_________ (|
4)( @ = ~ MACTER
6 TR B de

UCRL 6450 Rev. 1

University of California

Ernest O. Lawrence
Radiation Laboratory

EQUATION OF STATE OF

e

CLASSICAL SYSTEMS OF CHARGED PARTICLES

l Livermore, California




DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



«)

.

<

This paper was submitted for publication
in the open literature at least 6 months
prior to the issuance date of this Micro-
"card. Since the U.S.A.E.C. has no evi-
dence that it has been published, the pa-
per is being distributed in Microcard
form as a preprint. 2

'UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory

Livermore, California:

Contract No. W-7405-eng-48

EQUATION OF STATE OF CLASSICAL SYSTEMS

OF CHARGED PARTICLES

S. G. Brush
H. E. DeWitt
J. G. Trulio

August 21, 1962

a2

Facsimile Price $ :_“/;—; é d

Microfilm Price $ /« 7/

Available from the
Office of Technical Services

Department of Commerce
Washington 25, D. C.

Pprivately owned righta; or
B. Assumes any labilits,
les with r
use of any {nformatton, apparatus, ma“

pect to the ung
thod, or pr
As used In the above, i on ‘vematr
.0ve. "'person acting on be,
Ployee or contractor of the Cammualo:.nir em, lhnu .
;:n:h eE:loyae OT contractor of the ¢ . n:': P
8ominates, oy Provides ncces, . oy o uch
8 to, any informaty
Wi
1th the Commuulun, or hig employment with such ::n‘:"m! e cployment o

disclosed in i report,

actor.

of, ur for damages resultng from the
! the Commisaton’ 1nel

ludes -
of such contractor, to the ex::nyl .::;l

Prepares,
T contract

+
-

44



UCR L6450 Rev.1

Equation of State of Classical Systems of Charged Particles:

- S. G. Brush, H. E. DeWitt, and J. G. Trulio

Lawrence Radiation Laboratory, University of California

Livermore, California

August 21, 1962

ABSTRACT

Recent developments in the'qlassical theo‘ry_of fully ionized gasés a;ld
sltrong electroiyte solutions are r‘e\;'iewed, and are ﬁsed to discuss the
eqi;ation of state at high t:em'peratﬂures and low densities. The pressure is
c'alculated :usinlg the ring-integral approxima'tion:, and qﬁantitative estimates
othi"'g'her clor'reétion ternis are éivén. The effect of sho;'t range repulsive
forces is shown by cqmpariﬁg,the results'with two kinds.' éf potential functions:
hard spheres of dia;meter 3‘, and "soft" spheres for which the short range
potential cancels the Coulomb p;)tential at the origin, .and ‘decreases expo-

' nentially with distance. It 'i's found that the use of e,;ither,'lcype of p|ote‘ntiall

. extends _thevrange of validity of the ring~integral.approximafion to cdnsider-
al.b'ly”bi;gher densities an.d'l‘ow'er temperatures. | Since thér,e is little d_iffell'ence
’in tile results for the'hard 4spheres and the soft sphére; in this range, the
latter system is investigated fnore extensively sinicé it is more easily handled
by analytical methods. The,expressions derived for the free energy of a
system of charged particlés can also be used in ’ionizat;on equilibrium
calculations, and the effect of electrostatic ir;teracfions on the equilibrium
concentr'ations of various kinds of ions is indicated.A ‘

-iii-
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Equation of State of Classical Systems of Charged Particles

S. G. Brush, H. E. DeWitt, and J. G. Trulio!

- Lawrence Radiation Laboratory, Univefsity of California

Livermore, California

August 21, 1962

I. INTRODUCTION .

The first extensive study of the statistical mechanics of systems of
particles interacting with long range Coulomb forces was made by
S. R. Milner in 1912 (l), Milner attemptedAto calculate the virial.of. a
mixtureiof ibns, using the Maxwell-Boltzmann disitribution for the probabil-
ities of f.he variogs possible configuratione of the ions.  He naturally
encountered the two difficulties inhérent in this prbblem:. (1) .the divergence
due to the long range character of the Coulomb force; (2) the divergence due
to the short range character of the Coulomb force. The first divergence
could be eliminated by summing first over the configurations of small groups
of ions, using the fact that alternalting (+-+-. . .) configurations are most
probabié, before extendipg the iﬁtegrations At‘o infinity; the second divergence
was avoided.by assuming the ions have a finite diameter. However, Milner's
ma.thematical methods were not powerful -enoug‘h to yield results which were
cither simple or exact, apd about all that could he conclude‘d was that the
effect of interactioné‘ was to lower the téta..l' pressure (osmotic pressure in

