmission of thermal- and intermedi
ate-energy neutrons through cylindrical ducts. One considers only the 
neutrons entering the open end of the duct, and transmission is assumed to 

Fig. 7.44—Geometry for last-collision calculation of corner-Up inscattering effect in 
two-legged rectangular duct. 

be either by line of sight or by scattering from the duct walls. The wall 
scattering is calculated with a single-energy spectrum-averaged material 
albedo. 

For a straight cylindrical duct, the albedo, .42 , is defined as the fraction 
of incident neutrons that is scattered from the waU (see Sec. 7.2). In this 
form of the albedo, the reflected radiation has been integrated over aU exit 
directions, the reflected angular distribution being expressed in the general 
form (jS + 27 cos 0)/27r, where jS is the fraction scattered isotropicaUy, 7 is 
the fraction scattered with a cosine distribution, and j3 + 7 = 1. The flux 
density at distance Z along a duct of radius a is then given by 
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where $(Z) is in the same units as the surface source strength NQ. 

The first term in this equation is the line-of-sight component given in 
Sec. 7.8. The second term, which accounts for the wall-scattering com
ponent, is a strong function of the material albedo. Since .42 is of the order 
of 0.1 for fast neutrons and the second term is small for long thin ducts 
{a < Z), Eq. 7.10-6 simplifies to that for the uncoUided flux density. 
However, for thermal neutrons, which have an albedo of about 0.8, the 
second term becomes important, and the scattered flux can dominate. 

y 

Fig. 7.45—Geometry for calculating neutron transmission through cylindrical duct by 
Simon—Clifford method. 

Artigas and Hungerford^' improved the results of Simon and Clifford by 
developing a more accurate version of Eq. 7.10-6 in terms of integral 
functions of the parameter \ = c? IZ'^. The newer results are particularly 
better for values of X greater than about 0.1. 

Simon and Clifford^ ^ also covered the case of a bent cylindrical duct 
(see Fig. 7.45) by assuming that the albedo (in the area of the bend) of the 
neutrons transmitted through the first leg of the duct is the source for 
calculating transmission through the second leg. When both legs are of equal 
diameter and their angular separation is Q, the total transmission at a 
distance Z2 along the second leg is given by 

where .42 is an empirically determined albedo parameter. 
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if a series of bends is involved, the flux density at a distance Z from the 
last bend may be expressed as 

where the duct segments are of lengths L j , L2, . . ., L^ and are separated by 

angles 0 1 , 02 > • • •, 0n-i • 
Ducts that follow a smooth curve through the shield may be treated by 

this method provided the radius of curvature is large with respect to the 
radius of the duct.^^ The curved path may be divided into a series of 
equivalent straight sections of length equal to the maximum chord that can 
be drawn internal to the duct. The angular separation between successive 
chords can then be used as the angle between the equivalent sections. 
Horton^ ° treated helical ducts with an albedo approach similar to the 
Simon—Clifford method. For a helical path divided into n equivalent straight 
sections of radius a and length / deviating successively by constant angle i//, 
the flux density is approximated by 

4 ' = ^ ( f ) ' " ( ^ 2 C o s c ^ ) " " ' (7.10-9) 

This can be compared with Eq. 7.10-8, which would be the equivalent 
Simon—CHfford expression provided all values of 0 equal i// and all values of 
L equal /. The usefulness of this and other semiempirical albedo techniques 
depends on the availability of suitable values of the albedos and angular 
distributions of the reflected neutrons. 

Horton and Halliday^' used the Simon—Clifford albedo method for 
calculating the transmission of neutrons through straight cylindrical ducts. 
The calculations corresponded to an experiment in which 5-, 10-, and 
20-cm-diameter steel-Hned ducts penetrated a water shield that was adjacent 
to an extended plane source of thermal neutrons. A current albedo, /3, of 
0.55 was used, and a cosine distribution was assumed. The comparison 
shown in Fig. 7.46 demonstrates that the Simon—Clifford equation gives 
good agreement with experiments in which the transmission of thermal 
neutrons through cylindrical ducts is measured provided that reasonable 
assumptions are made for the thermal-neutron albedos. 
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Fig. 7.46—Comparison of albedo calculations by Simon—Clifford technique with 
thermal-neutron-flux densities measured in straight cylindrical steel-wall ducts through a 
water shield; plane source of thermal neutrons. (From Horton and Halliday.' ' ) 

(b) LeDoux-Chilton Technique for Rectangular Ducts. A method of 
calculating gamma-ray transmission through two-legged rectangular ducts 
was formulated by LeDoux and Chilton,''* extended by Chapman, and the 
same general technique was used by Song^ for neutron transmission. This 
group of investigators has applied a maximum of insight with a minimum of 
input parameters to obtain reasonable agreement between calculation and 
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measurement. A review of this work is instructive because the role of each 
component of the calculation is easy to follow, and the necessity for adding 
second- and third-order contributions becomes apparent. Equations were 
derived for calculating radiation streaming down two-legged concrete ducts 
based on (1) a single-reflection albedo for surfaces that are viewed by both 
the source and the detector and (2) scattering by material in the corner lip of 
the duct. 

In the absence of sufficient differential albedo data at the time of this 
work, a total albedo was used, and radiation was assumed to emerge 
isotropically. To simplify the equations, they assumed that all points on a 
major scattering area (numbered areas of Fig. 7.43) could be considered to 
have the same angle of incidence from the source and the same reflection 
angle to the detector. Formulas were then written for the detector response 
due to first-order scattering from each of the surfaces. Later work^^'*^'^^ 
with more accurate differentia! albedo data showed that this method tends 
to underpredict because multiple reflections are neglected. That the method 
predicts measurements as well as it does is attributed to a compensating 
overprediction caused by the assumption of isotropic scattering. 

Chapman^'* extended the LeDoux—Chilton approach to include double 
reflections and second-order effects, such as a wall backscatter followed by a 
corner-lip inscatter. In place of the total albedos with the assumption of 
isotropy of the reflected radiation used by LeDoux and Chilton, Chapman 
substituted the semiempirical formula for the differential-dose albedo that 
was derived by Chilton and Huddleston^ (described earlier in this chapter). 
The two parameters in this formula were determined by a least-squares fit to 
the Monte Carlo data of Raso.^ ^ 

The number of the interaction combinations was enlarged (e.g., one 
backscatter, one inscatter, one backscatter plus one penetration, two 
backscatters, and one backscatter plus one inscatter). 

The singly reflected component was evaluated by integrating over each 
of the numbered areas in Fig. 7.43. When penetration through the corner lip 
was evaluated, the assumption was made that rays penetrating less than one 
relaxation length of material are unattenuated and that those encountering 
more than one relaxation length of material do not penetrate. Scattering in 
the corner lip was calculated with the singly reflected formula that LeDoux 
and Chilton derived on the basis of Klein—Nishina differential scattering 
probabilities. 

To perform the double-reflection calculations, Chapman divided the duct 
into a larger mesh consisting of 12 scattering areas as shown in Fig. 7.47, and 
combinations that would allow transport from the source to the detector 
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with two scatters were considered. Combinations whose fractional con
tribution to the total dose was considered to be small were deleted. 
Specifically, these were reflection from surface 1 to surfaces 10 and 12 and 
reflection from surfaces 2 and 4 to surfaces 10, 11, and 12. The incidence of 
singly reflected radiation on the corner lip of the duct was combined with 

DETECTOR 

Fig. 7.47—Scattering areas for albedo calculation of doubly reflected gamma rays in 
two-legged rectangular duct. 

the lip inscatter calculation to determine the contribution due to one 
backscatter plus one inscatter. In all cases the energy degradation in a 
reflection was assumed to be that of a single Compton scattering. 

Comparisons with a number of measurements were made by 
Chapman,^ ^ who used the extended LeDoux—Chilton technique for 
calculating gamma-ray dose rates at the exit end of two-legged L-shaped 
rectangular ducts, the source in each case being a gamma-ray-emitting 
isotope at the mouth of the duct. Chapman also calculated the gamma-ray 
dose rates along the axes of two- and three-legged rectangular ducts, and 
comparisons are shown in Figs. 7.48 through 7.50 with the dose rates 
measured at several points along the duct axes for three sources of different 

energy 5 5-5 7 
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Fig. 7.48—Comparison of albedo calculations with measurements of gamma-ray dose 
rates along the axis of a 0.3-m-square (/-shaped concrete duct; 80-Ci " ^ C s gamma-ray 
source. (Experimental data from Terrell et al.^^; calculations from Chapman.**) 

Figure 7.49 also includes results of an empirical formula developed by 
Ingold and Huddleston'^ from the experimental and analytical data of 
LeDoux, Chilton, and Chapman. By data fitting, the formula was found to 
be 

D_ 

Do 
= 3.44 

{H/W} 0 . 9 0 7 W^ 8 6 4 

£ 2 . 5 3 4 2^2.6 6 7 ^ 0 . 7 10 (7.10-10) 
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Fig. 7.49—Comparison of albedo calculations with measurements of gamma-ray dose 
rates along the axis of a 1.8-m-square L-shaped concrete duct; 3.67-Ci ^''Co source. The 
results designated simplified formula correspond to the Ingold—Huddleston equation 
(Eq. 7.10-10). (Experimental data from Terrell etal.^^ ; calculations from Chapman.'"*) 

where D = dose rate on axis of duct at point of interest 
DQ = dose rate 0.30 m from the source 

H = height of duct (m) 
W - width of duct (m) 

Lj = length of first leg measured from the source to the center of the 

first corner (m) 
L2 - length of second leg measured from the center of the corner to 

the detector (m) 
£0 = gamma-ray source energy (MeV) 

Use of this formula is Hmited to problems that meet the following 
criteria: Point source at duct entrance, 0.662 MeV < E Q ' ^ 6.0 MeV, 
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Fig. 7.50—Comparison of albedo calculations with measurements of gamma-ray dose 
rates along the axis of a 1.8-m-square L-shaped duct; 4.2-Ci ^^Na source. (Experimental 
data from Terrell et a / . " ; calculations from Chapman.* *) 

0.3 < H < 1.8 m, 0 .3 < H ^ < 1.8 m, 0 . 6 < L i < l l m , 1<H/W<2, 
Li/H< 6, L 2 / H < 6, Li/W> 2, L j / I V ^ 2. Although this formula is useful 
for point sources, it should be applied with caution to a broad-beam source. 

In calculating neutron transmission through rectangular ducts, Song^ 
used Chapman's modification of the LeDoux—Chilton method. The reflected 
neutron spectrum was assumed to consist of two neutron energy groups, the 
number and energy in each group being based on the Monte Carlo data of 
Allen et al.^ In one analysis the duct was assumed to be 0.91 m square in 
cross section, and the sources considered were 14.7- and 2.5-MeV neutrons. 
The analysis included all single and double scattering events to determine the 
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energy and angular dependence of the neutron-dose albedo. A comparison of 
the results with measurements made by Do ty* ' (Fig- 7.51) shows good 
agreement. (The solid line represents the calculations for both the 2.5- and 
the l4.7-MeV sources since there was very little difference between the two 
sets of results.) Song derived a semiempirical formula for use in the 
calculations in terms of a single-energy parameter for the differential 
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Fig. 7.51—Comparison of albedo calculations with measurements of neutron dose rates 
in the second leg of a 0.91-m-square two-legged concrete duct; 2.5- and 14.7-MeV 
neutron sources. In the experiment the source was 30 cm outside the duct and 
L| =4.6 m; in the calculation the source was assumed to be at the duct entrance and 
Li = 4.9 m. (From Song.' ) 

neutron-dose albedo in a manner analogous to that used by Chilton and 
Huddleston* in their gamma-ray calculations. Values for the energy-
dependent parameter were obtained by a least-squares analysis that gave the 
best fit to the data of Allen et al.^ 
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(c) Albedo Monte Carlo Methods. Experiments and calculations have 
shown that gamma rays produced by neutron absorptions in a concrete 
shield surrounding a rectangular duct make a significant contribution to the 
total dose in the duct, and analysis of this component requires a knowledge 
of the distribution of low-energy neutrons throughout both the duct and the 
shield. These distributions can be determined with accuracy by analog Monte 
Carlo calculations, but, as pointed out in Sec. 7.10.1, the machine time 
required to trace neutrons until they approach thermal equilibrium can 
become excessive. To circumvent this, Cain developed a technique*^ that 
uses a random-walk Monte Carlo approach in which particles are traced by 
selecting random paths inside the duct but prohibits particle penetration into 
the shielding material. Thus tracking through a large number of interactions 
prior to emergence from the wall material is averted, and no time is wasted 
in tracking particles that never emerge. Each time a particle encounters the 
wall, it is assumed to reemerge with a reduced weight (given by the incident 
weight times the albedo of the wall). Flux densities at various points along 
the duct are then calculated either by making a statistical estimate for each 
encounter to various point detectors or by determining the track length per 
unit volume in a detector region. The most satisfactory detector was found 
to be a thin region extending across the duct and perpendicular to the duct 
axis. 

The method was modified by Maerker and Cain*" to include doubly 
differential thermal-neutron current and fast-neutron-dose albedo data 
(differential in reflected solid angle and energy) previously determined' -̂  •' ̂  
by Monte Carlo calculations for infinite slabs of concrete (described in 
Sec. 7.3). In addition, a provision was included for calculating the 
capture-gamma-ray dose rate arising from neutron capture in the duct walls. 

In the modified code the incident neutrons are reflected with reduced 
weight into various energy groups and directions, the probabilities for which 
are predetermined from the doubly differential albedo data. The neutrons 
are followed in the random-walk procedure until they either escape out the 
front or the rear end of the duct or are killed by Russian roulette (Chap. 5) 
when their weight falls below a predetermined value. Statistical estimations 
of the fluxes to point detectors are made to obtain the results. 

Good accuracy is obtained when the calculations are done separately for 
three energy ranges: (1) Neutrons with energies from 200 keV to 8 MeV are 
divided into six energy groups and are sampled to obtain the fast flux 
contribution to the dose rate. (2) The dose rate from neutrons of 
intermediate energy (0.5 eV to 200 keV), including all neutrons that have 
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slowed down to intermediate and thermal energies from higher energy 
groups, is determined with a 13-group calculation that involves sampling the 
entire energy range from thermal to 8 MeV but scoring only those neutrons 
with energies below 200 keV. (3) The dose rate from source thermal 
neutrons (subcadmium, <0.5 eV) is then determined in a separate calcula
tion using a single-velocity model. 

Monte Carlo albedo data of Maerker, Muckenthaler, Coleman, and 
S tevens ' ' ^ ' ' ^ are used in each energy range as described earlier in the 
chapter. To recapitulate, five sets of albedo data are used: one for each of 
the three neutron-energy ranges given in the preceding paragraph plus two 
for capture gamma rays (for incident thermal neutrons and for incident 
intermediate neutrons). In this method no neutron is allowed to penetrate a 
corner during the course of its random walk, although a statistical estimate 
of the flux that includes a corner-lip penetration in the last flight can be 
made. 

Maerker and Muckenthaler'^'*'"*^ carried out an extensive series of 
experiments and calculations to test the accuracy of the Monte Carlo albedo 
method as programmed in the AMC code.*" Three configurations of a 
0.91-m-square duct were used: a straight duct 13.7 m long; a twa-legged duct 
with a right-angle bend located 4.6 m down the first leg, the second leg being 
9.8 m in length; and a three-legged duct with two right-angle bends, the two 
bends being located 4.6 m down the first and second legs and the third leg 
being 6.1 m in length. In the experiments a collimated neutron beam from 
the Tower Shielding Reactor II entered each configuration through a 30- by 
30-cm area located at the geometric center of the duct mouth. The neutrons 
were incident at an angle 45° to one of the duct walls. This angle of 
incidence was chosen to serve as a rigorous test of the calculation since the 
fluxes and doses for detector locations greater than about a meter from the 
duct mouth would then be due entirely to wall-scattered radiation. The mea
sured absolute energy spectrum of the beam was used for the source spec
trum in the calculations. 

Figure 7.52 shows a comparison of the calculated and measured results 
for fast neutrons. In general, the agreement averages better than 20% 
through five orders of fast-neutron dose attenuation. For subcadmium or 
thermal fluxes that result from an incident beam of subcadmium neutrons 
(Fig. 7.53), the agreement is within 20% in the second and third legs and 
within 5% for most of the straight ducts. 

Calculations were also made of the thermal-neutron-flux density re
sulting from all source neutrons with energies above cadmium cutoff to test 
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the accuracy of the slowing-down model used in the code. The comparison 
between calculations and experiment shown in Fig. 7.54 indicates that the 
agreement is about the same as that obtained for incident subcadmium 
neutrons. The statistical errors, number of wall backscatterings, and running 
times for the same number of source histories were comparable in the two 

0 2 4 6 8 10 
CENTER-LINE DISTANCE FROM MOUTH, m 

Fig. 7.52—Comparison of AMC albedo calculations with measurements of fast-neutron 
dose rates in one- and two-legged 0.91-m-square concrete ducts. (From Maerker and 
Muckenthaler.*^) 

calculations. It should be noted that the calculations were normalized in 
each case to the measured number of neutrons incident on the wall of the 
duct from the source beam. 

Calculations were also made of the epicadmium or nonthermal spectra at 
several locations along the center line of the three-le^ed duct, and these 
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0 2 4 6 8 10 12 14 

CENTER-LINE DISTANCE FROM MOUTH, m 

Fig. 7.53—Comparison of AMC albedo calculations with measurements of thermal-
neutron-flux densities in one-, two-, and three-legged 0.91-m-square concrete ducts due to 
incident subcadmium neutrons. (From Maerker and Muckenthaler. ) 

spectra, together with the flux-to-multicollision dose factors of Snyder and 
Neufeld,* ^ were used to calculate the epicadmium multicollision dose rates 
at the same locations. The results are compared in Table 7.5 with 
measurements made with a dosimeter designed to give a response propor
tional to the Snyder—Neufeld multicollision dose curve over the range of 
interest. The dosimeter was a spherical BF3 counter placed inside a 25- or 
30-cm-diameter polyethylene ball covered with cadmium. 

The method of Cain and Maerker (AMC) may be extended to cover any 
other duct arrangements by providing an appropriate geometry analysis 
routine. Calculations in cylindrical geometry have been made by Selph, 
Newell, and Bayer.* ̂  

7.10.3 Additional Experimental Investigations 

A selection of experimental data has been presented in the preceding 
discussions for the purpose of validating analytical or empirical methods of 
duct analysis. Some additional experiments can be cited which help to 
illustrate principles involved in duct penetration. 
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Fig. 7.54—Comparison of AMC albedo calculations with measurements of thermal-
neutron-flux densities in one-, two-, and three-legged 0.91-m-square concrete ducts due to 
neutrons having energies above cadmium cutoff. (From Maerker and Muckenthaler. ) 

Table 7.5—CALCULATED VS. MEASURED EPICADMIUM MULTICOLLISION 
DOSE RATES IN A THREE-LEGGED DUCT 

Distance 
from mouth 

Duct to detector, 
leg m 

Dose rate, ergs g' hr~ watt" 

Measured t 

2 5-cm ball 30-cm ball Calculated 

5.8 
7.0 
8.8 

10.0 
12.2 

2.5 X 10"*(2.1 X 10"*) 
5.5 X 10'*(4.9 X 10"'') 

1.28 X 10"''(1.2X 10"'') 
1.45 X 10"*(1.2X 10"*) 
1.08 X 10"'(9.OX 10"'°) 

1.35 X 10"*(1.1 X 10"*) 1.9 X 10" 
2.85 X 10"''(2.45 X lO"'') 4.5 X 10" 

6.6 X 10"''(6.1 X 10'*) 1.05 X 10' 
6.4 X 10"'(4.8 X 10"') 9.2 X 10" 
6.0 X 10"'"(5.1 X 10 ' ' " ) 6.5 X 10" 10 

tThe dose rates in parentheses are those obtained when the center of detection was 
assumed to be at the center of the polyethylene ball rather than at its leading edge. 
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Terrell, Jerri, and Lyday'^ performed experiments to investigate the 
effect of geometry and source energy on the attenuation of gamma rays 
through rectangular concrete ducts with two right-angle bends. They found 
that for 1.8-m-square concrete ducts it made little difference whether the 
gamma-ray source was *"Co or ' ^ ' 'Cs or whether the right-angle bends 
formed a U-shape (Fig. 7.55a) or a Z-shape (Fig. 7.55b). These data, plotted 
in Fig. 7.55c, show a maximum deviation of a factor of 1.5 when properly 

Fig. 7.55a—Geometry of [/-shaped duct. 

normalized. The effect of geometry and energy becomes more noticeable for 

a 30-cm-square duct. 
Chapman* ^ calculated the contribution of a given scattering area on the 

gamma-ray dose rate in an L-shaped 0.91-m-square concrete duct. The 
scattering area chosen was the one labeled S, in Fig. 7.56a. Gamma rays 
from a *"Co source at the mouth of the duct were scattered from this area 
to the detector at the exit end of the duct. The dose rate due to gamma rays 
that were initially scattered from S, was calculated to be 0.379 mr/hr, which 
compares favorably with a measured dose rate of 0.404 mr/hr. 

During the experiment Chapman measured the gamma-ray spectrum at 
the exit end of the duct both with and without the scattering area Sj 
shadowed from the source. The results are shown in Fig. 7.56b. Shielding of 
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Si had a more pronounced effect on the higher energy radiation than on the 
multiply reflected low-energy component. This effect would be expected 
since the percentage reduction in the single-reflected area that results from 
blocking Sj is greater than the percentage reduction in possible combina
tions of multiple-reflection areas. 

Fig. 7.55b—Geometry of Z-shaped duct. 

In a subsequent experiment Chapman and Grant** investigated the 
relative effectiveness of coplanar and noncoplanar three-legged rectangular 
ducts. For the cases investigated (.28-cm-square duct, *"Co source, 
Li -75 cm, L2 - 80 cm, L3 - 91 cm), the attenuation provided by the 
noncoplanar configuration was found to be greater by a factor of 2 than that 
provided by the coplanar configuration. 

Clifford^ ^ used differential albedos^ ̂  to calculate dose rates correspond
ing to those measured in experiments designed to determine the importance 
of multiple reflection on the transmission of ' ^ ^ Cs gamma rays through 20-, 
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Fig. 7.55c—Gamma-ray dose rates measured in 1.8-m-square U- and Z-shaped concrete 
ducts; *°Co and " ^ C s gamma-ray sources. (From Terrell et al.^ ' ) 

41 SOURCE 

Fig. 7.56a—Schematic drawing of a 0.91-m-square L-shaped concrete 
duct (Li , L2 = 2.3 m). Si is the area on the long side of Li which can be 
viewed from D; it is 0,91 by 1.15 m. 
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30-, and 91-cm-square concrete ducts. In the experiments collimated gamma 
rays were incident on the duct entrance at an angle to the duct axis such that 
the area in which the first reflection could occur was near the entrance of 
the duct (see Fig. 7.57a). The dose rate along the duct center lines was 
measured first with the unmodified concrete (conditional). The second 
measurement (condition B) was with a lead lining over all inside surfaces 
except the first scatter area. The third measurement (condition C) was with a 
lead lining over the entire inside surface, Figure 7.57b shows the results of 
the measurements for all three conditions in the 20-cm duct together with a 
single-reflection analysis based on the differential albedo for condition B, 
and Fig. 7.58 shows the fraction of the total dose which is due to reflection 
from surfaces not exposed to the primary radiation for all the ducts. It is 
apparent from the results of all three duct sizes that the multiply reflected 
component increases to become as much as 20 to 30% of the total dose as 
the duct length is increased. 

7.11 VOIDS 

An irregularity that increases the radiation penetration through a shield 
but does not extend to either surface is called a void. Under this definition 
we consider single voids in a shield, such as an air bubble in a concrete pour, 
or multiple small voids created by filling a container with lead shot. Interest 
in an accidental void is likely to be centered about repair or determining the 
patch size to restore shield integrity. 

7.11.1 Single Voids 

The technique most frequently applied to single voids is the ray-analysis 
technique, which is described in Sec. 7.8 in connection with duct transmis
sion problems. As is pointed out there, the assumption of the ray-analysis 
technique is that the radiation transmission is a function only of the path 
lengths through each material or void encountered along a straight line 
between the source point and the point of interest. When applied to voids 
the increase in the flux density at the shield surface is determined by the 
difference in intensities calculated with and without the void. 

Consider a disk-shaped void in an infinite-slab shield adjacent to an 
infinite-plane gamma-ray source with the planes of the disk parallel to the 
slab planes as shown in Fig. 7.59. Let 'J'(L) be the flux density of energy E at 
a point on the surface of the shield with no void and $ (L — t) be the flux 
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Fig. 7.57a—Schematic drawing of square 

concrete duct showing first scatter area. 
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Fig. 7.57b—Measurements and single-reflection analysis of gamma-ray dose rates along 
the axis of a 20-cm-square concrete duct wdth and without lead linings; ' 'Cs source. 
(From Clifford.") 
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Fig. 7.59—Geometry for calculating the effect of a disk-shaped void on radiation 
transmission through a shield. 
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density with the void present. For the latter, the point of interest is the 
intersection of the center line of the void with the shield surface. The 
influence of the void is estimated by performing a point-kernel integration 
over the source plane to obtain "J>(L) and 4>(L — t). To calculate the flux 
density for the plane shield of thickness L, define foj = 2 mti over L 
normally through the shield. The contribution of a ring-shaped source with a 
particle-emission rate of No at an angle 6 from the detector would then be 

d^A^e-^x^^cd (7.11-1) 

Integrating over the plane source to an angle 6 gives 

Nr, /*^i sec e e'^ 
*(e)=V / -rdt (7.11-2) 

2 J b^ t 

where t = bi sec 6. Since by definition 

Ei{x)=J^~dt (7.11-3) 

then 

* ( 0 ) = ^ [ £ . ( t . ) - £ i ( f c i s e c 0 ) ] (7.11-4) 

integrating over the entire source plane gives 

^{L)=^E,{b,) (7.11-5) 

If the gamma-ray number buildup through by is Bi, then ^(L) may be 

estimated by 

* W = ^ £ . ( ^ ) (7.11-6) 

The buildup factor used here as a simple multiplier is only symbolic since 
the buildup factor is really part of the kernel that is integrated over all space. 
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As is pointed out in Chap. 4, when the Taylor form of the buildup factor is 
used, the form of these equations is unchanged, and the buildup effect is 
simply included by modifying the arguments of the exponential functions. 
Actually in these problems it is sufficiently accurate to use the equation as it 
stands and to determine Bi only on the basis of the slant penetration (Q to 
P) that grazes the void. For B2, an average of Bi and of the buildup factor 
based on the minimum path length normal to the void is usually adequate. 
Use of the arithmetic mean will always produce a conservative result since 
this gives equal weight to the buildup factor from a region of lesser 
importance. 

To calculate the flux density for a shield in which a disk-shaped void 
intercepts at an angle 6 from the point P, define ^2 ~ ^ t^iU over {L — t). 
Then for angles less than 6 

•J-i = ^ [ £ , ( f c 2 ) - £ . ( ^ ' 2 s e c 0 ) ] (7.11-7) 

and for angles greater than 6 

^2=^^E,ib,sece) (7.11-8) 

Thus the total flux density is 

^{L - t) = ̂ , + ^2 = ^ E,ib, sec 9) 

N0B2 
[E,{b2}-E,{b2secd)] (7.11-9) 

and the difference <i>(L — t) — ̂ (L ) is the increase in the flux density at 
point P due to the presence of the void. Since P is centered over the void, it 
will be the point of maximum increase. 

For points offset from the center, for example, for point P' in Fig. 7.59, 
Eq. 7.11-9 will not be valid, if the source is isotropic, the increase in the 
contribution at P' by a source surface increment dS caused by the void is 
given by 

*'• = o ^ r "̂ ^ /?̂ 2 [^3 e-t'i^-*) '^^ ^ - B4 e-^'L '^^ ^] (7.11-10) 
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where B3 and B4 are the buildup factors along the path dS ^ P' with and 
without the void, respectively, if the source is a cosine source, the increase is 
given by 

^iVo_dS_cos_^ ^^£,sec(3 _g-/x(L-0sec|3i (7 11-11) 
^' n{Lsecpf ^^ ^ ^' ' 

The integral of Eq. 7.11-10 or 7.11-11 over the appropriate source area will 
give the total increase at P' due to the presence of the void. The appropriate 
source area includes all points for which a ray P passes through the void. In 
most practical situations this integral must be evaluated numerically. The 
value of the integral at representative points will serve to determine the 
shape and thickness of the shield patch required to negate the effect of the 
void. 

An approximate form of ray analysis given by Tonks* ' can be applied to 
certain problems involving voids or depressions in a very thick shield. With 
this method we first calculate the flux density at a point on the surface of a 
uniform infinite-slab shield whose thickness is equal to the ray of minimum 
length through a void or depression in the shield. We then account for the 
reduction in flux density due to the longer material path of nearby rays 
terminating at the same point. The method is based on the fact that the 
formula for the flux density through an infinite slab 

< l > = ^ £ , ( M f ) (7.11-12) 

can be approximated by 

4 . ^ | ^ e " M ^ (7.11-13) 

for nt> 1, with an error that is approximately equal to l/^t. 

The application of Tonks' approximation is as follows: Consider a slab 
shield with a void such as that shown in Fig. 7.60. Let the ray passing 
through Q and P be the path of minimum material penetration, tg, and let it 
coincide with the z-axis. In many cases nearby rays may be expressed as 

t = t^+\adl+\bd} (7.11-14) 
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SOURCE V 
PLANE-^ 

Fig. 7.60—Geometry for calculating by Tonks' approximation the effect of a void in a 
shield. 

where dx and Oy are the angles between the minimum ray and a nearby ray 
projected onto the x-y and y-z planes, respectively, and a and b are 
determined by the specific geometry. Substituting Eq. 7.11-14 into an 
approximation analogous to Eq. 7.11-13 yields for the flux density "!>' at P 

^' = No 
glit^ 

(7.11-15) 

if both a and b are greater than zero. The ratio of the flux density estimated 
by Eq. 7.11-15 to that estimated by Eq. 7.11-13 (for a slab of minimum 
penetration) is 

* ' _ ^0 

* v^ (7.11-16) 

which, provided-y/dS > 1, gives the increase in effectiveness at P of the shield 
with a void over that of a simple slab whose thickness is equivalent to the 
minimum ray. 

The limit of 0^ and dy for which Tonks' approximation is valid is set by 
^x — ^y < O!, where a is given by a. =y/2]]It^. As an example, for a spherical 
void of radius R^ whose center lies at a depth R from the outside surface of 
a slab shield of thickness T, it can be shown that the length of a ray near the 
minimum ray is given by 
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t=t.+ 

and the increased effectiveness at the minimum ray terminus is given by 

^ 
$ [(fsir 

(7.11-18) 

Other expansions of ^ = Q̂ "•" A^xfiy) may be derived which would lead 
to equations of similar form to Eq. 7.11-15. Kouts*^ treated the problem of 

SOURCE 
PLANE 

Fig. 7.61—Geometry for calculating by Kouts' technique the effect of a void in a shield. 

voids on the basis of one-velocity transport theory. Instead of using the 
boundary conditions of the differential transport equation to describe the 
void, he accounted for it by the way in which the kernel of the integral 
equation is defined. The effect of the void is then calculated as a 
perturbation of the flux density in a homogeneous medium (no-void case). 
The method is applicable to either gamma rays or neutrons. 

Using this approximation to the transport equation, Kouts investigated 
the effect of spherical voids in water and obtained good agreement with 
experiment when he chose certain constants in the solution by fitting to the 
experimental data at one point. The expression derived for a spherical void 
in the geometry shown in Fig. 7.61 has the form 



412 REACTOR SHIELDING FOR NUCLEAR ENGINEERS 

*(P,=:^jr'<„/„p(^) p.n.i,) 

where ^(P) = flux density at point P 
B = constant in the approximation to the angular distribution of 

the scattered flux used by Kouts, i.e., 

dn <!>(«) 2, p(n'-> n) = B cos 0 ( o < ^ < f ) 

= o{l<e<n) 

2f = total macroscopic cross section 
P{Sl'-*^) - probability of scattering from direction J2' to direction 

V- parameter in the expression for flux distribution through the 
shield in the absence of voids given by 4>o = F4>(J2) e~^'° 

R = radius of void 
L = shield thickness 
b - number of relaxation lengths in the shield material 
[I = cos 6 

A best value of fe = 4.5 was chosen by Kouts by fitting experimental data for 

gamma rays at 2R/L = 1. 
Results obtained with this equation for a water shield are compared in 

Fig. 7.62 with experimental data for gamma rays. 

7.11.2 Small Random Voids 

For a large shield containing small randomly spaced voids (small 
diameter relative to the relaxation length of the radiation, e.g., a gamma-ray 
shield consisting entirely of iron shot), the effect of the voids on the 
radiation transmission is obtained simply by increasing the relaxation length 
used in the calculation of the shield attenuation by the ratio of the average 
density of the shield to the density of the solid material used in the shield. 

When the voids are not negligibly small, however, it can be shown by a 
statistical argument that the penetrating radiation will be greater than would 
be predicted by using an average density. Consider two normal rays through 
the shield, one that is the average penetration t plus an increment 6 and one 



ALBEDOS, DUCTS, AND VOIDS 413 

that is shorter than average by the same increment. Their average penetration 

IS 

1 iel'{t+^) + e-M(<~5)] ^ g-nt ^^3h 5/i > e"'̂ ^ 

Thus, although their average penetration distance is t, their average 
penetration is greater than e"^'. 
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Fig. 7.62—Comparison of flux increase due to spherical void in a water shield calculated 
by Kouts' technique with that determined by experiment. (From Kouts.**) 

This problem has been treated statistically by Smith.*^ From his work 

an effective thickness, tg, can be derived: 

_ t{l-v) 
1 + 0.55sv^ (7.11-20) 

where t is the actual thickness, v is the fraction of the volume that is void, 
and 5 is the average distance between voids measured in relaxation lengths. 
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An equivalent expression for an effective attenuation coefficient is 

jU(l - v) 

or, generalized to the case where the voids contain a material of attenuation 

coefficient jLt', 

1 + 0.55 (Vju) (M - M') 1̂ ' Me-.A;rj:T "':> ..2 (7.11-22) 
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Shield Heating, Air Transport, 
Shield Materials, 

and Shield Optimization 

L. G. MOONEY and N. M. SCHAEFFER O 

Four additional design considerations—shield heating, air transport, shield 
materials, and shield optimization—should be added to the special topics 
needed to supplement the transport calculations in the design of a shield. 
The grouping of the four topics is a matter of convenience and has no special 
significance. 

8.1 SHIELD HEATING 

Heat transfer may be said to dictate the design of a reactor. Materials 
selection is based on a compromise between thermal and nuclear properties. 
Within the core the kinetic energy of the fission fragments is the principal 
heat source. However, the design of the reactor structure, core vessel, and 
thermal and biological shield is determined by the energy deposition of 
radiation emerging from the core. Although significant heating rates may be 
generated by neutrons in the reflector, control rods, and inner shield regions, 
most of the heating in the shield results from energy degradation and 
absorption of gamma rays. Generally speaking, neutrons are considered in 
shield heating only insofar as they produce gamma rays. Energy deposited by 
charged particles is a consideration only in a limited number of materials. 

Methods for calculating energy deposition are identical to those for 
obtaining attenuation. Thus all the techniques and data described in Chaps. 4 
through 6 are pertinent here. The principal difference between attenuation 
and heating-rate analyses is the quantity of interest. For an attenuation 
calculation, we are primarily interested in the quantity transmitted. In shield 
heating we are interested in the quantity absorbed. This distinction makes 
the shield-heating calculation less demanding. The first orders of attenuation 
are obviously most important to heating rates; thus approximate methods 
can be used to better advantage for shield heating than for radiation 
transmission. 

419 
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We should not oversell the acceptability of approximate results, however. 
An underestimate of a biological dose rate by a factor of 2 is a nuisance: 
working times are more limited or exclusion areas must be enlarged. 
Consequences of a similar error in heating-rate estimates in the shield could 
be severe; excessive temperature rises could wreck the reactor structure at 
design power levels. A prudent design approach would therefore be to 
estimate the heating rates two ways: one that is known to overpredict and 
one that is known to underpredict. 

It is evident that a calculation of heating rates is simply another response 
function of the flux density. If one preserves his flux-density data from the 
shield analysis, then the heating rate can be obtained simply by converting 
the flux density to energy deposition. 

8.1.1 Gamma-Ray Heatingt 

The principal interactions of a gamma ray are pair production, 
photoelectric absorption, and Compton scattering. In Chap. 3 the Compton 
energy absorption cross section, a^a, was defined on the basis of the average 
energy loss per collision (Eq. 3.2-14). Since the other two processes involve 
complete absorption. Oca is used with them to define a macroscopic cross 
section (Eq. 3.2-16, jUa - ^[('pe ^ ^^ca + Opp\) that represents local energy 
deposition. The photon-energy deposition gives rise to a heating rate 

H(r) = C Z^^"'"' E Ha{E,r) $ (£ , r ) dE (8.1-1) 

where H(r) = heat generation rate at spatial position r (watts cm"^) 
E = gamma-ray energy (MeV) 

4>(E,r) = photon-flux density at energy E (photons cm~^ sec"'MeV~' ) 
jUfl = energy-absorption coefficient or macroscopic cross section for 

energy deposition (cm"') 
C = conversion factor (1.60 X 10" '^ watt-sec MeV~') 

We should emphasize that ^{E,r) includes the contributions from 
secondary as well as from primary gamma rays. 

Implicit in the use of the energy-absorption coefficient as defined here is 
the assumption that some other possible second-order processes are 
negligible and that the small amount of radiation that survives the 
photoelectric effect and pair production through fluorescence, brems-
strahlung, or annihilation radiation is absorbed where it is produced. Such 

tThis section follows a recent review by Claiborne.' 
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assumptions are justified for reactor design because of the low photon 
energies involved in these secondary processes. 

Calculation of the heating rate due to gamma rays is then reduced to 
obtaining the spectrum 4>(£,r), the subject of Chaps. 4 through 6. We will 
discuss buildup factors and mention some other methods in general use for 
calculating heating rates. 

(a) Buildup Factors. Because they are manageable with hand calcula
tions as well as with machine application, buildup factors represent the most 
popular technique, and they have been validated by comparison with 
experiment. Perhaps the most valuable feature of the buildup-factor method 
is the relative certainty with which the sign of the error in the calculated 
heating is known. Even for extreme multilayered construction (assuming 
that other sources of error are reasonably small), it is possible to bracket the 
true answer by separate calculations using the largest and the smallest 
individual buildup factors for the effective buildup factor of the composite 
shield. 

Recalling that buildup factors can be used as a type of point kernel, we 
measure the path length along the line of sight from the source to the 
receiver. The uncollided flux density at the receiver (the point of energy 
deposition) is then multiplied by the buildup factor to account for the 
scattered contribution. If the source is distributed (i.e., a reactor core), we 
represent it as an array of volume elements, each represented by a point 
source, and integrate the point kernel over the source volume for each source 
energy. The integral over volume is then 

H{r)=Eo Ha{Eo)J^ 4^!,2 dV (8.1-2) 

where H(r) = energy deposition per unit volume (MeV sec"* cm"^) 
S„(r') = isotropic source intensity in photons per unit time per unit 

volume at energy EQ (sec~* cm"^) 
V = source volume 

EQ = energy of gamma ray emitted by source 

lia - energy-absorption coefficient of material at the point of energy 
deposition 

Bg^(^y.x) = energy-deposition buildup factor 

ju = total attenuation coefficient at energy E^ 
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X = \r — T \, the distance between the source and the point of 
energy deposition 

r = point of energy deposition 
r' = location of source in volume V 

We note that Ba (M^) is an energy-de position (formerly called energy-
absorption) buildup factor and not the energy-fluence buildup factor. The 
latter would give the total energy flux, which would result in an overestimate 
of the heating rate. 

All we need to obtain heating rates for photons is a proper set of buildup 
factors. For infinite homogeneous media we can use the energy-deposition 
buildup factors given by Goldstein and Wilkins.^ For finite media and, more 
realistically, for the multilayered media to be found in any reactor shield, we 
need other buildup factors or an additional assumption. The pitfalls 
encountered in applying infinite-media data to finite geometries, described 
briefly in the discussion of differential energy spectra in Sec. 6.3.1, apply 
here as well. 

The infinite-media data (either buildup factors or differential energy 
spectra) contain the effect of the medium beyond the receiver point as well 
as that between the source and the receiver. Therefore a receiver at the far 
edge of a slab will intercept an intensity differing from the infinite-medium 
case depending on the difference in backscattering from the adjacent 
medium. If the adjoining medium is air, the infinite-medium buildup factor 
pro^duces an overestimate. If it is another dense medium, the infinite-medium 
buildup factor will give more or less, depending on the relative albedo of the 
two media. Since the albedo depends on the ratio of scattering to absorption 
cross sections, a greater ratio in the adjoining medium would imply that the 
infinite-medium buildup factor gives an underestimate of the actual intensity 
at the receiver. A lower ratio would imply an overestimate. The saving grace 
is that the magnitude of the error is usually of the order of a few percent for 
photons, reaching 20 to 30% only in unusual cases. 

Assuming that errors of this magnitude are acceptable, we can use 
infinite-medium buildup factors. Equation 8.1-2 must be modified to accept 
this compromise. Making the further assumption that the source energy 
distribution is divided into groups and that Ej is the mean energy for the jth 
group, we can write 
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H(r) = £, M.(̂ y) I ^^;^ (8.1-3) 

where t is the thickness of each region and i refers to the number of regions 
of different composition interposed in the line-of-sight path x between a 
source point and any particular point of energy deposition. The sums over i 
imply that we set the path length equal to the cumulative sum of mean free 
paths in each material to the point at which the heating rate is to be 
obtained. 

The buildup factor can be selected according to several rules of thumb. 
For homogeneous or near-homogeneous mixtures (regions significantly 
smaller than the mean free path), the so-called equivalent Z (atomic number) 
method^ has been used with good effect. In this method the equivalent 
atomic number is obtained by a recipe with a sound theoretical basis. 
Briefly, this method involves comparing the shape of the curve obtained by 
plotting the total attenuation coefficient per electron of the mixture as a 
function of energy to the corresponding curves for the individual elements 
until a reasonable match is found for energies below source energy. To be 
completely equivalent, the ratio of total to scattering cross section should be 
the same in the two cases, which usually occurs to a good approximation 
when the shapes are matched. 

Extension of the buildup-factor method to structures with multiple 
layers leans more heavily on rules of thumb and physical intuition. When the 
outermost layer exceeds two or three mean free paths, the buildup factor of 
the outermost material is generally recommended, but based on the total 
number of mean free paths along the line of sight through all materials. This 
seems a reasonable procedure since the gamma spectrum would readjust to 
the new medium and tend to approach the spectrum that would exist if the 
whole structure consisted of the outermost material. 

In the most extreme case where the structure is multilayered and each 
layer is less than two mean free paths thick, no clear-cut procedure is 
available. Some Monte Carlo calculations have been made on energy 
deposition in multilayered shields, but correlations for design use have 
generally been lacking. Based on Monte Carlo studies of heat deposition in 
one- and two-layer lead slabs in water by a plane monodirectional beam, 
Bowman and Trubey' ' suggested that combinations of the Goldstein—Wilkins 
energy-deposition buildup factors could be used in the relation representing 
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the buildup factor for stratified slabs. This effective buildup factor is 
expressed by 

Ba(Mi^i,M2^2)=Bai(Mi^i sec0,£o)Ba2(M2^2 sec 0,£o) 

X exp{-H2 t2 sec d) + 5^2 f (Mi ̂ i 

+ M2^2) sec0 ,£o] [ l - e x p ( - M 2 ^ 2 sec0)] j(8.1-4) 

where 6 is the angle between the direction of the incident gamma ray and 
the normal to the slab. Subscripts 1 and 2 refer to the first and second 
materials, respectively. 

For a double-layer shield whose outer layer is less than two or three 
mean free paths or a multilayer shield with the exterior layer more than two 
or three mean free paths in thickness, use of Eq. 8.1-4 seems intuitively 
justified for most purposes. The angular dependence [Q now becomes the 
angle that each path makes with the normal to the shield) does complicate 
the integral when Eq. 8.1-4 is substituted into Eq. 8.1-3; however, the 
numerical integration presents no problem when electronic computers are 
used, and in some cases it would not be too arduous for hand calculations. 

For conditions that are significantly different from the preceding cases, 
some other method should be used if it is desired to do other than bracket 
the answer by using techniques that will give results known to be high or 
low. For instance, in a multilayered shield with all layers less than two mean 
free paths, a high result is obtained by using the largest individual buildup 
factor as the effective buildup factor for the composite shield, and a low 
result is obtained when the smallest individual buildup factor is used. 

Constants for the energy-deposition buildup factors in the Berger form 
are given in Appendix F for water, aluminum iron, tin, and lead. Tobias, 
Vondy, and Lietzke^ have interpolated the results of Goldstein and Wilkins 
to obtain energy-deposition buildup factors for even atomic numbers from 2 
to 78 and have obtained coefficients for best fit to the third-degree 
polynomial 

B{lJLx,Eo) = 1 + a{nx) + b{nxf + c{nxf (8.1-5) 

Values of a, b, and c for seven energies from 0.5 to 10 MeV are given in 
Appendix F , Table F.4, and can be used for materials not explicitly given 
elsewhere. Because they are regarded as most accurate (Sec. 4.8.1), the 
Capo* polynomial expressions with regions of applicability are given in 
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Appendix F, Table F.5. This set includes the same materials as Appendix F, 
Table F.3 . 

Walker and Grotenhuis ' have examined the effective atomic numbers of 
concretes and found them to range from 11 for ordinary concrete to 27 for a 
barytes aggregate. Buildup factors for a particular concrete can be obtained 
by interpolating available data to the effective atomic number. Trubey^ 
published coefficients for the Berger form of the buildup factor for ordinary, 
magnetite, and barytes concretes as well as for sand, wood, air, and lithium 
hydride. These are reproduced in Appendix F, Table F.6. 

The buildup-factor method has been widely used and is a versatile tool 
for shield design. Calculations with this method have generally checked 
experimental measurements to within 35%. It is reasonable to expect similar 
accuracy when this method is carefully used in design calculations for shields 
or reactor structures that do not involve extreme multilayered construction 
with each region less than two mean free paths in thickness. Even for 
multilayered construction, however, when the outermost layer is more than 
two or three mean free paths in thickness, particularly when the low-Z 
material follows the high-Z material, the method should be quite good since 
the spectrum tends to readjust to the new medium. 

(b) Other Methods for Gamma-Ray Heating. Every method devised for 
gamma-ray attenuation has been applied to obtain heating rates. Greenhow, 
Mueller, and Sabian' devised a recipe with some success for applying any 
neutron multigroup diffusion code to gamma-ray heating by proper 
exchange of cross sections. French '° applied differential energy spectra 
from the Goldstein—Wilkins moments results to carry the gamma-ray 
spectral description through multilayered shields. This gives additional detail 
to the results, but it is essentially no more accurate and is considerably more 
involved than the buildup-factor techniques based on the same moments 
data. 

L a t h r o p ' ' has modified a standard LASL one-dimensional S„ code 
(DTF) to include up to 10 moments {Pio} of t̂ ^e group-to-group scattering 
cross sections. A subroutine cross-section code produces scattering cross 
sections by performing group averages of the Legendre moments of the 
Klein—Nishina differential cross section. At the option of the user, 
cross-section data can be flux weighted, source weighted, or unweighted. 
Test calculations with this code generally compare favorably with Monte 
Carlo calculations. Engle'^ also developed a one-dimensional S^—J"/code 
(ANISN) which in principle can handle any number of moments of the 
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group cross sections; a two-dimensional version (DOT) was developed by 
Mynatt, Muckenthaler, and Stevens.' ^ 

Trubey, Penny, and Lathrop' '* compared the results of an Sig—P3 
calculation with Monte Carlo and buildup-factor methods (the latter is 
equivalent to the moments method for the homogeneous medium) for a 

sphere of iron 70 cm in radius containing a unit gamma-ray fission source 
distributed uniformly within the inner 25-cm radius. The Monte Carlo results 
were obtained with the FMC code. ' ^ No importance sampling was used, and 
a total of 5000 case histories was calculated. When the buildup-factor 
method was applied, the usual point kernel was integrated over source and 
energy with each buildup factor obtained by a Lagrangian interpolation of 
the buildup factors in the paper by Goldstein and Wilkins.^ As shown in 
Fig. 8.1, the agreement between the three methods is excellent; in fact, it is 
rather surprising that the agreement is good all the way to the edge. The 
Monte Carlo results are typical in that the statistics get bad as the distance 
from the source increases, and the net result is that the flux is usually 
underestimated. At the origin the poor statistics resulted because the scoring 
volume was too small. Toward the edge the decrease in the S„ results with 
respect to the moments method most probably is a boundary effect. The 5„ 
calculation assumed a vacuum beyond 70 cm; use of buildup factors implies 
an infinite region. 

For deep penetrations of the order involved in shielding calculations, it 
had been generally felt that a P3 approximation was insufficient to account 
for the anisotropy of gamma scattering. In some preliminary studies by 
L a t h r o p , ' ' however, the difference in results between the PQ and P^ 
approximation was quite pronounced, but only small improvement resulted 
from the use of higher order approximations in place of the Pj 
approximation. 

For multilayered shields it is apparent that Monte Carlo ordiscrete-
ordinate methods are the best available, and they should be used where 
accuracy requirements exceed the capability of buildup factors. 

8.1.2 Neutron Heating 

Direct heating effects are potentially important for elastic scattering of 
fast neutrons in low-Z materials. For equal numbers of 1-MeV neutrons and 
gamma rays, the contribution of elastic neutron scattering to the heating rate 
varies widely with the atomic number of the medium. Foderaro, Hoover, and 
Marable' * show that the ratio of neutron to gamma-ray heating is 5 to 1 in 
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Fig. 8.1—Comparison of three methods for calculating heating in iron from 25-cm 
spherical source. (From Trubey et. a/.' ) 
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water, 6 to 10 in carbon, and 1 to 50 in iron. We can show this by 
developing the neutron analog to Eq. 8.1-3. From Sec. 3.2.2, a neutron of 
energy E initially and energy E' after an elastic collision is 

\A^ + 2A cos 0 - H i 

where A is the mass number of the target nucleus and 6 is the scattering 

angle (in center-of-mass coordinates). The energy loss is 

AE{E,d)=E-E' = E(j^^^^ ( 1 - C O S 0 ) (8.1-7) 

We need the average energy loss, if the average scattering angle is given by 
COS d. 

AE{E) = E (jTT^jl) (1 - cos 6) (8.1-8) 

We can now write the heating rate caused by elastic scattering in a 

material with N,- atoms/cm^ 

H„,n =KNiJj^ AE(E) a,-(£) $ ( £ ) dE (8.1-9) 

where H„n = heating rate (watts cm~^) 
K = conversion constant {K = 1.6 x 10"' ^ watt-sec M e V ' ) 

Oi{E) = elastic-scattering cross section of the I'th material 
4> = flux density of neutrons in dE about E 
E = incident neutron energy 

Foderaro et al.' ^ use the orthogonality property of Legendre poly
nomials to show that the average value of the cosine of the scattering angle is 

COS0 =/i,-(£) (8.1-10) 

where / i ,•(£) is the first expansion coefficient of the Legendre polynomial 
expansion of the differential elastic-scattering cross sections of the »th 
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element. Since these cross sections are commonly expressed in terms of 
Legendre polynomial expansions, this is a very convenient result. Values of 
/ j (£) for selected materials are quoted by Foderaro et al. and are given in 
most compilations of differential elastic-scattering distributions. The average 
energy loss is then 

^^^^^^^{XTi^ [l-/i;(£)] (8.1-11) 

The significant term is /l,7(y4,- -I- 1)^. It tells us that neutron heating 
decreases rapidly with the mass of the target nucleus and supports the 
conclusion that fast-neutron heating in heavy materials is unimportant in the 
presence of comparable numbers of gamma rays. For /I < 12, both neutrons 
and gamma rays tend to contribute significantly. 

A corollary to these conclusions relates to the importance of inelastic 
scattering of fast neutrons. Since inelastic-scattering cross sections in the 
energy range of interest (£ < 6 MeV) are significant only in heavy nuclei, 
inelastic neutron scattering is usually unimportant in heat-generation 
computations. Even where inelastic scattering is significant, it is generally 
less than elastic scattering. Thus where elastic scattering is unimportant for 
heating considerations so is inelastic scattering. 

Indirect neutron heating through production and absorption of gamma 
rays is significant where there is appreciable radiative capture and con
ceivably where there is appreciable gamma-ray production by inelastic 
events. 

8.1.3 Charged-Particle Heating 

Three nuclei account for most of our interest in neutron-induced 
charged-particle heating, *Li, " ' B , and ' " ' N . Because the cross sections tend 
to be in the millibarn range in the MeV region, charged-particle-out reactions 
are not important in heating except at thermal-neutron energies. Table 8.1 
summarizes the reactions of in te res t . " 

Note that three isotopes of uranium are included in Table 8.1. The large 
energy release per fission would make these isotopes important heat 
generators if they were used in a shield. 

For any of these reactions, say {n,a), the heating rate due to neutrons in 
energy interval AE is simply 

H„^a = KN a„^ac{E) ^{E) (E + Q] AE (8.1-12) 
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where/C = same conversion constant given before (1.6 x 10 ' ^ watt-sec 
MeV"') 

N = number of atoms of target material per cubic centimeter 
On,a{E) = {n,a) cross section at energy E 

4>(£) = neutron-flux density at neutron energy E 
Q = energy release for the reaction 

Table 8.1—CHARGED-PARTICLE REACTIONS IMPORTANT IN HEATINGt 

Nuclide 

*Li 
><>B 

' " N 
2 3 8 u 

2 3 S u 
2 3 3 u 

Reaction 

(n,a) 
{n,a) 

(«,|0) 
Fast fission 
Thermal fission 
Thermal fission 

Thermal-neutron 
cross section, b 

950 
3840 

1.8 
0.58 (3 MeV) 

582 
527 

Energy emitted. 
MeV 

4.8 
2.3, 0.48 
0.63 

Average total energy 
> from fission. 

~190 MeV 

fFrom C. N. Klahr, Reactor Handbook, Second Edition, Vol. Ill, Part B, Shielding, 
E. P. Blizard (Ed.), p. 174, Interscience Publishers, a division of John Wiley & Sons, Inc., 
New York, 1962. 

8.2 AIRTRANSPORT 

Although transport of neutrons and gamma rays through air is not 
usually an important consideration in the design of shields for fixed power 
plants, it is an important shielding consideration for any portable or mobile 
system. Laboratory experiments involving reactors, isotopes, or accelerators 
also frequently require some assessment of air transport. Actually two 
programs have accounted for most of the research in air transport that has 
been done: nuclear-powered aircraft and weapons radiation studies. Interest 
from the weapons standpoint is obvious; all the initial radiation from a 
nuclear weapon detonated within the atmosphere arrives at a distant receiver 
via the atmosphere. In analysis of exposure to fallout radiation, the transport 
through air from airborne or ground-deposited activity is the primary 
concern. The reasons for interest in air transport from the standpoint of 
nuclear aircraft are also evident; weight hmitations give additional incentive 
to tight design, and transport of radiation by air and structure from reactor 
shield to passengers and crew becomes a crucial design factor. 
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The processes involved in air transport are identical to those in dense 
media. The difference that makes air a separate topic is entirely in the 
geometry. Relaxation lengths in air are of the order of a hundred meters as 
compared with relaxation lengths in dense materials of the order of a tenth 
of a meter. Put in a more familiar way, the density of air at standard 
conditions is 1.29 mg cm"^; the density of most solids is in the range 1 to 
10 g cm"''. 

The geometry of interest includes the ground and the cover of air 
extending out to large distances in space. The importance of the boundary 
effects at the air—ground interface depends on the ratio a/li, the source -
detector separation divided by the height of source or detector above the 
ground. For a/h > 1, the presence of the ground significantly affects the 
amount of scattered radiation arriving at the detector. For a/h < 1, the 
relative importance of the ground effect depends on the height of the source 
and the detector. If the height of either the source or the detector is less 
than a mean free path in air, the ground effect is likely to be significant. 

Consider the case where both the detector and the source are located in 
the upper regions of the atmosphere. Here we have what can be described as 
an infinite medium within which neutron and gamma-ray mean free paths 
are extremely long and within which the density of material varies 
significantly over distances of interest. The density variation must be 
included if the accuracy of the air-transport calculation is to be acceptable. 
As the source and the detector are lowered in the atmosphere toward the 
earth's surface, the density increases, and the density gradient must be 
considered until the gradient becomes unimportant over several mean-free-
path distances. Air-transport calculations in the lower atmosphere at heights 
from 3 to 10 mean free paths or so above the ground surface are very similar 
to infinite-medium calculations for other materials of uniform density. 

As the source and the detector are lowered further toward the ground 
surface, the effects of the ground become noticeable, and the air—ground 
interface effects become most important when both the source and the 
detector are on the surface. If either the source or the detector is raised 
above the surface, the interface effects diminish. 

The radiation transport in an air-over-ground geometry is generally 
calculated to obtain the radiation distribution in the air. For such problems 
the ground is considered as a perturbing medium. The perturbation consists 
in absorption and reflection of the incident radiations as well as the 
contribution of secondary gamma rays produced by neutron interactions in 
the ground. Only for special problems, such as ground activation and heating 
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rates, is there a need for neutron and gamma-ray distributions within the 
ground proper. 

8.2.1 Infinite Air Medium 

As mentioned in the preceding text, the transport of neutrons and 
gamma rays in an infinite air medium can be calculated in much the same 
manner as an infinite medium of any other material provided the density is 
uniform. In fact, probably more infinite-medium calculations have been 
performed for air than for any other material. 

Air transport has been calculated vnth moments, discrete-ordinates, and 
Monte Carlo methods in recent years. The advantages of the Monte Carlo 
and discrete-ordinate methods in providing angular distributions at the 
receiver have resulted in their use almost exclusively. Early definitive 
calculations of air scattering of gamma rays were done by Lynch, Benoit, 
Johnson, and Zerby '^ using the Monte Carlo method. Similar calculations 
for neutrons were reported by Wells' ' and Zerby.^" 

Trubey^' showed that for source—detector separation distances less than 
about 30 m a single-scattering calculation gives an excellent approximation 
of the intensity at a detector but does not give an adequate representation of 
the energy or angular distributions at the receivers. 

Figure 8.2 illustrates recent comparative calculations of the neutron dose 
as a function of distance from a point isotropic 14-MeV neutron source by 
Straker and Gritzner,^^ Keith and Shelton,^^ and Webster.^ ^ Straker's 
results were obtained by discrete ordinates, and the remainder, by Monte 
Carlo. Straker's data are lower in magnitude because of his use of different 
cross-section data in the high-energy region. Webster and Keith and Shelton 
used identical cross-section data, and the difference in their calculations at 
larger distances is probably due to poor statistics in the Monte Carlo output. 
The abscissa and ordinate of this graph deserve mention. By plotting the 
dose per source neutron times 47rR^ (R the source-receiver separation) as the 
ordinate, we can remove the inverse-square geometric effect. Using slant 
range in density units (g cm~^) for the abscissa, we can avoid dependence on 
the air density. This graph is then appUcable to any uniform air density, and 
the separation (or slant range) in centimeters is obtained by dividing the 
slant range in g/cm^ by the air density in g/cm^. For convenience, Table 8.2 
gives the conversion to meters for sea-level air density. 

Figure 8.3 shows similar data from Straker and Webster for a point 
isotropic fission-neutron source. The differences noted in the 14-MeV source 

c 



SHIELD HEATING, AIR TRANSPORT, ETC. 433 

o 
tr. 

3 

O 
CC 

o 
</) 
GC 
UJ 

a. 
UJ 
m 
O 
Q 

(N 
CC 

Keith and Shelton 

100 

SLANT RANGE, g/cm^ 

200 

Fig. 8.2—Comparison of the neutron dose in infinite air from a 14-MeV neutron source 
calculated by Straker,^^ by Keith and Shelton,*' and by Webster.** 
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200 

SLANT RANGE, g/cm^ 

Fig. 8.3—Comparison of the neutron dose in infinite air from a fission-neutron source as 
calculated by Straker** and by Webster.*'* 
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data are seen to wash out for the fission source as a result of the smaller 
number of high-energy neutrons in the fission distribution. Some differences 
in slope are evident, however. Comparisons of calculated and measured data 
for an infinite air medium are shown later in this chapter. 

Figure 8.4 compares the results of three calculations for gamma rays in 
an infinite air medium. Two are based on the moments method: a 

Table 8.2—AREAL-DENSITY CONVERSION FOR 
SEA-LEVEL AIR DENSITY (p = 1.293 mg/cm') 

Range, m 

50 
77 

100 
200 
387 
500 
773 

1000 
1160 
1547 

Range, g/cm* 

6.5 
10.0 
12.9 
25.9 
50.0 
64.6 

100.0 
129.3 
150.0 
200.0 

calculation for air by VogeF^ in 1963 and a direct application of the 1954 
buildup factors for water. The two sets of data are close together except at 
0.5 MeV, where the older results are based on an interpolation. The third set 
of data shown is from a Monte Carlo calculation by Marshall and Wells^ * in 
1966. This set of data is widely used because it is recent and because it is 
differential in angle and energy at the receiver, which makes it suitable for 
application to shielded detectors.^ ̂  

Unfortunately a doubly differential data set is needed to convey useful 
working information: for 10 angle groups and 10 scattered energy groups, a 
10-by-lO matrix is required for each initial energy. Thus one complete data 
set includes about 10^ entries. All this is preliminary to stating that we do 
not have the luxury of including such data in this text. We respectfully refer 
the reader to the references and information centers. 

The effect of air density on air scattering is straightforward and simply 
related to source—receiver separation distance. Zerby^ ^ showed that the flux 
density or dose rate from an anisotropic point source in an infinite 
homogeneous medium at a given air density can be transformed to the 
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80 120 

SLANT RANGE, g/cm^ 

Fig. 8.4—Comparison of the calculated gamma-ray dose as a function of range in an 
infinite air medium. 
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corresponding quantity at any other air density in the medium: 

Pi 

D{p2,R2)-^D{p,,Ri) (8.2-1) 
Pi 

where p is the air density, R is the separation distance, and 

R2=~^Ri (8.2-2) 
P2 

This relation can be used only when the source and the receiver are at 
the same air density. 

The question sometimes arises whether or not the scattering in air is 
affected by moisture (rain, fog, or water vapor). The possibility is most 
simply resolved by considering the relative densities. A cubic meter of air at 
standard conditions weighs about 1.3 kg. Saturated water vapor at 0°C 
weighs 5 g /m' ; even at 35°C (95°F) saturated water vapor weighs 40 g / m ' . 
During a heavy rainstorm of 5 cm per hour, the water density is only about 
5 g/m^. A heavy fog yields a water density in the same range. Thus the water 
density never exceeds a few percent of the air density, and such a water 
content would have a comparable effect (of no more than a few percent) on 
the scattered intensity. 

8.2.2 Air-Over-Ground Calculations 

Calculations of the neutron and secondary gamma-ray transport in an 
air-over-ground geometry are difficult to compare since interface effects 
depend on the source and the detector height, the separation distance, and 
the composition of the ground used in the calculation. 

Probably the first definitive air-over-ground calculation for gamma rays 
to reach the open literature was the Monte Carlo study of Berger.^' The 
point isotropic source was 1.28-MeV gamma rays, and the results were given 
in terms of boundary correction factors, which made them convenient to 
apply to fallout radiation studies. Air-over-concrete calculations for point 
monoenergetic and monodirectional gamma-ray^° and neutron^ ' sources 
were reported by Wells. These data were to be applied for the nuclear 
aircraft with a reactor 4 m above a concrete ramp. 
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Fig. 8.5—Comparison of the neutron dose vs. range as reported by Straker** and by 
Marcum for a 14-MeV type source in an air-over-ground geometry. 

A comparison of more recent results is shown in Fig. 8.5, where the 
discrete-ordinate data of Straker^ ^ are compared to the Monte Carlo data of 
Marcum'^ for an identical neutron source composed largely of 14-MeV 
neutrons. Differences in the data are probably due to cross sections used for 
nitrogen and oxygen since several new sets were published in the intervening 
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Fig. 8.6—Comparison of the neutron dose as a function of range for a fission-neutron 
source and a 14-MeV neutron source in an infinite air medium and for a source height of 
15.2 m. (From Straker.^^) 

3 years. Both sets of data were for detectors at the ground, but the Straker 
set is for a 15-m source height and the Marcum set for a ground-level source. 
This difference does not account for the differences in the results. 

8.2.3 Air—Ground Interface Effects 

Figure 8.6 compares the neutron dose in infinite air and in an 
air-over-ground geometry for both a high-energy 14-MeV neutron source and 
a fission-neutron source. These data are from the same set by Straker^ ^ 
quoted previously. The neutron dose is appreciably lower for the air-over-
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100 300 500 700 900 1100 1300 

SLANT RANGE, m 

Fig. 8.7—Comparison of the secondary gamma dose from a fission-neutron source and a 
14-MeV neutron source in an infinite air medium and for a source height of 15.2 m. 
(From Straker.^ ^) 

ground geometry than for infinite air, and the effect appears to be somewhat 
dependent on the neutron source energy. This effect would be much more 
evident at larger ranges. Figure 8.7 shows the effects of the interface on the 
secondary gamma-ray dose for the same conditions as those given for the 
neutron dose. Here the effects are highly dependent on both the source 
height and the neutron-energy distribution. 

Some indication of the accuracy of the infinite-air and air-over-ground 
transport data can be obtained from Figs. 8.8 and 8.9, which compare 
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Fig. 8.8—Comparison of the measured^^ and calculated^^ neutron dose in an infinite air 
medium and in an air-over-ground geometry resulting from the HENRE neutron source. 

Straker's data and measurements made during Operation HENRE^ ^ at the 
Nevada Test Site. Operation HENRE (High Energy Neutron Reaction 
Experiment) was designed to provide a high-intensity source of 14-MeV 
neutrons from an accelerator using the D—T reaction. The accelerator was 
mounted on a 457-m tower and could be raised to approximately 366 m to 
approximate an infinite air medium. Neutron and secondary gamma-ray 
doses were measured as a function of range for the source and the detector 
at 336 m (simulating an infinite air medium) and for the source at an 8.2-m 
height and the detector on the ground surface.^^"^^ Results of the 
measurements are compared with calculated values in Figs. 8.8 and 8.9. The 
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Fig. 8.9—Comparison of the measured and calculated^^ secondary gamma dose in an 
infinite air medium and in an air-over-ground geometry resulting from the HENRE 
neutron source. 

vertical bars describing the measurements represent uncertainties in the 
measurements caused by shadowing of the neutron source by components of 
the accelerator with a consequent departure from isotropy; the actual source 
intensity was therefore uncertain. 

Limited success has been achieved in developing theoretical models to 
describe the effects of the air—ground interface. One such model, called the 
First—Last Collision Model, devised by French^* has been reasonably 
successful in describing interface effects on the integrated neutron dose. The 
model was originally conceived as a possible means of adjusting infinite-air-
medium transport data to account for the perturbation resulting from an 
interface. The model presupposes that interface effects operate primarily on 
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the first collision of neutrons near the source and on the last collision of 
neutrons near the detector. Perturbation fractions are calculated, which 
represent the effects of the interface on the number of first and last 
collisions, as the source, or detector, or both approach the ground surface. 
The model accounts only for the scattered-neutron component and is used 
only for separation distances where multiple scattering predominates. 
Results with the first—last collision model also indicate that the interface 
effects are limited to those neutrons which arrive at the detector from the 
lower 2ir hemisphere below the detector. 

An experiment for testing this last conclusion was devised and carried 
out during Operation HENRE. The l4-MeV neutron source was fixed at a 
height of 34 m and the detector height was varied from 0.2 to 21 m. A 27r 
shield was sandwiched between two detectors to separate the neutron dose 
arriving from the upper 27r hemisphere from that arriving from the lower. A 
third detector was positioned on a boom attached to the shield to measure 
the total free-field dose as a function of distance above the ground. The 
entire assembly was suspended at a horizontal distance of 305 m from the 
source tower. More details of the experimental arrangement are given in 
Sec. 9.3.1. 

Measurements were made on all three detectors as a function of distance 
above the ground. Appropriate corrections were made to the measured data 
to account for backscattering of the neutrons by the shield and for ground 
shadowing by the shield. 

Figure 8.10 compares the experimental results and the values calculated 
from the model. The free-field measured and calculated neutron doses were 
normalized at the maximum height of 21 m since the absolute source 
strength could not be established with sufficient accuracy. In general, the 
agreement is excellent, and the experimental results can be considered a 
reasonable verification of the model. 

8.3 SHIELD MATERIALS 

The selection of materials is obviously an important part of reactor 
shield technology. Materials selection and a related task, optimization, 
together offer the greatest potential for weight or cost savings. Nevertheless, 
materials selection has not been reduced to an analytical approach and has 
received rather less attention by shielding investigators than other more 
elegant aspects of shield design. Of course, there has been an active 
nuclear-data collection program, and extensive properties handbooks are 
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Fig. 8.10—Comparison of measured and calculated scattered fast-neutron dose near 
air—ground interface 305 m from 14-MeV neutron source. [From R. L. French and L. G. 
Mooney, Nud. Sci. Eng., 43: 279 (1971).] 

available.'^ Virtually every accelerator laboratory has been engaged in 
measuring some interaction cross sections, most research reactors have been 
used to measure attenuation constants, and numerous national and interna
tional organizations are engaged in collecting, compiling, and evaluating the 
resulting data. But all this effort has been devoted to nuclear data; relatively 
little effort has been spent relating these results to other physical and 
chemical properties important to the selection of shield materials. 

Perhaps the deficiency arises because the materials task requires a variety 
of skills: nuclear interaction, heat transfer, chemical interaction, structural 
characteristics, other physical properties, and economics must all be applied 
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in a thoroughgoing analysis. It is evident that the selection of shield materials 
deserves additional attention. 

8.3.1 Considerations in Materials Selection 

The primary nuclear properties to be considered are obviously neutron 
and gamma-ray attenuation. As a rule, good gamma-ray attenuators also 
produce secondary gamma rays from neutron inelastic scattering and 
radiative capture; thus the production of secondaries is also a consideration. 
For shields requiring several orders of attenuation, volume and mass affect 
materials choices. Structural strength at operating temperatures is also 
involved. Some low-strength materials having excellent attenuation prop
erties may be rejected because the structure necessary to support them 
offsets their primary advantage. 

Inner layers of the shield usually require some thermal protection; thus 
cooling must be considered. Good gamma-ray attenuators are heavy metals 
and are usually the highest density material in the shield. To conserve weight 
and cost, these materials are usually placed nearest the core, which gives rise 
to a cooling requirement. 

Different design objectives lead to the selection of different materials. 
For a fixed power-reactor system, cost is a primary consideration; thus the 
local concrete aggregate becomes a baseline for comparison with other 
materials. Higher attenuation substitutes may be considered only if some 
cost saving results. 

For mobile systems, total weight becomes the primary consideration, 
and more exotic materials can be considered. We will discuss materials in 
both the exotic and conventional categories. 

In a recent Russian book on nuclear power plants, Komarovskii'^ has 
summarized in wry fashion the contradictory properties required of 
biological shield materials. We quote directly from the translation: 

In general, protective materials used for biological (and radiation) shielding 
must have the following properties and ensure the following: 

1. Maximum possible density (i.e., maximum specific or bulk weight) to 
ensure maximum attenuation of gamma radiation from the core and for the 
absorption of the secondary gamma radiation caused by the capture of neutrons 
by the material of the shield. Materials of higher density also slow down fast 
neutrons efficiently, transforming their energy into epithermal and thermal 
neutrons which are then more easily absorbed. (This statement evidently refers to 
the effect of inelastic scattering in heavy materiab.) 

2. Constant density and homogeneity of the shielding material (along all or 
part of the shielding). 
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3. A definite, economically justified content of hydrogen (usually contained 
in chemically bound water) for an efficient slowing down of epithermal neutrons 
to the thermal level. It is desirable for the hydrogen content of the shielding 
material to be independent of the temperature of the material. 

4. Minimum possible energy of capture gamma radiation forming on absorp
tion and slowing down neutrons. 

5. Satisfactory resistance of the material to radiation effects. 
6. Low residual radioactivity, i.e., minimum amount of long-living radio

isotopes which might accumulate in the shielding under the effect of radiation. 
7. Mechanical strength (primarily compressive strength) and three-dimensional 

stability of the structure. The latter requirement may be explained by the fact 
that the shielding against external radiation is in most cases also the carrying 
structure of the nuclear plant (cover, walls of the reactor tank adjoining the 
shielding, etc.); the shielding must not have continuous seams and joints or local 
caverns, holes, or traversing cracks through which radiation might easily 
penetrate. 

8. Relatively low modulus of elasticity thus permitting reduction of tensile 
stresses in the outer zone of the shielding as a result of its unilateral heating 
(heating from one side). 

9. Maximum possible heat conductivity so as to reduce the temperature 
gradient over the thickness of the shielding and thus the tensile stresses in the 
outer zone of the shielding. 

10. Minimum thermal expansion of the material, also enhancing reduction of 
thermal stresses. 

11. Minimum thermal hydration during hardening (of concrete). 
12. Minimum contraction (shrinkage) during the construction of the shielding 

and later, since upon contraction the various apertures, pipes, and conduits in the 
shielding may become displaced. 

13. Refractoriness and thermal stability, and if the material catches fire, the 
combustion rate should be as low as possible with the flame tending to 
self-quenching as the fire source is removed. Particular demands as to refractori
ness are put on materials used to shield the reactor core directly. The shielding 
materials should not melt even at emergency temperature in the reactor. This is of 
particular importance for fast-neutron reactors. 

14. Waterproofness. 
15. Gasproofness. 
16. Safe (in terms of effects of the evolution of gases from the material during 

its heating). 
17. Chemical inertness and first of all resistance to the chemical action of the 

coolant (this refers particularly to sodium-cooled reactors in which the shielding 
should not include water—metal mixes). 

18. Noncorrosive with respect to metal (steel, lead, aluminum, etc.). 
19. Easy construction as well as easy repair and if necessary, replacement. 
20. Low cost. 
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In nature there are no materials which satisfy all these requirements. Artificial 
materials (such as concrete) must therefore be used, or in some cases a shield 
consisting of layers of different materials must be constructed. In selecting the 
proper protective materials allowance must be made for the ratio of neutron-flux 
intensity to gamma-ray intensity. 

Many of the above requirements are conflicting. When using materials of high 
density, for example, the requirement of minimum cost cannot be satisfied. High 
hydrogen content conflicts with the requirement of maximum content of heavy 
elements. In this case a compromise must be found by using a mixture of heavy 
and hydrogen-containing compounds (e.g., concrete) or, which is less frequently 
done, by constructing the shield in alternating layers of heavy and light materials. 

