coo-1469-0205

MASTER

DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN URBANA, ILLINOIS 61801

AN OPERATING MANUAL FOR DIFMF3*

A Program to Solve Initial Conditions in Simultaneous Differential Equations

Ъу

Bill van Melle

NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

*Supported in part by research grant US AEC AT(11-1)1469

UIUCDCS-F-72-870 April 1972

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

The Steady-State Package (B. van Melle)

DIFMF3 is a subroutine used to solve the steady-state problem of ordinary differential equations. It will operate on a mixture of differential and algebraic equations, and can be used merely to solve a system of simultaneous equations, which it handles in the same manner. To solve the system, a combination of the Newton method and a first-order predictor-corrector method is used.

The Method

3.1.3

The problem is presented to us in the form

$$f(y, y', t) = 0.$$

However, for the steady-state problem, t is constant, and in each component of the vectors y and y' either the y or the y' is held constant, so the problem can be written

$$f(\mathbf{y}) = 0 \tag{1}$$

where the vector y contains the unknowns.

To solve (1) we invent an independent variable s, and attempt to integrate from 0 to ∞ . The exact solution of (2) is

 $f = f(y_0)e^{-s}$

 $\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\mathbf{s}} = -\mathbf{f}$

which approximates f = 0 as s becomes large. Hopefully, a reasonable solution is obtained while s is still finite.

To obtain an expression for y' = dy/ds, apply the chain rule to (2)

$$\frac{\partial f}{\partial y} \cdot \frac{dy}{ds} = -f(y)$$

$$y' = -(\frac{\partial f}{\partial y})^{-1} f(y) \qquad (3)$$

We use Euler's method for a predictor:

 $y_n = y_{n-1} + hy_{n-1}'$ (h the step size) (4)

For a corrector we use the formula:

$$y_n = y_{n-1} + h(\alpha y_n' + (1-\alpha) y_{n-1}')$$
 (5)

with $0 \le \alpha \le 1$. When $\alpha = 0$ the corrector has no effect, and when $\alpha = 0$ and h = 1, the entire method is simply Newton's method

 $y_n = y_{n-1} - (\frac{\partial f}{\partial y})^{-1} f(y_{n-1}).$

Rewriting (5) and substituting for y',

$$y_n - h\alpha y'_n = y_{n-1} + h(1-\alpha) y'_{n-1}$$

$$y_n + h\alpha (\frac{\partial f}{\partial y})^{-1} f(y_n) = y_{n-1} + hy'_{n-1} - \alpha hy'_{n-1}$$

Now write $y_n = y_n^{(0)} + \Delta y_n$, where $y_n^{(0)}$ is the predicted value from (4) and Δy_n is what we seek an expression for.

$$y_n^{(0)} + \Delta y_n + h\alpha (\frac{\partial f}{\partial y})^{-1} f(y_n^{(0)} + \Delta y_n) = y_n^{(0)} - \alpha hy_{n-1}^{'}$$

(2)

Use a first-order Taylor expansion to approximate $f(y_n^{(0)} + \Delta y_n)$:

$$\Delta y_{n} + h\alpha \left(\frac{\partial f}{\partial y}\right)^{-1} \left[f(y_{n}^{(0)}) + \left(\frac{\partial f}{\partial y}\right) \Delta y_{n}\right] = -\alpha hy_{n-1}^{\prime}$$

$$(1+h\alpha) \Delta y_{n} = -h\alpha \left(\frac{\partial f}{\partial y}\right)^{-1} f(y_{n}^{(0)}) - \alpha hy_{n-1}^{\prime}$$

$$\Delta y_{n} = -\frac{\alpha}{1+h\alpha} \left[h(\frac{\partial f}{\partial y})^{-1} f(y_{n}^{(0)}) + hy_{n-1}^{\prime}\right]$$
(5)

To obtain a similar expression for hy_n^1 , approximate (3) with a first-order Taylor expansion and substitute from (5)

$$\begin{aligned} hy'_{n} &= -h(\frac{\partial f}{\partial y})^{-1} f(y_{n}) \\ &= -h(\frac{\partial f}{\partial y})^{-1} (f(y_{n}^{(0)}) + (\frac{\partial f}{\partial y}) \Delta y_{n}) \\ &= -h(\frac{\partial f}{\partial y})^{-1} f(y_{n}^{(0)}) - h[-\frac{\alpha}{1+h\alpha} [h(\frac{\partial f}{\partial y})^{-1} f(y_{n}^{(0)}) + hy'_{n-1}]] \\ &= -\frac{1}{1+\alpha h} [h(\frac{\partial f}{\partial y})^{-1} f(y_{n}^{(0)})] + (\frac{\alpha h}{1+h\alpha}) hy'_{n-1} \\ &= hy'_{n-1} - \frac{1}{1+\alpha h} [h(\frac{\partial f}{\partial y})^{-1} f(y_{n}^{(0)}) - hy'_{n-1}] \end{aligned}$$

Thus, the corrector step can be written

$$\Delta = \frac{1}{1+h\alpha} \left[h\left(\frac{\partial f}{\partial y}\right)^{-1} f\left(y_n^{(0)}\right) + hy_{n-1}' \right]$$
$$y_n = y_n^{(0)} - \alpha \Delta$$
$$hy_n' = hy_{n-1}' - \Delta$$

By varying α between 0 and 1 we can alternate between the Newton method (if h is near 1) and this predictor-corrector method, hopefully choosing the more effective scheme for the situation. The Newton method is quite efficient when in the neighborhood of a solution, but can be erratic elsewhere, while the other method generally finds a solution, but very slowly.

DIFMF3

A. <u>Use</u>

The user supplies several subroutines to be used by DIFMF3. The system to be solved is defined by the routines S1, S2, and DIFFUN. S1 and S2 perform computations involving only time and global variables, which remain constant during solution of this problem (these routines may be dummy). DIFFUN consists of equations of the form DY(J) = Jth equation. The vector DY then holds the values of the functions f(y, y', t) described in the previous section. The variables y are separated into linear variables which appear without derivatives, stored in the vector YL, and variables with derivatives, which are stored in the first row of an array Y (in Y(1,*)) and their first derivatives with respect to time stored in the second row (Y(2,*)).

A subroutine MATSET computes the Jacobian matrix $(\frac{\partial f}{\partial y})$, and routine MATINV computes its inverse. MATMUL performs the multiplication $(\frac{\partial f}{\partial y})^{-1} f(y)$. The present DIFMF3 uses routines which utilize sparse techniques, but ordinary dense matrix routines could also be used.

If any of the equations in DIFFUN inherently places a restriction on the range of values y can assume, e.g. a square-root function, another routine, RANGER, must be supplied. This routine checks the restricted variables. If they are out of bounds, they are adjusted to legal values and a return flag is set to reflect this.

