by
Bill van Melle
*Supported in part by research grant US AEC AT(11-1)1469

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
3.1.3 The Steady-State Package (B. van Melle)

DIFMF3 is a subroutine used to solve the steady-state problem of ordinary differential equations. It will operate on a mixture of differential and algebraic equations, and can be used merely to solve a system of simultaneous equations, which it handles in the same manner. To solve the system, a combination of the Newton method and a first-order predictor-corrector method is used.

The Method

The problem is presented to us in the form

$$
f\left(y, y^{\prime}, t\right)=0
$$

However, for the steady-state problem, t is constant, and in each component of the vectors y and y^{\prime} either the y or the y^{\prime} is held constant, so the problem can be written

$$
\begin{equation*}
f(y)=0 \tag{1}
\end{equation*}
$$

where the vector y contains the unknowns.
To solve (1) we invent an independent variable s, and attempt to integrate

$$
\begin{equation*}
\frac{d f}{d s}=-f \tag{2}
\end{equation*}
$$

from 0 to ∞. The exact solution of (2) is

$$
f=f\left(y_{0}\right) e^{-s}
$$

which approximates $f=0$ as s becomes large. Hopefully, a reasonable solution is obtained while s is still finite.

To obtain an expression for y^{\prime} ' $=d y / d s$, apply the chain rule to (2)

$$
\begin{align*}
\frac{\partial f}{\partial y} \cdot \frac{d y}{d s} & =-f(y) \\
y^{\prime} & =-\left(\frac{\partial f}{\partial y}\right)^{-1} f(y) \tag{3}
\end{align*}
$$

We use Euler's method for a predictor:

$$
\begin{equation*}
y_{n}=y_{n-1}+h y_{n-1}^{\prime}(h \text { the step size }) \tag{4}
\end{equation*}
$$

For a corrector we use the formula:

$$
\begin{equation*}
y_{n}=y_{n-1}+h\left(\alpha y_{n}^{\prime}+(1-\alpha) y_{n-1}^{\prime}\right) \tag{5}
\end{equation*}
$$

with $0 \leq \alpha \leq 1$. When $\alpha=0$ the corrector has no effect, and when $\alpha=0$ and $h=I$, the entire method is simply Newton's method

$$
y_{n}=y_{n-1}-\left(\frac{\partial f}{\partial y^{\prime}}\right)^{-1} f\left(y_{n-1}\right)
$$

Rewriting (5) and substituting for y^{\prime},

$$
\begin{aligned}
y_{n}-h \alpha y_{n}^{\prime} & =y_{n-1}+h(1-\alpha) y_{n-1}^{\prime} \\
y_{n}+h \alpha\left(\frac{\partial f}{\partial y}\right)^{-1} f\left(y_{n}\right) & =y_{n-1}+h y_{n-1}^{\prime}-\alpha h y_{n-1}^{\prime}
\end{aligned}
$$

Now write $y_{n}=y_{n}^{(0)}+\Delta y_{n}$, where $y_{n}^{(0)}$ is the predicted value from (4) and Δy_{n} is what we seek an expression for.

$$
y_{n}^{(0)}+\Delta y_{n}+h \alpha\left(\frac{\partial f}{\partial y}\right)^{-1} f\left(y_{n}^{(0)}+\Delta y_{n}\right)=y_{n}^{(0)}-\alpha h y_{n-1}^{\prime}
$$

Use a first-order Taylor expansion to approximate $f\left(y_{n}^{(0)}+\Delta y_{n}\right)$:

$$
\begin{align*}
\Delta y_{n}+h \alpha\left(\frac{\partial f}{\partial y}\right)^{-1} & {\left[f\left(y_{n}^{(0)}\right)+\left(\frac{\partial f}{\partial y}\right) \Delta y_{n}\right]=-\alpha h y_{n-1}^{\prime} } \\
(1+h \alpha) \Delta y_{n} & =-h \alpha\left(\frac{\partial f}{\partial y}\right)^{-1} f\left(y_{n}^{(0)}\right)-\alpha h y_{n-1}^{\prime} \\
\Delta y_{n} & =-\frac{\alpha}{1+h \alpha}\left[h\left(\frac{\partial f}{\partial y}\right)^{-1} f\left(y_{n}^{(0)}\right)+h y_{n-1}^{\prime}\right] \tag{5}
\end{align*}
$$