the case of electrolyte solutions).. This was still a valuable result since it

“This work wa's-performed under the auspices of the U. S. Atomic Energy
Commission. o '
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indicated t.hat the hypothesis of compiete dissociation of strong electrolytes
in sciutibn did not 'necessarily have to be rejected becatie'e the osmotic
pressure cf concentrated solut1ons was not proportlonal to concentratmn

The famous theory of Debye and Huckel (to be referred to as DH)
abandoned the strict statistical method in favor of more intuitive methods;
‘the electrostatic potential was assumed to satisfy the su-called Fuissuii-
Boltzmann equation, and the linearized version of this equation could be
solved exactly to give simple limiting laws for the osmotic pressure, activity
coef,ﬁcients, conductivity, etc. (E).'I The DH theory was an im{media.te success |
with the chemists, .an'd constituted a considerable advance in electrocheniistry.
Thus A. A..' Noyes said in 1924, |

A'{"I"he tteatment of Milner involved mathematical considerations
so difficult as to make it scarcely available to chemists or

: physic'iste with ordinary mathematical training. .The more re-
cent derivation of Debye and Huckel, on the other hand, is based
on a few fundamental physical principles whose application pre-

sents no serious mathematical difficulties." (3)

Milner had not continued his work on electrolytes after 1919 because of
a serious illness, and ""Debye taking up this work, went ahead so fast that
M1lner turned his attention to electromagnet1c theory. " (4) In 1926 M11ner

wrote,

"Since I have read Debye's calculation critically I think that his
method of calculation of the effects of the interionic force is
greatly superior to mine. All the laborious summations and
appi’oxinla.ttons contained in my calculation of 1912 are done
away with, without any sacrifice of accuracy., by what. seems

' to me a stroke of genius — namely, his ob,s'ei:\;a.t.ion that the A
average potential of all the ions in a sphere 'containing a posi-

' tive ion at the centre must satisfy Poisson"s:'eq'uation. Since

the two calculations are based on the same assumptions and
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mine contains admitted approx'imations, I.am inclined to be-
lieve that the numerical differences between them are to a

large extent at‘tribut'able to these. X (§_)

‘While all subsequent wOri{ has confirmed the vai‘idity_ of the limiting
laws.for infinite dilution -deri'ved from the 'DHltheory, the ipitial enthusiasm
for the théory cooled somewhat after it was found that it could not bé extended
to more concentrated solutions in a satisfactory way. When the ionic diam-
eter is introduced in the linearized Poisson-Boltzmann equation, results
valid for somewhat higher concentrations can be obtained, but sometimes the
diameter needed to fit the experimental results comes out negative. It is
also possible to solve the non-linearized equation with rather more labor, but
there are still objections; there is apparently a choice between two '"charging
processes' which lead to different values for the osmotic pressure; and the
Poisson-Boltzmann equation ilself ifnplies neglect of fluctuations that prob- .
ably become important at high concentrations. In additio'n, various effects
such as dielectric saturation of the solvent may occur. It was eve_ntually‘
-realized that reliable results could only be obtéinea by returning to a rigorous
approach based on statistical mechanics.

The application of the DH theory to ionized gases, particularly in stars,
was discussed by Rosseland (6) and Eddington (7). I'_";:'idington's principal con-
clusion was that the'ioniz‘at‘ic')n produced at high témperatﬁres would permit
stellar matter td be compressed to an enormous degree, and yet still behave
nearly like an ideal gas; it had earlier been'supposed that it would condenseﬂ
to é. liquid under such high pres'sﬁres. In a‘st-rophys'ical problems the equa-
tion of state at high temperatures is determin_ed primarily by the degree of
ionization i'é.ther than directly by the electrostatic effects; when the density

is so high or the tefnperature so low that the DH theory is invalid, other
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effects ‘su‘ch as.pr'essure ionization and degen'efacy must also be taken into
account. However, we shall see that electrostatic effects have an important
indirect ‘effect on the pressure in certain regions since they influencec the
equilibri\J;m concentratioes of various kinds of ion‘s: and an‘_i;mproved version
of the DH‘theory is needed to describe tﬁis effect accurately.