In the simplest form of the problem, the derivatives in Y(2,*) * are all set to 0, and some sort of initial guess is given to the variables in Y(1,*) and YL(*). The user may wish instead to give a Y(1,J) a constant value and solve for its derivative Y(2,J). The information about which variables to solve for he supplies in the vector IND, whose J-th component is 1 or 2, if he wants to solve for Y(1,J) or Y(2,J), respectively.

B. Strategy

There are two major items of concern in writing DIFMF3: (1) how to vary α and h to achieve a solution as efficiently as possible, (2) how often to evaluate the Jacobian $\partial f/\partial y$.

1. We have seen that $\alpha = 0$, h = 1, corresponds to the Newton method, while $\alpha = 1$ is the more cautious integration procedure. The former method is quite effective for systems which are linear or nearly so, and also for most systems when near a solution; however, it is potentially quite erratic in other situations, where the latter method must be used. In order to cater to those systems best solved by Newton, we start out immediately with $\alpha = 0$, h = 1, and monitor convergence. We continue as long as the "error" ||f(y)|| decreases.

If at any point the error increases, we switch over to the other method, setting $\alpha = 1$ and h small, and continue to monitor convergence. At each step, h is slightly increased. If the error starts reducing favorably, we increase h more rapidly and start phasing out the corrector step by reducing α . If the error later increases, we revert to the $\alpha = 1$ and small h method. The rate used to vary α and h was empirically determined.

2. Computing and inverting the Jacobian is a fairly timeconsuming process, so it is desirable to avoid it whenever possible. Fortunately, the Jacobian does not usually change too rapidly, so we can take several steps with the same one. The present strategy calls for recomputing the Jacobian every NY*5 steps (NY the number of columns in Y) unless the situation requires otherwise. Such situations include: a large increase in ||f(y)||, variables going out of bounds, and apparently imminent approach of a solution. The recomputation occurs in the last case because a "fresh" Jacobian speeds convergence considerably when near a solution.

· ·

(Symbol used in flowchart and/or previous discussion)	Symbol used in DIFMF3	Explanation
	•	· · ·
α .	ALPHA	See part II
Δ	D	See part II
δ	DEL	Convergence criterion: equations are considered satisfied when S < DEL
f(y)	DY	Vector containing the values of the functions $\underline{f}(\underline{y})$
	EPS	Passed to MATSET
	EQN	Passed to MATSET
fl	Fl	Vector containing the product $(\partial f/\partial y)^{-1} f(y)$
	G	An array of global variables
h	H	The step size
	HINV	Held constant at 1.0 for this program
	HOLD	Value of H associated with the saved values of $Y(3,*)$
	IND	A vector indicating which of the Y variables to solve for
J	JACOB	A flag indicating when to re-evaluate the Jacobian.
		Decremented at each step, when it becomes zero or negative
		the Jacobian is computed and JACOB ← NJ.
MATINV	MATIN1 MATIN2 MATIN3	Subroutines which divide up the labor of computing the inverse Jacobian.
KFLAG	KFLAG	A return code (see program listing)

•

đ,

LFAIL

LFAIL

LFLAG

LFLAG1

LIST

M

MF

MM

Ν

NEWTON

NJ

NJJ

њ. . Number of times a given set of variables is found out of bounds. When excessive causes termination of DIFMF3.

Return code from RANGER. Bits set correspond to variables out of bounds.

Previous non-zero value of LFLAG. It is AND'ed with LFLAG to see if the same variables are guilty as before.

Describes bounds on Y variables; used by RANGER.

Number of equations in DIFFUN.

Method indicator (see program listing).

Dimension of LIST, PLIM; used by RANGER

NL + NY = total number of variables. Usually M = N.

A flag indicating whether we are still performing the NEWTON method which started the routine

The Jacobian is evaluated every NJ steps, barring trouble.

NJ-5. A comparison of NJ and NJJ is made to avoid too frequent evaluation of the Jacobian even in trouble situations.

Number of variables in YL.

Flag used to avoid a continuous loop when S suddenly increases.

The step number, incremented at each step.

The maximum number of steps to attempt before termination.

NEWTON

NJ

NOFAIL

NS

NSEND

NOFAIL

NL

NS

NSEND

Number of columns in Y. NY PLIM Contains bounds used by RANGER. PRED S/SS. An indication of the rate of convergence. PW Contains the inverse Jacobian. R The factor by which H is changed at each step; used to scale Y(3, *). М = Σ DY(i), S ||f(y)|| i=1 a measure of the distance from the solution. SS Value of S from previous step. SAVE An array used to save the variables Y(IND(J), J), Y(3,J) in case of mishap. Т Time and remainder variables, constants to DIFMF3. Used by MATSET. VAR Y An array containing in Y(1,*) dependent variables Y(2,*) their derivatives with respect to t Y(3,*) hy' Y(IND(*),*) corresponds to y. YL An array of variables appearing only linearly and without derivatives. YSLV A vector used to save the YL variables.

Number of calls to MATSET.

NW .

red

R

S

SS

t

y,hy'