To obtain a similar expression for $h y_{n}^{\prime}$, approximate (3) with a firstorder Taylor expansion and substitute from (5)

$$
\begin{aligned}
h y_{n}^{\prime} & =-h\left(\frac{\partial f}{\partial y}\right)^{-1} f\left(y_{n}\right) \\
& =-h\left(\frac{\partial f}{\partial y}\right)^{-1}\left(f\left(y_{n}^{(0)}\right)+\left(\frac{\partial f}{\partial y}\right) \Delta y_{n}\right) \\
& =-h\left(\frac{\partial f}{\partial y}\right)^{-1} f\left(y_{n}^{(0)}\right)-h\left[-\frac{\alpha}{1+h \alpha}\left[h\left(\frac{\partial f}{\partial y}\right)^{-1} f\left(y_{n}^{(0)}\right)+h y_{n-1}^{\prime}\right]\right] \\
& =-\frac{1}{1+\alpha h}\left[h\left(\frac{\partial f}{\partial y}\right)^{-1} f\left(y_{n}^{(0)}\right)\right]+\left(\frac{\alpha h}{1+h \alpha}\right) h y_{n-1}^{\prime} \\
& =h y_{n-1}^{\prime}-\frac{1}{1+\alpha h}\left[h\left(\frac{\partial f}{\partial y}\right)^{-1} f\left(y_{n}^{(0)}\right)-h y_{n-1}^{\prime}\right]
\end{aligned}
$$

Thus, the corrector step can be written

$$
\begin{aligned}
\Delta & =\frac{1}{1+h \alpha}\left[h\left(\frac{\partial f}{\partial y}\right)^{-1} f\left(y_{n}^{(0)}\right)+h y_{n-1}^{\prime}\right] \\
y_{n} & =y_{n}^{(0)}-\alpha \Delta \\
h y_{n}^{\prime} & =h y_{n-1}^{\prime}-\Delta
\end{aligned}
$$

By varying α between 0 and l we can alternate between the Newton method (if h is near 1) and this predictor-corrector method, hopefully choosing the more effective scheme for the situation. The Newton method is quite efficient when in the neighborhood of a solution, but can be erratic elsewhere, while the other method generally finds a solution, but very slowly.

DIFMF3

A. Use

The user supplies several subroutines to be used by DIFMF3. The system to be solved is defined by the routines $S 1, S 2$, and DIFFUN. $S 1$ and S2 perform computations involving only time and global variables, which remain constant during solution of this problem (these routines may be dummy). DIFFUN consists of equations of the form $D Y(J)=J$ th equation. The vector DY then holds the values of the functions $f\left(y, y^{\prime}, t\right)$ described in the previous section. The variables y are separated into linear variables which appear without derivatives, stored in the vector $Y L$, and variables with derivatives, which are stored in the first row of an array Y (in $Y(1, *)$) and their first derivatives, with respect to time stored in the second row $(Y(2, *))$.

A subroutine MATSET computes the Jacobian matrix $\left(\frac{\partial f}{\partial y}\right)$, and routine MATINV computes its inverse. MATMUL performs the multiplication $\left(\frac{\partial f}{\partial y}\right)^{-1} f(y)$. The present DIFMF3 uses routines which utilize sparse techniques, but ordinary dense matrix routines could also be used.

