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3.1.3 The Steady-State Packsge (B. van Melle)

DlFMFB is a subroutine used'to:solve the steady-stete problem‘
of ord;nary dlfferential equatlons It w1ll operate on a mixture of
dlfferentlal and algebraic equations, .and can be used merely to solve a
sys{em of simultaneous equatlons, whlch it handles in the same manner.

To solve the system, 8 combinatlon of the Newton method and a flrst—order

predictor-cerrector method is used.

The Metﬁod
The problem is presented to us in the form
£(y, y', t) = 0.

However, for the steady-state problem, t is constant and in each component
of the vectors y and y' elther theﬁy or the y! 1s held constant, so the
problem can be written _ _
| fly) =0 o (1)
where the veoﬁor y.conﬁains.thevuﬁknoﬁos;' | |

To solve (1) We.invent eo‘indepeodeoi variable s, and attempt

to integrate



af _
= -t (2)

from 0 to w,"The exact solution of (2) is

f= f(yo)s's
which approximates f =0 as s becOmés large. Hopefully, a reasonable
solution is obtained while s is still finite.

To obtain-an-expressioﬁ for y' = dy/ds, apply the chain rule

to (2)
af dy _
Er a% = —f(y)
y o= -@Et e (3)

We use Eﬁler's ﬁethoq for a Predictog: '

N

]

S | . ’
Y Vo1 | hyn_l (n the step  size) (4)

n
For a corrector we use the formula:
,‘"= R, ¥ |‘+" - N
ER Al A h(qyn . (1 a) Vo1 (5)
with 0 < a g;i; When o = O the corrector has no effect, and when
o = 0and h = 1, the enti;emethod is éimply Newton's method
. _ At =1 .
yn.".yn_’lv (ay) f( n_l)-

Rewriting (5) and substituting for y', o

- hyv! = + _ '
yn _ hayn ' yn-l h(1-a) yn—l

v+ @D ey ) =y

3; n-1
(0) (0)
n n

+ hy! - '
hyn—l OLhyn-—l

e

Now‘write yn =y + Ayn, where y is the predicted value from (L)

and Ay is vhat we seek an expression fbr.

\ (o). af\-1 ., (0) _0) .,
_ ¥, ’ + oy +‘ha(8y) £y, | +,Ayn) =¥, —lahyn_l



Use a first-order Taylor expansion ‘to approximate f(yio) + Ayn):
af (0) ", 9f
+ (= -
Ay +‘ha(3y) £y~ ") (ay) by 1= - oby! |

(o) sy = D )

o n ay n n-1
by = - 2 (D™ ') ¢y (5)

Yno o l+ha 3y n-1 :

To obtain a similar expression for hyg,=approximate (3) with a first-

order Taylor expansion and substitute from (5)

hygl='-h(?—d'

( oy In ‘ oy n
_ L 8fy=1 L, (0) aof (o)
G 2,7 - nle g GD” el w1
_ 1 af\-1 ., (0) ah '
- Trorn PG fly, )1+ (S5 Byaa
: 1 3f,-1 -, (0) |
" = ! - — - 1
_ hy! - Teew (5T £y ) - ]
Thus, the corrector step can be wfitten
b2l @D o) nyr ]
. 1tho Ay n n-1
- J(0) _
Y, SV, - ol
' = -
hyn hyn—l A

By varying o between 0.and 1 we can alternate between the Newton method *(if
h is near 1) and this predictor-corrector method, hopefully choosing the more
effective schéme for the situation. The Newton method is quite efficient
whén in the neighbofhood‘of a solution, but can'be erraﬁic elsevwhere, while

the other method generally finds a solution, but very slowly.




A. TUse

¥

The user supplies several Subroutiﬁes to be used by DIFMF3. Th;
system to be solved is'definéd by thé routines S1, S2, gnd DIFFUN. S1 and
52 perform computatidns involving only time and global variables, which
remain constant during solution of this problem (thése routines may be
dummy ). DIFFUN consists of equations of the form Df(J) = Jth equation.
The fector DY then holds the values of the functions f(y, y', t) described
in the previous section. The vériablés y are‘separated into linear
variables Which‘appear ﬁithout.derivatives, stored in -the veéﬁor YL, and
variables with deriVatiyes, which are stored in the first row of an array
Y (in Y(l,?)),an&’their first derivatives, with respect to fime stored in

the second row (Y§2,*)).