During the last fifteen years, the problem of constructing a consistent
genera'lization-of the DH theory has been attacked aleng two lines, pursued
more or less independently in the United States and Russia. .In 1950,

J. E.. Mayer showed that the cluster expansion for the equation of state
(appar-e'ntly inapplicable to Coulomb forces because of the divergence of the
second virial coefficient) could be rearranged by summing the mos;‘. divergent
integrals to give a finite result (8,9). The evaluation of the so-called ring
integrals was found to yield jusf the DH result for Coulomb forces, and
Mayer's formalism provided a systematic method for computing higher
A_a~p‘p'roximations. This theory was developed further by Haga (10), Meeron (11},
Friedman (12) and Ab® (13) so that we are now able to make a quaetitative
estimate of the contr'ibutione from more complicated‘ cluster integrals and

thus determine the region of validity of the DH theory itseif.

An alternative to the cluster integrel expansion is the method of {nteg'ral )
equations for the distribution functions; both must of course.give the same re-
'sult. if ca;r,ied far enou‘g‘h", and it is merely a matter of convenience which one
chooses for a particular problem.‘ N. N. Bogolyubov had in 1946 developed
the distribution fg'nction rﬁethod in a form suitable for application to Coulomb
.forces, and showed that the DH theory wa.s ;'ecovered in" the 1o’weslt app.r,oxi-
mation, but he did not investigate the elimination of’ the short~raege
d'iv‘ergence (14). This task ans left for A. E. Glauberman:an'd I R.

Yukhnovskii (_1_2,1_6,1_7)'who worked with a "soft" potential function
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- Ulr) = :’t(ez/r)(lA - éf.‘Y.r')'. | (.s.oft sphere) | ' -(1)
This form isl appropriate for ions which contain bound electrons whose
charge distribution has a mean radius of about’y_l‘. ‘With less justificatio;ﬁ
one might use it for ions in a fully ionized gas, in which case, by anal-‘og'y
with-the .q'ua.ntum mechanical the'ory, Y might be identified with the r‘ecipr-»ocal
of the thermal wavelength, i.e., with (H/WT)—I. When y becomes tem-
perature-dependent the ‘relatio-n between the free energy; and the other thermo-
dynamic functions will naturally be modified. In this paper we shall treat y
as constant.

Crlauberman and Yukhovski-i found that it was possible to obtain the
distribution function explicitly to any desired degree of approximation by
solving Bogolyubov's equation, and thus to calculate the free energy and 6ther
thermodynarnic properties. | Since their method employs the Fourier trans-;
fofm of the potential f_unctioh, it is easier to have a continuous potential
rather than the more gsual ;’hard sphere, "

+ 0, r 5 a, .
U(r) ={ > (hard sphere) (2)
+ (e /r), r>a.
It is .possible to use the hara sphere potential in conjunction with a distri-

. ) \\. .
" bution function method, although the results are more_i'complicated (12,_22, 1).

A third method, employing collective coordinates for the long range
part of vthe potentiai, has been developed by Yukhnovskii (_2_%,_@); it gives the
same results for fhe soft sphere' sy'sté.rh.. and can also be appliéd to other
" models. AH‘ov'vever,‘ Siegert (24) [ée'e also Moore (_2._5_;)] , who rederived the
expansi@n.bir his me_thod Qf vGaussianvranidom functions, claims that

Yukhnovskii's result for a general potential including short-range forces. is

incorrect. Kelbg (26) ha's obtained a similar expansion by a method of

1 : N
."Feix. (18) has used this potential in the theory of transport properties of a
plasma. ' » ’ :
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.collect'ive ’épordinates;. T}"iés; authors all agree on the form 'of the first
correction to the DH térm for soft spheres, though they‘ r'r';'a.y'.freat short-
range ;epulsive forces differently.: Finally we mention a recent paper by
Theimer and Gentry (27) in which the DH result is derived by a rﬁethod em-
.ploying stochastic functions, 'tilough the co«rr'ection'terﬁlé are not obtained
explicitly. |
We shall show that the cluster integrai methfi'and the distribution