If any of the equations in DIFFUN inherently places a restriction on the range of values y can assume, e.g. a square-root function, another routine, RANGER, must be supplied. This routine checks the restricted variables. If they are out of bounds, they are adjusted to legal values and a return flag is set to reflect this.

In the simplest form of the problem, the derivatives in $Y(2, *)$ are all set to 0 , and some sort of initial guess is given to the variables in $Y(1, *)$ and $Y L(*)$. The user may wish instead to give a $Y(1, J)$ a constant value and solve for its derivative $Y(2, J)$. The information about which variables to solve for he supplies in the vector IND, whose J-th component is 1 or 2 , if he wants to solve for $Y(1, J)$ or $Y(2, J)$, respectively.

B. Strategy

There are two major items of concern in writing DIFMF3:
(1) how to vary α and h to achieve a solution as efficiently as possible, (2) how often to evaluate the Jacobian $\partial f / \partial y$.

1. We have seen that $\alpha=0, h=1$, corresponds to the Newton method, while $\alpha=1$ is the more cautious integration procedure. The former method is quite effective for systems which are linear or nearly so, and also for most systems when near a solution; however, it is potentially quite erratic in other situations, where the latter method must be used. In order to cater to those systems best solved by Newton, we start out immediately with $\alpha=0, h=1$, and monitor convergence. We continue as long as the "error" $||f(y)||$ decreases. If at any point the error increases, we switch over to the other method, setting $\alpha=1$ and h small, and continue to monitor convergence. At each step, h is slightly increased. If the error starts reducing favorably, we increase h more rapidly and start phasing out the corrector step by reducing α. If the error later increases, we revert to the $\alpha=1$ and small h method. The rate used to vary α and h was empirically determined.
2. Computing and inverting the Jacobian is a fairly timeconsuming process, so it is desirable to avoid it whenever possible. Fortunately, the Jacobian does not usually change too rapidly, so we can take several steps with the same one. The present strategy calls for recomputing the Jacobian every $N Y * 5$ steps (NY the number of columns in Y) unless the situation requires otherwise. Such situations include: a large increase in $||f(y)||$, variables going out of bounds, and apparently imminent approach of a solution. The recomputation occurs in the last case because a "fresh" Jacobian speeds convergence considerably when near a solution.

(Symbol used in flowchart and/or previous discussion)
α
Δ
δ
$f^{\prime}(y)$
DY

EPS
EQN
F1

G
H
HINV

HOLD

IND

J

	MATIN1
MATINV	MATIN2
	MATIN3
KFLAG	KFLAG

ALPHA

D
DEL

D
h

J

KFLAG

Explanation

See part II:
See part II
Convergence criterion: equations are considered satisfied when S < DEL

Vector containing the values of the functions $\underline{f}(\underline{y})$

Passed to MATSET
Passed to MATSET
Vector containing the product ($\partial \mathrm{f} / \partial \mathrm{y})^{-1} \mathrm{f}(\mathrm{y})$

An array of global variables
The step size
Held constant at 1.0 for this program

Value of H associated with the saved values of $Y(3, *)$

A vector indicating which of the Y variables to solve for

A flag indicating when to re-evaluate the Jacobian. Decremented at each step, when it becomes zero or negative the Jacobian is computed and $J A C O B \leftarrow N J$.

Subroutines which divide up the labor of computing the inverse Jacobian.

A return code (see program listing)

NW
NY

PLIM

PRED

PW

R

S

SS

SAVE

T

VAR
y,hy'
yl

Number of calls to MATSET.
Number of columns in Y.

Contains bounds used by RANGER.

S/SS. An indication of the rate of convergence.

Contains the inverse Jacobian.

The factor by which H is changed at each step; used to scale $Y(3, *)$.
$||f(y)||=\sum_{i=1}^{M}|D Y(i)|$,
a measure of the distance from the solution.

Value of S from previous step.

An array used to save the variables $Y(\operatorname{IND}(J), J), Y(3, J)$ in case of mishap.