A subroutine MATSET computeévthg Jacobian matrix (%§), and routine
MATINV computes its inverse. MATMUL performs the multiplication (%§ -1 £(y).

The present DIFMF3 uses routines whiéﬁ utilize sparse techhiques, but
ordinary dense matrix réutines could also be used.

If any of the equations iﬁ DiFFUN inherently places‘a restriction
on the rénge of values y can éssume,‘e.g.-a square~root function, another
routine, RANGER, must be supplied. This routine checks the restricted
variables. If théy are out of bounds, they are adjﬁsted to legal values
and a return flag is set to reflect this.

In ﬁhe simplest form of the proﬁlem, the derivatives in Y(2,%) *
are all set to 0, and some sort of initialvguess is given to the variables
in Y(1,*) and YL(¥*). The user may wish‘iﬁstead to give a Y(1,J) a

constant value and solve for its derivative Y(2,J). The information about
)

which variables to solve for he supplies ih the vector IND, whose J-th component

is 1 or 2, if he wants to solve for Y(1,J) or Y(2,J), respectively.



. B. Strategy

There are two major items of concern in writing DIFMF3:

(1) how to vary @ and h to achieve a solution as'éfficiently as possibie,
(2) how often to evaluate the Jacobian 3f/3y.

1. Ve have seen that o = O;_h = l;:corresponds to the Newton
method, while o = 1 is the moré cautious integration procedure. The
former method is quite'efféctive for systems which are linear or nearly
so, and also for most systems whén near a solution; hoﬁever, it is
potentially quite erratic in other situations, where tﬁe latter methoa
muist be used. In gfder to cater to thé;e sysfems best solved by Newton,

v we start out immediately &ifﬁ a=0,h=1, and‘monitor convergence. We
continue as long aé the "error" l]f(y)l| decfeaseé.

‘If at any point the error increases,'we sﬁitch over to the other method,
setting a = 1 and h small, and continue to monitor convergence. At each
step, h is slightly increased. If the error starts reducing favorably,
we increaée h more rapidly and start phasing out the corrector step by
reducing a. If tﬁé error later inereases, we revert to the a = 1 and
small h method. The rate used to vary a énd h was empirically determined.

2. ‘Computing and inverting the Jacobian is a fairly time- "
consuming process, so it is desirable to avoid it whenéver possible.

" Fortunately, the Jacobian does not usually chanée tob rapidly, so we can
téke several steps with the_same one. The presehf strategy calls for
recomputing phe Jacobian every NY¥*5 steps (NY the nﬁmber'of columns in Y)
unless the situation requires otherwise. . Such situations include: a large
increase in ||£(y)|/|, variéblés.going out of bounds, and apparently imminent
approach of a solution. The recomputation occurs in the iast case becauée a

"fresh" Jacobian speeds convergence considerably when near a solution.



C. Flowchart

< ENTER >

INITIALIZE
3f -1
COMPUTE (ay)
H< 1.0
a< O
NEWTON < TRUE

ss < |[£(y)]]

i

PREDICTOR
. Yy« y + hy'

[
CALL RANGER
TO ADJUST
ANY OUT-OF-
BOUND y'S

Jd < 0,
IF SAME y('S) AS

JLAST TIME, LPATIIFXLFAII+1

]

EVALUATE f(y)
K

s« ||£(y)
RED « S/§S

RESTORE OLD y'S

NEWTON < FALSE
o<« 1
H+« .01

AND y&''S

NOFAIL « FALSE
o<« 1

H <. max(H/2, 0.2)]

RESTORE OLD y'S

AND y2 'S




a <« ao¥%.8
R+« (.6H+.4)/H

SAVE y'S AND
~4yL 'S IN CASE

a<« 1
Remin(1.3,.6/H)

OF RESTART

J <« J-1

EVALUATE
3fy-1
3y

J <« NJ

COMPUTE

af -1
£ () 7y

(hy') « £ *R

CORRECTOR:
hf, + (hy')

1 ‘
1 + ah
y<y-oab

A <«

(hy') < [(ny')-2]*R




"PRINT STEP -
INFORMATION

:

Ss<« 8
H< H*R

NOFAIL « TRUH

t KFLAG « -3

1 KFLAG <« -1

= KFLAG <« NS




D. Explanation of Symbols

w :

(Symbol used in
flowchart and/or
previous .discussion)

| MATINV

KFLAG -

Symbol'usedf
in DIFMF3

ATLFPHA

DEL

DY

EPS
BN

Fl

HINV

HOLD

IND

JACOB

MATIN1

MATIN2

MATIN3

KFLAG

Explanation

See part II

See part IT

Convergence criterion:
equations are. considered

satisfied when § < DEL

Vector containing the
values of the functions f£(y)

Passed to MATSET
Passed to MATSET

Vector containi§§ the
product (af/3y) " f£(y)

_An array of global variables

The step size

Held constant at 1.0

for this program

Value of H associated with

. the saved values of Y(3,%*)

A vector indicating which-
of the Y variables to solve for

A flag indicating when to
re-evaludte the Jacobian.
Decremented at each step, when
it becomes zero or negative
the Jacobian is computed and
JACOB « NJ. '
Subroutines which divide up
the labor of computing the
inverse Jacobian.

A return code (see program
listing)




 LFAIL

NEWTON

e

NJ

‘NOFAIL

NS

NSEND.

LFATL

LFLAG

LFLAGL

LIST

NEWTON

NJ

NJJ

NL

NOFAIL

NS

NSEND .

Number of times a given set
of variables is found out
of bounds. When excessive

. causes termination of DIFMF3.

Return code from RANGER.
Bits set correspond to
variables out of bounds.

Previous non-zero value of'
LFLAG. It is AND'ed with
LFLAG to see. if the same

. variables are guilty as
- before,

Describes bounds on Y-

variables; used by RANGER.

Number of equations in DIFFUN.

Method indicator (see
program listing).

.Dimension of LIST, PLIM;

used by RANGER

NL + NY = total number
of variables. Usually M = N.

A flag indicating whether
we are still performing the
NEWTON method which started
the routine

The Jacobian is evaluated : .

_every NJ steps, barring

trouble.

NJ-5. A comparison of NJ
and NJJ is made to avoid too
frequent evaluation of the
Jacobian even in trouble -
situations. ‘

Number of varisbles in YL.
Flag used to avoid a
continuous loop when S

suddenly incresases.

The step number, incremented
at each step.

The maximum number of steps
to attempt before termination.



red

S8

y,hy'

yi

Ny

PLIM
PRED

Pw

5SS

SAVE

. VAR

YL

YSLV

Number Qf calls to MATSET.
Number of columns in Y.

Contains bounds used
by RANGER.

S/8S. An indication
of the rate of convergence.

Contains the inverse Jacobian.

The factor by which H is
changed at each step; used
to scale Y{(3,%).

M
[ey)][] = = |pY(i)],
i=1 : .
a measure of the distance
from the solution.

Value of S from previous step.
An array used to save the

variables Y(IND(J), J), ¥(3,J)
in case of mishap.

Time and remainder variables,

constants to DIFMF3.
Used by MATSET.

An array containing .
in Y(1,*) dependent variables
Y(2,%) their derivatives.
with respect to t
Y(3,%) hy' ‘

Y(IND(*),*) corresponds to y.

An array of variables
appearing only linearly and
without derivatives. L
A vector used to save the
YL variables.