In selecting the construction materials for the shielding all the engineering and 
economic advantages and disadvantages of the various materials must be weighed 
carefully and the operating conditions of the particular nuclear plant must be 
taken into account. Preference should therefore be given to materials of suitable 
properties. When constructing new premises for a reactor plant, it is usually 
possible to create a shielding of large volume but of less heavy materials. On the 
other hand, when building a reactor in already existing premises the thickness of 
the material often has to be reduced due to restricted access conditions, and in 
this case more expensive materials of higher density have to be used. 

Now let us examine the properties of some materials actually in use for 
the shielding of mobile and stationary systems and compare some of their 
characteristics with the preceding requirements. 

8.3.2 Shield Materials for Stationary Reactor Systems 

Concrete is the most commonly used radiation shielding material for 
fixed reactors and accelerators. Since concrete is a mixture of elements, the 
variation in composition is large. Therefore, when referring to concrete as a 
shielding material, we should state the specific composition in order for its 
characteristics to have meaning. Concretes are generally referred to as 
ordinary or heavy. Ordinary (portland) concrete has a density range from 2.2 
to 2.4 g/cm^ and is largely composed of oxygen and silicon or calcium (or 
both), depending on the aggregates (granite, sandstone, or limestone). Heavy 
concretes with densities ranging from 3 to 6 g/cm^ are those in which the 
aggregate consists of iron or iron ore, baryte (barium sulfate), steel shot, 
punchings, sheared bars, or other metal additives. There is obviously an 
added cost factor for heavy concretes. 

Other materials that have been used in large quantity for shielding are 
compacted soil, iron, lead, and water. Experience has shown, however, that 
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heavy-concrete shielding has many advantages over these materials.^ ' ' '^ '• ' '° 
It is also evident that these materials satisfy few of the preceding desired 
properties. 

Probably more than 90% of the stationary reactor systems designed for 
power production are shielded with concrete. As an illustration, of 
twenty-three test-reactor shields described in a 1968 survey published by the 
Radiation Shielding Information Center,"*' six used both heavy and ordinary 
concrete, eleven used only ordinary concrete, and five used only heavy 
concrete. Only one shield is described without concrete. Fourteen contained 
water: eleven were swimming pool reactors, two were boiling-water reactors, 
and one was a homogeneous solution. Three others included heavy water. 
Other materials mentioned were iron, steel, wet sand, boral, graphite, 
borated graphite, polyethylene, earth, and boric acid. Most of the materials 
used in the experimental reactor shields, other than concrete, such as iron, 
lead, and graphite, individually have poor structural or radiation shielding 
properties but, when combined in laminated configurations, result in 
extremely good shields. 

Let us look at these materials in more detail. To compare nuclear 
properties of materials, we need a set of standards for comparison. Despite 
the universal use of concrete, we shall use lead for gamma rays and water for 
neutrons as standards for comparison of attenuation properties. Both are 
frequently used and are regarded as excellent attenuators. Both are pure 
substances (and relatively free from impurities in practice) and so do not 
present the multiplicity (and variability) of constituents with which we must 
contend with concrete. 

(a) Water. Because of the success of the swimming pool reactor as a 
research tool and of its derivative, the pressurized water reactor, as a pioneer 
power source, water layers are found in reactor-shield analyses almost as 
often as concrete. Water is an excellent neutron attenuator because of its 
large hydrogen content. It is an inferior attenuator of gamma rays because of 
its low electron density. Since oxygen has no thermal-neutron capture and 
the 330-mb thermal-neutron capture cross section of hydrogen gives only 
2.2-MeV gamma rays, water is relatively low in secondary gamma-ray 
production. 

Considerations when water is used as a shield material include contain
ment, temperature control, corrosion, and purification (demineralization). 

(b) Lead. Best of the conventional materials for gamma-ray attenuation, 
lead is exceeded only by uranium. Lead bricks are to be found in almost 
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every radiation laboratory as portable shield bricks. Lead suffers creep at 
high temperatures (above 260°C) and must be constrained to avoid 
downward flow. 

Lead shot makes good filler for cavities in plugs and doors in shields. If 
provision is made for extracting the filler in place, it becomes a great 
convenience should it become necessary to dismantle or remove the door. 
Lead has relatively poor neutron properties and produces 7.4-MeV gamma 
rays on neutron capture. Impurities in commercial lead can cause significant 
activation problems. Reference 37 gives additional physical properties. 

(c) Graphite. A good neutron moderator and reflector material, graphite 
is used extensively in reactor design. Since it is available in very pure form, it 
exhibits few secondary gamma rays. Like water, it is a poor gamma-ray 
attenuator. Besides its use as a reflector—moderator, it is also found in 
thermal shields and occasionally as a primary shield material (see the 
discussion of the Enrico Fermi power plant in Chap. 10). The excellent 
high-temperature properties of graphite are additional reasons for its 
application. 

(d) Iron. Iron is almost always present in the reactor structure as steel 
and is used for thermal shields and pressure vessels. Iron produces a number 
of secondary gamma rays up to 10 MeV, most of them at 7.6 MeV. Not 
surprisingly, it is intermediate in gamma-ray attenuation between water, 
carbon, and boron at the low end and tungsten, lead, and uranium at the 
high end. Neutron attenuation per unit thickness of iron is good; it is 
intermediate between the same materials mentioned for gamma rays. The 
isotope ^^Fe is easily activated by thermal neutrons producing " F e , with a 
59-day half-life, which emits a 1.5-MeV gamma ray. This activation of iron 
may limit accessibility to a reactor after shutdown.^ ^ All steels embrittle 
after exposure to thermal-neutron fluence of the order of l O " to 10^° 
neutrons/cm^, showing hardness increases from 50 to 100%, depending on 
the alloy and heat treatment. (See Chap. 23 of Ref. 37.) 

(e) Boron. This element is used principally to absorb thermal neutrons 
because of the cross section of 3840 b for the '°B(n,c«7) reaction. The 
alphas are easily absorbed (producing a heating problem for large incident 
flux densities); the gamma ray at 0.5 MeV should be considered in borated 
water and polyethylene. Boron is available in a number of useful forms: as 
boric oxide (B2O3), as boron carbide (B4C), as elemental boron, and as a 
sandwich material called boral. Boral consists of an aluminum—B4C mixture 
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clad with pure aluminum. Pure boron has also been used as an additive to 
polyethylene and graphite to add neutron absorption properties to good 
neutron attenuators. It has also been added to some steels to reduce 
secondary gamma-ray productions and activation problems of iron. 

(f) Concrete. Since concrete is a mixture of materials, the mixture can 
be tailored to provide optimum structural and shielding properties. Table 8.3 
gives the elemental composition of ordinary portland concrete and several 
concretes fabricated for improved shielding properties.^^ Table 8.3 contains 
only a small sample of the many custom-designed concretes available. 
References 37, 42, and 43 contain information on mixing proportions, 
placement techniques, costs, etc. There is no reported standard concrete 
composition since variation in normal concretes is due primarily to the 
aggregate. One can, however, use the ordinary portland concrete as a basis 
for comparing the improved structural and shielding properties of heavy 
concretes. 

The ferrophosphorus concrete is of high density and has excellent 
bonding qualities. The aggregate is ferrophosphorus ore. The iron—Hmonite 
is a heavy concrete containing the iron-ore limonite and steel punchings as 
aggregates. Limonite is composed of goethite and hematite, both iron-
bearing ores. This concrete is similar to that used to shield the Brookhaven 
graphite reactor. 

The iron—portland and several baryte concretes were all developed for 
shielding use. The iron—portland concrete is of high density. Lumnite is a 
cement (as is portland) which is better described as calcium aluminate 
hydraulic cement. Lumnite has a high aluminum and calcium content. 
Colemanite, used as an aggregate, is hydrated calcium borate with a high 
fixed-water and boron content. Baryte is a barium sulfate ore used as an 
aggregate in heavy concretes. The baryte concretes contain boron for 
neutron absorption and hydrogen for neutron attenuation, and the baryte 
ore serves as a good gamma-ray attenuator. The densities vary from 3 to 
3.2 g /cm ' , which is lower than iron—aggregate concretes. 

Neutron and gamma-ray attenuation per unit mass vary only slightly 
from one of these mixes to the next. The principal advantage in the heavier 
mixes lies in the smaller volume needed for a given total attenuation. 

8.3.3 Shield Materials for Mobile Reactor Systems 

Weight rather than cost is generally the principal design criteria in the 
application to mobile reactor systems. The emphasis, therefore, shifts to the 



Table 8.3—ELEMENTAL COMPOSITION OF CONCRETESt 

Element 

Iron 
Hydrogen 
Boron 
Oxygen 
Magnesium 
Calcium 
Barium 
Silicon 
Sodium 
Potassium 
Aluminum 
Manganese 
Chlorine 
Carbon 
Phosphorus 
Sulfur 
Zinc 
Fluorine 
Titanium 

Density, 
g/cm^ 

Portland 
concrete 

1.4 
1.0 

52.9 
0.2 
4.4 

33.7 
1.6 
1.3 
3.4 

0.1 

2.3 

Mag
netite 

50.5 
0.3 

32.0 
0.6 
0.7 

3.5 

2.9 
0.07 

0.17 
1.07 

2.8 

3.45 

Ferro
phosphorus 

concrete 

61.2 
0.5 

10.4 
0.2 
4.2 

3.4 

0.4 

19.7 

4.8 

Iron— 
Umonite 

72.1 
0.05 

18.0 
0.2 
6.1 

1.4 

0.5 
1.6 

0.1 

4.27 

Composition, wt.% 

Iron— 
portland 

87.50 
0.33 

5.82 
0.13 
3.96 

0.91 

0.33 
0.35 

0.05 

5.8 

Colemanite— 
baryte 

1.03 
0.85 
0.98 

34.89 
0.22 
8.46 

40.70 
1.76 
0.11 

0.61 
0.01 

9.63 

3.2 

Boron 
frits— 
baryte 

2.19 
0.56 
1.04 

33.80 
0.23 
6.26 

40.13 
3.31 
1.21 
0.10 
0.64 
0.02 

9.15 
0.66 
0.23 

3.1 

Lumnite— 
colemanite— 

baryte 

3.07 
1.09 
0.88 

36.95 
0.14 
5.48 

38.59 
0.96 
0.11 

1.76 
0.12 

9.06 

1.27 

3.1 

Lumnite— 
portland— 

colemanite— 
baryte 

1.87 
1.10 
1.02 

36.98 
0.20 
7.67 

38.03 
1.49 
0.11 

1.32 
0.04 

8.97 

0.071 

3.1 
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tFrom H. E. Hungerford, Reactor Materials, Vol. I, Materials, C. R. Tipton, Jr. (Ed.), p. 1086, Interscience 
Publishers, a division of John Wiley & Sons, Inc., New York, 1960. 
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improved shielding provided by the so-called exotic materials used in layered 
combination. 

The approach in designing minimum-weight shields for reactor systems 
usually is to select the most efficient of the neutron shielding materials 
compatible with the design and to combine this vnth the most efficient of 
the gamma-ray shielding materials rather than to select a single bulk 
attenuator medium. These two component materials are usually layered in 
some manner that yields minimum weight by providing the proper balance 
between primary and secondary radiations and geometric effects on material 
volume. 

The efficiency of a neutron attenuator can be correlated to its hydrogen 
density, and the efficiency of a gamma-ray attenuator can be correlated to 
the total density of the material. Thus minimum-weight shield component 
materials are such combinations as lead plus polyethylene, tungsten (wolf
ram) alloys plus hthium hydride, or depleted uranium plus titanium hydride. 

Shields of this nature placed in proximity to a propulsion reactor 
invariably create a thermal problem because of the high-energy absorption. 
Internal temperature rise can be limited by cooling the materials with a 
forced coolant flow between thin layers of the material or through internal 
cooling channels. Some of the high-density gamma-ray shielding materials, 
such as wolfram and depleted uranium, have a relatively high thermal 
conductivity and can tolerate a fairly high operating temperature if clad to 
protect against oxidation and corrosion. In contrast, most materials that are 
high in hydrogen content have low thermal conductivity and cannot tolerate 
high operating temperatures without melting or decomposing. 

Although submarines were the first application for nuclear propulsion, 
the application to surface ships is also well known. Two such examples are 
the U. S. merchant ship N.S. Savannah and the Russian icebreaker Lenin. 
The reactor shield of the N.S. Savannah is composed of light water, lead, 
polyethylene, standard concrete, and heavy concrete (described in 
Chap. 10). The reactor shields of the Lenin are composed of water, steel, and 
heavy concrete.^' 

In addition to mobile reactor systems, other mobile or portable sources 
of radiation require shielding, e.g., neutron sources fabricated from 
plutonium—beryllium or polonium—beryllium and radioisotopes (usually 
gamma-ray emitters) resulting from high-intensity neutron exposures in 
reactors. 

Shipping and storage casks must be provided for sources of this type, and 
they are usually constructed of lead for gamma-ray shielding and contain 
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paraffin or other hydrogenous material for neutron shielding. These sources 
are usually small and present few design problems. An exception to this is 
found in spent-fuel-element shipping casks where large burnups have been 
experienced.'*'' These elements contain sizeable quantities of ^^^Cm, 
^^^Cm, and ^ ^ ' A m , all of which fission spontaneously, giving, rise to a 
fission-neutron distribution (as well as the accompanying prompt gamma-ray 
spectrum) in addition to the long-term fission-product gamma rays. Shield 
design of shipping casks for these fuel elements presents nearly all the 
problems of a reactor shield: radiation heating (forced cooling is necessary), 
good neutron and gamma-ray shielding, and minimum size and weight 
(usually limited by the largest available truck size for transport). 

Weight-limited shields are also used for isotope power supplies, which use 
the heat generated by the decay of radioactive nuclides to produce 
electricity. Such sources have been used to power orbiting satellites and 
experimental equipment placed on the moon. Shields for these systems must 
obviously be efficient. 

As mentioned, among the top contenders in materials for mobile reactor 
systems are lead, polyethylene, tungsten alloys, lithium hydride, depleted 
uranium (238), and titanium hydride. The properties of some of these 
materials are given in the following paragraphs. Some physical properties of 
the metals discussed are summarized in Table 8.4 and of the hydrogenous 
materials, in Table 8.5. 

(a) Polyethylene. This plastic is a pure hydrocarbon (CH2 )„ with a 
density of 0.92 g/cm' which actually contains 18% (by volume) more 
hydrogen than does water (both contain more hydrogen per unit volume 
than liquid hydrogen). Water contains 6.7 x 10^^ hydrogen a toms/cm' , and 
polyethylene has about 8 x 10^^ hydrogen a toms/cm' . Polyethylene does 
not activate, but it does soften at 110°C, and it supports combustion. A 
more-dense version of polyethylene has a higher softening point (200°C) and 
slightly higher density (0.96 g /cm ' ) . Either material suffers radiation damage 
and must be replaced before decomposition reduces its effectiveness 
(probably well above 1 0 ' ' ergs/g energy deposition).''^ As mentioned under 
the discussion on boron, polyethylene can be borated to produce the added 
benefit of high neutron absorption. Linear thermal expansion is large, and 
thermal conductivity is very small; both properties must be borne in mind. 

(b) Tungsten Alloys. Tungsten powder blended wdth binder metals, such 
as nickel, copper, and iron, has been sintered to form very dense 
machineable alloys with densities varying from 16.5 to 18.5 g /cm ' . The 



Table 8.4—PHYSICAL PROPERTIES OF DENSE SHIELD MATERIALS 

Density, g/cm' 
Specific heat. 

cal g"' deg ' ' ^ 
Melting point, °C 
Thermal conductivity, 

cal sec"' cm"' deg" 
Coefficient of thermal 

expansion, deg"' 
Tensile strength, 

kg/cm^ 

Table 

Density, g/cm' 
Sublimation, C 
Melting (softening) 

point, °C 
Coefficient of thermal 

expansion linear. 
deg"' 

Thermal conductivity. 
cal sec"' cm"' deg"' 

Specific heat, 
cal g"' deg"' 

Iron 
(stainless steels) 

7.9 to 8.0 

0.12 
1370 to 1425 

0.03 to 0.05 

(14 to 20)10"* 

(4 to 6)10 ' 

Lead Tungsten 

1.34 19.3 

0.0309 6.0 
327.4 3410 

0.083 0.40 to 0.46 

29.1 (10"*) (4.4 to 5.0)10" 

160 to 180 (8.1)10' 

Uranium 

18.5 to 19.04 

0.02 to 0.04 
857 

0.6 to 1.0 

* (8 to 10)10"* 

(7.7 to 9.1)10' 

1 8.5—PHYSICAL PROPERTIES OF NEUTRON SHIELD MATERIALS 

Graphite 

1.5 to 1.9 
3650 

Sublimes 

(3.5 to 8)10" 

0.1 to 0.3 

0.2 to 0.5 

Lithium 
Polyethylene hydride 

0.92 to 0.96 0.82 

110 to 200 680 

* (16 to 18)10"' 

(6 to 8)10"'' 

0.55 

Titanium 
hydride 

3.9 

400 (decomposes) 

5.6 

430 

Concretes 

2.5 to 5.0 

0.16 to 0.2 

(6 to 11)10"' 

(6 to 10)10"* 

Zirconium 
hydride 

1 (decomposes) 

4^ 
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more common of these have a density of about 16.9 to 17.1 g /cm ' . 
Fabrication is limited by currently available equipment to pieces with a 
maximum dimension of about 1 m. Although this material has good strength 
properties, it is still likely to be held in place by a steel framework because 
of the limit on piece size. Tungsten falls just under lead in gamma-ray 
attenuation per unit mass. It is much better than lead per unit thickness for 
neutron attenuation and worse for secondary production. 

(c) Depleted Uranium. The separation of uranium isotopes to produce 
^ ' ^ U-enriched material for reactor and weapons uses has reacted a supply of 
depleted uranium that is essentially pure ^ ' ^ U . This material has a high 
density (18.7 to 19.08 g/cm') and good strength properties. It may be cast, 
rolled, forged, extruded, and machined (with environmental precautions). 

Uranium oxidizes in air to form first a brown and then a black surface 
layer. In moist air corrosion will continue beyond this stage as the coating 
layer spalls off and a new layer forms. The metal from this process can be 
protected by cladding or alloying or both. Alloying with a 2% molybdenum 
has proven satisfactory from the corrosion standpoint and also serves to 
improve the mechanical properties of the material. There is a slight activity 
associated with depleted uranium, but this does not severely restrict its use. 
We should note, however, that depleted uranium always has a residual 
amount of ^ ' ^ U that should not be neglected in estimating radiation 
heating, secondary gamma-ray production, and activation. Precautions are 
required in machining the metal because of its pyrophoricity and the hazards 
of internal toxicity and internal radiation exposure. 

It is unlikely that any structural support or framework would be 
required for ^ ' ^ U shields in that they can be manufactured in about any size 
and geometry and they possess strength properties on a par with mild steel. 

Uranium is the best attenuator for gamma rays on a mass absorption 
basis as well as on a thickness basis, and it provides roughly the same neutron 
attenuation as lead. 

(d) Lithium Hydride. Lithium hydride (LiH), the best known neutron 
attenuator, ' '^ contains approximately 12.6 wt.% H2, has a density of 0.78 
g /cm ' , and has a melting point of 683.5°C. It is difficult to fabricate, 
normally requires surface protection at all temperatures, combines actively 
with water, and requires containment, venting, and structural support. 
Weight-conscious shield designers like to recommend its use; mechanical 
designers shudder at the thought. The structure and cost penalties in 
applying this material should be analyzed carefully in considering its use. 
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Lithium has no capture gamma ray. Much consideration, including ex
perimentation work, has been given to this material for reactor shields in 
space appUcations. 

(e) Titanium Hydride. Titanium hydride (TiH2), with a density of 3.76 
g/cm' and a maximum useful temperature of approximately 600°C, has a 
maximum H2 content of 3.9 wt.%. This hydride is self-supporting. It needs 
no surface protection in air but will evolve hydrogen at high temperatures. 

8.3.4 Comparison of Attenuation Properties 

The efficiency of various materials for the attenuation of gamma rays 
increases with the average atomic number of the constituents. Figure 8.11 
shows various material thicknesses required to reduce gamma-ray intensities 
by a factor of 10 as a function of the incident gamma-ray energies. These are 
narrow-beam conditions. When extrapolated to broad-beam conditions (to 
include buildup), the separation between the lines would become even 
greater because the more-dense materials inhibit buildup. 

Neutron attenuation is greater in low-Z materials, particularly those 
containing large quantities of hydrogen. Figure 8.12 shows the neutron-dose 
attenuation in infinite media of normal concrete,"^ hydrous iron-ore 
concrete,"" water,^ ' a simple hydrocarbon and boron mixture , ' " and 
lithium hydride' '* for a point isotropic source of fission neutrons. The 
concrete compositions are given in Table 8.6 as types A and H. The lithium 
hydride data of Kam and Clark^* in Fig. 8.12 have been normalized to the 
data of Nichols**' for the other materials at R = 0 cm. 

Figure 8.13 shows the capture-gamma-ray dose from the fission-neutron 
source in water, concrete, and the hydrocarbon and boron mixture*' in 
Fig. 8.12. Concrete does not thermalize neutrons as rapidly as water, and it 
is also a better gamma-ray attenuator. The effect of the boron is evident in 
the lower curve. 

The effect of water content in concrete on the neutron-dose attenuation 
can be seen in Fig. 8.14 for concretes A, B, C, and D . ' " The compositions 
are given in Table 8.6. Concrete type A is called magnetite A in Volume III 
of the Reactor Handbook.'^^ Concretes B, C, and D are the same concrete 
with three-fourths, one-half, and one-fourth the water content of con
crete A, respectively. The effect of decreasing water content on the dose 
rates, all shown as solid lines in the figure, is very pronounced. The limonite 
concrete (E) has a relatively low density but a high water content; dose rates 
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Fig. 8.11—Narrow-beam gamma-ray absorption for various materials. 
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Fig. 8.12—Neutron dose vs. depth in the indicated materials fission-neutron source. 
(Based on data from Nichols**' and Kam and Clark.^*) 



Table 8.6—ELEMENTAL DENSITY (g/cm') OF CONCRETES ASSUMED FOR SHIELD ANALYSIS! 

Element t 

H 
O 
Fe, Cr, Mn, V 
Si, Al, Mg, S, P 
Ca,Ti 
£. 

Total 

A 
Hydrous 
u-on ore 

0.0215 
1.304 
1.960 
0.108 
0.128 

3.522 

B 
Hydrous 
iron ore 

0.0160 
1.261 
1.960 
0.108 
0.128 

3.473 

C 
Hydrous 
iron ore 

0.0108 
1.218 
1.960 
0.108 
0.128 

3.425 

Typ 

D 
Hydrous 
iron ore 

0.00538 
1.176 
1.960 
0.108 
0.128 

3.377 

e of concrete 

E 

Limonite 

0.0370 
1.113 
1.189 
0.165 
0.227 

2.731 

F 
Ferrophosphate— 

serpentme 

0.0208 
0.7805 
1.355 
1.044 
0.196 

3.396 

G 
Magnetite— 
serpentme 

0.0122 
1.180 
1.181 
0.457 
0.458 

3.288 

H 

Normal 

0.0200 
1.116 

0.491 
0.612 
0.118 

2.357 

tFrom Nichols.'" 
tCross sections for the underlined elements were used in the fast-neutron dose calculation. 
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Fig. 8.13—Capture-gamma-ray dose for the indicated materials fission-neutron source. 

are approximately the same as those for concrete A. Concretes F and G are 
fictitious mixtures of aggregates. 

Figure 8.15 shows the effect, from an analysis by Lahti,^" of placing 
various thicknesses of tungsten between the fission-neutron source and the 
lithium hydride medium. The data show the neutron dose as a function of 
distance in natural lithium hydride after first passing through the indicated 
thicknesses of tungsten. Even though tungsten is a heavy material, it provides 
good neutron attenuation per unit thickness. 
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Fig. 8.14—Fast-neutron dose rate in various concretes as a function of the distance from 
a unit point isotropic fission source of ^ ' * U. (From Nichols. ' ) 

Hydrogen 

Concrete type 

A Hydrous iron ore 
B Hydrous iron ore 
C Hydrous iron ore 
D Hydrous iron ore 
E Limonite 
F Ferrophosphate— 

serpentine 
G Magnetite-

serpentine 

Density, 
g/cm' 

3.52 
3.47 
3.42 
3.38 
2.73 

3.40 

3.29 

content. 
g/cm' 

0.022 
0.016 
0.011 
0.0054 
0.037 

0.021 

0.020 
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Fig. 8.15—Discrete-ordinates calculation of fission neutrons in tungsten followed by 
lithium hydride (From Lahti.^ ") 

8.4 SHIELD OPTIMIZATION 

The problem of finding the optimum materials arrangement for a shield 
that satisfies a given set of design criteria is the most intriguing in the area of 
reactor shielding. It has challenged many investigators,''^~^'' and, to this 
writing, a general solution has not been found and may not be. Assuredly, a 
few workable schemes have been developed, and each study has contributed 
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some insight to the subject. A few have published evidence (parameter 
studies or claimed weight savings) intended to substantiate their methods. 
The complex of phenomena involved in expressing the performance of the 
shield invariably requires simplifying or limiting assumptions that detract 
from the result. The problem intrigues the shield designer for several reasons. 
The classical mathematical analyses of Lagrange and Euler give us the 
guidelines for deriving the optimum conditions. Variational calculus and the 
relations for determining stationary values of an integral are the usual 
starting point.t Since shield weight is usually a significant fraction of the 
total system weight, the potential for gain seems large. Even in systems 
where weight is not important, optimization with respect to cost is 
important and provides ample incentive for pursuing the problem. 

Most frequently optimization is with respect to weight. Other conditions 
that must be met, such as volume restrictions, dose-rate requirements, or 
number of shield layers, are called constraints. These constraints, together 
with the boundary conditions, help determine the parameters arising from 
the optimization procedure. 

The optimization proceeds in at least two phases. The first is to apply 
the necessary conditions for a minimum value of the weight function. The 
analogue in elementary calculus is to find the stationary values of the 
function y{x). The function has a stationary or extremum value (both 
include maxima and minima) at x = a if y'{a) = 0. To find the value a, one 
simply takes the derivative of y with respect to x, sets it equal to zero, and 
solves for a. 

The second phase is to determine the sufficient conditions for a 
minimum as opposed to a maximum or a local minimum (saddle point). This 
second phase usually involves proof of the existence of the minimum. To 
complete the analogy with differential calculus, the sufficient condition that 
y'{a) is a minimum is that y"{a) > 0 [for a maximum, that y"{a] < 0] and 
that y'{x) is continuous in the neighborhood of x = a. 

The variational approach to shield optimization involves the gen
eralization of these simple conditions to apply to functions of several 
variables with accessory constraint conditions. The variational problem is to 
find a function such that a related definite integral has a minimum value. 

Troubetzkoy^ * provides a recent example of optimization work done in 
this country in a method called shield synthesis. His objective was to devise a 

tVariational calculus, Lagrange's method of undetermined multipliers, and Euler's equation are 
found in texts on mathematical physics, for example, Morgenau and Murphy' ' or Butkov.' ^ 
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design technique that yields the selection and arrangement of materials 
giving minimum weight for a spherical shield given reactor power and total 
dose. He uses simplified models for neutron and gamma-ray attenuation and 
secondary gamma-ray production. Application of the variational conditions 
to the model leads to restrictions on the choice of possible materials and the 
relation of materials in adjacent layers. He concludes that the innermost and 
outermost of n arbitrary concentric layers must be pure materials; any other 
layer may contain a radius-dependent mixture of no more than two 
materials. Regions adjacent to such mixtures must be pure materials identical 
to one of the two components of the mixture. Troubetzkoy states that the 
approximations due to the simplified attenuation model can be offset by 
performing an exact numerical analysis of the shield (presumably by Monte 
Carlo or discrete ordinates) to obtain its performance to a better accuracy. 
He reports that shield synthesis gives considerable weight savings over more 
conventional designs. 

This approach yields a procedure for greatly narrowing the choice of 
materials and mixtures that can be used. The approximation due to 
assumptions of simplified, manageable attenuation models does not affect 
the accuracy of the design of the shield, but it probably does affect the 
determination of the optimum. However, studies have shown that these 
minima are usually rather broad; thus, if one is indeed near the actual 
optimum, most of the potential weight saving has been realized. 

So argue the Russian authors Suvorov and Fedorenko,*" who have 
recently reported a somewhat different approach to optimization of a 
reactor shield. They also use a variational approach but determine the 
optimum variations of the location of heterogeneous layers with constant 
concentrations of material within each layer. Theirs is also a one-dimensional 
approach (using a cylindrical shield), but they use linear perturbation 
theory. By altering the number of layers and the choice of materials, they 
are able to compare minima so derived to observe the effect of these choices. 
It is noteworthy that their test for having reached an optimum set of 
thickness is that comparable variations in each layer give equal variations in 
the dose outside the shield. This technique enables them to show the effect 
of adding boron to an iron—water (or lead—water) shield either as a 
homogeneous mixture or constrained as additional layers. They also show 
the advantage of a ten-layer two-material shield over a five-layer shield of the 
same materials. This technique uses a five-group neutron attenuation in a Pj 
approximation, but exponential gamma-ray attenuation using infinite-
medium buildup factors. Neutron-produced secondaries are added to the 
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primary gamma-ray distribution. Weight savings of the order of 20 to 40% 
are shown over straightforward designs. From the published description of 
the technique, it is evident that a great deal of high-speed computer time is 
required for applications of this method. 

The Troubetzkoy method clearly gives more guidance in the selection of 
materials, but the Suvorov—Fedorenko method would seem to give more 
realistic results. 

Sheffield^ ^ and Miller and Cranford*^ in an earlier study used gradient 
nonlinear programming to obtain minimum weights of divided crew 
shield—reactor shield geometries appropriate to aircraft or rockets. In this 
case the dose in the crew compartment is the primary constraint, and the 
effect of air transport from reactor shield to crew compartment must be 
included in the optimization procedures. This method places emphasis on 
the shape of the reactor shield rather than on the number of layers or 
composition. It is interesting that the optimization procedure in one phase 
on the computer is to test at each step for the most effective sector on the 
reactor or crew compartment to place a given increment of shield material. 
The increment is then placed where it gives the greatest reduction in dose. 

Aronson, Klahr, Steinberg, and Held^ ^ developed a procedure for 
optimizing the placement of shadow shields (shield splitting) in space 
vehicles. In a paper given at a conference in Harwell, EnginoF^ describes an 
interesting variational technique that can use any available method for 
computing the attenuation through the shield and optimizes with respect to 
cost or weight or any linear combination of parameters. 

Another recent program, ASOP, performs detailed one-dimensional 
discrete-ordinate transport calculations with ANISN (described in Chap. 4) 
for each step in the iterative optimization.*^ This feature distinguishes 
ASOP from its forerunners since others involve a simplified transport 
approximation. This treatment leads to significant improvements in the 
optimization technique since weight savings of 25% are estimated.*'' 
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Experimental Shielding 

L. G. MOONEY and S. T. FRIEDMAN > / 

Mensuration marks the first and last steps in executing a shield system. Not 
that the shield designer starts his task with a dosimeter, but he does start 
with a measured fission spectrum and a large body of measured cross 
sections. The final step in shield design consists in a radiation survey of the 
completed system to verify that the design objectives have been met. 
Furthermore, all the steps between the first and last are based in some 
manner on previous measurements, either by direct input of empirical data 
or by use of an analytical method that has withstood the test of 
experimental verification. So it is with any technology; no uniqueness claim 
can be made for shielding, only that this technology is relatively young and 
still has very close ties with experiment. Our dependence on measurement is 
evident; key experimental results have been quoted in each topic where they 
substantiate a method or provide needed input. In this chapter the 
presentation of shielding data is incidental; our purpose rather is to convey 
something of the flavor of experimental shielding by describing a selection of 
measurements and facilities chosen to represent the range of these 
investigations. 

Radiation detectors are the tools of this trade, and our discussion will 
begin with a brief description of them. Shielding experiments may 
approximately be classified in three categories: materials properties, phe-
nomenological studies, and shield-system tests. This is an arbitrary, non
exclusive classification. Some experiments could obviously be classified in 
more than one of the three. Investigations of shield materials include those 
studies whose objective is to characterize the transport properties of bulk 
materials or combinations of materials. These include slab penetration 
measurements and cross-section studies. Phenomenological studies involve a 
particular geometry; they include air-transport, air—ground interface, albedo, 
and duct-penetration studies. Shield-system studies include mock-up experi-
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ments and proof tests. The system test, or mock-up, is always connected to a 
particular design; the other two types of experiments usually have more 
general applicability. Shield-system tests are discussed in Chap. 10 (Shield 
Design), where the tests are described in the context of their related designs. 

It is evident that an experiment in any one of our three classes might 
serve several purposes. As already stated, some quantities have not been 
predicted and have only been obtained by measurement. Some geometries 
are sufficiently complex to defy accurate analytical description, and some 
experiments are performed to verify a calculation or a design method. These 
various purposes will be clarified by the description of experiments to 
follow. 

9.1 DETECTORS FOR SHIELDING EXPERIMENTS 

Measurements have meaning only to the extent that detector outputs can 
be interpreted. Thus it is imperative that the user be familiar with the 
response, intensity range of operation, general characteristics, and limitations 
of the detector used. In the following sections, we discuss the detectors 
commonly used in shielding measurements. References 1 through 6 contain 
more complete descriptions. 

9.1.1 Active Neutron Detectors 

Two types of detectors are used to determine the neutron environment: 
(1) active electronic detectors, which provide data directly while the neutron 
source is operating, and (2) passive detectors, which are installed before an 
experiment, exposed to neutrons, then retrieved and read after the source 
has ceased operating. 

The Hurst fast-neutron dosimeter is a proportional counter consisting of 
a cylindrical chamber lined with polyethylene and containing a hydrogenous 
gas, usually methane. The counter is operated with a pulse-height weighting 
circuit. Since the proton-recoil pulse-height distribution depends on 
incident-neutron energy, proper pulse weighting produces a total count 
proportional to fast-neutron kerma in the counter material. A low-energy-
pulse bias voltage (corresponding to 100- to 200-keV neutron energy) is 
necessary to reject gamma-ray pulses in a mixed neutron and gamma-ray 
field. The bias succeeds in rejecting gamma-ray pulses below 10 to 20 R/hr 
exposures. Above this level, gamma-ray sensitivity must be corrected. Small 
neutron sources are used for pretest and posttest calibration. Neutron 
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sensitivity ranges from 0.5 mrad/hr to 0.5 rad/hr. Special pulse-counting 
procedures have been used to extend sensitivity to lower intensities. 

Fission chambers are ionization chambers coated with ^^^Np, ^^^U, 
^^^Th, ^ ^ ' P u , or ^^^U. The first four are used for counters which respond 
only to neutrons whose energy is above their fast-fission threshold (0.6, 1.5, 
1.75, and 0.01 MeV, respectively) and which measure the total flux above 
that threshold. There are two problems: thermal-neutron reactions in the 
other contaminating isotopes normally found with these isotopes (even a few 
parts per million o f ^ ^ ^ U i n ^ ^ ^ U can be troublesome) and with gamma-ray 
sensitivity. Frequently, data are obtained with bare and cadmium-covered 
^^^U chambers to provide an indication of the thermal-neutron flux 
(actually subcadmium) rather than an integral over all energies. Fission 
chambers can be compensated for gamma rays by incorporating two regions: 
one containing no fissionable material and thus responding only to gamma 
rays and the other containing fissionable material and responding to both 
neutrons and gamma rays. The difference in output of the two regions is 
therefore proportional to the neutron fluence. 

Detectors containing boron either in the form of a gas (usually boron 
trifluoride) or coated on the walls of the chamber are widely used. A 
matched set of bare and cadmium-covered detectors provides subcadmium 
(£„ < 0.4 eV) or thermal-neutron flux via the "*B(M,a) reaction. Gamma-ray 
compensation also can be used with these detectors. Sensitivity is varied by 
varying the gas pressure in the initial filling, by varying the enrichment of the 
boron isotope, by varying coating thickness, or by varying the size of the 
detector. Boron detectors can be operated in either the pulse mode or the 
current mode with the latter having the advantage of giving essentially 
instantaneous readout. The current mode is particularly helpful when a 
spatial traverse is being made since detector output can be monitored with a 
chart recorder showing detector output vs. a position variable. A consider
able variety of boron chambers are commercially available. 

Helium-3-iilled detectors take advantage of the large {n,p) cross section 
of ^He to measure neutron flux. Fairly elaborate electronics are required to 
convert the output to a flux, but the detector is quite sensitive. 

A number of recently developed liquid scintillators, such as NE-211 and 
213, can be used to provide neutron spectra if appropriate shielding and 
coUimation are provided around the detector as well as appropriate 
electronics and response functions for converting the output to a true 
spectrum. 
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Much interest has developed in recent years in the use of solid-state 
detectors, such as lithium-drifted silicon and lithium-drifted germanium, for 
measurements of neutron spectra, flux, and dose. These detectors generally 
have good resolutions but low efficiency. They make use of such neutron 
reactions as ^He{n,p), 'H( / i ,n ) 'H , ^Li(u,Q:), and '°B(»(,o:}. The addition of 
drifted lithium to silicon and germanium increases the detection efficiency 
for high-energy neutrons. Solid-state detectors are sensitive to light, X rays, 
gamma rays, and charged particles; thus they must be adequately shielded 
and compensated. 

9.1.2 Passive Neutron Detectors 

A number of passive detectors, nonelectronic devices, are commercially 
available for the measurement of neutron intensities. These detectors can be 
placed within a shield, exposed to neutrons, recovered, and later read to 
determine the neutron intensity at the time of exposure. These devices have 
the advantage of small size, and they can be located in otherwise 
difficult-to-monitor situations. Among them are the following: 

Small thin specimens (foils) of a great variety of materials become 
radioactive when exposed to neutrons. If the composition and mass of the 
foil are known, as well as the half-life, cross section, decay energy of the 
radioactive species, the irradiation interval, and the specific activity of the 
foil (disintegrations per second per gram), one can determine the neutron 
flux. Some foils respond primarily to low-energy neutrons (gold and 
dysprosium), some to resonance-energy neutrons, and some only to neutrons 
above a threshold energy. Foils necessarily must be of high purity and have 
half-lives neither too long nor too short. In general, they are reusable. Many 
of the fission foils must be enclosed in boron to eliminate thermal-neutron-
induced response. 

Several p-n junction [solid-state) devices have been developed in which 
neutrons change the electrical characteristics in a measurable and re
producible fashion. Most of these are cumulative (i.e., they cannot be reset 
to zero) and so can be reused only by determining the difference in total 
dose registered by them before and after exposure. These devices are almost 
as small as foils, but they can be stored for some time before readout. 

A relatively new device is the damage track-length detector.^ This device 
makes use of the fact that chemical etching of a plastic material penetrated 
by fission fragments greatly enlarges the tracks produced by the fragments so 
that their lengths can be determined and the number of fissions occurring in 
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foils of fissionable isotopes having a variety of thresholds can be found; this, 
in turn, provides the neutron fluence. These plastic track-length detectors are 
one to two orders of magnitude more sensitive than fission foils and have a 
long shelf life. 

Nuclear emulsions are still occasionally used for determining neutron 
spectra external to radiation shields. CoUimation must be used along with 
suppression of the gamma-ray field at the emulsion to reduce gamma-ray 
fogging. 

9.1.3 Active Gamma-Ray Detectors 

Both active and passive detectors have been used to obtain experimental 
gamma-ray data of interest in reactor shielding. A number of ionization 
chambers have been used, varying in size and sensitivity as well as in the 
maximum temperatures to which they may be exposed, their neutron 
responsiveness, and the dynamic range over which they can be used. These 
devices are usually calibrated with standard isotope sources, such as *°Co 
and ' ^ ^ Cs. Ionization chambers mounted on traversing devices can be read 
continuously and thus can map an entire region since the position variable 
can be one of the variables on a chart recorder and the dose rate the other. 

Anthracene scintillation dosimeters (ASD) have often been used for 
measuring gamma-ray dose rates since the output of a photomultiplier tube 
attached to the scintillation crystal is proportional to the gamma-ray dose 
rate at the crystal. Neutron captures in the detector can provide a spurious 
response, and temperature sensitivity is also a problem. 

The widespread use of scintillation detectors as gamma-ray spectrometers 
has been made possible by the availability of large single crystals of Nal(Tl) 
and the development of end-window photomultiplier tubes with high 
resolution. Except for edge effects created when secondary photons from 
pair production escape the crystal, essentially all the incident gamma-ray 
energy is converted to light via the photoelectric effect, Compton effect, or 
pair-production process, and the light pulse energy is proportional to the 
primary gamma-ray energy. 

A number of high-resolution solid-state gamma-ray spectrometers have 
been developed which can be used in some situations; however, neutron 
sensitivity can be a very serious problem. Of particular importance is 
lithium-drifted germanium. Resolution at high energies is much better with 
these devices than with the scintillation spectrometers, but more elaborate 
spectrum unfolding techniques and electronics are required. 
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9.1.4 Passive Gamma-Ray Detectors 

One of the earliest gamma-ray detectors was photographic film. It is still 
used since it is relatively inexpensive and can be read automatically. 
Sensitivity can be varied over a wide range. Most emulsions exhibit neutron 
sensitivity, but this can sometimes be compensated. Also film does not have 
a spectral response approximating tissue. Various absorbers can help reduce 
this difficulty. 

Chemical indicators of ionization have also been used as gamma-ray 
detectors in shielding experiments, although these have largely been replaced 
by easier-to-read chemically activated glass detectors and the newer 
thermoluminescent detectors. The latter devices (usually called TLD's) come 
in a variety of sizes and shapes, including powder, micro and mini chips, 
rods, and hollow tubes. Most TLD's were developed and calibrated for 
situations in which only gamma rays would be present and where great 
accuracy was not required. Automatic or semiautomatic readers have 
become available, although careful calibration is required. The detectors 
must be heated before reuse; some are temperature-sensitive in the ambient 
range and lose some of the dose indication if an extended time period 
intervenes between exposure and readout. 

9.1.5 Interpretations of Detector Output 

Considerable caution must be exercised when detectors developed for a 
particular set of circumstances are used under conditions that are quite 
different. For example, small thermoluminescent gamma-ray dosimeters 
were developed initially for use in pure gamma-ray fields produced by 
isotope sources or accelerators wherein the energy of the gamma rays was 
usually well below 2 MeV. Some care is required in obtaining reasonably 
precise data in a mixed field of neutrons and both high- and low-energy 
gamma rays. The lithium in LiF TLD's responds to neutrons to an extent 
determined primarily by the concentration of ^Li, which has a high 
neutron-capture cross section, and the ratio of the neutron to gamma-ray 
intensity. Manganese-activated calcium fluoride used in a TLD may also have 
a significant response to neutrons as a result of captures in manganese, which 
has a high capture cross section for resonance-energy neutrons. Detectors of 
CaF are also frequently exposed in small tantalum covers, which serve to 
flatten the energy response of the TLD to make it similar to that of tissue. 
These covers present no particular problem in a pure gamma-ray field similar 
to that in which the detectors are calibrated; however, tantalum has very 
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high thermal- and resonance-neutron absorption cross sections. The detec
tors, when exposed to a mixed field of neutrons and gamma rays, may 
therefore be responding in part to the gamma rays produced in the covers by 
either neutron capture or subsequent decay of the activated tantalum. 

For high-energy gamma rays, the efficiency of the TLD, particularly the 
very small micro dosimeter, may be reduced with increased energy because 
the range of the electrons produced by the gamma rays may be greater than 
the dimensions of the detector. 

There have also been instances in which the preamplifier attached to a 
gamma-ray detector was more sensitive to radiation than the detector itself 
and produced a signal even when the detector was disconnected. The long 
cables required for remotely controlled experiments can also significantly 
change detector-response systems. Calibrations should be made with the 
detector attached to the cable to be used in the field. 

Thermal-neutron detectors, calibrated in a thermal column where the 
ratio of the number of thermal neutrons to the number of epithermal 
neutrons may be 40/60, may give quite misleading thermal fluxes in a 
situation in which there are few thermal neutrons and many epithermal ones, 
such as in a thick region of aluminum outside a highly enriched 
intermediate-spectrum reactor. 

In short, detectors almost invariably provide data, but frequently 
considerable effort is required to ensure that the data are related to the 
quantity one is trying to determine. 

9.2 SHIEL&MATERIAL MEASUREMENTS 

The following experiments are only a sample of many performed in 
recent years to characterize the transport properties of bulk materials or 
combinations of materials. They were selected as well-designed experiments 
that are representative of those performed in materials studies. Experiments 
are discussed for reactors, accelerators, and fixed sources. The purpose and 
plan of the investigations are emphasized, but sample data are included to 
indicate the utility of the results. A recent survey of reactor shielding 
facilities has been reported by the Radiation Shielding Information Center.^ 

9.2.1 Reactors 

An extensive series of slab-penetration measurements were performed in 
a specially designed facility called the Outside Test Tank (OTT). These 
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measurements compared the relative effectiveness of various arrangements of 
a given set of materials and of different sets of materials. The facility was 
also used for testing mock-ups of designs for various shields. The tests were 
performed at the Nuclear Aerospace Research Facility at General Dynamics, 
Fort Worth, Texas, and are described by Belcher and Zoller.** The source of 
radiation was the Ground Test Reactor (GTR) which fits into the moderator 
tank shown in Fig. 9.1. The OTT provided an unusual capability for the 
testing of a wide variety of shield configurations of interest in the 
development of minimum-weight airborne or space nuclear systems since 
earlier measurements required that slabs and detectors be submerged under 
water or oil, and it permitted measurements in air without extraneous 
liquid layers. The power level of the reactor used in the OTT was high 
enough (up to 500 kw) that active dosimetry measurements could be made 
in air to distances of 30 m or more from the reactor. The shields tested were 
sufficiently thin compared to the water and lead surrounding the reactor to 
ensure that only radiation penetrating the shields reached the external 
detectors with no contribution from air or ground scattering. The tank itself 
was 4 m high by 4.5 m in diameter and could be rotated remotely. Two 
independent dosimeter traversing mechanisms were also remotely controlled 
from an underground control room. 

Several hundred shield configurations consisting of either laminated slabs 
or boxes containing semiporous shields were tested in the shield compart
ment adjacent to the reactor moderator tank. A few of these shields were 
mock-ups of proposed shield designs, but the great majority were part of a 
systematic study of the effects on external dose rates of varying the quantity 
or position of a given material either by itself or within an array of another 
material. Typically, one might have 2 to 10 cm of gamma shielding, such as 
tungsten, steel, or depleted uranium, in an array of neutron shielding, such as 
lithium hydride, beryllium, or beryllium oxide, with or without boral layers 
adjacent to the higher density materials. Borated stainless steel, zirconium 
hydride, lead, and boron carbide were also tested. A number of simulated 
ducts were investigated, as were various thicknesses of neutron shields with 
no gamma-ray shielding. Samples of a great many different materials used in 
aircraft turbines and structures were activated in various neutron spectra 
obtained by changing the composition of the materials between the samples 
and the reactor to give a solid basis for estimates of component activation. 

Many measurements made at distances of 3 to 30 m from various reactor 
shield configurations are reported by Friedman. ' Figure 9.2 is typical of the 
data obtained. The gamma-ray dose rates at 2.7 and 15.2 m from the reactor 



EXPERIMENTAL SHIELDING 481 

center are plotted as a function of both the thickness of a tungsten alloy and 
as a function of the amount of LiH between the reactor and the tungsten. 
Secondary gamma rays were shown to be of considerable importance. 
Secondary gamma-ray production decreased as the amount of neutron 
shielding between the tungsten and the core was increased. However, for 
most situations increasing the inner radius of heavy gamma-ray shielding 
material would also increase shield weight. The addition of boron to the 
heavy material or the use of thin protective layers of boral was expected to 
reduce the number of thermal-neutron captures in the gamma shield 
significantly. The number of captures of epithermal or resonance-energy 
neutrons should not be reduced significantly, and the production of gamma 
rays by inelastic scattering of fast neutrons [E > 200 keV) should not be 
affected. The data shown in Fig. 9.3 were obtained in an attempt to 
differentiate between these various sources of gamma rays. The data showed 
that adding boron to stainless steel is more effective in suppressing secondary 
gamma-ray production than placing boral between the steel and the reactor, 
even with a good moderating material in front of the steel. These same 
experiments also provided neutron-flux density and gamma-ray dose rate 
within the shields for comparison with predictions as well as gamma-ray 
spectra outside the tank. 

Foil exposures between the slabs for the same configurations as shown in 
Fig. 9.2 were made as a function of tungsten thickness with ^ ' A l 
(£ > 8.6 MeV), ^^S (£ > 2.9 MeV), and ^ ^ ^ ^ (£ < o.4 eV) foils. Measure
ments were made for four thicknesses of tungsten, 2.5, 5.1, 7.6, and 
10.2 cm, inserted where the tungsten layer is shown in Fig. 9.2. Foils were 
placed between slabs separated by gaskets. The configuration was com
pressed to eliminate the space at the tungsten location and expanded as the 
tungsten slabs were inserted. 

Foil activities (counts min~'g"'watt" ') are shown in Fig. 9.4 at reactor 
shutdown as a function of tungsten thickness for the copper foils in terms of 
cadmium differences. Note that for a tungsten thickness of 0 the LiH slabs 
are moved left to the BeO and boral slabs. As the tungsten slabs are inserted, 
the LiH slabs are moved to the right. An effect on the thermal activity is 
evident. As the LiH is replaced by tungsten, a valley begins to form, 
which indicates the much higher absorption cross section for tungsten. 
The valley deepens and widens as the tungsten thickness is increased. The 
sulfur and aluminum activities (not shown) are reduced by a factor of 2 in 
the LiH region when LiH is replaced by 10 cm of tungsten. This reduction 
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Fig. 9.3—Gamma dose rates in air behind stainless steel and borated stainless steel 
(From Friedman.') 

demonstrates the effectiveness of adding a high-/ inelastic scatterer to a 
low-/ elastic scatterer. 

Verbinski, Bokhari, Courtney, and Whitesides'" describe a reactor 
experiment that yielded measurements in bulk water shields at Oak Ridge 
National Laboratory (ORNL). The source of neutrons was the Bulk 
Shielding Reactor I (BSR-I) described by the Radiation Shielding Informa
tion Center. ' This was a series of measurements of the spectral and spatial 
details of the fast-neutron flux density penetrating water shields. The 
purpose was to obtain data for evaluating neutron-transport codes that 
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predict the variation of flux density with energy, angle, and penetration 
depth in a shield. Two basically different shielding codes were compared 
with the measurements. Two different types of experiments were performed 
to provide a broad basis for evaluating the codes. In one a large source with 
adjacent shield was used; in the other a small source well-separated from the 
shielding slab roughly approximated a good-geometry neutron-scattering 
arrangement. This discussion is concerned with the first experiment: the 
large source with adjacent shield. The small-source experiment will be 
discussed later. The first experiment was performed at ORNL and consisted 
in the mapping of the absolute spectral intensity in the water shield of a 
pool-type reactor (the BSR-I) as a function of both angle and distance from 
the source. In conjunction with these measurements, both the absolute 
reactor power and the distribution of the neutron-source strength through
out the reactor were measured. The results of the reactor-power calibration 
were then used as input to the neutron-transport codes so that the codes 
could be evaluated for the complete task of predicting the neutron-transport 
pattern, beginning with an absolute fission-source distribution and ending 
with spectral intensities at a large number of points and directions in the 
shield. 

The fuel loading of the BSR-I used for the absolute measurements of 
spectral intensity is shown in Fig. 9.5. It is a water-reflected rectangular 
configuration (38 by 38 by 60 cm) of aluminum-clad elements with two 
additional elements in the rear which were required for criticality. For each 
spectral measurement the relative power of the reactor was determined to 
within 2% by means of two sulfur foils (actually pellets) located 35 cm 
above and 38 cm east of the reactor centerline. The sulfur activation was 
later related to the absolute total reactor power as well as to the absolute 
neutron-source density throughout the reactor volume. The absolute power 
was determined to an accuracy of about 5%. 

A shielded diode spectrometer, designed especially for these measure
ments, was positioned to measure the spectral intensity at a distance r from 
the face of the reactor, along the center line of the reactor midplane, and at 
an angle d with respect to the center line as shown in Fig. 9.5. The 
spectrometer consists of a very thin layer of ^LiF between, but not in 
contact with, two silicon—gold diodes. Neutrons traversing the spectrometer 
collimator strike the ^ Li foil, and the alpha particle and triton emitted in the 
resulting ^Li(n,a)T reaction (Q = 4.78 MeV) are detected in coincidence in 
the two diodes. Shadow shielding in the collimator protects the diodes from 



Fig. 9.5—Experimental arrangement showing relative positions of reactor and spectrometer for measuring neutron 
spectra in BSR-I water shield. The dashed circle represents the spherical source region used for the calculations, for 
which the distance r is measured from the surface of the sphere. [From V. V. Verbinski, M. S. Bokhari, J . C. Courtney, 
and G. E. Whitesides, Nuclear Science and Engineering, 27(2): 284 (1967).] 
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direct reactor radiations. Background measurements are made by substitut
ing a ' LiF foil for the sensitive * LiF element. 

The spectrometer has operated satisfactorily in gamma-ray fluxes from 
the BSR-I as high as 10^ R/hr at the point in the water shield where the 
neutron flux was being sampled. 

The calculations corresponding to this experiment were performed with 
the NIOBE*' and the DTK codes (DTK is a version of DTF , ' ^ which is 
discussed in Chap. 4, Sec. 4.4). Limitations on the geometries that could be 
used with these codes decreed that the reactor core be simulated by a sphere. 
The radius of the spherical source region was taken as 26 cm and is shown by 
the dashed circle in Fig. 9.5, all values of r in the calculations being given in 
terms of distance from the surface of this source sphere. The spectral 
intensity of neutrons was measured at angles (0) of 0°, 41° and 52° with 
respect to the extended midplane center line of the reactor. The distance r 
from the reactor face was varied in increments of 10 cm out to a distance of 
50 cm. All measured (and calculated) fluxes are given for a total reactor 
power of 1 watt. 

The spectral intensities obtained at 0 = 0° are shown in Fig. 2.19, along 
with predictions of the NIOBE transport code. (In Fig. 2.19 and succeeding 
figures in this chapter, /x = cos 6.) It is evident that the code predicts the 
absolute magnitude with good accuracy and reproduces some of the general 
features of spectral shape. The strong dip in the spectra at 3.5 MeV is caused 
by a broad peak in the oxygen cross section. The measured spectra suggest 
that a similar dip may be present in the 20- to 50-cm spectra but at an 
energy about 0.5 MeV higher. However, the present model of the spectrom
eter was designed to provide only moderate energy resolution in order to 
achieve good sensitivity. Therefore the discussion of detailed spectral shapes 
will be deferred to the section on LINAC measurements (Sec. 9.2.2). 

The 0° measurements are compared with the predictions of the DTK 
transport code in Fig. 9.6. The agreement between the DTK calculations and 
measurements near the source region is about the same as that with the 
NIOBE calculations. The dashed lines between 5 and 7.5 MeV show the 
improvement in the predictions obtained when the calculation was repeated 
with updated cross sections. 

The measurements for 0 = 52° were made at distances of 10, 20, 30, and 
40 cm from the face of the reactor. The results are compared in Figs. 9.7 and 
9.8 with the predictions of the NIOBE and DTK codes, respectively. Overall 
agreement appears to be fair except that at r = 1 0 and 20 cm the 
experimental results are higher than both calculations at high energies, where 
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Fig. 9.6—Measured and DTK-calculated neutron spectral intensities in the BSR-I water 
shield at 0°. For the calculation the value of fl is 0.978 rather than 1. [From V. V. 
Verbinski, M. S. Bokhari, J. C. Courtney, and G. E. Whitesides, Nuclear Science and 
Engineering, 27(2): 286 (1967).] 

the neutrons are more penetrating. This must be caused by uncollided plus 
small-angle-scattered neutrons coming from the corner of the reactor, which 
is within view of the spectrometer collimator at r = 10 cm and almost within 
view at r = 20 cm. This corner does not, of course, exist for the spherical 
source used for the calculations. At r = 30 and 40 cm, the difference in the 
calculational and experimental source geometries is relatively unimportant 
since the corner of the reactor is farther from the line of sight of the 



488 REACTOR SHIELDING FOR NUCLEAR ENGINEERS 

lo 

i n " 

' c io3 
s 

^ 1 

re 
re 
& 

*̂  ̂ u 

> 

i 10' 
2 

s c 
— 
c 

0 
61

7,
 

'-' 

in-' 

in-2 

- ^ 

-

\ 
I 

- " 

: — : 

»V 10 cm 

1 

- • 

^ ^ i 2 

^ 

". 

^^^S|. 

Ocm 

S^ 
— ^ 

, ^ r - 3 0 c m -

^ 

y w , 4 0 c m ^ 
' \M 

f̂  -

. 

11 

_ ^_ _ 
_ __ 

^ ^ 

— 

- • 

X 

Nr-^ n 0 
^ n 

\ '' \ 

% 

v **» 
\ 
x^ 

^ . \ « k 
^ 

. - _ - • 

~ 

' " o n 
ooo 0 

N ̂ 

•*. V i 
s' \ 

» 

" ' ^ f l r 
T s 

: x j 

. ^ 

-—-

r -Z-: 

-

_ -

0 

X 
, 

s • 
\ 

*s. 
^ ^ 4 r , 

^ 

\ 
—-| 
J 

" -

-

-

0 

0 

^ N 

• 

—v \ 

^ t 
\ 

^ , 
1^ 
*v 

— -1 

=^= 
0 

s. ̂ 
T 

— L 

\ 
\ 

— - ^ 
, T 

^^ . 
^ 

, 

° 

\ 

• 
N , 

\ 

\ \ 
S 

\ 

- NIOBE calculation-^ 

— — 

' - - — 

-

T 

f u 

V— X, , X ^ 
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Fig. 9.7—Measured and NIOBE-calculated neutron spectral intensities in the BSR-I water 
shield at 52°. [From V. V. Verbinski, M. S. Bokhari, J. C. Courtney, and G. E. 
V/hitesides, Nuclear Science and Engineering, 27(2): 287 (1967).] 
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Fig. 9.8—Measured and DTK calculated neutron spectral intensities in the BSR-I water 
shield at 52°. For the calculation the value of /I is 0 650 rather than 0.617. [From V. V. 
Verbinski, M. S. Bokhari, J. C. Courtney, and G. E. Whitesides, Nuclear Science and 
Engineering, 27(2): 287 (1967).] 
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spectrometer collimator. Much better overall agreement with the experiment 
is realized here except that the codes predict fluxes that are somewhat low at 
low neutron energies. Note that at 52° the transport calculation using 
updated oxygen total cross sections (dashed lines) produced little, if any, 
overall improvement in the 5- to 7.5-MeV region where the older 
cross-section values are evidently too high. 

Measured and calculated spectral intensities were also obtained for 
6 = 41 at r = 20 and 40 cm, but, since they show the same general features 
as those obtained for 6 = 52 , no further comparisons are given here. 

An additional reactor experiment, described by Clifford, Muckenthaler, 
Maerker, Straker, and Mynatt ' ^ and by CHfford, Straker, Muckenthaler, Ver
binski, Freestone, Henry, and Burrus,' ^ was performed to evaluate total cross 
sections of several materials over the energy range of interest in reactor 
shielding. The experiment was carried out at the Oak Ridge National 
Laboratory Tower Shielding Facility (TSF). This investigation was per
formed with the reactor on the ground and has since been called the 
broomstick experiment because of the long, thin samples (Fig. 9.9). 

The measurements consisted of spectra of the uncollided flux of 
neutrons transmitted through thick samples of shielding materials. Because 
the samples were quite thick, the transmitted spectra were influenced most 
strongly by the minima in the total cross sections. The spectrum incident on 
the sample and the transmitted spectra were measured with an NE-213 
neutron spectrometer covering the energy range from 0.8 to 11 MeV. The 
total cross sections were evaluated by a direct comparison of calculated and 
experimental data. The uncollided spectra were calculated with the most 
detailed cross-section data available and then folded with the response 
function of the detector. Although the energy resolution of the spectrometer 
is rather broad, this technique still allows a determination of the errors in the 
very narrow minima in the total cross section since the total number of 
transmitted neutrons is measured to within a few percent. Because the 
geometry of the experiment was very good, no correction for multiple 
scattering was required; therefore the calculations were quite simple and 
straightforward, involving only the exponential attenuation of the incident 
spectra using fine-mesh data for the total cross section. Experiments were 
done to demonstrate that multiple scattering was indeed negligible. The 
sample diameter was varied by a factor of 2 with no measurable change in 
the transmitted spectra. 

Good agreement between the measured and calculated spectra indicates 
that the valleys are adequately represented in a cross-section set. Where 
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Fig. 9.9—Arrangement of broomstick experiments.' 

disagreement exists, detailed information about the specific region of 
disagreement is not possible, unless the minima are well separated, because 
of the poor energy resolution of the spectral measurements. Where a number 
of minima are close together, only the general energy range in which the 
disagreement exists can be determined. Because of this these measurements 
can in no way be described as a measurement of the total cross section but 
simply as an experimental evaluation of the existing cross-section data. 

The spectrometer uses a 5- by 5-cm liquid organic scintillator (NE-213) 
and has an efficiency that ranges from 0.15 to 0.4 for neutrons in the MeV 
energy range. Thus it can be used in flux densities that are several orders of 
magnitude lower in intensity than those measurable with other spectrom
eters, all of which are limited by low efficiencies (10"^ to 10"^). The validity 
of the experimental technique was checked by measurements on thick 
samples of carbon, lead, and uranium, which could be easily compared with 
calculations since the total cross sections for these elements are well known. 

So that the ratio of the uncoUided flux at the detector to the collided 
flux could be maximized, the detector was located at a distance of 30 m 
from the shield of the reactor and the sample was placed at the approximate 
midpoint between the detector and the reactor shield. The arrangement is 
shown in Fig. 9.9. Most of the samples were cylinders that were positioned 
with their axes coincident with the axis of the neutron beam. Oxygen and 
nitrogen samples in liquid form were contained in either Dewar vessels or 
styrofoam-insulated brass cans.^ 

Because neutrons scattered by the air and ground become important 
when the scattering sample is thick, both the detector and the neutron beam 
were shielded and very tightly collimated. The neutron beam incident on the 
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sample passed through two collimators: one which was adjacent to the 
reactor shield and another which was adjacent to the sample position and 
limited the beam to 9 cm in diameter. These collimators also served to 
reduce the air-scattered background at the detector without producing any 
observable change in the measured spectra incident to the samples. 

Measurements were made through some eighteen different materials. We 
show only the results for iron, which are particularly interesting because of 
considerable uncertainty that existed at the time in the fine structure of the 
iron cross section. 

Since the experiment was primarily one of cross-section evaluation, data 
from the 05R, '^ KFK, '* B N L , ' ' and ENDF/B*« files were all examined. 
Data from the 05R Monte Carlo cross-section library and the ENDF/B 
(Evaluated Nuclear Data File) were considered the best for iron from the 
experimental results. Figure 9.10 shows comparisons of the measured and 
calculated energy spectra from the 05R and ENDF/B cross-section data. 
Good agreement is noted in the data for energies above 2.0 MeV, but both 
sets of cross sections are too high for lower energies. 

This technique of evaluating minima in total cross sections has been very 
useful in indicating which evaluated set of total cross sections is adequate for 
shielding calculations and thereby permitting an efficient updating of 
cross-section libraries by updating only those cross sections which are not 
adequate. It also provided information about the energy regions in which 
new cross-section measurements should be made. 

In the foregoing sample of reactor shielding experiments, we have 
omitted many performed with the reactors mentioned as well as many more 
with other research reactors. A recent survey^ of shield facilities gives a 
complete list of shielding reactors and the types of investigations performed. 
The Lid Tank Shielding Facility, although no longer used in shielding 
investigations, deserves mention. Originally developed at ORNL, later 
duplicated elsewhere, the lid tank was successfully used for measuring 
removal cross sections and other materials attenuation parameters. A thermal 
column from a reactor core (at ORNL, the X-10 reactor) extended to a plate 
of fissile material attached to the wall of a tank. The fission plate (or source 
plate) produced a plane source of fast neutrons with an effective power of a 
few watts. Since the fission plate is removed some distance from the reactor, 
the background radiation is greatly reduced. The tank could be filled with 
water, oil, or a solution of interest, and materials arrangements could be 
lowered into the tank adjacent to the source. All the neutron removal cross 
sections given in Chaps. 4 and 6 were derived from lid tank measurements. 
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Fig. 9.10—Iron penetration results. (From Clifford et aO ' ) 

Although the lid tank produced many useful measurements, limitations in 
intensity and flexibility caused it to be superseded by the reactor facilities 
now in use. 

9.2.2 Accelerators 

The development of accelerators and generators capable of producing 
high yields of neutrons and gamma rays has provided the shielding 
experimentalist with opportunities for measurements previously impossible 
in reactor radiation fields. These sources, coupled with detectors of good 
sensitivity and resolution, permit cross-section measurements and evalua
tions, gamma-ray energy-spectra determinations, basic shield-material evalua
tions, and other useful measurements. 

Experiments with accelerators generally exhibit a flavor different from 
those with reactors. Better-defined geometry is usually possible, the source is 
pure neutron, gamma, or charged-particle without the complex background 
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associated with a reactor. Of greatest importance, however, is that with some 
accelerators the energy of the source radiation can be selected either directly 
or by time-of-flight measurement. 

In the discussion of the broomstick experiment of Clifford et al.,^^'^'* 
we mentioned that appreciable uncertainties were found in the reported 
cross sections for iron at energies below 2.5 MeV. Those differences were 
attributed to poor resolution in the valleys of the total cross section. An 
experiment with similar purpose but entirely different approach was 
performed at Gulf General Atomic (GGA) by Cerbone, Miller, and Profio,' ^ 
who used the linear accelerator (LINAC) with a time-of-flight method^" '^ ' 
as a source of neutrons. 

The geometry comprised a 76.30-cm-diameter iron sphere (Fig. 9.11), at 
the center of which was located the uranium target for photoneutron produc
tion by bremsstrahlung from incident electrons. In Fig. 9.11 the electron-
beam tube is the 9.5-cm-diameter port hole, port A is for monitor foils, and 
the stepped 10.02- tol2.7-cm-diameter port is for the 0° measurements. The 
through port at i? = 23 cm is for off-zero internal angular-flux measurements. 
The neutron spectrum and angular distribution are measured by extracting a 
collimated beam from the experimental assembly and sorting the counts with 
their time of arrival at a detector placed 50 m distant. Time-zero is defined 
by pulsing the neutron source. In the iron sphere, the time to slow down and 
migrate to the beam extraction point is small compared to the corresponding 
50-m flight time and can be neglected. 

The spectrum was measured from 0.5 to 15 MeV with NE-211 organic 
scintillators and from 0.6 keV to 0.5 MeV with an NE-908 lithium glass 
scintillator. Spectra were measured for several thicknesses of iron at several 
angles off the target—detector axis. Figure 9.12 shows the 0° measured 
spectra at radius values of 19.05 and 38.1 cm (surface). The fine structure of 
the iron cross section is evident in the spectral changes. Since this is a good 
geometry experiment with fair resolution, the results are adequate for 
evaluating iron cross sections. Discrete-ordinate calculations of the spectra 
for conditions specified in Fig. 9.12 were made with the IDF code (a version 
of DTF-IV^ ^) using 29 energy groups. Group cross sections were prepared 
from the ENDF/B library with careful attention given to minima in the 
cross-section structure. An asymmetrical SK, quadrature and a P^ cross-
section expansion were used. Wide discrepancies with the measurements 
were found. Possible causes were errors in the inelastic and elastic cross 
sections or the result of skipping valleys and neglecting self-shielding of the 
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Fig. 9 .11^1ron sphere for LINAC experiment. (From Cerbone et aL ) 

resonances, which often happen when too few energy groups are used to 

describe complex fine-structure cross sections. 

A second calculation was made using 49 energy groups. Figure 9.12 
shows results of this calculation compared with measurements for R = 19.05 
and 38.1 cm. Agreement is still quite poor, which strongly suggests that 
errors exist in the ENDF/B point cross-section data for iron. 

Thus the results of Clifford e^ a/.'^•''* and Cerbone etal.^^ agreed to 
the extent that reported values of the iron cross section appeared to be 
entirely inadequate for shielding calculations. 

Carlson, Cerbone, and Willoughby^ ^ state: 

. . . recently, much concern has been expressed about the adequacy of the 
measurements of the total-neutron cross section of iron. Numerous examples of 



496 REACTOR SHIELDING FOR NUCLEAR ENGINEERS 

10"' 

10" 

a 10-= 

10-* 

1= 

10-' 5 '• 

10-' 

"1—r TT] 1 1 I I I " T ^ I I H - I 

R = 19.05 cm 

F7^ I 

10-* 

ENERGY, eV 

Fig. 9.12—Comparison between 49-group IDF calculated (A',B ) and measured (A,B) 0° 
neutron angular spectra for iron at U = 19.05 ( A ' , A ) and 38.1 cm (B ' ,B ) . (From Cerbone 

the questionable state of this cross section are evident. For some energy 
regions,^'* there are large discrepancies in the measurements and energy scales; 
also considerably more structure than was previously seen has been observed in a 
recent set of measurements made by Cierjacks, Forti, Kopsch, Kropp, Nebe, and 
Unseld." 

Many measurements have been made of this cross section which is of prime 
importance for shielding applications. However, in almost all cases the resolution 
was inadequate. For iron, the level spacing and level widths in the MeV neutron 
energy region are such that a multilevel fit for resonance parameters is extremely 
difficult; therefore, it is essential that measurements be made with very high 
resolution if the cross sections are to be used for shielding applications. It thus 
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became clear that a new set of iron cross-section data taken with high-energy 
resolution and covering a large energy range was necessary. 

For these reasons the iron total-neutron cross sections have been measured 
with high-energy resolution for the energy interval from 0.5 to 9 MeV. 

The iron cross-section measurements were made by Carlson etal.^^ at 
GGA with the same accelerator used by Cerbone et al. These transmission 
measurements were also made using time-of-flight (TOF) techniques but 
with a 226.75-m flight path. An overall plan of the geometry is shown in 
Fig. 9.13. High-energy neutrons are produced by electron bombardment (the 
bremsstrahlung produces photoneutrons) of a spherical uranium target 
having a radius of 3.8 cm. The neutrons travel through an evacuated drift 
tube to a defining collimator at the 100-m station. This collimator restricts 
the size of the neutron beam to a circular area having a radius of 6.3 cm. In 
front of the collimator are two ^He detectors that are used to monitor the 
neutron flux and a 3.1-cm-thick uranium filter that reduces the effect of the 
gamma flash on the neutron detector. The transmission samples and the 
sample changer are located behind the collimator. With the sample changer 
the samples can be placed accurately in a position such that the detector (at 
the 220-m station) is completely shadowed from the source. This mechanism 
is operated remotely from the data-taking area. The monitor counting rates 
were measured with and without the samples in place to ensure that 
neutrons scattered from the samples did not affect the ^He monitors. No 
detectable difference was observed. The transmitted neutrons enter an 
evacuated drift tube that connects the 100-m and the 220-m flight-path 
stations. At the 220-m station the neutrons are detected in a 5-cm-thick by 
2.5-cm-radius cylindrical NE-211 scintillator coupled to a 56 AVP photo-
multiplier tube. The incident-neutron flux is perpendicular to the axis of the 
scintillator. The detector is surrounded by a lead shield that reduces the 

^He DETECTORS • 

EVACUATED 
BEAM TUBE 

URANIUM TARGET 

r U R A N I U M FILTER 

COLLIMATOR LEAD SHIELD-V 

EVACUATED 
BEAM TUBE 1 ^ 

SAMPLE-' NEUTRON DETECTOR • 

100-m STATION 220-m STATION 

Fig. 9.13—Diagram of flight path and experimental setup used in the total-cross-section 
measurements of Carlson et al} ' 
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ambient background. The contribution to the counting rate from neutrons 
that scatter off the detector into the lead shield and then back again into the 
detector was found to be negligible. 

The iron sample was composed of standard Armco iron (99.94% iron). 
The measured density agreed with the accepted value for the density of iron. 
The sample thickness was 0.386 nuclei/b. 

Although measurements were made from 0.5 to 9.0 MeV, only a limited 
portion will be shown here. The complete set is given in Ref. 23. 

Figure 9.14 shows the measurements of Carlson et al.^^ from 0.7 to 
1.0 MeV. The curve is merely a guide obtained by connecting the points. The 
measurement of the cross section in this energy region where the cross 
section varies sharply with energy requires the utmost in energy resolution. 
Figure 9.15 compares the data with the data of Cierjacks et al.^^ and of 
Schwartz, Schrack, and Heaton.^^ Of the available iron total-cross-section 
measurements, those of Cierjacks et al. agree best with Carlson's data with 
respect to the presence of structure and the neutron-energy scale. Carlson's 
measurements, which have a somewhat smaller energy spread than those of 
Cierjacks (0.035 nsec/m vs. 0.043 nsec/m), resolve the structure somewhat 
better. The measurements of Schwartz et al. are in agreement with Carlson's 
data; however, a considerable amount of structure has been unresolved in 
these data, which were obtained with a resolution of 0.3 nsec/m. 

The iron total cross sections obtained in the study by Carlson etal.^^ 
have provided much needed information about the cross-section valleys. It 
had previously been conjectured that deeper valleys are needed in the total 
cross section to obtain good agreement between the broomstick transmission 
measurements of Clifford etal.^^'^'* and calculations based on the total 
cross sections. The latest measurements show a trend toward deeper valleys 
than had been previously observed, which is primarily (it is believed) the 
result of better resolution. 

In our discussion of the transport measurements in water reported by 
Verbinski et al.,^^ we mentioned that a small-source experiment with good 
geometry was also performed. The source was the LINAC described 
previously. In these measurements a slab shield was positioned at a distance 
of 40 cm from the source, which resulted in a nearly-good-geometry 
scattering configuration. Consequently the effects of the sharp resonances in 
the oxygen cross section on the spectral shapes could be observed and 
compared with predictions of shielding codes that have a fine energy mesh. 
The spectral measurements did not yield information on the attenuation of 



E
X

P
E

R
IM

E
N

T
A

L
 S

H
IE

L
D

IN
G

 
499 

$ d 

in 
d 

i S > u (E 
U

J 

z Ul 
z o IE 1

-

U
J 

z 

E
 

o u 
U

^ 

> lU
 

2 ^H
 

o 4-> 
t^ 

o " 
a 0 
.a 
U

J 

O
 

§ V
i 

c o
 

u
 

*.> 3 u
 

c O
 

H
 

.SP
 

(0 
lA

 
^ 

C
O

 
O

l 
*-

o
o

 



10 

8 

6 -

1.8 

— GGA, 0.035 nsec/m 
Cierjacks et al., 0.043 nsec/m 

a NBS, 0.300 nsec/m 

_L J_ 
1.9 2.0 2.1 

NEUTRON ENERGY, MeV 

2.2 2.3 

o o 

> n 

00 
X 
W 
r 
D 
Z 
O 

o 
z 
G 
n 
w 
> 
W 
z 
o 
z w w 
C/3 

Fig. 9.15—Total neutron cross section of iron (1.8 to 2.3 MeV). (From Carlson etal.^^) 
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flux, but the activation of sulfur pellets placed on both the source side and 
the exit side of the slab provided a measure of the attenuation. 