уl

05/360 FORTRAN H

	арантты⊑		
	SKUULING	DIFMF3 (DEL.DY, EQN, F1, G, IND, KFLAG, LIST, M, MF, MM, N, NL, NSEDD, PLIM, PW, SAVE, T, VAR, Y, YL, YLSV)	2.
+		= 1 + 0 - 7	3.
	PL1011 R	EAL*8 (A=M, G=Z) ************************************	*** 4.
	* * * * * * * * * *		5.
ς 		E DIEMES SOLVES THE STEADY-STATE PROBLEM.	6.
< <u>∶</u> TH ≭TH		TERS HAVE THE FOLLOWING MEANINGS:	7.
Υ. Π. Υ	E PANAML		8.
	M	THE NUMBER OF EQUATIONS.	9.
	N	THE TOTAL NUMBER OF VARIABLES.	10.
	NH	THE NUMBER OF LINEAR VARIABLES.	11.
	DEL	CONVERGENCE CRITERION. ITERATION ENDS WHEN	12.
		$SIM(IDY(I)) \leq DEL$	13.
k .	NSEND	THE MAXIMUM NUMBER OF STEPS TO BE ATTEMPTED.	14.
	KFLAG	A COMPLETION CODE WITH THE FOLLOWING MEANINGS:	15.
¢		>0 CONVERGENCE WAS ACHIEVED IN KELAG STEPS.	16.
¢	•	-1 CONVERGENCE NOT ACHIEVED IN NSEND STEPS.	18.
*		-3 VARIABLE(S) REPEATEDLY GO OUT OF BOUNDS.	
4	£ - 3	TRY NEW STARTING VALUES.	20.
4	MF	THE METHOD INDICATOR.	21.
¢		IF MF=4, SEE DESCRIPTION OF IND.	22.
*	·	IF ME=3, THE VECTOR IND IS LOADED WITH 1 IN	23.
*		EACH ELEMENT AND Y(2, J) IS CLEARED. THEN	24.
4.			<u> </u>
	an in the second	MF IS SET TO 4.	25.
			25.
* D1	MENSION	T(1),G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1)	25.
* DI	MENSION	T(1),G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1) PW(1),DY(1),F1(1),PLIM(1)	25. 26 27. 28.
* DI DI IN	MENSION	T(1),G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1)	25. 26" 27. 28. 29.
× DI DI IN	MENSION	T(1).G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1) PW(1).DY(1).F1(1).PLIM(1) VAR(3,2,1),EON(1),IND(1).LIST(2,1)	25. 26". 27. 28. 29. 30.
DI IN *	MENSION ITEGER#2	T(1).G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1) PW(1).DY(1).F1(1).PLIM(1) VAR(3,2,1),EON(1),IND(1).LIST(2,1) THE INDEPENDENT VARIABLE. AN ARRAY OF GLOBAL VARIABLES.	25. 26" 27. 28. 29. 30. 31.
* DI DI IN * *	MENSION	T(1).G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1) PW(1).DY(1).F1(1).PLIM(1) VAR(3,2,1),EON(1),IND(1).LIST(2,1) THE INDEPENDENT VARIABLE. AN ARRAY OF GLOBAL VARIABLES. A 7 BY N-NI ARRAY. Y(1,J) CONTAINS THE DEPENDENT	25. 26" 27. 28. 29. 30. 31. 32.
* DI DI IN * * *	MENSION ITEGER#2	T(1),G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1) PW(1),DY(1),F1(1),PLIM(1) VAR(3,2,1),EON(1),IND(1),LIST(2,1) THE INDEPENDENT VARIABLE. AN ARRAY OF GLOBAL VARIABLES. A 7 BY N-NL ARRAY. Y(1,J) CONTAINS THE DEPENDENT VARIABLES, Y(2,J) CONTAINS THEIR DERIVATIVES.	25. 26". 27. 28. 29. 30. 31. 32. 33.
* DI DI IN * * * *	MENSION ITEGER#2	T(1).G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1) PW(1).DY(1).F1(1).PLIM(1) VAR(3,2,1).EON(1).IND(1).LIST(2,1) THE INDEPENDENT VARIABLE. AN ARRAY OF GLOBAL VARIABLES. A 7 BY N-NL ARRAY. Y(1,J) CONTAINS THE DEPENDENT VARIABLES, Y(2,J) CONTAINS THEIR DERIVATIVES. THE CALLER MUST SUPPLY INITIAL VALUES FOR	25. 26". 27. 28. 29. 30. 31. 32. 33. 34.
* DI DI IN * * * *	MENSION ITEGER*2 T G Y	T(1).G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1) PW(1).DY(1).F1(1).PLIM(1) VAR(3,2,1),EON(1),IND(1).LIST(2,1) THE INDEPENDENT VARIABLE. AN ARRAY OF GLOBAL VARIABLES. A 7 BY N-NL ARRAY. Y(1,J) CONTAINS THE DEPENDENT VARIABLES, Y(2,J) CONTAINS THEIR DERIVATIVES. THE CALLER MUST SUPPLY INITIAL VALUES FOR Y(1,J) AND, IF MF=4, Y(2,J).	25. 26". 27. 28. 29. 30. 31. 32. 33. 34. 35.
* DI DI IN * * * * * *	MENSION ITEGER*2 T G Y	T(1).G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1) PW(1).DY(1).F1(1).PLIM(1) VAR(3,2,1),EON(1),IND(1).LIST(2,1) THE INDEPENDENT VARIABLE. AN ARRAY OF GLOBAL VARIABLES. A 7 BY N-NL ARRAY. Y(1,J) CONTAINS THE DEPENDENT VARIABLES, Y(2,J) CONTAINS THEIR DERIVATIVES. THE CALLER MUST SUPPLY INITIAL VALUES FOR Y(1,J) AND, IF MF=4, Y(2,J). AN APRAY OF NL LINEAR VARIABLES.	25. 26". 27. 28. 29. 30. 31. 32. 33. 34. 35. 36.
* DI DI IN * * * *	MENSION ITEGER*2 T G Y YL	T(1).G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1) PW(1).DY(1).F1(1).PLIM(1) VAR(3,2,1),EON(1),IND(1).LIST(2,1) THE INDEPENDENT VARIABLE. AN ARRAY OF GLOBAL VARIABLES. A 7 BY N-NL ARRAY. Y(1,J) CONTAINS THE DEPENDENT VARIABLES, Y(2,J) CONTAINS THEIR DERIVATIVES. THE CALLER MUST SUPPLY INITIAL VALUES FOR Y(1,J) AND, IF MF=4, Y(2,J). AN ARRAY OF NL LINEAR VARIABLES. AN ARRAY OF ALLEAST 2#(N-NL) VARIABLES.	25. 26". 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37.
* DI DI IN * * * *	MENSION ITEGER*2 T G Y YL	T(1).G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1) PW(1).DY(1).F1(1).PLIM(1) VAR(3,2,1),EON(1),IND(1).LIST(2,1) THE INDEPENDENT VARIABLE. AN ARRAY OF GLOBAL VARIABLES. A 7 BY N-NL ARRAY. Y(1,J) CONTAINS THE DEPENDENT VARIABLES, Y(2,J) CONTAINS THEIR DERIVATIVES. THE CALLER MUST SUPPLY INITIAL VALUES FOR Y(1,J) AND, IF MF=4, Y(2,J). AN APRAY OF NL LINEAR VARIABLES. AN APRAY OF AT LEAST 2#(N-NL) VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES.	25. 26". 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38.
* DI DI IN * * * * * * * * * *	MENSION ITEGER*2 T G Y YL	T(1).G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1) PW(1).DY(1).F1(1).PLIM(1) VAR(3,2,1),EON(1),IND(1).LIST(2,1) THE INDEPENDENT VARIABLE. AN ARRAY OF GLOBAL VARIABLES. A 7 BY N-NL ARRAY. Y(1,J) CONTAINS THE DEPENDENT VARIABLES, Y(2,J) CONTAINS THEIR DERIVATIVES. THE CALLER MUST SUPPLY INITIAL VALUES FOR Y(1,J) AND, IF MF=4, Y(2,J). AN APRAY OF NL LINEAR VARIABLES. AN APRAY OF AT LEAST 2#(N-NL) VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES.	25. 26". 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38.
* DI DI IN * * * * * * * * * * * *	MENSION ITEGER#2 T G Y YL SAVE YLSV PW	T(1).G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1) PW(1).DY(1).F1(1).PLIM(1) VAR(3,2,1),EON(1),IND(1).LIST(2,1) THE INDEPENDENT VARIABLE. AN ARRAY OF GLOBAL VARIABLES. A 7 BY N-NL ARRAY. Y(1,J) CONTAINS THE DEPENDENT VARIABLES, Y(2,J) CONTAINS THEIR DERIVATIVES. THE CALLER MUST SUPPLY INITIAL VALUES FOR Y(1,J) AND, IF MF=4, Y(2,J). AN APRAY OF NL LINEAR VARIABLES. AN APRAY OF AT LEAST 2*(N-NL) VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES.	25. 26". 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40.
* DI DI IN * * * * * * * * * * * * * * * *	MENSION ITEGER#2 T G Y YL SAVE YLSV PW	T(1).G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1) PW(1).DY(1).F1(1).PLIM(1) VAR(3,2,1),EON(1),IND(1).LIST(2,1) THE INDEPENDENT VARIABLE. AN ARRAY OF GLOBAL VARIABLES. A 7 BY N-NL ARRAY. Y(1,J) CONTAINS THE DEPENDENT VARIABLES, Y(2,J) CONTAINS THEIR DERIVATIVES. THE CALLER MUST SUPPLY INITIAL VALUES FOR Y(1,J) AND, IF MF=4, Y(2,J). AN APRAY OF NL LINEAR VARIABLES. AN APRAY OF AT LEAST 2*(N-NL) VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES.	25. 26". 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40.
* DI DI IN * * * * * * * * * * * * * *	MENSION ITEGER#2 T G Y Y SAVE YLSV PW DY F1	T(1),G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1) PW(1),DY(1),F1(1),PLIM(1) VAR(3,2,1),EON(1),IND(1),LIST(2,1) THE INDEPENDENT VARIABLES. A 7 BY N-NL ARRAY. Y(1,J) CONTAINS THE DEPENDENT VARIABLES, Y(2,J) CONTAINS THEIR DERIVATIVES. THE CALLER MUST SUPPLY INITIAL VALUES FOR Y(1,J) AND, IF MF=4, Y(2,J). AN APRAY OF NL LINEAR VARIABLES. AN APRAY OF AT LEAST 2*(N-NL) VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. A SINGLE+PRECISION VECTOR WHICH HOLDS THE INVERSE JACOBIAN. A VECTOR OF LENGTH M, OUTPUT OF DIFFUN. A VECTOR OF LENGTH MAX(M,N), OUTPUT OF MATMUL.	25. 26". 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43.
* DI DI IN * * * * * * * * * * * * * * * *	MENSION ITEGER#2 T G Y Y SAVE YLSV PW DY F1	T(1),G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1) PW(1),DY(1),F1(1),PLIM(1) VAR(3,2,1),EON(1),IND(1),LIST(2,1) THE INDEPENDENT VARIABLES. A 7 BY N-NL ARRAY. Y(1,J) CONTAINS THE DEPENDENT VARIABLES, Y(2,J) CONTAINS THEIR DERIVATIVES. THE CALLER MUST SUPPLY INITIAL VALUES FOR Y(1,J) AND, IF MF=4, Y(2,J). AN APRAY OF NL LINEAR VARIABLES. AN APRAY OF AT LEAST 2*(N-NL) VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. A SINGLE+PRECISION VECTOR WHICH HOLDS THE INVERSE JACOBIAN. A VECTOR OF LENGTH M, OUTPUT OF DIFFUN. A VECTOR OF LENGTH MAX(M,N), OUTPUT OF MATMUL.	25. 26". 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43.