Time and remainder variables, constants to DIFMF3.

Used by MATSET.
An array containing
in $Y(1, *)$ dependent variables $Y(2, *)$ their derivatives with respect to t $\mathrm{Y}(3, *)$ hy'
$Y(\operatorname{IND}(*), *)$ corresponds to y.
An array of variables appearing only linearly and without derivatives.

A vector used to save the YL variables.

C* THE RGUTINE DIFME3 SOLVES THE STEADY-STATE PRUBLEM.
C* THE PARAMETERS HAVE THE FOLLOWING MEANINGS:
3.00
4.r:
5.00.
6.08

C* the parameters have the following meanings

**	M	the number of equations.
*	N	the total fulaber of variables.
C*	NL	THE NUMBER OF LINEAR VARIABLES.
C*	DEL	CONVERGENCE CRITERION. ITEPATION ENDS WHEN
C*		SUM(IDY(J)l) < DEL
C*	NSENO	the maximum number df steps to be atte
C*	KFLAG	a completion code with the fullohing meaning
C*		>0 CONVEPGENCE WAS ACHIEVFE IN KFLAG ST
C*		-1 CONVEPGENCE NCT ACHIEVED IN NSEND STEP
C*		-3 VARIAELEIS) DEPFATEDLY GO OUT CF BOUN
*		try new starting values.
c*	MF	THE METHOD INDICATOR.
c*		IF MF=4, SEE DESCRIPTIDN UF IND.
C*		IF MF=3, THE VECTIR IND IS LOADED WITH
C*		EACH ELEMENT AND Y(2,J) IS CLEAREO. TH
C*		MF IS SET TO 4.

DIMENSION T(1), G(1),Y(7,1), YL(1), SAVE(2,1), YLSV(1)
DIMEASION PW(1),0Y(1),FI(1), PLIM(1)
INTEGER*2 $\operatorname{VAR}(3,2,1)$, EDN(1), IND(1),LIST(2,1)
$C *$
$C *$
$C *$
C^{*}
C^{*}
$C *$
C
T The independent variable.
THE INDEPENDENT VARIABLE.
an array of colobal variables.
A 7 BY N-NL LRRAY. Y(I,J) CONTAINS THE DEPENDENT
variables, y(2,j) CDNTAINS their derivatives.
THE CALLER MUST SUPPLY INITIAL VALUES FOR
$Y(1, J)$ AND, IF $M F=4, Y(2, J)$.
YL AN APRAY OF NL LINEAR VARIAELFS.
SAVE
aiN array of at least $2 \%(i v-N L)$ variables.
YLSV
an array of at least nl vapiables.
PW
A SINGLE-PRECISION VECTOR
WHICH. HOLDS THE INVERSE JACOBIAN.
DY A VECTOR DF LENGTH M , OUTPUT DF DIFFUN.
F1 A VECTOR OF LENGTH MAX(M,N), OUTMUT OF MATMUL.
al so used by matset as sugstitute for save.
EON.VAR VECTORS USED BY MATSET.
IND AN INOICATOR VECTOR OF LENGTH $N-N L$. WHEN MF $=4$
WE SOLVE FOR Y(IND(J),J), KEEPING Y(3-IND(J), J)
constant. note that this vector ihust be
SUPPLIEO EVEN WHEN MF $=3$.
list.plim arrays passed ro routine ranger.
MM DIMENSION OF LIST.PLIMO. \qquad
7.0 C
8. 0:
9.0.0.
10.00
11.00
12.0 C
13.00
14.00
15.00
16.0°
17.05
18.00
19.0.
20.00
21.00
22.0.
23.00
24.00
25.00
26.0 C
27.OC.
28.00
29.00
30.00
31.0 C
32.00
33.00
34.00 C
35.00
36.00
37.00
38.00
39.0 C
$40.00:$
$41 . \mathrm{CO}^{-}$
42.00
43.03.
$44 . \mathrm{nc}$.
45.00
$46.00:$
47.00 .1
48.00:
$40.01:$
50.006
51.000
52.00.
53.000