The physical arrangement for the measurements with the pulsed-neutron 
source is shown in Fig. 9.16. The LINAC provided short bursts of electrons 
(from 10 nsec for thin shields at 0° to 50 nsec for the thickest shield at 30°) 

CONCRETE 

-PARAFFIN 

^ '70 cm)3 
Pb TARGET 

CONCRETE 

CONCRETE 

40 cm 

-SULFUR 

50 m (14 m VACUUM, 36 m AIR, 5 cm LEAD) 

Fig. 9.16—Experimental arrangement at LINAC for measuring spectra of neutrons 
leaking from a water slab at 0°. For 30 measurements, the slab-source configuration was 
rotated about the point "O." The positions of the sulfur pellets used for transmission 
measurements are also shown. [From V. V. Verbinski, M. S. Bokhari, J. C. Courtney, and 
G.E.V/hitesides, Nuclear Science and Engineering, 27(2): 289 (1967).] 

which irradiated a small lead target (5-cm-diameter by 2-cm disk) and thus 
produced bremsstrahlung radiation which, in turn, produced prompt 
photoneutrons with a near-fission spectrum. The target was centered in a 
20-cm lead housing, which was needed to suppress the bremsstrahlung 
radiation that would otherwise have incapacitated the neutron detector. 
Some of the neutrons escaping the lead housing penetrated the water shield 
and passed down a 50-m flight path to a 5- by 5-in. encapsulated NE-213 
liquid scintillator neutron detector. Figure 9.16 shows the arrangement for 
measuring the 0° (straight-through) spectrum for a water slab of thickness T. 
For some of the measurements, the neutron source and water slab were 
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rotated 30° about the point O shown on the exit side of the slab. The sulfur 
pellets shown were used for measuring the neutron attenuation. 

The configuration shown in Fig. 9.16 was calculated with both the 
NIOBE and the DTK codes. Since the NIOBE code cannot use a small-source 
geometry, the neutron source for the calculation was taken to be a 
20-cm-diameter sphere with constant source density having the same 
spectrum as that measured with the water slab shown in Fig. 9.16 removed. 
Unfortunately, in this measurement not all the source could be viewed 
because of the limitation of the 7.62-cm-diameter collimator shown in 
Fig. 9.16. Comparisons of measurements with the NIOBE and DTK 
calculations using the same false-source geometry were equally poor. 

Additional DTK calculations were performed for which the source was 
assumed to be a 5-cm-diameter sphere, which was a better simulation of the 
experimental source. The lead housing around this small source was treated 
as additional shielding. The spectrum used in these calculations, shown as the 
top curve in Fig. 9.17, was the same as that measured with the lead housing 
and water slab removed. The two lower curves in Fig. 9.17 compare the 
resulting calculated spectra with the measured 0° spectra for slab thicknesses 
of T = 20 and 40 cm. The calculated results at 0° are very similar to the 
NIOBE results '" except for the dashed-line sections at about 5 to 7.5 MeV, 
which were obtained with updated oxygen cross sections. The calculations 
for the 30° configuration are compared with the measured spectra in 
Fig. 9.18. Here the calculated spectra are quite different from the NIOBE 
results, the overall agreement in Fig. 9.18 being much better. From this it is 
concluded that the false-source configuration used for NIOBE does not 
adequately approximate the experimental geometry and that reasonable care 
must be exercised in reproducing the source geometry in calculations that 
are being compared vdth small-source measurements of fast neutrons. 

The solid line in Fig. 9.17, which represents the initial small-source DTK 
calculations, falls short of reproducing the broad transmission peak observed 
in the measured leakage spectra at 0°. Since the geometry for this 
measurement roughly approximates the good-geometry configurations used 
in measuring total neutron cross sections, the cross sections used in the 
calculations became suspect. Cross sections for the calculated solid lines in 
Fig. 9.17 were taken from the 1958 version^'' of BNL-325. The dashed lines 
were calculated using the updated cross sections^ ^ reported in the 1964 
Supplement No. 2 of BNL-325. Much improvement is noted when the newer 
cross sections are used. 
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F^. 9.17—Measured and DTK-calculated spectra of neutrons leaking from 20- and 
40-cm-thick water slabs at 0 . The calculational source spectrum, shown at the top of the 
figure, was taken as an isotropic source of 3.9 X 10*^ neutrons at the center of the lead 
housing shown in Fig. 9.16. Experimental spectra have been individually normalized to 
the DTK code results. [From V. V. Verbinski, M. S. Bokhari, J. C. Courtney, and G. E. 
Whitesides, Nuclear Science and Engineering, 27(2): 291 (1967).] 

9.2.3 Fixed Sources 

Fixed isotope sources provide an excellent tool for the measurement of 
materials if the whole reactor energy distribution is not needed. The work of 
Alberg, Beck, O'Brien, and McLaughlin^' provides a case in point. Their 
measurements with ' ^ 'Cs gamma rays provide differential energy and angle 
spectra from a point isotropic source in an effectively infinite medium of 
water for gamma-ray penetrations of one, two, three, and four mean free 
paths at 15° intervals. The objective of this experiment was to obtain a 
definitive set of differential distributions in an infinite medium which could 
be used as a standard for comparison with transport predictions. 

Figure 9.19 shows the experimental arrangement. The detector was a 
5.08- by 5.08-cm Nal(Tl) crystal, and an EMI-9552 photomultiplier tube and 
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METHACRYLATE 
PLASTIC PROBE-

SOURCE POSITION-

Fig. 9.19—Schematic diagram of point source ' 'Cs differential measurements. The 
distance from the back edge of the rear aperture to the front edge of the forward aperture 
of the collimator is 80 cm; to the end of the methacrylate plastic probe, it is 163 cm. The 
aperture diameters are 1.0 cm. [From M. Alberg. H. Beck, K. O'Brien, and J. E. 
McLsMghlin, Nuclear Science and Engineering, 30(1): 67 (1967).] 
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a 512-channel analyzer were used. About 700 liters of distilled water was used 
to fill a 48- by 97- by 145-cm methacrylate plastic tank. This size was chosen 
so that both the source and the detector would always be at least two mean 
free paths from the edge of the box. The ' ^ ' Cs source was calibrated to 
±5%. 

The detector assembly was located outside the medium to minimize 
displacement effects. A probe and collimator were used that were based on a 
design by Skarsgard and Johns.^^ The defining apertures of the collimator 
were located outside the tank. A hollow plastic probe of 2.5 cm inside 
diameter was inserted into the tank and attached to the front end of the 
collimator with a vacuum and pressuretight seal. The path between the 
methacrylate plastic window in front of the crystal and the end of the probe 
was then evacuated. Pulse-height distributions corresponding to various 
angles between the source and the detector for a given penetration were 
obtained by moving the source around a semicircle of fixed radius located on 
the midplane of the tank. The collimator was equipped with a shutter so that 
background readings could be taken at each angle with the source in 
position. 

The solid angle subtended by the crystal was determined by the method 
described by Skarsgard and Johns.^" In this scheme a sphere is constructed 
whose center lies on the collimator axis at the end window of the probe and 
whose radius is just large enough to include all points on the window which 
subtend a finite solid angle at the crystal. It is convenient to regard this 
sphere as the source of scattered gamma rays, even though most of the 
radiation seen by the crystal will have been scattered through the sphere 
from other points in the medium. A cross section is taken through the sphere 
at the window, and the solid angle seen by each differential element on this 
cross section is calculated. An integration over these elements yields the total 
solid angle seen by the crystal. 

Eight sources were used to calibrate the spectrometer: ' ^Zr—'^Nb 
(750 keV), ' ^ ' 'Cs (662 keV), ''Be (477 keV), ' ' ^ s ^ (393 keV), ^ ' C r 
(322 keV), '^''Sc (160 keV), ' " ' C d (88 keV), and ^^Sr (514 keV). One-
quarter of the multichannel analyzer, 128 channels, was used to obtain a 
standard pulse-height distribution for each source. The eight standard 
pulse-height distributions were fitted with energy-dependent functions 
describing the photopeak, escape peak, Compton tail, and backscatter peak. 
These functions yielded interpolated pulse-height distributions for energies 
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lying in the range covered by the standard sources. When suitably normalized 
the set of 124 interpolated pulse-height distributions equally spaced over the 
interval 0.0198 to 0.9382 MeV formed a 124 by 124 response matrix for the 
spectrometer. 

Pulse-height distributions were measured for separations between the 
source and the detector which correspond to one, two, three, and four mean 
free paths of water. The angle between the source and the detector was 
varied in 15° intervals. The pulse-height distributions were unfolded to yield 
the differential energy and angle distributions for the various separation 
distances. 

These spectra are normalized to a source strength of 1 photon/sec. The 
differential energy and angle spectrum / represents the energy carried by 
photons of energy C(MeV steradian"'), which in unit time cross a unit area 
whose normal is in the angular direction specified. The ordinate is a product 
of / and the factor 47rr^ ef^o ^, where r is the penetration depth in centimeters 
and /XQ is the absorption coefficient at the source energy. These units 
not only facilitate comparison among spectra taken at different penetra
tion depths but also allow comparison of spectra taken in different media. 

Marshall and Wells ' ' have reported comparisons of their Monte Carlo 
calculated ' " C s transport data in infinite air with these measured 
infinite-water-media data. They made comparisons of the data differential in 
energy and angle as well as integrated over angle. The double-differential 
data compared favorably in shape. Energy spectra integrated over angle for 
the four distances are shown in Fig. 9.20, for which the measured data have 
been divided by a factor of 1.2. Agreement in shape and relative magnitude 
is good. 

In addition to the measurements, Alberg et al.^^ carried out multigroup 
transport calculations of differential energy spectra in water for a '• '^Cs 
source using the latest values of the attenuation coefficients for water. '^ 
The spherical-harmonics t e c h n i q u e " (described in Sec. 4.3) was used, in 
which the transport equation is solved directly by expanding the angular flux 
in polynomials, and a matrix equation is used to solve the resulting set of 
multigroup equations. For these calculation expansions in Legendre poly
nomials up to degree seven were used. Comparisons of the calculated and 
measured energy spectra integrated over angle for the four mean-free-path 
values are shown in Fig. 9.21. The overall agreement is good. The point 
scatter in the experimental curves at higher energies is caused by poor 
counting statistics. 
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Fig. 9.20—Point isotropic Cs source total-energy spectra. (From Marshall and 
Wells.^') 

9.3 PHENOMENOLOGICAL MEASUREMENTS 

Phenomenological problems are usually geometric in nature, i.e., they are 
characterized by a particular geometry. Under this general heading we 
include air transport, air-over-ground interface effects, albedos, and duct 
penetration. 

9.3.1 Air-Transport and Air—Ground Interface Experiments 

In Sees. 8.2.2 and 8.2.3 we described a series of air-transport 
measurements made on a tower in Nevada with a 14-MeV neutron source. It 
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Fig. 9.21—Comparison of the experimentally determined differential energy spectra (/Q) 
in water with multigroup transport calculations. The IQ is obtained from an integration of 
the differential energy and angle spectrum / over all angles. [From M. Alberg, H. Beck, 
K. O'Brien, and J. E. McLaughlin, Nuclear Science and Engineering, 30(1): 71 (1967).] 

is interesting to look briefly at other measurements in this series, which 
involved both a reactor and a ^' 'Co source. There were several purposes for 
this series of measurements. The primary objective was to obtain definitive 
air-transport data at large distances (>1 km) for the source energies used. 
Source height and detector height were varied to obtain the effect of the 
air—ground interface. Although performed primarily to support nuclear-
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weapons-effects studies, measurements such as these are frequently useful in 
safety analysis of reactors. 

Neutron and gamma-ray measurements were made at the Nevada Test 
Site (NTS) during Operation BREN (Bare Reactor Experiment Nevada), 
which is described by Sanders, Haywood, Lundin, Gilley, Cheka, and 
Ward'"* and by Auxier, Haywood, and Gilley.'^ The BREN facility 
consisted of a 465-m-high steel tower (Fig. 9.22). Two radiation sources 
were supported by an aluminum hoist car that could be moved along the 
face of the tower. The two sources were the ORNL Health Physics Research 
Reactor (HPRR) '^ (shown on the tower in Fig. 9.22) and a ^°Co source 
whose effective activity was approximately 800 Ci. The HPRR is a small fast 
reactor that produces a nearly isotropic angular distribution of fission 
neutrons and is neither moderated nor cooled. 

From the extensive array of measurements made during Operation 
BREN, we show only dose rate vs. distance for neutrons, secondary gamma 
rays, and ^*^Co gamma rays reported by Haywood, Auxier, and Loy. '^ 

Figure 9.23 shows the neutron dose as a function of slant range for 
source heights of 8.2, 91, 343, and 457 m and a detector height of 0 m. 
Since radiation entering the ground beneath the source is partially absorbed, 
the dose at a fixed distance away should increase as the source is raised 
because of less ground absorption. Figure 9.23 shows that the neutron dose 
does indeed increase with source height. 

Figure 9.24 shows the measured gamma-ray dose as a function of slant 
range for reactor heights of 8.2, 91 , and 343 m and a detector height of 0 m. 
The gamma-ray dose is seen to increase also as the source height increases, 
but the mechanism responsible for this is not necessarily the same as that for 
the neutron-dose increase. Some of the gamma-ray dose is caused by 
secondary gamma rays resulting from neutron interactions, a portion of 
which come from the ground. 

Figure 9.25 shows the gamma-ray dose from the ^°Co source as a 
function of slant range for source heights of 8.2, 91 , and 343 m and a 
detector height of 0 m. The behavior is identical to that for neutrons in that 
the ^°Co dose increases with source height. 

A differential measure of the air—ground interface effects on the neutron 
dose reported by French and Mooney' ^ was based on data obtained during 
the 14-MeV measurements.described in Sees. 8.2.2 and 8.2.3 to test the 
concepts of the first—last collision model. The model was tested (in relation 
to last scatters only) by placing a slab of polyethylene on a hoisting 
mechanism to separate the neutron dose arriving at a detector into fractions 
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F^. 9.23—Neutron dose times slant range squared (£> X R^) as a function of slant range 
(R) for a detector height (Hp) of 0 m and various reactor heights (HR) . (From Haywood 
cfa/.") 

from the upper and lower hemispheres. The slab assembly was designed to 
move from the ground surface to a height of 70 ft above the ground. 
Hurst-type fast-neutron dosimeters were mounted on the top and bottom of 
the slab and on a boom for measurements of the free-field dose. 

The experimental setup was located at a horizontal distance of 1000 ft 
from the base of the tower supporting the 14-MeV accelerator. The source 
was fixed at a height of 112 ft above the ground for the entire test. 
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Fig. 9.24—Gamma-ray dose times slant range squared (D X R^) as a function of slant 
range (R) for a detector height {Hp) of 0 m and several reactor heights ( H R ) . (From 
Haywood etal.^'') 

Figure 9.26 shows the experimental setup looking toward the BREN 
tower. The lower detector is attached to the bottom center of the slab, the 
free-field detector is on the boom extending from the slab toward the tower, 
and the top detector (not visible) is mounted atop the slab. Fast-neutron-
dose measurements were made on the three detectors for slab heights from 
0.23 to 21 m. The uncoUided dose, seen only by the top and free-field 
detectors, was calculated and subtracted from the measured doses. The 
uncoUided dose is not affected by the interface and is therefore ignored in 
the first—last collision model. In addition to functioning as a 27r shield, the 
slab backscatters neutrons into the detector and reduces the neutron flux at 
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Fig. 9.25—Gamma-ray dose times slant range squared [D )(. R^) as a function of slant 
range (R) for a detector height [Up) of 0 m and various ^''Co source heights (W5). (From 
Haywood et al. ) 

the ground in an area dependent on the slab height. These effects were 
calculated and subtracted from the measured dose. Results were shown in 
Sec. 8.2.3. 

To make quantitative comparisons of the calculated and measured 
interface effects, the calculated total last-collision dose was normalized to 
the measured free-field detector dose at a height of 21 m. This height was 
selected for the normalization because the interface effect should be least at 
this height. Comparison of the normalized results shows the extent to which 
the theoretical model estimates the fraction of the 21-m free-field dose 
observed at lower heights. 

Examination of the scattered doses shown in Fig. 8.10 shows that the 
dose at the top detector is relatively independent of height and that the dose 
at the bottom detector increases by a factor of more than 2 as the height is 
increased from 0.23 to 21 m. 
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Fig. 9.26—Arrangement for 2w shield looking toward the neutron source. (From French 
andMooney.^*) 

9.3.2 Duct Penetration 

The streaming of neutrons and gamma rays through entranceways, ducts, 
vents, cable-route openings, portholes, and other openings has always been a 
major problem in shield design. Many of the efforts at devising methods for 
calculating streaming are reviewed in Chap. 7. Clifford et al. ^ ^ report the 
comparison of measurements and calculations of neutron streaming through 
multilegged concrete ducts from an experiment performed at the Tower 
Shielding Facility at ORNL. Their results have already been described in 
Chap. 7, but it is interesting to see the experimental arrangement for a 
one-bend duct (Fig. 9.27). A 7.6-cm coUimated beam of neutrons was 
incident to the opening of the 0.91-m-square duct at an angle of 45°. The 
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Fig. 9.27—Photograph of experiment for duct with one bend. (From Clifford etal}^) 

source ot neutrons was the Tower Shielding Reactor IL The fast-neutron 
spectrum of the beam was measuied by Bokhari, Verbinski, and Todd^^ 
using the shielded diode spectrometer described previously. The slow-neutron 
spectra were obtained from measurements with a boron-shielded BF3 de
tector^ ° having ' *'B filters with 23 different thicknesses. 

Three duct configurations were involved in the test: a straight duct, a 
duct with one bend, and a duct with two bends. Principal results have been 
shown in Figs. 7.52 through 7.54. The measured absolute energy spectrum 
of the beam was used for the source spectrum in the calculations. In general, 
the agreement with calculations averages better than 20% through five orders 
of fast-neutron dose attenuation. Calculations were made of the thermal flux 
resulting from all source neutrons with energies above cadmium cutoff to 
test the accuracy of the slowing-down model used in the code. In general, 
the agreement is also within 20% in the second and third legs and within 5% 
for most of the straight ducts. For the three-legged duct, it was necessary to 
follow approximately 18 wall backscatterings to obtain 90% of the flux 
contribution in the middle of the second leg and 25 wall backscatterings in 
the middle of the third leg. 
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Even though we have described widely different shield experiments, we 

have not done justice to the diversity of arrangements in the literature. The 

variety of experiments performed is as great as the variety of problems the 

shield designer has faced since radiation sources were first used. Sources of 

radiation being measured have included reactors of all kinds (power, 

research, pulsed, and critical assemblies), as well as source plates, isotopes, 

neutron generators, and a variety of accelerators. Environments in which 

reactor sources and detectors have been placed range from the bottom of 

swimming pool facilities to towers 200 and 1500 ft high, to aircraft flying at 

35,000 ft, and to satellites in orbit. Detectors have been located in aircraft 

crew compartments, underground shelters, spacecraft payloads, ducts, 

armored tanks, submarines, and surface vessels. 
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Shield Design 

H. C. CLAIBORNE and N. M. SCHAEFFER ±.\J 

To integrate the numerous design considerations in an attempt to gain a 
perspective of the whole process of shield engineering, we will proceed in 
two different ways. First, from an entirely philosophical standpoint, we will 
describe a set of iterations in a shield design based on the experience of 
Hungerford' in the course of developing the shield system for the Enrico 
Fermi Nuclear Plant. His recollection of the tasks is both interesting and 
instructive since it is based on actual design experience and has subsequently 
been refined by his lectures in radiation shielding at Purdue University. 
Dr. Hungerford has also formulated six principles of reactor-shield design; 
these are given below. A second way to obtain a perspective of the design 
process is to examine the shields of several operating reactors and to review 
the approaches used by their designers. We will discuss several widely 
differing types; particular attention will be given to special problems 
encountered in each case. We have limited the selection of shield design for 
this discussion to cases now in the literature, particularly those which 
include publication of measurements on shield performance as well as design 
description. Proof of shield performance is the final step in the design 
process; a design is incomplete without it. This limitation means generally 
that systems available to us for this discussion were completed in the 
mid-sixties. This, in turn, implies shield analyses that date from the late 
fifties and early sixties. Consequently the analysis methods used in the work 
we will study are not as advanced as the latest ones described in Chaps. 4 and 
6. There is an 8- to 10-year period in the cycle from first concept to start-up 
tests, and shield technology has changed markedly in the interval. 

To return to our first viewpoint, the philosophical viewpoint, consider 
the following shield design principles that are based on experience developed 
over the years. They are guides to be followed in the conception and 
development of a reactor plant and shield system. 

519 
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Hungerford's six principles of shield design as stated in Ref. 1 are: 
1. Reactor-Shield Unity: A shield is an integral part of a reactor system and 

must be designed at the same time as, and as an entity with, the overall reactor 
system. 

2. Shield Integrity: Adjacent parts of a shield, having the same design criteria, 
must be designed with equal performance characteristics. 

a. Two adjoining parts of a shield which are made of different materials 
must have the same radiation attenuation characteristics. 

b. Shields around voids, gaps, and irregularities must be designed to give the 
same overall attenuation of the radiation as the bulk shield. 

3. Shield Safety: Because the reactor shield is a safety device and must be 
considered as a part of the safety system of the reactor, there can be no 
compromise with expediency in its design. 

a. Sloppy design and construction techniques in sensitive areas which may 
affect the safety of the reactor cannot be tolerated. 

b. Use of cheap materials and other cost-cutting practices may be more 
costly in the long run, and moreover may jeopardize the safety of the 
reactor. 

4. Shield Accommodation: A shield should be adapted to provide for the 
mechanical requirements of the reactor, its supporting structure, and its 
component systems, without sacrificing the principles of reactor-shield unity, 
shield integrity, or shield safety. 

5. Shield Economy: The best possible shield should be designed at the lowest 
possible cost, consistent with the overall reactor design, without sacrificing safety, 
integrity, or performance. 

a. An economical shield is a must in the design of large nuclear power 
plants for the production of electric energy. 

b. This principle is subservient to the first four principles. 
c. An application of this principle is the concept of shield optimization, 

whereby a shield may be optimized according to some parameter such as 
weight, size, cost, or some nuclear property, etc. 

6. Shield Simplicity: A shield should be designed to be as simple in 
configuration as possible, with the minimum number of voids, ducts, and cutouts 
for the reactor components and auxiliary systems, consistent with the principle of 
shield accommodation. 

a. An application of this principle would be to allow all pipes and cables 
serving the reactor to pass through the shield in one penetration of the 
shield (or as few as possible). 

b. Simpler shields will have more satisfactory performance, less mainte
nance, and will cost less. 

10.1 ITERATIONS IN THE SHIELD DESIGN 

The job of creating a reactor-shield design proceeds in three distinct 
phases: (1) the development of a preliminary conceptual design; (2) the 
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correlation of the preliminary conceptual design with the mechanical design 
to obtain a final conceptual design; and (3) the translation of the final 
conceptual design into a detailed engineering design. Each of these steps has 
a distinct subset of problems. The development of the conceptual design 
includes the consideration of the selection and availability of materials and 
problems with the use of these materials in the shield. Let us follow in detail 
the development of the design and later of the shield construction to see 
what types of problems may arise in each of these phases. 

10.1.1 Preliminary Conceptual Design 

The preliminary conceptual shield design begins with a rough sketch of 
the plant layout showing where the reactor and every auxiliary system and 
component is to be placed. It is important here for the shield designer to 
have a voice in the plant layout since this will affect the whole design and 
future operation of the plant. From this sketch the designation of all areas to 
be shielded and their interrelation is made. Once this is done the shield 
design criteria for each area with respect to personnel protection must be 
worked out. Next, rough sketches of each shield or shield area must be made 
so that the mechanical requirements as well as the shield requirements can be 
considered and developed. Close coordination with the mechanical design 
people is a necessity. 

In most reactor design and construction projects, a time schedule for 
developing each design will have been set up, hopefully enough ahead of the 
construction schedule to give adequate time for the development of the 
design. Probably the shield designs for several areas will have to be developed 
simultaneously. 

(a) Preliminary Selection of Shield Materials. Once the type of shielding 
and overall requirements of the shield for each area have been worked out, a 
preliminary selection of shield materials is made. The properties of the 
selected shield materials are investigated thoroughly with respect to the 
anticipated environment to ensure that the materials will be able to stand up 
to the environment and perform reliably over the lifetime of the plant. The 
shields, like much of the permanent structure of the plant, are not amenable 
to replacement during plant operation. 

(b) Shield Calculations. Only after the shield materials have been 
selected, or the choice is at least narrowed to two or three, should the shield 
calculations begin in earnest. The model for the shield calculations can be set 
up. The preliminary design sketches may contain several different configura-
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tions based partly on the types of materials chosen and partly on economics 
and other considerations. Rough calculations should be made for each shield 
region to help narrow down the choice of materials by evaluating shield 
performance of each of the selected materials. Considerations should include 
preliminary calculations of radiation attenuation, nuclear heating, radiation 
effects, temperature rises, and internal stress generation. The next set of 
calculations should include a parametric study to determine the best 
arrangement of the shield materials with respect to the overall mechanical 
design and arrangement of the structure. 

(c) Final Materials Selection. Firm and final selection of each shield 
material should await the results of definite tests on samples of the material 
exposed to a heat and radiation environment equivalent to plant operating 
conditions and total exposure equivalent to the plant lifetime if this 
information is not already known. One of the biggest mistakes that can be 
made in shield design is to choose an untested material that is acceptable on 
paper but whose integrity and reliability are questionable. 

Once the shield material for a given area has been tentatively selected, 
the simple conceptual design of the bulk shield can be developed from the 
results of the calculations already at hand. The problems associated with this 
stage of the design are the difficulties in selecting the shield material, in 
developing the calculational model, or in executing the calculations. 

10.1.2 Detailed Conceptual Design 

The next step is to divide the shield areas into a number of regions to 
check deviations from the model of the initial calculations. An example 
would be that the mechanical design calls for a thinner or thicker shield in 
some particular area, with perhaps a change or addition of materials. Shield 
thicknesses for each of these regions should be calculated separately. The 
results of all these calculations are then brought together and assembled into 
a preliminary conceptual design. 

At this point the design problems begin in earnest since the preliminary 
conceptual design must be compared with the mechanical design and the two 
fitted together. The preliminary design, as we have stated, includes only the 
most important shield regions and perhaps only those at the most important 
elevations or cuts through the shield. The detailed conceptual design must 
show clearly at every elevation and cut through the shield the exact material 
to be used and the broad features and configuration of the material in every 
area of the shield. The main penetrations through the shield and the 
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shielding around them must be shown. Special calculations must be 
considered for the areas of penetration and areas of shielding around 
mechanical objects attached to the reactor vessel. Such items as support 
structure, coolant lines, detectors, experimental tubes, pipe hangers, cable 
trays, sheaths containing thermocouples, or other types of sensors are all 
examples of objects that the shield must be designed around. 

(a) Special Calculations—Radiation Streaming. To calculate radiation 
streaming, one must divide the shield into a large number of special areas. In 
each area judgment must be passed as to the allowable leakage radiation. 
Calculations must be performed to determine the proper amount of shield 
material. Many of the calculations will involve streaming in voids, gaps, 
circular and rectangular ducts, and annuli. These areas in a shield present the 
greatest challenges because one must not only create calculational models to 
simplify a complex mechanical design but must also exercise good judgment 
in estimating the streaming and in interpreting the results.' 

(b) Nuclear Heating. Another problem of great concern during this 
design stage is nuclear heating. Earlier analysis of materials should indicate 
those regions where there might be excessive heating in the bulk shield. If 
detailed calculations in any given area show that there is indeed a heating 
problem, then proper steps must be taken to change the material, add 
energy-absorbing (thermal) shields, or call for a shield coolant system 
(whichever is most appropriate). The concern here is therefore not with the 
shield material but with heating or radiation effects on structural material, 
equipment, or system components located in each region, if the heating 
induces excessive temperature rises or if the neutron flue nee is above the 
radiation-damage limit, additional coolant or shield material may be needed, 
if the problem in a given region is too severe or if there is no room to add 
any more material, more drastic action must be taken, e.g., change the 
mechanical design or reevaluate the shielding material initially selected. This 
may mean upgrading the shielding properties of the material in this region, if 
possible, by adding more absorber into the shield material (such as increasing 
the boron content of borated graphite) or by replacing it with a more 
efficient material. Any of these actions, of course, may have economic 
reverberations. 

(c) Economic Considerations. Once the various shield regions have been 
analyzed, the materials chosen, and the thicknesses and configuration for the 
regions decided on, an economic analysis should be performed. Grades or 
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quality of the material must be specified, if the calculated costs exceed the 
budget allowance, the shield should be reviewed again to determine if there 
are areas that could be simplified or if the material could be changed. 

Since all budgets are tight (by definition), there will be a great 
temptation during this stage of the design to try to dictate upper limits of 
allowed costs and, by inference, the quality or grade of material to be used. 
Certainly, the use of an expensive material cannot be justified if there is a 
less expensive one that will do the same job and positively stand up to the 
anticipated environment during the plant lifetime. On the other hand, if 
there are circumstances that call for a certain material because it is the only 
safe and reliable material for the job, then no substitutions can be 
considered. Decisions on questions of safety vs. economy must obviously 
favor safety. 

(d) Completed Conceptual Design. When all aspects of the shield design 
have been evaluated, the materials selected, and the necessary modifications 
made in the preliminary design, the detailed conceptual design is complete. 
Documentation should be in the form of a report with drawings at every 
important elevation and penetration through the shield showing for each 
shielded area the basic configuration and materials. 

10.1.3 Final Engineering Design 

The conceptual design must be translated into engineering drawings. 
Detailed drawings of the reactor and auxiliary systems and components must 
be analyzed and redrawn to show the proper shield modifications. It is here 
that all the fine detail of the shield structure comes to light. 

For instance, the reactor is built at room temperature, but it may be 
operated at 540°C. The reactor, its support structure, the coolant piping, 
any auxiliary gas coolant lines or cover-gas lines, all mechanical appendages, 
sensing devices, etc., will have to operate at temperatures at or near the 
operational temperature of the reactor. 

The mechanical system will have been designed to flex, shift, and move 
with temperature to relieve the stresses on the system. The coolant pumps 
and the motion of the coolant flowing within the system will create 
vibrations, and other movements of the system components. The shield 
cannot be erected around the reactor and its systems without regard for 
these expansions and movements. The engineering design therefore must 
include allowances for expansion and motion. 
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The drawings must show or indicate clearly how close to the vessel and 
its systems the shield can be erected, and all clearances must be detailed. It 
may even be necessary at this late date to rerun shield calculations, taking 
into account the clearances, and perhaps to specify changes in the shielding 
material. 

One of the problems arising at this stage of the design is the possible 
conflict that may arise between the shielding requirements and the 
mechanical requirements. A cooperative effort between the shield designer 
and the mechanical engineer is necessary for a satisfactory compromise 
solution to such problems. If this type of cooperation is not achieved before 
the construction phase, costly rework may result. 

The engineering design, besides reflecting the requirements of the 
conceptual design, must also take into consideration the requirements for 
field erection. Therefore on each drawing all necessary instructions and notes 
must be carefully made in language intelligible to construction crews. The 
completed engineering design will be a series of elaborate drawings showing 
all the requisite detail for proper erection. 

(a) Field Drawings. The architect—engineer delivers a set of engineering 
drawings to the plant constructors, who copy each drawing and prepare field 
drawings by adding pertinent information for field workers, e.g., welding 
instructions, construction tolerances, and erection sequence. It would seem 
that the shield design job should be complete by the time the design reaches 
this stage, but this is not the case, especially in the matters of construction 
tolerances and erection sequences. For example, if a shield is to be erected 
out of a series of graphite blocks that are graded in boron content, the 
manufacturer must color-code his blocks or identify the percent boration by 
some other easily recognized means, and the color code or identification 
instruction must appear on the field drawings. 

(b) Construction Follow-Up. Each of the color-coded graphite blocks 
will have the specified dimensions and a dimensional tolerance in accordance 
with the material specifications given to the manufacturer. The erection 
crews will be expected to lay these blocks to form the shield with a specified 
construction tolerance. In most jobs the erection tolerances are generous to 
keep down the cost of construction. The designer's task here is to ascertain 
that the construction clearances and the manufacturer's dimensional 
tolerances when taken together do not lead to unexpected streaming paths 
through the shield. Even here he should be prepared to rerun some shielding 
calculations covering the affected region as a check to determine the effect 
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of excessive clearances if these have not already been included in his previous 
calculations. As a result of these checks, the designer should be prepared to 
take one of the following actions: (1) modify the configuration of the 
blocks, (2) issue orders that gaps greater than a given length and width be 
filled, or (3) issue orders that overall erection tolerances be cut to more 
severe limits. He should consult and obtain the cooperation of the field 
engineer to ensure that the erection crew will follow the spirit as well as the 
specification of the changes. 

(c) Construction with Concrete. In the pouring and curing of concrete, 
simple field procedures can be set up to ensure cleanliness of the aggregate, 
proper concrete mixing ratios, and uniformity of density. The poured 
material must be worked by hand or with mechanical vibrators to ensure 
closing of voids, proper joining at the boundaries between one pour and 
another, and setting and curing of the completed pour. For poured shields, 
the allowed clearances must include the forming tolerances. Normally these 
cannot be considered to be less than ±1 in. Therefore concrete to be poured 
around ducts and penetrations should have permanent imbedded steel 
sleeves, and the tolerances or clearance limitations will therefore be on the 
sleeve itself rather than on the concrete; the concrete must be vibrated to 
ensure close joining between the sleeve and the concrete shield. 

(d) Testing Vendor-Supplied Materials. Quality control of all materials 
is essential during erection to ensure that materials received from the vendor 
are within the limits specified. If borated material is being used, for instance, 
the material must have at least the minimum boron content specified since 
that figure determines the proper shield thicknesses. With graphite, tests of 
conductivity and other properties must be run to ensure that the product is 
really graphite and not (for example) graphite particles bonded together with 
a cement. An impurity analysis should be run on samples of each material to 
ensure that the impurity level is within specifications, especially wherever 
impurities can be a detriment to shield performance. Impurities in graphite, 
for instance, accelerate its oxidation by hundreds of times at temperatures 
exceeding 800°F (the oxidation threshold). 

(e) Field Testing and Inspection. A shield cannot be erected success
fully without proper liaison with the erection crew. The shield is a 
three-dimensional structure to be erected from two-dimensional drawings. In 
some instances the blueprints are very difficult to interpret to obtain a 
three-dimensional concept. Thus someone knowledgeable with the shield 
design must be available to interpret the drawings. Inspectors are necessary 
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at all phases in the erection of a shield to ensure that tolerances are held and 
directions are followed. 

Radiation surveys of the completed shield system serve as the proof-test. 
For power reactors surveys are usually conducted first at low power, then at 
one or more intermediate levels, and finally at full power. Detailed surveys 
are made in each instance to ensure that design criteria are met. Results of 
several of these surveys are discussed later in this chapter. 

10.2 FAST BREEDER: ENRICO FERMI 

The Enrico Fermi reactor is a prototype of the sodium-cooled fast 
breeder concept. Shielding of a fast reactor system poses some special 
problems that thermal systems do not have: 

1. Leakage of fast neutrons into the shield is high because fast-neutron 
cores operate at high power density with relatively thin breeder blankets. 

2. The neutron leakage spectrum is harder, it peaks between 50 and 500 
keV. 

3. The absence of a thermal-neutron peak makes the secondary gamma-
ray problem more complex because of the increased importance of 
resonance-neutron absorption. 

4. The system components are more subject to radiation damage. 
5. Moderating materials are not usually allowed within the reactor vessel 

because of safety considerations. 
6. Liquid-metal coolants reach a high specific activity, which poses the 

double problem of shielding the coolant system and contending with the 
high temperatures. 

An unusually detailed shield test program was carried out on the Enrico 
Fermi reactor because of its prototype nature. Aside from obtaining 
operating data to ensure that the shield system would permit safe operation 
up to the maximum design power level of 500 Mw(t), the test program was 
also aimed at getting sufficiently accurate data to make meaningful 
comparisons between calculations and measurements. Because of the 
detailed test program and the unusually complete documentation, we will 
describe the design features of this system in detail and limit discussion of 
other reactor systems to their unusual features. The following discussion of 
the Enrico Fermi shield system is taken from the shield design report by 
Beaudry, Hungerford, Montey, and Chaltron^ and the report on the shield 
test program by Beaudry.^ 
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The plant shielding can be classified in two main categories: the shield 
system for the reactor and primary coolant systems in the reactor building 
and the shield system for the service and fuel-handling systems in the various 
auxiliary buildings. The shield for the reactor is discussed in detail in 
Sec. 10.2.3. A general description of the plant is given in the next section. 
General information on the shield design of fast reactor systems is given by 
Hungerford,'* including brief descriptions of the shield systems of other fast 
reactors: Experimental Breeder Reactor No. 1 (EBR-1),^ Experimental 
Breeder Reactor No. 2 (EBR-2),* Rapsodie,'' Dounreay,^ and the BR-5. ' 

10.2.1 The Reactor Plant 

The Enrico Fermi Atomic Power Plant reactor* ° is a sodium-cooled fast 
breeder designed for a maximum power of 430 Mw(t). A plot plan showing 
the various supporting facilities is shown in Fig. 10.1, and an elevation of the 
reactor containment vessel is given in Fig. 10.2. 

The reactor vessel and its associated structures are shown in perspective 
in Fig. 10.3. The stainless-steel reactor vessel is composed of four parts: 
lower reactor vessel, transfer-rotor container, upper reactor vessel, and 
rotating shield plug. The entire vessel is located in the lower compartment of 
the reactor building, below grade, in a nitrogen atmosphere within the 
primary shield tank. 

The reactor vessel contains the reactor core, which is composed of fuel 
and the inner-radial-blanket and outer-radial-blanket subassemblies. 
Liquid-sodium coolant flows into the reactor vessel through three equispaced 
3 5-cm-diameter nozzles. The sodium flows upward through the 
o u t e r - r a d i a l - b l a n k e t subassemblies and through the core and 
inner-radial-blanket subassemblies. Heat is extracted from each subassembly 
as the coolant flows upward into the upper sodium plenum. Sodium leaves 
the upper reactor vessel through three equispaced 76-cm-diameter nozzles. 
The hold-down mechanism, which is mounted on the rotating shield plug, 
is used to prevent the core and inner-radial-blanket subassemblies from 
being lifted by the rapid flow of sodium through the core. 

The reactor vessel is contained within a carbon-steel liner that is leaktight 
up to the coolant outlet lines and designed to carry any sodium leakage to 
detectors located at the bot tom. All this is contained within the primary 
shield tank, the space between the vessel wall and shield-tank wall being 
filled by the primary shield. The construction of the primary shield tank is 
such that an adequate height of sodium over the core will be maintained 
should the reactor vessel leak. 



FUEL-ELEMENT 
AND REPAIR BUILDING-

LAGOON SODIUM 
SODIUM CLEANUP .• ' M ' ' I • ' '. • ' SERVICE; 
AND STORAGE AREA ~ "' ' 

INERT- AND WASTE-
GAS BUILDING 

SODIUM 
GALLERY 

CAFETERIA AND 
AUDITORIUM 

CONDENSER 
DISCHARGE 

600,000-LITER 
POTABLE-
WATER TOWER 

POTABLE-WATER 
TREATMENT 

HEATING PLANT 

SERVICE-WATER 
TREATMENT 

VISITORS H LAGOON 
1 PARKING 

ELECTRICAL 
] TRANSMISSION LINES r j 

CHART H O U S E - ^ X jAP 
STATION 

Fig. 10.1—Enrico Fermi plot plan. (From Beaudry.^) 

LAKE ERIE 

X 

5 
D 
D w 
CO 

o 
z 

to 



530 REACTOR SHIELDING FOR NUCLEAR ENGINEERS 

-22 M-

EOUIPMENT DOOR 

GRADE 

THROTTLE VALVE 

E.M. FLOWMETERS_L 
> 

PUMP DISCHARGE_' 

SECONDARY 
SHIELD WALL-J-E 

SECONDARY SODIUM 
PIPING 

180 M ELEV. • 

'EARTH 
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The machinery dome, which is attached to the top flange of the primary 
shield tank, consists of two parts: (1) the lower machinery dome, which 
forms a sealed enclosure over the top of the primary shield tank, and (2) the 
upper machinery dome, which contains the aluminum energy absorber, the 
control mechanisms, and other plug-mounted equipment. 

The reactor is an assembly of 870 removable and, to an extent, 
interchangeable units, all assembled on a square lattice unit spacing of 6.83 
cm and contained in the lower reactor vessel. 

The fuel subassemblies, which also contain the upper and lower axial 
blankets, occupy a region (roughly cylindrical) in the center of the lattice. 
The entire core region is about 79 cm in diameter and 79 cm in height, and 
6ach axial blanket section is 43 cm in height. Together the core and the 
radial and axial blanket regions approximate a cylinder 203 cm in diameter 
and 178 cm in height. 
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The reactor is controlled by two operating rods and eight safety rods. 
Fission counters and ionization chambers for monitoring the neutron flux 
are located in the six neutron-counter tubes embedded in the graphite shield 
that surrounds the reactor vessel. An Sb-Be neutron source is located at the 
core-blanket interface to maintain a sufficient flux for control purposes 
during reactor start-up and in the shutdown condition. 
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The heat-removal system comprises three primary coolant loops and 
three secondary coolant loops. Heat removed from the reactor core and 
blanket by the primary sodium coolant is transferred to the secondary 
sodium coolant in three parallel intermediate heat exchangers located in the 
reactor building. The secondary sodium system transfers the heat to the 
steam and feedwater system in three once-through-type steam generators. 

A primary sodium service system, located in the shielded sodium service 
building, stores and purifies the highly radioactive primary coolant. The 
major components of this system are three storage tanks, a cold trap, a 
plugging indicator, and a primary-system overflow tank. 

A separate secondary sodium system (for which shielding is unnecessary) 
is located in the steam-generator building. Both systems are blanketed with 
argon gas. 

10.2.2 Shield Design Criteria 

The design criteria for the shield system include limitations on the 
biological dose, radiation damage to materials, and radiation heating. 
Maintenance philosophy and safety were also considered in establishing these 
criteria. 

(a) Biological Dose. A maximum dose rate from both neutrons and 
gamma rays was set at 0.75 mrem/hr for all unlimited access areas. Based on 
a 40-hr work week, this is 30% of the average weekly exposure permitted by 
federal regulations*' governing workers in nuclear facilities. 

Many areas of the reactor plant do not need to be occupied on an 
unlimited basis; consequently the shields for certain areas of the plant were 
designed for only limited access, i.e., access controlled and limited to 
specified time periods. The design criterion for these areas was based on 
estimates of the required working times. 

(b) Radiation Damage. Radiation-damage criteria were set for the 
stainless-steel reactor vessel, the graphite primary shields, and the various 
organic materials, such as gaskets and diaphragms. For concrete, it developed 
that radiation heating effects were more severe than damage effects, and 
consequently heating dictated the exposure limitation. 

On the basis of an expected 20-year plant life, a maximum fast-neutron 
fluence of 10^^ neutrons/cm^ (estimates indicated this value to be 
conservative) was used as the fast-neutron exposure limit of the stainless-
steel reactor vessel. This limitation was a principal factor in determining the 
thickness of the thermal shielding within the reactor vessel. 
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Energy storage through lattice distortion in graphite [Wigner effect)^ ^ 
becomes a problem at room temperature for fluences of the order of 
2 X 10^ ' neutrons/cm^. Studies of the Wigner effect in the graphite primary 
shield indicated that setting a minimum operating temperature of 127°C in 
the graphite would anneal out the energy storage for the expected fluences 
of 10*^ t o 4 X 10^1 neutrons/cm^. 

Most of the organic materials subject to radiation damage are in the 
auxiliary equipment, where the radiation sources are gamma rays from the 
spent-fuel assemblies and the primary sodium coolant. A dose limit of 10* 
rads over the plant life was set for organics except for a few cases that 
required more stringent limits, such as Teflon at high temperatures. 

(c) Radiation Heating Limitations. Concrete shields were limited to an 
incident-radiation energy flux* ^ of 4 X 10*° MeV cm'^ sec"*. This limit 
ensured that the temperature rise due to nuclear heating within the shield 
would not exceed 5.5°C. Local rises greater than this value can create large 
gradients that may cause thermal stresses that result in cracking, spalling, and 
void formation. 

Temperatures in excess of 93°C cause concrete to rapidly lose its bound 
water and hence decrease its neutron-attenuation properties. Therefore as a 
design criterion the maximum ambient temperature around the primary 
neutron shields of ordinary concrete was limited to 82°C with an internal 
maximum of 88°C. 

The maximum allowable temperature gradient in all shields was limited 
to 73°C/m to prevent excessive thermal stresses. Concrete used only for 
gamma-ray shielding was allowed a temperature limit of 182°C. The 
temperature limit for serpentine concrete shielding was set at 445°C. 

(d) Remote-Maintenance Consideration. Maintenance considerations 
were important in setting requirements for the shield system. These 
considerations had a strong influence on certain of the design details of the 
shields. Some areas in which inspection is necessary require shielded manhole 
access or other means of entrance through or around shields. Shields must 
allow the removal and handling of activated equipment by remote means. So 
that induced activity in these limited-access areas could be kept at a 
minimum, the neutron-flux-density limit was set at 10^ neutrons cm"^ sec"*, 
low enough to prevent significant activation of the equipment. 

The Fermi plant philosophy on remote transfer and maintenance of very 
large radioactive equipment was that the reactor would be shut down. The 
plant would be evacuated or all personnel sent to designated safe areas 
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except those necessary for the plant safety and those involved in the remote 
operations. This philosophy avoided the requirement for shielding all work 
areas, offices, etc. Remote maintenance of large equipment is an operation 
apart from the routine affairs of the plant and is necessary only a few times 
during the plant lifetime; therefore the expense of shielding every area was 
unwarranted. 

(e) Safety Design Standards. Precaution was taken in the design of the 
Fermi shields to ensure that the plant would be safe and also free from 
defects leading to unsafe conditions. Each shield design was analyzed from a 
safety point of view, including the designs for all penetrations for piping, 
cables, and ducts, to ensure that in the event of any predictable accident 
condition the plant would be safe. 

The graphite for the primary shield was specified as nuclear-grade 
graphite with acceptable physical properties between predetermined ranges. 
Dimensional tolerances of the graphite blocks were limited to about 2% to 
keep the total void volume in the primary shield at a predetermined value. 
Gaps between blocks of adjacent layers or rows were offset to minimize 
radiation streaming. All graphite within the rotating plug was canned in 
rectangular steel containers; weep holes were provided in the tops of the 
containers to allow gases to escape, and room was allowed within the cans 
for expansion under radiation. 

Concrete for shields had to meet density and strength standards, and no 
defects between various pours of the concrete were allowed. Curing periods 
up to 28 days were imposed on neutron-shield concrete to ensure proper 
hydration. All concrete and other shield structures underwent rigid 
inspection during erection. All concrete shields and other concrete in the 
compartments below the operating floor (which house the primary coolant 
system) were lined with a layer of steel to prevent spallation of the concrete 
and load shifting should a sodium leak occur in the primary sodium system. 

10.2.3 Reactor-Shield Systems 

The reactor shielding can be divided into three main sections: (1) the 
primary shield, located within the primary shield tank; (2) a secondary 
concrete shield wall that surrounds the primary shield tank; and (3) a 
biological shield that forms the operating floor and also surrounds the 
containment building. Elevation and plan views of these shields are shown in 
Figs. 10.4 and 10.5. 
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Fig. 10.4—Primary shield system. (From Beaudry et al. ) 

(a) Primary Neutron Shield. The primary shield system has three main 
parts: (1) a stainless-steel thermal shield within the reactor vessel, (2) a 
graphite and borated-graphite neutron shield outside the reactor vessel, and 
(3) a steel and graphite rotating-plug shield that fits into the top of the 
reactor vessel and acts as a biological shield. The upper part of the primary 
tank extends around the rotating plug and is also a biological shield 
containing steel as well as graphite. 
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The thermal shield is located between the breeder blanket and the vessel 
wall (Fig. 10.4) and consists of 304 stainless-steel bars and plates. Sodium 
coolant flows in the spaces between adjacent layers to remove the heat 
generated within the steel. The thermal shield is 30 cm thick in the lower 
region and 15 cm thick in the upper region. The functions of the thermal 
shield are: (1) attenuate gamma rays and reduce the heat load to the reactor 
vessel, (2) prevent radiation damage to the reactor vessel by lowering the 
energy of the high-energy neutrons by inelastic scattering, (3) act as a 
reflector and reduce the core leakage, and (4) protect the reactor vessel from 
thermal shocks caused by temperature transients in the coolant. 

The graphite shield is composed of layers of graphite and borated 
graphite (5%). The main portion is located outside the pressure vessel but 
inside the primary shield tank (Fig. 10.4). In conjunction with the thermal 
shield, the graphite shield is designed principally to reduce the neutron 
leakage to levels low enough so that material outside this shield will not be 
damaged or highly activated. The problems and costs of erecting the graphite 
shield led to the use of two block sizes, 33 by 33 by 10 cm and 30.5 by 15.2 
by 7.6 cm (with a 2% dimensional tolerance). All blocks were canned and 
stacked in staggered arrays. They were fitted together as tightly as possible, 
and in areas where it was necessary to maintain a rigid structure, the blocks 
were fastened together. 

Owing to the eccentricity of the reactor vessel with respect to the 
primary shield tank, the thicknesses of the graphite and borated graphite 
vary greatly, being about 86 cm wide at the narrowest part and about 
152 cm wide at the maximum. At an elevation corresponding to the central 
plane of the core, the minimum distance between the core center and the 
outer edge of the primary shield is 2.3 m and the maximum distance is about 
3.8 m. The basic conceptual design specified a 15-cm-thick layer of 5% 
borated graphite next to the reactor vessel followed by a 7.6-cm-thick layer 
of insulation. Adjacent to the insulation is a region of plain graphite of 
varying thickness. A final 15.2-cm layer of 5% borated graphite is located 
next to the inner surface of the primary shield tank. This design was 
arranged to provide a predetermined amount of neutron attenuation, which 
was established by the magnitude of the neutron flux leaving the reactor 
vessel and by the required neutron-flux levels on the outside of the primary 
shield. 

The original concept as described had to be modified in many details as 
design progressed to accommodate the necessary structural members, 
instrumentation, piping, and auxiliary systems. A cross-sectional view of the 
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actual shield at the approximate elevation of the reactor center is shown in 
Fig. 10.6. The designs of the reactor vessel, the associated sodium piping, and 
the primary-shield-tank arrangement were frozen at an early stage; these 
represented the best mechanical arrangement. Many large components were 
already fixed in position. In addition, many items were installed during the 
detailed shield design and construction, such as gas lines, instrumentation 

Fig. 10.6—Plan view of graphite-shield layout at 172-m elevation. (From Beaudry 
etal.^) 

tubes, heaters and cables, strain gages, thermocouples, pipe hangers and 
supports, and cable trays. Where possible, with these late design additions, 
advantage was taken to arrange components conveniently for shielding 
reasons. Such changes included the bending and routing of cables and gas 
lines, alterations in structural details, reduction in size, changes in gap 
size, etc. 

The presence of objects inside the primary shield tank caused local 
shielding problems by decreasing the amount of available shield material and 
creating streaming paths owing to the gaps that were allowed around these 
objects to accommodate thermal expansion and erection tolerances. It is 
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estimated that at least 500 separate regions occurred for which shielding had 
to be specially designed. 

Shielding of the primary sodium lines within the tank was very difficult 
since their large volume, combined with the additional insulation and 
expansion gaps, resulted in very large holes in the shield. A patch of extra 
borated graphite was installed outside the primary shield tank (but inside the 
secondary shield wall) to compensate for loss of shielding from voids. 
Borated-calcium "donut" shields were hung directly on the upper end of the 
sodium pipe and large blocks of steel were installed opposite the lower elbow 
to reduce neutron streaming along the pipes within the shield. Each of the 
six neutron instrument tubes created a 25-cm-diameter hole in the shield, 
which resulted in excess streaming up to the operating floor. As compensa
tion, large donuts of borated graphite were fastened to the upper ends of the 
tubes, and special blocks of graphite were cut to fit inside and around the 
electrical cables within the tubes. 

Although gamma rays were of little consequence in most areas of the 
graphite shield, the gamma rays formed by neutron capture in the upper 
portions of the reactor vessel and thermal shield were found to be of great 
importance at the top of the primary shield near the rotating plug. The 
entire upper section of the shield was filled with a mixture of steel shot and 
borated graphite (installed in special compartments) to attenuate the gamma 
rays to a level of 0.75 mrem/hr at the top of the shield (the operating floor). 
In certain regions where the shield was very thin, the boration was increased 
to 7%. The complexity of the upper shield design is illustrated in Fig. 10.4. 

The primary shield was designed so that it would not require any 
auxiliary or internal cooling. About 85% of the total nuclear heat in the 
shield (approximately 77 kw at 500 Mw reactor power) is generated in the 
inner layer of borated graphite. The location of the insulation is such that 
the thermal gradient is toward the reactor vessel; thus most of the heat 
generated is returned to the vessel and carried away by the sodium coolant. 
Very little heat is conducted through the insulation to the outer graphite 
regions. The heat generated in the outer regions is about 12 kw. It is 
conducted to the outside of the primary shield and removed by the subfloor 
ventilation system. 

The rotating-plug shield (see Fig. 10.4) serves both as a biological shield 
for the operating floor and as a means of access to the reactor vessel. The 
plug is 3.7 m thick, and its cylindrical surface has two steps or offsets. The 
top of the plug is slightly above the level of the operating floor; the bot tom 
is located in the upper part of the sodium pool so that nuclear heat 
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generated in the lower part of the plug will be removed by the primary 
coolant. The plug was designed to attenuate neutrons, primary sodium 
gamma rays, and gamma rays produced by neutron absorption in the steel of 
the plug to levels corresponding to an overall dose rate of 0.75 mrem/hr. 

The shell of the plug is made of stainless steel. A 45-cm layer of stainless 
steel is located at the bottom of the plug. This layer moderates the higher 
energy neutrons at the top of the sodium pool. Above the stainless steel are 
six 28-cm-thick layers of plain graphite capped by one 28-cm-thick layer of 
1.5 wt.% borated graphite. Each of the graphite layers is separated from the 
other by a 5-cm thickness of steel. The 1.8-m zone of plain graphite acts as a 
thermal column, which moderates the neutrons so that they are captured in 
the final layer of borated material. Directly above the layer of borated 
graphite is a 30-cm layer of carbon-steel gamma-ray shielding, which 
attenuates the high-energy gamma rays produced by neutron capture in steel 
and stainless steel. A 30-cm layer of stainless-steel insulating material and a 
28-cm cover plate of solid carbon steel complete the shield. The layer of 
insulation enables the plug to be maintained at a relatively high temperature 
without overheating the steel cover plate, which bears the weight of the plug. 
The graphite used was in the form of canned 7.6- by 7.6- by 28-cm blocks. 
Any large gaps or spaces between cans were filled with thin wedges of steel. 
Boron-steel castings were used in regions close to the access ports for the 
hold-down mechanism and offset handling mechanism to depress the 
neutron-streaming flux in these areas. 

The rotating plug contains a large number of penetrations and access 
passages to the interior of the vessel. Among these are the large bathtub-
shaped access passages for the fuel-handling mechanism and the large circular 
penetration for the core hold-down device and for the control- and 
safety-rod channels. Other smaller penetrations include access ports (plugs 
that can be removed to allow access to the interior of the vessel), the sweep 
mechanism (an instrument for ensuring that all fuel subassemblies are 
correctly seated), and surveillance tubes (small penetrations that allow the 
introduction of experimental gear or materials within the reactor). Shielding 
for the fuel-handling mechanism matches as nearly as possible the shielding 
in the main part of the plug. The very complicated annular void area 
between the plug and this shield required the construction of special shield 
rings and the minimizing of clearances. Patch shielding of steel and graphite 
was used above the plug in this area to reduce the streaming to acceptable 
levels. The hold-down mechanism also contains the control- and safety-rod 
channels. The hollow stainless-steel control- and safety-rod guide tubes 
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contain special shields of stainless steel and boron steel. Areas between the 
channels were partially packed with a special powdered shielding mix 
containing iron powder (34%), graphite powder (57%), and powdered boron 
carbide (9%) compacted to a density of 1.8 g/cm^. 

The core and blanket assemblies are transported into and out of the 
reactor through the exit pipe (see Fig. 10.3), which is an 18-cm-diameter 
tube that extends downward from the operating floor to the transfer-rotor 
container. Subassemblies stored there during reactor operation undergo 
fission and contribute to the dose in the operating floor. Gamma rays 
reaching this area during operation come from the sodium coolant and from 
neutron capture in upper portions of the reactor vessel. As the fuel 
assemblies are raised upward through the tube, their fission-product gamma 
rays become increasingly important. Figure 10.7 shows the design that was 
evolved to cope with these radiation sources. 

A shield plug, about 2.1 m long, fits into the top of the exit port, which 
is recessed about 20 cm into the operating floor. The plug remains in place 
except during fuel transfer. Shielding within the plug consists of 1.5 m of 
1.5% borated graphite capped by 0.6 m of steel. The shielding outside the 
plug consists of borated graphite, steel, lead, serpentine concrete, dry-pack 
serpentine, and ordinary concrete. Vertical streaming is minimized by a 
series of sliding borated-graphite rings located between the inner exit-port 
tube and an outer tube that is part of the primary-shield-tank structure. The 
rings are placed in alternating layers; the smaller rings are attached to the 
inner tube, and the larger rings are attached to the outer tube. Additional 
steel and lead shielding is located both above and partially around these 
disks, and a steel-and-graphite plug is tightly fitted inside the inner tube. 

Since the upper part of the exit tube must be heated during fuel transfer 
to prevent the sodium from freezing and clogging the valving, dry-packed 
serpentine aggregate is used for shielding in this area. A 0.6-m removable 
plug located on top of the exit port completes the special shield. 

(b) Secondary Shield Wall. The function of the secondary shield wall 
(Fig. 10.5) is to reduce the neutron-leakage flux coming from the primary 
shield tank to an average value of not more than 1 X 10'* neutrons cm~^ 
sec* within the equipment compartment, a level that will not appreciably 
activate the secondary coolant or the primary coolant equipment. 

The secondary shield wall is composed of prepacked ordinary concrete 
with a density of 2.3 g/cm^ and it has a lining of 1.3-cm steel plate on each 
side. The concrete thickness is mainly 76 cm, but it widens to 100 cm near 
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Fig. 10.7—Fuel exit-port assembly. (From Beaudry et al. 

the location of the transfer rotor. The increase in thickness here is necessary 
because when the transfer rotor is filled with spent subassemblies the 
neutron leakage from the primary shield in this area is of higher magnitude 
than the design leak^e value. 

A prepacked construction method whereby the aggregate is laid in first 
and the cement pressure-grouted into the a^regate was used to ensure 
uniformity in the density and Water content of the completed shield. Heavy 
reinforcing steel bars on a 15-cm mesh formed two planes of reinforcement 
for the secondary shield. 

A 5-cm-thick steel thermal shield was placed around the wall in the 
high-gamma-flux areas to prevent excess heating and drying out of the 



SHIELD DESIGN 543 

-PRIMARY 
SHIELD TANK 

STEEL SLEEVE^ 

PIPE INSULATION^ 

,V, 'CONCRETE ••:.», 4 ^ . ^ 

•COOLING GAP 
BIOLOGICAL SHIELD-— 
SMALL AIR HOLE 

•GAP FOR COOLING 

// /V // // // // yTh' 

l - r r ^ 

-CONTAINMENT 

CALCIUM BORATE 

••-THERMAL SHIELD 
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concrete by gamma rays emitted from the sodium. Cooling was accom
plished by ducting the lower building ventilation system to the 12.7-cm gap 
between the wall and the thermal shield. 

Special shielding problems were created by the various penetrations of 
the secondary shield wall for the primary coolant inlet pipes, primary 
sodium overflow pipe, gas lines, and electric cables. Electric- and gas-line 
penetrations were kept small; they pierced the wall at angles close to 
tangential with the primary shield tank. The 76-cm-diameter sodium exit 
lines pass under the shield wall and require special shielding within the 
reactor compartment and in the areas where they penetrate the floor of the 
equipment compartment. Because of mechanical considerations, the sodium 
inlet lines were required to pass through the shield wall in directions nearly 
perpendicular to the wall's surface. 

The design of a typical sodium-pipe penetration through the secondary 
shield wall is shown in Fig. 10.8. The penetration contains not only the 
primary sodium pipe but also its outer containment pipe and an annular 
cooling gap. Cooling is required within the penetration to remove the nuclear 
heat deposited in the steel through the pipe insulation so that the concrete 
wUl not become overheated. Neutron streaming through the annular void 
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regions was minimized by placing donut shields around the primary sodium 
pipe-

Shielding for the primary sodium overflow line, which is a normally 

empty 15.2-cm pipe, was handled by passing the pipe through the shield at a 
45° angle with the horizontal. This arrangement ensured that the gamma 
radiation passing through the penetration would be scattered at least once 
through an angle more than 90°, which reduces the intensity by more than 
an order of magnitude. 

(c) Operating Floor and Radial Biological Shield. The biological shield 
for the operating room, i.e., the floor (see Fig. 10.4), and the radial 
biological shield surrounding the lower section of the containment building 
are designed to allow continuous access during full-power operation. The 
radial shield is ordinary concrete with a thickness of 2.1 m. The floor shield 
has a total thickness of 1.5 m (concrete and steel) in all areas except under 
the cask-car tracks, where the thickness is 2.1 m to support the 180-ton cask 
car. Magnetite aggregate with a density of 5.1 g/cm^ was added to the 
concrete to maintain a minimum dry density of 2.4 g/cm^ in the 
operating-floor concrete. As a result of detailed studies of the possible 
radiation paths, the steel plate on the underside of the floor varies in 
thickness from 8.9 to 25 cm. The final design thicknesses at each location 
are shown in Fig. 10.9. Concrete with serpentine aggregate (density, 2.1 
g/cm^) was used for high-temperature areas around the floor plugs for the 
primary heat exchange and the sodium pumps. The reduced density in the 
areas where serpentine concrete was used required that the thickness of the 
steel in the shield be correspondingly increased. 

There were numerous penetrations of the operating floor for the reactor 
nuclear instrumentation, primary sodium pumps, and heat exchangers and 
for electric cables, gas lines, and other miscellaneous equipment. Each 
penetration required a separate shield design, which was handled in a manner 
similar to the previously described special shield designs. 

(d) Intermediate-Heat-Exchanger and Sodium-Pump Shield Plugs. The 
outer shells of the primary sodium pump and intermediate heat exchangers 
rise through the operating-floor shield. The shells are stepped within the 
floor shield, and removable stepped shield plugs fit into the shells at the 
floor level. 

The equipment is designed so that there is a double annular gap around 
each of the plugs, which allows clearance for expansion caused by heat and 
permits removal for maintenance. A sketch of the shield design around a 
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heat exchanger is shown in Fig. 10.10. Since the offsets in the floor 
penetrations were fixed before a detailed analysis of the necessary shielding 
was made, a dual-purpose shielding material was needed to reduce to proper 
levels both the neutron and gamma radiation levels within the gaps and 
annuli around the plug shields. Boron steel (containing 1% boron) was 
chosen for this purpose and was installed below the stepped annuli around 
the intermediate heat exchanger. Plain carbon steel was used around the 
sodium-pump floor penetrations. 

Because of high temperatures in this area, each of the three inter
mediate-heat-exchanger plugs and three pump plugs were filled with 
dry-packed serpentine. A 15.2-cm layer of steel shot was added to each 
pump plug for additional gamma-ray shielding. 
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Fig. 10.10—Sketch of intermediate-heat-exchanger shield plug. (From Beaudry et al. ) 

(e) Primary Sodium-Pipe Shields. Special considerations were given to 
the problem of neutron leakage from the 76-cm-diameter primary sodium 
pipes. A calcium borate mineral with the approximate formula 2CaO • 
3B2O3 • 2H2O in an asbestos matrix (trade name Sigma K) with a density 
of 1.1 g/cm^ was chosen as shielding for these lines. This material contains 
12 wt.% boron and withstands temperatures up to 1100°C in high-radiation 
environments. 

The problem of designing a proper pipe shield was complicated because 
the pipes were surrounded by 0.9-m-diameter secondary containment pipes 
for protection against a sodium leak. Other factors in the design of the 
shields for these pipes were the type and design of insulation, heaters, and 
construction gaps. Allowances for pipe movements due to thermal expan
sions had to be considered. The thickness of the calcium borate around the 
three 76-cm pipe loops varied from 23 to 28 cm. The design of these shields 
is shown in Fig. 10.11. Four donut or ring shields of calcium borate were 
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Fig. 10.11—Calcium borate shield for primary sodium pipe. (From Beaudry et al}) 

installed directly on the pipe and on its containment to prevent neutron 
streaming through the annuli around the pipes. 

(f) Shield Systems for the Auxiliary Facilities. The auxiliary facilities 
requiring shielding are the fuel and repair building, the sodium service 
building and its associated pipe tunnel, the inert- and waste-gas building, the 
secondary sodium galleries, and the control building. 

In these areas shielding against gamma rays only was required. Most of 
the shields were of ordinary concrete, but steel shot, steel plate, sand, gravel, 
and lead were used in special situations. Design criteria and construction 
considerations for these auxiliary facilities parallel those of the primary 
reactor shields and will not be described here. 



548 REACTOR SHIELDING FOR NUCLEAR ENGINEERS 

10.2.4 Shield Costs 

The type of material was an important consideration for each shield, and 
the cost was highly influential in the final selection. 

The main shield materials were ordinary concrete, steel, stainless steel, 
lead, and graphite. The more unusual or exotic materials used were 
(1) magnetite and serpentine aggregates in concrete, by themselves, or in 
mixes in a dry-packed condition; (2) steel shot; (3) boron steel; (4) boron 
carbide; (5) borated graphite (boron carbide in graphite); (6) calcium borate; 
and (7) uranium (depleted). Each material was selected on its merits for the 
intended use. Earth, sand, and gravel were used to advantage. 

The total cost of all shields ($5,581,300) was approximately 5.5% of the 
entire cost of the project. Of this amount, $1,000,000, or 18%, was for 
research and development. The remainder ($4,581,300) was for the 
construction of the shields. The shield research and development cost was 
slightly more than 3% of the research and development cost for the entire 
plant. 

Table 10.1 shows a breakdown of the shield costs for the Fermi plant. 

10.2.5 Calculational Techniques 

The calculation of neutron attenuation presented the greatest uncertain
ties in the shield design and followed the availability of improved transport 
techniques. The original attenuation calculations were done before 1960 
with removal theory. The design of the secondary shield wall is an example 
of the application of removal theory and shows the conservatism incorpo
rated. When the thicknesses of concrete required to reduce the flux in the 
equipment compartment to lO'* neutrons cm"^ sec"' were determined, 
calculations along various paths (see Fig. 10.12) indicated concrete thick
nesses ranging from 81 cm at 0° (opposite the thin primary shield tank) to a 
maximum of 100 cm at 180° (opposite the transfer rotor). An average 
thickness of 91 cm was chosen for the final design except for the north wall 
opposite the transfer rotor, which was set at 100 cm. In the final design 
stages, the AIM-6 diffusion-theory code*'* was primarily used with some 
checks being with the NIOBE' ^ numerical integration, the TDC' * (two-
dimensional Sn—Pi), the DTK' ' ' (one-dimensional S„—Pj), and the 
CRAM' ^ (one- and two-dimensional diffusion theory) machine codes. 
Monte Carlo or the removal-diffusion techniques, which are used in design 
work today, were not used since the state of the art did not appear 
sufficiently advanced at the time. 
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Table 10.1—APPROXIMATE SHIELD COSTS, ENRICO FERMI 
ATOMIC POWER PLANTt 

Area Item Cost 

Reactor building 

Auxiliary facilities 

Plant total 

Concrete, poured 
Concrete, prepacked 
Steel plates and sleeves 
Primary-shield-tank shell 
Primary-shield-tank graphite 
Reactor-vessel thermal 

shield (stainless steel) 
Offset-handling-mechanism 

shielding 
Rotating-plug shielding 
Sodium-pump plug shields (3) 
Intermediate-heat-exchanger 

plug shields (3) 
Calcium borate pipe shields (3) 

Total reactor building 

Concrete 
Steel 

$ 45,000$ 
113,200 
294,000 
110,000 

2,200,000 § 

137,500 

26,200 
235,000 
234,000 

395,000 
280,000 

14,070,800 

398,500$1I 
112,000 

Total auxiliary shields 1510,500 

Total material and erection 4,581,300 
Research and development 1,000,000** 

Grand total shield costs $5,581,300 

tFrom Beaudry et al} 
$ Includes forming and reinforcing steel. 
§About $1,750,000 of this amount is for the removal of subgrade 

graphite and its replacement with high-quality material. This procedure 
was very much more expensive than the original installation. 

f Includes prorated additional structural costs owing to the presence of 
the shield. 

**Prorated from total research and development costs. 

Generally the AIM-6 diffusion code was used with the 18-group 

neutron-cross-section set of Mills' ^ which was revised and updated. 

Occasionally the newer CRAM diffusion code was used, in both one and two 

dimensions, with a special 24-group set of cross sections. Little attempt was 

made to investigate the effect of different cross-section sets or the 

energy-group structure. It was felt that errors due to the calculational 

methods or uncertainties inherent in the mock-up of the physical problem 
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would override errors due to the nuclear cross sections since diffusion theory 
uses the approximation of isotropic scattering. It should be pointed out, 
however, that, for deep-penetration calculations with the modern transport 
codes that allow for anisotropic scattering, the result is very sensitive to the 
nuclear cross section. 

Most of the calculations were one-dimensional, but in later work some 
two-dimensional CRAM calculations were made. It was not possible to 
mock-up the entire primary shield in a single two-dimensional problem 
because of the large size and asymmetry of the system. A simplified 
computer model used in cylindrical geometry calculations is shown in 
Fig. 10.13. The corresponding regional descriptions and material densities 
are shown in Table 10.2. This model represents a section of the primary 
shield from the core center upward to the rotating plug and outward to the 
primary shield tank through the narrowest part of the graphite shield. The 
safety rods are assumed to be in their raised positions above the subassembly 
handling heads. 

Neutron streaming through the various shield penetrations, such as pipes, 
ducts, and offset plugs, was a potential hazard that required considerable 
design study. In general, the streaming equations for the various geometries 
were used, but they were modified with the Fisher^ ** formula to include the 
effects of scattering. These streaming equations for the various geometries 
are tabulated by Hungerford.^ Gamma-ray attenuation was calculated with 
point kernels and ray-tracing techniques as described by Rockwell.^ ' 

Some of these techniques were programmed for computer calculations 
for more detailed analysis, such as determining the optimum steel and 
concrete requirements of the operating floor at various locations, as shown 
in Fig. 10.9. 

For this study the below-floor primary system was divided into 
radioactive sources of several different geometries. A computer program was 
written which calculated the radiation levels at various positions on the 
operating floor through the shield. The program calculated the contribution 
from each source and summed overall sources at each point on the floor. The 
points were located on a grid system of radial lines marked every 10 
between 0° and 360° starting at north and circumferential lines that were 
about 0.91 m apart. The results of the computer program were used to 
determine the final balance between concrete thickness and steel thickness in 
each broad area. 
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Tabic 10.2—REGIONAL DESCRIPTION AND COMPOSITION OF REACTOR ZONES FOR (»MPUTATIONSt 

Zone 
number 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 

Zone name 

Core 
Control- ani] safety-rod region 
End gap 
Axial blanket 
Safety-rod region of blanket 

Radial blanket 
Axial gap 
Handling heads 
Safety rods and hold-down 
Hold-down (outer region) 

Hold-down (inner region) 
Safety rods (poison section) 
Steel shield bars 
Steel thermal shield 
Sodium plenum 

Steel thermal shield 
Hold-down column 
Safety rods (poison section) 
Safety rods (poison section) 

Borated graphite 
Plain graphite 

'"V 

0.00360 
0.00215 

0.000039 
0.000025 

0.000066 

Number dcnsiti 

"«u 
0.009632 
0.006164 

0.01101 
0.00705 

0.019 

Mo 

0.0035 
0.00223 

0.0008 
0.00051 

0.0013 

ies for isotopes, 10^* 

Zc 

0.00196 
0.00125 
0.00172 

Fe 

0.0148 
0.0141 
0.017 
0.014 
0.0194 

0.0158 
0.017 
0.017 
0.018 
0.00043 

0.023 
0.0219 
0.0721 
0.0648 

0.0632 
0.0020 
0.0085 
0.0098 
0.085 

atoms/cm^ 

Na 

0.0106 
0.0136 
0.0179 
0.0139 
0.0148 

0.0092 
0.0189 
0.0189 
0.0172 
0.0223 

0.0172 
0.0161 
0.0034 
0.00584 
0.0236 

0.0063 
0.023 
0.0198 
0.0009 

Natural 
Boron 

0.0012 

0.0104 

0.0104 

0.0104 
0.0104 

0.0045 

c 

0.0769 
0.0803 

tFrom Beaudry.^ 

10.2.6 Comparison of Measurements and Calculations 

The shield test program for the Enrico Fermi reactor plant was unusually 
complete and detailed because of the prototype nature of the reactor. The 
test program principally covered regions inside the reactor building, and the 
major emphasis was on neutron measurements, although the initial emphasis 
was in measuring the induced ^' 'Na activity because of its importance in the 
overall plant design. 

Neutron measurements were made throughout the reactor vessel and the 
primary shield tank. Threshold detectors and ^ ^ ^ U and ^ ^ ^ U fission foils 
were used in the core and axial and radial blankets. Neutron fluxes were 
measured in the upper sodium pool up to the bottom of the rotating plug. 
Vertical ^ ^ ^ U fission distributions were obtained at the side of the pool in a 
surveillance tube near the reactor-vessel wall. A temporary instrument 
thimble located near the center of the pool was used to obtain vertical 
traverses ( " ^ U, ^ 3 5 y , 2 3 6 y 2 a 8 y , 2 3 9 p^^ ^nd ^ ^ " Pu) with both foils and 
absolute fission counters. In the primary graphite shield, both 2 3 s y f̂ ĵ g ^^^ 
various neutron detectors were used. Vertical distributions were obtained 
from the flex-leg regions (LRV) up to the machinery deck (in the 
surveillance tubes) or up to the operating floor (in the neutron-counter 
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tubes). The neutron-flux levels in the reactor compartment (between the 
primary shield tank and the secondary shield wall) were measured at 33 
locations with ^^^V foils and at one azimuthal position with a fission 
counter and a spherical moderating dosimeter. 