* DI DI IN * * * * * * * * * * * * * * * *	MENSION ITEGER#2 T G Y YL SAVE YLSV PW DY F1 EON.VAR	T(1),G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1) PW(1),DY(1),F1(1),PLIM(1) VAR(3,2,1),EON(1),IND(1),LIST(2,1) THE INDEPENDENT VARIABLE. AN ARRAY OF GLOBAL VARIABLES. A 7 BY N-NL ARRAY. Y(1,J) CONTAINS THE DEPENDENT VARIABLES, Y(2,J) CONTAINS THEIR DERIVATIVES. THE CALLER MUST SUPPLY INITIAL VALUES FOR Y(1,J) AND, IF MF=4, Y(2,J). AN APRAY OF NL LINEAR VARIABLES. AN APRAY OF AT LEAST 2#(N-NL) VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. A SINGLE-PRECISION VECTOR WHICH HOLDS THE INVERSE JACOBIAN. A VECTOR OF LENGTH M. OUTPUT OF DIFFUN. A VECTOR OF LENGTH MAX(M,N), OUTPUT OF MATMUL, ALSO USED BY MATSET AS SUBSTITUTE FOR SAVE. VECTORS USED BY MATSET.	25. 26". 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44.
* DI DI IN * * * * * * * * * * * * * * * *	MENSION ITEGER#2 T G Y YL SAVE YLSV PW DY F1 EON.VAR	T(1),G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1) PW(1),DY(1),F1(1),PLIM(1) VAR(3,2,1),EON(1),IND(1),LIST(2,1) THE INDEPENDENT VARIABLE. AN ARRAY OF GLOBAL VARIABLES. A 7 BY N-NL ARRAY. Y(1,J) CONTAINS THE DEPENDENT VARIABLES, Y(2,J) CONTAINS THEIR DERIVATIVES. THE CALLER MUST SUPPLY INITIAL VALUES FOR Y(1,J) AND, IF MF=4, Y(2,J). AN APRAY OF NL LINEAR VARIABLES. AN APRAY OF AT LEAST 2#(N-NL) VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. A SINGLE-PRECISION VECTOR WHICH HOLDS THE INVERSE JACOBIAN. A VECTOR OF LENGTH M. OUTPUT OF DIFFUN. A VECTOR OF LENGTH MAX(M,N), OUTPUT OF MATMUL, ALSO USED BY MATSET AS SUBSTITUTE FOR SAVE. VECTORS USED BY MATSET.	25. 26". 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44.
* DI DI IN * * * * * * * * * * * * * * * * * * *	MENSION ITEGER#2 T G Y YL SAVE YLSV PW DY F1 EON.VAR IND	<pre>T(1).G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1) PW(1).DY(1).F1(1).PLIM(1) VAR(3,2,1),EON(1),IND(1).LIST(2,1) THE INDEPENDENT VARIABLE. AN ARRAY OF GLOBAL VARIABLES. A 7 BY N-NL ARRAY. Y(1,J) CONTAINS THE DEPENDENT VARIABLES, Y(2,J) CONTAINS THEIR DERIVATIVES. THE CALLER MUST SUPPLY INITIAL VALUES FOR Y(1,J) AND, IF MF=4, Y(2,J). AN APRAY OF NL LINEAR VARIABLES. AN APRAY OF AT LEAST 2*(N-NL) VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. A SINGLE+PRECISION VECTOR WHICH HOLDS THE INVERSE JACOBIAN. A VECTOR OF LENGTH M. OUTPUT OF DIFFUN. A VECTOR OF LENGTH MAX(M,N). OUTPUT OF MATMUL. ALSO USED BY MATSET AS SUBSTITUTE FOR SAVE. VECTORS USED BY MATSET. AN INDICATOR VECTOR OF LENGTH N-NL. WHEN MF=4 WE SOLVE FOR Y(IND(J),J), KEEPIND (Y3-IND(J),J)</pre>	25. 26". 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 44.
* DI DI IN * * * * * * * * * * * * * * * * * * *	MENSION ITEGER#2 T G Y YL SAVE YLSV PW DY F1 EON.VAR IND	<pre>T(1).G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1) PW(1).DY(1).F1(1).PLIM(1) VAR(3,2,1),EON(1),IND(1).LIST(2,1) THE INDEPENDENT VARIABLE. AN ARRAY OF GLOBAL VARIABLES. A 7 BY N-NL ARRAY. Y(1,J) CONTAINS THE DEPENDENT VARIABLES, Y(2,J) CONTAINS THEIR DERIVATIVES. THE CALLER MUST SUPPLY INITIAL VALUES FOR Y(1,J) AND, IF MF=4, Y(2,J). AN APRAY OF NL LINEAR VARIABLES. AN APRAY OF AT LEAST 2*(N-NL) VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. A SINGLE+PRECISION VECTOR WHICH HOLDS THE INVERSE JACOBIAN. A VECTOR OF LENGTH M. OUTPUT OF DIFFUN. A VECTOR OF LENGTH MAX(M,N). OUTPUT OF MATMUL. ALSO USED BY MATSET AS SUBSTITUTE FOR SAVE. VECTORS USED BY MATSET. AN INDICATOR VECTOR OF LENGTH N-NL. WHEN MF=4 WE SOLVE FOR Y(IND(J),J), KEEPIND (Y3-IND(J),J)</pre>	25. 26". 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 44.
* DI DI IN * * * * * * * * * * * * * * * * * * *	MENSION ITEGER#2 T G Y YL SAVE YLSV PW DY F1 EON.VAR IND	<pre>T(1).G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1) PW(1).DY(1).F1(1).PLIM(1) VAR(3,2,1),EON(1),IND(1).LIST(2,1) THE INDEPENDENT VARIABLE. AN ARRAY OF GLOBAL VARIABLES. A 7 BY N-NL ARRAY. Y(1,J) CONTAINS THE DEPENDENT VARIABLES, Y(2,J) CONTAINS THEIR DERIVATIVES. THE CALLER MUST SUPPLY INITIAL VALUES FOR Y(1,J) AND, IF MF=4, Y(2,J). AN APRAY OF NL LINEAR VARIABLES. AN APRAY OF AT LEAST 2*(N-NL) VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. A SINGLE+PRECISION VECTOR WHICH HOLDS THE INVERSE JACOBIAN. A VECTOR OF LENGTH M. OUTPUT OF DIFFUN. A VECTOR OF LENGTH MAX(M,N). OUTPUT OF MATMUL. ALSO USED BY MATSET AS SUBSTITUTE FOR SAVE. VECTORS USED BY MATSET. AN INDICATOR VECTOR OF LENGTH N-NL. WHEN MF=4 WE SOLVE FOR Y(IND(J),J), KEEPIND (Y3-IND(J),J)</pre>	25. 26". 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 44.
* DI DI IN * * * * * * * * * * * * * * * * * * *	MENSION ITEGER#2 T G Y YL SAVE YLSV PW DY F1 EON.VAR IND	<pre>T(1).G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1) PW(1).DY(1).F1(1).PLIM(1) VAR(3,2,1),EON(1),IND(1).LIST(2,1) THE INDEPENDENT VARIABLE. AN ARRAY OF GLOBAL VARIABLES. A 7 BY N-NL ARRAY. Y(1,J) CONTAINS THE DEPENDENT VARIABLES, Y(2,J) CONTAINS THEIR DERIVATIVES. THE CALLER MUST SUPPLY INITIAL VALUES FOR Y(1,J) AND, IF MF=4,Y(2,J). AN APRAY OF NL LINEAR VARIABLES. AN APRAY OF AT LEAST 2#(N-NL) VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. A SINGLE-PRECISION VECTOR WHICH HOLDS THE INVERSE JACOBIAN. A VECTOR OF LENGTH M. OUTPUT OF DIFFUN. A VECTOR OF LENGTH MAX(M,N), OUTPUT OF MATMUL. ALSO USED BY MATSET AS SUBSTITUTE FOR SAVE. VECTORS USED BY MATSET. AN INDICATOR VECTOR OF LENGTH N-NL. WHEN MF=4 WE SOLVE FOR Y(IND(J),J), KEEPING Y(3-IND(J),J) CONSTANT. NOTE THAT THIS VECTOR MUST BE SUPPLIED EVEN WHEN MF = 3. IM ARRAY PASSED TO ROUTINE RANGER.</pre>	25. 26". 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 44. 45. 44. 45. 45. 45. 46. 45. 46. 45. 46. 45. 46. 45. 46. 45. 46. 47. 48. 46. 47. 48. 46. 47. 48. 46. 47. 48. 46. 47. 48. 46. 47. 47. 47. 47. 47. 47. 47. 47. 47. 47
* DI DI IN * * * * * * * * * * * * * * * * * *	MENSION ITEGER#2 T G Y YL SAVE YLSV PW DY F1 EON.VAR IND	<pre>T(1).G(1).Y(7,1).YL(1).SAVE(2,1).YLSV(1) PW(1).DY(1).F1(1).PLIM(1) VAR(3,2,1).EON(1).IND(1).LIST(2,1) THE INDEPENDENT VARIABLE. AN ARRAY OF GLOBAL VARIABLES. A 7 BY N-NL ARRAY. Y(1,J) CONTAINS THE DEPENDENT VARIABLES, Y(2,J) CONTAINS THEIR DERIVATIVES. THE CALLER MUST SUPPLY INITIAL VALUES FOR Y(1,J) AND. IF MF=4, Y(2,J). AN ARRAY OF NL LINEAR VARIABLES. AN APRAY OF AT LEAST 2#(N-NL) VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. A SINGLE-PRECISION VECTOR WHICH HOLDS THE INVERSE JACOBIAN. A VECTOR OF LENGTH MAX(M,N). OUTPUT OF MATMUL. ALSO USED BY MATSET AS SUBSTITUTE FOR SAVE. VECTORS USED BY MATSET. AN INDICATOR VECTOR OF LENGTH N-NL. WHEN MF=4 WE SOLVE FOR Y(IND(J).J).KEEPING Y(3-IND(J).J) CONSTANT. NOTE THAT THIS VECTOR MUST BE SUPPLIED EVEN WHEN MF = 3. IM ARRAYS PASSED TO ROUTINE RANGER. DIMENSION OF LIST.PLIM.</pre>	25. 26". 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 44. 45. 44. 50. 51.
* DI DI IN * * * * * * * * * * * * * * * * * * *	MENSION ITEGER#2 T G Y YL SAVE YLSV PW DY F1 EON.VAR IND	<pre>T(1).G(1),Y(7,1),YL(1),SAVE(2,1),YLSV(1) PW(1).DY(1).F1(1).PLIM(1) VAR(3,2,1),EON(1),IND(1).LIST(2,1) THE INDEPENDENT VARIABLE. AN ARRAY OF GLOBAL VARIABLES. A 7 BY N-NL ARRAY. Y(1,J) CONTAINS THE DEPENDENT VARIABLES, Y(2,J) CONTAINS THEIR DERIVATIVES. THE CALLER MUST SUPPLY INITIAL VALUES FOR Y(1,J) AND, IF MF=4,Y(2,J). AN APRAY OF NL LINEAR VARIABLES. AN APRAY OF AT LEAST 2#(N-NL) VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. AN ARRAY OF AT LEAST NL VARIABLES. A SINGLE-PRECISION VECTOR WHICH HOLDS THE INVERSE JACOBIAN. A VECTOR OF LENGTH M. OUTPUT OF DIFFUN. A VECTOR OF LENGTH MAX(M,N), OUTPUT OF MATMUL. ALSO USED BY MATSET AS SUBSTITUTE FOR SAVE. VECTORS USED BY MATSET. AN INDICATOR VECTOR OF LENGTH N-NL. WHEN MF=4 WE SOLVE FOR Y(IND(J),J), KEEPING Y(3-IND(J),J) CONSTANT. NOTE THAT THIS VECTOR MUST BE SUPPLIED EVEN WHEN MF = 3. IM ARRAY PASSED TO ROUTINE RANGER.</pre>	25. 26". 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 44. 45. 44. 45. 45. 45. 46. 45. 46. 45. 46. 45. 46. 47. 48. 49. 50. 51.