function method both lead to the same»'éxpres sion fpr t};e{ free energy in the
ring 'intégral approximation when the soft sp'here‘pote.ntial is used (proof of
' equivalence for all potentials is not given). It-appears tha‘t the series de-
rived b';r any of the above-menfioﬁed methods éoul'd_ b'.e‘.rearranged so as.to
| 'b‘exidentica.,l'. W'h'en oné makes t:he identification y-lla%;’a, the resulting lring-'
'inte'gral ecjuati‘on of state is very nearly the ‘same for bafh hard and soft
sphelre systems over A wide ‘r'ange of temperatufeé and densities. (This is
_not surprising since the ring integral‘contributioh is dete'rmined primarily
by the 1.6ng, range part of fhe pot'e'nti.a.17which,is the same for both.) Moreover,

the Glauberman-Yukhnovskii theory indicates that under certain conditions

the Ad...istribution function acquires a periodic character, a result which is not:
immediétely apparent from theories based on t‘h‘e hard' sph_efe model, ‘thoug'h
it has occasionallir'been notiqed by prevlious writérs (E_g,ﬁ).

Quantum effects are entirely igriored in this paper, except insofar as
they can be considered to determine the value of y. This should be a
legitimafe épproximatign over a large region of densities and temperatures
of‘physlical, chernicél, and a‘strcé,phﬁrsic;l interésf; even whe;re the more
difficult quantum mechanical theory must be us ed, it is s:till usefgl to work

‘out the classical theory to see how much difference quantum effects really

- make.
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II. . CLUSTER INTEGRAL THEORY?

. We summarize in'this section the results obtained by Mayer, Meeron,
Friedrnan, and Abe, based on a modified cluster integra_l eXpa’nsion.

Mayer's original cluster expansion for the equation of state of ‘neutral
atoms or molecules was based on writing the configuration integral in the -‘

. form

S‘ e'ﬁﬁ dT = gexp [—B Z Uij (rii)} dr
SRR RS ‘
:S‘H(1+‘f..)d'r S
i<j y ‘ ) o
_=§<1+Z fo +...)d'r (3)
i<j 1Jk£ ' ) - F
- where
o - e“ﬁU.ij(rij) 1
ij ‘
8 = ()L,

If the force law is such that U (r ) is effectively zero for r. J>a, then f.. ij
will be zero unless the pair of molecules (i,j) is closer than a distance a,
and a product of f's’in the expansion (3) will be non- zero'only if the
corresponding molecules form a "cluster“ such that each f 1s non-zero.
The number of clusters of \./arious types is determined by combinatorial
analysis, ~and the expansion is finally‘reduced to a sum over "irreducibl’e”
.clusters . (A cluster of molecules is 1rreduc1ble 1f the graph formed by
drawing a ‘li-ne. for each { “func‘tion is doubly connected.)

| 'When Qi‘j(rij) = ez/rij, all the "clu_ster integrals are diverg.ent; this is

not surprising, since when all the particles have the same charge one does

2.‘E‘or a more comprehenswe treatment of cluster integral theory, we refer
to the forthcoming monograph by Friedman (60).
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not have any equilibrium s.t:ate.in',th'e usual sense, and most of the pa.rticles{
are for_ced against the wall of the container. [A detailed'description of this
situation is given by Kellér (30). ] Only when the gas.is electr1cally neutral
can.the much finer eff"éct of the _polémzatwn of the m‘edlum due to Coulo;pb
-intereactions be d'i'AstiAnguis’hed frem the =gros"s effect of \Jl;ill:;é.l‘anced chargé.
One way of takihg'acqount ‘of elhectriéal neutrality is. ;to assurhe a "'One-:: '
component' system of ele‘c"tlror!fs ‘moving in a uniform'ba.ckgxfound"ofApos,it‘iye
ch;rge. ,[Rfayle‘igh '(él)‘wa.s' .pfpbably the first to consider such a.'éystenﬁ", m
‘an.other c.on‘cext.'. ] “However, if one wants tovtvre‘at a more ?ealistié 't\;vo-
component system, it is nec‘essary' to modify the Coulomb poten‘tial"at..shoz“t
~ distances for ion-‘electr‘c‘m interactions»to avoid a divergence. |
‘Con'si“der a system' of N electrons in a volﬁme V, the total cyha.r'ge
‘Qe.~=l-eN bemg balanced by N pos1t1ve ions each of charge +ez1 We are of |

course ch1efly 1nterested in the propert1es of the system in the l1m1ts

lim  (N_/V)=n_; lim (N,/V)=n.. : , (4) -
. N "V""WA e e N.,V—’°° ‘1 1 . 3 - .
e R - 1