At various times after criticality, radiation surveys were made through
out the entire above-floor area of the reactor building, including the rotating 
plug and machinery dome, and throughout the various service buildings. 

The gamma-ray surveys were conducted with area survey monitors. The 
neutron surveys used portable proton-recoil counters, BF3 counters, and a 
set of multisize spherical polyethylene dosimeters. In general, the detecting 
instruments were capable of measuring radiation levels above 0.01 mR/hr for 
gamma rays and 0.02 to 0.05 mrem/hr for neutrons. 

Although a large number of measurements were made and compared 
with calculations, we will summarize them with a very general comparison in 
the following section and with a few detailed comparisons subsequently. 

(a) Overall Comparisons. No shield regions were found to be underde-
signed, but some areas were found to be significantly overdesigned, which 
was to be expected. A summary of the principal test results is shown in 
Table 10.3. The original design calculations for the ^^Na and '*' A activities 

Table 10.3—SUMMARY OF PRINCIPAL RESULTS OF THE ENRICO FERMI 
SHIELD TEST PROGRAMt 

Original design Most recent 
Measured, calculation, calculation, 

^Ci cm'' Mw(t)"' juCi cm'' Mw(t)"' A'Ci cm'' Mw(t)' 

67 100 76 
0.004 0.034 0.006 
0.0017 0.3 0.0014 

<3X10"* 4 X 1 0 " ' 
No radiation measured above reactor-building floor at 110 Mw(t). 

Measured and calculated dose rates agree within a factor of 2. 

Measured values within 50% of calculated values. 
Measured values are less than 1/10 of calculated values. 
Measured values higher than calculated by 50% (in reflector). 
Measured values within a factor of 3 of calculated values. 
Measured values within a factor of 2 of calculated values. 
Measured values less than original calculations. 
Measured values less than original calculations. 

Sodium-24 activity 
Sodium-22 activity 
Argon-41 activity (STP) 
Secondary ^*Na activity 
Radiation streaming 
Component activation in 

reactor vessel 
Uranium-235 fission rates: 

Sodium pool 
Transfer rotor 
Radial blanket and reflector 
Neutron-counter tubes 
Foil-sample tubes 
Reactor compartment 
Equipment compartment 

tFrom Beaudry. 
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were extremely conservative, but later more careful calculations with better 
data produced good agreement. In general, with the complexities involved, 
the overall agreement can be considered good. In spite of concern about 
radiation streaming, nothing significant was detected on the operating floor. 
The principal reason for overestimating streaming was undoubtedly due to 
the original use of estimates of the radiation levels underneath the rotating 
plug which were too high. In the early calculations of neutron streaming, a 
neutron-flux value of 2 X 10 ' ^ neutrons cm"^ sec"' under the plug was used, 
which is equivalent to 4 X 10 ' ° neutrons cm"^ sec"' Mw"'. The best present 
estimate of the neutron flux at the base of the plug is about 4 X 10^ 
neutrons cm"^ sec"' Mw"', a factor of 1000 lower. Secondary reasons were: 
(1) the use of conservative streaming formulas and (2) the assumption of 
gaps larger than those which actually existed. 

(b) Measurements in the Temporary Instrument Thimble. Vertical flux 
traverses with ^ ^ » u , ^ ^ 9 p^^ ^j^^ 2 3 s ̂  fission counters were made through 
the temporary instrument thimble (see Fig. 10.14). This instrument thimble, 
which extended down the vertical axis of the reactor core, replaced the 

HOLD-DOWN AND SAFETY RODS 

FUEL-HANDLING MECHANISM. 

REACTOR / 
COMPARTMENT 

Fig. 10.14—Elevation of primary shield system showing detector locations. (From 
Beaudry.') 
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Fig. 10.15—Plutonium-239 fission distribution in the temporary instrument thimble. 
(From Beaudry. ) 

central safety rod. The thimble, which was 5 cm in diameter, was sealed 
against sodium at the bot tom and open to the containment building at the 
top. Comparisons between the measurements and two-dimensional CRAM 
calculations for the ^^^Pu and ^ ^ s y counters are shown in Figs. 10.15 and 
10.16, respectively. All measurements and calculations were normalized to 
the same value at the core center. In the CRAM calculations the 24-group set 
previously mentioned was contracted to 9 neutron groups. The sharp dip in 
data at about the 400-cm distance is caused by a piece of steel that 
completely surrounds the upper part of the thimble. The agreement is 
generally good, with ^^^Umeasurements bemg in better agreement with the 
calculations than the ^^^Fu data. This probably results because the ^ ^ ^ p ^ 
cross sections in the thermal and near-thermal ranges cannot be as well 
represented as ^^^U with the small number of neutron groups that were 
used. It is probable that, if the calculations were carried beyond the 280-cm 
mark, the agreement would become poor since diffusion theory would 
become an inadequate model at deeper penetrations, particularly around a 
heavy absorber such as steel. 
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Fig. 10.16—Uranium-235 fission rate in the temporary instrument thimble. (From 
Beaudry. ) 

A large number of one-dimensional calculations were made with the 
AIM-6 and CRAM codes, and a number of cross-section sets were used. 
Figure 10.17 shows the results of some of these one-dimensional calculations 
in comparison with the measurements (curve B) and the two-dimensional 
CRAM results (curve A), the measurements and CRAM results being the 
normalized values from Fig. 10.16. In the 18-group AIM-6 calculation 
(curve E), the handling head and hold-down regions were considered to be 
described simply by a 20-cm-thick section of steel and sodium, followed 
directly by a large thickness of pure sodium. This hold-down region is much 
thinner than the actual hold-down region, and no attempt was made to 
include the safety rods. This is the type of problem mock-up that had 
originally been used in the majority of the shielding problems run for the 
shielding design of the upper vessel regions (e.g., the rotating plug, shot 
tanks, and upper reactor vessel). Figure 10.17 shows that the use of this 
simplified type of geometry is quite conservative. The lack of agreement 
between this calculation and the measurements appears to be caused more 
by an inadequate geometrical mock-up than by the use of spherical 
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Fig. 10.17—Uranium-235 fission-rate traverse in the temporary instrument thimble. 
(From Beaudry.*) 

geometry. This is more evident from curves C and D of Fig. 10.17, which 
were obtained from spherical 18-group AIM calculations. In each of these 
and in the two-dimensional CRAM problem (curve A), however, the same 
detailed hold-down configuration was used. The geometric model used for 
calculating curve D included the safety rods with their full boron content, 
whereas the geometric mock-up for curve C omitted the boron altogether. 
The strong poisoning effect of these safety rods accounts for the much lower 
values of curve D, and this is apparent for the entire distance from the axial 
blankets out to the rotating plug. Although the fission-rate data shown in 
curve C are most different from the measured data in the region of the safety 
rods, they match the measured response (curve B) farther out in the sodium 
pool (all the way to the rotating plug). 

A more complete study of the differences obtained from various 
cross-sectional sets also involved such items as mesh spacing, flux-
convergence criteria, group-collapsing schemes, and possible differences 
between the AIM-6 and the CRAM codes. Spherical geometry was used. As 
tentatively found by the study, there were essentially no differences between 
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the results from the AIM-6 and the CRAM codes per se. However, the use of 
the various cross-sectional sets did result in great differences in the ^ ^ ^ U 
fission response. Again these differences first became pronounced above the 
axial blanket, where the twin effects of spectrum softening and the presence 
of large amounts of steel are encountered. 

All these problems have clearly demonstrated that a one-dimensional 
problem mock-up can be quite incorrect in those regions of the hold-down 
where there are abrupt changes in absorbing materials. The general shielding 
calculations (as exemplified by curve E of Fig. 10.17) used in the basic shield 
design appear to be on the conservative side even without considering any 
additional correction factors. Note, however, that this entire discussion has 
been based primarily on the ^ ^ ^ U fission rate, which is mainly an index of 
thermal and near-thermal fluxes. 

(c) Reactor-Compartment Measurements. The neutron flux in the reac
tor compartment next to the secondary shield wall is the source term in the 
design of that shield. A number of measurements with a fission counter and 
a spherical dosimeter were made directly underneath manhole No. 2 (see 
Fig. 10.5). All the measurements by the two different instruments were in 
close agreement, but no detailed comparisons with calculations were made. 

In a number of regions of the reactor compartment, neutron-flux 
measurements were made with ^ ' ^ U foils. When the measured foil counts 
were converted to fluxes on the inside of the secondary shield wall with an 
adjusted AIM-6 spectra, all were within the maximum design value of 10^ 
neutrons cm"^ sec"'. 

10.3 FAST BREEDER: DOUNREAY FAST REACTOR 

This British power plant is contemporary with the Enrico Fermi plant, 
and the two plants share a number of design features. The Dounreay Fast 
Reactor (DFR) is a sodium—potassium-cooled fast breeder system; the 
reactor shield contains mostly graphite (pure and borated) and steel. The 
rotating top shield is designed to provide access channels for charging the 
core and breeder regions as well as eighteen 5-cm penetrations for control 
purposes. Figures 10.18 and 10.19 show the general arrangement and 
materials details of the rotating top shield. The removable top shield 
(Fig. 10.18) was not in place for the experiments we will describe. A 
material called Resilon, which is a hydrogenous resin-bonded glass fiber, is 
used in the top shield. 
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Fig. 10.18—General arrangement of the DFR shield. (From Adamson etal}^) 

Adamson, Judd, and McNair^ ^ report a study of the neutron flux in the 
top shield of DFR to test the validity of removal—diffusion theory in 
calculating the bulk shield attenuation for a fast reactor shield. Although the 
method had been applied successfully to large thermal reactors where the 
principal attenuating medium is concrete, it had not been applied to a 
relatively small fast reactor where the medium is principally borated 
graphite. We will describe some of their results for comparison with the 
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corresponding work shown in the preceding sections on the Enrico Fermi 
plant. 

10.3.1 Calculational Model for Bulk Shield 

The models of the core, blanket, and top shield used for the calculation 
are shown in Fig. 10.20. The Spinney removal—diffusion method and 

Fig. 10.20-
etal}^) 
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-Model of reactor and shield used for RASH D calculations. (From Adamson 

variations, including RASH E, are described in Sec. 4.9. At the time of this 
study (1964), the previous version, RASH D, was in use. The removal source 
is in effect the density of first collisions of neutrons born in fission. A 
discrete-ordinate calculation, TDC, ' ^ was used to define the boundary 
condition flux densities at the core—shield interface. The shield comprised 
regions 1 through 6 in Fig. 10.20. The one-dimensional RASH D calculation 
was done in infinite-slab geometry. 
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10.3.2 Measurements 

An experimental shield plug was designed to fit within close tolerance 
into the core charge hole of the top shield (Fig. 10.19) so that foils and 
fission chambers could, be mounted at appropriate positions in the shield 
plug and positioned in the core charge hole within the shield. Close-fitting 
blocks of shield material were assembled within the plug to match adjacent 
materials in the surrounding shield. Detectors are summarized in Table 10.4. 

Table 10.4—DETAILS OF MEASURED REACTIONSt 

Energy of neutron Means of 
Reaction flux involved measurement 

^^Al(n,a)^*Na Fast flux, threshold Activation of alu-
about 9 MeV minum metal 

*^ S(«,p)*^P Fast flux, threshold Activation of ele-
about 3 MeV mental sulfur 

^'^Th(M,/) Fast flux, threshold Thorium fission 
about 1.5 MeV counter 

Np(>',/) Fast flux, threshold Neptunium fission 
about 0.5 MeV counter 

^ ^ Mn(M,7)' ̂  Mn Thermal and epi- Activation of man-
thermal flux ganese foils, un

protected and in 
cadmium capsules 

' ' ' A u ( n , 7 ) " * Au 4.9 eV Gold sandwich foUs 

tFrom Adamson et al}^ 

Results for the ^^S measurements are given in Fig. 10.21, and for the 
^^Mn, in Fig. 10.22. We have picked these two since the ^^S results are 
typical of the fast-neutron fluxes and the ^^Mn of the thermal and 
epithermal fluxes. The ^ ^ S results (as well as ^ ^ Al, not shown) compare very 
well with the removal—diffusion approximation. Results of some earlier 
measurements reported by Smith^^ are also shown in Fig. 10.22, and they 
match the present data rather well. 

Agreement between the low-energy measurements with the removal-
diffusion calculations is poor, particularly in the upper regions of the shield 
and in air above the shield. This indicates an appreciable flux of neutrons 
above the top of the; shield which have not diffused through the shield but 
which streamed through the various ducts formed by control penetrations 
and are reflected back from above. 
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10.3.3 Effect of Streaming 

Adamson et al}^ attempted to estimate the streaming through the 18 
control ducts and the breeder charge hole (Fig. 10.19). Each duct was 
represented as a sink (negative source) at the end of the duct and a line of 
point sources along the duct axis. Age theory was used to obtain the 
distribution from each source in the surrounding medium. Since this is 
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applicable only in infinite homogeneous media, it was not intended to give a 
reliable estimate at interfaces between different shield regions and at the top 
of the duct. Thus the streaming estimate cannot be expected to give the 
characteristic hump at the graphite—steel or steel—Resilon interfaces. 
Nevertheless, the streaming estimate when added to the RASH D bulk shield 
result does agree well with the *^Mn measurements (and those for the gold 
resonance at 4.9 eV, not shown). In fact, Adamson et al. insist that the 
agreement for ^^Mn is fortuitous because of the imprecise nature of the 
streaming estimate. It does confirm, however, that streaming through the 
ducts vitiates the otherwise acceptable bulk shielding properties of the top 
shield. Had the attenuation of the top shield been of the same order as that 
of the streaming neutrons, it would have been no less effective and perhaps 
more economical. 

10.4 HEAVY WATER, NATURAL URANIUM: AGESTA 

The Agesta reactor is the first power-reactor prototype to be built in 
Sweden, and it has some extremely interesting features. It is also the first 
pressurized heavy-water natural-uranium reactor in the world. Most of the 
power produced is used for heating in a suburb of Stockholm. This reac
tor type is particularly important in countries not possessing uranium-
enrichment facilities since it uses natural uranium. The demand for D2O is 
expected to grow rapidly because of the desirability of this system in many 
countries. Comparisons of measured and predicted radiation levels at Agesta 
are reported by Aalto, Sandlin, and Krell.^^ 

10.4.1 Description of Reactor and Shield 

The reactor with cooling system, service facilities, and auxiliary 
equipment is installed in a series of underground caverns excavated in a rock 
outcrop, as shown in Fig. 10.23. The rock medium provides a great deal of 
natural shielding and containment. The design philosophy that led to the 
layout shown was to provide for full access to as much of the plant as 
possible even during full power. This led to the compartmented arrangement 
where systems are separated into functional units isolated by shielding from 
nearby units and accessible by shielded passageways. In such an excavated 
plant, there is an obvious premium on space; thus magnetite concrete was 
used in the main shields to conserve space. 
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Fig. 10.23—Agesta plant containment layout showing the relative positions of the major 
components in the reactor part of the plant. (From Aalto et al. ) 

A cross section of the reactor and the primary shields is shown in 
Fig. 10.24. The pressure vessel has an inside diameter of 4.55 m and a height 
of 4.68 m. The core has a diameter of about 3.6 m and a height of 3.0 m. 
The reflector layer of D2O surrounding the core is about 30 cm thick. 
Beyond the reflector are two steel thermal shields (5 and 10 cm) separated 
by cooling spaces. The steel pressure vessel has a wall thickness of 7 cm. 

The radial shield consists of a 2.2-m layer of magnetite concrete. 

10.4.2 Calculational Model 

Aalto et al.^'^ mention three sets of calculations: a first set of simple 
hand calculations in 1958 with which the shield dimensions were set; a 
second set using the British RASH removal—diffusion method several years 
later; and a set in 1955 based on the NRN method of Hjarne and 
Leimdorfer.^ ^ The latter is also a variation of the Spinney method and is 
described in Sec. 4.9.2. 
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From the geometry of the shield shown in Fig. 10.24 and our recent 
review of the Dounreay analysis, it will become apparent that attenuation in 
the radial direction is governed entirely by massive unbroken layers, and the 
removal—diffusion method should be adequate. In the axial direction, 
however, the large annular duct surrounding the pressure vessel should be 
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Aaltoefa/.^") 

important in determining the radiation levels above the reactor in the region 
of the control-rod drives. 

Radial NRN predictions were made for the first, second, and third rows 
of fuel elements nearest the shield to illustrate the diminishing influence of 
elements deeper in the core. These are shown for the thermal flux densities 
in Fig. 10.25 in terms of the ratio of the thermal flux density contributed by 
each row to the total at a distant point in the radial shield. The relative 
positions of the elements and their power contribution are shown in 
Fig. 10.26. The removal source from the third row of elements adds only 4% 
to the flux density and the second row contributes only 15%, even though 
rows 3 and 2 account for about 5X and 2X, respectively, the power in the 
first row. These results show clearly that the true power-density profile, 
particularly the density at the outermost regions of the core, is extremely 
important in obtaining an accurate calculation of the radiation penetrating 
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the shield. This is well known as an important source of error in shielding 
calculations. 

The actual power distribution in this case did deviate from the one on 
which the shield predictions were based, and it affected comparisons with 
attenuation measurements accordingly. 

10.4.3 Measurements 

This study was performed as a shield survey during commissioning of the 
plant. No special provisions had been made for locating detectors within the 
fixed shield; thus measurements were made only on available surfaces. This 
limitation accounts for the paucity of intermediate values in the radiation 
levels to be discussed. 
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The range of magnitude of fluxes to be measured is worth noting: 10* ° . 
Since reactor power could be varied from 10 kw to 50 Mw, a range of 
5 X 10^, the detector sensitivity range had to be sufficient to cover the 
remainder, about 10^. The limitation to available surfaces meant that the 
measurements were made mainly at the extremes of this range. 

For high neutron-flux densities, thermal and epithermal measurements 
were made by double-foil (gold—copper) and cadmium-ratio (manganese) 
methods. Sulfur, with its 3-MeV threshold, was used for fast-neutron-flux 
measurements. The low fluxes outside the primary shields were measured 
with boron counters. 

Gamma-ray measurements were made with glass dosimeters, ion cham
bers, and Geiger—Mueller detectors. 

Calibration foils on the outer face of the tank at the core midline 
(along line R in Fig. 10.24) served as power-level monitors. They also served as 
an automatic correction for the variation of neutron attenuation in the radial 
direction because of varying moderator temperature. Neutrons degrade to 
the temperature of the moderator, and a change from 28°C to 220°C alters 
the observed "thermal" flux by a factor of 3. 

Power distribution varied ±20% from the mean in the radial direction 
and was about 30% lower at the outer radius of the core than had been 
predicted. The axial distribution was asymmetrical; typically of reactors with 
top-mounted control rods, the maximum in the flux occurs well below the 
midplane of the core. The power level at the top of the core was 20% lower 
than predicted. These deviations translate directly to the measurements. 

One additional source of error is the detailed structure near the detector. 
In this instance some thermal insulation and steel conduit used to support 
the detector were not included in the predictions, but they may have 
affected the thermal flux measurement by a factor of 2. The predicted radial 
thermal flux densities are shown in Fig. 10.27. Only one measurement is 
shown (at the edge of the tank). The intensity beyond the concrete was 
below the minimum observable. The epithermal fluxes are similar and are 
not shown. 

The axial variation of the thermal flux density is shown in Fig. 10.28 tor 
two vertical lines: Aj and Aj in Fig. 10.24. The calculations (solid and 
dashed curves) apply to Ai and do not include an estimate of the streaming 
around the sides of the tank; this is shown separately, and obviously it 
controls the intensities above the tank in the same manner as was shown for 
Dounreay. The dotted lines in Fig. 10.28 connect the measurements. 
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Fig. 10.27—Predicted and observed radial thermal fluxes (line R, Fig. 10.24). (From 
Aaltoefa/.^*) 

Aalto et al?'^ do not describe their method for calculating the streaming 
(which agrees very well with the observed intensities). However, their 
mention of multiple reflections would indicate an albedo calculation 
possibly coupled with Monte Carlo (see Sec. 7.10.2). 

Gamma-ray dose rates are summarized in Table 10.5, and sulfur 
fast-neutron reaction rates (proportional to flux densities), in Table 10.6. 
The gamma-ray dose rate outside the pressure vessel is two to three times the 
predicted value, probably because of activation of the nearby steel from 
previous high-power runs. Since the shield design is very conservative, the 
only critical neutron intensities are those in the vicinity of the control-rod 
drives because these levels control servicing procedures. However, the 
original streaming estimate was in excellent agreement with the measure
ments; thus no additional problems developed. 

Aalto et al.'^'* conclude that, although local flux predictions often differ 
from observations by a factor of 2, these are easily accounted by the error 
sources mentioned. They also point out that the romplexities of a power 
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Fig. 10.28—Predicted and observed axial thermal fluxes (lines A, and Aj , Fig. 10 24). (From Aalto et al.' 



574 REACTOR SHIELDING FOR NUCLEAR ENGINEERS 

Table 10.5—AOESTA GAMMA-RAY DOSE RATESt 

Measuring line, def
inition of point 

Axial, upward [Ai) 
Control-rod mech

anisms 
Below the concrete 

lid 
Hall floor 

Radial {R) 
Outside pressure 

vessel 
Outside biological 

shield 
Axial, downward 

Not shown in figures 

Coordinate, 
cm 

200 to 570 

610 to 760 

810 

54 

290 

Level -1-7.1 
center line 

2 m above 
plane -1-7.1 

Predicted, 
mrem/hr 

(~io^)t 

(-10) 

<0.7 

3 X 10'' 

0.04 

Measured, 
mrem/hr 

7.5 X 10'* 

1.5 to 3.0 

0.2 

8 X 10'' 

<0.1 

1.1 X 10" 

2.3 X 10'' 

tFrom Aalto efaL^'' 
JNot comparable to the measured value because in the latter 

streaming effects dominate. 

plant coupled with the limitations on measurements make such a survey an 
inferior means for studying the accuracy of shielding prediction methods. In 
such a conservatively designed plant, only a gross design error resulting in 
excessively high fluxes would draw any attention. Thus the Agesta survey 
was a successful design verification that confirmed the original analysis in a 
highly satisfactory way. 

10.5 BOILING WATER: PATHFINDER 

Designed as a demonstration boiling-water-reactor plant, the Pathfinder 
plant was built near Sioux Falls. S. D., to supply 66 Mw(e) to the area power 
network. Start-up was in March 1964, and the reactor was shut down in 
September 1967 for repair of a condenser-tube break. Bjeldanes^^ reports 
that subsequent inspections in the reactor vessel disclosed failures in the 
steam separators and a baffle in the fuel hold-down structure. After various 
considerations of required repairs, plant size, and operating costs, the reactor 
was decommissioned, and the plant was later converted to a fossile-fuel 
system. 
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Table 10.6—AGESTA FAST-NEUTRON FLUXESt 

Measuring line, def
inition of point 

Axial, upward 
(Al and ^ 2 ) 

Bottom of the lid 
box 

Below the concrete 
lid: 

Al 
A2 

Radial (R) 
Thermal shield 
Outside the pressure 

vessel 
Outside the biologi

cal shield 
Axial, downward 

Below pressure ves
sel, center line 

Coordinate, 
cm 

60 

610 to 760 
610 to 760 

44 

54 

290 

Predicted by 
NRN 

1.45 X 10* 

(1 X 10"=)$ 
(1 X 10"^)$ 

2.85 X 10* 

7.27 X 10^ 

3.08 X 10"= 

S(np), 
dis g sec 

Measured 

(1.4 ±1.3) X 10* 

5 X 1 0 ^ 
(5 to 13) X 10^ 

(3.1 ± 1.3) X 10* 

(1.95 ± 0.10) X 10= 

< 5 X 10"^ 

(3.1 ±0.2) XIO^ 

tFrom Aalto et al. Fast-neutron fluxes are given as S(n,p) reaction rates. To 
2 , obtain 0 > 1 MeV for fission spectrum, multiply by (9 X 10 ). 

$Not comparable to the measured value in which streaming effects dominate. 

The following description of the design is taken from a shield-analysis 
report by HoU and Stephen.^'' The plant consists of four connected 
buildings: the reactor building, the turbine and control building, the 
fuel-handling and waste-disposal building, and the water-treatment building. 
A plan view of the operating floor is shown in Fig. 10.29. This plant layout 
evidently resulted from many iterations and reflects a good deal of planning 
for management of radiation problems. Each building may be characterized 
by its principal radiation source. The water-treatment building was to 
contain unused water and have no radiation sources. The reactor and 
fuel-handling buildings are controlled by active and spent fuel; however, the 
fuel-handhng building is also affected by activated corrosion products (called 
crud by the authors) in the used elements and equipment. Radiation levels in 
the turbine building were to be controlled by gaseous activation products 
from {n,p) reactions in oxygen of the water; levels were underpredicted here, 
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and this created the only unforeseen radiation problem in the plant. We will 
return to this problem in the discussion of the survey measurements. 

Figure 10.30 is an elevation of the plant showing the containment shell 
of the reactor building with the adjacent structures. The core is located 
below grade to take advantage of earth fill as shielding. The primary 
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FUEL-HANDLING 
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WATER-TREATMENT 
BUILDING 

REACTOR BUILDING 

Fig. 10.29—Pathfinder operating floor. (From Holl and Stephen. ) 

biological shield is ordinary concrete about 3 m thick. A clearance space of 
about 1 ft between the reactor vessel and the shield provides a water-cooling 
space. Penetrations for reactor controls and instruments are shadowed by 
91-cm-thick concrete plugs. Above the reactor a 5.5-m pool of water 
attenuates radiation to the operating floor. 

The turbine is recessed into the operating floor. Original plans called for 
restricting access (limiting working times) near the turbine. The control 
room and administrative offices are adjacent to the turbine room. 
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10.5.1 Calculations 

As with other systems described, the initial shield analysis for Pathfinder 
was done by hand from attenuation curves. The detailed calculations were 
done with fast-neutron removal theory and gamma-ray linear-absorption 
buildup factors. A point-kernel machine program was used that could 
adequately handle the large number of regions, materials, and compositions 
encountered in the design. Duct scattering was done with the S i m o n -
Clifford equations (Sec. 7.10.2). 

The list of radiation sources that must be considered in a boiling-water 
system is impressive. Gamma-ray sources in the core include those from 
prompt fission; delayed fission; capture (^^^U, ^^^U, zirconium in 
fuel-element cladding, and hydrogen); and inelastic scattering. Decay gamma 
rays from the shutdown core must be considered as a function of core 
history and time after shutdown for maintenance planning. 

Gamma rays from other materials include captures in iron and various 
activation products from the crud ( '^N, ' ' ' N , and ' ^ O ) , and potential 
activities from ' ^ N neutrons. 

The crud activity is a result of the high water velocity, which erodes 
activated species from the core and carries them throughout the system. The 
activity consists of ^^Fe, ^°Co, ^*Mn, ^^Cr, ^^Zr, and ^^Ni. Various 
assumptions were made for the buildup and plate-out of the crud in 
calculating the total gross activity. 

Two {n,p) reactions and related captures deserve further mention: 
1 ^0{n,py^N with a 7.3-sec half-life, 

i 6 ] ^ ^ i 6 o + ^ + -y (6IVIeV) 

80% include the gamma ray. The other reaction sequence, ^ ^0 (n ,p ) ' ^N, has 
an 8-MeV threshold and a very low cross section (7 jub), but 

I ' ^ N ^ j S - l - i ' ^ O ^ i ^ O - t - n 

with a 4-sec half-life; the beta has an energy of 3.7 MeV, and the neutron, 1 
MeV. The neutron can be troublesome since the nitrogen is carried by the 
water and steam to all parts of the system. 

There is also a capture reaction in * ^ 0 , producing ^^O, which has a 
29-sec half-life, 

1 ̂ O + n ^ » ' O - ^ 1 ^F-I-13 + 7 (1.4 MeV) 
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Calculated concentrations of ' ^ N , ' ^ N , and " O in the water and steam 
loops at full power were 7.4 X 10^, I X 10' ' , and 4.3 X 10^ atoms per 
pound of water or steam, respectively. Thus the dominant activity is ' ^N. 

Predictions were made for a detailed schedule of dose points and 
multiplied by a factor of 3 to include a safety margin. 

10.5.2 Survey Measurements 

Lewellen, Lacy, and Raby^^ report the results of radiation surveys made 
at 3, 20, 40, 60, 80, and 90% of full power. The large number of 
intermediate power levels was apparently run because some of the radiation 
levels were not expected to increase linearly with reactor power. Standard 
portable survey meters were used: a beta—gamma Gieger-tube probe and a 
BF3 neutron detector. 

Results of the radiation survey can be summarized as follows: Although 
many of the survey measurements differed somewhat from the calculations, 
no discrepancies related to radiation directly from the core. Normal 
overdesign (a factor of about 3 in intensity) of the primary shield prevented 
any radiation problems in the reactor building. The only serious discrepancy 
occurred in the turbine building, where intensities varied from 3 to 10 times 
the predicted levels near the turbine itself. Accordingly, a concrete wall 
2.4 m high by 9.1 m long was erected on the operating floor between the 
turbine and the administrative section of the building. The addition is shown 
in Fig. 10.31; the added attenuation in the direction of the administrative 
side ranged from 2.5 to 5, which reduced the radiation to desired levels. 

10.6 SHIP PROPULSION: N.S. SA VANNAH 

Important as safety is for fixed plants, it is doubly so for propulsion 
systems. A fixed-plant location is chosen for remoteness from high 
population density; a ship must berth at any deep-water harbor, frequently 
in a city's high-density area. 

The reactor plant of the N.S. Savannah was selected as an example of the 
pressurized-water type because safety considerations, weight, and space 
limitations on the shield presented a more difficult design problem than 
land-based power plants. In addition, a detailed set of measurements was 
made on the finished design under operating conditions. The following 
discussion of the reactor plant is mostly taken from the Smith and Turner 
shield design summary reports^ ^ '^" and the shield test report by Blizard, 
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Fig. 10.31—Shield wall and fence additions. (From Lewellen et al. 

Blosser, and Freestone.^* Bear in mind that the shield design dates from the 
mid-fifties. 

10.6.1 Description of Ship, Reactor, and Main Shielding 

The N.S. Savannah is a single-screw, combination passenger—cargo ship 
with an overall length of 181 m. She has a molded beam of 24 m and draws, 
when fully loaded, 9 m, displacing 20,000 tons. The vessel has three 
complete decks. A, B, and C (from top down), with platform decks at 
various levels. A promenade deck extends over A deck for about one-third of 
the ship's length; the forward end being slightly forward of amidships. The 
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promenade deck is devoted exclusively to public rooms and spaces; all 
passenger staterooms are on A deck. The passenger dining room and some of 
the crew spaces are on B deck. The remainder of the crew spaces are on C 
deck. Below on the smaller D deck various machinery and equipment are 
located. 

The Savannah reactor is the pressurized-water type, fueled with slightly 
enriched (4.4% ^^^U) UO2. The fuel is in the form of 1.08-cm-diameter 
pellets, clad in 0.089-cm-thick stainless steel, contained in bundles of 
stainless-steel tubes. The core is 229 cm long overall, with an active fuel 
length of 168 cm and an equivalent core diameter of 158 cm. Typically, an 
initial loading contains 312.4 kg of ^^^U and 6787.5 kg of ^^^U. The 
predicted lifetime of such a core is 52,200 Mwd (>750 days at full power). 

The primary shield for the Savannah reactor consists of an annulus of 
light water, 84 cm thick, contained in the primary shield tank surrounding 
the reactor. The water annulus is supplemented by lead in thicknesses from 
2.5 to 10 cm at the primary-shield-tank outer wall. Outside the primary 
shield tank are boilers, pumps, demineralizers, and other parts of the 
steam-production system. The core, pressure vessel, primary shield, and 
steam-production system are enclosed in the containment vessel, a 10.7-m-
diameter 6.3-cm-thick steel cylinder with hemispherical ends. The total 
length of the containment vessel is 15.4 m. Figure 10.32 shows a model of 
the containment vessel and the relative elevations of the various decks. 

The secondary shield is outside the containment vessel. Above the 
midplane of the containment vessel, the secondary shield consists of a layer 
of lead, varying between 12.7 and 15.2 cm in thickness, and a minimum of 
20 cm of polyethylene. Below the midplane of the containment vessel, the 
shield is primarily concrete in thicknesses ranging from 84 to 122 cm. Fore 
and aft, on the hemispherical ends, ilmenite concrete is used; ordinary 
concrete is used at the sides. Collision mats consisting of alternate layers of 
redwood and steel replace some of the concrete on the sides. 

Water-storage tanks, approximately 1.5 m deep, extend the secondary 
shield below the containment vessel from the tank tops to the hull. A 
schematic diagram of the shield is shown in Fig. 10.33. 

10.6.2 Shielding for Refueling and Control-Rod Maintenance 

Special provisions for refueling and servicing are worth noting. Before 
entrance can be gained to the reactor after shutdown for refueling and 
control-rod maintenance, the insulation covering, pressure-vessel head, 
control-rod assembly, flow-baffle assembly and upper grid assembly must be 
removed. The pressure-vessel head is secured by studs and a seal weld. 
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Fig. 10.32—The New York Shipbuilding Corporation's model of the shield of the N.S. 
Savannah. (From Blizard et al. ' ) 

The stud-removal operation takes place with the reactor water level up in 
the head. The water level is lowered before the seal-weld cutting operation 
begins. Additional water in the upper extension of the shield tank reduces 
dose rates from core fission products and activated internals to 1 to 2 
mR/hr. Distance attenuation from primary-loop corrosion and fission-
product activity further reduces these dose-rate contributions. 

Before the dismantled pressure-vessel head is removed, a permanent tank 
above the pressure-vessel flange is filled with transitory shield water to limit 
dose rates from the reactor internals and spent core. (These are exposed 
when the head is removed.) The head is then removed, and a telescopic 
internals cask is lowered onto the pressure-vessel flange. The upper 
flow-baffle assembly is then withdrawn into the extended cask. Figure 10.34 
is a schematic view of the internals cask in place showing the upper 



SHIELD DESIGN 583 

79 CM TO 
CENTER OF CORE 

M if CORE "EDGE ; ^ j j j 
9.5 CM OF H-O p = 08 -^ 

5.7CM OF H ' O P = " s ' r : ' ' ' ' : ! " : ; ' " " ; ' ' ' ; ^ " ^ ^ °^ ^^ 
2 '' [////////////////////A -.-5.0 CM OF Fe 

12.0 CM OF H ,0 p - 0 . 8 ^ . ^ ^ _ ^ , . B CM OF Fe 
7.6 CM OF H,0 p - 0 . 8 ^ ^ ^ ^ ^ ^ ^ ^ , ^ ^ ^ ^ ^^ ̂ ^ 

10 CM OF AIR Y////////////////////\ PRESSURE VESSEL 
INSULATION ^ ,-1.0 CM OF Fe 

84 CM OF HjO — 

!

THERMAL 
SHIELD 

PRIMARY 
\ SHIELD 

TANK 

, ^ 1 . 5 CM OF Fe 
^ ^ S ^ ^ ^ ^ ^ ^ — 7 . 6 CM OF Pb 

(TYPICAL) 

6.3 CM OF F e — . 

1 •» » 

2.7 TO 5.2 M OF SPACE 
WITH EOUIPMENT 

— 6.3 CM OF Fe 
CONTAINMENT 

\ VESSEL 
lO-15.2 CM OF Pb .* 
^ 1 5 . 2 CM OF POLYETHYLENE 

SECONDARY 
SHIELD 

-84 TO 122 CM OF CONCRETE 

BELOW CENTER LINE 
OF VESSEL 

ABOVE CENTER LINE 
OF VESSEL 

Fig. 10.33—Schematic cross section at the midplane of the N.S. Savannah reactor shield. 
(From Blizard et. a/.^') 

flow-baffle assembly withdrawn. The transitory shield water is also shown. 
The cask is telescoped to remove the more highly activated grid assembly. 

After the flow baffle and grid assembly have been removed, a shield plug, 
or manipulator (equivalent to about 51 cm of cast iron, for gamma-ray 
attenuation), is placed on the pressure-vessel flange, and the transitory water 
level is lowered. The refueling cask, with its control-rod extension, is 
positioned on a port in the shield plug, and the port is positioned over the 
fuel element or control rod to be removed. Figure 10.35 is a schematic 
diagram of the shield plug and refueling cask in place. 

10.6.3 Shield Design Criteria 

The design requirements for the shielding on the N.S. Savannah were 
chosen to ensure that the passengers would receive no more radiation than is 
allowed to the general public, even though they were to live continuously on 



584 REACTOR SHIELDING FOR NUCLEAR ENGINEERS 

11.4 CM OF Pb 

10.55 M 

/^TRANSITORY 
^ SHIELD WATER 

TANK 

10 M 

WATER-LEVEL 
ELEVATION 

ELEVATION, 9.44 M 

1 ELEVATION, 9.0 M 

-1/t^ 

-2.5 CM OF Fe 

-2.5 CM OF Fe 

•6.3 CM OF Pb 

• 2.8 CM 

•PRESSURE 
VESSEL 

PRIMARY 
SHIELD 

A TANK 

-^/tr-

Fig. 10.34—Telescopic internals cask. (From Smith and Turner.^') 

board ship with the reactor constantly at full power. The requirements are 
also that the crew of the vessel receive no more radiation than workers in 
atomic energy installations, even though they remain on board ship all the 
time, also with the reactor constantly at full power. The third requirement 
for the shielding is that stevedores handling cargo vwll receive no more 
radiation than that permitted for the general public, even though they 
continuously handle cargo in the cargo spaces with the reactor at one-fifth 
full power. These requirements have dictated dose rates that are extremely 
low in passenger spaces and well below ordinary permissible levels in crew 
and cargo spaces owing to the presumption that these spaces are occupied 
continuously with the reactor at full power. 
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Fig. 10.35—Shield plug and refueling cask. (From Smith and Turner. ) 

The design dose rates used to ensure that these requirements were met 
are summarized in Table 10.7. 

10.6.4 Lead—Polyethylene Shield Construction 

The design of a compact lead—polyethylene shield that can withstand 
the design stresses is somewhat unusual; consequently some of the details are 
shown here. 
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Table 10.7 — 

Location 

Access spaces outside 
secondary shield wall 
(passenger spaces) 

Access spaces outside 
secondary shield wall 
(crew spaces) 

Cargo holds 

Inside containment 
Inside containment 

Locations occupied during 
fuel-transfer operations 

DESIGN DOSE RATES FOR N.S. SAVANNAHt 

Operating conditions 

Full-power operation 

Full-power operation 

Operation at one-fifth 
full power 

Reactor operating 
Reactor shut down 

% hr or longer. 
No fission products 
in primary loop 

Reactor shut down 
3 days or longer; 
refueling operations 

Type 
access 

Unrestricted 

Unrestricted 
(crew) 

Unrestricted 

None permitted 
Limited 

Limited 

Design dose 
rate 

0.5 rem/year 

5.0 rem/year 

500 mrem/year 

200 mrem/hr 

200 mrem/hr 
for transient 
conditions, 
10 mrem/hr 
for continuing 
conditions 

tFrom Blizard et a/.^' 

Polyethylene shielding is made from sheets; differences in shield 
construction consist mostly in variations in the method of supporting and 
covering the laminations after they have been placed. 

Two properties of polyethylene which are of importance in shield 
fabrication are its low softening point (180 to 260°F) and its relative 
chemical inertness. The first of these permits the slabs to be shaped with 
relative ease in the field. The second makes the use of solvent cements 
generally impractical. Instead of cement, corrugated nails are staggered in 
alternate layers to fabricate the shield. Sheet size and gauge were chosen for 
maximum ease of fabrication, and the edges of the polyethylene plates were 
staggered slightly to prevent streaming. 

In the secondary shield the polyethylene was applied over the lead on 
top of the containment vessel. Rib plate stiffeners and intercostals welded to 
the shielded surface (containment vessel) were used both to strengthen the 
shield and to provide a means of attaching the cover plate over the 
polyethylene. This cover plate was thin steel and served to protect the 
polyethylene surface from the hazards of combustion and physical damage. 
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Fig. 10.36—Typical lead-polyethylene shield construction details. (From Smith. '") 

It also provided a convenient surface on which to hang pipes, electrical 
connections, etc. Typical lead—polyethylene shield-arrangement details are 
sketched in Fig. 10.36. Note the gap spacing shown for polyethylene in these 
sketches; inadequate allowance for expansion could cause serious structural 
damage and buckling in the shield. 

10.6.5 Attenuation Calculations 

The attenuation calculations for the primary shield and the secondary 
shield are discussed separately in the following sections since different 
techniques were used. 
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(a) Primary Shield. Two principal methods of calculating neutron 
attenuation were used. In all cases conservative assumptions were made since 
it was recognized that the calculational models were relatively crude and 
uncertainties existed in the basic cross-section data. 

One method involved prediction of the neutron fluxes in the reflector, 
thermal shields, and pressure vessel with a computer code utilizing two-group 
diffusion theory. The calculated fast and thermal flux profiles are shown in 
Fig. 10.37 along with the fast flux distribution through the shield tank, 
which was calculated with the method described at the end of this section. 

o o 

0 = Fast-neutron flux 
0- = Thermal-neutron flux 

2 

60 80 100 120 140 160 180 200 
DISTANCE FROM REACTOR CENTER LINE, cm 

220 

Fig. 10.37—Neutron-flux profile radial center line, 69 Mw. (From Smith and Turner.^ ) 

Diffusion theory is inadequate for the deep penetration through the 
primary shield tank. For this calculation an empirical kernel was used for the 
attenuation of fast neutrons by water along with the removal-cross-section 
concept to account for the additional attenuation due to the steel. The 
kernel was obtained by fitting the fast-flux results of the moments-method 
calculations for a point fission source in an infinite medium of water by the 
following equation: 

0 = — 4 (e-°- '23r +0 .0276 e'^-o^s^) 
47r: 

(10.6-1) 
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where r (in cm) is the penetration in water. Basic to the use of Eq. 10.6-1 
was the assumption that the energy spectrum approached an equilibrium 
shape in water for penetrations greater than 40 cm and that r was the 
equivalent amount of water (actual water plus equivalent steel). 

The attenuation of gamma rays was calculated with the kernel method 
with infinite-medium buildup factors. 

For the radial attenuation of core gamma rays (fission plus capture and 
inelastics born in the core), the self-shielding factors for uniform cylindrical 
sources were used. Since self-absorption factors have not been determined in 
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Turne r . " ) 

general for radiation from the end of a cylinder, this was handled by 
representing a 1-cm-thick disk of core source by an isotropic disk source and 
interpreting numerically along the core axis. The radial profile of the core 
gamma rays is shown in Fig. 10.38. 

Calculating the secondary gamma flux through a series ol water and steel 
slab shields involved an expression that described the rate of production of 
gamma rays by capture of thermal neutrons and attenuation in the source 
slabs (slab assumption was used since the radius of curvature is large 
compared to the thickness of the steel) and shield materials on either side. 
An exponential neutron removal was assumed in each source slab, and the 
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Fig. 10.39—Secondary gamma dose rate through bottom shield axis. (From Smith and 
Turner.^') 

number of source slabs was chosen such that the calculated thermal flux 
profile through the thermal shield could be matched closely by a simple 
exponential in each source slab. The results of these calculations for 
secondary gamma rays are shown in Fig. 10.39. 

(b) Secondary Shield. In calculating fluxes or dose rates for points 
outside the secondary shield, integration over the original isotropic source 
volume becomes unreliable because of the implications of the combined 
geometries of the primary and secondary shields. For this situation the 
pressure-vessel top and the primary shield tank top and outer walls were 
chosen as surface sources for the subsequent secondary-shield attenuation 
calculations. 

The problem then resolves itself into establishing an angular flux density 
on these surfaces for both neutrons and gamma rays and then numerically 
integrating over source surfaces with due regard to the directional orienta
tion of the flux. It was assumed that both neutron- and gamma-ray flux 
densities could be represented by a cosine distribution, flux density on the 
surfaces being calculated by point-kernel integration over the volume sources 
contained within the primary shield tank. With surface source corrected for 
the intensity in the particular direction, the kernel calculations for 
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attenuation through the secondary shield become similar to that for the 
primary shield calculations with the exception of a correction for the iron 
removal cross section. The minimum thickness of 15.2 cm on the secondary 
shield surface was not sufficient to produce an equilibrium spectrum in 
hydrogen. Data from iron—water mock-ups at ORNL were analyzed to 
provide an estimate of the effect of nonequilibrium spectral conditions in 
hydrogenous material following metal to obtain the necessary corrections to 
the removal cross sections. 

10.6.6 Measurements 

Accurate measurements of the low dose rates specified in the design were 
a difficult task. For this purpose a mobile laboratory was developed.^' 
Three types of dosimeters were used in the Savannah survey. All gamma-ray 
dose-rate measurements were obtained with an anthracene scintillation 
detector in which the sensitive element is a 2.5-cm-diameter 1.3-cm-thick 
anthracene crystal. The choice of anthracene was made because the energy 
lost within anthracene by a secondary electron resulting from a given-energy 
gamma-ray photon is very nearly proportional to the (computed) single-
collision dose over the energy range from 100 keV to 10 MeV. The 
instrument has a sensitivity of about 13,300 counts min"' mrem"' hr. 
Thermal-neutron dose rates (proportional to flux density) were measured 
with a 1-in.-diameter BF3 proportional counter having an active length of 
12 in. In the construction of this counter, high sensitivity was achieved by 
filling the tube with 96% ' °B-enriched BF3 at the relatively high pressure of 
76 cm Hg. This pressure, essentially 1 atm, results in a sensitivity of 
approximately 7400 counts min"' mrad"' (tissue) hr"' and also makes the 
counter more resistant to accidental damage during use. 

Fast-neutron dose rates were measured with a modified long counter that 
uses the BF3 tube of the thermal-flux detector as the sensitive element 
within a 20-cm-diameter 30-cm-long cadmium-covered polyethylene cylin
der. The polyethylene thicknesses at the end and side of the cylinder had 
been adjusted by experiments with monoenergetic neutrons from a Van de 
Graaff accelerator to give a counter response proportional to the multicoUi-
sion tissue-dose curve to within ±10% over the energy range from 0.025 to 
approximately 10 MeV. The sensitivity of this instrument is approximately 
7800 counts min"' mrad"' (tissue) hr" ' . 

The instrumentation described was carefully calibrated against known 
sources and fluxes and compared to standard instrumentation in a series of 
experiments at the ORNL Bulk Shielding Facility (BSF). The BSF 
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experiments used an idealized mock-up of the Savannah's shield, thus 
ensuring that the comparisons would be valid for the energy spectrum that 
would be encountered aboard the Savannah. 

The experimental procedures used in the Savannah survey were 
developed and tested in a series of studies of land-based reactors made during 
the months preceding this study. By the time the mobile laboratory was 
lifted aboard the Savannah, methods and procedures were firm, and a group 
of trained and experienced personnel was available to act as a nucleus for the 
large group required for the survey. Before the survey started, the secondary 
shield was completely marked with a rectangular 0.9-m grid (see Fig. 10.32). 
The general procedure for the survey consisted in obtaining a 1-min or 
0.5-min count, depending on counting statistics, in the center of each grid 
with both the thermal-neutron and gamma-ray dosimeters. After the count 
the detector was slowly swept over the area within the grid to detect any 
small area of unusual leakage. The entire shield was covered with both 
thermal-neutron and gamma-ray dosimeters. Fast-neutron dose rates were 
measured at carefully chosen locations over the shield, which permitted a 
good evaluation of the ratio of fast to thermal neutrons over the shield. 

10.6.7 Comparison of Measurements and Calculations 

The reactor was held at approximately its full power of 69 Mw for the 
entire duration of the detailed shield survey. The dose rates recorded thus 
represent the maximum to be expected. A detailed comparison of the 
measurements and calculations is shown in Table 10.8, which has been 
abridged from Blizard et al. ^' The point numbers identifying the data 
positions were selected by Smith and Turner^ ^ for later comparison with 
measurements. The locations on each deck are shown in Fig. 10.40, with 
point numbers corresponding to those of Table 10.8. 

Note that the measured fast-neutron dose rates in Table 10.8 are 
reported in absorbed dose units (mrad) and are converted to dose equivalent 
(mrem) for comparison with calculations by multiplying by a relative 
biological equivalence factor varying from 8 to 9 depending on energy 
spectrum (or total shield thickness). These units and their relations are 
discussed in Sec. 3.3.4. 

In general, the actual dose rates appear to be considerably lower than the 
predicted dose rates, which reflects the intended conservatism in the design. 
Spot checks of the comparisons show overestimates of the gamma-ray dose 
rate and underestimates of the neutron dose rate. 
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Point 
number 

44 
45 
46 
47 
48 
54 
56 
57 
71 
72 

1 
2 
3 
4 
5 
6 
7 

14 
17 
22 
23 
26 

803 
804 

252 
253 
261 
324 
325 
611 
612 
613 

276 
278 
332 
813 
815 

297 
307 
334 
640 
641 

Table 10 8—COMPARISON OF MEASURED DOSE RATES WITH CALCULATED 
DOSE RATES AT SPECIAL POINTSt 

Observed dose rate 

Neutron 

Fast 
mrad/hr 

1 50 X 10 ' 
0 988 
0 976 
1 65 
1 51 
1 40 
0 897 
0 845 
1 0 9 
1 43 

3 43 
3 32 
1 9 8 
2 83 
4 1 7 
2 68 
2 76 
2 26 
8 84 
1 911 
1 5 5 
9 75 
2 35 
1 8 6 

7 76 X 1 0 ' 
2 25 
4 56 
5 37 
1 8 7 
2 94 
3 1 5 
2 33 

10 51 
1 4 1 
1 3 8 
2 02 
1 13 

0 390 
0 338 
0 910 
1 24 
0 754 

Thermal, 
mrem/hr 

1 31 X 10"* 
1 16 
0 771 
1 52 
0 4 1 2 
0 570 
2 09 
0 369 
0 232 
0 318 

3 58 
4 33 
1 3 4 
3 45 
4 19 
2 41 
1 26 
1 2 5 
0 803 
0 792 
0 697 
0 422 
1 17 
0 232 

12 7 7 X 10"* 
2 76 
1 6 6 

10 90 
2 49 
2 64 
2 47 
2 25 

0 781 
0 400 
0 517 
1 0 1 
0 370 

0 465 
0 317 
0 190 
0 486 
0 317 

Gamma, 
mrem/hr 

Total, 
mrem/hr 

Promenade Deck 

0 925 X lO'' 2 23 X lO"' 
1 4 2 
0 569 
1 14 
1 0 9 
1 53 
0 624 
0 360 
0 823 
0 68 

3 47 
4 17 
2 26 
2 79 
4 30 
3 84 
2 93 
2 05 
1 7 0 
1 7 2 
1 12 
0 694 
2 45 
1 2 6 

13 78 X 10 
2 19 
0 820 

15 79 
4 53 
2 13 
3 46 

13 2 

0 644 
0 706 
0 777 
2 24 
1 63 

0 343 
0 338 
0 273 
0 685 
0 288 

2 28 
1 4 2 
2 58 
2 39 
2 75 
1 42 
1 10 
1 7 6 
1 91 

A Deck 

6 46 
7 07 
3 97 
5 27 
7 93 
6 17 
5 32 
4 01 
9 32 
3 37 
2 46 
9 09 
4 52 
2 86 

CDeck 

"̂  20 59 X 10"" 
4 16 
5 76 

20 52 
6 17 
4 69 
6 20 

15 25 

DDeck 

9 69 
1 9 2 
2 02 
3 99 
2 61 

Tank top 

0 684 
0 532 
1 0 6 
1 7 6 
0 939 

Babcock & Wilcox 1144 1 calci 

Neutron, Gamma, 
mrem/hr 

1 0 X lO"' 
0 
0 7 

1 0 
2 4 
1 6 

4 3 
4 6 

1 4 
1 4 
1 6 
1 4 
1 4 
1 9 
2 9 
5 0 
4 7 
1 9 
5 0 
5 0 
9 0 
9 0 

33 2 X 10^ 
0 
0 4 

33 6 
0 
0 

0 

1 6 
0 6 
1 6 
2 3 
2 6 

0 9 
1 9 
1 5 

28 5 
2 1 

mrem/hr 

4 1 9 X 1 0 ' ' 
9 5 

17 9 

1 1 0 
8 4 

1 1 0 

8 4 
8 4 

19 2 
19 1 
1 2 7 
2 1 4 
23 8 
18 1 
14 6 
15 2 
27 2 

8 9 
9 0 

17 0 
18 3 
1 2 4 

23 5 X 10"" 
9 5 

10 8 
24 9 

1 8 
33 7 

20 2 

6 7 
5 9 
8 S 

1 5 6 
69 4 

9 5 
2 9 
2 6 

1 2 1 4 
6 2 

Lilated dose rate 

Total, 
mrem/hr 

4 29 X 10 ' 
0 95 
1 86 

1 20 
1 0 8 
1 26 

1 27 
1 30 

2 06 
2 05 
1 4 3 
2 28 
2 52 
2 00 
1 75 
2 02 
3 19 
1 0 8 
1 4 0 
2 20 
2 73 
2 14 

5 67 X 10'' 
0 95 
1 12 
5 85 
0 18 
3 37 

2 02 

0 83 
0 65 
1 0 1 
1 7 9 
7 20 

1 0 4 
0 48 
0 41 

14 99 
0 83 

tAdaptcd from Blizard etal" 
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The measurements showed, however, that the dose rates did not exceed 
tolerance limits in areas where passenger access is permitted. The design dose 
rate was exceeded only in a small region on D deck, to which only the crew 
is permitted access and which can easily be controlled. 

10.7 SPACE POWER: SNAP-lOA FLIGHT TEST 

The Snapshot-1 flight test, which took place in April 1965, is the only 
known space flight of a reactor. Strictly speaking, this was an experiment, 
and it represents a test system in development rather than a finished design 
application. However, the magnitude of the program, the preflight design 
development effort, and the postflight analysis give us the same pattern of 
input that we have sought for the previous discussion of reactor-shield 
applications in this chapter. We should, nevertheless, bear in mind that the 
Space Nuclear Auxiliary Power (SNAP)-IOA is not a finished product but an 
intermediate development model. 

The SNAP-lOA reactor is described by Glasstone^^ as a very small 
system, being only 35 cm in diameter and about 46 cm long. It is cooled 
with NaK (sodium—potassium) and controlled by rotating beryllium 
reflector material in semicylindrical drums toward the core. The core is 
about 23 cm in diameter and 39.5 cm long. Fuel elements are enriched 
uranium and zirconium hydride clad in Hastelloy with hydrogen serving as a 
moderator. The choice of materials was based largely on the need for 
compact design and high-temperature operation. The NaK coolant leaves the 
core at 545°C and is pumped to a thermoelectric converter for production of 
electricity. The reactor operated at about 40 kw(t) and produced a little over 
0.5 kw of electric power. 

The SNAP-lOA—Agena spacecraft was launched into a near-polar orbit 
Apr. 3, 1965. After 6 days of monitoring and manual control of the reactor 
by ground commands, the reactor was switched to automatic temperature-
coefficient control. Subsequent operation was automatic without further 
ground command. The reactor was to have operated for at least 6 months, 
but on May 16 loss of signals from the spacecraft indicated that the reactor 
had shut down. The failure was apparently not in the reactor itself but in a 
voltage regulator. 

10.7.1 Shield Analysis 

Belcher, Flynn, and Thomson^ ^ summarized an extensive preflight 
shield analysis to ensure that the shield met its design objectives. These 
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objectives were that the 1-year gamma and fast-neutron levels not exceed 
10^ R or 1 0 ' ^ neutrons/cm^, respectively, across a 152-cm-diameter plane 
located 5.3 m below the reactor core. This plane is called the reference-dose 
plane, as shown in Fig. 10.41. The weight objective for the shield was 
102 kg, including container and structure, which was certainly a stringent 
restriction. 

The gamma-ray- and neutron-level specifications were intended to limit 
radiation effects to solid-state electronics equipment. Belcher et al.^^ 

estimate an approximate gross leakage of 10^ R and 10 ' ^ neutrons/cm^ 
and a corresponding attenuation requirement of lO** for fast neutrons and 
10 for gamma rays. They chose LiH as the shield material for its high 
neutron-shielding efficiency (light weight) and high-temperature properties, 
estimating that about 60 cm would be required. 

They also point out, as is evident in Fig. 10.41, that the control drums 
and sides of the reactor were not shadowed by the shield from the 
thermoelectric converter and the near part of the Agena stage. Not shown 
on the sketch is the NaK piping around the shield. The control drums, 
converter, and NaK piping all constitute sources of scattered neutrons in the 
near section of the Agena structure. Had the shadow shield been designed 
with an annular bulge and shortened to avoid a weight increase, it might have 
been more effective. An alternative arrangement within the 102-kg weight 
limit would be an interesting design exercise. Belcher et al. ^ ̂  state that it 
was impossible to rectify this condition without exceeding the weight 
limitations. 

Although the specifications refer to the reference-dose plane, most of the 
measurements and predictions use the SNAP—Agena mating plane (also 
shown on Fig. 10.41) as a primary reference for radiation intensities. We will 
use only the SNAP—Agena plane to avoid confusion. 

The core region was divided into an array of effective point sources, and 
a ray-tracing technique using removal cross sections determined attenuation 
through the core and LiH shield. Attenuation measurements for LiH were 
repeated at the Atomics International (Al) Shield Test Facility in Canoga 
Park, Calif., and the General Dynamics Aerosystems Test Facility in Fort 
Worth, Tex. From the measurements a LiH attenuation coefficient of 0.156 
cm"' for the 0.7 g/cm^ density was estimated at operating temperature 
(-^370°C). 

As might be suspected from the discussion of the geometry, neutrons 
scattered around the shield sufficiently exceeded the number penetrating 
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Fig. 10.41—SNAP-lOA radiation shield geometry. (From Belcher et al.^^) 
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through the shield that the latter component was unimportant in analyzing 
the flight-test data. 

Gamma-ray exposure through the shield was computed by the same 
ray-tracing method as the fast neutrons. The sources considered were fission 
gamma rays, captures in the core, and activation from the NaK coolant. 
Neutron capture in ^^Na produces ^'^Na, which decays by producing two 
gamma rays, 2.76 and 1.38 MeV. The decay of'*^K gives a 1.51-MeV gamma 
ray about 25% of the time. The moments-method buildup factors 
(Sec. 4.8.1) were used. None of the gamma-ray intensities exceeded the 10^ 
R/year maximum at the SNAP—Agena mating plane. The computed total 
consisted mostly of gamma rays from the core. 

The principal heating rate in the shield was due to neutron capture in 
^Li: 

^U + n^^H + a + 4.8MeY 

The alpha has a very short range and may be considered deposited at the 
capture site. Neutron kinetic energy in elastic collisions with hydrogen 
produces almost as much heat as the ^ Li captures. Captures in ^ Li (the 
principal isotope) produce gamma rays, which give unimportant intensities in 
this case. At 40 kw the heating in the shield was computed to be about 160 
watts with a maximum power density of 0.3 watt/cm^, 49% from ^Li(n,a), 
39% from neutron elastic scattering, and 12% from gamma-ray absorption. 

10.7.2 Flight-Test Results 

Bennett, Krakar, and Kruse^'' report the nuclear environment and 
compare it with the analysis just described. We have not described the 
method of calculating the important scattering contributions from the 
control drum, converter, and reactor sides because the estimates of Belcher 
et al.^^ were admittedly crude and were revised for inclusion with the flight 
results of Bennett et al. ^ ^ We will discuss these estimates later. 

Fast-neutron-flux densities were measured with a ^ ^ ^ Np fission cham
ber. The fission cross section has a threshold of 0.65 MeV, which makes this 
chamber well-suited for fast-neutron fluxes limited by radiation-effects 
considerations. Neutrons below the threshold do not significantly contribute 
to radiation damage. The counter was enclosed in cadmium to eliminate 
thermal-neutron interaction with impurities in the ^ ^ ^ Np. 

A similar fission chamber with ^^^U was used for thermal-neutron 
measurements; actually two sensors were used, one cadmium-wrapped, to 
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obtain the thermal-flux density by subtraction of the two signals. Gamma-
ray exposures were obtained with a CO2 -filled ionization chamber. 

Additional neutron measurements were made with a radiation-sensitive 
transistor, which responds to the cumulative fast-neutron-flux density. 

Telemetry and data processing need not concern us in this discussion 
except to note they were necessarily elaborate and contributed to 
reproducibility within a nominal factor of 1.22 in fast-neutron flux or 
gamma-ray exposure. 

Table 10.9—SNAPSHOT RADIATIONN-DETECTOR 
RESULTS AT SNAP-10A-AGENA MATING PLANE 

LMSC detectors 
RAI-1 
RAI-2 

Al detectors 
166 
167 
168 
169 
170 
171 
172 
138 

Fast-neutron-
flux density, 

10* neutrons 
cm^ year * 

0.48 
1.09 

0.67 
0.63 
0.41 
0.42 
0.50 
0.47 
0.52 

Gamma-ray 
exposure, 

10* Ryear"' 

6.3 

5.6 

Table 10.9 gives flux densities for the detectors located on the mating 
plane we have used for reference. Each value for Lockheed Missiles and 
Space Company (LMSC) detectors represents a mean of 1500 telemetry 
samples; for Al detectors each value represents a mean of 10 telemetry 
samples from each of 20 data acquisitions. The former are fission-chamber 
measurements and the latter are the solid-state detectors. We have converted 
the rate data of Belcher et al. to 1-year totals. 

The flight data prompted an immediate review of the preflight analysis. 
The fast-neutron-flux densities were -found to be underestimated by a factor 
of 6.5 to 7.8; gamma exposures were within 10% of prediction in this area. 
Revised estimates were made of the scattering from the thermoelectric 
converter—radiator, increasing the scattered component by a factor of 
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DISTANCE FROM CENTER LINE, cm 

Fig. 10.42—Revised A! fast-neutron flux at SNAP-lOA—Agena mating plane below 
out-rotated control drums. (From Bennett et al. ) 

about 8. The various contributions to the fast-neutron-flux density are 
shown in Fig. 10.42. The projection of the shadow shield to this plane of the 
vehicle has a 51-cm radius. Transmission through the shield is contained in 
the component marked reactor core. The rest of the components do not 
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FAST-NEUTRON-FLUX DENSITY, neutrons cm"^ year"' (E > 0.65 MeV) 

Fig. 10.43—Polar graph of fast-neutron data at SNAP—Agena mating plane. (From 
Bennett etal.^'*) 

penetrate the shield. The early preflight prediction of scattering from the 
thermoelectric converter is shown as a dashed line. The revised estimate of 
this component raised the total at the center line by a factor of 5; near the 
skin of the vehicle (76 cm), the total was unaffected. Shown in the figure are 
two measurements from Table 10.9 that are in reasonable agreement. 

This was a complex set of scattering sources, and the predictions were 
indeed within the accuracy of the approximate methods used. This is a 
clear-cut instance where a Monte Carlo calculation of the scattered 
contributions is the only method that could be expected to give the desired 
accuracy (presumably within a factor of 2). 

The flight-test measurements were compared with the predictions, and a 
model was constructed that gave a better estimate of the radiation 
environment throughout the vehicle. The polar plot for our plane of 
reference is shown in Fig. 10.43. Note that the effect of the control drums is 
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t o push the isoflux lines inward t oward the center . In tensi t ies b e y o n d the 

ma t ing p lane cou ld n o t b e satisfactori ly m o d e l e d w i t h o u t accoun t ing for t h e 

a t t e n u a t i o n c o n t r i b u t e d b y some 19 pieces of e q u i p m e n t aboa rd the Agena 

stage. Accordingly , a t t e n u a t i o n m e a s u r e m e n t s made dur ing preflight test ing 

were used to derive removal cross sect ions for each piece of equipment .^ '* A 

poin t -kerne l ca lcula t ion was m a d e from the ma t ing plane to each loca t ion to 

genera te the da ta t o m o d e l the rad ia t ion env i ronmen t . T h e resul t ing mode l , 

based on hybr id c o m b i n a t i o n of prefliglit p redic t ion , in-flight m e a s u r e m e n t , 

and empirical ad jus tment , r e p r o d u c e d measured da ta wi th in a factor of 2. 
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Gamma Rays from Inelastic 
Neutron Scattering and Fission 

Appendix A 
Table A.l gives representative data on important elements in the neutron-
energy region of interest. Table A.2 gives gamma-ray energy release vs. time 
after fission. 

Table A.l —GAMMA RAYS FROM INELASTIC NEUTRON SCATTERING 11 

z 

3 
5 

5 
6 
7 

9 

11 

12 

13 

14 
18 

Element 

Li 
•»B 

" B 
C 
N 

F 

" N a 

"Mg 
"Mg 
" A l 

" S i 
" A r 

Energy of 
prominent 

gamma rays, 
MeV 

0.478 
0.478 (f.,a) 
0.717 
1.02 
1.43 
2.15 
2.86 
3.37 (n,p) 
2.13 
4,4 
1,6 
2.31 
4.90 
5.10 
0.110 
0.198 
0.44 
0.63 
1.64 
1,37 
1.81 
0.84 
1.01 
1.72 
2.21 
2.73 
3.00 

(doublet) 
1.77 
0.68 
1.08 
1.45 
1.77 
2,53 

Average 
anisotropy, 

W(0°)/W(90°) 

1.0 
i.ot 
i.ot 

1.0 
2.0 

1.0 

1.0 

1.4 
1.4 
1.0 
1.0 
1.0 
1.0 
1.0 
1,2 

1.45 
1.0 
0.9 
1.3 
1.8 
1.6 

1.0 

15 
21.3 

25 
66 
42 

1.5 

8.9 
0.3 

44 

doWn(90°), mb/sr 
£„,MeV 

2.0 

13.0 
3.4 

45 

3.0 

9.5 
4.0 

0.5 

<0.1 

44 

5 
39 
47 

32 
6.0 
6.4 

41 

3.5 

8.2 
3.8 
l.I 

0.5 

2.3 

<0.I 

45 

10 
38 
64 

9.5 
18.1 

7.0 
17.0 

2.4 
8.0 

30 
9.6 
8.0 

54 
2.2 
5.0 

4.0 

22 
10.6 

5.4 
1.2 
0.7 
0.9 
0.5 
0.3 
5.3 

0.1 
0.2 

50 
2 

15 
36 
70 

9.9 
19.5 

8.0 
16.8 

3.4 
13.6 

39 
7.6 
5.2 

61 
6.5 
3.8 

5.0 

4.0 
0.2 
0.3 

8.8 
18.6 

5.1 
14.6 

3.9 
12,0 

10,8 
7.2 

60 
9.2 

10.4 

(Table continues on next page,̂  
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z 
19 

20 

24 

26 

26 

27 

39 

Element 

K 

Ca 
(Nat.) 

"Cr 

" F e 

" F e 

" C o 

»'Y 

Energy of 

prominent 
gamma rays. 

MeV 

2.52 
2,81 
3,05 
0,51 

0,768 
1,158 
3,730 
3,900 
1,43 
2,37 
2.65 
2,77 
2,96 
3,16 
0,845 
1,24 
1,81 
2.12 
2.30 
2.60 
3.45 
2.76 
3.60 
1.41 
1.13 
1.56 
2.96 
1.75 
3.16 
1.93 
2,42 
2,66 
2.85 
3.37 
0.55 
0.68 
1.10 
1.19 
1.29 
1.48 
1.74 
2.10 
2.50 
2.80 
0.71 
1.31 
1,51 
1,62 
1,75 
1.95 
1.98 
2.10 
2.36 
2.56 
2.70 
2.86 
3.05 
3.49 
3.85 

Table 

Average 
anisotropy. 

W(0'')/W(90'') 

0,9 

2,4 
1,7 
1,4 
1.3 

1.8 
1.6 
1.4 
1.5 
1.1 
1.0 
0.9 
1.08 
1.27 
1.2 
1,25 

>1.3 
1,55 

<1,2 
1,48 
1.7 

1.0 
1.0 
1.0 
1.0 

0.75 
1.1 
0.85 
0.85 
1.25 
0.75 

0.75 

A.l—(Continued) 

1.0 1.5 

21.1 35.5 

5.6 
12.6 

2.7 
6.4 

do/dn(90°). mb/sr 
£...MeV 

2.0 3.0 

5 
1.5 

40 60 
3 
4 
1 

83.0 86.0 
9.7 

12.3 

65.1 
13.0 

16.9 
15.3 
14.2 
37.9 
11.6 
32.8 
10,9 

8,1 
7.2 
3.3 
5.6 
6.0 

31.8 
4.7 

27.7 
2.5 

3.6 

3.5 

7 
7 
3 
0.5 

4.6 
3.7 

40 
6 
4 
4 

14 
5 

89.2 
10.4 
11.3 

8,4 
4.8 

61.5 
17.3 

4.6 
6.1 
1.6 
5.2 

19.2 
15.7 
13.3 
33.4 
11.2 
32.4 
11.7 
12.6 

6.7 
4,0 
5,7 
8.5 

35.0 
8.2 

29.6 
5.4 

11,6 
14,5 

4,0 

10 
10 

7 
6.9 

5.8 
2.1 
2.6 
0.5 

7 

107.6 
17.2 
14.9 
12.1 

6.8 
9,2 
4.2 
3.2 
2.8 

69.5 
22.8 

8.3 
7.7 
2.5 
8.1 
4.6 

22,4 
15,8 
11,9 
34,7 

9.3 
31.7 
13.0 
15.3 

8.2 
3.9 
5.5 
5.7 

27.8 
7.5 

22.6 
5.4 
3.9 

7.0 

10.0 
16.4 

2.7 

5.0 

15.2 

10.4 
3,0 
7.7 
7.0 

80.3 
27.2 

6.9 
5.6 
4.1 
8.3 
7.1 
4.0 
4.5 
1.6 
1.8 

29.4 
18.2 
14.6 
35.5 
10.1 
33.8 
15.2 
18.7 
10.4 

5.2 
5.4 
7.6 

24.6 
7.9 

20,2 
4,8 
4,5 
4,5 
2,6 
7,5 
2,7 
9,0 

12,7 
2,9 
3,2 
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Table A.l—(Continued) 

7. Element 

Energy of 

prominent 
gamma rays, 

MeV 

0,43 
0,57 
0,89 
2,18 
0.46 
0.57 
0.93 
1.12 
1.41 
1.84 
2.16 
0.54 
0.80 
0.57 
0.894 
1.08 
1.77 
2.12 
2,64 
0.58 
0.76 
0.86 
2.61 

Average 
anisotropy, 

W(0°)/W(90°) 

0,7 (4 MeV) 
1,2 (4 MeV) 
1,0 (4 MeV) 
0.82 (4 MeV) 

1,0 (4 MeV) 
1,0 (4 MeV) 
1,32 (4 MeV) 

1.75 

1.0 

10 

13 
18 

1,5 

4 
1 
80 

43 
42 
14 

^0/^0(90°), 

2,0 

18 
20 

100 

2 

mb/sr 
£...MeV 

3.0 

10 
13 

51 
10 
20 

130 
20 
10 

8 
4 

65 
118 

74 
43 
10 
14 

8 
2 

40 

3.5 

10 
14 

7 
50 
10 
23 

130 
25 
10 

8 
5 

97 
175 
137 

61 
14 
30 
16 

8 
7 

55 

4.0 5.0 

48 48 

117 
182 
150 

63 
25 
44 
26 
22 
48 

7 
16 
87 

40 

40 

82 

82 

82 

»Zr 

^Zr 

"Pb 

'Pb 

"Pb 

tFrom L L. Morgan, Gamma Rays from Inelastic Neutron Scattering, in Engineering Compendium on 
Radiation Shielding, Vol. I, R. G. Jaeger (Ed.), Sec. 2.3.2.2, Springer-Verlag, New York, 1968. 

tda/dn (55°). 



Table A,2—GAMMA-RAY ENERGY RELEASE VS. TIME AFTER FISSIONt g 
00 

Time D B TT r, T, T, F, Ps F, F, 

The Values are for lO' Instantaneous Fissions 

100 
200 
400 
100 
200 
400 
100 
200 
400 
700 
100 
200 
400 
100 
200 
400 
100 
200 
400 

100 

10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
in' 
10' 

239 
159 
914 
421 
226 
105 
361 
167 
821 
445 
289 
118 
525 
203 
955 
447 
154 
544 
16R 

471 

10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 

Iff' 
Iff' 
Iff' 

347 
202 
988 
403 
200 
841 
257 
112 
484 
218 
124 
406 
149 
574 
289 
134 
466 
201 
R40 

200 

10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 

Iff' 
Iff' 
Iff' 

Iff' 

349 
230 
121 
443 
224 
106 
362 
128 
482 
235 
144 
549 
245 
100 
455 
177 
498 
160 
196 

313 

10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 

Iff' 
Iff' 
Iff' 

Iff' 

634 
501 
373 
249 
151 
644 
156 
632 
341 
238 
177 
814 
376 
111 
371 
110 
150 
226 
641; 

116 

10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 

Iff' 
Iff' 
Iff' 
Iff' 
Iff' 
Iff' 

279 
165 
946 
584 
429 
301 
133 
456 
201 
125 
863 
343 
124 
401 
180 
992 
462 
155 
174 

271 

10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 

Iff' 
Iff' 
Iff' 
Iff' 

Iff' 

111 
654 
328 
139 
656 
229 
633 
235 
994 
440 
219 
508 
195 
546 
163 
432 
275 
452 
114 

259 

10' 
10* 
10« 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 

10"' 

Iff' 
Iff' 
Iff' 
Iff' 
Iff' 

Iff' 

474 
374 
234 
901 
463 
254 
863 
310 
984 
319 
148 
563 
518 
387 
203 
576 
140 
488 
271 

553 

10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 

Iff' 
Iff' 
•Iff* 
Iff' 
Iff' 

979 
794 
544 
287 
156 
654 
223 
996 
271 
605 
230 
772 
437 
101 

no 
255 
211 
160 
913 
171 

10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 

Iff' 
Iff' 
Iff' 
Iff' 
Iff' 
Iff' 
Iff' 
in-" 
Iff' 

276 
201 
117 
391 
180 
961 
309 
926 
161 
232 
781 
540 
477 
282 
133 
369 
903 
393 
243 

649 

10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 

Iff' 
Iff' 
Iff' 
Iff' 
Iff' 
Iff' 
Iff' 
Iff' 
Iff' 

Iff' 

119 
778 
344 
618 
204 
647 
969 
212 
301 
304 
412 
697 
877 
731 
398 
115 
463 
162 
104 
278 

10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 

Iff' 
Iff' 
Iff' 
Iff' 
Iff' 
Iff' 
Iff' 

10"' 
Iff' 
10-' 

Iff' 

The Reactor Operating Time Was 1 hr at 1 watt 

100 
200 
400 
100 
200 
400 
100 
200 
400 
700 
100 
200 
400 
100 
200 
400 
100 
200 
400 
100 

10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 

451 
390 
319 
220 
145 
835 
359 
181 
930 
512 
335 
138 
619 
240 
113 
529 
182 
644 
199 
558 

10' 
!0» 
10' 
10" 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 

467 
382 
296 
192 
120 
640 
251 
120 
542 
248 
143 
474 
175 
679 
342 
159 
551 
238 
995 
237 

10» 
10' 
10* 
10« 
10« 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 

534 
444 
342 
222 
148 
870 
345 
133 
540 
269 
167 
642 
289 
119 
538 
209 
589 
190 
232 
370 

10' 
10« 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10'. 
10" 

229 
213 
189 
141 
918 
455 
149 
680 
393 
277 
206 
953 
443 
131 
438 
130 
178 
267 
764 
137 

10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 

658 
598 
538 
455 
377 
279 
127 
474 
230 
145 
100 
401 
147 
474 
213 
117 
547 
183 
206 
321 

10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10* 
10' 
10' 
10' 
10' 
10' 
10' 

153 
126 
976 
612 
348 
165 
605 
247 
112 
498 
250 
592 
230 
645 
193 
511 
325 
535 
135 
307 

10' 
10» 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 

Iff' 

102 
888 
710 
475 
336 
211 
819 
322 
108 
357 
169 
664 
614 
458 
240 
682 
165 
577 
321 
654 

10» 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 

Iff' 

278 
251 
212 
148 
939 
500 
225 
104 
289 
667 
262 
907 
515 
119 
129 
302 
250 
189 
108 
203 

10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 

470 
396 
301 
187 
128 
783 
287 
920 
167 
251 
894 
639 
565 
333 
157 
437 
107 
466 
287 
768 

10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
Iff' 
Iff' 
Iff' 

115 
829 
487 
200 
102 
399 
828 
206 
307 
318 
439 
828 
104 
865 
470 
136 
548 
192 
123 
329 

10» 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10" 
10' 
Iff" 
Iff' 
Iff' 
Iff' 
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Table A.2—(Continued) 

Time 

100 
200 
400 
100 - 10' 
200 - 10' 
400 • 10' 
100 • 10 ' 
200 • 10 ' 
400 - 10 ' 
700 - 10' 
100 - lO' 
200 • 10 ' 
400 - 10 ' 
100 - lO' 
200 • lO' 
400 - lO' 
100 • 10 ' 
200 • 10' 
400 - 10' 
i n n - i n ' 

D 

108 - 10 ' 
102 - 1 0 ' 
938 - 10 ' 
820 - 1 0 ' 
720 - 10 ' 
619 • 1 0 ' 
503 - 10 ' 
424 - 10« 
349 - 10 ' 
290 - 1 0 ' 
255 - 10« 
197 - 1 0 ' 
1 5 0 - 1 0 ' 
953 • 1 0 ' 
6 1 6 - 1 0 ' 
361 - 1 0 ' 
148 • 1 0 ' 
557 - 1 0 ' 
186 - 1 0 ' 
544 - i n ' 

Definitions of quantities 

B 

794 - 10 ' 
707 - 10 ' 
615 - 10 ' 
496 • 10* 
403 • 10 ' 
319 - 10« 
231 - 1 0 ' 
176 - 10» 
129 - 10» 
966 - 1 0 ' 
806 - 1 0 ' 
580 • 1 0 ' 
433 • 1 0 ' 
285 • 1 0 ' 
186 - 1 0 ' 
107 - 1 0 ' 
460 - 1 0 ' 
214 - 1 0 ' 
943 - 10 ' 
9M - i n ' 

in Table A.2. 