· •		.
	LOGICAL NOFAIL, NEWTON	54.00 55.00
·	WRITE (6,353) MF.N.NL.DEL	56,00
353	FORMAT ('1MF =', 12, 'N =', 13, 'NL =', 13, 'DEL =', D10.2) NY = N-NL	57.00
	NJ = NY*5	58.00
•••••	NJJ = NJ+10	59.00 60.00
na man	ALPHA = 0 IF (MF .EQ. 4) GO TO 9	61.00
	$DO \ 8 \ J = 1.NY$	62.00
	IND/ID = 1	63. 00
8	Y(2,J) = 0	64.00 65.00
9	Y(2,J) = O CALL RANGER (Y,LIST,PLIM,MM,LFLAG, FALSE.) H = 1	66.00
	NS = 0	67.00
	NW = 1	68.00 69.00
:	WRITE (6,4) FORMAT ('O NS NW ALPHA H',8X,'ERROR',6X,	70.00
	Y(IND(J),J) AND YL(*)'//)	71 _s 00
	NOFAIL = .TRUE.	72.00 73.00
· · · ·	LFAIL = 0 SET ALL BITS IN LFLAG1:	74.00
С*	LFLAG1 = 2147483647	75.00
	JACOB = 0	76.00
e E o an an e se	R = 1	78.00
C * * * * C *	COMPUTE THE INITIAL JACOBIAN.	79 . 00
C*	DIFFUN EVALUATES THE DERIVATIVES DY.	80.00
C*	ROUTINE MATSET EVALUATES THE JACOBIAN MATRIX, MATIN1-3 INVERTS IT, AND MATMUL MULTIPLIES THE INVERSE ON	81.00
C* C*	THE RIGHT BY THE VECTOR DY, PLACING THE PRODUCT IN F1.	83+00
C****		84.00 85.00
	CALL SI(T,G)	85.00
; ;	CALL S2(T,G) CALL DIFFUN (T,G,DY,Y,YL,HINV)	87.00
	CALL MATSET (ODO, DY, EPS, EQN, G, HINV, IND, M, MF1, N, NY, 1,	88.00 89.00
	PW.F1,T,VAR,Y,YL) CALL MATSET (ODO,DY,EPS,EON,G,HINV,IND,M,MF1,N,NY,2,	90.00
1	PW = F1 = T = VAR = Y = Y1	91.00
•	CALL MATSET (HINV, DY, EPS, EQN, G, HINV, IND, M, MF1, N, NY, 3,	92.00 93.00
	+ PW+F1+T+VAR+Y+YL)	93•00 94•00
	CALL MATIN1 (PW) CALL MATIN2 (PW)	95.0
.•	CALL MATIN3 (PW)	96.00 97.00
		98.0
·	SS = 0 D0 20 J = 1.M	99.0
20	SS = SS+DARS(DY(J))	100.00
	WRITE (6.1) NS.NW.ALPHA.H.SS.(Y(IND(J).J).J=1.NY)	102.0
بالمراجعة المراجع والم	IF (NL .GT. C) WRITE (6.2) (YL(J), $J=1, NL$) DO 10 J = 1, NY	103.0
10	Y(3,J) = -H*F1(J)	<u>104</u> . ປະ 105. ປະ
	IF (NL .LE. 0) GU TO 18	105.0
	DO 15 $J = 1, NL$	
		· · · ·
		27