'T 69 ) 0S/360 FNRTRAN H
VJLER OPTLONS = NAME AIN,GPT=02 LLINECNT=55,SCU2CEERCNICNILIST,,DFCK,LCAD, MAD,
SUBROUT INE DIFAF? (DEL, DY, tQV,Fl Gy INDy KFLAG L IS Tty MF, le00
+ MM N o NL o NSEND PLIM, PWoSAVEToVAR,Y,YL,YLSV) _ 2,00
[MPLICIT REAL%*R (A-H,N-2) . 3,00
C***#***#**Yx#ﬂt*#*#****##"*******t***##****##***** ********t*#*********** (A
C* He O,
C«  THE ROUTINE DIFMF3 SOLVES THE STEADY-STATE PROBLEMe . 6eNQ
c* THE PARAMETERS HAVE THE FOLLOWING MEANINGS: o 7.0¢C
" Cx% [, 0
C* M THE NUMKER OF EQUATIONS, ‘ 9.0C;
C* N _ THE TOTAL NUMBER OF VARIARLESe . 10,00
C* NL THE NUMBER OF LINEAR VARIABLES. 11,0¢C
C* ___ DEL _ ___CONVERGENCE CRITERION. ITERATION ENDS WHEN 12.0¢C
c* SUMCIDY(J) ) < DEL o 13,00
Cx CNSEND  THE MAXIMUM NUMBER DF STEPS TO BE ATTEMPTED. 14,00
Cc* KFLAG A COMPLETICN CODE WITH THE FOLLOWING MEANINGS: 15.00.
C* S0  CANVERGENCE WAS ACHIEVFD IN KFLAG STEPS, - 16,07
Cx* -1 CONVERGENCE NCT ACHIEVED IN NSEND STEPS. 17.0°
C* =3 VARIABLE(S) REPFATEDLY 63 OUT CF eoumns.,_ 18,00
Cx* TRY MNEW STARTING VALUES. 19.C0C
(o MF THE METHOD INDICATOR. 20.00°
C* ’ IF MF=4, SEE DESCRIPTINON OF INDs 21.0C!
cx 1F MF=2, THE VECTOR IND IS LOADED WITH 1 IN 22,07
C* EACH: ELEMENT AND Y(2,J) IS CLEARED. THEN 23,00
C* MF IS SET TOA4.W_WN“ME__”mmm; ‘ 2440C
C* ' B o : ‘ 25.00.
DIMENSION TCL)sG(1),Y(To1)yYLIL),SAVEL2,1),YLSV(L) 26, (N
DIMENSION PW (1) DY(1)sFLIL)PLIM(L) 2700
: INTEGER#2 VAR(342,11,EON(L),IND(1},LIST(241) B 28,007
o 29,0C.
€% T _ _.._. THE INDEPENDENT VARIABLE. o o 30.0C.
Cx G AN ARRAY OF GLOBAL VARIABLES, T 31,007
o Y_ . A T AY N-NL ARRAY. Y(1,J) CONTAINS THE DEPFNDENT o 32,000
CCx VARIABLES, Y(2,J) CONTAINS THEIR DER IVATIVES. T 33,007
L C* ) THE CALLER MUST SUPPLY INITIAL VALUES FOR 34,000
Cx* Y(1sJ) AND. IF MF=4, Y(24J)e 36,00.
cx YL AN APRAY OF HNL LINSAR VARIABLES. 36, 00"
Cx SAVE AN APRAY OF AT LEAST 2#(N-NL) VARIABLES. 37,000
Cx YLSV AN ARRAY OF AT LEAST NL VARIABLES. i 38,00
Cx* PW A SINGLE=PRECISION VECTOR 39,00
cx _ WHICH HOLDS THE INVERSE JACOBIAN. } L 40,000
Cx* DY A VECTOR OF LENGTH M, OUTPUT OF DIFFUN, 41,007
cx Fl A VECTOR OF LENGTH MAX(M,N)}, QUTPUT OF MATMUL., = = 42,00
cx ALSO USED BY “ATSET AS SUBSTITUTE FOR SAVE. 43,000
Cx __ EON,VAR  VECTORS USSD 8Y MATSET, . . AL 0T
C* IND AN INDICATOR VECTOR OF LENGTH N-NL. WHEN MF=4 45,00
c* - "~ WE SOLVE FOR Y(IND(J),J)y KEEPING Y(E IND(J) o J) 46,007
Cx* COMNSTANT. NOTE THAT THIS VECTOR MUST BE 47,000
C*_ SUPPLIED EVEN WHEN MF = 3, . 48,007
C* LISTSPLIM ARRAYS PASSED TO ROUTINE RANGER R 40,00
Cx# MM " DIMENSION OF LIST.PLIM. 504 QU
e _ , e a1 C“h
C 2w g e e e sk e s 3ok SOk o Aol Stk ook ok gl etk X ¥ ****t*:&**#v***x % X »x*x****»#*#x:********* n.O\
53,000