FT 

958 
864 
755 
615 
514 
413 
292 
221 
171 
139 
121 
928 
708 
438 
259 
128 
480 
156 
199 
•i(,f, 

r, Fa r. 
The Reactor Operating Time Was 1000 hr at 1 

10' 
10 ' 
10' 
10' 
10« 
10' 
10» 
10» 
10 ' 
10 ' 
10» 
1 0 ' 
1 0 ' 
10 ' 
1 0 ' 
10 ' 
10 ' 
10 ' 
10' 
i n ' 

Time Time after Hssion or reactor operation (sec 
D Disintegration rate (sec ) 
B Beta-ray energy release (MeV sec"') 

F-j. Gamma-ray energy release (Me 
Fi Gamma-ray energy release (Me 
Fa Gamma-ray energy release (Me 
Fj Ga 

Vsec" 
Vsec" 
Vsec-

mma-ray energy release (MeV sec" 
F4 Gamma-ray energy release (MeV sec" 
Fj Gamma-ray energy release (MeV sec" 
Ffi Gamma-ray energy release (MeV sec' 
r7 Gamma-ray energy release (Me Vsec" 

)for 
)for 
)for 
)for 
)for 
)for 
)for 
)for 

553 - 1 0 ' 
535 - 1 0 ' 
507 • 10 ' 
447 - 10 ' 
383 - 1 0 ' 
317 - 1 0 ' 
257 - 1 0 ' 
225 - 1 0 ' 
196 • 1 0 ' 
169 - 1 0 ' 
148 • 1 0 ' 
109 • 1 0 ' 
748 • 10 ' 
362 - 10 ' 
175 - 10 ' 
675 - 10 ' 
121 - 10 ' 
217 - 1 0 ' 
722 - 1 0 ' 
1 in - 1 n ' 

) 

240 • lO' 
233 • 10» 
225 - 10 ' 
211 - 10 ' 
194 - 10 ' 
171 - 10 ' 
131 - 1 0 ' 
105 - 10 ' 
863 • 1 0 ' 
709 • 1 0 ' 
607 - 1 0 ' 
431 - 1 0 ' 
305 - 1 0 ' 
189 - 1 0 ' 
131 - 1 0 ' 
897 • 1 0 ' 
455 - 1 0 ' 
151 - 1 0 ' 
1 7 5 - 10 ' 
119 • i n ' 

219 - 1 0 ' 
191 - 10 ' 
161 - 10* 
121 - 10 ' 
889 - 10 ' 
634 - 1 0 ' 
409 - 1 0 ' 
284 - 1 0 ' 
187 • 1 0 ' 
120 • 1 0 ' 
895 - 10« 
554 - 10« 
360 - 10 ' 
162 - l o ' 
7 1 8 - 10' 
224 - 10 ' 
209 • 10 ' 
443 • lO' 
126 • 1 0 ' 
295 • 10 ' 

gamma-ray energies above 0.1 MeV 
gamma-ray energies from 0.1 
gamma-ray energies from 0.4 
gamma-ray energies from 0.9 

to 0.4 MeV 
to 0.9 MeV 
to 1.35 MeV 

gamma-ray energies from 1.35 to 1.8 MeV 
gamma-ray energies from 1.8 
gamma-ray energies from 2.2 

to 2.2 MeV 
to 2.6 MeV 

gammaH'ay energies > 2.6 MeV 

F4 

watt 

201 
187 
168 
140 
119 
968 
676 
507 
392 
336 
316 
291 
260 
179 
950 
271 
696 
534 
306 
624 

1 0 ' 
10" 
10» 
10 ' 
10 ' 
1 0 ' 
10 ' 
1 0 ' 
1 0 ' 
1 0 ' 
1 0 ' 
1 0 ' 
1 0 ' 
1 0 ' 
1 0 ' 
1 0 ' 

• 1 0 ' 
1 0 ' 
1 0 ' 
10 ' 

471 
442 
398 
322 
253 
186 
116 
666 
307 
175 
138 
984 
609 
162 
408 
282 
238 
180 
103 
193 

r. 

1 0 ' 
1 0 ' 
1 0 ' 
1 0 ' 
1 0 ' 
1 0 ' 
1 0 ' 
10 ' 
10 ' 
10 ' 
10 ' 
10 ' 
10' 
10 ' 
10 ' 
1 0 ' 
1 0 ' 
1 0 ' 
1 0 ' 
10 ' 

704 
626 
525 
393 
309 
224 
116 
590 
314 
248 
235 
218 
186 
119 
612 
174 
456 
437 
276 
718 

r. 

1 0 ' 
1 0 ' 
1 0 ' 
1 0 ' 
1 0 ' 
1 0 ' 
1 0 ' 
1 0 ' 
10 ' 
10 ' 
10 ' 
1 0 ' 
10 ' 
1 0 ' 
10 ' 
10 ' 
1 0 ' 
10 ' 
10' 
10' 

123 
907 
560 
261 
150 
730 
229 
765 
182 
698 
573 
540 
495 
350 
188 
556 
352 
184 
118 
316 

r. 

10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10* 
10' 
10' 
10' 
10' 
10' 
10' 
10' 
10' 

> 
w 
2 
O 

t D a u for this table were obtained from J. F. Perkins, Report RR-TR-63-11, U. S, Army Missile Command, July 1963. 



Neutron Fluence-To-Kerma 
Conversion Factors 

for Standard-Man Model 

Appendix Bt 
Table B.l presents neutron fluence-to-kerma conversion factors calculated 
by Ritts, Solomito, and Stevens for a standard-man model. The neutron 
energies range from approximately 0.022 eV to approximately 15 MeV, and 
the compositions of the models are shown in Table B.2. Table B.l gives the 
conversion factors for the standard man together with those for the elements 
making the greatest contributions in the model. Table B.3 shows the neutron 
reactions considered for each element. 

Energy 
MeV 

15.14 
14.84 
14.54 
14.24 
13.93 

13.63 
13,33 
13,03 
12.73 
12.43 

12.13 
11.83 
11.52 
11.22 
10.92 

10.62 
10.32 
10.02 

9.72 
9.60 

Table B.l—NEUTRON FLUENCE-TO-KERMA CONVERSION FACTORS FOR STANDARD MANt 

Total 

7.079(-7)t 
6.948(-7) 
6.811 (-7) 
6.652(-7) 
6.501 (-7) 

6.276(-7) 
6.119(-7) 
6.007(-7) 
5.966(-7) 
5.949(-7) 

5.936(-7) 
5.964(-7) 
5.877(-7) 
5.818(-7) 
5.691 (-7) 

5.554(-7) 
5.483(-7) 
5.421 (-7) 
5.353(-7) 
5.313(-7) 

Hydrogen 

4,633(-7) 
4,629(-7) 
4,623(-7) 
4.617(-7) 
4.611 (-7) 

4.604(-7) 
4.598(-7) 
4.591 (-7) 
4.584(-7) 
4.577(-7) 

4.568(-7) 
4.559(-7) 
4.550(-7) 
4.540(-7) 
4.531 (-7) 

4.522(-7) 
4.512(-7) 
4.501 (-7) 
4,478(-7) 
4.468(-7) 

Fluence-to-

Oxygen 

1.53(-7) 
1.46(-7) 
1.40(-7) 
1.29(-7) 
1.18(-7) 

9.90(-8) 
8.63(-8) 
7.87 (-8) 
8.03(-8) 
8.30(-8) 

8.45(-8) 
9.28(-8) 
8.90(-8) 
8.48(-8) 
7.49(-8) 

6.75(-8) 
6.81 (-8) 
6.46(-8) 
5.9S(-8) 
5.70(-8) 

kerma factor 

Carbon 

8.08(-8) 
7.53(-8) 
6.89(-8) 
6.47(-8) 
6.16(-8) 

5.93(-8) 
5.72(-8) 
5,44(-8) 
4,96(-8) 
4,61 (-8) 

4.45(-8) 
4.01 (-8) 
3.64(-8) 
3.59 (-8) 
3.43(-8) 

2.91 (-8) 
2.26(-8) 
2.12(-8) 
2.18(-8) 
2.16(-8) 

(ergs g""' )/(neutrons cm"' ) 

Nitrogen 

9.35(-9) 
9.13(-9) 
8.87(-9) 
8.67(-9) 
8.41 (-9) 

7.99(-9) 
7.74(-9) 
7.63(-9) 
7.44(-9) 
7,29(-9) 

7.04(-9) 
6.77(-9) 
6.47(-9) 
6.23(-9) 
5.95(-9) 

5.85(-9) 
5.73(-9) 
5.52(-9) 
5.28(-9) 
5.21(-9) 

Phosphorus Sodium Chlorine 

{Table continues on next page.) 

t All data in this appendix have been taken from J. J. Ritts, E. Solomito, and P. N. Stevens, Calcu
lations of Neutron Fluence-to-Kerma Factors for the Human Body, USAEC Report ORNL-TM-2079, 
Oak Ridge National Laboratory, January 1968, 
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612 APPENDIX B 

Table B.l—(Continued) 

P Fluence-to-kerma factor, (ergs g~' )/(neutrons cm~̂  ) 

MeV Total Hydrogen Oxygen Carbon Nitrogen Phosphorus Sodium Chlorine 

9.45 
9.30 
9.15 
9.00 
8.85 
8.70 
8.62 
8.47 
8.32 
8.17 

8.02 
7.87 
7.72 
7.57 
7.42 
7.27 
7.12 
6.97 
6.82 
6.67 

6.52 
6.37 
6.21 
6.06 
5.91 
5.76 
5.61 
5.46 
5.31 
5.16 

5.01 
4.69 
4.50 
4.31 
4.16 
4.01 
3.82 
3.67 
3.52 
3.33 
3.18 
3.03 
2.84 
2.69 
2.50 
2.40 
2.31 
2.21 
2.10 
2.00 

1.91 
1.80 
1.70 
1.59 
1.50 
1.40 
1.31 
1.20 

5.271 (-7) 
5.222(-7) 
5.173(-7) 
5.123(-7) 
5.078(-7) 
5.048(-7) 
5.007(-7) 
4.988(-7) 
5.036(-7) 
5.062(-7) 

4.977(-7) 
5,038(-7) 
5.060(-7) 
4,935(-7) 
4.970(-7) 
4,995(-7) 
4.773(-7) 
4.650(-7) 
4.745(-7) 
4.707(-7) 

4.605(-7) 
4.731 (-7) 
4.611(-7) 
4.572(-7) 
4.633(-7) 
4.457(-7) 
4.502(-7) 
4.312(-7) 
4.294(-7) 
4.449(-7) 

4.344(-7) 
4.180(-7) 
4.116(-7) 
4.181 (-7) 
4.245(-7) 
4.102(-7) 
4.121 (-7) 
4.099(-7) 
4.060(-7) 
3.981 (-7) 
3.727(-7) 
3.555(-7) 
3.499(-7) 
3.396(-7) 
3.279(^7) 
3.150(-7) 
3.136(-7) 
3 . n 9 ( - 7 ) 
3.057(-7) 
2.995(-7) 

2.952(-7) 
2.883(-7) 
2.800(-7) 
2.717(-7) 
2.644(-7) 
2.577(-7) 
2.602(-7) 
2.426(-7) 

4.456(-7) 
4.443(-7) 
4.430(-7) 
4.417(-7) 
4.410(-7) 
4.402(-7) 
4.399(-7) 
4.391 (-7) 
4.383(-7) 
4.376(-7) 

4.368(-7) 
4.345(-7) 
4.319(-7) 
4.292(-7) 
4.266(-7) 
4.239(-7) 
4.211 (-7) 
4.187(-7) 
4.173(-7) 
4.159(-7) 

4.145(-7) 
4.130(-7) 
4.115(-7) 
4.100(-7) 
4.077(-7) 
4.048(-7) 
4.018(-7) 
3.987(-7) 
3.956(-7) 
3,925(-7) 

3,892(-7) 
3.810(-7) 
3.760(-7) 
3.709(-7) 
3.665(-7) 
3.623(-7) 
3.562(-7) 
3.511(-7) 
3.459(-7) 
3.392(-7) 
3.337(-7) 
3.280(-7) 
3.203(-7) 
3.138(-7) 
3.054(-7) 
3.000(-7) 
2.950(-7) 
2.898(-7) 
2.835(-7) 
2.780(-7) 

2.721 (-7) 
2.648(-7) 
2.585(-7) 
2.507(-7) 
2.440(-7) 
2.370(-7) 
2.297(-7) 
2.209(-7) 

5.40(-8) 
5.00(-8) 
4.74(-8) 
4.78(-8) 
4.54(-8) 
4.37(-8) 
4.01 (-8) 
3.90(-8) 
4.38(-8) 
4.24(-8) 

2,94(-8) 
3,81 (-8) 
3,89(-8) 
3.65(-8) 
4.11 (-8) 
5.32(-8) 
4.13(-8) 
3.13(-8) 
4.14(-8) 
3.94(-8) 

2.97(-8) 
3.89(-8) 
2,46(-8) 
2.77(-8) 
3.73(-8) 
2.32(-8) 
3.08(-8) 
1.47(-8) 
1.70(-8) 
3.46(-8) 

2.76(-8) 
1.79(-8) 
1.66(-8) 
2.91(-8) 
3.37(-8) 
2.24(-8) 
2.91 (-8) 
3.05(-8) 
3.09(-8) 
3.46(-8) 
2.06(-8) 
l ,53(-8) 
l ,14(-8) 
l ,10(-8) 
1.01 (-8) 
3.40(-9) 
7.36(-9) 
1.08(-8) 
1.14(-8) 
1.13(-8) 

1.31 (-8) 
1.31(-8) 
1.21 (-8) 
1.18(-8) 
1.15(-8) 
1.13(-8) 
2.23(-8) 
1.39 (-8) 

2.19(-8) 
2.23(-8) 
2.14(-8) 
1.75(-8) 
1.61 (-8) 
1.56(-8) 
1.56(-8) 
1.57(-8) 
1.66(-8) 
2.15(-8) 

2.63(-8) 
2.62(-8) 
3.09(-8) 
2.34(-8) 
2.49(-8) 
1.80(-8) 
1.08(-8) 
1.10(-8) 
1.21(-8) 
l ,17(-8) 

l ,25(-8) 
1,71 (-8) 
2,09 (-8) 
l ,53(-8) 
1.42(-8) 
l ,38(-8) 
1.37(-8) 
1.42(-8) 
1.30(-8) 
1.33(-8) 

1.32{-8) 
1.50(-8) 
1.42(-8) 
1.33(-8) 
1.89(-8) 
2.05(-8) 
2.26(-8) 
2.42(-8) 
2.45(-8) 
2.07(-8) 

1.54(-8) 
9.44(-9) 
1.60(-8) 
1.26(-8) 
1.09(-8) 
1.03(-8) 
9.85(-9) 
9.51 (-9) 
9.68(-9) 
9.16(-9) 

8.82(-9) 
8.56(-9) 
8.36(-9) 
8.12(-9) 
7.93(-9) 
7.73(-9) 
7.52(-9) 
7.25(-9) 

4.97(-9) 
4.91 (-9) 
4.85(-9) 
4.70(-9) 
4.64(-9) 
4.60(-9) 
4.53(-9) 
4.40(-9) 
4.28(-9) 
4.30(-9) 

4.74(-9) 
4.38(-9) 
3.88(-9) 
3.84(-9) 
3.98(-9) 
3.87(-9) 
3.52(-9) 
3.49(-9) 
3.27(-9) 
3.27(-9) 

3.38(-9) 
3.57(-9) 
3.65(-9) 
3.77(-9) 
3.67(-9) 
3.51 (-9) 
3.55(-9) 
3.25(-9) 
3.39(-9) 
4.17(-9) 

4.01 (-9) 
3.73(^-9) 
4.34(-9) 
4.48(-9) 
4.98(-9) 
4.78(-9) 
3.88(-9) 
3.67(-9) 
4.48(-9) 
3.32(-9) 

2.83(-9) 
2.47(-9) 
2.01 (-9) 
1.89(-9) 
1.34(-9) 
1.07(-9) 
1.21(-9) 
1.61(_9) 
9.62(-10) 
9.20(-10) 

9.82(-10) 
1.72(-9) 
8.76(-10) 
9.84(-10) 
9.06(-10) 
1.66(-9) 
6.44(-10) 
5.11 (-10) 
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Table B.l—(Continued) 

Energy, 
MeV 

1,10 
1,00 
9 .0( - l ) 
8 .0(- l ) 
7 .0( - l ) 
6 .0(- l ) 
5 .0(- l) 

4 .5 ( - l ) 
4 .0 ( - l ) 
3 .5( - l ) 
3 .0( - l ) 
2 .5(- l ) 
2 .0(- l ) 
1.5(-1) 
l-O(-l) 
7.0(-2) 
5.0(-2) 

3.0(-2) 
2.0(-2) 
1.5(-2) 
1.0(-2) 
7.0(-3) 
5.0(-3) 
4.03(-3) 
3.00(-3) 
2.01 (-3) 
1.50(-3) 

1.03(-3) 
7.68(-4) 
5.13(-4) 
4.02(-4) 
3.10(-4) 
2.01 (-4) 
1.42(-4) 
1.006(-4) 
7.1 (-5) 
5.03(-5) 

4.11 (-5) 
3.43(-5) 
2.74(-5) 
2.05(-5) 
1.60(-5) 
1.26(-5) 
8.0(-6) 
4.0(-6) 
2.0(-6) 
1.0(-6) 

5.0(-7) 
2.5(-7) 
1.7(-7) 
7.2(-8) 
4.5(-8) 
2.23(-8) 

Total 

2.371 
2.432 
2.122 
1.980 
1.857 
1.719 
1.592 

1.639 
1.486 
1.339 
1.223 
1.104 
9.649 
8.165 
6.335 
4.973 
3.830 

2.560 
1.807 
1.361 
9.550 
6.776 
4.880 
3.951 
2.964 
2.002 
1.495 

1.030 
7.774 
5.299 
4.244 
3.347 
2.299 
1.764( 
1.417( 
1.192 
1.071( 

1.036( 
1.025 
1.033( 
1.077( 
1.143( 
1.230 
1.454 
1.965 
2.723 
3.811 

5.354 
7.529 
1.144 
1.398 
1.766 
2.489 

- 7 ) 
- 7 ) 
- 7 ) 
- 7 ) 
- 7 ) 
- 7 ) 
- 7 ) 

- 7 ) 
- 7 ) 
- 7 ) 
- 7 ) 
- 7 ) 
- 8 ) 
- 8 ) 
- 8 ) 
- 8 ) 
- 8 ) 

- 8 ) 
- 8 ) 
- 8 ) 
- 9 ) 
- 9 ) 
- 9 ) 
- 9 ) 
- 9 ) 
- 9 ) 
- 9 ) 

- 9 ) 
-10) 
-10) 
-10) 
-10) 
-10) 
-10) 
-10) 
-10) 
-10) 

-10) 
-10) 
-10) 
-10) 
-10) 
-10) 
-10) 
-10) 
-10) 
-10) 

(-10) 
(-10) 
(-9) 
(-9) 
(-9) 
(-9) 

Hydrogen 

2.121(-7) 
2.037(-7) 
1.939(-7) 
1.834(-7) 
1.730(-7) 
1.609(-7) 
1.483(-7) 

1.403(-7; 
1.318(-7) 
1.236(-7) 
1.142(-7) 
1.037 (-7) 
9.116(-8) 
7.758(-8) 
6.056(-8) 
4.774(-8) 
3.705(-8) 

2.472(-8) 
1.747(-8) 
1.316(-8) 
9.287(-9) 
6.558(-9) 
4.832(-9) 
3.820(-9) 
2.855(-9) 
1.928(-9) 
1.436(-9) 

9.832(-10) 
7.368(-10) 
4.925(-10) 
3.867(-10) 
2.986(-10) 
1.939(-10) 
1.372(-10) 
9 .753( - l l ) 
6 .920(- l l ) 
4 .94 ( - l l ) 

4 .07 ( - l l ) 
3 .43( - l l ) 
2 .78( - l l ) 
2 .13( - l l ) 
1.71(-11) 
1.40(-11) 
1.01 (-11) 
7.20(-12) 
5.63(-12) 
7.59(-12) 

9.87(-12) 
1.35(-11) 
2 .03( - l l ) 
2 .48( - l l ) 
3.14(-11) 
4.18(-11) 

Fluence-to 

Oxygen 

1.63 
3.21 
1.15 
7.95 
6.61 
5.61 
5.74 

1.90 
1.18 
6.52 
4.73 
3.74 
2.89 
2.16 
1.45 
1.02 
7.30 

4.43 
2.98 
2.18 
1.47 
1.03 
7.53 
5.94 
4.43 
2.98 
2.22 

1.52 
1.14 
7.60 
5.96 
4.60 
2.98 
2.11 
1.49 
1.05 
7.46 

6.09 
5.09 
4.07 
3.05 
2.38 
1.86 
1.19 
5.94 
2.97 
1.49 

- 8 ) 
- 8 ) 
- 8 ) 
- 9 ) 
- 9 ) 
- 9 ) 
- 9 ) 

- 8 ) 
- 8 ) 
- 9 ) 
- 9 ) 
- 9 ) 
- 9 ) 
- 9 ) 
- 9 ) 
- 9 ) 
- 9 ) 

- 9 ) 
- 9 ) 
- 9 ) 
- 9 ) 
- 9 ) 
- 9 ) 
-11 
- 1 1 
- 1 1 
-11 

- 1 1 
- 1 1 
- 1 2 
- 1 2 
- 1 2 
- 1 2 
- 1 2 
- 1 2 
- 1 2 
- 1 3 

- 1 3 
- 1 3 
- 1 3 
- 1 3 
- 1 3 
- 1 3 
- 1 3 
- 1 4 
- 1 4 
- 1 4 

kerma 1 actor 

Carbon 

7.00 
6.70 
6.35 
5.97 
5.56 
5.07 
4.52 

4.20 
3.89 
3.51 
3.12 
2.70 
2.23 
1.75 
1.22 
8.76 
6.37 

3.92 
2.66 
1.95 
1.34 
9.24 
6.74 
5.32 
3.96 
2.67 
1.99 

1.36 
1.02 
6.80 
5.34 
4.12 
2.67 
1.88 
1.33 
9.42 
6.67 

5.45 
4.56 
3.64 
2.73 
2.13 
1.67 
1.06 
5.32 
2.66 
1.33 

- 9 ) 
- 9 ) 
- 9 ) 
- 9 ) 
- 9 ) 
- 9 ) 
- 9 ) 

- 9 ) 
- 9 ) 
- 9 ) 
- 9 ) 
- 9 ) 
- 9 ) 
- 9 ) 
- 9 ) 
- 1 0 
- 1 0 

- 1 0 
- 1 0 
- 1 0 
- 1 0 
-11 
-11 
- 1 1 
- 1 1 
-11 
-11 

-11 
-11 
- 1 2 
- 1 2 
- 1 2 
- 1 2 
- 1 2 
- 1 2 
- 1 3 
- 1 3 

- 1 3 
- 1 3 
- 1 3 
- 1 3 
- 1 3 
- 1 3 
- 1 3 
- 1 4 
- 1 4 
- 1 4 

, (ergs g ' )/(neutrons cm""̂  ) 

Nitrogen 

7,45(-10) 
6.33(-10) 
3.39(-10) 
3,90(-10) 
4.97(-10) 
2,80(-10) 
5.32(-10) 

2,90(-10) 
2.96(-10) 
2.46(-10) 
2.13(-10) 
1.93(-10) 
1.82(-10) 
1.47(-10) 
1.08(-10) 
9 ,36 ( - l l ) 
7 .62 ( - l l ) 

4 ,97 ( - l l ) 
3 ,73 ( - l l ) 
3,14(-11) 
2 .29 ( - l l ) 
1.87(-11) 
1.56(-11) 
1.44(-11) 
1.32(-11) 
1.27(-11) 
1.30(-11) 

1.40(-11) 
1.52(-11) 
1.77(-11) 
1.95(-11) 
2.19(-11) 
2 .67 ( - l l ) 
3.15(-11) 
3 .73( - l l ) 
4 .42 ( - l l ) 
5 .237(- l l ) 

5 .786(- l l ) 
6 .323( - l l ) 
7 .065( - l l ) 
8.155(-11) 
9 .226( - l l ) 
1.041(-10) 
1.302(-10) 
1.836(-10) 
2.591 (-10) 
3.656(-10) 

5.159(-10) 
7.280(-10) 
1.109(-9) 
1.356(-9) 
1.715(-9) 
2.424(-9) 

Phosphorus 

2.88 
3.02 
3.12 
3.20 

3.25 
3.27 
3.30 
3.31 
3.32 
3.33 
3.33 
3.34 
3.34 
3.34 

3.34 
3.34 
3.35 
3.35 
3.35 
3.35 
3.35 
3.35 
3.35 
3.35 

3.35 
3.35 
3.35 
3.35 
3.35 
3.35 

-12 ) 
-12) 
-12) 
-12) 

-12) 
- 12 ) 
-12) 
-12) 
-12) 
- 12 ) 
- 12 ) 
-12) 
-12) 
-12) 

-12) 
-12) 
-12) 
-12) 
-12) 
-12) 
-12) 
- 12 ) 
-12) 
-12) 

-12) 
-12) 
-12) 
-12) 
-12) 
-12) 

Sodium 

3.50(-
4.11(-

4.54(-
4.99(-
5.58(-
6.44(-
7.34(-
8.34(-
1.04(-
1.46(-
2.09(-
2.97(-

4.15(-
5.89(-
9.00(-
1.10(-
1.39(-
1.83(-

-13) 
-13) 

-13) 
-13) 
-13) 
-13) 
-13) 
-13) 
-12) 
-12) 
-12) 
-12) 

-12) 
-12) 
-12) 
-11) 
-11) 
-11) 

Chlorine 

2.72 
1.84 
3.28 
1.97 
5.91 
1,12 
3,87 
9.84 
1.10 

1,31 
1.57 
1,95 
2,59 
3.14 
3.79 
5.08 
7.24 
1.03 
1.45 

2.07 
2.12 
2.12 
2.12 
2.12 
2.12 

-13) 
-12) 
-12) 
-12) 
- 14 ) 
-13) 
-13) 
-14) 
-13) 

-13) 
-13) 
-13) 
-13) 
-13) 
(-13) 
(-13) 
(-13) 
-12) 
-12) 

-12) 
-12) 
-12) 
- 1 2 ' 
-12) 
-12) 

tThe standard-man model also includes the elements calcium, sulfur, potassium, and magnesium, but their 
contributions to the kerma are negligible. 

JRead: 7.079 X 10"', etc. 
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Table B.2—ELEMENTAL PERCENTAGES AND NUMBER DENSITIES USED IN NEUTRON KERMA CALCULATIONS 

Element 

H 
O 
C 
N 
Ca 
P 
S 
K 
Na 
CI 
Mg 

Standard 
man Lung 

10 10 
60 75 
24 10 

2.9 2.6 
1.2 0.011 
1,1 0.11 
0.24 0.24 
0.20 0.20 
0.20 0.18 
0.20 0.25 
0.03 0.0096 

Percent composition 

Muscle 

10 
75 
11 

2.6 
0.0031 
0.18 
0.24 
0,30 
0.16 
0.18 
0,019 

Bone 

7.1 
39.5 
22.4 

4.7 
12.37 
13.16 
0.41 

0,08 

0,28 

Brain 

10 
71 
15 

1.9 
0.0086 
0,34 
0,17 
0,30 
0.18 
0.23 
0,015 

tThe values for oxygen and carbon were increased by 1 am 
{Read ; 5.977 X 10"', etc. 

Red 
marrow 

10 
74t 
12.5t 

3,2 

0.12 

Standard 
man 

5.977(-2)t 
2.259(-2) 
1.204(-2) 
1.25(-3) 
1.77 (-4) 
2.14(-4) 
4.51 (-4) 
3.08(-5) 
524{-5) 
3.40(-5) 
7.43(-6) 

d 0.5%, respectively. 

Number density, 

Lung 

6.062(-2) 
2.864(-2) 
5.09(-3) 
1.13(-3) 
1.68(-6) 
2.17(-5) 
4.57(-5) 
3.13(-5) 
4.78(-5) 
4.31 (-5) 
4.78(-6) 

Muscle 

5.977(-2) 
2,824(-2) 
5.518(-2) 
1.118(-3) 
4.66(-7) 
3.50(-5) 
4.51(-5) 
4.62(-5) 
4.19(-5) 
3.06(-5) 
4.71 (-6) 

lO'* atoms/g 

Bone 

4,50(-2) 
l ,49(-2) 
1.13(-2) 
2.05(-3) 
1.87(-3) 
2.57(-3) 
7.69(-5) 

2.08(-5) 

6.87(-5) 

Brain 

5.977(-2) 
2.674(-2) 
7.52(-3) 
8.17(-4) 
1.29(-6) 
6.61 (-5) 
3.19(-5) 
4.62(-5) 
4.72(-5) 
3.91(-5) 
3,72(-6) 

Red 
marrow 

5.977(-2) 
2.7866(-2) 
6.270(-3) 
1.377(-3) 

2.039(-5) 

> 
2 s 
z 
o >< 
w 
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Table B.3—REACTIONS CONSIDERED IN NEUTRON KERMA 

Type of reaction 

Radiative capture 
Elastic scattering 
Inelastic scattering 
{n,p) reaction 
(n,a) reaction 
{n,n 3a) reaction 
(n,2n) reaction 
{n,d} reaction 
(n,t) reaction 
(n,2a) reaction 
(«,n'p) reaction 
{n,n'a) reaction 

H 

X 

X 

CALCULATIONS 

O 

X 

X 

xt 
X 

C 

X 

X 

X 

X 

N 

X 

X 

X 

X 

X 

xt 
X 

X 

X 

Ca 

X 

X 

P 

X 

X 

X 

xt 
xt 

xt 

X 

S 

X 

X 

X 

K 

X 

X 

X 

X 

X 

xt 
X 

X 

X 

Na 

xt 
X 

X 

CI 

X 

X 

X 

xt 

Mg 

X 

X 

X 

X 

X 

X 

tIncludes beta decay after reaction, 
tIncludes positron decay. 



Cylindrical Tissue Phantom 

Appendix C 
Table C.l—MAXIMUM ABSORBED DOSE AND MAXIMUM 
DOSE EQUIVALENT FOR MONOENERGETIC NEUTRONS 

INCIDENT ON A CYLINDRICAL TISSUE PHANTOMt 

Maximum Maximum 

Neutron 
energy, 

MeV 

Thermal 
0.000001 
0.00001 
0.0001 
0.001 
0.01 
0.1 
0.5 
1 
2.5 
5 
7 

10 
14 

absorbed 
dose,$ 
mrad 

neutron"* cm 

4.68(-7)§ 
5.89(-7) 
5.18(-7) 
4.45(-7) 
4.32(-7) 
4.34(-7) 
8.02(-7) 
1.81 (-6) 
3.01 ( -6) 
3.99(-6) 
5.72(-6) 
5.70(-6) 
7.25(-6) 
8.31 ( -6) 

dose 
equivalent,! 

mrem 
neutron"* cm" 

1.15(-6) 
1.34(-6) 
1.21 (-6) 
1.01 ( -6) 
8.85(-6) 
9.92(-6) 
4.86(-6) 
1.89(-5) 
3.26(-5) 
3.50(-5) 
4.41 ( -5) 
4.03(-5) 
4.31 (-5) 
6.15(-5) 

Effective 
quality 
factor 

2.46 
2.27 
2.34 
2.27 
2.04 
2.29 
6.06 

10.4 
10.8 

8.77 
7.70 
7.07 
5.94 
7.40 

tBased on data from J. A. Auxier, W. S. Snyder, and T. D. 
Jones, Radiation Dosimetry, Vol. I, Chap. 6, F. H. Attix and 
W. C. Roesch (Eds.), Academic Press, Inc., New York, 1968. 

^Multiply by 3600 to convert to (mrad hr"*)/(neutron 
cm" sec) or to (mrem hr" )/(neutron cm" sec). 

§ Read: 4.68 X lO'^.etc . 
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Coordinate Systems, Vector 
Operations, and Legendre 

Polynomials 

Appendix D 
D.l COORDINATE SYSTEMS 

The three common spatial coordinate systems and the basic unit vectors of 
each are illustrated in Fig. D.l and Table D.l. 

k 

J 

z 
I 
I 

• — y 

/ 
X 

CARTESIAN CYLINDRICAL 

Fig. D.l—Principal coordinate systems. 

Table D.l—POSITION VARIABLES 
System Independent variables Unit vectors 

«, j , fe 
p,B,k 
r,6, rP 

Cartesian 
Cylindrical 
Spherical 

x,y,z 
p,e,z 
r,fl,i// 

D.2 COORDINATE-SYSTEM TRANSFORMATION 

(a) Cartesian—Cylindrical 

x = pcos6 p = {x'^ + y'^ )'^ 

617 
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y = p sinO cos 6 = x{x^ + y^) '̂  

^-l^=cose=xix^.y^r'^ 

| = | = s i n 0 = ^ ( . a ^ 3 , ^ ) - ^ 

3 ^ - „ : „ « - . . . 3 ^ _ ../..2 , .2 , - , _ . 1 , . g ^ = - s i n e = - j ; — = -3;(x2 + / ) - ' = - - - s i n 0 

-^-P cos 6 = x;^ = x{x^ +y^)~^ =- cos 6 

(b) Cartesian—Spherical 

X = r sin 0 cos \p r={x^+y^+z^)^ 

3; = r sin 0 sin i// cos 0 = z(x^ + y^ + z^)~'^ 

z =" r cos 6 sin i// = y{x^ + jy^) 

-r- = ^ = sin 9 cos \J/ = x(x^ + y'^ +2^ )"'* 

• ^ = | i = s ine sin i// = y(x2 +3,2 +^2)-^4 
or o j 

^ - = - r - = c o s 0 =z{x^ + y +2^) ^ or az \ J I 

-^0 = T cos 6 cos i// = xzix"^ +y'^y'^ 

-^=xz{x^ +y^}~'^ (x^ +y'^ +2^)"* = —cos0 cos \p 

-^ = r cos 0 sin ^ = yz{x''' + jy^ )"^ 

g^ = >'2(x2 -I- j 2 j- ' i (x2 -̂  3/2 + 2^ j " ! = 1 COS 0 sin l/̂  

d2 
90 •^ = - r s i n 0 = - ( x ^ +>'^)'' 
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dd z^(x^ +y2 +z^)-' - 1 1 . ^ 
-— =—^ ^ T—r^ = — sm a 
az (x2 +y^y^ r 

zr-r- —r sin 6 sin \p = —y 

9'/ ' / 7 7v-i 1/sin \jj\ 

dy 
•g-r - r sin a cos \p - x 

^ = x ( x ^ + v ^ ) - ' = l / ' ^ ^ ' l 

d\p bz 

D.3 VECTOR OPERATORS AND FUNCTIONS 

In the following, F{u,v,w) is a vector function of the form 

F(M,t;,M;) = F i {u,V,w) U + p 2 {U,V,W) V + F 3 {UfVyW) w 

in which Fi{u,v,w) is a scalar function of the three variables u, v, and w, 

which have the corresponding basis unit vectors u, v, and w, respectively. 

(a) Gradient Operator V 

Cartesian: VF[x,y,z) = \^;a^» + 9^ J + 9 7 • ' j 

Cylindrical: VF[p,e,z) = ( | f P + ^ | f ^ + | f k ) 

Spherical: VF(r ,e ,^) = ( f ^ + 7 ^ | f » ^ T ^ f - V ' ) 

(b) Divergence Function V • F 

Cartesian: VF(x,y ,2) =—— +-5— +-r— 
•^ ox oy 32 

Cylindrical: VF(p ,e ,2 ) = - ( - ^ - H - ^ + p - ^ j 
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S p h e r i c a l : V . F ( r , e , ^ ) = f l + l ^ ^ _ L - ^ 
or r dd r sm d o\p 

(c) Laplacian Operator V^ (V^ F = V-VF) 

^ . 2r., X 9^f 9^-F 9^F Cartesian: V F(x,3;,2) - — - H H -

3x 83; 82 

cylindrical: V ^ F ( . . 2 ) = 1 [ ^ ( . | ^ ) ] . A 0 ) . 0 : 

spherical: V ^ F ( , M ) = 1 [|^(.^ f ) ] . - ^ ^ [ | (sm . f ) ] 

r^ sin2 0 \3 , | /2 / 

(d) Vector Derivative 

3F(x,3',2) 3Fi 3x _ 3F2 dy . dF^ dz 

3̂  ""sT 37'"^"373r-'"^"3r ht^ 

Similar relations exist for the other coordinate systems. 

(e) Divergence Theorem 

Let F be a closed and bounded volume as in Fig. D.2 with F a 
vector function everywhere continuous and differentiable in V. 
Then 

/ j , V-VdV^ j ^ F-ndA 

where dV = differential-volume element of V 
S = surface of volume V 

dA = differential-area element of S 
n = outward-directed unit normal of dA 

(f) Some Miscellaneous Theorems 

(1) F(u"v) = (uF)'v = u ' v F 

( 2 ) V u F = F(V-u) + u-VF 

( 3 ) V ( F , F 2 ) + F i ( V F 2 ) + F 2 ( V F J 

(4) V^ (F1F2) - F i V2F2 + F2 V ^ F , + 2(VFi -VFj) 
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Volume V enclosed 
within surface S 

Fig. D.2—Divergence theorem. 

(5) u*(v -I- w) = (u*v) + (u'w) 

4 DIRAC DELTA FUNCTION 

(a) The Dirac delta function, 5(x—XQ, 3^—3'O> • • •)> is defined such that 

5 ( x - x o , 3'-3'o, • • •) = 0;x¥=xo,> '7^3 'o , • • • 

= l ; x = Xo,3' =3'o> • • • 

It has the property that 

/r°-e' il°-e • • • f^^'y' • • •) ^(^-^o> y~yo, ...)dxdy... 
= / ( ^o , 3 'o . - - - ) 

where e,- > 0 for i = 1, 2, . . . . 

(b) Miscellaneous relations: 

(1) 5(x—XQ) = 6(—X—XQ) 

(2) 5(cx—XQ) = k r ' 5(x—XQ) (C is a constant) 

(3) 8[(x—Xj), (x—X2)] = |xi — X2 r* [5(x—xi) + 5(x—X2)] 

(4) 5(x—X,)'S(x—X2) = 5(x—Xi) 5(xi—X2) = 6(x—X2) 6(xi —X2) 

,r-s d ^, . 1 ,. /fe cos fex sin fex\ 
{5 ) -7 -5 (x )=— hm \ •—;—I 
^ ' dx ^ ' It , \ X x^ ' 

(6) / " ' ' ^ '5 ' (x-Xo)/ (x)dx = - / ' ( x ) | , 
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(7) 6 (x—XQ) = —5 (XQ—x) 

(8)5(x)=i li*" r'cosfexdx=iiini /sinfexN 

{9)fj5(y}dy = -^ (x < 0) 

= + l {x>0) 

(10) 'L\p„{x} \p^{y) = 5{x-y), where the set \jJn{x) forms an ortho-
normal set and i/'n(x) is the complex conjugate of i/'„(x). 

(11) Let the vector r = xi + 3'j + 2k where i, j , and k are unit vectors. 
Then 

5(r) = 6(x) 5{y) 5(̂  ) = ̂  J^^'" ' ' da 

and 

f\{T)f{r)dt=f{0) ( a < 0 < b ) 
- 0 otherwise 

(c) The Kronecker delta function is a discrete analog of the Dirac delta 
function and is defined for integers m and n by 

8{in,n,) = 1 [m = n) 
= 0 otherwise 

D.5 LEGENDRE POLYNOMIALS 

(a) The Legendre polynomials Pn{x) of degree n are defined by the 
generating relation 

{l-2xt + t^y'^= t Pn{x)t^ 
n=0 

It can be shown that 

P„(x) - l^akx - 2J 2«fe!(n-fe)!(n-2fe)! 

where [n/2] = n/2 for even n and (n — l)/2 for odd n. 

(b)PoW = l;Pi{x)=x;P2{x) = (3x2 _ iy2;P3{x) = (Sx^ - 3x)/2 
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(c) Miscellaneous relations: 

f i 2 
(1) / Pm{x) F„(x) dx = -z——-r 6(m,n) (orthogonality relation) 

(2) X P„(x) = — ^ [{n + l )P„+i(x) + n F„+i (x)] 

(recursion relation) 

(3) P„(x) = - /J" [x + (x^ - 1)'* cos d]dd (integral form) 

(4)F„(x) = ( - l ) « P „ ( - x ) 

(5) F„(x) = 2;^;^ ^ \ x 2 _ 1)« (Rodrigues formula) 

(6) For / (x) piecewise continuous in [—1,1] and having a first 
derivative there, 

/ (x) = E a„ P«(x) (expansion theorem) 
n = 0 

where a„ = ( ^ ^ ^ — j / ^ j f{y) Pn{y) dy 

6 ASSOCIATED LEGENDRE POLYNOMIALS 

(a) The associated Legendre polynomial of the first kind of degree n 

and order m is defined by 

M , i 2 \ m / 2 ^ (n+m) 

pm(^) = i L r A J ^ ( p ^ - i r (0<m<n) 
2"n! (Jju«+'" 

(b) Miscellaneous relations: 

( i ) p j r ( P ) = ( i - M ' r / 2 | ^ p „ ( A . ) 

(2) Letting ju = cos 6, 
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Pff (cos 6) = sin'" 0 P„(cos 0) 
d cos*" 6 

sin*" d d(«+»«) , . -,„ 
= (-sin0 « 

2«M! cfcos«+'"0 

(3)p--(M) = (- i )-^^^-p;r(p) 

(4) Two recursion relations are: 

(5) The set PJP (ju) are orthogonal: 

Let G(fi) be a function continuous over the unit sphere and 
having second-order derivatives there. If 6 and \p are the polar 
and azimuthal angles, respectively, of SI, then G(J2) = G{6,\jj) 
may be expanded as 

(6) G(n)= £ [a„,oPn{fx) 
n=0 

n 
+ £ {(hi,k cos k\p + bn,k sin k\p)P^{n)] 

where ju = cos 0 

an,k = ^ ^ ^ *n̂ 4„ 0(SI)P\ {n) cos H dSl 

^«>k = ^ ^ I^, G{Sl) pfe(M) sin krP dSl 

{dn = sin dded\l/ = -dn d\p) 

(7) Letcj = CL'V,', where n(0,<//) and S^'(0',;//') are two unit vectors. 
The useful addition theorem is an expansion of the Legendre 
polynomial in terms of the associated functions: 
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P„(co)= L F (̂n,m)Pn'(M)P;r(M')e'''»(*-*')=P„(M)P„(M') 
m=—n 

+ 2 1 F2(n,m)P;;»(/i)P;r(P') cos m((//-i//') 
m=l 

where p. = cos 0, n' = cos 0', and F{n,m) = \- ^1 

D.7 ASSOCIATED SPHERICAL-HARMONIC FUNCTIONS 

(a) With the unit vector n(0,i/') defined as above, the associated spheri-
ical harmonics of degree / and order m are defined by 

where M = cos 6, Film) = K~ ""}:] .and (0 < m < /) 

\.{l + my.\ 

(b) Miscellaneous relations: 

(1) P/,^(n) = ( - i r P{l,m) PfW e^"^^ 
(2) Pi^rni^) = (-1)"* Pihm) Pf (ju) (cos mi// - i sin mi//) 
(3) The complex conjugates are thus given by 

pf.mi^) = ( - i r ^('''") ̂ ri/^) "̂''"'̂  
P|^^(n) = (-l)*" F{l,m) Pf{n) (cos m\// - i sin m\l/) 

(4) In the degenerate case where m = 0 

no(")=^Co(")=-p!(M)=-pKM) 

(5) There are two orthogonal properties: 

47r 
/4„ Pl,mi^) Pj,kW d^ = ̂ iTJ^^^'^^ ^(" '̂̂ ) ^('"•°) 

47r 

(6) The addition theorem can be written as an expansion of P^(cj) 
in spherical harmonics: 

P„{W)= L P„,m{Sl)Plm{Sl') 



Exposure Buildup Factors 

Appendix E 
Table E. l contains exposure buildup factors. Plots for a given initial energy 
and penetration depth {Por) vs. atomic number can be used for interpola
tion. 

Table E.l 

Eo, 
Material MeV 

Water 0.255 
0.5 
1.0 
2.0 
3.0 
4.0 
6.0 
8.0 

10.0 

Aluminum 0.5 
1.0 
2.0 
3.0 
4.0 
6.0 
8.0 

10.0 

Iron 0.5 
1.0 
2.0 
3.0 
4.0 
6.0 
8.0 

10.0 

—EXPOSURE BUILDUP FACTOR (B^) POINT 

1 

3.09 
2.52 
2.13 
1.83 
1.69 
1.58 
1.46 
1.38 
1.33 

2.37 
2.02 
1.75 
1.64 
1.53 
1.42 
1.34 
1.28 

1.98 
1.87 
1.76 
1.55 
1.45 
1.34 
1.27 
1.20 

ISOTROPIC SOURCEt 

2 

7.14 
5.14 
3.71 
2.77 
2.42 
2.17 
1.91 
1.74 
1.63 

4.24 
3.31 
2.61 
2.32 
2.08 
1.85 
1.68 
1.55 

3.09 
2.89 
2.43 
2.15 
1.94 
1.72 
1.56 
1.42 

4 

23.0 
14.3 

7.68 
4.88 

3.91 
3.34 
2.76 
2.40 
2.19 

9.47 
6.57 
4.62 
3.78 
3.22 
2.70 
2.37 
2.12 

5.98 
5.39 
4.13 
3.51 
3.03 
2.58 
2.23 
1.95 

Por 

7 

72.9 
38.8 
16.2 

8.46 
6.23 
5.13 
3.99 
3.34 
2.97 

21.5 
13.1 

8.05 
6.14 
5.01 
4.06 
3.45 
3.01 

11.7 
10.2 

7.25 
5.85 
4.91 
4.14 
3.49 
2.99 

10 

166 
77.6 
27.1 
12.4 

8.63 
6.94 
5.18 
4.25 
3.72 

38.9 
21.2 
11.9 

8.65 
6.88 
5.49 
4.58 
3.96 

19.2 
16.2 
10.9 

8.51 
7.11 
6.02 
5.07 
4.35 

15 

456 
178 

50.4 
19.5 
12.8 

9.97 
7.09 
5.66 
4.90 

80.8 
37.9 
18.7 
13.0 
10.1 

7.97 
6.56 
5.63 

35.4 
28.3 
17.6 
13.5 
11.2 

9.89 
8.50 
7.54 

20 

982 
334 

82.2 
27.7 
17.0 
12.9 

8.85 
6.95 
5.98 

141 
58.5 
26.3 
17.7 
13.4 
10.4 

8.52 
7.32 

55.6 
42.7 
25.1 
19.1 
16.0 
14.7 
13.0 
12.4 

626 



APPENDIX E 627 

Table E.l—(Continued) 

Eo, 
Material MeV 

Tin 0.5 
1.0 
2.0 
3.0 
4.0 
6.0 
8.0 

10.0 

Tungsten 0.5 
1.0 
2.0 
3.0 
4.0 
6.0 
8.0 

10.0 

Lead 0.5 
1.0 
2.0 
3.0 
4.0 
5.1 
6.0 
8.0 

10.0 

Uranium 0.5 
1.0 
2.0 
3.0 
4.0 
6.0 
8.0 

10.0 

1 

1.56 
1.64 
1.57 
1.46 
1.38 
1.26 
1.19 
1.14 

1.28 
1.44 
1.42 
1.36 
1.29 
1.20 
1.14 
1.11 

1.24 
1.37 
1.39 
1.34 
1.27 
1.21 
1.18 
1.14 
1.11 

1.17 
1.31 
1.33 
1.29 
1.24 
1.16 
1.12 
1.09 

2 

2.08 
2.30 
2.17 
1.96 
1.81 
1.57 
1.42 
1.31 

1.50 
1.83 
1.85 
1.74 
1.62 
1.43 
1.32 
1.25 

1.42 
1.69 
1.76 
1.68 
1.56 
1.46 
1.40 
1.30 
1.23 

1.30 
1.56 
1.64 
1.58 
1.50 
1.36 
1.27 
1.20 

4 

3.09 
3.74 
3.53 
3.13 
2.82 
2.37 
2.05 
1.79 

1.84 
2.57 
2.72 
2.59 
2.41 
2.07 
1.81 
1.64 

1.69 
2.26 
2.51 
2.43 
2.25 
2.08 
1.97 
1.74 
1.58 

1.48 
1.98 
2.23 
2.21 
2.09 
1.85 
1.66 
1.51 

Por 

7 

4.57 
6.17 
5.87 
5.28 
4.82 
4.17 
3.57 
2.99 

2.24 
3.62 
4.09 
4.00 
4.03 
3.60 
3.05 
2.62 

2.00 
3.02 
3.66 
3.75 
3.61 
3.44 
3.34 
2.89 
2.52 

1.67 
2.50 
3.09 
3.27 
3.21 
2.96 
2.61 
2.26 

10 

6.04 
8.85 
8.53 
7.91 
7.41 
6.94 
6.19 
5.21 

2.61 
4.64 
5.27 
5.92 
6.27 
6.29 
5.40 
4.65 

2.27 
3.74 
4.84 
5.30 
5.44 
5.55 
5.69 
5.07 
4.34 

1.85 
2.97 
3.95 
4.51 
4.66 
4.80 
4.36 
3.78 

15 

8.64 
13.7 
13.6 
13.3 
13.2 
14.8 
15.1 
12.5 

3.12 
6.25 
8.07 
9.66 

12.0 
15.7 
15.2 
14.0 

2.65 
4.81 
6.87 
8.44 
9.80 

11.7 
13.8 
14.1 
12.5 

2.08 
3.67 
5.36 
6.97 
8.01 

10.8 
11.2 
10.5 

20 

18.8 
19.3 
20.1 
21.2 
29.1 
34.0 
33.4 

(7.35) 
(10.6) 
14.1 
20.9 
36.3 
41.9 
39.3 

(2.73) 
5.86 
9.00 

12.3 
16.3 
23.6 
32.7 
44.6 
39.2 

(6.48) 
9.88 

12.7 
23.0 
28.0 
28.5 

tFrom H. Goldstein and J. E. Wilkins, Jr., Calculations of the Penetrations of 
Gamma Rays, Final Report, USAEC Report NYO-3075, Nuclear Development 
Associates, Inc., June 30,1954. 



Coefficients for Gamma-Ray 
Buildup Factors 

Appendix F 

Table F.l—COEFFICIENTS FOR LINEAR, QUADRATIC, AND BERGER FORMS OF 
EXPOSURE BUILDUP FACTORS FITTED OVER THE RANGE 0 TO 7 MEAN FREE PATHS 

FROM POINT ISOTROPIC SOURCEt 

Material 

Water 

Aluminum 

Iron 

Tm 

£, MeV 

0.255 
0.5 
1 
2 
3 
4 
6 
8 

10 

0.5 
1 
2 
3 
4 
6 
8 

10 

0.5 
1 
2 
3 
4 
6 
8 

10 

0.5 
1 
2 
3 
4 
6 
8 

10 

Lmear 

A, 

8.5524 
4.6800 
1.9953 
1.0301 
0.7397 
0.5884 
0.4321 
0.3406 
0.2877 

2.6461 
1.6089 
0.9686 
0.7197 
0.5663 
0.4334 
0.3476 
0.2847 

1.4283 
1.2373 
0.8556 
0.6691 
0.5403 
0.4297 
0.3391 
0.2681 

0.5153 
0.7199 
0.6731 
0.5837 
0.5146 
0.4153 
0.3317 
0.2550 

Maximum 
error.t 

% 

F3.1 
F2.3 

40 
10 

3 
1 
3 
4 
4 

F1.5 
30 
13 

5 
3 
2 
1 
2 

25 
20 
12 
9 
7 
8 
8 
8 

3 
6 
8 

11 
12 
17 
17 
16 

-4, 

-0.2525 
0.6684 
1.0053 
0.8242 
0.6962 
0.5801 
0.4616 
0.3782 
0.3251 

1.0688 
0.9316 
0.7437 
0.6355 
0.5284 
0.4142 
0.3346 
0.2715 

0.8642 
0.8026 
0.6526 
0.5338 
0.4366 
0.3237 
0.2473 
0.1785 

0.5479 
0.6153 
0.5455 
0.4284 
0.3420 
0.2082 
0.1371 
0.0945 

Quadratic 

b 

1.4984 
0.6750 
0.1666 
0.0346 
0.0073 
0.0014 

-0.0050 
-0.0063 
-0.0063 

0.2654 
0.1140 
0.0378 
0.0142 
0.0064 
0.0032 
0.0022 
0.0022 

0.0949 
0.0731 
0.0342 
0.0228 
0.0175 
0.0178 
0.0154 
0.0151 

-0.0055 
0.0176 
0.0215 
0.0261 
0.0290 
0.0348 
0.0327 
0.0270 

Maximum 
error. 

% 

30 
8 
2 
2 

2 
2 
2 

C 

1.7506 
1.3245 
1.0622 
0.8093 
0.6876 
0.5800 
0.4655 
0.3860 
0.3342 

1.2435 
0.9589 
0.7267 
0.6294 
0.5253 
0.4177 
0.3371 
0,2752 

0.9081 
0.8214 
0.7020 
0.5323 
0.4366 
0.3271 
0.2563 
0.1876 

0.5608 
0.6219 
0.5498 
0.4379 
0.3583 
0.2369 
0.1692 
0.1232 

Berger 

D 

0.2609 
0.2078 
0.1052 
0.0408 
0.0125 
0.0024 

-0.0126 
-0.0214 
-0.0257 

0.1250 
0.0864 
0.0486 
0.0227 
0.0127 
0.0061 
0.0050 
0.0055 

0.0752 
0.0684 
0.0319 
0.0384 
0.0358 
0.0457 
0.0464 
0.0592 

-0.0146 
0.0244 
0.0338 
0.0479 
0.0601 
0.0925 
0.1103 
0.1190 

Maximum 
error. 

% 

10 
5 
3 

628 
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Table F.l—(Continued) 

Material 

Tungsten 

Lead 

Uranium 

£, MeV 

0.5 
1 
2 
3 
4 
6 
8 

10 

0.5 
1 
2 
3 
4 
5.1 
6 
8 

10 

0.5 
1 
2 
3 
4 
6 
8 

10 

Linear 

Ai 

0.1903 
0.3817 
0.4376 
0.4171 
0.4054 
0.3363 
0.2624 
0.2073 

0.1549 
0.2990 
0.3796 
0.3810 
0.3523 
0.3219 
0.3034 
0.2419 
0.1933 

0.1054 
0.2264 
0.3023 
0.3169 
0.3010 
0.2571 
0.2081 
0.1621 

Maximum 
error, t 

% 

8 
5 
2 
5 

12 
17 
16 
14 

8 
6 
1 
5 

10 
13 
15 
15 
13 

7 
7 
3 
4 
7 

12 
12 
11 

A2 

0.2692 
0.4269 
0.4164 
0.3515 
0.2540 
0.1435 
0.0957 
0.0748 

0.2273 
0.3613 
0.3787 
0.3164 
0.2389 
0.1747 
0.1346 
0.0894 
0.0642 

0.1637 
0.2990 
0.3250 
0.2760 
0.2199 
0.1314 
0.0885 
0.0638 

Quadratic 

b 

-0.0133 
-0.0076 

0.0036 
0.0110 
0.0255 
0.0324 
0.0281 
0.0223 

-0.0122 
-0.0105 

0.0001 
0.0109 
0.0191 
0.0248 
0.0284 
0.0257 
0.0217 

-0.0098 
-0.0122 
-0.0038 

0.0069 
0.0136 
0.0212 
0.0201 
0.0165 

Maximum 
error. 

% 

2 
2 
1 
1 
1 
2 
2 
2 

3 
2 
1 
1 
1 
1 
2 
3 
3 

2 
2 

C 

0.2938 
0.4425 
0.4172 
0.3501 
0.2710 
0.1771 
0.1245 
0.0974 

0.2526 
0.3779 
0.3862 
0.3267 
0.2530 
0.1936 
0.1622 
0.1220 
0.0939 

0.1825 
0.3204 
0.3321 
0.2814 
0.2283 
0.1476 
0.1081 
0.0798 

Berger 

D 

-0.0751 
-0.0255 

0.0080 
0.0295 
0.0666 
0.1049 
0.1223 
0.1238 

-0.0848 
-0.0403 

0.0032 
0.0253 
0.0547 
0.0839 
0.1027 
0.1112 
0.1167 

-0.0951 
-0.0599 
-0.0162 

0.0196 
0.0458 
0.0916 
0.1076 
0.1163 

Maximum 
error. 

% 

2 

2 
2 

2 
2 

tFrom D. K. Trubey, A Survey of Empirical Functions Used To Fit Gamma-Ray Buildup Factors, USAEC Report 
ORNL-RSIC-10, Oak Ridge National Laboratory, February 1966. 

$F3.1 means "factor of 3.1," etc. 

Table F.2—COEFFICIENTS FOR LINEAR, QUADRATIC, AND BERGER FORMS 
OF EXPOSURE BUILDUP FACTORS FITTED OVER THE RANGE 0 TO 20 MEAN FREE PATHS 

FROM POINT ISOTROPIC SOURCESt 

Material 

Water 

£, MeV 

0.255 
0.5 
1 
2 
3 
4 
6 
8 

10 

Linear 

A, 

36.1015 
13.0925 

3.4788 
1.2549 
0.7863 
0.5951 
0.4030 
0.3085 
0.2584 

Maximum 
error,$ 

% 
F12 

F5.6 
F2 
25 

6 
1 
5 
7 
7 

A2 

-12.9947 
-0.9744 

1.1152 
0.9173 
07218 
0.5907 
0.4471 
0.3561 
0.3002 

Quadratic 

b 

3.0515 
0.8743 
0.1469 
0.0210 
0,0040 
0.0003 

-0.0027 
-0.0038 
-0.0026 

Maximum 
error. 

%t 
Foo 
F3 

6 
6 
2 
1 
2 
2 
3 

C 

2.5048 
1.8035 
1.2282 
0.8594 
0.7004 
0.5826 
0.4853 
0.3741 
0.3206 

Berger 

D 

0.1623 
0.1224 
0.0649 
0.0240 
0.0074 
0.0014 

-0.0082 
-0.0124 
-0.0139 

Maximum 
error. 

% 
30 
25 
11 

5 
2 
1 
1 
2 
2 

(Table cont inues on next page.) 
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Material E, MeV 

Aluminum 0 5 

1 
2 
3 
4 
6 
8 
10 

Iron 0 5 

1 
2 
3 
4 
6 
8 
10 

Tin 0 5 

1 
2 
3 
4 
6 
8 
10 

Tungsten 0 5 

1 
2 
3 
4 
6 
8 
10 

Lead 0 5 

1 
2 
3 
4 
51 
6 
8 
10 

Uranium 0 5 

1 
2 
3 
4 
6 
8 
10 

Linear 

Ai 

5 7374 

2 5385 

1 1928 

0 8061 

0 6075 

0 4626 

0 3697 

0 3087 

2 3773 

1 8643 

1 1194 

0 8446 

0 6942 

0 6134 

0 5245 

0 4759 

0 5090 

0 8495 
0 8521 

0 8509 

0 8643 

10786 

1 1907 

1 1075 

01550 

0 3382 

0 4671 

0 5919 

0 8102 

12616 

1 3753 

12730 

0 1043 

0 2549 

0 3947 

0 5123 

0 6378 

0 8560 

1 1247 

14165 
1 2370 

0 0812 
0 1914 

0 2838 

0 4081 

0 4991 

0 8088 

0 9323 

0 9203 

Maximum 

error,$ 

% 

F3 
Fl 9 
30 
12 
6 
6 
5 
5 

F19 
Fl 6 
33 
25 
25 
34 
40 
50 

4 
18 
25 
40 

Fl 58 
F2 2 
F2 8 
F3 0 

13 
9 
8 
30 

F18 
F3 
F3 5 
F3 8 

15 
11 
3 
30 

F16 
F2 1 
F2 8 
F4 
F4 

11 
11 
5 
20 
43 
F2 3 
F2 9 
F3 3 

Table F 2 — 

A, 

0 6696 
1 1185 
0 8751 
0 6812 
0 5503 
0 4252 
0 3395 
0 2750 

0 9019 
0 9212 
0 7423 
0 5840 
0 4605 
0 3201 
0 2207 
0 1143 

0 5150 
0 6666 
0 5826 
0 4254 
0 2845 

-0 1374 
-0 4693 
-0 6523 

0 2206 
0 4149 
0 4072 
0 3255 
0 0995 

-0 5462 
-0 9399 
-0 9502 

0 1791 
0 3133 
0 3695 
0 2990 
0 1449 

-0 1480 
-0 5070 
-11408 
-1 0279 

0 1262 
0 2556 
0 3185 
0 2614 
0 1621 

-0 2492 
-0 5357 
-0 6560 

-(Continued) 

Quadratic 

b 

0 3150 

0 0883 

0 0197 

0 0078 

0 0036 

0 0023 

0 0019 

0 0021 

0 0917 

0 0586 

0 0234 

0 0162 

0 0145 
0 0182 

0 0189 

0 0225 

-0 0005 
0 0114 

0 0168 

0 0264 

0 0360 

0 0756 

0 1032 

0 1094 

-0 0054 

-0 0048 

0 0037 

0 0165 

0 0442 

0 1124 

0 1439 

0 1382 

-0 0047 

-0 0036 

0 0015 

0 0133 

0 0306 

0 0624 

0 1014 

0 1589 

0 1408 

-0 0037 

-0 0053 

-0 0022 

0 0091 

0 0210 

0 0658 
0 0912 

0 0980 

1 

Maximum 

error, 

%t 
20 
10 
8 
3 
2 
2 
1 
1 

3 
7 
6 
4 
2 
1 
3 
6 

3 
3 
3 
1 
5 

40 
F3 
F12 

5 
2 
3 
2 
15 
F4 
Foo 
Foo 

5 
5 
2 
2 
10 
40 
F4 
Foo 
Foo 

5 
5 
2 
2 
6 

F2 
F5 
Foo 

C 

14412 

10831 

0 7869 

0 6504 

0 5343 

0 4182 

0 3366 

0 2738 

0 9814 

0 8932 

0 7173 

0 5571 

0 4518 

0 3381 

0 2603 

0 1902 

0 5457 

0 6378 

0 5678 

0 4533 

0 3700 

0 2401 

0 1669 

0 1190 

0 2692 
0 4279 
0 4163 
0 3484 
0 2727 
0 1704 
0 1161 
0 0882 

0 2243 
0 3530 
0 3791 
0 3244 
0 2526 
0 1904 
01554 
0 1075 
0 0824 

0 1635 
0 2991 
0 3240 
0 2781 
0 2273 
0 1426 
0 1004 
0 0721 

Berger 

D 

0 0850 
0 0535 
0 0266 
0 0137 
0 0082 
0 0063 
0 0058 
0 0074 

0 0548 
0 0460 
0 0277 
0 0261 
0 0268 
0 0368 
0 0428 
0 0553 

-0 0063 
0 0180 
0 0254 
0 0388 
0 0518 
0 0891 
0 1145 
0 1278 

-0 0477 
-0 0150 
0 0070 
0 0324 
0 0653 
0 1160 
0 1405 
0 1510 

-0 0500 
-0 0211 
0 0021 
0 0279 
0 0557 
0 0883 
0 1143 
0 1440 
01513 

-0 0606 
-0 0385 
-0 0084 
0 0234 
0 0475 
0 1011 
0 1274 
0 1442 

Maximum 
error. 

% 

12 
9 
6 
3 
2 
1 
1 
1 

7 
7 
4 
4 
3 
3 
2 
1 

3 
3 
3 
3 
3 
2 
1 
5 

5 
2 
4 
2 
1 
2 
6 
7 

5 
4 
1 
1 
1 
2 
4 
12 
12 

5 
5 
2 
1 
1 
2 
5 
7 

tFrom D K Trubey \ Survey of Empirical Functions Used To Fit Gamma Ray Buildup Factors, USAEC Report 
ORNL RSIC 10 Oak Ridge National Laboratory, February 1966 

fF12 means 'factor of 12 'etc 



Table F.3—BERGER FORMULA CONSTANTS FOR ENERGY-DEPOSITION BUILDUP, 
POINT ISOTROPIC SOURCE, 20-MEAN-FREE-PATH FITt 

E,MeV 

0.255 
0.5 
1 
2 
3 
4 
6 
8 

10 

C 

2.4039 
1.7128 
1.2443 
0.8829 
0.7506 
0.5905 
0.4550 
0.3757 
0.3036 

Water 

D 

0.1598 
0.1201 
0.0660 
0.0243 
0.0065 
0.0012 

-0 .0079 
-0 .0121 
-0 .0133 

Maximum 
error, % 

30 
24 
12 

5 
2 
1 
1 
2 
2 

C 

1.7237 
1.2204 
0.8480 
0.6746 
0.5411 
0.3995 
0.3079 
0.2492 

Aluminum 

D 

0.0902 
0.0553 
0.0268 
0.0134 
0.0079 
0.0060 
0.0060 
0.0074 

Maximum 
error, % 

14 
10 

6 
3 
2 
1 
1 
1 

C 

1.7887 
1.2192 
0.7868 
0.5847 
0.4494 
0.2975 
0.2076 
0.1565 

Iron 

D 

0.0550 
0.0466 
0.0280 
0.0255 
0.0281 
0.0353 
0.0420 
0.0528 

Maximum 
error, 

7 
8 
4 
4 
2 
3 
2 
1 

% C 

1.1873 
1.0819 
0.7490 
0.4909 
0.3352 
0.1931 
0.1237 
0.0930 

Tin 

D 

-0 .0069 
0.0134 
0.0245 
0.0380 
0.0534 
0.0820 
0.1030 
0.1148 

Maximum 
error. 

4 
3 
4 
9 
8 
2 
2 
4 

% C 

0.4551 
0.7027 
0.5510 
0.3476 
0.2227 
0.1646 
0.1167 
0.0781 
0.0588 

Lead 

D 

-0 .0753 
-0 .0278 
-0 .0014 

0.0251 
0.0532 
0.0818 
0.1060 
0.1269 
0.1327 

Maximum 
error, % 

10 
7 
3 
2 
1 
3 
5 
8 

15 

> 
^ 
z 
>< 
Tl 

tFrom D. K. Trubey, A Survey of Empirical Functions Used To Fit Gamma-Ray Buildup Factors, USAEC Report ORNL-RSIC-10, Oak Ridge National 
Laboratory, February 1966. 