			•
•			,
· *			at the second
	· · ·	n en	r Pi
	15	YL(J) = YL(J) - FI(J+NY)	107.00
	18	CONTINUE	108.00
	C*		109.00 110.00
	C *	START WITH NEWTON METHOD. IN CASE THIS BOMBS, SAVE RESTART INFO.	111.00
	C* C*	THIS BUMBS, SAVE RESEART INFO.	112.00
		DO 25 J = 1.NY	113.00
	··· · ••· =	SAVE(1,J) = Y(IND(J),J)	114.00 115.00
	. 25	SAVE(2,J) = Y(3,J)	116.00
	26	DO 26 J = 1.NL $YLSV(J) = YL(J)$	117.00
· · ·	20	NEWTON = •TRUE•	118.00
	C****		119.00 120.00
	С*	PREDICTOR STEP	121.00
_	C****	$DO \ 40 \ J = 1, NY$	122.00°
-	50	KL = IND(J)	123.00
-	40	Y(KL,J) = Y(KL,J) + Y(3,J)	124.00 125.00
•	C****	BEFORE TAKING THE CORRECTOR STEP. CHECK TO SEE IF	126.00
	C* C*	ANYTHING HAS GONE OUT OF BOUNDS, LEAIL IS THE NUMBER OF	127.00
•	C*	CONSECUTIVE TIMES A GIVEN VARIABLE OR SET OF VARIABLES	128.00
	C #	HAS GONE OUT OF BOUNDS. LFLAGI IS THE MOST RECENT NON-	129.00 130.00
	С*	ZERD VALUE OF LFLAG.	131.00
	C * * * *	CALL RANGER (Y.LIST, PLIM, MM, LFLAG, TRUE.)	132.00
		IF (LFLAG . EQ. 0) GO TO 49	133.00
		IF (IAND(LFLAG1.LFLAG) .EQ. 0) GO TO 47	134.00 135.00
:	· ·····	LFAIL = LFAIL+1	13,6.00
	47	GU TO 48 LFAIL = 0	137.00
-		LFLAGI = LFLAG	138.00
:		IF (JACOB .LT. NJJ) JACOB = 0	139.00 140.00
!	49	CONTINUE CHECK ERROR, IF IT HAS INCREASED TOO MUCH (100-FOLD),	141.00
	C*	CHECK ERROR. IF IT HAS INCREASED TOO MUCH (100-FOLD).	142.00
-	C*		143.00
	С*	WHEN THE CHANGES ARE MADE (AT LINE 100) NUFAIL IS SET	145.00
	C* C*	TO .FALSE. IF ERROR INCREASES AT ALL WHILE USING THE STRAIGHT NEWTON	146.00
	C≁ C≉	METHID (NEWTON = .TRUE.), WE CHANGE OVER TO PREDICTOR-	147.00
	C *		
1	C*	CALL DIFFUN (T.C.D.Y.Y.HINV)	
		CALL DIFFUN (I,G,DY,T,TL,HINV)	
	50	S = S+DABS(DY(J))	153.00 154.00
		PRED = S/SS	155.00
			156.00
	•	IF (PRED .LT. 100) GO TO 51 IF (NUFAIL) GO TO 100	157.00
	21	CONTINCE	159.00
1	С*		
			5 8
			U
			ì
			. (