DATA EPS /4057, HINV /1. DO/



CLCEEEE

Luslc
WRITE
353 - FORMA

NY =

NJ =
NJJ =
CALPHA
IF (M

DO 8
IND

8 Y(2

H=1
NS =
NW =
WRITE
4  FORMA

NOF A1
LFAIL

AL NMUOFATLNEWTON ‘
(6+253) MR NoNLDEL

T (V1IMF =',12," N =013, NL =*13,*

N- AL
NY#5 L
NJ-10
= 0

v—p + i s e

=1,010.2)

DEL

.\|‘

F «2Qe 4) GO TO 9
J = 1.NY

(Jy =1

vJ) 0

"9 CALL RANGER (Y,LIST, ,PLIM, MM,LFLAG'.FALSE )

0

{644)
T ('0 NS NWw ALPHA
*YOINDUJ) o J) AND YL(*)'//)
L = «TRUE.

1 o O SO
HY 48X, VERROR' y 6X,y

P

= 0

C¥  SET ALL BITS IN LFLAGL:

LFLAG

JACOB

R =1
CH ek x

‘C#  COMPUTE THE INITIAL JACOBIAN.

1 = 2147483647
=.0

C* NDIFFUN EVALUATES THE DERIVATIVES:  DY.

Cx . ROUUTI

- C*  INVER

C* THE R

catLtL
CALL
caLL
CALL
. \
CALL
+

. CALL
+
CALL
CALL
CALL
catt

. 8§ =

20 SS

S1(TAG) B
S2(T+6) e e e

HATIN3 (PW)

NE MATSET EVALUATES THE JACCBIAN MATRIX,

MATIN1=3
TS 1T, AND MATMUL MULTIPLIES THF INVERSE ON |
IGHT BY THE VECTOR DY, PLACING THE PRODUCT IN Fle

DIFFUN (T+eGsDY s YeYLyHINV)

MATSET (ODO-DYvEPSvEONvaHINVyINDQMQMFIQNQNYVI"_

PW'FIOT,VARvY'YL)

MATSET (0DO,DY,EPS,EON,yHINVyINDyMyMFL NyNYs2y =

P eF1 T WAR,Y,YL)

MATSET (HINV DY EPSsEQNyGyHINVINDsMoMFEL N, NYo3c_”

PWsFlyToVAR,Y,YL)
MATINY1 (PWY
MATIN2 (PW)

MATMUL (P DY F1)

0 . e e e e e
DD 20 J = 1M

= SS+DARS(DY(J))

WRITE (6+1) NSo+MisALPHAHySSe (Y(IND(J)sd)0d=1, WNY)

CIF INL oGTe O) WRITE (642) (YLEJIed=1,NL)

DO 10 J = 1sNY

10 Y(3,J) = =HXF1(J) L ,W;”__mw.ﬂum

IF (NL oLEe 0) GO TO 18 » : i
DO 15 J = 1sNL e e e

S(Qo OF
55,00
5(‘. 0w
57, "¢
584 N1
59, 0¢Q:

- 60.00

61, 0¢
6200
63,00
64400
1 65.0C
66.00

67,00

68, CC
69,00
70.00C
71,00
72,00
73. 00,
T4.00
75. 00
T6.,C
T7.,0C
78.CC

. 19,00

80.0¢C
81,CC
82.0C
83.CC
84,0C
85.0C
86, 0C

" 87.0C

B8, Of
89, 0(
90.0¢(
91, 0¢
92, 0(
93,0 .
Q5, 0«
S6,0¢
97, 0t
98, O
9G, ¢
100, 0¢
101.0¢
102, 01
103, C¢
1044 D
105, 0t
1C6. 01



C*
C*
C*
Cx

C %k

C*

C %k
30

15

18

25

26

40

C otk

C*
C=
C*
cx*
C*

C s

4T

im_lzéi
Cx

C*%x
Cx*
C*

. C%
s

48

C*

. Cx*
CCx. S
CALL DIFFUN (T4GesDY, Yo YL HINV) _
.$ =20 : o e e

.50

gy

Cc*

CIF (JACOB «LTe NJJ) JACOB =0 _ __ e B

YLOJ) = YLOJI=FLEJ#NY)
CONTINUE .

START WITH NEWTON METHND. IN CASE
THIS BO¥RS, SAVE RESTART INFO.