ON 
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Table F.4—PARAMETERS a, b, AND c FOR ENERGY-DEPOSITION 
BUILDUP FACTOR IN THE EQUATION t 

B(px) = 1.0 + a{px) + b{pxf + c(pxf 
FOR A POINT ISOTROPIC SOURCE 

, Parameters for energy of 
iCi o t 

material 0.5 MeV 1 MeV 2 MeV 4 MeV 6 MeV 8 MeV 10 MeV 

Parameter a 

, (HjO) 
2 
4 
6 
8 

10 
12 
14 
16 
18 

20 
22 
24 
26 
28 

30 
32 
34 
36 
38 

40 
42 
44 
46 
48 

50 
52 
54 
56 
58 

60 
62 
64 
66 
68 

0.840 
0.22 
0.44 
0.64 
0.83 

1.01 
1.19 
1.32 
1.42 
1.50 

1.55 
1.59 
1.62 
1.64 
1.64 

1.64 
1.63 
1.61 
1.59 
1.56 

1.53 
1.49 
1.44 
1.39 
1.34 

1.29 
0.24 
1.19 
1.15 
1.10 

1.05 
1.01 
0.96 
0.91 
0.87 

0.970 
0.97 
0.98 
0.99 
1.00 

1.01 
1.02 
1.03 
1.04 
1.05 

1.06 
1.07 
1.08 
1.09 
1.10 

1.11 
1.11 
1.12 
1.12 
1.13 

1.13 
1.13 
1.13 
1.13 
1.12 

1.11 
1.10 
1.09 
1.08 
1.06 

1.04 
1.02 
1.00 
0.98 
0.96 

0.830 
0.76 
0.76 
0.76 
0.76 

0.76 
0.76 
0.76 
0.76 
0.76 

0.75 
0.75 
0.75 
0.75 
0.74 

0.74 
0.74 
0.73 
0.73 
0.72 

0.72 
0.71 
0.71 
0.70 
0.70 

0.69 
0.68 
0.67 
0.67 
0.66 

0.65 
0.65 
0.64 
0.64 
0.63 

0.589 
0.65 
0.63 
0.60 
0.58 

0.56 
0.54 
0.52 
0.51 
0.49 

0.47 
0.46 
0.44 
0.43 
0.42 

0.41 
0.39 
0.38 
0.37 
0.36 

0.36 
0.35 
0.34 
0.33 
0.32 

0.32 
0.31 
0.30 
0.30 
0.29 

0.29 
0.28 
0.27 
0.27 
0.26 

0.460 
0.54 
0.51 
0.48 
0.46 

0.43 
0.41 
0.38 
0.36 
0.34 

0.33 
0.31 
0.30 
0.28 
0.27 

0.26 
0.25 
0.24 
0.23 
0.22 

0.22 
0.21 
0.21 
0.20 
0.20 

0.19 
0.19 
0.18 
0.18 
0.17 

0.17 
0.16 
0.16 
0.16 
0.15 

0.381 
0.45 
0.42 
0.40 
0.37 

0.34 
0.32 
0.30 
0.28 
0.26 

0.24 
0.22 
0.21 
0.20 
0.19 

0.18 
0.17 
0.17 
0.16 
0.16 

0.15 
0.15 
0.15 
0.14 
0.14 

0.14 
0.13 
0.13 
0.13 
0.12 

0.12 
0.12 
0.11 
0.11 
0.11 

0.312 
0.39 
0.36 
0.34 
0.31 

0.29 
0.26 
0.24 
0.22 
0.20 

0.18 
0.17 
0.16 
0.15 
0.14 

0.14 
0.13 
0.13 
0.13 
0.12 

0.12 
0.12 
0.12 
0.11 
0.11 

0.11 
0.11 
0.10 
0.10 
0.10 

0.10 
0.10 
0.10 
0.09 
0.09 
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Table F.4—(Continued) 

Zof 
material 

70 
72 
74 
76 
78 

7.5 (H2O) 
2 
4 
6 
8 

10 
12 
14 
16 
18 

20 
22 
24 
26 
28 

30 
32 
34 
36 
38 

40 
42 
44 
46 
48 

50 
52 
54 
56 
58 

60 
62 
64 
66 
68 

0.5 MeV 

0.82 
0.78 
0.73 
0.69 
0.65 

0.600 
0.53 
0.50 
0.464 
0.436 

0.402 
0.367 
0.336 
0.305 
0.275 

0.244 
0.215 
0.188 
0.160 
0.142 

0.103 
0.091 
0.070 
0.050 
0.031 

0.014 
0.0 

-0 .013 
-0 .025 
-0 .035 

-0 .043 
-0 .048 
-0 .053 
-0.056 
-0 .058 

-0 .060 
-0 .062 
-0 .063 
-0 .064 
-0 .065 

IMeV 

0.94 
0.92 
0.90 
0.87 
0.85 

0.175 
0.126 
0.125 
0.125 
0.124 

0.123 
0.121 
0.120 
0.118 
0.116 

0.113 
0.109 
0.105 
0.100 
0.094 

0.088 
0.082 
0.079 
0.067 
0.058 

0.050 
0.041 
0.032 
0.022 
0.013 

0.004 
-0 .005 
-0 .013 
-0 .020 
-0 .027 

-0 .033 
-0 .037 
-0 .040 
-0 .043 
-0 .045 

Parameters for energy of 

2 MeV 

0.62 
0.62 
0.61 
0.61 
0.60 

4 MeV 

0.26 
0.25 
0.25 
0.24 
0.24 

Parameter b 

0.037 
0.055 
0.053 
0.051 
0.049 

0.047 
0.045 
0.043 
0.041 
0.039 

0.038 
0.037 
0.036 
0.036 
0.036 

0.036 
0.036 
0.036 
0.036 
0.036 

0.036 
0.036 
0.036 
0.036 
0.036 

0.036 
0.035 
0.032 
0.028 
0.025 

0.022 
0.018 
0.015 
0.012 
0.008 

0.0015 
0.05 
0.04 
0.03 
0.015 

0.010 
0.005 
0.007 
0.008 
0.011 

0.013 
0.015 
0.017 
0.019 
0.021 

0.022 
0.023 
0.023 
0.023 
0.022 

0.022 
0.021 
0.021 
0.020 
0.020 

0.019 
0.018 
0.018 
0.017 
0.017 

0.016 
0.015 
0.015 
0.014 
0.014 

6 MeV 

0.15 
0.15 
0.14 
0.14 
0.14 

-0 .0035 
0.05 
0.04 
0.03 
0.015 

0.010 
0.003 
0.005 
0.006 
0.008 

0.010 
0.012 
0.014 
0.015 
0.017 

0.018 
0.019 
0.019 
0.019 
0.018 

0.018 
0.017 
0.017 
0.016 
0.016 

0.015 
0.015 
0.014 
0.013 
0.012 

0.011 
0.010 
0.009 
0.008 
0.007 

8 MeV 

0.11 
0.11 
0.11 
0.10 
0.10 

-0 .005 
0.05 
0.04 
0.03 
0.015 

0.010 
0.002 
0.003 
0.004 
0.006 

0.008 
0.010 
0.010 
0.011 
0.011 

0.011 
0.010 
0.010 
0.009 
0.009 

0.008 
0.007 
0.006 
0.005 
0.004 

0.004 
0.003 
0.003 
0.002 
0.002 

0.001 
0.001 
0.001 
0.0 

-0 .001 

10 MeV 

0.09 
0.09 
0.09 
0.09 
0.09 

-0 .0055 
0.05 
0.04 
0.03 
0.015 

0.010 
0.001 
0.002 
0.003 
0.005 

0.007 
0.009 
0.009 
0.009 
0.009 

0.009 
0.008 
0.008 
0.007 
0.007 

0.006 
0.005 
0.004 
0.003 
0.002 

0.002 
0.001 
0.001 
0.001 
0.0 

-0 .001 
-0 .001 
-0 .002 
-0 .003 
-0 .003 

(Table continues on next page.) 
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Table F.4—(Continued) 

Zof 
material 

70 
72 
74 
76 
78 

7.5 (HjG) 
2 
4 
6 
8 

10 
12 
14 
16 
18 

20 
22 
24 
26 
28 

30 
32 
34 
36 
38 

40 
42 
44 
46 
48 

50 
52 
54 
56 
58 

60 
62 
64 
66 
68 

0.5 MeV 

-0.066 
-0.067 
-0.067 
-0.068 
-0.068 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0.0001 

0.0002 
0.0003 
0.0005 
0.0008 
0.0010 

0.0012 
0.0014 
0.0015 
0.0016 
0.0017 

0.0018 
0.0019 
0.0020 
0.0021 
0.0022 

0.0023 
0.0023 
0.0024 
0.0025 
0.0025 

IMeV 

-0.047 
-0.048 
-0.050 
-0.051 
-0.052 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0.0001 
0.0001 
0.0002 

0.0002 
0.0003 
0.0004 
0.0005 
0.0006 

0.0007 
0.0008 
0.0009 
0.0010 
0.0010 

0.0011 
0.0012 
0.0013 
0.0014 
0.0015 

Parameters for energy of 

2 MeV 

0.005 
0.002 

-0.002 
-0.004 
-0.006 

4 MeV 

0.013 
0.013 
0.012 
0.011 
0.010 

Parameter c 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 

-0.0001 

-0.0002 
-0.0002 
-0.0003 
-0.0004 
-0.0005 

-0.0005 
-0.0006 
-0.0006 
-0.0006 
-0.0007 

-0.0007 
-0.0006 
-0.0006 
-0.0006 
-0.0005 

-0.0004 
-0.0004 
-0.0003 
-0.0002 
-0.0001 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0.0001 

0.0002 
0.0004 
0.0005 
0.0006 
0.0007 

0.0008 
0.0008 
0.0009 
0.0009 
0.0010 

0.0010 
0.0010 
0.0010 
0.0010 
0.0010 

0.0010 
0.0009 
0.0009 
0.0009 
0.0009 

6 MeV 

0.006 
0.005 
0.004 
0.003 
0.002 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0.0001 

0.0002 
0.0003 
0.0004 
0.0005 
0.0006 

0.0006 
0.0007 
0.0008 
0.0009 
0.0016 

0.0010 
0.0011 
0.0012 
0.0013 
0.0013 

0.0014 
0.0014 
0.0015 
0.0015 
0.0015 

8 MeV 

-0.001 
-0.002 
-0.002 
-0.003 
-0.004 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0.0001 

0.0002 
0.0003 
0.0005 
0.0008 
0.0010 

0.0012 
0.0013 
0.0014 
0.0015 
0.0017 

0.0017 
0.0017 
0.0018 
0.0018 
0.0019 

0.0019 
0.0020 
0.0020 
0.0020 
0.0020 

10 MeV 

-0.004 
-0.005 
-0.005 
-0.006 
-0.006 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0.0001 

0.0002 
0.0003 
0.0005 
0.0008 
0.0010 

0.0012 
0.0014 
0.0015 
0.0016 
0.0017 

0.0018 
0.0019 
0.0020 
0.0020 
0.0020 

0.0020 
0.0020 
0.0020 
0.0020 
0.0020 



Z o f 
material 

70 
72 
74 
76 
78 

0.5 MeV 

0.0026 
0.0026 
0.0026 
0.0027 
0.0027 

APPENDIX F 

Table F .4— 

1 MeV 

0.0016 
0.0017 
0.0018 
0.0018 
0.0019 

Continued) 

Parameters for energy of 

2 MeV 

0.0 
0.0001 
0.0002 
0.0003 
0.0004 

4 MeV 

0.0008 
0.0008 
0.0008 
0.0007 
0.0007 

6 MeV 

0.0016 
0.0016 
0.0017 
0.0017 
0.0018 

8 MeV 

0.0020 
0.0021 
0.0021 
0.0021 
0.0021 

635 

10 MeV 

0.0020 
0.0020 
0.0020 
0.0019 
0.0019 

tFrom M. L. Tobias, D. R. Vondy, and M. P. Lietzke, NIGHTMARE—An IBM 7090 
Code for the Calculation of Gamma Heating in Cylindrical Geometry, USAEC Report 
ORNL-3198, Oak Ridge National Laboratory, Feb. 26, 1972. 

Table F.5.1—WATER ENERGY-DEPOSITION BUILDUP DATAf 

E,MeV 

0.5 
1.5 
2.5 
3.5 
4.5 
5.5 
6.5 
7.5 
8.5 
9.5 

0.4 
0.7 
1.0 
1.5 
2.0 
2.5 
2.8 

^0 

Polynomial coefficients j3; 

Hi fc 

Operating Gamma Energies 

1.00125(0) 
9 .95465(- l ) 
9.97165(-1) 
9.99216(-1) 
1.00080(0) 
1.00198(0) 
1.00290(0) 
1.00361(0) 
1.00419(0) 
1.00466(0) 

9.26231 ( -1 
9.42191(-1 
7.79558(-l 
6.44960(-l 
5.48872(-l 
4.78918(-1 
4 .26224(- l 
4 .85274(- l 
3.52605(-l 
3 .25966(-l 

Shutdown Gam 

9.96370(- l) 
1.00043(0) 
9.96994(- l) 
9 .95465(- l ) 
9 .96087(- l ) 
9.97165(-1) 
9.97823(- l) 

1.19891(0) 
8.86758(-l 
9.59381 ( -1 
9.42191(-1 
8.62337(-l 
7 .79558(-l 
7 .34476(-l 

5.06779(-l) 
8.54431 (-2) 
2.32124(-2) 
5.92178(-3) 

-6 .25612(-4) 
-3 .53293(-3) 
-4 .93742(-3) 
-5 .63875(-3) 
-5 .98227(-3) 
-6 .13305(-3) 

ma Energies 

5.98646(-l) 
) 3 .38048(- l) 
) 1.90309(-1) 

8.54431 (-2) 
) 4.33880(-2) 
) 2.32124(-2) 
) 1.59527(-2) 

/33 

1.05625(-2) 
-1 .40297( -3) 
-5 .09605( -4) 
-1 .60968( -4) 
-1 .31755(-5) 

5.64411(-5) 
9.13922(-5) 
1.09377(-4) 
1.18446(-4) 
1.22589(-4) 

2.58224(-2) 
5.62186(-4) 

-1 .77445( -3) 
-1 .40297( -3) 
-8 .56510(-4) 
-5 .09605( -4) 
-3 .69642(-4) 

tFrom M. A. Capo, Polynomial Approximation of Gamma-Ray 
Buildup Factors for a Point Isotropic Source, USAEC Report APEX-510, 
General Electric Company, August 1959. 
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Table F.5.2—ALUMINUM ENERGY-DEPOSITION BUILDUP DATAt 

E,MeV 

0.5 
1.5 
2.5 
3.5 
4.5 
5.5 
6.5 
7.5 
8.5 
9.5 

0.4 
0.7 
1.0 
1.5 
2.0 
2.5 
2.8 

|3o 

Polynomij 

Hi 

il coefficients ft 

H2 

Operating Gamma Energies 

9 .99375(- l ) 
9 .89303(- l) 
9 .96422(- l) 
9 .99988(- l) 
1.00133(0) 
1.00177(0) 
1.00183(0) 
1.00173(0) 
1.00156(0) 
1.00137(0) 

Sh 

9.96852(- l) 
1.02587(0) 
9 .95468(- l ) 
9 .89303(- l ) 
9 .93089(- l ) 
9 .96422(- l ) 
9 .97858(- l ) 

1.30777(0) 
8.80067(-l 
7.10143(-1, 
5 .84845(- l , 
4 .91214(-1, 
4 .20424(- l , 
3.65631 ( -1 
3.22193(-1, 
2 .87011(-1, 
2.57981 ( - 1 , 

utdown Gamn 

1.47519(0) 
1.37596(0) 
1.05501(0) 
8.80067(-l 
7.87367(-l 
7.10143(-1 
6.68707(-l 

3 .09928(- l) 
8.17524(-2) 
3.04919(-2) 
1.31824(-2) 
6.60650(-3) 
3.96087(-3) 
2.95324(-3) 
2.68803(-3) 
2.77497(-3) 
3.03014(-3) 

na Energies 

2 .95950(- l ) 
1.64305(-1) 
1.33496(-1) 
8.17524(-2) 
4.90708(-2) 
3.04919(-2) 
2.33484(-2) 

H3 

4.17211(-3) 
-1 .45150(-3) 
-6 .93062(-4) 
-2 .99415(-4) 
-1 .34319(-4) 
-6 .53646(-5) 
-3.89701 (-5) 
-3 .25229(-5) 
-3 .57358(-5) 
-4 .36250(-5) 

1.58034(-2) 
2.71874(-3) 

-8 .37533( -4) 
-1 .45150(-3) 
-1 .04754(-3) 
-6 .93062(-4) 
-5.37691 (-4) 

tFrom M. A. Capo, Polynomial Approximation of Gamma-Ray 
Buildup Factors for a Point Isotropic Source, USAEC Report APEX-510, 
General Electric Company, August 1959. 
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Table F.5.3—IRON ENERGY-DEPOSITION BUILDUP DATAt 

E,MeV 

0.5 
1.5 
2.5 
3.5 
4.5 
5.5 
6.5 
7.5 
8.5 
9.5 

0.4 
0.7 
1.0 
1.5 
2.0 
2.5 
2.8 

^ 0 

Polynomial > 

Hi 

Operating Gamma 

1.00284(0) 
1.00295(0) 
1.00009(0) 
9.98723(- l) 
9.98231(-1) 
9.98087(- l) 
9 .98085(- l ) 
9.98142(-1) 
9.98223(- l) 
9.98311(-1) 

Sh 

1.00480(0) 
9.90035(- l) 
1.00093(0) 
1.00295(0) 
1.00140(0) 
1.00009(0) 
9.99533(- l) 

1.59020(0) 
8.66308(-l) 
6.37132(-1) 
4.91866(-1) 
3.92656(-l) 
3.21302(-1) 
2 .67764(- l ) 
2 .26206(- l ) 
1.93054(-1) 
1.66013(-1) 

lutdown Gamma 

1.80880(0) 
1.34931(0) 
1.06991(0) 
8.66308(-l) 
7 .37006(- l ) 
6.37132(-1) 
5.87104(-1) 

coefficients Hi 

H2 

Energies 

1.69181(-1) 
6.05394(-2) 
3.03015(-2) 
2.07774(-2) 
1.62387(-2) 
1.35838(-2) 
1.18363(-2) 
1.05957(-2) 
9.66759(-3) 
8.94618(-3) 

Energies 

1.90712(-1) 
1.81651(-1) 
1.12726(-1) 
6.05394(-2) 
4.02749(-2) 
3.03015(-2) 
2.65084(-2) 

Hs 

1.73772(-4) 
-7 .72469( -4) 
-3 .77266(-4) 
-1 .64953(-4) 
-3 .22198( -5) 

5.86485(-5) 
1.24756(-4) 
1.75005(-4) 
2.14486(-4) 
2.46324(-4) 

3.23403(-4) 
-1 .20219( -3) 
-1 .11370(-3) 
-7 .72469(-4) 
-5 .39837(-4) 
-3 .77266(-4) 
-3 .01289( -4) 

tFrom M. A. Capo, Polynomial Approximation of Gamma-Ray 
Buildup Factors for a Point Isotropic Source, USAEC Report APEX-510, 
General Electric Company, August 1959. 
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Table F.5.4—TIN ENERGY-DEPOSITION BUILDUP DATAt 

E,MeV 

0.5 
1.5 
2.5 
3.5 
4.5 
5.5 
6.5 
7.5 
8.5 
9.5 

0.4 
0.7 
1.0 
1.5 
2.0 
2.5 
2.8 

Ho 

1.00259(0) 
1.00156(0) 
9.97988(-l 
9 .95935(-l 
9 .96384(-l 
9 .97424(-l 
9 .97634(-l 
9.97014(-1 
9.95564(-l 
9 .93284(-l 

1.00240(0) 
1.00452(0) 
1.00398(0) 
1.00156(0) 
9.99520(-l 
9 .97988(- l 
9 .97257(- l 

Polynomial coefficients Hi 

Hi H2 

Operating Gamma Energies 

1.25931(0) 
8.65069(-l 
5 .73675(- l , 
4 .03733(- l , 
3 .00490(- l , 
2 .35258(- l , 
1.85578(-1 
1.51450(-1, 
1.32875(-1 
1.29852(-1 

Shutdown Gam 

1.30553(0) 
1.16701(0) 
1.06706(0) 
8 .65069(- l , 
6 .99078(- l , 
5 .73675(- l , 
5.13412(-1, 

-3 .63953(-2) 
3.58198(-2) 
2.88829(-2) 
1.65694(-2) 
1.29627(-2) 
1.11403(-2) 
8.58655(-3) 
5.30151 (-3) 
1.28515(-3) 

-3 .46252(-3) 

ma Energies 

-4 .68267(-2) 
-2 .65822(-2) 

1.52859(-2) 
3.58198(-2) 
3.47173(-2) 
2.88829(-2) 
2.50130(-2) 

Hs 

1.57962(-3) 
-6 .85867(-4) 

3.55381 (-5) 
9.51860(-4) 
1.20395(-3) 
1.30735(-3) 
1.43864(-3) 
1.59782(-3) 
1.78488(-3) 
1.99984(-3) 

1.56464(-3) 
2.33401 (-3) 
2.68730(-4) 

-6 .85867(-4) 
-4 .44094(-4) 

3.55381(-5) 
3.30280(-4) 

tFrom M. A. Capo, Polynomial Approximation of Gamma-Ray 
Buildup Factors for a Point Isotropic Source, USAEC Report APEX-510, 
General Electric Company, August 1959. 
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Table F.5.5—LEAD ENERGY-DEPOSITION BUILDUP DATAt 

E, MeV 

0.5 
1.5 
2.5 
3.5 
4.5 
5.5 
6.5 
7.5 
8.5 
9.5 

0.4 
0.7 
1.0 
1.5 
2.0 
2.5 
2.8 

Ho 

1.02446(0) 
1.00591(0) 
1.00341(0) 
1.00230(0) 
1.00046(0) 
9.96828(-l) 
9.93954(-l) 
9.91842(-1) 
9.90492(-l) 
9.89905(-l) 

1.00415(0) 
1.01437(0) 
1.00920(0) 
1.00591(0) 
1.00435(0) 
1.00341(0) 
1.00300(0) 

Polynomial 

^1 

Operating Gamma 

4.50964(- l ) 
6 .85608(- l) 
4.49401 (-1) 
2.81788(-1) 
2.01870(-1) 
1.71349(-1) 
1.47018(-1) 
1.28877(-1) 
1.16925(-1) 
1.11164(-1) 

Shutdown Gamma 

3.79448(-l) 
6.15504(-1) 
7 .47687(- l ) 
6 .85608(- l) 
5.61596(-1) 
4.49401 (-1) 
3.91690(-1) 

coefficients Hi 

H2 

Energies 

-4 .10998( -2) 
-1 .89736(-2) 
-2 .58366( -4) 

8.13507(-3) 
7.30625(-3) 
4.27843(-4) 

-4 .98319(-3) 
-8 .92684(-3) 
-1 .14031( -2) 
-1 .24120(-2) 

Energies 

-3 .68912(-2) 
-5 .27118( -2) 
-3 .85780( -2) 
-1 .89736( -2) 
-7 .47115( -3) 
-2 .58366(-4) 

2.87674(-3) 

H3 

1.48297(-3) 
5.62874(-4) 
3.62998(-4) 
4.48166(-4) 
9.53997(-4) 
1.64896(-3) 
2.12918(-3) 
2.39466(-3) 
2.44540(-3) 
2.28140(-3) 

1.36614(-3) 
2.13950(-3) 
1.26739(-3) 
5.62874(-4) 
3.80808(-4) 
3.62998(-4) 
3.80735(-4) 

tFrom M. A. Capo, Polynomial Approximation of Gamma-Ray 
Buildup Factors for a Point Isotropic Source, USAEC Report APEX-510, 
General Electric Company, August 1959. 



640 APPENDIX F 

Table F.6—COEFFICIENTS FOR BERGER BUILDUP-FACTOR 
FUNCTION FOR POINT ISOTROPIC SOURCE TO 20 MEAN FREE PATHS t 

£ , MeV 

0.5 
1.0 
2.0 
3.0 

4.0 
6.0 
8.0 

10.0 

0.5 
1.0 
2.0 
3.0 

4.0 
6.0 
8.0 

10.0 

C 

1.3029 
1.0914 
0.8126 
0.6731 

0.5953 
0.4915 
0.4164 
0.3585 

D 
Max. 

error, % C 

ORDINARY CONCRETE 

Exposuret 

0.08610 
0.04566 
0.01980 
0.00942 

0.00299 
-0 .00159 
-0 .00172 
-0 .00005 

Energy depositiont 

1.6280 
1.2367 
0.8850 
0.7171 

0.6154 
0.4882 
0.4049 
0.3435 

0.09272 
0.04795 
0.01987 
0.00825 

0.00199 
-0 .00205 
-0 .00208 
-0 .00041 

18 
15 

9 
4 

2 
3 
6 
9 

21 
17 

9 
3 

1 
3 
6 
9 

1.3110 
1.0221 
0.7744 
0.6525 

0.5672 
0.4718 
0.4203 
0.3716 

D 

Tissue kerma§ 

0.08073 
0.05160 
0.02456 
0.01258 

0.00753 
0.00198 
0.00096 
0.00127 

Energy deposition§ 

1.6568 
1.1633 
0.8203 
0.6702 

0.5672 
0.4583 
0.3985 
0.3609 

0.08538 
0.05325 
0.02465 
0.01221 

0.00753 
0.00168 
0.00084 
0.00083 

Max. 
error, % 

12 
9 
5 
3 

2 
1 
1 
1 

13 
10 

5 
3 

2 
1 
1 
1 

MAGNETITE CONCRETE § 

Tissue kerma Energy deposition 

0.5 
1.0 
2.0 
3.0 

4.0 
6.0 
8.0 

10.0 

0.5 
1.0 
2.0 
3.0 

4.0 
6.0 
8.0 

10.0 

1.0971 
0.9281 
0.7318 
0.6154 

0.5308 
0.4345 
0.3752 
0.3245 

0.7002 
0.7237 
0.6270 
0.5367 

0.4645 
0.3727 
0.3172 
0.2667 

0.06458 
0.04768 
0.02620 
0.01836 

0.01513 
0.01118 
0.01153 
0.01199 

8 
8 
5 
4 

3 
2 
2 
2 

1.6607 
1.1664 
0.8170 
0.6386 

0.5263 
0.4224 
0.3390 
0.3006 

BARYTES CONCRETE§ 

Tissue kerma 

0.01624 
0.03007 
0.02373 
0.02158 

0.02122 
0.02233 
0.02588 
0.02878 

1 
4 
4 
4 

3 
3 
2 
2 

0.06696 
0.04877 
0.02591 
0.01747 

0.01428 
0.00705 
0.01010 
0.00999 

Energy deposition 

1.3542 
1.1102 
0.7672 
0.5806 

0.4689 
0.3403 
0.2787 
0.2420 

0.01056 
0.02792 
0.02229 
0.01995 

0.01948 
0.02045 
0.02251 
0.02368 

8 
8 
5 
3 

3 
3 
2 
2 

4 
3 
3 
3 

2 
2 
2 
1 
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Table F.6—(Continued) 

£ , MeV 

0.5 
1.0 
2.0 
3.0 

4.0 
6.0 
8.0 

10.0 

0.5 
1.0 
2.0 
3.0 

4.0 
6.0 
8.0 

10.0 

0.5 
1.0 
2.0 
3.0 

4.0 
6.0 
8.0 

10.0 

0.5 
1.0 
2.0 
3.0 

4.0 
6.0 
8.0 

10.0 

C 

1.6001 
1.1571 
0.8363 
0.6974 

0.6081 
0.5146 
0.4635 
0.4235 

1.4474 
1.0876 
0.8077 
0.6758 

0.5875 
0.4886 
0.4334 
0.3883 

1.6187 
1.1676 
0.8457 
0.7051 

0.6149 
0.5176 
0.4727 
0.4328 

2.0198 
1.2652 
0.8391 
0.6607 

0.5778 
0.4671 
0.4047 
0.3676 

D 

Tissue kerma 

0.10094 
0.05749 
0.02430 
0.01017 

0.00324 
-0 .00316 
-0 .00362 
-0 .00350 

Tissue kerma 

0.08932 
0.05482 
0.02503 
0.01239 

0.00651 
0.00091 
0.00009 

-0 .00224 

Tissue kerma 

0.10280 
0.05802 
0.02392 
0.00913 

0.00253 
-0 .00342 
-0 .00438 
-0 .00390 

Max. 
error, % 

AIRH 

18 
11 

5 
3 

1 
1 
1 
1 

SANDU 

14 
10 

5 
3 

2 
1 
1 
1 

WOODH 

19 
11 

5 
3 

1 
1 
1 
1 

C D 

Energy deposition 

1.5411 
1.1305 
0.8257 
0.6872 

0.6020 
0.5080 
0.4567 
0.4261 

0.09920 
0.05687 
0.02407 
0.01002 

0.00323 
-0 .00289 
-0 .00349 
-0 .00333 

Energy deposition 

1.6641 
1.1729 
0.8343 
0.6833 

0.5844 
0.4734 
0.4175 
0.3800 

En< 

1.5079 
1.1163 
0.8234 
0.6949 

0.6122 
0.5186 
0.4729 
0.4430 

LITHIUM HYDRIDEf 

Tissue kerma 

0.13997 
0.07091 
0.02272 
0.00546 

-0 .00157 
-0 .01017 
-0 .01213 
-0 .01135 

34 
16 

6 
2 

1 
2 
3 
3 

0.09348 
0.05619 
0.02532 
0.01212 

0.00653 
0.00100 

-0 .00055 
-0 .00034 

Tgy deposition 

0.09921 
0.05688 
0.02388 
0.00915 

0.00276 
-0 .00343 
-0 .00445 
-0 .00403 

Max. 
error, % 

17 
11 

16 
10 

5 
3 

2 
1 
1 
1 

17 
11 

5 
3 

1 
1 
1 
1 

tFrom D. K. Trubey, Gamma-Ray Buildup Factor Coefficients for Concretes and 
Other Materials, Nuclear Applications and Technology, 9: 441 (September 1970). 

:{:Constants based on A. B. Chilton, Nuclear Engineering and Design, 6; 205 (1967). 
§Constants based on F. H. Clark and D. K. Trubey, Nuclear Applications, 4: 37 

(1968). 
^Francis H. Clark, Gamma-Ray Buildup Factors for Sand, Air, and Wood (Cellulose), 

Nuclear Applications, 6: 588 (1969); Francis B. K. Kam and Francis H. S. Clark, Fission 
Neutron Attenuation and Gamma-Ray Buildup for Lithium Hydride, Nuclear 
Applications, 3: 433 (1967). 



Graphs and Formulas of 
Exponential Integral 

Functions 

Appendix G 
Several exponential functions that are extremely useful in shielding 
calculations are presented in this appendix. They include the exponential 
function e^ and the exponential integral functions Efj{x), which are 
expressed in integral form by 

i^(xj I e 

y 

rxy dy 
ytl 

En{x)^r y^-'e-'^^ydy 

and in series form by 

m=0 
m#«-l 

n - 1 

where In 7 = 0.577216..., ^ i = 0, ^ „ = 2 j —, and n = 0,1,2,3,... . 
m 

m=l 

The recursion relation for the exponential integrals is 

1 
^"i^") "^ n-1 [^ "̂  ~ ^ ^"-1 (^)] 

In particular, the first-order exponential integral is given by 

J,. 00 ^-y 

— dy 
X y 

642 
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and the series representation by 

( - 1 ) " x" V> ( — 1) 
•-lix) = —Iny X— > •'̂  — 
^^ ' Li n\n 

M=0 

In some publications the £ i ( x ) function is denoted by —£i(—x); i.e., 
£ i (x) = —Ei{—x). When tables of the exponential function are used, caution 
should always be exercised not to confuse —£i(—x) with —Ei[x). 

For negative arguments the E^ (x) function is frequently denoted by the 
symbol Ei{x), which is defined by 

/
-" ey 

and related to E j (—x) by 

-£i(x) = £ i ( -x)= f ey -^ 
'' X y 

Graphs of e"^ and E„[x) for n = 1, 2, and 3 are presented* in Figs. G.l to 
G.6. The function £/(x) is plotted^ in Figs. G.7 to G.IO. 

Some approximations that are frequently used are 

^—<E„(x)< {n>l) 
x+n "^ ' x+n - 1 ^ ' 

(^ n nln + 1) 
y X x 

n(n + 1)(M + 2 ) 1 1 , ^ . 
-!^ 3̂ -\ + - \ ( x > l ; n = 0 ) 

hfi[xj 
X 

1 + X + n _̂  
E„(x) = ; o e ^ ( x > l ) 

Reference 3 contains further information about the exponential inte
grals. 
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Fig. G.2—The functions e , Ei (x), E2(x), and £3(x) for jc = 0 to 5. (Plotted from data 
tabulated in Trubey. ) 
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Fig. G.3—The functions e"^, £ i {x), £2 (^), and E-^ix) for x = 3 tolO. (Plotted from data 
tabulated in Trubey.^) 
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Fig. G.5—The functions e , £1 (x), £2 (x), and £3(x) for x = 13 to 20. (Plotted from 
data tabulated in Trubey. ) 
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Fig. G.6—The functions e", £ i (x), E2{x), and £3(x) for x = 17 to 24. (Plotted from 
data tabulated in Trubey.^ ) 
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-0 1 -0.2 -0.3 -0.4 -0.5 -0.6 

Fig. G.7—The function £ ; (x) for negative arguments. (Plotted from data in Ref. 1.) 
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Fig. G.IO—The function £ i (x) for negative arguments. (Plotted from data tabulated in 
Ref. 1.) 
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Tables of Attenuation 
Functions for Finite 

Slab Geometry 

Appendix H 
This appendix consists of tabulations of attenuation functions for slab 
shields and disk or rectangular sources obtained by integrating over a point 
kernel of the form given for gamma rays in Sec. 4.8.1. The geometry for the 
disk-source configuration is shown in Figs. 4.7 and 4.8. Data are presented in 
Tables H.l and H.2, for sources with both isotropic and cosine angular 
distributions, respectively, the isotropic-source data being taken from the 
work of Hubbell, Bach, and Herbold,' and the cosine-source data, from the 
work of Trubey.^ Corresponding data for a rectangular-source configuration 
are given in Table H.3, from Hubbell, Bach, and Lamkin,^ and in Table H.4, 
from Trubey.^ The geometry for the rectangular source is shown in Fig. 4.9. 

The use of these attenuation functions is explained in Sec. 4.8.1 and 
summarized here. 

The variables for the disk source (see Tables H.l and H.2) are 

r(/if,ro/2,p/ro) = dose rate 

G(£) = flux-to-dose-rate conversion factor 

5 = source strength (particles cm"^ sec ' ' ) , 47r solid angle 

tit = optical shield thickness (mean free paths) 

TQ/Z = ratio of source radius to the source—detector distance 

P/TQ = distance off axis (units of source radius) 

y = Ht sec d 

For an isotropic source the unscattered flux attenuation for the dose rate 

on the disk axis is given by 

4,ru»,r̂ M) __ ^^ |,. ^̂,̂  ^ _̂ [ . , /T(^} (H.1, 
(Te.\t continues on page 658.) 
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Table H.2—UNSCATTERED FLUX DENSITY FROM A DISK SOURCE WITH A 
COSINE ANGULAR DISTRIBUTION (ISOTROPIC FLUX DENSITY )t 

ON 

Ov 

2/ro /" 

0.1 0 
0.01 
0.02 
0.03 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 

0.2 0 
0.01 
0.02 
0.03 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 

0.5 0 
0.01 
0.02 
0.03 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 

1.0 0 
0.01 
0.02 
0.03 
0.1 

Piro = 0 

9 .01{- l ) t 
8.78{-l) 
8 .56(- l ) 
8.35{-l) 
7 .08(- l ) 
5.70(-l) 
3 .26(- l ) 
1.48(-1) 
3.75(-2) 
9.96(-4) 
3.83{-6) 

8 .04(- l ) 
7.88(-l) 
7 .72(- l ) 
7 .57(- l ) 
6 .60(- l ) 
5.46(-l) 
3 .23(- l ) 
1.48(-1) 
3.75(-2) 
9.96(-4) 
3.83(-6) 

5.53(-l) 
5.45{-l) 
5.37 (-1) 
5.29(-l) 
4 .78(- l ) 
4.14(-1) 
2.71 (-1) 
1.36(-1) 
3.67(-2) 
9.96(-4) 
3.83(-6) 

2.93(- l) 
2 .89(- l ) 
2 .86(- l) 
2 .83(- l ) 
2 .60(- l ) 

p/r„ = 0.2 

8.97(-l) 
8 .75(- l ) 
8 .53(- l ) 
8.33(-l) 
7 .06(- l ) 
5.70(-l) 
3 .26(- l ) 
1.48(-1) 
3.75(-2) 
9.96(-4) 
3.81 (-6) 

7 .98(- l ) 
7.82(-l) 
7.67{-l) 
7 .52(- l ) 
6.56{-l) 
5.43{-l) 
3 .22(- l ) 
1.48(-1) 
3.75(-2) 
9.96(-4) 
3.83(-6) 

5.44(-l) 
5.36(-l) 
5.28(-l) 
5.21(-1) 
4.71 (-1) 
4 .08(- l ) 
2.67{-l) 
1.34(-1) 
3.64(-2) 
9.95(-4) 
3.83(-6) 

2.88{-l) 
2 .84(- l ) 
2.81 (-1) 
2.77(- l) 
2 .55(- l ) 

p/ro = 0.5 

8.77(-l) 
8.55(-l) 
8.35(-l) 
8.15(-1) 
6.95(-l) 
5.64(-l) 
3 .26(- l ) 
1.48(-1) 
3.75(-2) 
9.96(-4) 
3.83(-6) 

7.61 (-1) 
7 .46(- l ) 
7 .32(- l ) 
7.18(-1) 
6 .28(- l ) 
5.23(-l) 
3.15(-1) 
1.47(-1) 
3.75(-2) 
9.96(-4) 
3.83(-6) 

4 .94(- l ) 
4 .87(- l ) 
4 .79(- l ) 
4 .73(- l ) 
4.27 (-1) 
3 .70(- l ) 
2 .43(- l ) 
1.23(-1) 
3.43{-2) 
9.79(-4) 
3.82{-6) 

2.61{-1) 
2.57 (-1) 
2.54(- l) 
2.51 (-1) 
2.31 (-1) 

p/ro = 0.8 

7.88(-l) 
7 .70(- l ) 
7 .53(- l ) 
7.36(_1) 
6.35(- l ) 
5.23(-l) 
3.12(-1) 
1.46(-1) 
3.74(-2) 
9.96(-4) 
3.82(-6) 

6.30{-l) 
6.18(-1) 
6.06{-l) 
5.95(-l) 
5.23(-l) 
4.39C-1) 
2.71 (-1) 
1.31 (-1) 
3.52(-2) 
9.84(-4) 
3.83(-6) 

3 .84(- l ) 
3 .78(- l ) 
3 .72(- l ) 
3 .67(- l ) 
3 .30(- l ) 
2 .84(- l) 
1.85(-1) 
9.37(-2) 
2.64(-2) 
8.07(-4) 
3.42(-6) 

2.15{-1) 
2.12(-1) 
2.09(- l) 
2 .07(- l ) 
1.89(-1) 

2r/l*(0) G(£)) 

p/ro = 1.0 

4 .30(- l ) 
4.19(-1) 
4 .08(- l ) 
3 .97(- l ) 
3 .36(- l ) 
2.71(-1) 
1.57(-1) 
7.19(-2) 
1.83(-2) 
4.91 (-4) 
1.89(-6) 

3.83(- l ) 
3.74(-l) 
3.66{-l) 
3 .58(- l ) 
3 .09(- l ) 
2 .54(- l) 
1.50(-1) 
6.95(-2) 
1.79(-2) 
4.82(-4) 
1.87(-6) 

2.81 (-1) 
2 .77(- l ) 
2 .72(- l) 
2.68(-l) 
2 .39(- l) 
2 .03(- l) 
1.28(-1) 
5.20(-2) 
1.65(-2) 
4.57(-4) 
1.80(-6) 

1.79(-1) 
1.76(-1) 
1.74(-1) 
1.72(-]) 
1.56(-1) 

p/r„ = 1.2 

9.65(-2) 
9.10{-2) 
8.60(-2) 
8.13(-2) 
5.65(-2) 
3.57(-2) 
1.12(-2) 
2.16(-3) 
1.19C-4) 
5.05(-8) 
2.85(-13) 

1.54(-1) 
1.49(-1) 
1.44(-1) 
1.40(-1) 
1.12(-1) 
8.37(-2) 
3.84(-2) 
1.25C-2) 
1.77(-3) 
1.01 (-5) 
3.73C-9) 

1.86(-1) 
1.82(-1) 
1.79(-1) 
1.75(-1) 
1.53C-1) 
1.27(-1) 
7.48(-2) 
3.29(-2) 
7.38(-3) 
1.37(-4) 
3.07(-7) 

1.43(-1) 
1.41{-1) 
1.39(-1) 
1.37(-1) 
1.24(-1) 

p/ro 

2.79 
2.51 
2.27 
2.05 
1.06 
4.55 
5.01 
1.98 
5.43 
3.72 

§ 

5.25 
4.98 
4.72 
4.48 
3.14 
1.94 
5.34 
8.10 
2.77 
2.90 
1.64 

9.50 
9.27 
9.04 
8.82 
7.43 
5.85 
2.94 
1.02 
1.49 
8.77 
3.29 

9.85 
9.69 
9.54 
9.38 
8.37 

= 1.5 

- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 3 ) 
- 4 ) 
- 5 ) 
- 8 ) 
- 15 ) 

- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 3 ) 
- 4 ) 
- 5 ) 
- 9 ) 
-15) 

- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 3 ) 
- 6 ) 
- 9 ) 

- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 

P/ro = 

8.56( 
7.25( 
6.15{ 
5.23( 
1.77( 
4.24C 
9.12( 
2.73( 
4.86( 

§ 
§ 

1.68{ 
1.54( 
1.42( 
1.31 ( 
7.41 ( 
3.42( 
4.07( 
1.66( 
4.61 ( 
3.20( 

§ 

3.70( 
3.57( 
3.47( 
3.33( 
2.60{ 
1.85( 
6.85( 
1.46( 
8.58( 
3.79{ 
2.17( 

5.18( 
5.08( 
4.98{ 
4.88( 
4.23( 

= 2.0 

-3) 
-3) 
-3) 
-3) 
-3) 
-4) 
-6) 
-8) 
-13) 

-2 ) 
-2 ) 
- 2 ) 
-2 ) 
- 3 ) 
- 3 ) 
- 4 ) 
- 5 ) 
- 8 ) 
-15) 

- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 3 ) 
- 3 ) 
- 5 ) 
- 8 ) 
-13) 

- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 

P/ro = 5.0 

4.18(-4) 
2.57(-4) 
1.59{-4) 
9.80(-5) 
3.59(-6) 
3.73{-8) 
8.01 (-14) 
6.52(-23) 

§ 
§ 
§ 

8.35(-4) 
6.55(-4) 
5.13(-4) 
4.03(-4) 
7.51 (-5) 
7.13(-6) 
7.94(-9) 
1.57(-13) 
1.25(-22) 

§ 
§ 

2.06(-3) 
1.87(-3) 
1.69(-3) 
1.54(-3) 
7.77(-4) 
2.96(-4) 
1.72(-5) 
1.74(-7) 
2 . 5 4 ( - n ) 
2.39(-22) 

§ 

3.93(-3) 
3.74(-3) 
3.56(-3) 
3.38(-3) 
2.39(-3) 

p/ro = 10.0 

5.06(-5) 
1.87(-5) 
6.96(-6) 
2.59(-6) 
2.75(-9) 
1.84(-13) 
1.13(-25) 

§ 
§ 
§ 
§ 

1.01 (-4) 
6.15(-5) 
3.75(-5) 
2.28(-5) 
7.24(-7) 
5.49(-9) 
3.19(-15) 
2.24(-25) 

§ 
§ 
§ 

2.52(-4) 
2.06(-4) 
1.69(-4) 
1.39(-4) 
3.46(-5) 
4.80(-6) 
I.35(-8) 
8.95(-13) 
5.82(-21) 

§ 
§ 

4.98(-4) 
4.51 (-4) 
4.08(-4) 
3.69(-4) 
1.84 (-4) 
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0.2 
0.5 
1.0 
2.0 
5.0 

10.0 

0 
0.01 
0.02 
0.03 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 

0 
0.01 
0.02 
0.03 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 

0 
0.01 
0.02 
0.03 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 

2.31 
1.62 
9.03 
2.82 
9.29 
3.80 

1.06 
1.04 
1.03 
1.02 
9.50 
8.55 
6.22 
3.67 
1.28 
5.43 
2.87 

1.94 
1.92 
1.90 
1.88 
1.75 
1.59 
1.17 
7.07 
2.58 
1.25 
8.00 

4.96 
4.91 
4.86 
4.82 
4.49 
4.06 
3.01 
1.82 
6.68 
3.30 
2.20 

- 1 ) 
- 1 ) 
- 2 ) 
- 2 ) 
- 4 ) 
- 6 ) 

- 1 ) 
- 1 ) 
- 1 ) 
- 1 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 4 ) 
- 6 ) 

- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 3 ) 
- 3 ) 
- 4 ) 
- 7 ) 

- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 4 ) 
- 5 ) 
- 7 ) 

tFrom Trubey.' 
JRead: 9.01x10"',etc. 
fEffectively zero. 

2.27 
1.59 
8.84 
2.76 
9.13 
3.77 

1.04 
1.03 
1.02 
1.01 
9.40 
8.45 
6.15 
3.62 
1.26 
5.32 
2.80 

1.94 
1.92 
1.90 
1.88 
1.75 
1.58 
1.17 
7.05 
2.57 
1.24 
7.93 

4.96 
4.91 
4.86 
4.81 
4.49 
4.06 
3.00 
1.82 
6.68 
3.30 
2.19 

- 1 ) 
—1) 
- 2 ) 
- 2 ) 
- 4 ) 
- 6 ) 

—1) 
- 1 ) 
- 1 ) 
- 1 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 4 ) 
- 6 ) 

- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
-2 ) 
- 3 ) 
- 3 ) 
-4 ) 
- 7 ) 

—3) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 4 ) 
- 5 ) 
- 7 ) 

2.04 
1.43 
7.86 
2.44 
8.17 
3.54 

9.91 
9.81 
9.70 
9.60 
8.90 
7.99 
5.79 
3.38 
1.16 
4.75 
2.45 

1.91 
1.90 
1.88 
1.86 
1.73 
1.56 
1.15 
6.94 
2.52 
1.20 
7.57 

4.94 
4.89 
4.85 
4.80 
4.47 
4.04 
2.99 
1.81 
6.64 
3.27 
2.16 

- 1 ) 
- 1 ) 
- 2 ) 
- 2 ) 
- 4 ) 
- 6 ) 

- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 4 ) 
- 6 ) 

- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 4 ) 
- 7 ) 

- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 4 ) 
- 5 ) 
- 7 ) 

1.66 
1.14 
6.16 
1.85 
6.02 
2.65 

9.01 
8.91 
8.81 
8.71 
8.06 
7.22 
5.18 
2.98 
9.96 
3.84 
1.86 

1.87 
1.85 
1.84 
1.82 
1.69 
1.53 
1.12 
6.75 
2.43 
1.14 
6.94 

4.92 
4.87 
4.82 
4.77 
4.45 
4.02 
2.97 
1.80 
6.58 
3.22 
2.11 

- 1 ) 
- 1 ) 
- 2 ) 
- 2 ) 
- 4 ) 
- 6 ) 

- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 3 ) 
- 4 ) 
- 6 ) 

- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 3 ) 
- 3 ) 
- 4 ) 
- 7 ) 

- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 4 ) 
- 5 ) 
- 7 ) 

1.37 
9.20 
4.83 
1.39 
4.14 
1.68 

8.27 
8.17 
8.08 
7.99 
7.38 
6.59 
4.69 
2.66 
8.66 
3.14 
1.42 

1.84 
1.82 
1.80 
1.78 
1.66 
1.50 
1.10 
6.57 
2.35 
1.08 
6.41 

4.89 
4.84 
4.79 
4.74 
4.42 
4.00 
2.95 
1.79 
6.52 
3.18 
2.06 

-1 ) 
- 2 ) 
-2 ) 
- 2 ) 
-4 ) 
- 6 ) 

-2 ) 
- 2 ) 
-2 ) 
- 2 ) 
- 2 ) 
-2 ) 
- 2 ) 
-2 ) 
- 3 ) 
- 4 ) 
-6 ) 

-2 ) 
-2 ) 
- 2 ) 
-2 ) 
- 2 ) 
-2 ) 
- 2 ) 
-3 ) 
- 3 ) 
-4 ) 
- 7 ) 

-3 ) 
- 3 ) 
-3 ) 
-3 ) 
-3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 4 ) 
- 5 ) 
-7 ) 

# • 

(-1) 
(-2) 
(-2) 
(-3) 
(-4) 
(-7) 

(-2) 
(-2) 
(-2) 
(-2) 
t-2) 
(-2) 
(-2) 
(-2) 
(-3) 
(-4) 
(-6) 
(-2) 
(-2) 
(-2) 
(-2) 
(-2) 
(-2) 
C-2) 
(-3) 
(-3) 
(-4) 
(-7) 

(-3) 
(-3) 
(-3) 
(-3) 
(-3) 
(-3) 
(-3) 
(-3) 
(-4) 
(-5) 
(-7) 

7.12( 
4.42( 
2.04( 
4.68( 
7.93( 
1.45( 

6.28( 
6.20( 
6.12( 
6.05( 
5.54( 
4.90( 
3.38( 
1.83( 
5.43( 
1.55( 
5.16( 

1.72( 
1.70(-
1.68( 
1.67( 
1.55( 
1.39( 
1.02(-
6.02(-
2.11( 
9.08( 
4.88( 

4.B0( 
4.75( 
4.71 ( 
4.66( 
4.34( 
3.92( 
2.89( 
1.74( 
6.33( 
3.03( 
0.91 ( 

- 2 ) 
- 2 ) 
- 2 ) 
- 3 ) 
- 5 ) 
- 7 ) 

- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
-2 ) 
- 2 ) 
- 3 ) 
- 4 ) 
- 7 ) 

- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 3 ) 
- 3 ) 
- 5 ) 
- 7 ) 

- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 4 ) 
- 5 ) 
- 7 ) 

3.46 
1.91 
7.27 
1.16 
7.24 
2.78 

4.50 
4.44 
4.38 
4.32 
3.92 
3.41 
2.26 
1.14 
2.97 
5.95 
1.17 

1.57 
1.56 
1.54 
1.52 
1.41 
1.27 
9.16 
5.34 
1.81 
7.16 
3.36 

4.68 
4.64 
4.59 
4.54 
4.23 
3.82 
2.81 
1.69 
6.07 
2.83 
1.72 

- 2 ) 
- 2 ) 
- 3 ) 
- 3 ) 
-6 ) 
-9 ) 

- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
- 2 ) 
-2 ) 
- 3 ) 
- 5 ) 
- 7 ) 

- 2 ) 
- 2 ) 
- 2 ) 
-2 ) 
- 2 ) 
- 2 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 5 ) 
- 7 ) 

- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 4 ) 
- 5 ) 
- 7 ) 

1.46 
3.35 
3.01 
2.78 
4.16 
1.84 

6.60 
6.43 
6.26 
6.09 
5.07 
3.89 
1.77 
4.80 
3.67 
2.07 
1,28 

7.10 
7.00 
6.90 
6.80 
6.16 
5.35 
3.51 
1.74 
4.28 
6.57 
6.77 

3.57 
3.53 
3.49 
3.45 
3.19 
2.85 
2.04 
1.17 
3.81 
1.34 
5.06 

- 3 ) 
- 4 ) 
-5 ) 
- 7 ) 
-13) 
-22) 

- 3 ) 
- 3 ) 
- 3 ) 
-3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 4 ) 
- 5 ) 
- 8 ) 
-13) 

- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 4 ) 
- 6 ) 
- 9 ) 

- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 4 ) 
- 5 ) 
- 8 ) 

6.79 
3.48 
2.57 
1.63 
8.52 

§ 

9.52 
9.05 
8.51 
8.18 
5.74 
3.46 
7.61 
6.16 
4.22 
1.78 
7.29 

1.80 
1.76 
1.72 
1.68 
1.44 
1.15 
5.91 
1.95 
2.12 
2.88 
5.46 

1.77 
1.74 
1.72 
1.70 
1.54 
1.33 
8.73 
4.31 
1.05 
1.54 
1.37 

- 5 ) 
- 6 ) 
- 8 ) 
-12) 
-25) 

- 4 ) 
- 4 ) 
- 4 ) 
- 4 ) 
- 4 ) 
- 4 ) 
- 5 ) 
- 6 ) 
- 8 ) 

(-14) 
-25) 

- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 4 ) 
- 4 ) 
- 5 ) 
- 8 ) 
-13) 

- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 3 ) 
- 4 ) 
- 4 ) 
- 4 ) 
- 6 ) 

(-9) 

> 
w 
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and, for a cosine current source (isotropic flux), it is given by 

where <I>o is the isotropic flux at the source plane. 
The variables for the rectangular source (see Tables H.3 and H.4) are 

r{iJit,a,b) = dose rate on perpendicular to corner 
H, W = height and width of rectangle (cm) 

a,b = dimensions of rectangle in units of detector distance, a = H/z, b -

WIz and S,G{E) and [it are as previously defined. 

For an isotropic source the unscattered flux attenuation function for the 

dose rate at a corner position is given by 

A^niit,a,b) _ f' r dx dy ^^ 
SG{E) Jo Jo' ,2 2^^ '^ ' ' ^^ 

- £ I ( M ^ / T T ? ) ] (for a = / ; > ! ) (H.3) 

and, for the cosine current source (isotropic flux), it is given by 

2r{ixt,a,b)^ 1 f' [" .^, 3dxdy 
^0 G(£) 27r Jo Jo "^ r r^ 

* ^ [ £ 2 ( M O - {l/^l+a^)E2{(it^l+a^)] {(ora^b>l) (H.4) 

where r^ = x^ + y^ + z'^. 
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Table H.3—UNSCATTERED FLUX AT A CORNER POSITION 
FROM A RECTANGULAR PLANE SOURCE WITH AN 

ISOTROPIC ANGULAR DISTRIBUTIONt 

fit 

0 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 

M< 

0 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 

nt 

0 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 

b = 0.1 
a = 0.1 

9.93(-3)1: 
9.83(-3) 
9.74(-3) 
9.44(-3) 
8.99(-3) 
8.13(-3) 
6.02(-3) 
3.64(-3) 
1.34(-3) 
6.60(-5) 
4.37(-7) 

b = 1.0 
<j = 0.1 

7.83(-2) 
7.75(-2) 
7.66(-2) 
7.40(-2) 
7.00(-2) 
6.26(-2) 
4.47(-2) 
2.56(-2) 
8.49(-3) 
3.85(-4) 
1.67(-6) 

b = 2.0 
a = 0.5 

5 .25( - l ) 
5.18(-1) 
5.11(-1) 
4.91(-1) 
4 .60( - l ) 
4 .03 ( - l ) 
2 .72( - l ) 
1.44(-1) 
4.24(-2) 
1.32(-3) 
5.79(-6) 

b = 0.2 
a = 0.1 

1.97(-2) 
1.95(-2) 
1.93(-2) 
1.87(-2) 
1.78(-2) 
1.61 (-2) 
1.19(-2) 
7.18(-3) 
2.62(-3) 
1.28(-4) 
8.26(-7) 

b= 1.0 
a = 0.2 

1.55(-1) 
1.54(-1) 
1.52(-1) 
1.47(-1) 
1.39(-1) 
1.24(-1) 
8.85(-2) 
5.06(-2) 
1.67(-2) 
7.55(-4) 
3.16(-6) 

b = 2.0 
<j = 1.0 

9.31(-1) 
9.18(-1) 
9 .05( - l ) 
8 .67( - l ) 
8 .07( - l ) 
7.01(-1) 
4 .62( - l ) 
2 .35( - l ) 
6.43(-2) 
1.75(-3) 
6.51 (-6) 

47rr/[5 G(E)] 

b = 0.2 
a = 0.2 

3.90(-2) 
3.86(-2) 
3.82(-2) 
3.70(-2) 
3.52(-2) 
3.18(-2) 
2.35(-2) 
1.42(-2) 
5.14(-3) 
2.47(-4) 
1.54(-6) 

b = 1.0 
<j = 0.5 

3 .69 ( - l ) 
3 .65( - l ) 
3 .60( - l ) 
3 .48 ( - l ) 
3 .29 ( - l ) 
2 .93( - l ) 
2 .07( - l ) 
1.17(-1) 
3.74(-2) 
1.77(-3) 
5.77(-6) 

b = 2.0 
a = 2.0 

1.41(0) 
1.38(0) 
1.36(0) 
1.30(0) 
1.20(0) 
1.02(0) 
6 .38( - l ) 
3 .02( - l ) 
7.46(-2) 
1.80(-3) 
6.52(-6) 

b = 0.5 
a = 0.1 

4.62(-2) 
4.57(-2) 
4.53(-2) 
4.39(-2) 
4.17(-2) 
3.75(-2) 
2.75(-2) 
1.64(-2) 
5.79(-3) 
2.60(-4) 
1.50(-6) 

b = 1.0 
a =1.0 

6 .40( - l ) 
6 .32( - l ) 
6 .24( - l ) 
6.01(-1) 
5 .65( - l ) 
4 .99 ( - l ) 
3 .45( - l ) 
1.87(-1) 
5.61(-2) 
7.99(-3) 
6.49(-6) 

b = 5 . 0 
a = 0.1 

1.37(-1) 
1.35(-1) 
1.33(-1) 
1.26(-1) 
1.16(-1) 
9.93(-2) 
6.38(-2) 
3.27(-2) 
9.69(-3) 
3.37(-4) 
1.67(-6) 

(Table 

b = 0.5 
a = 0.2 

9.16(-2) 
9.07(-2) 
8.97(-2) 
8.69(-2) 
8.25(-2) 
7.43(-2) 
5.44(-2) 
3.23(-2) 
1.14(-2) 
5.04(-4) 
2.83(-6) 

fo = 2.0 
a = 0.1 

l . l O ( - l ) 
1.09(-1) 
1.08(-1) 
1.04(-1) 
9.70(-2) 
8.53(-2) 
5.82(-2) 
3.14(-2) 
9.57(-3) 
3.37(-4) 
1.67(-6) 

b = 5.0 
a = 0.2 

2 .73( - l ) 
2 .68( - l ) 
2 .64( - l ) 
2.51 (-1) 
2.31(-1) 
1.97(-1) 
1.27(-1) 
6.46(-2) 
1.90(-2) 
6.54(-4) 
3.16(-6) 
continues or 

b = 0.5 
a = 0.5 

2.16(-1) 
2.14(-1) 
2.11(-1) 
2 .05( - l ) 
1.94(-1) 
1.74(-1) 
1.26(-1) 
7.38(-2) 
2.53(-2) 
1.04(-3) 
5.15(-6) 

b = 2.0 
a = 0.2 

2.19(-1) 
2.17(-1) 
2.14(-1) 
2 .06( - l ) 
1.93(-1) 
1.69(-1) 
1.15(-1) 
6.20(-2) 
1.88(-2) 
6.54(-4) 
3.16(-6) 

b = 5 . 0 
a =0.5 

6 .57( - l ) 
6 .46( - l ) 
6 .35( - l ) 
6 .03( - l ) 
5 .55( - l ) 
4 . 72 ( - l ) 
3 .00 ( - l ) 
1.50(-1) 
4.28(-2) 
1.35(-3) 
5.79(-6) 

next page.) 
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Table H.3—(Continued) 

47Tr/[SG(E)] 

fit 

0 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 

lit 

0 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 

Uit 

0 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 

b = 5.0 
a = 1.0 

1.19(0) 
1.17(0) 
1.15(0) 
1.08(0) 
9 .92( - l ) 
8 .35( - l ) 
5.14(-1) 
2 .47( - l ) 
6.51 (-2) 
1.75(-3) 
6.51 (-6) 

b = 10.0 
a = 1.0 

1.28(0) 
1.26(0) 
1.23(0) 
1.15(0) 
1.04(0) 
8 .60(- l ) 
5.18(-1) 
2 .47( - l ) 
6.51 ( -2) 
1.75(-3) 
6.51 ( -6) 

b = 20.0 
a = 0.5 

7.31(-1) 
7.13(-1) 
6 .96(- l ) 
6 .50( - l ) 
5 .86(- l ) 
4 .86 ( - l ) 
3.01 (-1) 
1.50(-1) 
4.28(-2) 
1.35(-3) 
5.79(-6) 

fc = 5.0 
a = 2.0 

1.88(0) 
1.84(0) 
1.80(0) 
1.69(0) 
1.53(0) 
1.26(0) 
7 .27( - l ) 
3 .20(- l ) 
7.57(-2) 
1.80(-3) 
6.53(-6) 

fc=10.0 
a = 2.0 

2.07(0) 
2.02(0) 
1.97(0) 
1.83(0) 
1.63(0) 
1.31(0) 
7 .34( - l ) 
3.21(-1) 
7.56(-2) 
1.80(-3) 
6.53(-6) 

b = 20.0 
a = 1.0 

1.33(0) 
1.30(0) 
1.27(0) 
1.18(0) 
1.05(0) 
8 .63(- l ) 
5.18(-1) 
2 .47( - l ) 
6.51 (-2) 
1.75(-3) 
6.51 (-6) 

b = 5.0 
a = 5.0 

2.73(0) 
2.65(0) 
2.58(0) 
2.39(0) 
2.10(0) 
1.64(0) 
8 .53(- l ) 
3 .44( - l ) 
7.69(-2) 
1.80(-3) 
6.54(-6) 

b = 10.0 
a = 5.0 

3.15(0) 
3.04(0) 
2.94(0) 
2.67(0) 
2.30(0) 
1.74(0) 
8 .65(- l ) 
3 .44( - l ) 
7.69(-2) 
1.80(-3) 
6.53(-6) 

b = 20.0 
a =2 .0 

2.17(0) 
2.10(0) 
2.04(0) 
1.88(0) 
1.65(0) 
1.31(0) 
7.34(0) 
3.21(0) 
7.56(-2) 
1.80(-3) 
6.53(-6) 

b = 10.0 
a = 0.1 

1.47(-1) 
1.44(-1) 
1.41(-1) 
1.33(-1) 
1.21(-1) 
1.02(-1) 
6.42(-2) 
3.27(-2) 
9.69(-3) 
3.37(-4) 
1.67(-6) 

b = 10.0 
a= 10.0 

3.80(0) 
3.64(0) 
3.49(0) 
3.10(0) 
2.58(0) 
1.86(0) 
8 .78(- l ) 
3 .45( - l ) 
7.68(-2) 
1.80(-3) 
6.53(-6) 

b = 20.0 
a = 5.0 

3.38(0) 
3.25(0) 
3.12(0) 
2.79(0) 
2.36(0) 
1.75(0) 
8 .63(- l ) 
3 .44( - l ) 
7.69(-2) 
1.80(-3) 
6.53(-6) 

b = 1 0 . 0 
a = 0.2 

2 .92( - l , 
2 .86( - l , 
2.81 ( - 1 , 
2 .65( - l , 
2.41 ( - 1 , 
2 .02( - l ] 
1.27(-1) 
6.47(-2j 
1.90(-2] 
6.54(-4] 
3.16(-6, 

b = 20.0 
a = 0.1 

1.52(-1) 
1.48(-lj 
1.45(-1) 
1.36(-1) 
1.22(-1) 
1.02(-1] 
6.39(-2) 
3.27(-2) 
9.69(-3) 
3.37(-4) 
1.67(-6) 

b = 20.0 
a = 10.0 

4.22(0) 
4.01(0) 
3.81(0) 
3.30(0) 
2.68(0) 
1.89(0) 
8 .79(- l ) 
3 .45(- l ) 
7.68(-2) 
1.80(-3) 
6.53(-6) 

b = 10.0 
a = 0.5 

7 .06( - l ) 
6 .92(- l ) 
6 .77( - l ) 
6 .38( - l ) 
5 .79(- l ) 
4 . 84 ( - l ) 
3.01 (-1) 
1.50(-1) 
4.28(-2) 
1.35(-3) 
5.79(-6) 

b = 20.0 
a =0 .2 

3 .02(- l ) 
2 .95( - l ) 
2 .88( - l ) 
2 .70( - l ) 
2 .43( - l ) 
2 .03( - l ) 
1.27(-1) 
6.47(-2) 
1.90(-2) 
6.54(-4) 
3.16(-6) 

b = 20.0 
a = 20.0 

4.88(0) 
4.56(0) 
4.28(0) 
3.59(0) 
2.81(0) 
1.92(0) 
8 .82(- l ) 
3 .45( - l ) 
7.68(-2) 
1.80(-3) 
6.53(-6) 

tFrom Hubbell et al.^ |Read: 9.93 X 10"' , etc. 
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Random-Number Generators 

Appendix I 
The use of Monte Carlo methods in any calculation depends on a copious 
supply of random numbers. Many early calculations relied heavily on a 
tablet of a million random digits generated electronically. Whether tele
phone directories were ever actually tried is not known; however, their use 
was frequently postulated (too much bias for some digits). The advent of the 
digital computer made a mathematical algorithm highly desirable since such 
a function has the property of generating a reproducible sequence provided 
one starts with the same initial numbers and provided the same computer 
system is involved. The reproducible sequence is valuable in checking 
problem results to ascertain that the nonrandom aspects of a program are 
running properly. The necessity of limiting reproducibility to a given 
computer system stems from the dependence of the generator on the 
number of bits per word and on round-off methods. Both these character
istics vary widely with computer type. Computer manufacturers typically 
supply a random-number-generator routine especially suited to their ma
chines. A characteristic of many of these routines is that they generate the 
same sequence for the same initial random number. It is thus advantageous if 
the user is allowed to supply his own initial number so that he can repeat a 
sequence or generate a new sequence at his option. 

Number sequences produced by a mathematical relation are clearly 
deterministic, not random, and are thus properly called pseudorandom. To 
avoid semantic difficulties as well as logical contradictions, we acknowledge 
that the number sequences we seek actually must have special properties that 
further distinguish them from a random set. In the subsequent discussion, 
unless otherwise stated, we use random to mean adequate for Monte Carlo 
application. A classic paper by Hull and Dobell ' serves as an excellent 
introduction to the problem of devising random-number generators. 

tRand Corporation, A Million Random Digits with 100,000 Normal Deviates, Free Press of 
Glencoe, New York, N. Y., 1955. 
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664 APPENDIX I 

I.l PROPERTIES OF RANDOM NUMBER GENERATORS (RNG's) 

The RNG with which we are concerned is a computer subroutine that 
generates one random number each rime it is called. It thus generates a 
sequence of N terms 

ri,r2, m 

and it is the sequence of these N terms that must display the properties of 
randomness. The two basic properties, although conceptually simple, are far 
from trivial. 

1. Equidistribution: The terms in the sequence should be uniformly 
distributed over the unit interval. Their frequency distribution should be 
characterized by a horizontal plot as shown in Fig. I . l . 

VALUE OF TERM 

Fig. I.l—Frequency distribution. 

Further, large enough sub-sequences 

1' ^j+i ' rj+k 

imbedded in the full sequence should also be equidistributed. For example, 
if a random-number generator can generate a sequence of a million terms, 
any sub-sequence of 10,000 terms should also display equidistribution. 

2. Independence: It is not enough that the sequence be equidistributed. 
The sequence 0, 0 .1, 0.2, . . ., 0.9, 1.0, 0, 0.1, 0.2, . . ., 0.9, 1.0, 0, 0 .1, . . . is 
equidistributed over [0, 1] but certainly is not random. Thus each term of 
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the sequence should be independent of any other; i.e., each number in [0, 1] 
should have equal probability of being generated each time the RNG is 
called. Intuitively, patterns in the sequence should not be discernible. 

Verifying that an RNG produces sequences satisfying both of these 
properties is an unsolved problem. Many necessary conditions can be 
defined, but the key theorems, those involving sufficiency, are yet to be 
stated and proved. 

Testing a generated sequence for equidistribution is simple, but being 
assured that the next sequence to be generated will also be equidistributed is 
a far greater challenge. In fact, some workers recommend that the RNG 
sequence generated in a Monte Carlo calculation be analyzed during the 
calculation so that if bad luck produced a pathological] sequence, the results 
could be discarded. This is not a common inclusion in current Monte Carlo 
codes, however. 

Complete testing for independence is impossible, but techniques have 
been developed which look for the appearance of independence. They 
usually involve attempts to find a relation (called serial correlation) between 
the nth term and the immediately preceding (e.g., 10) terms for all values of 
n. Testing methods are discussed in the following sections. 

1.2 RECURSION EQUATIONS FOR RNG's 

A recursion relation is a function that relates the nth term of a sequence 
to previous terms. Although some RNG's have used algorithms that used 
more than the immediately preceding term to generate the nth term, the 
common methods compute r„ as a function only of r ^ j and preselected 
constants. Since a large quantity (on the order of 10,000 to 100,000) of 
random numbers are used in a typical Monte Carlo calculation, speed of 
generation is important. Thus the recursion relations used are designed to 
minimize computing time while retaining sufficient randomness to be of 
practical use. 

Almost all RNG's used in shielding codes are designed for fixed-word-
length machines. The theory and'the tests must be modified to account for a 
binary or a decimal machine as well as for the bit (or digit) length of the 
computer word. For illustrative purposes we will assume a 36-bit binary 
machine in this discussion. 

tDefined later in this section. 



666 APPENDIX I 

There are only 2^* numbers representable in a 36-bit word computer 
(actually 2^^ if one bit is reserved for a sign). An RNG in such a machine 
can thus only generate at most 2^^ rational numbers. Rational numbers 
requiring more than 36 bits (integers and fractions) as well as the 
uncountably infinite number of irrational numbers cannot be generated. 
Thus, although not critical (2^^ fractions would seem to cover the unit 
interval quite well), the theoretical properties of equidistribution and 
independence are irrevocably compromised in the computer approximation. 

Most RNG's in common use generate sequences of positive random 
integers, Xj , X2, • • •, xi. The desired random fractions ( 0 < r , - < l ) are 
obtained by the relation 

r,- = xilM 

where the integers x,- are uniformly distributed over fO, M ] . In a binary 
computer, if k bits are allotted to represent the magnitude of the number 
(i.e., not including the sign bit, if any), M = 2 and the x,- values can range 
from 0 to 2^ - 1. 

Many recursion schemes have been used to generate sequences of 
pseudorandom integers. Recent work has shown that some of the commonly 
used generators are inadequate. 

Generators that have received the most attention are of the congruential 
type. Three are discussed in the following paragraphs, the first for historical 
reasons and the last two because of their widespread use. 

1. Middle-digit square. The first RNG put into common use was that of 
von Neumann^ and Metropolis.^ In this method an arbitrary first term with 
a length of k digits is chosen and squared to obtain a 2fe-digit number. The 
middle k digits of this intermediate result are extracted to obtain the next 
random number. The sequence is generated by repeating this process. 

This generator appeared adequate and was used for many years. 
However, when examined more carefully by newer testing methods, it 
proved to be inadequate and is not in widespread use today. 

2. Mixed congruential. This generator requires two constants as well as 
an initial term of the sequence to be chosen. Its recursion relation is of the 
formt 

Xj = Xx,-_,+ c (mod M) (for i = 1, 2, . . .) 

tThe expression A = B (modM) is read: A is congruent to B modulo M and means A is the 
remainder of B/M. 
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in which X and c are the two constants and M= 2^ (^-g-, 2^*), where k is the 
bit length of the computer word being used. 

3. Multiplicative congruential. This is a special case of the mixed 
generator in which c = 0. It thus has the advantage of greater speed since an 
addition step is eliminated. Its recursion relation is 

Xi = XXj.j (mod M) (for i = 1, 2, . . .) 

These latter two generators have been extensively studied to determine if 
one is clearly better than the other. Also, the effect of the constants X and c 
and the starting value Xj on the properties of randomness have been 
investigated. The complexity of the problem is illustrated by the fact that 
Hull and Dobell^ recommended the mixed method as the best choice in 
1964; this was followed by the Fourier analysis by Coveyou and Mac-
Pherson,^ which resulted in the opposite recommendations in 1967. 

The constants X and c are usually fixed when the subroutine is written. 
The first term, Xj , is provided as an input variable. Each has an effect on the 
properties of the RNG. For example, if either X or Xi is even, every term in a 
multiplicative sequence will be even, which will halve the period of the 
generator. The period (or cycle length), P, is the number of terms that will 
be generated before the sequence repeats itself. In a binary machine with an 
effective word length of k bits (sign bit not included), P < 2^. 

In binary computers X is often chosen to be of the form 

X= 2^ + b {p and b Ate small integers) 

since the multiplication Xx,-_j can then be accomplished by the fast 
shift-and-add operations in the computer. However, for small choices of p 
(e.g., p < 8) where the speed advantage is greatest, the resulting generator 
was found to be generally inadequate. 

Coveyou and MacPherson^ examined 32 generators of the mixed and 
multiplicative type: 7 for 36-bit binary machines; 8 for 48-bit binary 
machines; 7 for 32-bit binary machines; and 10 for decimal machines. They 
varied values of X and c and used a Fourier analysis technique to examine the 
distribution properties of one-to-ten term sub-sequences. Their conclusions 
are of interest: 

1. There is at present no method of generation of pseudo-uniform sequences 
better than the simple multiplicative congruence method with a carefully chosen 
multiplier (X). 
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2. The multiplier X should not be close to a simple rational multiple of M; if 
it is, the basic congruence shows that appreciable serial correlation will result. 

3. The multiplier X should nof be close to a simple rational multiple of the 
square root of M; even though this choice may produce very small correlation 
between adjacent pairs (adjacent terms in the sequence), serious difficulties 
result in the triplet distribution. 

4. The multiplier X should not be chosen with a small number of ones in the 
binary representation (e.g., 2^) to faciHtate shift-and-add techniques. 

5. Above all, the multiplier X must be adequately large (e.g., 5 ). 
6. The choice of multiplier must be made most carefully for 32-bit word 

multiplication, . . . for (36-bit machines) the choice still needs some care. For 
(48-bit) and . . . 64-bit multiplication . . ., a suitable choice should be easy. 

These conclusions are reinforced by the work of Van Gelder,* who 
advises that the bit pattern for the chosen X should not contain long strings 
of zeros. He further states: ". . . there is no hope for multipliers below 10^, 
and it is best to stay above 10"*. For modulus 2^^, the best range (for X) 
seems to be about 2 ' ^ to 2 ' ^, with at least one digit to break up the string 
of zeros." 

It is desirable to maximize the period P of the generator. Barnett^ gives 
necessary .and sufficient conditions on X a n d x , to maximize the period of a 
multiplicative generator on a binary machine. They are, where x,- = XX|_j 
(modM), 

x i = ± (mod 8) 

1 < X = 1 (mod 2) 

i.e., X must be greater than 1 and odd. The maximum period obtainable on a 
computer with a word length of k bits is 2 numbers where M = 2 . The 
period P = (1/4)M, although the maximum value attainable by x,-, is still 
M — 1. For mixed generators the period can be made to equal 7W. However, 
this advantage is offset by the reduced computing speed of the mixed 
method. 

1.3 TESTING RNG's 

Several classes of tests are applied to RNG's. Although not inclusive, the 
following methods are illustrative of those in use: 
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1.3.1 Global Tests 

Global tests are the simple tests that can be applied to large 
sub-sequences of the generator. They make use of the following types of 
relations: 

1 " 1 

ti-^" n — k + l LJ I 
i=k 

n 

lim 1 - V 'i=\ (fe=l'2,...) 
H—• n — k + 1 LJ 3 

i=fe 

These three limits state that the average of any (n ~ fe + 1) termt of a 
random sub-sequence in the unit interval should approximate 5̂ 2! the average 
of the squares, %\ and the variance, y^i- Observe that these tests all are 
necessary conditions for equidistributions. They tell nothing about inde
pendence. 

However, Coveyou^ suggests one such global test for pair-wise correla
tion: 

!*^»;rrm L'"'''•-• = 4-^1^ '̂= ^'^'• • -̂  

1.3.2 Equidistribution 

The simplest test of equidistribution is to partition the unit interval into 
small subintervals of equal width (e.g., 0.001) and count the number of 
terms of any sub-sequence that fall in each subinterval. The frequency 
function thus obtained should approximate a constant, namely, N/ / , where 
N is the number of terms in the sub-sequence and / is the number of 
subintervals chosen. 

More sophisticated methods of analysis are available. Coveyou and 
MacPherson^ start with the necessary and sufficient condition for equi
distribution 

tNote that the choice of fe (fe = 1, 2, . . .) determines the selection of any sub-sequence within the 
period of the generator. 
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lim - E e2 7r,-fer-^Q 
« — n y=, 

for all fe = 1, 2, . . ., and develop a Fourier analysis that generates figures of 
merit for the uniformity of distribution of n-tuples of consecutive terms in 
the generated sequence. Their analysis covered n-tuples from 1 to 10 terms 
in length. 

1.3.3 Independence 

Independence is the hardest property to analyze. No necessary condi
tions have been established. In fact, since each term is deterministically 
computed from its predecessor, the terms are clearly dependent. One can 
only hope that no obvious pattern emerges and that relatively short 
sub-sequences are equidistributed. A standard method of analysis involves 
the use of n-tuples; i.e., sub-sequences of n terms. We will illustrate the 
technique by use of an example. 

Consider an RNG that generates decimal digits (e.g., 2, 8, 7, 3, 3, . . .). If 
independence holds, each pair of all possible consecutive terms, e.g., (8, 7), 
should be uniformly distributed within the sequence. When a sequence has 
been generated, each such pair (x,-, Xi+i) for i = 1, 2, . . ., can be tabulated in 
the matrix shown in Fig. 1.2. Each box contains the number of times the pair 
appeared in the sequence. Hopefully, each pair occurs with the same 
frequency as any other pair. 

When this type of test is applied to RNG's generating fractions in the 
unit interval, the partition of the unit interval creating the counting bins can 
be as small as desired. Also, the dimensionality of the matrix can be 
extended to handle any number of consecutive terms (n-tuples). We should 
point out that a special type of equidistribution property is being used, that 
of equidistribution of n-tuples, to examine apparent independence. In fact, 
the Fourier technique of Coveyou discussed is exactly that. When the n-tuple 
is one term, equidistribution over (0, 1) in the sense we have used is tested. 
For «-tuples of two or more terms, apparent independence is the basic 
consideration. Most RNG's are now tested for at least pair and triplet 
correlation. In his earlier paper, Coveyou^ suggests that one should test for 
correlations of n-tuples up to 10 to 20 terms in length. 

All the preceding tests admit to standard statistical analysis. A set of 
sequences can be generated by a given RNG and each test can be applied. 
The probability that the results represent random sequences can then be 
estimated by chi-square tests and computation of correlation coefficients. 
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Fig. 1.2—Distribution of pairs. 

The reader is referred to Refs. 1 and 4 for elementary discussion of such 
statistical tests. 

1.4 PATHOLOGICAL NUMBERS 

In an infinite sequence of random numbers, all the weird sub-sequences 
that one could imagine should be in evidence. Somewhere the sub-sequence 
containing 100 consecutive values of 0.1 should appear, long monotonically 
increasing sub-sequences should be included, etc. The sequence is called 
pathological when it presents a pattern of this character. Thus, in examining 
one sequence generated by an RNG, the fact that a clear pattern emerges 
does not imply necessarily that the RNG is bad. After all, any conceivable 
sub-sequence has a finite probability. However, in the finite sequences used 
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in a Monte Carlo calculation, the appearance of a pathological sub-sequence 
could spell disaster. Any RNG that exhibits such behavior in any except the 
rarest of instances should be avoided. In fact, it probably is good that 
pseudorandom-number generators of the preceding type are sufficiently 
nonrandom to preclude many of these situations. (The proper choice of X 
and Xi can guarantee that every number in the period appears only once 
before the period is exhausted, for example.) 

L5 USEFUL RNG's 

The major purpose of this discussion has been to introduce the concepts 
and hazards inherent in RNG's. Many examples can be found where lengthy 
and costly Monte Carlo calculations were invalidated because not enough 
attention was paid to the quality of the RNG. The user of an RNG 
subroutine should require sufficient evidence of its quality. 