•		ę.	
E	•	- · · ·	· · · · · · · · · · ·
. . .	OUTOW SATE OF CONVERCENCE I	E CLOW LOD TE ED	
C*	CHECK RATE OF CONVERGENCE. I INCREASING), CONTINUE USING	THE DEENICING-CO	
C≉	METHOD WITH ALPHA=1 AND SLOW	THE PREDICTOR-CO	
C*	WISE, INCREASE H TOWARDS 1.0	AND DECREASE AL	PHA
C* C*	WISE, INCREASE A TOTARDS INC		
C.Ψ	IF (PRED .LT98) GO TO 53	an a sa sain a sa sa	
	ALPHA = 1		
····	R = DMIN1 (1.3D0.0.6D0/H)	an ann a sao an ann ann an ann ann an an ann an ann an Anna.	
	GO TO 60	· · · · · · · · · · · · · · · · · · ·	
53	R = .60 + .40/H		
•	ALPHA = ALPHA*0.8	ويستعدون والمراجع والمراجع	
	GO TO 60		•
C****		C OCCTAOT	
C*	SAVE INFORMATION FOR POSSIBL		
C * * * *	$\mathbf{D}\mathbf{O}$ (2) \mathbf{I} = 3 MY		
60	DO 62 J = $1, NY$ SAVE(1,J) = Y(IND(J),J)	· .	
62	SAVE(1,J) = Y(3,J)		······································
02	DO 63 J = 1. NL		
63	YLSV(J) = YL(J)	a na anna an ann ann ann ann ann ann an	
• • •	HOLD = H		· · · · · · · · · · · · · · · · · · ·
C * * * * *			· · · · · · · · · · · · · · · · · · ·
C*	IF WE ARE NEAR THE STEADY ST	ATE, RE-EVALUATE	E THE
С *	JACOBIAN TO GIVE ONE FINAL P	PUSH.	
C * * * * *			TO 47
	IF (SS .LT. 1.DO .AND. JAC	UB +LI+ NJJI GU	
	JACOB = JACOB-1	·	
~	IF (JACOB .GT. 0) GO TO 70	· · · · · ·	
C****	IF THERE HAS BEEN TROUBLE WI	TH CONVERGENCE.	OR IF IT HAS
C.≉	BEEN A LONG TIME SINCE THE L	AST RE-EVALUATI	DN, THE JACOBIAN
C*	IS RE-EVALUATED PRIOR TO THE	CORRECTOR STEP	
C****			
67	CALL MATSET (HINV, DY, EPS, EQN	I,G,HINV,IND,M,M	F1.N.NY.3.
	PW+F1+T+VAR+Y+Y	′L)	
	CALL MATIN3 (PW)		
	NW = NW+1		المتحجين الأبرا ليستستعين والشبيب
-	JACOB = NJ CALL MATMUL (PW.DY.F1)		·
70 C****		e e e mar mar e processo e process	
し ^{ゃゃギギ} C ☆	CORRECTOR STEP IS NOW PERFOR	MED. Y(3.J) (PS)	EUDN H*Y'(J))
υ∽ Γ *	IS SIMULTANEOUSLY SCALED IN	ACCORDANCE WITH	THE NEW H.
C.≄	IF ALPHA IS VERY SMALL, THE	REFECT OF THE CO	DRRECTOR IS
C *	SLIGHT, SO SKIP IT AND JUST	SCALE.	
C *****	t in the second se		a an anna an an anna an tao an anna anna
•	IF (ALPHA .LT. 0.01) GO TO 7	7	
	DD = 1.DO/(1+H*ALPHA)		
	$DU / 5 J = 1 \cdot NY$		· · · · · ·
	D = (F1(J)*H+Y(3,J))*DD	د. مستحده و باید بودها او بایده ایند. ایند بستان در ایوا در	
	KL = IND(J)	Dys	•
n <i>c</i>	Y(KL,J) = Y(KL,J) - ALPHA*D	· · · · · · · · · · · · · · · · · · ·	and a superior and the state of
75	Y(3,J) = R*(Y(3,J)-D)	· · · · ·	
	GO TU 79		ann ann an An
	,		

÷.