OATA ERS /.05/. HINV / 1. DO/

15	$Y L(J)=Y(1)-F 1(J+N Y)$	107.0r
18	CONTINUE.	108.00
C^{18}	CONTINUE	109.00
C*	Start with newton methno. In case	110.00
C*	THIS EOMHS, SAVE RESTART INFO.	111.00
C*		112.00
	DO) $25 \mathrm{~J}=1 . N Y$	113.00 114.00
		115.00
25	$\begin{aligned} & \operatorname{SAVE(2,J)=} \\ & 00 \quad 2 G J=1, N L \end{aligned}$	116.00
26	YLSV(J) $=$ YL(J)	117.00
	NEWTIN = .TRUE.	118.00 119.00
C****	PREDICTOR STEP	120.80
$\begin{aligned} & C * \\ & C \neq * * * \end{aligned}$	predictin step	121.00
30	DO $40 \mathrm{~J}=1, \mathrm{NY}$	122.00
	KL $=1 N C(J)$	123.00
40	$Y(K L, J)=Y(K L, J)+Y(3, J)$	124.00
C****		$125.0 n$
C*	HEFORE TAKING THE CORRECTOR STEP, CHECK TO SEE IF	
C*	ANYTHING, HAS GONE OUT OF BOUNDS. LFAIL IS THE NUMBER OF	$\begin{aligned} & 127.00 \\ & 128.00 \end{aligned}$
C*	CONSECITIVE TIMES A GIVEN VARIABLE OR SET OF VARIABLES	$\begin{aligned} & 128.00 \\ & 129.00 \end{aligned}$
C*		
C*	ZERO VALUE OF LFLAG。	
C****	CALL PANGER (Y,LIST, PLIM, MM, LFLAG, TRUE.	132.00
	AG.. 1 IF (LFIAG .EO. 0$)$ GO TO 49	133.00
	IF (IANO(LFLAGI, LFLAG) - EO. O) GO TO 47	134.00
	LFAIL = LFAIL +1	135.00
	GU TO 48 .	13.6 .00
47	LFAIL $=0$	137.00
48	LFLAGL = LFLAG	138.00
	IF (JACOB . LT. NJJ) JACOB = 0	140.00
49	CONTINUE	141.00
C.*		142.00
C*	CHECK ERROR MAKE CHANGE OF PLAN. NOFAIL PREVENTS AN INFINITE LDOP:	143.00
C**	MAKE CHANGE OF PLANO NOFA	144.00
C*	WHEN THE CHANGES ARE MADE (AT LINE 100) NOFAIL IS SET	145.0 C
C*	TO PALSF.	146.00
C*	IF ERRIR INCREASES AT ALL WHILE USING THE STRAIGHT NEWTON	147.00
C*	METHIJD (NF.TTUN = -TRUE.), WE CHANGE OVER TO PREDICTOR-	148.0 O
C*	CORRFCTOR METHOD.	149.00
C*	CALL UIFFUN (T,G,DY,Y,YL	15 C .0 C
	$S=0$	151.00.
	$0050 \mathrm{~J}=1 . \mathrm{M}$	152.00
50	$S=S+D A B S(D Y(J))$	153.00
	PRED $=$ S/SS	154.00
	IF (NEWTCN) GO TO 150	156.00
	IF (FREO OLT IF (NUFAIL) GO TO 100	157.00
51	cuntinue	158.00 159.00
C*	--. - . . . -	159.00