With this warning and the material presented here, one should be 
prepared to examine some cookbook RNG codes that have recently 
appeared. Marsaglia and Bray' propose using one- or two-line FORTRAN 
statements in the body of a program rather than exit to a subroutine. They 
use the multiplicative recursion relation and give FORTRAN statements for 
the IBM-7094 and 360 and the UNI VAC 1108 computers. They also discuss 
the use of two RNG's together, one to generate an ever-changing table of 
pseudorandom numbers and the other to pick a number from the table at 
(pseudo) random. Some flaws in their coding were corrected by Grosen-
baugh.' ° Finally, Seraphin* * suggests that it is not so bad after all to exit to 
a subroutine if it is coded in efficient assembly language, and he proposes a 
multiplicative subroutine for the 32-bit IBM-360. 

One point in using the preceding techniques may not be so obvious. The 
earlier discussion of recursion relations assumed fixed-point (i.e., integer) 
representations. In fact, most Monte Carlo codes are programmed and 
implemented with floating-point numbers. Not only are the bits available for 
integer representation different from the computer word length but also 
multiplication is handled in a variety of ways. Thus care must be taken when 
the two-step computation 

X,- = Xx;-i (mod M) 
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is coded . T h e resul ts mus t be proper ly floated and normal ized for use in the 

M o n t e Carlo program. 

T h e last r e f e r e n c e s ' " ' * r e c o m m e n d i n g specific R N G ' s con ta in from zero 

to th ree short lines discussing the tests t o which t hey have been s u b m i t t e d . I t 

seems tha t a spirit o f caveat emptor exists . Perhaps this is the j u s t due of 

Mon te Carlo prac t i t ioners because the father of this subject , J o h n von 

N e u m a n n , admon i shed tha t he w h o uses a r i thmet ic means t o genera te 

r a n d o m n u m b e r s is, of course, in a state of sin.^ 
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Demonstration Monte Carlo 
Program 

Appendix J 
A slab penetration calculation is described in Sec. 5.9 as a sample Monte 
Carlo problem to demonstrate some of the techniques presented in this 
chapter. This appendix contains the input-data requirements, the logic flow 
chart of the calculation, the FORTRAN listing of the program, the 
description of a test problem for program check-out, and a specimen listing 
of the input and output for the test problem. 

We emphasize that the random-number-generator subroutine called 
RAND is not a random-number generator but a table of random numbers 
with a stepping procedure to make it possible to run the test problem and to 
obtain the same results given here to ensure that the program is running 
properly. Application of the program to realistic calculations will require a 
bona fide random-number generator. Similarly, the subroutine XSEC is a 
simplified cross-section interpolation routine. Unlike RAND, however, it 
may be used for realistic calculations for energy ranges over which the cross 
sections vary in an approximately linear fashion. 

A number of explanatory comments (C statements) have been included 
in the program listing which can be eliminated in subsequent copies and 
thereby reduce the key-punch labor considerably. 

For each computer system the card reader is referenced by one particular 
digit and the printer, by another. The user of this program should change KX 
to equal his computer's card-reader reference if other than 1 (line 29 in the 
listing), and KY to equal his computer's printer reference if other than 3 
(line 30 in the listing). If the available FORTRAN compiler does not accept 
DATA statements, the user should delete the ninth and tenth lines in 
subroutine RAND and insert 23 assignment statements (each to a card) for 
IR; that is, IR = 22, IR = 16, IR = 20, etc., after the line 100 KNT = 23. 

674 



APPENDIX J 

INPUT-DATA REQUIREMENTS 

Variable Format Definition Limit 

NENEG 
NANG 

NHIST 
NDIVT 

IB ; 
EO 
TT 
COA 

AW 
ANG(J) 

- 515 

• 4E10.3 

6E10.3 

Number of print energy groups <7 
Number of print angle interval (for each < 6 

surface) 
Number of histories to be run 
Number of slab increments for <20 

storing absorptions 
Random-number-generator base Odd 
Source energy (MeV) 
Slab thickness (cm) 
Small angle below which theta is assumed 

to be zero; usually 10"' 
Atomic weight (amu) 
JCth bound of the print angle NANG + 1 

intervals; ascending order in values 
degrees <90 

Flux density-to-dose conversion NENEG 
factor for the /th print values 
energy group 

Energy bound of the /th print NENEG + 1 
energy interval; ascending order in values 
MeV 

Number of energies at which cross <40 
sections are input 

/th value of the energy at which NCSE values 
cross sections are input; ascending 
order in MeV 

Total macroscopic cross section at NCSE values 
EE(I) (cm' ' ) 

Scattering macroscopic cross section NCSE values 
atEE(I)(cm"') 

FTD(I) 

E(I) 

6E10.0 

6E10.0 

NCSE 

EE(!) 

TOT(I) 

SCA(I) 

110 

6E10.3 

6E10.3 

6E10.3 
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FLOW CHART FOR SAMPLE MONTE CARLO PROGRAMt 

f START J 

READ INPUT 
DATA J 

OBTAIN 
RANDOM NO. 

cos d = \ /n 
= 7 

' OBTAIN 
RANDOM NO. 

0 = jr(2n- 1) 

> = \ / l - 7' 

a = p cos <t> 
^ = p sin 0 

STORE 
REFLECTED 

NEUTRON 

STORE 
ABSORBED 
NEUTRON 

OBTAIN 
CROSS 

SECTIONS 
£,(£). 2s(f) 

0 (̂  
STORE 

TRANSMITTED 
NEUTRON 

OBTAIN 
RANDOM NO. 

ji = 2n - 1 

I 
, ri + 2/iM+^n 

15 
tShaded numbers 1 to 5 refer to the outline of the program logic in Sec. 5.9. 
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FLOW CHART (Continued) 

cos dg = 

l+Au 

V l +2Ati+A^ 

OBTAIN 
(RANDOM NO. 

0j = n{2n - 1) 

b = sin 3, • 

y/T^ 

0 

v.< 

\ ^ 

d = v / l - c ^ d = yjl-c^ 

-< 

, bcya - bdfi 
n = — ' ^ + an 

V I -

v / l -

y' = -bc^/ 

7 ' 

7 

l - T ^ + a 7 

: : ^ - i7i ~ fe); 

(} = (}' 
t 

7 = 7 

J 

« ' = {><: 

7' = <»7 

(Chart continues on next page.) 
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FLOW CHART (Continued) 

7av.| 
_ cos 8j + cos 6;+1 

2.0 

(all;, 8̂  < 90°) 

7.V 

• 
_ cos 6]+1 — cos 

2.0 

90°) 

6; 

I 
"max Xav,. 

(all I/) 

D{iJ) = F(i.j)*K{E„^) 

(all .•;•) 

I 
^(.,-,=M^ 

"max 

(all .•;•) 

N.(a) = ̂ ^̂ f̂̂  
"max 

(allife) 

PRINT THE 
RESULTS 

f STOP J 
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FORTRAN LISTING 

C A MONTE CARLO DEMONSTRATION PROCEDURE 
C 
C CALCULATES THE TRANSMITTED AND REFLECTFO CURRENT, FLUENCE, 
C AND DOSE AND NUMBER OF ABSORPTIONS FOR A SEMI-INFINUTF SLAB 
C WITH A COSINE CURRENT LOCATED ON A SLAB SURFACE. 
C 

DIMENSION XNIT(144I 
DIMENSION FTD(8»,FT|8,6»,DT<8,6»,FR«8,6I,DR(8,6»»CDA(8I,CDB(8I 
COMMON Nl,NNl,NDT,I0P,EAS,ANG(6),BNG(6),Tl(21l>E(8l,T(e,6ltR(8,6l 
1 ,A(8,20),7,G 
FQUIVAIFNCE (FT(1),XNIT(I)I,(0T(11,XNIT Ctgtt,(DR(11,XNITI97 I I 
00 500 I = 1,144 

500 XNITIII = 0. 
NH « 0 

C 
C 
C READ INPUT PARAMETERS 
C NFNFG NO. PRINT ENERGY GROUPS 
C NANG NC. PRINT ANGLE INTERVALS 
C NHIST NC. HISTORIES 
C NOIVT NO. SLAB ABSORPTION INTERVALS 
C IB RANDOM NUMBER BASE (ODD) 
C EO SOURCE ENERGY 
C TT SLAB THICKNESS 
C COA CUT-OFF ANGLE 
C AW ATOMIC WEIGHT 
C FTO FLUX-TO-DOSE CONVERSION FACTORS 
C 

KX » 1 
KY = 3 
RFADIKX,20INENEG, NANG, NHIST, NDIVT, IB 
REA0(KX,19» EO, TT, COA, AW 

C 
C READ THE PRINT ANGLE INTERVAL BCUNDS LESS THAN 90 DEG. AND 
C GENERATE THOSF GREATER THAN 90 DEG. 
C 

NNl = NANG+1 
READ (KX,19»(ANG«K), K=1,NN1I 
00 24 M»1,NN1 

24 BNG<M)= 18C.0-ANGIM) 
READ (KX,19I (FT0(!»,I=1,NENEGI 

C 
C READ THE PRINT ENERGY BCUNCS. 
C 

Nl = NENEG+1 
READ tKX,l9» (E{J), J=1,N1I 

20 FCRM4T(10I5I 
19 FnRMAT(5E10.3l 

C 
C CONVERT PRINT ANGLES FROM OFGRFFS TC RADIANS. 
C 

OED = .0174533 
CCA = COA*0ED 
DO 25 N=1,NN1 
ANGINI» ANG(N)*QEO 

25 BNGINt = BNG(NI*OED 
C 
C ZERO DATA STORAGE ARRAYS 

DO 23 1=1,NENEG 
DO 21 J«1,NANG 
TU.J) = 0.0 

21 RII.JI = 0.0 
00 23 K » 1,NOIVT 

23 AII,KI -0.0 
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FORTRAN LISTING (Continued) 

c 
C CALCULATF THE SLAB INCREMENT BCUNDS. 
C 

NOT « N0IVT*1 
TTl ' TT/NDIVT 
T i m « 0.0 
DO 22 L«2,NDT 

22 T H L I « T1(L-1 I • TTl 
C 
C BEGIN HISTORY GENERATION 
C 
C 
C SELECT A SOURCE POLAR DIRECTION FROM A COSINE DISTRIBUTION BETWEEN 
C ZERO AND ONE AND SELECT A SOURCE AZIMUTHAL DIRECTION ANGLE BETWEEN 
C MINUS-PI AND PLUS-PI. THEN CALCULATE DIRECTION COSINES. 
C 

1 CALL RANDdB.RII 
CTHE « SQRTIRM 
G= CTHE 
CALL R A N O d B . R I I 
PHI « 3.141593*(2.0*RI-I.0I 
STHFA » SQRT(1.0-G*G) 
RHO • STHEA 
ALFA » RHO*COS(PHn 
P = RHO*SIN(PHI > 

C 
C 

EAS = EO 
Z= 0.0 
S = 0.0 
NH = NH*-1 

C 
C IF ALL HISTORIES ARE COMPLETE, BRANCH TO THE PRINT AREA. 
C 

IF«NHIST-NH» 5, 2, 2 
C 
C GENERATE THE NEUTRON PATH DISTANCE AND CALCULATE THE NEW Z 
C COORDINATE. THEN DETERMINE IF THE NEUTRON HAS BEEN 
C TRANSMITTED, REFLECTED, ABSORBED, OR SCATTERED. 
C 

CALL R A N D d B . R I I 
CAIL XSEC(TCS,SCS,EAS) 
PL = -ALCGCRK/TCS 

Z • Z*G*PL 
IFdT-Z) 7, 7, 8 

C**** TRANSMITTED - STORE NEUTRON, THEN START NEW HISTORY 
7 lOP = 1 
CALL STRA 
GO TO I 

8 IF tZ» 9,9,3 
C**** REFLECTED - STORE NEUTRON, THEN START NFW HISTORY 

9 lOP = 2 
CALL STRA 
GO TO 1 

3 CALL RANDdB.RII 
IF(RI-SCS/TCS» 10, 10, 11 

C**** ABSORBED - STORE NEUTRON, THEN START NEW HISTORY 
11 ICP = 3 

CALL STRA 
GO TO 1 

C**** SCATTERED - CONTINUE CURRFNT HISTORY 
C 
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FORTRAN LISTING (Continued) 

C GENERATE THE SCATTERED ANGLE (ISCTRCPIC IN CM COORDINATES!, 
C CALCULATE THE ENERGY AFTER SCATTFR, AND THE NFW DIRECTION 
C COSINES. 
C 

10 S = S+1.0 
CALL RANDdB.RII 
CSA = 2.0 • RI-1.0 
El = EAS • (0.5*d.O*((AW-l.0»»«2/(AW*1.0)«*2I 
1 •d.O-d AW-1.0)**2/(AW+1.0l»*2n*CSA) t 
EAS =E1 
CTHES = (1.0*AW»CSAI/SOPT(1.0*AW*AW*2.0*AW*CSA» 
AA X CTHES 
BB = S0RTd.0-AA«AA) 
CALL RANDdB.RII 
PHIS = 3.141593 •t2.0*RI-1.0l 
C = COS(PHISI 
IFIPHISI 12, 12, 13 

12 D - -S0RT(1.0-C*C) 
GO TO 14 

13 D = SQRTd.0-C*CI 
14 IF(d.0-ABS(G))-C0A)I5, 15, 16 
15 ALFAP = BB*C 

BP = BB*D 
GP = AA*G 
GO TO 17 

16 ALFAP = (BB*C*G*ALFA - eB*D*B)/SQPT(1.0-G*G) • AA*ALFA 
BP = «BB»C*G*B • Bfl*0*ALFAI/S0RT(1.0-G*r.) • A**B 
GP = -Bfl»C*SOPT(l.C-G*G) • AA*G 

17 ALFA = ALFAP 
B = BP 
G = GP 

C 
C GENERATE A NEW PATH LFNGTH. 
C 

GO TO 2 
C 
C»*** PRINT AREA 
C 
C CALCULATE THE FLUX AND COSE FROM THE REFLECTED AND 
C TRANSMITTED CURRENT. NORMALIZE ALL RESULTS TO ONE 
C INCIDENT NEUTRON. 
C 

5 DC 32 J»1,NANG 
CDA(J) ' (COS(ANG(J) I * COS!ANG(J»l111 / 2 . 0 

32 CDB ( J l < (COS(BNGU + n i - C O S I B N G C J I d / 2 . 0 
DO 3 0 I=1,NENFG 
DO 30 J«1,NANG 
F T ( I , J I = T d . J I / ( N H I S T * C D A ( J ) I 
D T ( I , J » = F T d , J » * F T D d l 
T d , J I = T d , J I / NHIST 
F R d , J I = R d , J » / (NHIST » C O B I J I I 
O R d . J t = F R d , J ) * F T O d I 

30 R d , J ) = R d . J I / NHIST 
DO 31 I « l , N E N E G 
DO 31 K = I ,NDIVT 

31 A d , K I ' A d . K I / NHIST 
C 
C PRINT THE RESULTS. 
C 

WRITE ( K Y , 4 0 I 
40 FORMATdHl , 'PARTICLES TRANSMITTED THROUGH THE S H I E L D ' I 

WRITE I K Y , 4 1 ) 
41 F0RMAT(1H0, 'FLUXIENERGY,ANGLEI ' , / ) 

WRITE ( K Y . I O O ) 



682 APPENDIX J 

FORTRAN LISTING (Continued) 

WRITE (KY.llO) (ANG(ni, M='2,NN1I 
DO 42 I«l,NENEG 

42 WRITE(3,60I E (Ull, (FT( I , Jl , J=1,NANGI 
WRITE (KY,43I 

43 FORMATdHO,'DOSE(ENERGY,ANGLE I',/) 
WRITE (KY,100) 
WRITE (KY.llO) (ANG(M|, M^2.NN1I 
DO 44 1=1.NENEG 

44 WRITE (3,60) Edtll, (DT(I,J), J=1,NANG) 
WRITE (KY,45) 

45 FORMATdHO,'CURRENT (ENERGY, ANGLE I',/) 
WRITE (KY,100I 
WRITE (KY.llO) (AN6(M), M<2,NN1) 
DO 46 1=1,NENEG 

46 WRITE (KY,60I Ed^ll, (T(I,JI, J = I,NANG) 
WRITF(KY,48) 

48 FORMAKIH],'PARTICLES REFLECTED BY THF SHIELD') 
WRITE (KY,4l) 
WRITF (KY.lOO) 
WRITE (KY.llO) (BNG(M). M=2.NN1) 
00 49 1=1,NFNFG 

49 WRITE (KY,60) F(I + 1), (FR(I,J I,J=l,NANG) 
WRITF (KY,43) 
WRITE (KY,100) 
WRITE (KY.UOI (BNG(M), M=2,NN1) 
DO 50 1=1,NENEG 

50 WRITE (KY,60I Ed^ll, (DR(I,J), J>1,NANG) 
WRITE (KY,45I 
WRITF (KY,100) 
WRITF (KY.llO) (BNG(M), M=2,NN1) 
DO 51 1=1,NENEG 

51 WRITE (KY,60I Ed«ll« (Rd,JI. J=1,NANG) 
WRITE (KY,53) 

53 FORMATdHl,'PARTICLES ABSORBED BY THE SHIELD') 
WRITF (KY,55) 

55 FORMATdHO.'NO. OF PARTICLESIENERGY,THICKNESS)',/) 
WRITE (KY.120) 
WRITE (KY.llO) (Tl(L). L«2,NDT) 
DO 54 1=1,NENEG 

54 WRITE (KV,60) E d - M ) , (A(I,K), K=l,NOIVT) 
60 F0RMAT(6E12.5) 
100 FnRMAT(34X,'ANGLF(RA0IANSI') 
110 F0RMAT(6X, 'ENERGY', 5E12.5) 
120 F0RMAT(34X, 'THICKNESS(CM)') 

C 
CALL EXIT 
END 
SUBROUTINE RANDdl.X) 

C THF RANDOM NUMBERS ARE SELECTED FROM THE TABLE, IR, AND DIVIDED BY 
C 24 IN ORDER TO GENERATE 23 RANDOM NUMBERS BETWEEN 0.04 AND 0.97 
C RAND STEPS THROUGH THE TABLE 23 TIMES WITH EACH OF THE 22 STEP 
C LENGTHS, SO EACH OF THE NUMBERS APPEAR 22 TIMES IN THE SEQUENCE 
C BEFORE IT REPEATS, THUS PROVIDING A TOTAL SEOUFNCF LENGTH OF 
C 22*23 OR 506. 

DIMENSION IRI23I 
DATA IR/22,16,20,2,14,6,19,18,11,8,10,1,7,3,21,9,17,4.5.12.15, 

* 13,23/ 
IF ( KK*n 100,101,100 

100 KNT = 23 
K = 12 
IPT « 1 
KK « -1 

101 IF (KNT - 23) 1,102,102 
C ••• CHANGE STEP SIZE THROUGH THE TABLE ••* 
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FORTRAN LISTING (Continued) 

102 IK < IR(K) 
K = K • 1 
IF (K - 22) 104,104,103 

1C3 K = 1 
104 KNT = 0 
1 KNT = KNT • 1 

C •*• INITIALIZE GENERATOR AT II *•» 
IF (II - 231 106,106,105 

105 II = C 
106 IF (II) 105.108,107 
107 IPT = II 
108 1 1 = 0 

C *•• SELECT THE RANDOM NUMBER *** 
X = IRdPT) 
X « X • 0.0416667 

C *** STEP DOWN TO NEXT RANDOM NUMBER ••• 
IPT = IPT • IK 
IF (IPT - 23) 110,110,109 

109 IPT = IPT - 23 
110 RETURN 

END 
SUBROUTINE STRA 

C 
C THIS SUBROUTINE STORES A NEUTRON WHENEVER IT IS TRANSHITTEDt 
C REFLECTED, OR ABSORBED. 
C 

COMMON Nl, NNl, NOT, lOP , EAS, ANG(6), BNG(6),Tl(2Hf EISli 
1 T(8,6I, R(8,6), A(8,20), Z, G 

C 
C CALCULATE THE ENERGY GROUP SUBSCRIPT. 
C 

DO 6 1=2.Nl 
IF (EAS-Edl) 7. 7, 6 

6 CONTINUE 
7 1 = 1-1 

GO TO (4. 5, 10), lOP 
C**** TRANSMITTED - CALCULATE AKGLE SUBSCRIPT AND STORE. 

4 DO 2 J=2,NN1 
IF (CCS(ANG(JI)-G) 3, 3, 2 

2 CONTINUE 
3 J » J-1 

T(I,J) » T(I,J) •l.O 
GO TO 100 

C**** REFLECTED - CALCULATE ANGLE SUBSCRIPT AND STORE. 
5 00 12 J«2,NN1 

IF(G-COS(BNG(J))) 13, 13, 12 
12 CONTINUE 
13 J = J-1 

Rd,J) - Rd,J) *1.0 
GO TO 100 

C**** ABSORBED - CALCULATE SLAB INCREMENT SUBSCRIPT AND STORE. 
10 DO 15 K-2,NDT 

IF (Z-TKK)) 14, 14, 15 
15 CONTINUE 
14 K = K-1 

A(I,K) - A(l,Kl *• 1.0 
100 RETURN 

END 
SUBROUTINE XSECdCS,SCS,EAS) 

C 
C THIS SUBROUTINE READS TOTAL AND SCATTERED CROSS SECTION 
C DATA THE FIRST TIME IT IS CALLED. EACH TIME CALLED, IT 
C DETERMINES TCS AND SCS AT ENERGY EAS BY LINEAR INTERPOLATION 
C OVER THE UNPUT DATA. 
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FORTRAN LISTING (Continued) 

DIMENSION EE(40), TOT(40I, SCA(40) 
FQUIVALENCE(KTFST.KX) 

C 
C READ INPUT DATA 
C 

IF (KTEST - 1) 10, 40, 10 
10 KTEST = I 

READ(KX,20> NCSE 
REA0(KX,30)(EE(I), 1= 1,NCSE) 
REA0(KX,30) (TCTd), I « l.NCSE) 
READ(KX,30) (SCAd), I = 1,NCSF) 

20 FCRMAT(110) 
30 FORMAT(6E10.3) 

C 
C LOOK-UP CROSS SECTIONS 
C 

40 IF(EAS-EE(1)) 50, 60, 70 
50 I = 2 

GO TO 100 
60 I = 1 

GO TO 200 
70 DO 80 I = 2,NCSE 

1F(FAS-EE(1)) 100, 200, 80 
80 CONTINUE 

1 = NCSE 
100 FACT - (FAS-FEd-ll)/ (EEd) - EF(I-l)) 

TCS = TOTd-ll • (TOTdl-TOTd-ll ) • FACT 
SCS = SCA(I-l) • (SCAd) - S C A d - D ) * FACT 
GO TO 300 

200 TCS = TOTd I 
SCS = SCAd) 

300 RETURN 
END 

TEST PROBLEM 

A test case has been run with the computer procedure for 3-MeV neutrons 
incident on a 2-cm-thick semi-infinite slab of silicon. The reflected and 
transmitted neutrons arc sorted into six energy intervals and five angle 
intervals, and the absorbed neutrons are sorted into the same six energy 
intervals and into ten slab increments. The cross sections that were input are 
not realistic, but they make the neutron mean-free-path distance approxi
mately 3 to 4 cm. One-hundred histories were run; therefore one should not 
expect the answers to be nonzero except for a few storage bins. Both the 
input and output data are shown following the program listing. Summing the 
output neutron current will show that 19 neutrons were reflected, 42 were 
transmitted, and the 39 remainder were absorbed. 
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TEST PROBLEM 

Input Data 

100 5 8237 
3.004-00 
0 . 0 0 * 0 0 
2 . 0 0 - 0 9 
0 . 0 0 * 0 0 
3.004-00 

12 
0 . 0 0 
1 .50 
0 . 9 8 
0 . 4 5 
0 . 1 0 
0 . 2 9 

2 . . 0 0 * 0 0 
1 . 5 0 * 0 1 
3, 
5. 

. 2 0 - 0 9 

. 0 0 - 0 1 

0 . 2 5 
1 .75 
0 . 8 0 
0 . 4 2 
0 . 2 0 
0 . 2 8 

I . 
3. 
3. 
1 . 

. 0 0 - 0 5 

. 0 0 * 0 1 

. 9 0 - 0 9 

. 0 0 * 0 0 

0 . 5 0 
2 . 0 0 
0 . 7 0 
0 . 4 1 
0 . 2 3 
0 . 2 8 

2 . 
4 . 
4 . 
1 . 

, 8 0 * 0 1 
, 5 0 * 0 1 
, 1 0 - 0 9 
, 5 0 * 0 0 

0 . 7 5 
2 . 2 5 
0 . 6 2 
0 . 4 1 
0 . 2 5 
0 . 2 8 

6. 
4 . 
2 . 

, 0 0 * 0 1 
, 2 0 - 0 9 
, 0 0 * 0 0 

1 .00 
2 . 5 0 
0 . 5 5 
0 . 4 0 
0 . 2 8 
0 . 2 7 

9, 
4, 
2. 

. 0 0 * 0 1 

. 4 2 - 0 9 

. 5 0 * 0 0 

1 .25 
3 . 0 0 
0 . 4 9 
0 . 3 7 
0 . 3 1 
0 . 2 6 

Output Data * 

PARTICLES TRANSMITTED THROUGH THE SHIELD 

FLUXIENERGY,ANGLE) 

ENERGY 0 . 2 6 1 8 0 E 
0 . 5 0 0 0 0 E 0 0 0 . 0 
O.IOOOOE 01 0 . 0 
0 . I 5 0 O 0 E 0 1 0 . 0 
0 . 2 0 0 0 0 E 0 1 0 . 0 
0 . 2 5 0 0 0 E 0 1 0 . 0 

00 0 . 5 2 3 6 0 E 
0 . 0 
0 . 0 
0 . 0 
0 . 0 
0 . 0 

ANGLE(RADtANS) 
00 0 .78540E 

0 . 0 
0 . 0 
0 . 0 
0 . 0 
0 . 1 2 7 1 3 E -

00 

-01 

0 .10472E 
0 . 0 
0 . 0 
0 . 0 
0 . 0 
0 . 0 

01 0 . 1 5 7 0 8 E 01 
0 . 0 
0 . 0 
0 . 0 
0 . 0 
0 . 4 0 0 0 0 E - 0 1 

0 . 3 0 0 0 0 E 01 0 . 3 0 5 2 0 E - 0 1 0 .13101E 00 0 . 1 7 7 9 9 E 00 0 . 1 6 5 6 9 E 00 0 . 4 0 0 0 0 E - 0 1 

DOSEIENERGY.ANGLE) 

ANGLE(RADIANS) 
ENERGY 0 . 2 6 1 8 0 E 00 0 . 5 2 3 6 0 E 00 0 .78540E 00 0 .10472E 01 

0 . 5 0 0 0 0 E 
O.IOOOOE 
0 . 1 5 0 0 0 E 
0 . 2 0 0 0 0 E 
0 . 2 5 0 0 0 E 
0 . 3 0 0 0 0 E 

00 0 . 0 
0 1 0 . 0 
0 1 0 . 0 
01 0 . 0 
01 0 . 0 
01 0 .13490E--09 

0 . 0 
0 . 0 
0 . 0 
0 . 0 
0 . 0 
0 . 5 7 9 0 5 E - -09 

0 . 0 
0 . 0 
0 . 0 
0 . 0 
0 . 5 3 3 9 7 E - 1 0 
0 . 7 8 6 7 1 E - 0 9 

0 . 0 
0 . 0 
0 . 0 
0 . 0 
0 . 0 
0 . 7 

0 . 
0. 
0 . 
0 . 
0 . 
0 . 

, 15708E 
.0 
,0 
,0 
,0 
,16800E-

31 

-09 
7 3 2 3 3 E - 0 9 0 . 1 7 6 8 0 E - 0 9 

CURRENT(ENERGY.ANGLE) 

ANGLEIRAOIANSI 
ENERGY 0 . 2 6 1 8 0 E 00 0 . 5 2 3 6 0 E 00 

0 . 5 0 0 0 0 E 00 0 . 0 0 . 0 0 . 0 
O.IOOOOE 0 1 0 . 0 0 . 0 0 . 0 
0 . 1 5 0 0 0 E 01 0 . 0 0 . 0 0 . 0 
0 . 2 0 0 0 0 E 01 0 . 0 0 . 0 0 . 0 

78540E 00 0 . 1 0 4 7 2 F 01 0 .15708E 01 
0 . 0 0 . 0 
0 . 0 0 . 0 
0 . 0 0 . 0 
C O 0 . 0 

0.25000E 01 0.0 0 . 0 O.IOOOOE-Ol 0 . 0 O.lOOOOE-01 
0.30000E 01 0 .30000E-01 0.12000E 00 0.14000E 00 O.IOOOOE 00 O.lOOOOE-01 

(Test problem continues on next page.) 
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TEST PROBLEM (Continued) 

Output Data (cont inued) 
PARTICLES REFLECTED BV THE SHIELD 

FLUX!ENERGY,ANGLE! 

ENERGY 
0; .50000E 00 
O.IOOOOE 0 1 
0 . 1 5 0 0 0 E 0 1 
0 . 2 0 0 0 0 E 0 1 
0 . 2 5 0 0 0 E 0 1 
0 . 3 0 0 0 0 E 0 1 

0 . 2 8 7 9 8 E 
0 . 0 
0 . 0 
0 . 0 
0 . 0 
0 . 0 
0 . 0 

0 1 0 . 2 6 1 8 0 E 
0 . 0 
0 . 0 
0 . 0 
0 . 0 
0 . 4 0 0 4 0 E 
0 . 4 0 0 4 0 E 

ANGLEIRADIANSI 
01 

00 
00 

0 . 2 3 5 6 2 E 
0 . 0 
0 . 0 
0 . 0 
0 . 0 
0 . 1 2 5 8 5 E 
0 .6292SE 

01 

0 0 
00 

0 . 2 0 9 4 4 E 
0 . 0 
0 . 0 
0 . 0 
0 . 0 
0 . 0 
0 .67598E 

0 1 

00 

O.ISTOBE 01 
0 . 0 
0 . 0 
0 . 0 
0 . 0 
0 . 4 0 0 0 0 6 - 0 1 
0 . 4 0 0 0 0 E ' 0 1 

OOSEI ENERGY. ANGLE I 

ENERGY 0 . 2 8 7 9 8 E 0 1 
0 . 5 0 0 0 0 E 0 0 0 . 0 
O.IOOOOE 0 1 0 . 0 
0 . 1 5 0 0 0 E 0 1 0 . 0 
0 . 2 a 0 0 0 E 0 1 0 . 0 

0 . 2 6 1 8 0 E 0 1 0 . 2 : 
0 . 0 0 . 0 
0 . 0 0 . 0 
0 . 0 0 . 0 
0 . 0 0 . 0 

0 . 2 5 0 0 0 E 01 0 . 0 
0 .30000E 0 1 0 . 0 

ANGLEIRADIANSI 
0 . 2 0 
0 . 0 
0 . 0 
» . 0 
0 . 0 

0 . 1 6 8 1 T E - 0 8 0 . 5 2 8 5 7 E - 0 9 0 . 0 

0.0 
0.0 
0.0 
0.0 
0.16S00Eo09 

0 . 1 7 6 9 8 E - 0 8 0 . 2 T 8 1 3 E - 0 8 0 . 2 9 8 T S E - 0 8 0 . 1 7 6 S 0 E - 0 4 

CURRENTIENERGY.ANGLEI 

ENERGY 0 . 2 8 T 9 8 E 0 1 0 . 2 6 i e O E 
0 . 5 0 0 0 0 E 0 0 0 . 0 0 . 0 
O.IOOOOE 0 1 0 . 0 0 . 0 
0 . 1 5 0 0 0 E 0 1 0 . 0 0 . 0 
0 . 2 0 0 0 0 E 01 0 . 0 0 . 0 
0 . 2 5 0 0 0 E 0 1 0 . 0 0 . 2 0 0 0 0 E -
0 . 3 0 0 0 0 E 0 1 0 . 0 0 . 2 0 0 0 0 E -

ANGLEIRADIANSI 
0 1 0 . 2 3 5 6 2 E 01 

0 . 0 
0 . 0 
0 . 0 
0 . 0 

01 O. lOOOOE-01 
01 O.SOOOOE-01 

0 . 2 0 9 4 4 E 
0 . 0 
0 . 0 
0 . 0 
0 . 0 
0 . 0 
O.TOOOOE-

0 1 .O.ISTOBE 0 1 

- 0 1 

0 . 0 
or.o 
0 . 0 
0 . 0 
O.lOOOOE-01 
O.lOOOOE-01 

PARTICLES ABSORBED BV THE SHIELD 

NO. OF PARTICLESIENERGY,THICKNESSI 

THICKNESS(CM) 
ENERGY 0 . 4 0 0 0 0 E 00 0 . 8 0 0 0 0 E 

O.SOOOOE 00 0 . 0 0 . 0 
O.IOOOOE 0 1 0 . 0 0 . 0 
O.ISOOOE 01 0 . 0 0 . 0 
0 . 2 0 0 0 0 E 0 1 0 . 0 0 . 0 
0 .2S000E 0 1 O. lOOOOE-01 0 . 0 
O.SOOOOE 0 1 O. l lOOOE 00 0 . 6 0 0 0 0 E - 0 1 O. l lOOOE 00 0 . 6 0 0 0 0 E - 0 1 0 . 4 0 0 0 0 E - 0 1 

0 .12000E 0 1 0 .16000E 
0 . 0 0 . 0 
0 . 0 0 . 0 
0 . 0 0 . 0 
0 . 0 0 . 0 
0 . 0 0 . 0 

0 1 0 . 2 0 0 0 0 E 0 1 
0 . 0 
0 . 0 
0 . 0 
0 . 0 
0 . 0 
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Appendix K 
Source strengths are 1 neutron/sec for the point isotropic fission cases and 1 
neutron cm~^ sec"' for carbon, a plane isotropic fission source. 

Table K 1—DIFFERENTIAL NUMBER SPECTRA AND DOSE FOR BERYLLIUM, A POINT ISOTROPIC 
FISSION SOURCE 

r, g/cm^ 

E, MeV 0 10 20 30 60 90 120 

Number Spectra, 47rr^No(r,£), neutrons sec"' MeV 

0 330 
0 383 

0 445 

0 492 

0 572 

0 601 

0 734 

1 10 

1 34 

163 

200 
2 44 

2 69 

2 98 

3 64 

4 44 

5 43 

6 63 

8 10 
9 89 

12 1 

14 75 

180 

315 
3 27 

3 38 

3 44 

3 51 

3 53 

3 56 

3 37 

314 
2 80 

2 38 

190 
165 
140 
9 36 

5 58 

2 85 

1 22 

412 
105 

187 
2 17 

147 

-l)t 

-1) 
-1) 
-1) 
-1) 

-1) 
-1) 
-I) 
-I) 
-1) 

-1) 
-1) 
-1) 
-1) 
-2) 

-2) 
-2) 
-2) 
-3) 
-3) 

-4) 
-5) 
-6) 

2 73 

2 91 

3 30 

2 76 

2 77 

199 
312 
2 62 

2 58 

2 25 

192 
142 
8 64 

7 45 
6 10 

4 42 

2 28 

8 20 

3 12 

8 53 

142 
1 51 

9 16 

-1) 
-1) 
-1) 
-I) 
-1) 

-1) 
-1) 
-1) 
-1) 
-1) 

-1) 
-1) 
-2) 
-2) 
-2) 

-2) 
-2) 
-3) 
-3) 
-4) 

-4) 
-5) 
-7) 

103 
1 11 

1 28 

102 
106 

7 46 

1 33 

1 29 

140 
1 28 

107 
6 72 

2 70 

2 74 

2 84 

2 23 

1 18 

4 02 

1 56 

4 55 

7 12 

9 43 

4 17 

-1) 
-1) 
-1) 
-1) 
-1) 

-2) 

-I) 
-1) 
-1) 
-1) 

-1) 
-2) 
-2) 
-2) 
-2) 

-2) 
-2) 
-3) 
-3) 
-4) 

-5) 
-6) 
-7) 

3 57 

3 95 

4 69 

3 88 
4 21 

3 13 

5 78 

6 62 

7 76 

7 41 

6 09 

3 18 

1 10 

1 28 

1 50 

122 
6 64 

2 29 

8 93 

2 72 

4 13 

5 93 

2 32 

-2) 
-2) 
-2) 
-2) 
-2) 

-2) 
-2) 
-2) 
-2) 
-2) 

-2) 
-2) 
-2) 
-2) 
-2) 

-2) 
-3) 
-3) 
-4) 
-4) 

-5) 
-6) 
-7) 

182 
2 21 

2 89 

2 65 
3 23 

2 59 
5 12 

7 44 

9 69 

100 

7 82 

2 51 

9 19 

1 29 

1 78 

1 62 

9 65 

3 51 
150 
5 14 

7 65 

1 19 

3 75 

-3) 
-3) 
-3) 
-3) 
-3) 

-3) 
-3) 
-3) 
-3) 
-2) 

-3) 
-3) 
-4) 
-3) 
-3} 

-3) 
-4) 
-4) 
-4) 
-5) 

-6) 
-6) 
-8) 

1 52 

1 89 
2 52 

2 38 

2 97 

2 42 

4 84 

7 30 

9 69 

1 03 

7 68 

1 83 

813 
1 21 

1 81 

1 83 

1 18 

4 50 

216 
8 07 

1 22 

215 
5 63 

-4) 
-4) 
-4) 
-4) 
-4) 

-4) 
-4) 
-4) 
-4) 
-3) 

-4) 
-4) 
-5) 
-4) 
-4) 

-4) 
-4) 
-5) 
-5) 
-6) 

-6) 
-7) 
-9) 

Dose 4nr^ D[r), D in mrads/hr 

1 01 (-2) 7 85 (-3) 3 69 (-3) ! 91 (-3) 2 33 (-4) 2 38 (-5) 

fRead 3 15 X 10 ' etc 

tAU data in this appendix have been taken from H. Goldstein, Fundamental Aspects of Reactor 
Shielding, Addison—Wesley Publishing Company, Inc , Reading, Mass , 1959. 

1 35 

1 69 

2 27 

215 
2 69 

2 19 

4 38 

6 65 

8 84 

9 44 

6 81 

1 54 

8 31 

1 23 

1 88 

2 05 

140 
5 60 

2 97 

1 18 

1 84 

3 61 

834 

-5) 
-5) 
-5) 
-5) 
-5) 

-5) 
-5) 
-5) 
-5) 
-5) 

-5) 
-5) 
-6) 
-5) 
-5) 

-5) 
-5) 
-6) 
-6) 
-6) 

-7) 
-8) 
-10) 

2 38 (-6) 
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00 
00 

Table K.2—DIFFERENTIAL NUMBER FLUX FOR CARBON, A PLANE ISOTROPIC FISSION SOURCE 
No(x,E), neutron cm"^sec"'MeV"' 

X, g/cm^ 

E,MeV 

18.02 
12.08 
8.10 
5.43 
3.64 

2.44 
1.63 
1.1 
0.73 
0.49 

0.33 
0.221 
0.148 
0.099 
0.066 

0.012 
0.3 X 10"' 

10 

0.6453 X JO"* 
0.8331 X 10"" 
0.1512 X 10"^ 
0.1580 X 10"' 
0.4676 X 10"' 

0.1748 X 10" 
0.3407 X 10° 
0.5311 X 10" 
0.7516 X lO" 
0.8507 X lO" 

0.7365 X 10° 
0.9966 X 10" 
0.1442 X 10' 
0.2113 X 10' 
0.3120 X 10' 

0.1401 X 10^ 
0.4819 X 10' 

20 

0.3134 X 10"* 
0.4080 X 10"* 
0.6391 X 10"^ 
0.8383 X 10"^ 
0.2194 X 10"' 

0.8833 X 10"' 
0.1819 X 10" 
0.2930 X 10° 
0.4234 X 10° 
0.4848 X 10° 

0.4175 X 10" 
0.5694 X 10" 
0.8384 X 10° 
0.1252 X 10' 
0.1888 X 10' 

0.9070 X 10' 
0.3630 X 10' 

30 

0.1585 X 10"* 
0.2076 X 10"" 
0.2856 X 10"' 
0.4576 X 10"^ 
0.1063 X 10"' 

0.4592 X 10"' 
0.9959 X 10"' 
0.1653 X 10° 
0.2436 X 10" 
0.2820 X lO" 

0.2419 X 10° 
0.3322 X 10" 
0.4966 X 10" 
0.7552 X 10" 
0.1159 X 10' 

0.5927 X 10' 
0.2740 X 10' 

60 

0.2995 X 10"'' 
0.3942 X 10"' 
0.4442 X 10"" 
0.9661 X 10"' 
0.1708 X 10"^ 

0.8427 X 10"^ 
0.2031 X 10"' 
0.3596 X 10"' 
0.5518 X 10"' 
0.6543 X 10"' 

0.5585 X 10"' 
0.7783 X 10"' 
0.1197 X lO" 
0.1885 X 10" 
0.3005 X 10" 

0.1765 X 10' 
0.1191 X 10' 

90 

0.1020 X 10"'' 
0.1331 X 10"' 
0.1445 X 10"" 
0.3227 X 10"' 
0.5213 X 10"' 

0.2502 X 10"^ 
0.6070 X 10"^ 
0.1087 X 10"' 
0.1682 X 10"' 
0.2008 X 10"' 

0.1722 X 10"' 
0.2406 X 10"' 
0.3713 X 10"' 
0.5881 X 10"' 
0.9466 X 10"' 

0.5892 X 10" 
0.5277 X 10" 

120 

0.4588 X 10"* 
0.6025 X 10"* 
0.5984 X 10"' 
0.1444 X 10"' 
0.2262 X 10"' 

0.1010 X 10"^ 
0.2370 X 10"^ 
0.4183 X 10"^ 
0.6427 X 10"' 
0.7652 X 10"' 

0.6598 X 10"' 
0.9193 X 10"' 
0.1408 X 10"' 
0.2214 X 10"' 
0.3542 X 10"' 

0.2206 X 10" 
0.2385 X 10" 



Table K.3—DIFFERENTIAL NUMBER SPECTRA FOR CH, A POINT ISOTROPIC FISSION SOURCE 
47rr iVo(r,£), neutron sec"'MeV"' 

r, g/cm' 

£,MeV 

18.02 
12.08 

8.10 
5.43 

3.64 
2.44 
1.63 
1.10 

0.734 
0.492 
0.33 

10 

0.9312 X 10"* 
0.1100 X 10"' 
0.1906 X 10"' 
0.1397 X 10"' 

0.3850 X 10"' 
0.9867 X 10"' 
0.1481 X 10" 
0.2007 X 10° 

0.2560 X 10" 
0.2981 X 10" 
0.3711 X 10" 

20 

0.4418 X 10"* 
0.4664 X 10'" 
0.6603 X 10"' 
0.5142 X 10 ' ' 

0.1099 X 10"' 
0.2806 X 10 ' ' 
0.4117 X 10"' 
0.5422 X 10"' 

0.6802 X 10"' 
0.7879 X 10 ' ' 
0.9896 X 10"' 

30 

0.2511 X 10"* 
0.2421 X 10"" 
0.2843 X 10"' 
0.2194 X 10"' 

0.3872 X 10"' 
0.8970 X 10"' 
0.1250 X 10"' 
0.1587 X 10"' 

0.1940 X 10"' 
0.2210 X 10"' 
0.2718 X 10"' 

60 

0.4272 X 10"'' 
0.3167 X i C ' 
0.2005 X 10"" 
0.1401 X 10"' 

0.1620 X 10"' 
0.2824 X 10"' 
0.3424 X 10"' 
0.4109 X 10"' 

0.4947 X 10"' 
0.5642 X 10"' 
0.6958 X 10"' 

90 

0.6668 X 10"* 
0.3760 X 10"* 
0.1392 X 10"' 
0.8371 X 10"' 

0.8243 X 10"' 
0.1276 X 10"" 
0.1476 X 10"" 
0.1753 X 10"" 

0.2102 X 10"" 
0.2392 X 10"" 
0.2929 X 10"" 

120 

0.1009 X 10"* 
0.4431 X 10"' 
0.1099 X 10"* 
0.5378 X 10"* 

0.5170 X 10"* 
0.7847 X 10'* 
0.9034 X 10"* 
0.1073 X 10"' 

0.1287 X 10"' 
0.1461 X 10"' 
0.1782 X 10"' 



Table K.4—DIFFERENTIAL NUMBER SPECTRA FOR CHj o, A POINT ISOTROPIC FISSION SOURCE 
47rr'iVo(r,E), neutron sec"'MeV' 

r, g/cm' 

£,MeV 

18.02 
12.08 

8.10 
5.43 

3.64 
2.44 
1.63 
1.10 

0.734 
0.492 
0.33 

10 

0..7280 X 10"* 
0.7751 X 10'" 
0.1204 X 10"' 
0.7724 X 10"' 

0.1883 X 10"' 
0.4193 X 10 ' ' 
0.6053 X 10"' 
0.8130 X 10"' 

0.1039 X 10" 
0.1259 X 10° 
0.1612 X 10" 

20 

0.3087 X 10"* 
0.2769 X 10"" 
0.3352 X 10 ' ' 
0.2003 X 10"' 

0.3739 X 10"' 
0.7368 X 10"' 
0.9916 X 10 ' ' 
0.1258 X 10"' 

0.1538 X 10"' 
0.1806 X 10 ' ' 
0.2246 X 10"' 

30 

0.1490 X 10"* 
0.1140 X 10'" 
0.1041 X 10"' 
0.5458 X 10"' 

0.8267 X 10"' 
0.1424 X 10 ' ' 
0.1793 X 10"' 
0.2207 X 10"' 

0.2665 X 10"' 
0.3109 X 10"' 
0.3831 X 10"' 

60 

0.1425 X 10'"' 
0.6554 X 10"* 
0.2627 X 10"' 
0.9009 X 10"' 

0.9384 X 10"' 
0.1294 X 10"" 
0.1487 X l O " 
0.1779 X 10"" 

0.2138 X 10"" 
0.2504 X 10"" 
0.3105 X 10'" 

90 

0.1282 X 10"* 
0.3680 X 10"'' 
0.8284 X 10"'' 
0.1971 X 10"* 

0.2049 X 10"* 
0.2847 X 10"* 
0.3300 X 10"* 
0.3960 X 10"* 

0.4745 X 10"* 
0.5523 X 10'* 
0.6769 X 10"* 

120 

0.1114 X 10"^ 
0.2118 X 10'* 
0.3221 X 10"* 
0.5711 X 10"* 

0.5743 X 10"* 
0.7728 X 10"* 
0.8774 X 10"* 
0.1045 X 10"'' 

0.1255 X 10"'' 
0.1470 X 10"'' 
0.1820 X 10"'' 



Table K.6—DIFFERENTIAL NUMBER SPECTRA FOR WATER, A POINT ISOTROPIC FISSION SOURCE 
4lTr No(r,E), neutron sec' MeV" 

r, cm 

E, MeV 10 20 30 60 90 120 

• • 

Table K.5—DIFFERENTIAL NUMBER SPECTRA FOR Hj , A POINT ISOTROPIC FISSION SOURCE 
4nr^No{r,E), neutron sec"' MeV"' 

£, MeV 

18.017 
13.348 
8.947 
5.997 

3.824 
1.555 
0.7344 
0.33 

10 

0.1047 X 10"' 
0.43476 X 10"" 
0.11671 X 10'̂  
0.87118 X 10'̂  

0.032608 
0.10505 
0.16057 
0.22197 

20 

0.6581 X 10'* 
0.2814 X 10'" 
0.63120 X 10'̂  
0.39413 X lOT̂  

0.012542 
0.035939 
0.057007 
0.082713 

r, cm 

30 

0.4415 X 10"* 
0.18227 X 10"" 
0.34302 X 10"̂  
0.17905 X 10'̂  

0.4784 X 10"̂  
0.011680 
0.019296 
0.029512 

60 

0.1322 X 10"* 
0.49575 X 10'̂  
0.56543 X 10'" 
0.18519 X 10"̂  

0.33947 X 10"' 
0.59143 X 10"̂  
0.81843 X 10'' 
0.11020 X 10'̂  

90 

0.42248 X 10"'' 
0.13801 X 10'' 
0.97823 X 10"' 
0.21545 X 10'" 

0.32015 X 10"" 
0.55322 X 10"" 
0.69773 X 10"" 
0.83534 X 10'" 13 

W 
z 
o 
X 

10.9 
6.0 
2.7 
1.1 
0.33 

4.64 X 10'" 
1.91 X 10"̂  
1.65 X 10"' 
3.37 X 10'' 
3.15 X 10"' 

2.02 X 10'" 
7.54 X 10'̂  
5.86 X 10"̂  
1.20 X 10"' 
2.37 X icr' 

8.77 X 10"' 
2.90 X 10'' 
1.62 X 10"̂  
3.14 X 10"̂  
5.06 X 10"̂  

3.79 X 10"' 
1.10 X 10'' 
4.37 X 10'' 
6.70 X 10"' 
1.20 X 10'* 

3.01 X 10'* 
5.79 X 10'' 
1.07 X 10'" 
1.47 X 10"" 
3.26 X 10"" 

2.35 X 
3.07 X 
4.14 X 
5.62 X 
1.01 X 

10' 
10'' 
10'' 
10"' 
10"̂  

1.82 X 10"* 
1.68 X 10"' 
2.16 X 10"' 
2.99 X 10'' 
5.37 X 10"' 
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Graphs for Neutron 
Attenuation Calculations 

Appendix M 
This appendix consists of graphs of neutron-penetration results obtained 
from Monte Carlo calculations by Clark, Betz, and Brown' and by Allen and 
Futterer.^ Table M.l gives the composition of materials used in the 
calculations; Figs. M.l to M.IO show the dose (in ergs/g per incident 
neutron/cm^) due to monoenergetic beams of neutrons normally incident on 
ordinary concrete, both on a slab andon a semi-infinite medium (half space). 
Figures M . l l to M.15 show the neutron-dose transmission factor as a 
function of polyethylene thickness for monoenergetic neutrons incident at 
various angles. When the thickness is adjusted according to the key included 
at the top of each figure, these latter curves apply also to water, to concrete, 
and to Nevada Test Site soil, both dry and water-saturated. 

The use of these curves is explained in Sec. 6.4.3. 

REFERENCES 

1. F. H. Clark, N. A. Betz, and J. Brown, Monte Carlo Calculations of the Penetration of 
Normally Incident Neutron Beams Through Concrete, USAEC Report ORNL-3926, 
Oak Ridge National Laboratory, January 1967; F. A. R. Schmidt, Revised Neutron 
Kerma Values at the Boundary of a Semi-Infinite Concrete Medium, USAEC Report 
ORNL-TM-2284, Oak Ridge National Laboratory, 1968. 

2. F. J. Allen and A. T. Futterer, Neutron Transmission Data, Nucleonics, 21(8): 120 
(1963). 
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Table M.l—COMPOSITIONS OF MATERIALS USED FOR 
NEUTRON TRANSMISSION CALCULATIONSt 

Material 

Borated polyethylene 
(8 wt.%B4C)t 

Water 

Concrete 

Nevada Test Site 
soil (dry) 

Nevada Test Site 
soil (100% saturated) 

Density, 
g/cm 

0.97 

1.00 

2.26 

1.15 

1.25 

Element 

H 
C 

lOg 

" B 

H 
O 

H 
O 
Al 
Si 

H 
O 
Al 
Si 

H 
O 
Al 
Si 

Composition 

10^ ' atoms/cm 

76.80 
39.20 

0.658 
2.67 

66.90 
33.45 

13.75 
45.87 

1.743 
20.15 

8.553 
22.68 

2.014 
9.533 

16.87 
27.00 

1.976 
8.963 

tFrom F .J . Allen and A. T. Futterer, Nucleonics, 21(8): 120 (1963). 
tSeveral calculations made for pure polyethylene slabs (p = 0.925 g/cm') 

up to 6 in. thick yielded approximately the same neutron transmission results 
as those for the borated polyethylene. 
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CONCRETE BETWEEN SOURCE AND DETECTOR, cm 
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Fig. M.4—Transmission of 8-MeV normally incident neutrons in ordinary concrete. 
(From Clark et al.') 
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(From Clark et al.') 



APPENDIX M 707 

CONCRETE BETWEEN SOURCE AND DETECTOR, cm 

60 80 100 120 140 160 180 

10-" = = ^ 

10-

<r 10-8 

^ 10-9 

1 1 0 - 1 0 

3 
CO 

10-

10 

10-

12 

13 

r**̂ ^— k, ^ • i 

r̂ x.̂  

k — k \ 

X\ 
^ ^ — ^ 

1 — ^ ' i 

s. 

k\ =v̂ -
— X X X \ 

*« 1 
k V 
V v 
V ^ 

\ N 
\ 

», V w 
-—VHt 

XT* x 

•« 
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Fig. M.6—Transmission of 4-MeV normally incident neutrons in ordinary concrete. 
(From Clark et al.') 
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Fig. M.7^—Transmission of 3-MeV normally incident neutrons in ordinary concrete. 
(From Clark et al.') 
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Fig. M.14—Penetration of 1-MeV neutrons incident on several materials at various 
angles. (Based on data from Ref. 2.) 
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Graphs of the vl/ Function 

Appendix N 
A useful function in calculating the shield penetration of the uncollided 
secondary gamma-ray flux is the i//o function, defined in Sec. 6.5. The 4/„ 
functions (n > 0) can be used to calculate the scattered flux. Values of these 
functions have been given by Schmidt' for a slab shield and by Claiborne^ 
for a semi-infinite shield. The functions are plotted in Figs. N. l to N.6, all of 
which are taken from a compilation of Schmidt.' 

REFERENCES 

1. Fritz A. R. Schmidt, The Attenuation Properties of Concrete for Shielding of Neutrons 
of Energy Less than 15 MeV, USAEC Report ORNL-RSIC-26, Oak Ridge National 
Laboratory, August 1970. 

2. H. C. Claiborne, Analytical Solutions for Heat Generation Distributions in Regular 
Geometries, in Engineering Compendium on Radiation Shielding, Article 7.3, 
Springer—Verlag, New York, 1968. 
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Fig. N.lb—The function \jjQ{llt,a) for a > 1 for a slab shield. (From Schmidt. ') 
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Fig. N.2b—The function l//] (/it,a) for a > 1 for a slab shield. (From Schmidt.') 
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Fig. N.3—The function \po{nt,a) for a semi-infinite shield. (From H. C. Claiborne, 
Engineering Compendium on Radiation Shielding, p. 447, Springer—Verlag, New York, 
1968.) 
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Fig. N.4—The function \l/i {Ht,a) for a semi-infinite shield. (From H. C. Claiborne, 
Engineering Compendium on Radiation Shielding, p. 448, Springer—Verlag, New York, 
1968.) 
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Fig. N.5—The function \jj2{^t,a) for a semi-infinite shield. (From H. C. Claiborne, 
Engineering CompendiurA on Radiation Shielding, p. 448, Springer-Verlag, New York, 
1968.) 
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Fig. N.6—The function \p-3{fit,a) for a semi-infinite shield. (From H. C. Claiborne, 
Engineering Compendium on Radiation Shielding, p. 448, Springer-Verlag, New York, 
1968.) 



Constants for Empirical 
Expressions of Albedo Data 

Appendix 0 
Table O.l—CONSTANTS FOR THE EXPRESSION t FITTING THE 

MAERKER AND MUCKENTHALER DIFFERENTIAL DOSE ALBEDO 
DATA FOR FAST NEUTRONS INCIDENT ON CONCRETE J 

Value of constant for A£o of 

Constant 

Go 
G, 
G2 

G3 
G4 
G5 
G« 
G7 
Gg 

Bo 
B, 
B2 

B3 
B4 

K, 

aoo 
aoi 
ao2 
»10 

a n 
a i 2 

aio 
32 1 

a2 2 

0.2 to 0.75 
MeV 

6.585(-2)§ 
5.048(-2) 
3.710(;2) 
1.544(-2) 
7.837(-3) 
0 
0 
0 
0 

6.27(-2) 
1.50(-2) 
5.3(-3) 
0 
0 

1.0 

0.36 
1.29 
0 
0.06 

-3 .06 
0 

-0 .20 
1.68 
0 

0.75 to 1.5 
MeV 

7.045(-2) 
4.393(-2) 
7.088 (-2) 
1.898(-2) 
2.408(-3) 

-3.589(-3) 
0 
0 
0 

9.00(-2) 
8.5(-3) 
9.7(-3) 
0 
0 

1.0 

0.51 
0.32 
1.00 

- 0 . 0 4 
-2 .46 

0 
0.05 
0.95 
0 

1.5 to 3 
MeV 

7.211 (-2) 
5.845(-2) 
5.968(-2) 
2.729(-2) 
1.190(-2) 
1.000(-3) 
4.637(-3) 
6.490(-3) 
0 

8.80(-2) 
1.30(-2) 
6.0(-3) 
0 
0 

1.1 

0.56 
0.18 
1.32 

- 0 . 1 4 
-2 .76 

0 
0.05 
1.14 
0 

3 to 4 
MeV 

7.024(-2) 
7.452(-2) 
l.OOO(-l) 
5.591 (-2) 
2.646(-2) 

-6.908(-4) 
-8.087(-4) 
-1.459(-3) 
-1.809(-3) 

9.05(-2) 
2.15(-2) 
2.30(-2) 
0 
0 

0.9 

0.60 
0.15 
0.48 

-0 .61 
-1 .08 

0 
0.32 
0.30 
0 

4 to 6 
MeV 

6.856(-2) 
8.294(-2) 
9.517(-2) 
7.761 (-2) 
4.292(-2) 
1.824(-2) 
5.599(-3) 
5.288(-3) 
1.046 (-2) 

8.744(-2) 
2.817(-2) 
2.344(-2) 
1.779 (-2) 
8.517(-3) 

1.1 

0.43 
2.02 

-0 .38 
0.05 

- 9 . 1 3 
5.93 
0.04 
5.97 

-4 .39 

6 to 8 
MeV 

5.899(-2 
6.039 (-2 
7.524(-2 
8.140(-2 
6.622(-2 
3.056{-2 
1.595(-2 
1.277 (-2 
9.380(-3 

6.374(-2 
1.382(-2 
1.178(-2 
1.084(-2 
6.801 (-3 

1.06 

0.35 
0.95 
0 
0.10 

-2 .28 
1.11 
0 
0 
0 

tEquation 7.3-1. 
l^From R E. Maerker and F. J. Muckenthaler, Calculation and Measurement of the 

Fast-Neutron Differential Dose Albedo for Concrete, Nucl. Set. Eng., 22: 455 (1965). 
§Read: 6.585 X 10"*, etc. 

726 



APPENDIX O 727 

Table 0 . 2 -

Element 

Boron-10 
Boron-11 
Hydrogen 
Carbon 
Oxygen 
Aluminum 
Silicon 
Iron 

Density, 
g/cm^ 

-COMPOSITIONS OF SOIL, IRON, AND POLYETHYLENE 
USED IN MONTE CARLO CALCULATIONS! 

Composition ( 

Nevada Test Site 

Dry 

8.553 

22.68 
2.014 
9.533 

1.15 

50% 
saturated 

9.80 

23.30 
1.830 
8.680 

1.12 

in units of 10^ atoms/cm ) 

soil 

100% 
saturated 

16.87 

27.00 
1.976 
8.963 

1.25 

iron 

84.9 

7.88 

8% berated 
polyethylene 

0.658 
2.67 

76.8 
39.2 

0.97 

tFrom F. J. Allen, A. Futterer, and W. Wright, Dependence of Neutron 
Albedos Upon Hydrogen Content of a Shield, Report BRL-1224, Ballistic 
Research Laboratories, October 1963. 
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00 

Table 0.3—VALUES OF THE CONSTANT ife(£o)t FOR THE EXPRESSION FITTING THE 
DIFFERENTIAL-DOSE-ALBEDO DATA OF ALLEN et alt FOR FAST NEUTRONS 

INCIDENT ON VARIOUS MATERIALS § 

k(Eo) for incident energies of 

Material 0.1 MeV 0.25 MeV 0.5 MeV 1.0 MeV 2.0 MeV 3.0 MeV 5.0 MeV 14.0 MeV Fission 

Concrete 
Dry NTS soil 
50% saturated 

NTS soil 
100% saturated 

NTS soil 
Iron 

0.0948 
0.0967 

0.0868 

0.0778 
0.1750 

0.1027 
0.0895 

0.0957 

0.0818 
0.1752 

0.1062 
0.1002 

0.0952 

0.0839 
0.1801 

0.1323 
0.1272 

0.1209 

0.1054 
0.1182 

0.1164 
0.1103 

0.1074 

0.0891 
0.1477 

0.1030 
0.0979 

0.0926 

0.0791 
0.1508 

0.0834 
0.0784 

0.0746 

0.0644 
0.1158 

0.0552 
0.0535 

0.0533 

0.0463 
0.0802 

0.1110 
0.1050 

0.1015 

0.0868 
0.1366 

tEquation 7.3-3. 
| F . J . Allen, A, Futterer, and W. Wright, Dependence of Neutron Albedos Upon Hydrogen Content of a Shield, 

Report BRL-1224, Ballistic Research Laboratories, October 1963. 
§From R. L. French and M. B. Wells, An Angular Dependent Albedo for Fast-Neutron Reflection Calculations, 

USAEC Report RRA-M31, Radiation Research Associates, Inc., November 1963. 



Table 0.4—CONSTANTS FOR THE EXPRESSIONS! FITTING THE COLEMAN ET AL.,t DIFFERENTIAL 
AND TOTAL ALBEDO DATA FOR INTERMEDIATE-ENERGY NEUTRONS INCIDENT ON REINFORCED CONCRETE 

Constant 

f i 

^2 

(3, 
^2 

Ti 
72 
a 
b 
c 

«. 
« 2 

55.1 to 200 
keV 

0.190 
-0 .020 

0.020 
0.300 
0.11 
0.91 
0.20 
0.56 
0 
0.880 

-0 .208 

15.2 to 55.1 
keV 

0.190 
-0 .025 

0.025 
0.295 
0.11 
0.91 
0.225 
0.69 
0 
0.865 

-0 .177 

4.2 to 15.2 
keV 

0.216 
-0 .047 
-0 .004 

0.307 
0.12 
0.91 
0.24 
0.70 
0 
0.875 

-0 .200 

Values 

1.15 to 4.2 
keV 

0.210 
-0 .046 
-0 .005 

0.310 
0.12 
0.91 
0.24 
0.70 
0 
0.875 

-0 .232 

of constants 

0.32 to 1.15 
keV 

0.208 
-0 .042 
-0 .005 

0.305 
0.12 
0.91 
0.24 
0.70 
0 
0.860 

-0 .205 

for AEo of 

87 to 320 
eV 

0.210 
-0 .061 
-0 .003 

0.296 
0.125 
0.865 
0.28 
0.72 
0 
0.845 

-0 .210 

24 to 87 
eV 

0.205 
-0 .068 
-0 .003 

0.283 
0.13 
0.845 
0.30 
0.73 
0 
0.830 

-0 .228 

6.6 to 24 
eV 

0.202 
-0 .075 
-0 .002 

0.270 
0.13 
0.82 
0.32 
0.74 
0 
0.815 

-0 .230 

1.8 to 6.6 
eV 

0.172 
-0.059 

0.021 
0.218 
0.105 
0.65 
0.40 
0.77 
0 
0.817 

-0 .244 

0.5 to 1.8 
eV 

0.105 
-0.036 

0.115 
0.125 
0.080 
0.48 
0.255 

-0 .072 
0.765 
0.792 

-0 .232 

^ 

z a 
X 

o 

tEquations 7.3-6 and 7.3-7. 
^W. A. Coleman, R. E. Maerker, F. J. Muckenthaler, and P. N. Stevens, Calculation of Doubly Differential Current Albedos for Epicadmium 

Neutrons Incident on Concrete and Comparison of the Reflected Subcadmium Component with Experiment, Nucl. Sci. Eng., 27: 411 (1967). 
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Table 0.5—VALUES OF COEFFICIENTS AND FUNCTIONS FOR THE 
SEMIEMPIRICAL FORMULA OF MOCKELt (Eq. 7.3-13) 

Sourcet a 0 A f(p) g(p) 
1 1 

Norm. 1.37(1 -pf'** 
Isotropic 1.37(1 -pf'*" 
Cosine 1.37(1-p)"** 

tA. Mockel, Reflection and Transmission by a Strongly Absorbing Slab, Nucl Sci. Eng., 22: 
339 (1965). 

f Norm., normal incidence; isotropic, isotropic current; and cosine, cosine current. 

1.37(1 
1.33(1 
1.37(1 

-P)"-*' 
_ J0.3.7S 

-pf'* 

0.2775 
0.640 
0.3882 

(1 
(1 
(1 

_ p ) 0 . . . 

-pf-' 
- P ) " " ' 

0.067P'''' 
0 
0.05p»" 

Table 0.6—EXPRESSIONS FOR DIFFERENTL\L AND TOTAL THERMAL-
NEUTRON ALBEDOS DUE TO INCIDENT 0.5-eV TO 200-keV NEUTRONSt 

A2(AEoJ^o), 
a2(AEQ,Ho,H),t thermal neutrons thermal neutrons/ 

A£o steradian"' source neutron~' source neutron 

55.1 - 200 keV jLt(l + 1 . 7 3 M ) ( 0 . 0 0 4 3 + 0.0058iUo) 0.029 + 0.039/io 
1 5 . 2 - 5 5 . 1 keV Ai(l+1.73;Li)(0.0052 + 0.0059/io) 0.035 + 0.040jLto 
4.2 - 15.2 keV n(l + 1.73/i)(0.0062 + 0.0071^0) 0.042 + 0.048jUo 

1 . 1 5 - 4 . 2 k e V /Li(l+1.73/u)(0.0077+0.0073/10) 0.052 + 0.049MO 
0.32 - 1.15 keV jLi(l + 1 .73AI) (0 .0090 + 0 .0099MO) 0.061 + 0.067jLto 

87 - 320 eV n(l + 1.73ju)(0.011 +0.012pto) 0.074 + 0.081jUo 
2 4 - 8 7 e V ^[(0 .0185+0.0150/LIO)+ / i(0.0177+ 0.0235A/O)] 0.095 + 0.096MO 

6 . 6 - 2 4 e V ju [(0.0332+ 0.0085^0)+M(0.0220+ 0.0268^0)] 0.150+ 0.084iUo 
1 . 8 - 6 . 6 eV ju[(0.0595+M(0.0290 + 0.0305Mo)l 0.248 + 0.064jUo 
0 . 5 - 1 . 8 eV ju[(0.124-0.035iUo)+M(0.020 +0.053/10)1 0.431 + O.OOl/io 

tFrom W, A. Coleman, R. E. Maerker, F. J. Muckenthaler, and P. N. Stevens, Nucl 
Sci. Eng., 27: 419 (1967). 

J/io = cos dQ;n = cos 0. 
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Table 0.7—EXPRESSIONS FOR DIFFERENTIAL AND TOTAL THERMAL-
NEUTRON ALBEDOS DUE TO INCIDENT 200-keV TO 9.57-MeV NEUTRONSt 

AE„ 
a2(AJBo,/io,/i),t thermal neutrons 

steradian' source neutron" 

Aa(A£oJio), 
thermal neutrons/source 

neutron 

2.64 - 9.57 MeV 
0 . 7 5 0 - 2 . 6 4 MeV 

200 - 750 keV 

/i(l -I- 1.73/i)(0.0024 + 0.0040/10) 
/i(l + 1.73/i)(0.0028 + 0.0044/10) 
/i(l + 1.73/i)(0.0036 + 0.0049/10) 

0.016-H0.027/to 
0.019 + 0.030/10 
0.024 + 0.033/10 

tFrom W. A. Coleman, R. E. Maerker, F. J. Muckenthaler, and P. N. Stevens, 
Nucl Sci. Eng., 27: 422 (1967). 

tfio - cos do;p = cos 6. 

Table 0.8—VALUES OF PARAMETERS FOR CHILTON-
HUDDLESTON GAMMA-RAY DIFFERENTIAL DOSE 

ALBEDO FORMULA (Eq. 7.4-1 )t 

Material 

Water 

Concrete 

Iron 

Lead 

Bo> 
MeV 

0.2 
0.662 
1.00 
2.50 
6.13 

0.2 
0.662 
1.00 
2.50 
6.13 

0.2 
0.662 
1.00 
2.50 
6.13 

0.2 
0.662 
1.00 
2.50 
6.13 

C 

-0.0187 10.0027 
0.0309 + 0.0047 
0.0470 + 0.0053 
0.0995 + 0.0068 
0.1861 +0.0107 

0.0023 ± 0.0033 
0.0347 ± 0.0050 
0.0503 ± 0.0056 
0.0999 + 0.0078 
0.1717 + 0.0103 

0.0272 ± 0.0033 
0.0430 ± 0.0045 
0.0555 ± 0.0049 
0.1009 + 0.0073 
0.1447 ±0.0101 

0.0044 ± 0.0002 
0.0308 ±0.0015 
0.0452 + 0.0013 
0.0882 ± 0.0014 
0.1126 + 0.0048 

d 

0.1327 + 0.0054 
0.0253 + 0.0034 
0.0151 +0.0025 
0.0058 + 0.0010 
0.0035 ± 0.0005 

0.0737 + 0.0065 
0.0197 + 0.0035 
0.011810.0025 
0.0051 10.0011 
0.0048 + 0.0005 

-0 .0100 + 0.0062 
0.0063 1 0.0030 
0.0045 1 0.0021 
0.0044 + 0.0010 
0.0077 1 0.0006 

-0 .0050 + 0.0004 
-0 .0100 + 0.0007 
-0 .0083 1 0.0004 

0.0001 1 0.0002 
0.00631 0.0003 

tFrom A. B. Chilton, C. M. Davisson, and L. A. Beach, 
Transactions of the American Nuclear Society, 8: 656 (1965). 
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Table 0 .9 -

APPENDIX O 

-CHILTON'S MODIFIED ALBEDO 
FOR CONCRETE t 

9 
Parameter X s (0.662 MeV) "Co (1.25 MeV) 

c 
d 
^ 1 

A2 
Ai 
A4. 
Ai 

0.0455 
0.0161 
1.512 

-0.606 
-0.641 

0.645 
-0.157 

0.0710 
0.0114 
1.555 

-0.629 
-0.605 

0.539 
-0.168 

tFrom A. B. Chihon, Nucl Sci. Eng., 27: 482 (1967). 

whe 
Me.,e,,)-fieM, .ZleZ'eT^'fBllU)'^ 

F(eo ,e,<t>)^A, + Aj vers^ 0o + A^ verŝ  6 
+ At vers^ BQ vers^ 0 
+ As vers Og vers 6 vers <t> 

vers 0 = 1 — cos 0. 

Table O.IO—VALUES OF THE CONSTANT b FITTING THE EXPRESSION 
OF HAGGMARKef<i/.t (Eq. 7.4-2) FOR GAMMA-RAY DIFFERENTIAL 

DOSE ALBEDOS FOR ALUMINUM, IRON, AND CONCRETE 

Material Source cos Bo 

Aluminum 

Iron 

Concrete 

*»Co 

' " C s 

^'Co 

'^'Cs 

*»Co 

'^•'Cs 

0.50 
0.75 
1.00 

0.50 
0.75 
1.00 

0.50 
0.75 
1.00 

0.50 
0.75 
1.00 

0.50 
0.75 
1.00 

0.50 
0.75 
1.00 

0.0070 
0.0090 
0.0095 

0.0132 
0.0167 
0.0194 

0.0060 
0.0065 
0.0065 

0.0091 
0.0120 
0.0130 

0.0075 
0.0090 
0.0100 

0.0133 
0.0165 
0.0184 

tFrom L. G. Haggmark, T. H. Jones, N. E. Scofield, and W.J. Gurney, 
Differential Dose-Rate Measurements of Backscattered Gamma Rays from 
Concrete, Aluminum and Steel, Nucl Sci. Eng., 23: 138 (1965). 



Table O.ll—CURVE-FITTED EXPRESSIONS FOR CAPTURE GAMMA-RAY DIFFERENTIAL 
AND TOTAL ALBEDOS ARISING FROM THE SLOWING DOWN AND CAPTURE 

OF INCIDENT EPICADMIUMt 

^D2(n,7)(^0./ lo) , 
aD2(n,7)(A£o,/'o,M),1: (rads/hr)/(incident 

AEo (rads hr"' steradian"i)/(incident unit neutron current) unit neutron current) 

/i(0.43 +2.17/1-1.67/i^)(0.39 + 0.51/(o)(l-10) 10"''(1.40 + 1.83A(O) 
/i(0.39 +1.78/1-1.39/1^ )(0.50 + 0.68/io)(l.ll) 10"''(1.52 + 2.07/(o) | 
/i(0.70 + 2.53/1 - 2.07/i^)(0.37 + 0.46/io)(1.12 - O.Ol/io) 10"''(1.74 + 2.15/(o) m 
/i(0.68 + 2.59/1 - 2.08/i^)(0.40 + 0.54/io)(1.12 - O.Ol/io) 10'' '(1.93 + 2.57/io) § 
/((0.66 + 3.18/1 - 2.60/1^X0.46 + 0.54/io)(1.14 - 0.02/io) 10"''(2.43 + 2.79/io) X 
/i(0.89 + 3.52/1 - 3.09/1^ )(0.41 + 0.59/io)(1.18 - O.O6/I0) 10"''(2.56 + 3.42/io) O 
/i(1.14 + 3.98/( - 3 . 7 7 M ^ ) ( 0 . 3 8 + 0.62/io)(1.30 - 0.15/io) 10"'(2.95 + 4.20/to) 
/t(1.40 +2.73/1-2.50/1^)(0.45 + 0.65/io)(l.11 -0 .04/ to) 10"''(3.08 + 4.18/(o) 
/i[1.34 +0.78/10 +/i(0.15 + 2.30/io)-/ i^(0.60 + 2.11/(o)] 10"''(3.89 + 4.14/io) 

X (1.09-0.03/10) 
0.5 - 1.8 eV 10"' /t[2.12 +0.72/to +M(-1.46 + 2.92/(o)+M' ( 0 . 4 0 - 2.68/I0)] 10"''(4.52 + 4.33/(o) 

X (1.07-0.02/10) 

tFrom W. A. Coleman, R. E. Maerker, F. J. Muckenthaler, and P. N. Stevens, Nucl Sci Eng., 27: 420 (1967). 
t/io = COSOQ; 11 = cos 6. 