~\

DO 25 J = 14NY e
SAVE(1sd) = YUIND(J),J)
SAVE(2,d) = Y(3,J)

3]0} 26 J = 1+NL
YLSV(J) = YL(J) U : :

NEWTON = «TRUE,

PREDICTOR sTer oo "m.f e e ‘up

DO 40 J = 1.,NY
KL = INC(J)
Y(KL’J) = Y(KL.J'*Y(3’J’

BEFORE TAKING THE CORRECTOR STEP, CHECK TO SEE IF .

ANY THING HAS GONE OUT OF BOUNDS. LFAIL IS THE NUM3ER OF
CONSECUTIVE TIMES A GIVEN VARIABLE OR SET OF VARIABLES

HAS GUNE OUT OF BOUNDSe LFLAGL IS THE MOST RECENT NON-
ZERO VALUE OF LFLAG. '

CALL RANGER -(Y+LIST,PLIM,MM,LFLAG,oTRUEL) 77 777
IF (LFLAG +EQ. 0) GN TO 49

IF (IAND(LFLAGLsLFLAG) +EQs 0) GO TO 47
LFAIL = LFAIL+1 S S
GO TO 48 | '

LFAIL = O - e e

LFLAGL = LFLAG

CONTINUE

CHECK ERROR. .IF IT HAS INCREASED TNO MUCH (100-FOLDIJ,
MAKE CHANGE OF PLANs NOFAIL PREVENTS AN INFINITE LOOP:
WHEN THE CHANGES ARE MADE (AT LINE 100) NOFAIL IS SET

TO JFALSE. _ _

1F ERROR INCREASES AT BALL WHILE USING THE STRAIGHT NEWTON
METHUD (NFWTON = oTRUE.), WE CHANGE OVER TO PREDICTOR-
CORRECTOR METHND.

DO 50 J = 1M

S = S+DABRS(DY(J))
PRED = S/SS
IF (NEWTCN) GO TO 150 .
If (PRED +LT, 100) GO TO 51
IF (NUFATL) GO TO 100 .

- CONTINUE

107.0¢
108.00
109,00
110.0C

'111.00

112,20
113,00
114.00
115.0¢C
116.00
117.CC
118.0¢C
119.00
120.0C
121.00
122,00
123.0C
124,00
125,07
126.0C
127.00
128,90
129.00
130.00

"131.00

122,00
133,0C
134,00
135.CC
126,00
127,00
138,0C
139,0C
140,00
141, 0C
142,00
143.,0C
144,00
145,0C
146,00
147.00
148,0C
14G,00
15C.CC
151, CC:
162400
153,0C
154,00
155,00
156,0°C
1567.0C
158, CC
159,0C:



Cx “CHECK RATE UF CNNVERGENCE. IF SLOW (0OR IF ERROR.IS

C* INCREAS ING) s CONTINUE USING THE PRENDICTOR-CCRRECTOR
C& - METHOD WITH ALPHA=1 AND SLOWLY-INCREASING H. OTHER-
C* - WISE, INCREASE H TOWARDS 140 AND DECREASE ALPHA,
Cx* B ‘ R
IF (PRED 4LT. +498) GO TO 53 B
ALPHA = 1 _ o
R = DMINI (14300,04600/H) B
GO TD 60 , B

53 R = 460+.40/H
ALPHA = ALPHA%0.,R
GO T0 60

;_C#ﬁf*

Crert

C etk
60 DO 62 J = L,NY

SAVE(1sJd) = YCIND(J),J)

TSAVE INFORMATTON FORPOSSIBLE RESTART

62 SAVE(24d) = Y(34J)
D0 63 0 = L e NL s o e i e e e i
63 YLSVIJ) = YL T
. HOLD = H ' ' e
Cacdenen %
Cx  IF WE ARE NEAR THE STEADY STATE, RE-EVALUATE THE
Cx JACOBIAN TO GIVE ONE FINAL PUSH. -
o Ok , R ' - : R
IF (5SS oLTe 1.D0 o«ANDse JACOB oLTe NJJ) GO TO 67
. 65 JACOB = JACDB-1 o e
IF (JACOB +GT. 0) GO TO 70 :
C % %k ,
Cx IF THERE HAS BEEN TROUBLE WITH CONVERGENCE, OR IF IT HAS -
C% __ BEEN A LONG TIME SINCE THE LAST RE-EVALUATION, THE JACOBIAN =
c* 1S RE-EVALUATED PRIOR TO THE CORRECTOR STEP. : '
Cusnsg ) '
67 CALL MATSET (HINV.DY,EPS,EQN,GoHINV INDyMyMFLoNyNYy3y S
_* _ ) pW'FlgT'VARoY'YL).W_ . e
CALL MATIN3 (PW)
NW = NW+l . -