C＊＂CHECK RATE UF CONVERGENCE．IF SLOW IOR IF ERROR IS 160.0
C＊InCRFASINGI，CONTINJE USING THE PFFOICTOR－CORRECTOR161.0
C＊METHOD WITH ALPHA＝1 AND SLOWLY－INCREASING H．OTHER－162．0：
WISE，Increase h towards 1.0 anu decrease al．pha． 163.0 ．
164．0
IF（DRFD ．LT．． $9 R$ ）GO TO 53
ALPHA $=1$165． 0$R=$ DMINI（1．300，0．600／H）166.0
167.0
GO TO 60
168.0.
$53 R=.60+.40 / H$
169．0
$A L P H A=A L P H A * O . R$170．0：
GO TO 60
171.0
172．0
C＊＊＊＊
SAVE INFURMATION FOR POSSIBLE RESTART173．0．
C \＃＊＊＊ 174.0 ：
$600062 \mathrm{~J}=1, \mathrm{NY}$$\operatorname{SAVE}(1, \mathrm{~J})=Y(I N D(J), J)$
$62 \quad \operatorname{SAVE}(2, J)=Y(3, J)$175．0：
176．0：
177．0：
DO $63 \mathrm{~J}=1 . \mathrm{NL}$
DO $63 \mathrm{~J}=1 . \mathrm{NL}$
YLSV（J）$=$ YL（J） 63
HOLD $=\mathrm{H}$
C＊＊＊＊＊C＊If we are near the steady state，re－evaluate theC＊Jacohian to give one final push．
C＊＊＊＊＊
IF ISS ．LT． 1.00 －AND．JACCB •LT．NJJI GO TO 67
$65 \mathrm{JACUB}=\mathrm{JACDB}-1$
IF（JACOB ．GT．O）GO TO 70
C＊＊＊＊
If there has been trouble with convergence，or if it has
C＊BEEN A LONG TIME SINCE THE LAST RE－EVALUATION，THE JACDBIAN
C＊IS RE－EVALUATED PRIOR TO THE CORRECTOR STEP．C＊＊＊＊
67 CALL MATSET（HINV，DY，EPS，EQN，G，HINV，IND，M，MFI，N，NY，3，173．0：179179．0：
180.0
181．0：182.06
183.0
184．0i
185.0 r186.9
187．？188．0．193．0：
PW，Fl，T，VAR，Y，YLI194
CALL MATIN3（PW） 195．0．$J A C O B=N J$
70 CALL MATMUL（PW，DY，FI）
Cねねれが196.04
197．0
198．0
199．0
C＊．CORRECTOR STEP IS NOW PERFORYED．Y（3，J）（PSEUON H＊Y＇（J）20C．C
C＊IS SIMULTANFUUSLY SCALED IN ACCDRDANCE WITH THE NEW H． 201．
C＊．IF．ALPHA IS VERY SMALL，THE FFFECT OF THE CORRECTOR IS
C＊SLIGHT，SO SKIP IT AND JUST SCALE．
C＊＊\＃\＃\＃
IF（ALPHA ．LT．0．01）GO TO． 77
$D D=1 . D C /(1+H * A L P H A)$202.0
203．0：
204．0．
205．n
DO $75 \mathrm{~J}=1, \mathrm{NY}$
$D=(F 1(J) * H+Y(3, J)) * D C$206．0：207．${ }^{\circ}$
$K L=I N O(J)$
208．0
$Y(K L, J)=Y(K L, J)-A L P H A * D$ 3 210.01$Y(3, J)=R *(Y(3, J)-D)$
211.0
212.0

```
    77-HH=-H*R 213.r!
    O\173 J = 1.NY
        Y(3,J) = HH*FI(J)
        CONTINUE
        IF (NL.LE. O) GO TO 90
        DO 8O J = 1.NL
    80. YL(J)= YL(J)-FL(J+NY)
    90 SS = S
    NS = NS+1
    WRITE (G,1) NS,NW,ALPHA,H,SS,(Y(IND(J),JI,J=1,NY)
    1 FOR:MAT (/I4,13,F6.2,2011.2,7014.4/(35X,7014.4))
    IF (NL .GT. O) NKITE (6,2) (YL(J),J=1,NL)
    2 FORMAT (35X,7014,4)
    H=H*F
    NOFAIL = .TRUE.
    IF ILFAIL .GT. 20) r,O TO 350
    IF INS.GF. NSENDI GO TO 200
    IF (SS .GT. DEL) GO TO 30
    KFLAG = NS
    RETUP!N
    .100 ... CONTINUE
    C*
    C* THE PREDICTEP LOOP RLEW UP. ALPHA RETURNS TO 1.O, H IS
    C* REDUCED, THE SAYFD VALUES OF Y & YL ARE RESTORED, APND
    C* THE STEP IS CETRIFO. IN ADOITIDN, WF SIGIIAL FOR JACOBIAN
    C* RE-EVALUATION UNLESS THIS HAS BEEN DONE RECENTLY.
    C* ALPHA = 1.0
    IF (JACOB .LT. NJJ) JACOB=0
    R= D:4AX1(0.500,0.200/HOLD)
    H=HOLD*R
    105 DO 110 J = 1.NY
        Y(IND(J),J)=SAVE(1,J)
    110 Y(3.J)= SAVE(2,J)*R
    DO 115 J = 1.NL
        YL(J) = YLSV(J)
    NOFAIL =.FALSE.
    GO TO 30
    C*
C* IF NEWTON METHOD IS FAILING,
C*.. WE MUST SET UP FOR PREDICTOR-CORRECTOR SCHEME.
C*
    150 IF (PRED).LT. 0.95) GO TO 60
    WRITE (6,5) S,(Y(IND(J),J),J=1,NY)
    5 FOFMAT ('ONFWTON FAILED:'.9X,011.2,7014.4/135X,7D14.4)1
            IF (NL GT: O) WRITE (0.2) (YL(J),J=1,NL)
            H=.Cl
            ALPHA = 1
            R=.01
                                260.00
    261.0%
    JACDB=0
    NEWTIN = .FALSE.
    GO TO 1C5
26.2.00
    200 KFLAG = -1
264.00:
```