5 5 . 1 -
15 .2-

4 . 2 -
1.15-
0 .32-

8 7 -
2 4 -

6 .6-
1.8-

- 200 keV 
- 55.1 keV 
-15 .2keV 
- 4.2 keV 
-1 .15keV 
- 320 keV 
- 8 7 e V 
- 2 4 e V 
- 6.6 eV 

10"' 
10"' 
10-' 
10-' 
10-' 
10"' 
10"' 
10-' 
10-' 



Radiation Penetration of 
Cylindrical Ducts^ 

Appendix P 

Table P.l—UNCOLLIDED FLUX DENSITY AT EXIT OF CYLINDRICAL 
DUCT DUE TO RADIATION ARRIVING THROUGH DUCT WALLS 

(ISOTROPIC SOURCE) 

{'^\ 
[z) 

0.001 
0.002 
0.005 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
0.75 
1.6-

Flux 

/LZ = 0.1t 

1.823 
1.823 
1.824 
1.825 
1.828 
1.834 
1.842 
1.851 
1.825 
1.765 
1.689 

density per unit surface source intensity 

/iZ = 0.2 

1.223 
1.223 
1.224 
1.226 
1.229 
1.239 
1.254 
1.272 
1.277 
1.240 
1.185 

/tZ = 0.5 

0.5602 
0.5607 
0.5620 
0.5643 
0.5688 
0.5820 
0.6024 
0.6360 
0.6841 
0.6804 
0.6560 

/iZ= 1.0 

0.2198 
0.2207 
0.2215 
0.2235 
0.2278 
0.2406 
0.2613 
0.2982 
0.3659 
0.3819 
0.3767 

for shield thickness of 

IxZ = 2.0 

0.04912 
0.04935 
0.05002 
0.05119 
0.05363 
0.06171 
0.07621 
0.1049 
0.1687 
0.1923 
0.1980 

liZ = 5.0 

1.166x10"^ 
1.184 xicr^ 
1.242 X 10"^ 
1.349 X 10-' 
1.614 xlO"^ 
2.977 X 10"^ 
7.042 X 10"^ 
1.795 xlO"^ 
5.223 X 10"^ 
6.990 X 10"* 
7.753 xlCr* 

tNumber of relaxation lengths. 

+A11 data in this appendix have been taken from D. K. Trubey, A Calculation of Radiation 
Penetration of Cylindrical Duct Walls, USAEC Report ORNL-CF-63-2-64, Oak Ridge National 
Laboratory, Feb. 28,1963. 

734 
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Table P.2—UNCOLLIDED FLUX DENSITY AT EXIT OF CYLINDRICAL 
DUCT DUE TO RADIATION ARRIVING THROUGH DUCT WALLS 

(COSINE SOURCE) 

Flux density per unit surface source intensity for shield thickness of 

(1) 
0.001 
0.002 
0.005 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
0.75 
1.0 

/iZ= O.lt 

1.445 
1.446 
1.446 
1.447 
1.450 
1.455 
1.459 
1.453 
1.339 
1.190 
1.036 

/LZ = 0.2 

1.149 
1.149 
1.150 
1.152 
1.156 
1.166 
1.179 
1.188 
1.116 
0.9949 
0.8643 

/iZ = 0.5 

0.6539 
0.6545 
0.6564 
0.6595 
0.6657 
0.6836 
0.7095 
0.7462 
0.7510 
0.6827 
0.5953 

/tZ=1.0 

0.2976 
0.2983 
0.3002 
0.3034 
0.3100 
0.3298 
0.3610 
0.4120 
0.4714 
0.4465 
0.3956 

HZ=2.Q 

0.07544 
0.07582 
0.07698 
0.07896 
0.08314 
0.09703 
0.1217 
0.1682 
0.2494 
0.2553 
0.2340 

/tZ=5.0 

0.002026 
0.002059 
0.002166 
0.002365 
0.002862 
0.005458 
0.01323 
0.03343 
0.08728 
0.1036 
0.1014 

tNumber of relaxation lengths. 
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Table P.3—RATIO OF LINE-OF-SIGHT RADIATION TO TOTAL 
UNCOLLIDED FLUX DENSITY IN DUCT 

Fraction of total flux density for shield thickness of 

\z) /iZ = o . l t / iZ=0.2 /iZ = 0.5 / iZ=1.0 nZ=2.0 / iZ=5.0 

Isotropic Infinite-Plane Source 

0.001 
0.002 
0.005 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
0.75 
1.0 

<io-* 
<10"' 
<icr* 
<io-^ 
<io-^ 
<ia-^ 

0.003 
0.011 
0.059 
0.11 
0.17 

<i(r* 
<icr* 
<10"^ 
<10"* 
<io-' 

0.001 
0.004 
0.015 
0.083 
0.15 
0.23 

<io-* 
<io-^ 
<10"^ 
<1(T* 

10-3 
0.002 
0.008 
0.031 
0.14 
0.25 
0.34 

Cosine Infinite-Plane 

<io-' 
<ia-5 
< 1 0 ^ 

10-3 
10-3 
0.005 
0.019 
0.062 
0.23 
0.37 
0.48 

Source 

<io-'' 
<i(r'* 
<io-3 

0.001 
0.004 
0.020 
0.062 
0.16 
0.40 
0.53 
0.64 

<10-3 
0.002 
0.010 
0.038 
0.11 
0.29 
0.42 
0.52 
0.68 
0.76 
0.82 

0.001 
0.002 
0.005 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
0.75 
1.0 

<io-* 
<iors 
<io-^ 
<io-* 
<10-3 

0.002 
0.007 
0.026 
0.14 
0.25 
0.36 

<io-* 
<io-* 
<icr* 
<io-* 
<10-3 

0.002 
0.008 
0.031 
0.16 
0.28 
0.40 

<10"* 
<10"* 
<io-^ 
<10-3 
<10-3 

0.004 
0.014 
0.050 
0.22 
0.37 
0.50 

<i(r* 
<io-* 
< 1 0 ^ 
<10-3 

0.002 
0.008 
0.027 
0.12 
0.31 
0.48 
0.60 

<ia^ 
<i(r* 
<io-3 

0.001 
0.005 
0.025 
0.076 
0.19 
0.45 
0.61 
0.71 

<i(r3 
0.002 
0.011 
0.040 
0.12 
0.27 
0.43 
0.54 
0.71 
0.79 
0.85 

tNumber of relaxation lengths. 
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Solutions to Exercises 

CHAPTER 2 

2.1 Let N {t) be the number of atoms that have disintegrated at time t, where N(0) = NQ 

N ' ( 0 = No - Noe"^'= No(l - e"^') 

(a) 

(b) 

-\t p{t)=^\N'(t)\=\N„e 

F,{t)=(lp{t)dt'=S^\Noe-^'' dt' 

= No(1 - e - \ N 

(d) 

^'^'^-SoP{f)dt' J^7~~^'-' 

...SrP(t')dt'_Noe-^^ -XI 
f'^'^-f;p[t-)dt'- No - ^ 

AN{TuT2)=r'p{ndt=No{e -XT, _^-xr ,^ 

2.2 (a) See accompanying sketch. 

Solution 2.2-—Solid-angle calculation. 

737 
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dA=ndA 

n • dA cos 9 dA 
dQ.= 

| r - r | 
R R 

dA = 2np dp, r̂  = R^ + p~ ,cos9=- = 7 ^ T 7 ^ 2 ^ 

" - J o '^""Jo (R^+P^)^- {R'^p'Mo 

(b) As R -* 0 or a ->• 0°, n -> 27r (half space) 

2.3 (a) 

Solution 2.3—Spherical-shell source. 

dA = R^ sin 9 d9 dip 

The differential source = S^ R^ sin 9 dd d4) particles cm"* sec"' 

= — S^R^ sin B d9 d(j) particles cm"* 
47r 

sec steradian 

The solid angle at dA subtended by a sphere of unit cross-sectional area centered 
at D is 1/R* steradian (see figure). Thus, for flux density, 4>(R), 

d<t>{R) = ( ; ^ S, R* sin 0 dd ^ 0 ) ( ^ ) 

Jf»27r /»v ^ 
I -j-Sa sin 9 dO d(l> 

.4=0 Je=o 47r 



SOLUTIONS TO EXERCISES 

S f 
^ = -^ cos 6 I = Sa particles cm sec" 

2 Jjr 

(b) From symmetry the net current through the plane Pis zero. 
(a) From symmetry the flux density is (1/2)5^ particles cm sec 

(b) 

~~7—-
0 

Solution 2.4—Hemispheric shell source. 

The differential source strength is given by 

ds= -;—Sa R* sin 6 dd d<b particles cm"* sec"' steradian" 
4;r "̂  

The solid angle subtended at dA from a unit area about point D in plane P (see 
sketch) is cos 0/R*. Thus the differential current through P b given by 

dJ(R) = ( ^ S,R^ sin 9 d9 d<t>^ ( ^ ) 

J»27r /.ff/2 , 

d4> I -f-Sa sin 6 cos 9 d9 
0=0 ^ Jd=0 4T! " 

1 [ i Y" 1 
= - S^ I — sin* 91 = 7 ^a particles cm"* sec ' directed downward 

(a) 

Solution 2.5—Disk and point sources. 
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Let <l>i(Di) be the flux-density contribution from the disk and 4>2(D2) be the 
flux contribution from the point source. Using the parameter in the sketch. 

' i * . ( 0 . ) = ( ^ S , 2 7 r p c i p ) ( ^ ) 

where r^ = p^ + D\ and r dr = p dp. 

/•(Df-»R')», . . . 

= i c r,_-i(^!+«')^ 

*2(£>2)=—r 
4TT\ D*) 

Thu 

*,o,.i.,,„[i5l±p!]._L(_|) 

(b) Let Ji (Di) be the current through P from the disk and J2(D2) be the current 
through P from the point source. 

dJi[Di)=± s^ {2w dp) (cos w)(-^) 

f(-D?+R')^ 1 / A 

1 rii(D;+R^)^ rii(£>: 
- — 5flD| | - | in direction n 

, , „ . 5 (cos9\. ,. . 
4n 

The net current J(D) at the point D is 

J ( D ) = J ( D , ) - J 2 ( D 2 ) 

1 <: [i P I 1 1 (Scos9\. 
irection n 



SOLUTIONS TO EXERCISES 741 

Solution 2.6—Plane array of point source. 

Consider in the accompanying sketch the solid angle dO, about SI passing through 
the area dA, where dA is the projected area on the unit sphere about the 
differential surface source area dS. S/c^ = average surface source (particles cm"' 
sec' ') and (l/47r)(S/c^) dS = particles sec"' steradian"' from dS into dn about 
Si. But dS = dAlcose. Thus (1/47r)(S/c^ )(ci4/cos 6) particles sec" steradian"' 
pass through dA at point P, and the flux density at point P is 

( 1 S dA\/ 1\ 1 S . , - 2 - 1 .. -1 
I "; 2 n 11 TT I ~ ~A 2 n patticlcs cm sec steradian 
\47rc c o s 0 / \ d ! / l / 4;: c cos 0 *̂  

7 (a) Referring to the sketch for part (a) and using polar coordinates about P, 

Solution 2.7(a)—Nonabsorbing slab source G{d). 

file:///47rc
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dV = R^ sin e de d(t> dR 

dn = sin e de d<t> 

— Sy dV= particles sec" steradian ' into dO, about 12 

"Ti - steradians subtended at c?K by a unit area at P perpendicular to S2 
R 

Xx/cose J •• 

— S„R^ sin e de d<t> dR p particles cm"* sec"' into dSl 

_ 1 X 
~ T~Sy - sin e de dd> 

4w cos 0 

1 
^ (^ ) ~ Z a ^v^ particles cm"* sec"' steradian"' 

47r cos 0 " "^ 

(b) Referring to the sketch for part (b), 

Thi 

Solution 2.7(b)—1(0) from slab source. 

^{e} dS = GiO) dA 

dA = cos e dS 

^e) ds = G(e) cos e ds 

*(fl) = G{e) cos e 

4>(0) = — S y X particles cm"* sec"' steradian" 
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(c) 

* = I *(0) dsi= I I -i- s„x sin e de d<t> 

(d) The equivalent isotropic surface source emits particles in all directions (into as 
well as out of the slab). Thus 4>̂  = S^X. 

(e) Referring to the sketch for part (e), 

Solution 2.7(e)—H(0) function. 

Jr»2jf /•2?r 1 

G(0)(fS2= I - — — s S„X sin e de d(l> 
0=0 • '0 47: cost / 

•• - s„x tan e de 

H(e) = -s,xune 

(f)*(0,02)= r ' U{e)de= f ' is^Xtan^dO 

= is,x\\ncoset ='-S,X\J^) 
2 " I Jflj 2 " \ c o s 0 2 ^ 

The values for each interval are shown in the table. 
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Interval 

0° to 10° 
40° to 50° 
75° to 85° 
80° to 90° 

Cos 01 

1 
0.715 
0.259 
0.174 

SOLUTION 2. 

Cos 02 

0.985 
0.643 
0.0872 
0 

7(f) 

CosOi 

Cos 92 

1.016 
1.19 
2.97 

oo 

, C o s e , 

'"Cos 02 

0.0159 
0.174 
1.09 

OO 

(a) N(E) = 0.77£'4e-"'-"*^ 

-A jv(£) = M Z ir%-o.-'-'6E _ o.77(0.776)£V''-"*^' 

= 0.776"°-"^E | - \ - 0.776£^| 

Setting 

dN „ 

1 "u. 
—;ni = o.n(>E^ = 0 
2£* 

i - 0 . 7 7 6 £ = 0 
2 

E = 0.645 MeV 

- _ So N{E) EdE _ /o" 0 .77£V°- ' ' ^^ dE 

^ ' /o" N(£) dE /o" 0.77£ V - " * ^ c £ E 

Letx = 0.776£; £ = x/0.776 

- _ J o \0-776/ ^' '\0-776/^^_(0.776)"^r(5/2) 
" r / ^ _ ^ ^ , - x / . J _ \ d ^ ^0.776)"'ir(3/2) 

•'o \,0.776J ^ ^0.776r' ' 

= (0.776)"' ^^rff^T^" ^̂ •̂ ^̂ "̂'̂ ^̂ ^̂  " ^'^^^^'^ 

' ' B = ( ^ l i ? ^ T F ^ ) ' = 1-91X10'cm/sec 
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[c) 

N ( £ ) = 0 . 7 7 E V - ' ' ' ' * ^ ' 

„ mv^ dE 

N(.,) = N(£) ^ = 0.77 ( ^ ) ^ ve"» • " *-"^ /* , 

= 0 . 7 7 ^ v * e " ' ' - " ' ^ ' " ' ' ^ / * 

/•- M/ ^ J f ~ 3 f 0.776 mv^\ , 
Jo ̂ M " d^ Jo " ê P V 2 / 

" " " r T T r r ^ T ^ l / 0.776 wv*\, Jo N(v) di> Jo V exp I I dv 

0.776mv* / 2 X'* u 
Let3' = - ^ ^ — , v = ^ ^ ; : ^ ^ j ^'^ 

^-(o:7k)'̂ "''̂ ^ 

\H r 1^ 

ye'y dy 

Jo ^0.776m;^^ [2(0.776m)J^ ''^ 

^ ( 2 f r(2) ^ / 2_\'4 [_1_ r(i) ^ / 2 \^ / J_ \ 
\0.776m/ r(3/2) Vo.776my [(l/2)Jr(l/2) Vo.776w/ V-V/TT/ 

V0.776m7r/ 

ir= (0.525 X io-'^)-'^[E(F)\^ = (osasrio"'") " -̂̂ ^ '̂  ^^' '̂ '" '̂̂  
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CHAPTER 3 

3 .1 (a) Partial densities: 
PjV = 0.7805 (0.00125) = 0.000976 g/cm' of air 
Po = 0.2099 (0.00143) = 0.000300 g/cm* of air 

P^r = 0.0096 (0.00178) = 0.0000171 g/cm^ of air 

(b) Weight percents: 

0.000976 
^ N = 0:00129-^^^^^^-^^^^^ 

0.0000171 
^'^'--o:oor2r'^^««^^=^-^^° 

(c) Atomic densities: (Avogadro's number is 6.02 X 10*^) 

= 0.602 X 10 ^ 0.000976 = 4.20 X l O " atoms/cm^ of air 
11 14 

= 0.602 X 10 ^ 0.000300 = 1.13 X lO' ' atoms/cm' of air 
16 

0.602 X 10*" 
39.9 

N^^= , „ „ X 0.0000171 = 2.58 X lO''' atoms/cm^ of air 

(d) Electron density: 

Pg = (4 .2x 1 0 " ) 7 +(1.13 X 1 0 " ) 8 +(2.58 X 10' ' ' )18 

= 3.89 X 10*" electrons/cm^ 

(e) Average Z 

3.89 X 10*° 
Z--

(4.2 X 1 0 " ) +(1.13 X 1 0 " ) + (2.58 X lO'"') 

3.89 X 10*° ., ^^ , 
~ e ,^ „ ,^ i^ = 7.26 electrons/atom 

3.JO X IV 

3.2 (a) Atomic density: 

Molecules HjO = 0 6 0 2 X 10 ^ ^ 3 ^ ^ ^ 22 molecules/cm' 
' 2 + 16 

There are thus 3.34 X 10** atoms/cm' of oxygen and 6.68 X 10** atoms/cm' 
of hydrogen. The atomic density is then: 

N(H20) = (3.34 X 10**)+ (6.68 X 10**) = 1.0 X 10** atoms/cm* 
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(b) Electron density: 

Pe = (3.34 X 10**) 8 + (6.68 X 10**) 1 = 3.34 X 10** electrons/cm* 

(c) Atomic number: 

3.34 X 10** - , . , , 
1 0 X 10** - electrons/atom 

3.3 (a) Discussion question. 

(b) Total cross section: a, = 3.45 + 0.041 = 3.49 b/atom 

^, /i, 0.602 X 10** , „̂ ,^-^, „ , , , , 
Then ^ = rr 3.49 X 10 * ' =0.15 cm*/g 

M( = 0.15 cm*/g X 0.00125 g/cm* = 1.88 X 10"* cm"' 

(c) fh. (N) = Q-̂ Q^̂ ^ IQ (0.806 + 0.025) X 10^* = 0.0357 cm*/g 

^ (O) ^0.602^X10**^^^^^ ^ p ^j32) X 10"** = 0.0358 cm*/g 

^ (A) = "'^"g^Y"'" ^̂ -̂ ^ •" °-l^) X 10""* = 0.0338 cm*/g 

i ^ air = 0.0357 (0.755) + 0.0358 (0.232) + 0.0338 (0.013) 

= 0.0357 cm*/g 

(Xt (air) = 0.0357 (0.00129) = 4.61 X 10"^ cm"' 

1 l o ' 
(d) X= - = 7 ^ ^ = 2 . 1 7 X 10* m 
^ ' PL 4.61 

(e) At 0.1 MeV: 

4.06 (3.34 X 10**)+0.493 (6.68 X 10**) , „ ^ . , , , 
^ - ^ = ^ 3.34 X 10** molecules/cm^ ' = ^-^^ b/molecule 

3.94 (3.34 X 10**) + 0.493 (6.68 X 10**) ^ „ ^ , , , , 
Oincoh = ^ 3 .34X10** ^-^^ b/molecule 

0.071 (3.34 X 10**) + 0 „ „ , , , , , , 
P- 3 .34X10** " ^-"^^ b/moleculc 

a p p = 0 

At 3.0 MeV: 

0.921 (3.34 X 10**)+ 0.1151 (6.68 X 10**) , , , , , , , 
0:„^„u = ^ TTT—.^11 = 1.16 b/molecule 

mcoh 3 34 X 10^^ 
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^incoh ~ ^-^^ b/molecule 
J 

^ 0.032(3.34 X 10** ) +0.00052 (6.68 X 10**) = 0.033 b/molecule 
'PP 3.34 X 10** 

V = o 
3.4 Disk thickness = °-°J* S^'^'" = 0.0148 

2.7 g/cm-* 

Disk volume, K=7r(2*)X 0.0138 = 0.186 cm* 

( 0 . 6 0 2 X 1 0 * * ) ^ . , , „^ ,„22 , 3 
N^l=- ^= 2.7 = 6.02 X 10** atoms/cm* 

The total scattering coefficient includes coherent events: 

t'coh = NAl<^coh = (6-02 X 10**) (6.79 X 10"**) = 0.409 cm"' 

The scattering coefficient for events that involve energy loss does not include 
coherent events, 

M,„co^ =^4/^mc^ft = (6-02 X 10**) (6.41 X 10-**) = 0.386 cm"' 

Since 0.1 MeV is below the threshold for pair production, the photon absorption 
coefficient is due only to photoelectric events: 

Mpt = N^iOp^. = (6.02 X 10**) (0.78 X 10"**) = 0.047 cm' ' 

All interactions are given by the sum 

Pt = p^^h +Mpe = 0.409 + 0.047 = 0.456 cm"' 

(a) The reaction rate (RR) = <I>/Lij K, where V is the total volume over which 

interactions are to be considered. 

^PfV= 10 ' ° (0.456) (0.186) = 8.48 X 10* photons/sec interaction 

(b) Absorption rate = *;Up^ K= 10 ' ° (0.047) (0.186) = 8.74 X lO ' photons/sec|ab
sorbed. 

(c) Scattering rate = ^P^„h^= 10 ' ° (0.409) (0.186) = 7.61 X 10* photons/sec 

('') ^out ~ ^in ~ total degraded or absorbed 

m m^'^tncoh ''pel' 

= 10 ' ° [1-0.433(0.0148)] = 0.994 X 10 ' ° photons cm"* sec"' 

, ^ „ . reaction rate 
(e) Fraction total atoms in disk 

8.48 X 10* _ , 4 
(6.02X10**) (0.186) ^ -57X10 
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3.5 

Figure for Solution 3.5. 

r''=p''+ 2* 

p dp = r dr 

Af= 0.0148 cm 

dv = 2irp dp At = 27r(0.0148) r dr 

cos o 
r 

p^ = (6.02 X 10** atoms/cm*) (13 electrons/atom) = 7.83 X 10** electrons/cm^ 

^ = a{e) p^ = (7.83 X 10**) (10**) I29.5 - 78.3f^j + 56.6 \\]\ 

source ster; 
* steradian 

adiansat P fdp, . . , \ 1 

/

•2v/2' 
10'° (7.83 X 10"*) 

r=2 

X [ 2 9 , 5 - ™ M . » ^ ] ^ 12.(0.0148), d: 

dr 

(7.27X10*)[29.5lnr + ^ - M ( 2 ) - ^ ] ^ ' ^ 

(7.27 X 10*) 2 9 . 5 1 n V ^ + 7 8 . 3 [ - i = - l | -56 .6 (0.25-0.50)1 

2 .„ -1 (7.27 X 10*) 1.34 = 9.75 X 10* photons cm"* sec 
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2g - _ / r pi") ^(v) dv _ / r g(v) «(v) f cfv 

fT ^{v) dv / r "(f) V dv 

_ / r (Ci.-')^i>*e-""''^^"'t>cff 

/ r ^ v * e " " " ' ' ' 2 " ' t ; d v 

_C/rv*e"'"^'^^''"^ civ 

= ; » ^ 3 e - " " ' ' / * * ^ d v 

wî * . m , , kT , (2kT\^ . , 2 2ifer 
L ^ t f ^ : ; ? ^ ! "^ "= TT; ; "" ! ' , f of = — d x , v = \ J x' ' , and i» = x 

2kT kT m \ m / m 

cr{^)\K^'-Ld. 
Jo \ m / m Then a 

C 2kT -X kT , 
I xe — d x 

Jo m w 

Reference to a table of integrals shows that both numerator and denominator 
gamma functions: 

c(^fr(3/2) , , - \ „-'\m J ''^'^'_^(2kT\ "[1/2^1/2)] _C(m7!_Y 
\m J 1 2 V2' 2^7 p . , . \m J 1 2 V2fer/ 

- ^ (trnt \ ^ 

Since a = Civ, 

v'\8kT) ' 
2 8kT 

v^ = 
nvn 

mi»* _ m /8fer\ 
~ 2 \ WITT / 

„_4fer 
£ = 

3.7 * = ^^^'^ ^ ^^, ^ = 5.88 X 10 ' photons cm"* sec"' 
47r(100)* 

(The factor 2 appears because *°Co emits two photons, 1.33 and 1.17 MeV, 
disintegration.) 
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With an average energy per disintegration of 1.25 MeV, the intensity is 

/ = £ * = 1.25 (5.88 X 10 ' ) = 7.35 X lO ' MeV cm"* sec"' 

(a) Air: 

K = l ( ^ = (7.35 X 10 ' ) 0.0268 = 1.97 X 10* MeV g"' sec"' 

Kair = (1-97 X 10*) (1.6 X 10'* ergs/MeV) = 0.0315 erg g"' sec'' 

(b) Water: 

X H , o = 0.0315 ( ^ ; ^ ) = 0.0353 erg g-' sec' ' 

(c) Iron: 

(d) Lead: 

(e) Tissue: 

\0.i 
30253 \ 

Kp^ = 0.0315 ^0^0268) ^ ^""^^^ "^^ ' " " 

Kpb =0.0315 
/ 0 . 0 3 5 0 \ 
V 0 .0268 / ' 

0.0411 erg g sec 

^ = ^ = ° « ^ ^ 5 ( - S ) = 0.034 e rgg" sec" 

= 0.034 ( ^ ^ f " - y ^ - . . \ = 1.23 rads/hr 
\ 1 0 0 e r g s g ' sec ' / 

X' _ X = 1 - cos 0; cos 0 = 1 - X' + X 

cos* e = (1 - X' + X)*; cos* e -1 = -sin* 0 = (1 - X' + X)* - 1 

-sin* e = {l- X')* + 2(1 - X')(X) + X* - 1 

= 1 - 2X' + X'* + 2X - 2XX' + X* - 1 

= 2 (X-X ' ) + '^ ' ' -2X'X + X'* 

= 2 ( X - X ' ) t ( X - X ' ) * 

(a) Thus a(9) 
167r\X7 LX 

+ ^ + 2 ( X - X ' ) + ( ' ^ - V ) * 

The probability of scattering into solid angle cfS2 = 2n sin 0 de (see figures for 
Solution 3.8) is given by o(5) dOi/a^., where a^ = total Compton cross section. 
Since 

file:///100ergsg'
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Figure for Solution 3.8. 

X' = l+X-cos0,dK' = sin 0 de 

da da dX'de . ^ 1 

and 

a(X') = 2na{e) 

so that 

(«') ''(^>2'^{rlf(Y)1r^2(^-^V(X-xT]} 

C H A P T E R 4 

4.1 (n'J2) = cos e, where 0 is the angle between the planes containing dA and dS. When 
0 < 7r/2, cos 0 > 0 and the leakage through dS along J2 is also outward (toward n) 
through dS. When 7r/2 < 0 < rr, the leakage along S2 through dS is opposite in 
direction to n, but then cos 0 < 0. Thus the sign of (n*£2) properly is positive when 
the leakage through dS is outward and negative when it is inward. 

4.2 We use the Compton wavelengtht X= l /£ , which implies dE = —X* dX, and first 
prove two lemmas: 
Lemma 1: /(X) = /(£) where I(X) = X<i>(X) and /(£) = £<!>(£). 

Proof: Between two values of wavelength, Xa>X{,, conservation of particles 
demands that 

^^'i>(X)dX= JEi^^^ ^(E)dE 

t if £ = hvl\ is used, the results will differ only by the constant hv. 
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(The limits are reversed since X increases as £ decreases.) Thus 

The relation must hold for all X̂  and X(,; the integrands must be equal, and 

*(X) = -h *(E); thus X <I>(X) = £ * (£ ) 

Lemma 2: X* Sj(X')p(X'̂ X,S2'-*S2) 4>(X') = 2^(£')p(£'^JS,n'-»-n)$(£') 

Using conservation of particles scattering from £ (X) into the energy interval 
[EhjEa) where E^ > £ b , the following must hold (where £ = 1/X ): 

I^=Eb £,(£') p(£'^£,n'->SJ) *(£') dE = /i^x, 2,(X') p(X'->X,n'^n) <|.(X') tA 

X,'̂  S,(£') p(£'^E,S2'^n) 4.(£')^ dX = Sx^ S,(X') p(X'->X,n'^n) <I>(X') cfX 

S^^ 2,(£'j p(£'-*£,n'->n) *(£') ( ^ ) dx = /xj' s,(x') p(x'^x,si'-+n) *(x') dx 

Again the integrands must be equal. Thus 

s^(£') p(£'-+£,n'-+n) *(£') = X* 2j(x')p(x'->x,n'-+n) *(x') 

Now, multiplying the Boltzmann equation (Eq. 4.2-8) by E, we obtain 

V • n /(£) + 2((£) /(£)= 4 ' !e=E 2j(£') p(£'->£,n'->n) *(£') £ ds' dn'+£ s(£) 

Making the change of variable to X and using the two lemmas, we obtain 

V • n/(X)+SKX)/(X)= /n ' /v=x x*2;,(x')p(x'^x,n'-^n) *(x') 

X 7^c/X'£fS2'+£S(£) 
A dA 

Now.recalUng X'*(X') =I{X'},dE'IdX' = - (X')'* ,and formally defining S(X) = £ S(£), 
we obtain 

V • n /(X) + 2t(X)/(X)=la' So 2;s(x')p(x'^x,n'-»n) /(x') | ; ax' dn' + s(X) 
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4.3 The slab geometry is shown in the figure for solution 4.3. 

Solution 4.3, geometry. 

We first note that because of the azimuthal symmetry d^/dy = 94>/82 = 0 and 
i"S2= cos 0. Thus 

V -n <i>(r,n) = n - v * = n- fe i) = n-i 1^ = cos e ^ ^ 
\ox I Ox ox 

We define Sj p ( n "+0) = £j(SZ,S2 ); the balance equation becomes 

cos 0 ^-^^^ + 2 / *(r,Sl) = / „ ' 2^(12,12') * ( r ,n ' ) ciS2' + S(r,n) 

The differential flux density in the preceding equation has units of particles 
cm* sec'' steradian''. Let \i = cos 0,d\i - —sin 0 dd, and cfS2 = -dp d\p. The flux 
density per unit fi is given by 

^(x,p) = 4 % 4>(r,n) dl// = 27r *(r,f2) 

(Note: <I>(r,n) is not a function of \p because of azimuthal symmetry.) Integrating 
each term over \jj, we obtain 

P ^ ^ ^ + ^t *(^.M) = / / " o / n ' 2,(12,0') *(x,S2') cfS2' dijj + S(3c,iu) 

where J^" S(r,f2) di// = S(x,A(). Now integrate the inscattering integral over 0 {dn = 
sine'de'd\l/'=-dp dyjj'}: 

St^r io 2,(n,J2') ^{x.a') (sin 0') d0'd^i/' d4> 

/^=o / /=o 4'=.i2,(n,s2') ^(x.n') dp' cf.//' d.// 
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Substituting this in the balance equation above completes the derivation. Note that 
the inscattering integral cannot be integrated over i/* or i// since, in general, 
S,(S2,S2 ) can be a function of i|/ and yp . However, see the solution to problem 4.4 
for a method of handling this integration. 

4.4 The point source geometry is shown in sketch a for solution 4.4. 

Solution 4.4, sketch a. 

Care must be taken in developing the angle dependencies. The polar angle 6 between 
r and S2 has an implicit dependence on the polar angle 0^ of the radius vector r. 
Sketch b for solution 4.4 illustrates the relations: 

tb 
Solution 4.4, sketch b. 

where a is the unit vector along r and b is the unit vector associated with 0^ in 
spherical coordinates. The sketch shows the change dO, and d0 (both negative 
changes) as |r| goes from r to r + dr. Also observe that a = (w/2) - 0 and that dO^ = 
de.Thus 

Vn*(r.e,;S2;£) = n-V*M,;12;£) = J 2 ( ^ a + i ^ b ) =§7 (O-a)+ 7^(n-« ' ) 



756 SOLUTIONS TO EXERCISES 

But 

(S2*a) = cos 0 

(S2*b) = — cos a = -sin! ^̂  — '^ l'^ —sin 0 

V-S24' = cos 0 | ^ + i ( - sin 0)— = cos 0 ^ + i ^-sin Oj d0 

Let 

p = cos 9, — = —sin e, and apply the chain rule: 
d0 

V.n4. = p-g^ + - ( - s m 0 J 3 j ^ ^ = P g ^ + -s.n*9 
9 $ 
9p 

Since sin^ 9 = 1 - p ' ' , 

The balance equation becomes 

= SE' fa' 25(r,£') p(£'^£,S2'->I2) <I>(r,J2',£') dS2' d£ + 5(r,J2,£) 

As in problem 4.3, the differential flux density $(r,S2,£) is in units of particles 
cm * sec ' MeV ' steradian . Now 

4!o*(^n. 'B) dip = 277 «l>(r,S2,£) = 4>(r,p,£) 

Integrate the balance equation over \p to obtain 

,'.^^.l^'-^.i:,{r,E)^ir,,,E) 

= 4* h Jn' ̂ s{r,E') p{E'^E,n'-^n) $(r,I2'£') dn' dii dE' + S[r,n,E) 

where again 

/o"s(r,n,£) = S(r,p,£) 
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Because of the azimuthal symmetry, the inscattering integral can be written 

JE' X'=-1 ^ *^'''^''^'^ / / .^^(^'^') PiE'-^E,n'-*n) drjj' dip dn' dE' 

We now assume p(£->-£,S2->-S2) is a function only of £ , £, and Po, where Po = 
S>,'-S2=/(p',p). Define 

2,[r,£ -+£,Po(P ,P)| = 27r J^=o J0'=o2s(r,E') p(£'^E.n'^n) diP' dyp 

to obtain 

^ 9 $ ( ^ ^ 1 -p^ 9 * ( ^ , ^̂  ^̂  ^ ^̂^̂  
9r r on 

= G=o/M'=- i 2,[r ,£ '^£,Po(p' ,P)] <l>(r,p',£') dp' d£ ' + S(r,p,£) 

Using the results of problems 4.2 and 4.3, we can immediately write the Boltzmann 
equation as 

P ^ ^ + 2,(X)/(x,p.X) 

= K /o^" 4 ' ^^(^') p(>^'^^.n'^«) J{^.n'A') ^ <̂ n' dyp dx' + s(x,p,x) 

However, for photon scattering by the Compton process (see Sec. 3.2.1), the 
following relation holds: 

x - x ' = i -cos0o = i - n ' - J2 

where 0o is the scattering angle. Thus 

2,(x')p(x'->x,n'-s2) = {^^'^^''^1;''-.'^^^^ = '̂  - '̂ 
* " ^ ^ ' 1^0; 1-COS0O ^ X - X 

and we can write (since cos 0o ~ ^ 'O) 

2,(X')p(X'^X,n'^I2) = 2j(X',J2'-S2) 6(1 + X' - X - « ' • J2) 

The inscattering integral can now be integrated over \p to obtain 

/o /n' 2,(X',n'-S2) 6(1 + X' - X - n'-S2) 7(x,I2',X') A dn' dX' 
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Letting k - 27r2, ( r r j , we obtain 

^ 9^(ga) ^ 2̂  ^̂ ^̂ ^̂ ^̂  ^ S(x,p,X) 6(oc) 

^ f- r 6(1+X' X-S2'.S2) , , ^ ^ , ^ , 
Jo Jn 27r V ' ' / 

The delta function in the source term forces the source to be zero everywhere 
except in the y-z plane at x = 0. 

CHAPTER 5 

5.1 Event space: 
(a) The set {1,2,3,4,5,6}. 
(b) The set of unordered pairs (21 

members) {(1,1); (1,2); (1,3); (1,4); 
(1,5); (1,6); (2,2); (2,3); (2,4); (2,5); 
(2,6); (3,3); (3,4), (3,5); (3,6); (4,4); 
(4,5);(4,6);(5,5);(5,6);(6,6)}. 

(c) The set of ordered pairs (36 
members) {(1,1); (1,2);. . .; (1,6); 
(2,1); ( 2 , 2 ) ; . . . ; (2,6); ( 3 , 1 ) ; . . . ; 
( 3 , 6 ) ; . . . ; (6,6)}. 

(d) The continuous set of all energies 
into which fission neutrons can be 
born. 

(e) The set of all energies from £ 
(energy of the incident photon) 
to £ (energy resulting from 
180° scatter), 

or 
the set of all photon scattering 
angles from 0 to 180 , 

or 
the set of all electron scattering 
angles from 0 to 90 , 

etc. 

Typical event: 
A die landing 3. 
A pair of dice showing (2,4) 
(note that the dice are 
indistinguishable). 

A die landing 4 on the first 
throw and 2 on the second 
throw. 

A neutron emitted from the 
fission process at 1.0 MeV. 

A photon leaving the collision 
point with energy 1.0 MeV, 

a photon scattering through 75 , 

an electron scattered at an 
angle of 30 , 

etc. 

5.2 For 5.1(a): 
(a) The PDF is the point function having a value of \ at 1,2,3,4,5,6 and zero 

elsewhere. 
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1/6 

0 

- f t T t t t 
I I I I I I 
I I I I I • r 

Solution to Exercise 5.2(a). Values of PDF. 

(b) The CDF is the function 

1 

2/3 

1/3 

0 

T 
1 2 3 4 5 6 7 8 

Solution to Exercise 5.2(b). Values of CDF. 

(c) A random-variable function is not necessary to define the PDF. At least an 
ordering of the six events is necessary to plot the CDF. 

For 5.1(b): 
(d) Values of the PDF are listed in the accompanying matrix. It is zero elsewhere. 

2/36 

2/36 

2/36 

2/36 

2/36 

1/36 

2/36 

2/36 

2/36 

2/36 

1/36 

2/36 

2/36 

2/36 

1/36 

2/36 

2/36 

1/36 

2/36 

1/36 

1/36 

1 2 3 4 5 6 

Solution to Exercise 5.2(d). Values of PDF. 
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(e) To obtain the CDF, we must order the possible outcomes. One way to accomplish 
this is to assign integers to the outcomes. Let/((,/) = ife be the function defined in 
the accompanying matrix. 

6 

5 

4 

3 

2 

1 

11 

10 

9 

8 

7 

15 

14 

13 

12 

18 

17 

16 

20 

19 

21 

f(i,i) = k, /=1,2 6 

/• = /, / + /, ...,6 

Solution to Exercise 5.2(e). Values of CDF. 

The CDF then becomes 

5/6 

5/9 

5/18 

1-1 I I I I I I I I I I I I I I I I I I I I I I I 
10 15 20 25 

(f) For the PDF, no; for the CDF, yes. 
For 5.1(c): 
(g)The PDF has a value of %^ for each ordered pair and is zero elsewhere. 



SOLUTIONS TO EXERCISES 761 

(h) The CDF must be constructed as above. It will be a step function increasing %(, 
at each step. 

5.3 (a) Figure 2.1 is not a PDF. (It has values greater than 1). Figure 2.4 is a PDF. Its 
values are in (0,1), and the integral under the curve is 1. (b) Figure 2.1 can be con
verted to a PDF by integrating the curve from 0 to infinity and dividing the plotted 
values by the value of the integral. 

5.4 See graph for solution 5.4. 

Solution to Exercise 5.4. 

5.5 (a) / J Csmxdx = \ implies C = 1/2. Thus/(»r) = (sin x)l2 and 0 < f{x) < 1. 
(b) CDF = /g (sin y)l2 dy = [\ - cos x)l2. 
(c) See graph for solution 5.5. 
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0 £^ jr. 37r 
4 2 4 

Solution to Exercise 5.5(c). 

(d) With 0, 0.1, 0 . 2 , . . .,0.9, 1.0, the following choices of 3C are obtained: 

f i 
,-
o 
II 
c 

1 

» < 
CM 

o 
II 
c 

) 4 
CT 
O 
II 
c 

» 4 
* 
o 
II 
c 

1 

» i 
lO 

o 
II 
c 

» i 
(O 

o 
II 
c 

» 4 
r<. 
o 
II 
c 

1 

» < 
00 

o 

c 

» 4 
01 

o 
II 
c 

» 4 
o 
,_ 
II 
c 

1 

1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

X (units of n) 

Solution to Exercise 5.5(d). 

(e) They are distributed as the PDF. (Notice the bunching toward x = 7r/2). 
(f) Probably so, if enough random samples, n, were chosen with equal probability 

from (0,1). (But no guarantees for a finite number of choices—you might have a 
run of bad luck!) 

(g) Choosing the samples equally distributed in (0,1) forced the values of x to be 
distributed exactly as the PDF. Thus we forced more choices to be made in the 
important region around 7r/2 where the PDF has its maximum value. This was, in 
fact, systematic sampling (See Sec. 5.3.4). The samples were chosen from the 
biased distribution 

f{x)=f{x)h{x} 

where h(x) = 2/sin x and were adjusted by \lh{x). 
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5.6 (a) The graph is not a PDF. The values are not constrained within (0,1). 
(b) The following table for 5.6(b) was the result of 300 trials: 

SOLUTION TO EXERCISE 5.6(b)—AUTHOR'S RESULTS 

No. of 
rolls 

100 
200 
300 
Expected 

distribution 

Select* 

12 
20 
33 

A 

;d % 

20% 
16% 
18% 

17% 

B 

Selected 

23 
44 
64 

% 

39% 
36% 
35% 

33% 

C 

Selected 

24 
58 
86 

% 

41% 
48% 
47% 

50% 

No. of 
rejections 

41 
78 

117 

That the distribution is not closer to the expected one is revealed in the smaller 
table for the distribution of results of tossing the first die (to select the letter to 
be tested): 

SOLUTION TO EXERCISE 5.6(b)—ANALYSIS 
OF AUTHORS 

No. of choices 
Letter in 300 rolls 

A 
B 
C 

108 
106 

86 

Perhaps it can be explained by the fact that the authors randomly selected the 
two dice from their well-used set of "liar's dice." Of course, a better explanation 
is that these results are well within the accuracy to be expected for 300 trials. 

CHAPTER 6 

6.1 Use F ^ . 6.1, and interpolate to obtain curves at 85 and 95 cm. Use the 120-cm curve 
directly. 
(a) The spectrum at 1 is given by the 95-cm curve X 2 X 1 0 ' ° . The spectrum at 2 is 

the sum of the 85-cm and the 120-cm spectra X 1 X 1 0 ' ° . Observe that at 
point 2 the contribution of source A is inconsequential. 
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SOLUTION TO EXERCISE 6.1(a) 

E, t MeV 

0.1 1 2 3 4 5 

r = 85 47rr*No 4 ( -5 ) 1.5(-5) 9 ( -6 ) 6( -6) 4 ( -6 ) 5( -6) 
cm No 4.4(-10) 1.7(-10) 9 . 9 ( - l l ) 6 . 6 ( - l l ) 4 . 4 ( - l l ) 5 . 5 ( - l l ) 

r = 95 477r*No 4 ( -6 ) 1.5(-6) l . l ( - 6 ) 9 ( -7 ) 6 ( -7 ) 8( -7) 
cm No 3 . 3 ( - l l ) 1.2(-11) 9.1(-12) 7.4(-12) 4.9(-12) 6.6(-12) 

r = 1 2 0 47rr*No l ( - 6 ) 3.5(-7) 2.2(-7) 2.0(-7) 1.4(-7) 1.6(-7) 
cm No 5.5(-12) 1.9(-12) 1.2(-12) 1.1(-12) 7.7(13) 8.8(-13) 

Spectrum at I t 0.66 0.24 0.18 0.15 0.098 0.13 
Spectrum at 2$ 4.4 1.7 0.99 0.66 0.44 0.55 

£, t MeV 

6 7 8 9 10 11 

5(-6) 4(l6) 3M) 2(l6) \{^) 4 ( -7 ) 
5 . 5 ( - l l ) 4 . 4 ( - l l ) 3 . 3 ( - l l ) 2 . 2 ( - l l ) l . l ( - l l ) 4.4(-12) 
9( -7) 8( -7) 6( -7) 3( -7) 1.3(-7) 
7.4(-12) 6.6(-12) 4.9(-12) 2.5(-12) 1.1 (-12) 
1.8(-7) 1.5(-7) 
9 .9( - l3 ) 8.3(-13) 
0.15 0.13 0.098 0.05 0.02 
0.55 0.44 0.33 0.22 0.11 0.04 

t 4 ( - 5 ) = 4 x 10"^etc . 
$Neutron cm'* sec ' MeV ' . 

(b) Plot the ener^;y-flux-density spectra (£No) and numerically integrate: 

SOLUTION TO EXERCISE 6.1(b) 

E, MeV 

r = 8 5 
cm 

r = 95 
cm 

r = 1 2 0 
cm 

47rr*No 
No 
4nr^No 
No 
47rr*No 
No 

Spectrum at 1$ 
Spectrum at 2 | 

0.1 1 2 3 4 5 6 7 8 9 10 11 

At 1: 
£No 0.07 0.24 0.36 0.45 0.39 0.65 0.90 0.91 0.78 0.45 0.20 

At 2: 
£No 0.44 1.7 2.0 2.0 1.8 2.8 3.3 3.1 2.6 2.0 1.1 0.44 

Using AE = 0.4 MeV for numerical integration: 

/ ENo (point 1) d£ = 5.3 MeV cm"* sec" 

•11 
/ p EJVo (point 2) dE ^ 23 MeV cm * sec"' 
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Solution to Exercise 6.1(b). Graphs of energy-flux density at points 1 and 2. 

(c) Use Fig. 6.20: 
At point 1 

*tn = (2X 1 0 ' " ) (2.5 X 10 ' ' " ) = 5 neutrons cm'* sec"' 

At point 2 

*tn = (10 ' ° ) (1.6 X 10"^) + (10' ••) (2.2 X 10" ' ' ) = 16 neutrons cm'* sec" 
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6.2 We first observe that 1 mrad/hr = 2.78 X 10 ' ergs g ' sec ' . Next we compute the 
flux density incident (essentially normally) to the slab. 

Solution to Exercise 6.2, geometry. 

7.63 cm = radius of beam tube 

d^= —2 cos 0\r^ + 152'' = p',coid 
A-np^ p 

^^ / • 7 . 6 3 ( l 0 ' ^ W d r l 5 2 _ rl52.19 152(10'^) tip 

Jr=0 2p^ p Jp=152 2 p^ 

( I \ 1 1 5 2 . 1 9 

- p ) l i S 2 

= 6.2 X 10* neutrons cm ^ sec * at point B 

To compute the attenuation, we use the curves of Appendix M and the fission 
spectrum given in Fig. 2.18 to construct Table A. The choices of B were dictated by 
the curves of Appendix M. The spectrum N Q / A E was obtained from Fig. 2.18 multi
plied by AE, and the sum over all energy intervals was verified as 1.00. 

SOLUTION TO EXERaSE 6.2—CONCRETE ATTENUATION DATA 

^min - ^ m w 
MeV 

E,M<V 
A£,MeV 
N„(B)/A£,t 

neutroni/ 
MeV 

N(fi)AE, 
neutroni 

!:)'(£, 60 cm). 

(«»,,-'«:-•)/ 
(neutron 
cm-»«c-") 

D'(£,90cm), 
(eipi-'KC-")/ 
(neutron 
cm"" lec"') 

O'(£,120ciii), 
(ergig-"«c-')/ 
neutron 
cra"'iec"') 

13-18 
14 
5.0 

3(-5)t 

1.5M) 

8(-9) 

7(-10) 

4 .3(- l l ) 

11-13 
12 
2.0 

2(-4) 

• • ( - • ) 

8(-9) 

6.5(-10) 

4.5(- l l ) 

9-11 
10 
2.0 

8(-4) 

1.6(-3) 

l ( -8) 

9(-10) 

7.0(- l l ) 

7-9 
8 
2.0 

4(-3) 

8(-3) 

9.5(-9) 

8.5(-10) 

6.5(-l l) 

5-7 
6 
2.0 

2(-2) 

4(-2) 

9(-9) 

6.6(-10) 

4.1{-11) 

3.5-5 
4 
1.5 

8(-2) 

1.2(-1) 

3.2(-«) 

1.6{-I0) 

•.5{-12) 

2.5-3.5 
3 
1.0 

1.5(-1) 

1.5(-1) 

4(-9) 

1.5(-10) 

6.5(-12) 

1.6-2.5 
2 
0.9 

2( - l ) 

1.8(-1) 

6(-10) 

9(-12) 

1.3(-13) 

1.0-1.6 
1.3 
0.6 

3.1 (-1) 

1.9(-1) 

1.7(-11) 

6(-t4) 

2(-16) 

0-1.0 
0.7 
1.0 

3.1(-1) 

3.1(-1) 

1.7(-12) 

1.3(-I5) 

1.2(-18) 

tSum over dl cneqiet > 1.00. 
t 3 { - 5 ) - 3 x l 0 " * . 
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The three normalized dose spectra were obtained from Appendix M; we extrapolated 
where necessary. The objective is to get a curve of total dose rate vs. slab thickness for 
the whole spectrum. We now form the product N(E) AE ^ D (E,x) = D{E,x), 
using <I> = 6.2(8) neutrons cm sec , and construct Table B. 

SOLUTION TO EXERCISE 6.2—CONCRETE ATTENUATION DATA 

E, N{E) AE, D(JS,60), D{E,90), D(£,120), 
MeV neutrons ergs g sec ergs g sec ergs g sec 

14 
12 
10 
8 
6 
4 
3 
2 
1.3 
0.7 
Sum 

1.5(-4)t 
4 ( -4 ) 
1.6(-3) 
8 ( -3 ) 
4 ( -2 ) 
1.2(-1) 
1.5(-1) 
1.8(-1) 
1.9(-1) 
3.1(-1) 
1.00 

7.5(-4) 
2.0(-3) 
1.0(-2) 
4.7(-2) 
2 .2 ( - l ) 
2 .4 ( - l ) 
3 .8 ( - l ) 
7.0(-2) 
2,0(-3) 
3.3(-4) 
0.97 = D(60) 

7.0(-5) 
1.7 (-4) 
0.9(-3) 
4.2(_3) 
1.6(-2) 
7.5(-3) 
1.5(-2) 
1.0(-3) 
7.0(-6) 
2.5(-7) 
4.5(-2) = D(90) 

3.8(-6) 
1.6(-5) 
0.7(-4) 
3.2(-4) 
1.0(-3) 
6.5(-4) 
6.0(-4) 
1.5(-5) 
2.5(-8) 
2.2(-10) 
2.7(-3) = D(120) 

t l . 5 ( - 4 ) = 1 . 5 x 10"". 

Plotting D(60), D(90), and D(120) on semilog paper, we find, as expected (the 
curves in Appendix M sures t it), that they fall on a straight line, and 

D ( x ) S 290 e"*> •"»*'' 

Thus 

2.78 X 10"' ergs g"' sec"' S 290 e"**"'*'' 

290 
0.096X S In ^ _ ^ ^ _ - 4 = In 104 -I- In 10* = 13.9 

Z./o X 10 

13.9 
' ^ = 0 : 0 9 - ^ ^ ^ ' ^ ' " 

6.3 We use Fig. 4.11 and the thickness computed in Problem 6.2 (x = 145 cm). 
Extrapolating the 152-cm curve of Fig. 4 ,11, we find that the thermal-flux density is 
about 5 x 1 0 per incident unit flux density. Thus 

4)th = (6.2X 10*) X (5X 10"') 

= 3.1 X 10^ neutrons cm"* sec * 
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6.4 The source strength of the disk is 5000 X 3.7 X l O ' " X 2 = 3.7 X l O ' " photons/sec 

If we assume that there is no self-shielding, the equivalent surface source is 

3 7 X 10*" 
r-—: T = 1.18 X lO '* photons cm"* sec emitted isotropically 
3.14 X 10* ^ f ' 

We plot Berger's coefficients vs. energy (Appendix F) using the 0 to 7 mean-free-path 
data (75 cm = 4.7 mean free paths) to find C = 0.96 and D = 0.082. 

J 

0 0.5 1.0 2.0 
E, MeV 

Solution to Exercise 6.4. Interpolation of Berger's coefficients for water. 

/? = 10 cm 
Geometry of Solution to Exercise 6.4. 
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DR= r '"^ , -*" ' ( l+CMPeHM 
J r=0 2p ' 

where S^ = 1.18 X lO' * photons cm"* sec"'. 
Note that the first parentheses enclose the buildup factor and that the coefficient of 
the first term will be the dose rate without buildup. 

^ ^ = ^ { £ £ ^ , p . C . / ; e - " - ' < i p } [ b = (cf*.R*)H, 

Let X = jup; dp = dxifl; p = x/n, then 

DR = ~ 

Kl^aE 

\r^dx.cr\-''-'''A 
yJnd X j^ J 

Hd = 0.064(75) = 4.80; fib = n{(f + R* )^ = 0.064(5625 + 100)^ = 4.84 

/ id ( l -D) = 4.80(0.918) = 4.406;/i(ci* + R*)^ (1 - D) = 4.84(0.918) = 4.443 

^ ^ ^ 1.18X10'*(0.03)(1.25) L_43 ^ ^0-3 _ j _ 3 ^ ^ ^^-3 _̂  0.96 
2 [ 0.918 

X (0.0122 

2.21 X 1 0 ' ° [8.0 X 10"' + 1.05(5 X 10"")] 

= 2.21 X 1 0 ' " (8X 10"' +5 .2SX 1 0 " ) 

(a) DR = 2.21 X 10"* (6.05 X 10'") = 1.34 X l O ' MeV g ' sec"' 
(b) The buildup factor is 6.05/0.8 = 7.6. 

0.0117) 

tValues of £, are from Appendix G. 
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6.5 Since the concrete shield is hydrogenous, we can use neutron removal theory. From 
Table 4.3 the removal cross section for lead is a^j = 3.5 barns/atom. Thus 

_0 .6X10^*" (11 .3 ) -^4 
207 "^-^ ^ ^" 

= 0.115 cm"' 

The added factor of fast-neutron removal is simply 

g-SRt ^ g - O . l l 5(5) =^ -0 .575 = 0 563 

The fast-neutron dose rate is reduced by a factor of 0.563. 

6.6 Since the average prompt fission photon energy is in the MeV region, an 
approximate, conservative answer can be obtained by using the minimum attenua
tion coefficient, which occurs at about 3.5 MeV for lead. From Fig. 3.8, a = 15 
barns/atom. Thus 

0.6 X 10*" (11.3) -, 
M = - ^ ^ (15) = 0.49 cm ' 

^-M'= ^-0.49(5) = ^ - 2 . 5 = 0 082 

The gamma dose rate is reduced by a factor of 0.082. To obtain a more accurate 
result, we would follow a procedure for the gamma-ray spectrum similar to the 
treatment of the neutron spectrum in the solution to Problem 6.2. 
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Interaction loss term in transport equation, 
127 

Interaction probability, 29 
See also Cross sections 

Interaction rates, 63 
Interactions of radiation, 63—117 
Intermediate neutrons, energy of, 85 
International Atomic Energy Agency 

(IAEA), 8 
International Commission on Radiation 

Units and Measurements (ICRU), 27, 33 , 
9 5 , 9 9 , 1 0 3 - 1 0 4 , 1 0 6 , 112 

International Commission on Radiological 
Protection (ICRP), 1 0 7 - 1 0 8 

Invariant imbedding, 7, 163—168 
advantages and disadvantages, 167—168 
apphcation, 167 

Ionization chambers 
gamma ray 475 
neutron, 473 

Ionizing radiation, energy imparted by, 
9 6 - 9 8 

Iron, 449 
neutron cross section, 494 
spectra, 492 

Isotropic distributions, 43—45, 47 , 60 
Isotropic point sources, 44 , 60—61 

Kerma, 9 9 - 1 0 3 
Kerma rate, 26, 100 

factors for gamma rays, 102—103 
factors for neutrons, 101—102 

Kernel technique, 1 6 8 - 1 8 8 
gamma rays, 169—177 
neutrons, 1 7 8 - 1 8 8 
plane disk source, 172—175 
rectangular source, 176—177 

KFK data files, 492 
KJein-Nishina formula, 72 , 341 
Knolls Atomic Power Laboratory 

(KAPL), 2, 5 
Kronecker delta function, 624 

Laplacian operator, 620 
Last flight estimate, 244—247 
Law of large numbers, 216 

Lead, 448 , 449 
m Fermi reactor, 541 
measurements, 478—482 
in Savannah reactor, 5 8 1 , 587 

Legendre polynomial, 360—362, 6 2 2 - 6 2 3 

associated, 623—625 
in discrete ordinates, 139—144 
in moments method, 151 — 152, 156 
m spherical harmonics, 132 

Lethargy, 33 
Lid Tank Shielding Facility, 3, 1 7 8 - 1 8 0 , 

4 9 2 - 4 9 3 
LIDO reactor, 4 
LINAC (linear accelerator), 494 
Line source, 40 
Linear attenuation coefficient, 83 , 115 
Linear energy transfer (LET), 105 
Lithium hydride, 4 5 4 - 4 5 6 , 458 , 460 , 462 

measurements, 478—482 
in SNAP-lOA shield, 596 

L 0 5 code, 378 
Lockheed, 5 
Los Alamos Scientific Laboratory 

(LASL), 6 - 7 

MAC 
difference from Spinney method, 

1 9 5 - 1 9 6 
removal—diffusion method, 194—196 

Macroscopic cross sections {see Cross 
sections, macroscopic) 

Macroscopic transfer coefficient, 
multigroup, 140 

Magic nuclei, 91 
Magnetite concrete 

in Agesta reactor, 566 
in Fermi reactor, 544 

Manhattan Project, 1 
Masonite, 2 
Mass attenuation coefficients, 66, 8 3 , 115 
Massachusetts Institute of Technology, 2 
Materials Testing Reactor (MTR), 4 
Mathematical experiment, 20 
Maximum absorbed dose, 108—111 
Maximum dose equivalent, 108—111 
Maximum permissible dose (MPD), 112 
Maxwell—Boltzmann distribution of 

thermal neutrons, 85 
Mean value, 2 1 2 - 2 1 3 
Mean-value theorem, 137—138 
Measured data applications, 274—283 

gamma-ray data, 276 , 2 8 0 - 2 8 1 
neutron data, 2 7 5 - 2 7 9 

Microscopic cross sections {see Cross 
sections, microscopic) 
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Mock up tests, 472, 478 
MODRIC, 300 
Moments method, 5 6,149—159 

application, 265—269 
definition of moments, 149 
in design cases, 588, 598 
energy degradation in scattering, 

159 
Fermi age in, 149 
gamma ray differential data, 268—269, 

692-695 
accuracy, 268 
buildup factors, 269 
finite media, 268 
lead, 696-699 
spectra, 269 
water, 692-695 

neutron differential energy spectra, 
265-268, 687-691 

beryllium, 687 
carbon, 588 
CH, 689 
CHj, 690 
finite media, 267 268 
Hj ,691 
HjO, 691 
sample problem, 268 
spectral hardening with depth, 266 
surface source, 268 

neutron transport, 158 159 
polynomial expansion of flux densities, 

155-157 
sequence of moments calculation, 153 
undetermined parameters to construct 

the flux densities, 158 
Monte Carlo codes, debugging of, 255 
Monte Carlo data applications, 270—274 

comparison with moments method, 270 
complexity of, 270 
neutron attenuation, in concrete, 

702-716 
in soil, polyethylene, and water, 

712-716 
principle of reciprocity, 270—271 
sample results, 272-273 

Monte Carlo methods, 6, 207-259 
biasing, 216, 223-225, 250 
collision parameters, 234—242 
cross-section preparation, 235 
demonstration program, 251—254, 

674-686 
evaluation of integrals by, 216—218 
exponential transform, 229—232 
first flight estimate, 244-247 
importance function, 217-218, 230 

last flight estimate, 244-247 
neutron elastic scattering, 236—238 
neutron inelastic scattering, 238—240 
particle absorptions, 240—241 
particle scoring, 242—247 
path-length sampling, 225—234 
probability distribution function, 

210-215,258 
programming suggestions, 254—257 
random sampling, 209—215 
rejection technique, 214-216, 258 
splitting, 234 
statistical estimates, 243—244 
statistical variance, 247—251 
transport equation, 208, 216-217 

MORSE code, 6, 256 
Most probable value, 24 
Multicollision dose, 112 
Multigroup calculations for discrete 

ordinates, 140 
Multigroup cross section in Monte 

Carlo, 256-257 

Nal(Tl) gamma ray spectrometer, 475—503 
calibration, 505-506 

Narrow beam absorption coefficients, 
8 2 - 8 3 

National Bureau of Standards (NBS), 5—6 
National Neutron Cross Section Center, 65 
Nautilus, U S S , 5 
Navy nuclear powered submarine 

program, 2 5 
Negative flux fix up in discrete 

ordinates, 145 
Net current, 35 
Net current density, 60 
Net leakage term in transport 

equation 125 127 
Neutrinos, 12 
Neutron attenuation {see specific 

transport method, e g , Moments method) 
Neutron binding energies, 15, 91, 93, 97 
Neutron conversion factors 

fluence to kerma, 611—613 
reactions in neutron kerma calculations, 

611-615 
Neutron cross section {see Cross sections, 

neutron) 

Neutron detectors 
active, 472-474 
BF3 counters, 473, 515, 554, 579, 591 
emulsion, 475 
fission counters, 473, 553 563, 598 
fission foils, 553 
foils, 474, 563, 573 
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'He filled, 473 
Hurst fast neutron dosimeter, 472, 511 
'L iF , 486 
long counter, 591 
Ne 211 organic scintillators, 494, 497 
Ne 213,490-491,501 
Ne 908 lithium gas scintillator 494 
passive, 472 475 
proportional counter, 474 
proton recoil counters, 554 
solid state, 474 
sulfur pellets, 502 
track length, 474 

Neutron doses in phantoms, 109—110 
Neutron elastic scattering 

average angle, 428—429 
average energy loss in, 429 
in Monte Carlo calculations, 236-238 

Neutron emission, 18 
Neutron heating, 427 -̂ 429 
Neutron inelastic scattering, 15 16 

in Monte Carlo, 238-240 
Neutron kerma factors, 101-102 
Neutron radiative capture, 91—93, 98 
Neutron reactions, 83—94 

contrasted with gamma ray reactions 
83-84 

nonelastic events, 90—91 
Neutron scattering 

capture, 86-87 
diffraction, 86 
elastic, 84 88 
inelastic, 84, 88-91 
potential, 86 
resonance, 86—87 

Neutron sources, 17—19 
polonium—beryllium, 18 

Neutron spectra from fission, 54—57 
average energy, 56 
empirical expression, 54 55 
" ' U , " ' U , a n d " ' P u , 5 6 

Neutron spectrometer, 486—491 
Neutrons 

absorption of, 84 
activation, 18 
binding energy of, 91, 93,97 
fission, 17 
intermediate, energy of, 85 
kerma rate factors for, 101 102 
thermal, energy of, 85 

Neutrons per fission, 56 
Nevada Test Site (NTS), 509 
NIOBE, 133, 300, 486-490, 502-504, 

548 
Nonelastic neutron cross section, 93 

Nonelastic reactions, 93 
Normalization 

of distribution function 211 212 
of functions, 21 
of source strength, 46 47 

NRN removal—diffusion method, 
196-198,567 

Nuclear Aerospace Research Facility 
2 - 5 , 478 

Nuclear Data Sheets, 94 
Nuclear Development Associates, Inc , 5 6 
Nuclear emulsions, 475 
Nuclear powered aircraft, 2—5 
Nuclear-powered submarine, 2—5 
Nuclear propulsion, 11 
Numerical integration techniques 289 290 

Oak Ridg3 National Laboratory (ORNL), 
178,256, 319,482,492,509, 514,591 

early shielding program 2—9 
X 10 reactor, 1-2 

Oak Ridge Tower Shielding Facility, 4 
05R system, 6, 256, 492 
06R, 256 
IDF code, 494-496 
Optimization, 462—465 

conditions for a minimum, 463 
gradient nonlinear programming, 465 
linear perturbation theory, 464—465 
of shadow shields, 465 
shield synthesis, 463 465 
with discrete ordinates transport, 465 

Outside Test Tank (OTT), 477-479 

P„ approximation, 131 
Pair production, 7 4 - 8 1 , 104 
Paraffinized wood, 1 
Particle absorptions in Monte Carlo 

methods, 240 241 
Particle death, 208 
Particle density, 26-27 

differential, 28 
Particle history, 0 
Particle reaction neutrons, energy 

distribution, 18 
Particle scoring in Monte Carlo 

methods, 242-247 
Pathfinder Atomic Power Plant, 

574-579 
calculation, 578 
measurements, 579 
plant layout, 576 

Path length 
biasing, 229 
multiregion geometry, 226—228 
sampling of, 225-234 
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single infinite region, 226—228 
track length 225-234 

Phantom cylindrical, 616 
Phantoms for dose calculations, 95, 

109-111 
gamma ray doses in. 111 
neutron doses in 109—110 

Phase space 27 30, 124 
in diffusion theory 161 
invariant imbedding, 163—164 

Photoelectric effect, 68 -70 , 80 104 
Photon attenuation coefficient, 80—83 
Photon interactions 68—73 

See also Compton effect. Pair production, 

Photoelectric effect 
relative importance, 78, 81—83 

Photoneutrons, 18 
threshold photon energies, 18 

Photons 
coherent scattering of, 80—81, 115 

Physical dose, 94-95 
Plane source, 44 

angular distribution, 45 
isotropic, 44 

Plutonium—beryllium neutron source, 
18 

Point isotropic source, 626 
Point kernel 

Albert-Welton, 178, 187-188, 286-287 
299 

applications, 6 -7 , 40, 288-298, 550, 
578,588 

See also Kernel technique 
first collision approximation, 294—296 
geometric transformations, 291—294 
last collision approximation for cylinder, 

297-298 
last collision approximation for slab, 

289, 296-298 
from Monte Carlo calculations, 290—291 
shield heating, 421-425 

Point source, 39 
Polar angle, 42 

Polonium—berylhum neutron source, 18 
Polyethylene, 453-454, 458, 460 

in Savannah reactor, 581, 587 
Portholes {see Ducts) 
Positron emission, 16 
Pratt and Whitney, 5 
Pressurized water reactor, 579—595 
Probability density function (PDF), 

210-215,258 
Probabihty of an event, 207-209, 258 

distribution, 210 
Proof testing of shield, 526—527 

Pseudorandom numbers, 215, 663 
Purdue University, 519 

QAD, 178 
Quadrature schemes in discrete ordinates, 

146 
Quality factor (QF), 106-108, 110 

Rad, 97, 104 
Radiation 

annihilation, 16 
collided, 119-120 
fluorescent, 68 
interactions of, 63—117 
responses to, 94—112 
scattered, 119-120 
uncoUided, 119-123,292 
unscattered, 119—123 

Radiation detectors 
See also Gamma ray detectors. Neutron 

detectors 
interpretations of output, 476—477 
in a mixed field, 476 
types of, 471-498 

Radiation heating {see Shield heating) 
Radiation heating criteria, 533 
Radiation intensity, 26—39 
Radiation production, 11—19 

See also Gamma ray sources. Neutron 
sources 

Radiation Shielding Information 
Center (RSIC), 8, 477, 482 

Radiation streaming in conceptual 
design, 523 

Radiation surveys, 527 
Radiation transport, 119—201 

geometric vs material attenuation, 
120-123 

slab geometry, 121-122 
Rand Corporation, 6 
Random number, 214-215, 226, 233-235, 

237, 258 
Random number generators, 215, 663—673 

middle digit square, 666 
mixed congruential, 666—667 
multiphcative congruential, 667—668 
recursion equations, 665—668 
tests of, 668-671 

Random number sequences, 664—665, 
670-671 

independence in, 664 

Random numbers 
pathological sequence of, 665, 671—672 

Random sampling, 209—215 
for cylindrical source, 220 
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for disk source, 219 
from energy distribution, 218—219 
initial direction of source particle, 

222 
cosine source, 222 
isotropic source, 221 

of spatial position, 219 
for spherical shell source, 220 
of track length, 225-234 

Random variable, 210, 258 
Random walk, 208-209 
RASH E removal—diffusion method, 

192-194,562,567 
Ray tracing, 550, 596 
Rayleigh scattering, 80 
RBE {see Relative biological effectiveness) 
Reaction product gamma rays, 16 
Reaction rates, 66-67 , 83, 115 
Reactors {see specific reactors and reactor 

types) 
Receiver concept, 11, 26 
Reflection, 46 
Rejection technique, 214-216, 258 
Relative biological effectiveness (RBE), 94, 

105 
dose, 105-108 

Rem (roentgen equivalent man), 106 
Removal cross section, 3, 178—188, 368, 

492 
additive property, 181 
dependence on geometry, 179 
for hydrogen deficient shields, 181 — 187 
macroscopic, 179, 183 
microscopic, 179-180, 186 
minimum thickness of hydrogen, 180 
relation to transport cross section, 181 

Removal—diffusion methods, 6, 188—201, 
560-562, 567 

ATTOW, 198-201 
differences m current methods, 

199-201 
MAC, 194-196, 199-201 
NRN, 196,201 
RASH E, 192-194, 199-201 
SABINE, 198-201 
Spinney method, 190-192 

Removal flux, 194, 196 
Removal term of discrete ordinates 

calculation, 140—142 
Removal theory, 548, 578, 588, 596 

difference between slabs and 
homogeneous mixtures, 287—288 

kernel application, 286—288 
RENUPAK, 178, 300 
Resilon in Dounreay reactor, 559—560 

Resonance region energy, 85 
Responses to radiation, 94—112 
Roentgen, 104 
Roentgen equivalent man (Rem), 106 
Russian roulette technique, 234 

Sfj method (see Discrete ordinates 
Sfi method) 

SABINE removal—diffusion method, 
198 

Sample space, 258 
Sampling, systematic, 250 
Savannah N S , 579-595 

attenuation calculations, 587—591 
lead in, 581-587 
main shielding, 580 
maintenance shields, 581—583 
measurements, 591—595 
polyethylene in, 453-454, 458, 460 
secondary gamma flux, 589 
shield design criteria, 583—586 

Scalar current, 36 
Scattered radiation, 119—120 
Secondary gamma rays, 84, 91 

in air, 5 
in dose considerations, 99 
graphs for semi infinite shield, 722—725 
graphs for slab shields, 718- 721 
kernel technique, 301—309 
measurements, 481 
semi infinite shield, 308, 722-725 
slab shield, 304, 718 721 
sources of, 14—15 

Serpentine concrete m Fermi reactor, 541 
Shadow shield in SNAP lOA, 598 

Shield attenuation calculations, 261—309 
interpolation and curve fitting, 265 
types of distributions, 264 
use of equilibrium distributions, 265 
use of parametric data, 264—283 
use of unit source, 264 

Shield design, 519-606 
Iterations, 519-527 

principles of, 519-520 

Shield heating, 3, 419-430 
buildup factor, 421-425 
by charged particles, 429—430 
in conceptual design, 523 
energy deposition methods, 419—430 
by gamma rays, 420—429 
by neutrons, 427-429 
point kernel, 421—425 
ratio of neutron to gamma ray 

heating, 427-429 
in SNAP lOA, 598 
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Shield material experiments, 477—500 
Shield materials, 443-460 

See also specific substance 
capture ^amma ray dose, 456, 460 
comparison of gamma ray attenuation, 

456-457 
comparison of neutron attenuation, 456, 

458 
for Lenin, 452 
for mobile reactors, 450—462 
for Savannah N S , 452 
selection of, 445-447, 521-522 
shipping and storage, 452—453 
for stationary reactor, 447—450 
testing, 526 
thermal problems, 452 
used m test reactors, 448 

Ship propulsion, 579—595 
attenuation calculation, 587—591 
main shielding, 580 
maintenance shields, 581—583 
measurements, 591—595 
secondary gamma flux, 589 

Sievert's integral, 292 
Simon—Clifford technique, 578 

method for cylindrical ducts, 385—388 
Single collision dose {see First collision dose) 
Slab attenuation, 121-123 
Slab penetration measurements, 477—483 
SNAPlOA 

flight test, 595-602 
radiation limits, 596 
shadow shield in, 598 
shield analysis, 595-598 
shield heating, 598 
test results, 595-602 

Sohd angle, 24, 60 
differential, 25 

Solid state detectors, 474 
Solid state gamma ray spectrometers, 475 
Source analysis, 261—263 

discrete ordinate S„ 263 
fission gamma rays, 262 
fission product gamma rays, 262 
list of components, 262 
low energy neutrons, 262 
Monte Carlo solution, 263 
reactor codes vs shielding codes, 263 

Source term 
in discrete ordinates, 143 
in transport equation, 127 

Space Nuclear Auxiliary Power, 595 
See aiso SNAP lOA 

Space power, 595-602 
See also SNAP lOA 

Spatial distribution, 39—42 
line, 39-40 
point, 39 -40 
surface, 39 -41 
volume, 39, 42 -43 

Spectra in water 
gamma rays, 506—507 
neutrons, 498 

Spectrum, 49 
See also Energy distributions 

Spherical harmonic functions, 625 
Spherical harmonics method, 7, 129—132 

accuracy hmitations, 131—132 
truncation number, 131 

Spherical shell attenuation, 123 
Spinney method, 190-192, 300, 562, 

567 
multigroup diffusion equations, 191 
of removal—diffusion calculations, 

190-192 
slowing down length, 191 
variations, 192-201 

Spiral duct, 2 
Sphtting, 234 
Stainless steel 

See also Iron 
in Fermi reactor 540—541 

Standard deviation, 213 
Standard man composition. 111, 614 
Statistical estimation, 217, 243-244 
Statistical variance, 247—251 

average or mean, 248—250 
central limit theorem, 247—248 
dispersion, 248 
expected value, 248-250 

Statistical weight, 208 
Stochastic processes, 209 
Steel shot m Fermi reactor, 539, 545 
Steradian, 25 
Streaming, 3 

See also Ducts 
m Agesta shield, 571 
in Dounreay shield, 565—566 
in Fermi shield, 550 

Surface source, 40—41 
Survivorship function (distribution), 21, 60 

TDC, 548, 562 
Thermal neutron flux density estimation 

methods, 298-301 
multigroup diffusion, 299-300 
Spinney method, 300 
transfusion, 300-302 

Thermal neutrons 
energy of, 85 
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Maxwell—Boltzmann distribution of, 85 
Thermoluminescent detectors (TLD), 476 
Thomson nuclear scattering, 80 
Thomson units (T U ), 72 
Time of flight measurement, 494—502 
Titanium hydride, 454, 456 
Total energy flux density, 31 -32 
Total flux density, 31-32 
Total net current, 35 
Tower Shielding Facility, 322, 340, 514 
Track length, 29 

See also Flux density 
detector for, 474 
per unit volume, 29, 30 

Transfer kernel, 217 
Transport equation 

Boltzmann {see Boltzmann transport eqi 
inscatter term in, 125, 127 
interaction loss term m, 127 
net leakage term in, 125—127 
source term in, 127 

Transport kernel, 217 
Tungsten, 453-454, 457, 460, 462 

UncoUided radiation, 119-123, 292 
United Kingdom early shielding 

program, 3—4, 6 
University of Illinois, 7 
Unscattered radiation, 119—123 
Uranium, depleted, 454-455, 457 
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Value functions, 218 
Variance, 248-249 

of function, 213 
statistical, 247-251 

Vector derivative, 620 
Vector operators, 619—620 
Vents {see Ducts) 
Voids, 404-414 

See also Ducts 
disk shaped, 404-409 

ray analysis, 409 
small random, 412 
spherical, in water, 411 

Volterra integral equation, 152, 154 
Volume source, 41—42 

Water 
gamma ray and neutron spectra in, 

498, 506-507 
measurements in, 448, 482 
transport in, 498-503 

Wigner effect, 533 
Westinghouse Bettis Laboratory, 5 
Windscale reactors, 3 

X lOreactor, 2, 492 

Zirconium hydride measurements, 478 
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