JACOB = NJ
70 CALL MATMUL (PW.DY,F1)

C Aok % ‘ ‘ . '
C*  CORRECTOR STEP IS NOW PERFORMED. Y(3,J) (PSEUDN HEY'(J))
- Cx IS SIMULTANFOUSLY SCALED IN ACCORDANCE WITH THE NEW He
L C* CIF ALPHA IS VERY SMALL, THE FFFECT OF THE CORRECTOR IS
c* SLIGHT, SO SKIP IT AND JUST SCALE.
C # % k%3

IF (ALPHA «LT. 0,01) GO TO 77
DD = 14DC/(L4HXALPHA)
DO 75 4 = 14NY
D = (FLUJI*H+Y(3,J)1%DD

KL = IND(J) .

Y(KLeJd) = Y{KL4J)=ALPHAXD
75 Y(3,J) = R%(Y(3,J)-D)
6D TO 79 S e

t

1600 Oy
161,90
162.0°
163,09,
164,C
165.0°
166. O
167,66
168.C.
169.00
170,00
172, 0

TT173.00.

174,9¢
175,01
176,90

179.0.
180,07
181,0¢
182, C¢
18300i
184,00
185, C
186401
167,07
189,0:
190,
191. 0
192,C7
193, 0¢

- 194. a(

195, ¢
196,400
197.0
168, 0 ¢
199,
20C. !
201, 0!
202.0°
204, 0
205,07
206, U
2070(‘
208 0
209.0(
210, 0
211, 0.
212,01

4



17 = HH = =H=R e e e f 213,r¢
DO 78 J = 1,4NY , T 214,
78 Y(3,J) = HH*F1(J) S S 215,0°
79  CONTINUS L 21640
IF (NL +LE. 0) GO TO 90 211,00

4VI
‘v

: DO 80 J 14NL 218,07
80  YL(J) YLOJY=FLOJ#NY) 218,
90 SS = S ' ' 220.0¢
NS = NS+1 ‘ = S 221.0"
WRITE (641) NSoNW ALPHAZH SSo(Y(IND(J)yJ)eJ=1,4NY) . 222.0 .

1 FORMAT (/14413+4F54242D1142,7D1444/(35X,7014,4))  223,0.
IF (NL «GTe D) WKITE (642) (YL{J),J=1,NL) . 224,00

2 FORMAT (35X+7D14a4) : 225400
H = H%R . ' ; o E T22640¢
NOFAIL = TRUE, S O 227,97
IF (LFAIL «GT. 20) 6O TO 350 > . 228400
IF (NS 4GEe. NSENDY GO TO 200 . . e 229.0¢
IF (SS «GT. DEL) GO TO 30 ‘ - ' 230,0°

. KFLAG = NS e e e e 231400
- RETURN . S . 232.C¢C
100 CONTINUE o e . 233400
ix | , T , 234,00
C*  THE PREDICTER LOOP BLEW UPe ALPHA RETURNS TO 140, H IS - 235,00
C*  REDUCED, THE SAVED VALUES NF Y & YL ARE RESTORED, AND 236,07
Cx* THE STEP IS BETRIFD, IN ADDITION, WE SIGMAL FOR JACOBIAN 237,00
C*  RE-EVALUATICN UNLESS THIS HAS BLEN DONE RECENTLY, . © 238,00
C* e 239407
ALPHA = 1,0 N 2"’0. ¢