214.:
215.0 :
216.0 .
217.00
$218.0:$
$219.0 \cdot$
220.0i
221.0 .
222.0
223.0
224.0 :
225.00
226.00
227.0
228.0
229.00
230.0 :
231.00
232.0C
233.00
234.00
235.06
236.0.
237.0:
238.00
239.0:
240.00
241.00
242.00
243.0 a
$10500110 \mathrm{~J}=1 . \mathrm{NY}$
244.00
245.00
$110 \quad Y(3, J)=\operatorname{SAVE}(2, J) * R$
DO $115 \mathrm{~J}=1, \mathrm{NL}$
246.00
247.00
$115 \quad Y L(J)=Y \operatorname{LSV}(J)$
GO TO 30
248.00
249.0 :
250.00
251.00
252.00
253.00
254.0 :
255.01
256.0 0

5 FORMAT ('ONFWTON FAILED: $1.9 \mathrm{X}, 011.2,7014.4 / 135 \mathrm{X}, 7 \mathrm{D} 14.4$! 1
IF (NL.GT. O) WRITE (0,2) (YL(J),J=1,NL)
257.00
258.0
259.00
260.00
261.01
262.00
26.2.00
264.00
$200 \mathrm{KFLAG}=-1$

```
    *
    WRITE (6.333) (J.OY(J).J=1.M)
    266.0.
333. FURMAT (1-DY:!/(15,020.6))
267.0
FETUPN
268.0
350 KFLAG \(=-3 \quad 269.0\)
RETURN
END
270.0
271.0
```


E. Examples

Some of the systems used to test DIFMF3 follow. Pseudo-random starting values were used, $t=0$, and the convergence criterion was $\delta=10^{-6}$.

Most of these systems are purely algebraic. The last three include restricted variables. Solutions to these often take longer because variables go out of range and are shoved around a lot by RANGER before they settle down. System (3) is linear, so the solution was obtained quite swiftly.