. in the second $77 - HH = -H \neq R$ 213.00 D078 J = 1.NY214.04 78 Y(3,J) = HH * F1(J)215.00 79 CONTINUE 216.00 IF (NL .LE. 0) GO TO 90 217.00 218.00 DO 80 J = 1.NLYL(J) = YL(J) - F1(J + NY)219.00 80 90 SS = S220.0C NS = NS+1221.00 WRITE (6,1) NS, NW, ALPHA, H, SS, (Y(IND(J), J), J=1, NY) 222.0 FORMAT (/14,13,F6.2,2011.2,7014.4/(35X,7014.4)) 223.0¢ 1 IF (NL .GT. 0) WRITE (6,2) (YL(J),J=1,NL) 224.00 FORMAT (35X,7D14.4) 225.00 2 H = H * R226.00 NOFAIL = .TRUE. 227,00 IF (LFAIL .GT. 20) GO TO 350 228.0C IF (NS .GE. NSEND) GO TO 200 229.0C IF (SS .GT. DEL) GO TO 30 230.00 - 231.00 KFLAG = NSRETURN 232.00 233.00 100 CONTINUE 234.00 C* THE PREDICTER LOOP BLEW UP. ALPHA RETURNS TO 1.0, H IS 235.00 C* REDUCED. THE SAVED VALUES OF Y & YL ARE RESTORED, AND C* 236.00 THE STEP IS RETRIED. IN ADDITION, WE SIGNAL FOR JACOBIAN 237.00 **C** * RE-EVALUATION UNLESS THIS HAS BEEN DONE RECENTLY. 238.00 C* 239.00 C* 240.00 ALPHA = 1.0IF (JACOB \bullet LT \bullet NJJ) JACOB = 0 241.00 R = DMAX1(0.5D0.0.2D0/H0LD)242,00 H = HOLD * R243.00 105 DO 110 J = 1.NY244.00 Y(IND(J),J) = SAVE(1,J)245.00 . And the second secon 110 Y(3,J) = SAVE(2,J) #R246.00 DO 115 J = 1, NL247.00 115 YL(J) = YLSV(J)248.00 NOFAIL = .FALSE. 249.00 GO TO 30 250.00 251.00 C* IF NEWTON METHOD IS FAILING, 252.00 C* WE MUST SET UP FOR PREDICTOR-CORRECTOR SCHEME. C * _ _ 253.00 254.00 C* 150 IF (PRED .LT. 0.95) GO TO 60 255.00 WRITE (6,5) S.(Y(IND(J),J),J=1,NY) 256.00 FORMAT ('ONEWTON FAILED:',9X,D11.2,7D14.4/(35X,7D14.4)) 257.00 IF (NL .GT. 0) WRITE (6,2) (YL(J), J=1, NL) 258.00 259.00 H = .01260.00 ALPHA = 1261.00 R = .01..... 262.00 JACOB = 0NEWTON = .FALSE. 267.00 GO TO 105 264.00 265.00 ___200_KFLAG = -1 د. من موجد من زنده و با و بود و بود و مع و موجود من و من الم

£ 266.00 WRITE (6,333) (J,DY(J),J=1,M) 267.00 333 FORMAT (+-DY: !/(15, D20.6)) 268.01 PETUPN 269.00 270.04 KFLAG = -3350 RETURN 271.00 END . · · -----. . . . -----÷. -.*

E. Examples

Some of the systems used to test DIFMF3 follow. Pseudo-random starting values were used, t = 0, and the convergence criterion was $\delta = 10^{-6}$.

Most of these systems are purely algebraic. The last three include restricted variables. Solutions to these often take longer because variables go out of range and are shoved around a lot by RANGER before they settle down. System (3) is linear, so the solution was obtained quite swiftly.

1.
$$4 + y_1 + y_2 - y_1^2 + 2y_1y_2 + 3y_2^2$$

 $1 + 2y_1 - 3y_2 + y_1^2 + y_1y_2 - 2y_2^2$
Starting values: $y_1 = -2.057$ $y_2 = -7.503$
Solution obtained: $y_1 = 3.339$ $y_2 = -2.984$
NS = 24, NW = 5

2.
$$y_1^2 + y_2^2 + y_3^2 - 5$$

y₁ + y₂ - 1

y₁ + y₃ - 3

Starting values: $y_1 = -2.057$ $y_2 = -7.503$ $y_3 = -4.834$ Solution obtained: $y_1 = 1.667$ $y_2 = -.6667$ $y_3 = 1.333$ NS = 28, NW = 4

3.
$$t_2 + yt_1 - 6y_3 - y_3'$$

 $y_3 - y_2^1$
 $y_2 - y_1^1$
 $yt_2 + 6y_1$
 $yt_2 - yt_3$
 $t_2 = \sin(t)$
Starting values: $y_1 = -2.057, y_2 = -7.503, y_3 = -4.834$
 $yt_1 = 4.473, yt_2 = -6.240, yt_3 = 9.308$
Solution obtained: $y_1 = y_2 = y_3 = yt_1 = yt_2 = yt_3 = 0.000$
NS = 2, NW = 2
4. $\frac{1}{2}\sqrt{4-y_1^2} + y_2 - 1$
 $2y_1^3 + \ln(y_2 + .8) - .136$
Restriction: $-2 \le y_1 \le 2, y_2 > -.8$
Starting values: $y_1 = -.9433, y_2 = 3.951$
Solution obtained: $y_1 = 5.394, y_2 = .03705$
NS = 27, NW = 5

5.
$$\tan(y_1) + y_2^3 - 3y_{11}^2 - .5$$

 $\sin(2y_1) - 1/y_2 + 2y_{11}^2 - 1$
 $y_2 + y_{11}^2 - 1.5$
Restriction: $\pi/2 < y_1 < \pi/2, y_2 > 0$
Starting values: $y_1 = -.2983, y_2 = 4.751, y_{11}^2 = -4.834$
Solution obtained: $y_1 = .7854, y_2 = 1.000, y_{11}^2 = .5000$
NS = 116, NW = 14
6. $y_1^2 + y_2^2 + y_{11}^2 - 3$
 $y_2^2 + y_3^2 + y_{12}^2 - 10$
 $\sqrt{2-y_1} + y_{11}^2$
 $y_{11}^2 + y_{22}^2 + 5$
Restriction: $y_1 \le 2$
Starting values: $y_1 = -2.057, y_2 = -7.503, y_3 = -4.834, y_{11}^2 = 4.473, y_{12}^2 = -6.240$
Solution obtained: $y_1 = -2.000, y_2 = -1.000, y_3 = 2.000, y_{11}^2 = -2.000, y_{12}^2 = 5.000$
NS = 20, NW = 3