IF (JACGB oLTe NJJ) JACOB = 0 - 2,00
DMAX1(04500,04200/HOLD) ' : 242,00
CHOLD*R ' ' : 243,00

e e e —— S - — - —— - - T NI T AT e oA s 24[*. O ,:‘

0 110 J = 1,NY
Y(IND(J),J) = SAVE(1,J) o a2as.00
110 Y(3,J) SAVE(2,J) %R ‘ . ' 246,00

~_ DO 115 J 1y NL 241000
115 YL(J) = YLSV(J) : 248,00
NOFAIL = oFALSEs U e e 249400

_ GO TO 30 - 250,00
Cx . e tee ... 251400

C* . IF NEWTON METHND IS FAILING, 252,00
C*_ _  WE MUST SET UP FOR PREUCICTOR-CORRECTOR SCHEME. -~ 252,00
Cx 254,07
150 IF (PRED oLT. 0.95) GO TO 60 e 255,00
. WRITE (645) SolYUIND(J)eJd)eJ=14NY) T 256600
5 FORMAT ('ONFWTON FAILED:Z®49XeD1142,7D1444/(35X,TD14s4))  257.0C
IF (NL «GTe 0) WRITE (642) (YL(J)eJd=1,NL) 258,00

H = «Cl .l 259.0C

ALPHA = 1 260400
. R=001 e e e e e e e 261.CC
JACCB = 0 . o T T 262400
NEWTON = oFALSE. o S 267,00
_ GO TO 1C5 o o AP ' 264401
©.200 KFLAG = =1 . L L. 26500

o

R
H
165 0O

W oH



L4

\NQITE (6e¢333) (JeDY(J)od=14M) ; 266,0.
333 FURMAT (*=DY:'/(15,0D2066)) | 267,07
PETUPN ' 268,00
350 KFLAG = -3 269,0¢
RETURN _ . 270, 0.
END i 271400

4



E, Examples
’ ‘ Some of the systems used to test DIFMF'3 ‘fbllow. Pseudo-random

-6

starting values were used, t =0, and the conv.e'rg.en‘c.e criterion was § = 10 .

- Most of the’sé systems aré purély algébraic. "I'he' last thr'eel include

restricted variables. Solutions to thés_'e' often také lo_ngér'bécause variables
,.go out of range and af‘e ‘s_hovéd-aromd a lot by RANGER béf_dré they settle

down. System (3) is linear, so the solution was obtained quite swiftly.

' 2 2
1, : - g + 3
. Wy 4y, -y ey, 3,

. . 2 l _ " 2 o

R ST PIE SRR S B PO '

.Startilng values: ¥y, = -2.,057 v, = =7.503

Solution obtained: ¥, = 3.339 V, = -2.984
NS = 2k, W =5

2 - 2 2

2. y;+y2+y3_-5_

Yty -1
¥y  + Yy - 3

Starting values: v, = -2.057 ¥, = -7.503 vy F -4.83L
Solution obtained: y; = 1.667 Y, = -.6667 vy = 1.333

NS = 28, NW = L



Vgt ly,

W, * by

t, = sin(t)

Starting values:

f Solution obtained: y

NS =2, NW =2

O

1 - :
5 vﬁ-yl + Yo - 1

3

2y1 + ln(y2 + .8) - .

Restriction:

Starting values:

Solution obtained:

NS = 27, NW = 5

vy = “2.057, ¥y = -1.503, v,

-

=L4.834

9.308

wy = bAT3, = -6.2k0, g

L = y2 = y3 = yglg= y22;= y23_ 0.000

2 <y 22,5, -8

o
|__I
T

—'914’33’ y2 = 3'951

= 5,394, ¥, = .03705



2 2 o

3
tan(yl) *yp - 3y9il

- .5

sin(zyj)y— 1y, * 2y2i5- 1

vyt yil.- 1.5

_;Restriction:
.Starting.valﬁés}'
"Solution obtainéd}

NS = 116, NW = 1h

2 . 2 .
Vo ¥ ¥y ¥, - 10

By *¥, -3
Restriction:

Starting values:

‘Solution obtained:

/2 Sy < 1/2,¥, > 0

¥y r.2983,fyé = b.751, yh = -h.83k

Yy = ,785&, yp = 1.000, ¥, = .5000

y 2

I

1

y; = =2.05T, y, = -T.503, y, = -L4.83h,
yﬁl = L 473, W, = —6.2hg

y, = -2.000, y, = -1.000, y; = 2.000,

yﬁl = —27000, y22 = 5.000