> 1. $4+y_{1}+y_{2}-y_{1}^{2}+2 y_{1} y_{2}+3 y_{2}^{2}$
> $1+2 y_{1}-3 y_{2}+y_{1}^{2}+y_{1} y_{2}-2 y_{2}^{2}$
> Starting values: $\quad y_{1}=-2.057 \quad y_{2}=-7.503$
> Solution obtained: $y_{1}=3.339 \quad y_{2}=-2.984$
> NS $=24, N W=5$
2. $y_{1}^{2}+y_{2}^{2}+y_{3}^{2}-5$
$\mathrm{y}_{1}+\mathrm{y}_{2}-\mathrm{l}$
$y_{1}+y_{3}-3$
Starting values: $\quad y_{1}=-2.057 \quad y_{2}=-7.503 \quad y_{3}=-4.834$
Solution obtained: $y_{1}=1.667 \quad y_{2}=-.6667 \quad y_{3}=1.333$
$N S=28, N W=4$
3. $t_{2}+y_{1}-6 y_{3}-y_{3}^{\prime}$
$y_{3}-y_{2}$
$y_{2}-y_{1}^{I}$
$\mathrm{yl}_{3}+\mathrm{lly}_{2}$
$\mathrm{yl}_{2}+6 \mathrm{y}_{1}$
$\mathrm{yl}_{1}-\mathrm{yl}_{2}-\mathrm{yl}_{3}$
$t_{2}=\sin (t)$
Starting values: $\quad y_{1}=-2.057, y_{2}=-7.503, y_{3}=-4.834$
$y \ell_{1}=4.473, y \ell_{2}=-6.240, y \ell_{3}=9.308$
Solution obtained: $y_{1}=y_{2}=y_{3}=y_{1}=y_{2}=y_{3}=0.000$
$\mathrm{NS}=2, \mathrm{NW}=2$
4.. $\frac{1}{2} \sqrt{4-y_{1}^{2}}+y_{2}-1$
$2 \mathrm{y}_{1}^{3}+\ln \left(\mathrm{y}_{2}+.8\right)-.736$
Restriction: $\quad-2 \leq \mathrm{y}_{1} \leq 2, \mathrm{y}_{2}>-.8$.
Starting values: $\quad y_{1}=-.9433, y_{2}=3.951$
Solution obtained: $y_{1}=5.394, y_{2}=.03705$
$\mathbb{N S}=27, N W=5$
5. $\tan \left(y_{1}\right)+y_{2}^{3}-3 y_{1}-.5$
$\sin \left(2 y_{1}\right)-1 / y_{2}+2 y l_{1}-1$
$y_{2}+y_{1}-1.5$
Restriction: $\quad \pi / 2<y_{1}<\pi / 2, y_{2}>0$
Starting values: $\quad y_{1}=-.2983, y_{2}=4.751, y_{1}=-4.834$
Solution obtained: $y_{1}=.7854, y_{2}=1.000, y_{1}=.5000$
$N S=116, N W=14$.
6. $y_{1}^{2}+y_{2}^{2}+y l_{1}-3$
$y_{2}^{2}+y_{3}^{2}+y_{2}-10$
$\sqrt{2-y_{1}}+\mathrm{yl}_{1}$
$\mathrm{yl}_{1}+\mathrm{yl}_{2}-3$
$20 y_{3}-9 y_{2}+5$
Restriction: : $y_{1} \leq 2$
Starting values: $\quad y_{1}=-2.057, y_{2}=-7.503, y_{3}=-4.834$,

$$
y_{1}=4.473, y_{2}=-6.240
$$

Solution obtained: $y_{1}=-2.000, y_{2}=-1.000, y_{3}=2.000$,

$$
y l_{1}=-2.000, y l_{2}=5.000
$$

$$
N S=20, N W=3
$$