" The Helmholtz free‘energy-', including the second virial coefficient from

ordina»ry--'clu‘ster integral theory, is

P - NeF'Oe ¥ NiFOi ¥ V(Bzeen"e- +'2B2 i"e™ * B211 1) - : (5)
‘where . o -
| = (z-V)'1 ggd'r dr <é_BUee -1')"
e ' - 1 2 S ’
B, ;= (2V) S‘S‘d'r d72< )
CPYs Y B R
(ZV) SYdT ar, ~ 1) . )

When

_z.'”_ 2 22, - o
Ue-e /r, Uei——zie /r"Uii —'zieA/r, ' - A7)
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and the exponentials in Eq. (6) are ,expanded in Taylor series and the results

' substituted into. Eq. (5), we obtaih A o

BF =N _F,_+NF - (p/2V )( N Nz 4 N-Z‘z?‘)f”g;iv ar (e ) +
e Qe e i'i i7i/; 12 12
(—ﬁ—— 2N (a a2\ OO (2, )\2
+ 2-.2'!'V2> (Ne + ZNeNiz.i + N'izi) gngl d'rz (e /rIZ) +

-[_B8° (NZ SN N.z2+ N‘.?‘zf’) S Sd’r ar (ez/r ) S
- \2-31v2)\ ¢ e i /g gl e el

Oe

: '@2 N2 o 2 3 ' 5 o
+('2=2V>» <Ne +Z§Ni> SdT(eZ/r)zf.»(Z%:‘V)(Ne“ Z?Ni) S“?T(ez/rﬁ’“ -

(8)

= N_F +NF -(;3/2\/ JN_ - 2N 5 r(e/r) +

For Wthe particular case of an elec‘:.tronu_gas in a continuous positive
charge background, all the ,li'nearly divergent terms 1n Eq. (8) are removed
_ by the condition of electrical neutrality; the d1vergencesxof the other terms are
el1m1nated by' appropr1ate regroup1ng of the terms of the perturbat1on expan-
sion: (1) The ideal-gas- free energy of the p051t1ve charges, N, FO s va.n1shes
"when they are’ converted into a fixed continuum. (2) The f1rst 1ntegra1 drops.

out by electrical neutrality, Ne = ziNi' (3) Let z —-’O and N — 00: and keep
the 'pro&uct ZiNi _’c,onstan't. This e11m1nates all the 1ntegrals which are
"multiplied by ;iZNi, z‘_’i3Ni, etc. We are then left with |
BF = N_F_+ N’ (2—%,—\7) gfdv (e*/r)? + N2 (2v)7! Zi—;—)— ‘Sd'lr(ﬁez/r)s.. (9)
. ‘ ' : ;o s=3"
There ‘a-re.‘two Aremainihg diyergenees 1nEq (9)- 'The fir stv ihtegral

-is linearly divergent since

'R ' |
'S. ‘;r?"dr (l/rz) ~R
)o '
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This term will be combined with other divergent parts of more complicated.
cluster integrals and summed to give a finite result (the 'ring integral");

The other integral is not asi bad as it looks, since
o - < |
-1 2, .8 -(Bed/r) 1, - 2
s=3 , . C A : '

is actually finite at the origin whén multiplied by the factor r?‘ from the
volume elernent, and ohliy' the‘terrﬁ‘ Sd’r (ﬁéz/f )~3‘ éives a logarithmic divergence
at infinity. " This term is similarly to be summ'_ed'w'ith c‘ontribu"cions frem
other cluster integrals, leading t&h‘;che so-called "watermelon'' integral.
4Detai1ed'ar;a1ysis of the cluster integrals, using a screened Coulorhb

. .3
potential

Ulr)-= (e2/r)e 8T | | (),
shows .that the most divergeht integrals ipvéllving: j pa‘rti'cles' are those of the
typé $f12f23. . 'fj-l',jfj,l; each particle is joined to just two others, the |
Wholé cluster forming a ring. Furthermere, when the f functions are ex-
panded in powers of the inferaction U(r), the first t.er:.m is always the'most
divergent. It is then a.ssu.med"that if one can sum the most divergent terms
be:fore_.integ_ra‘tin_g .and thereby obtain a finite result, this‘ re‘sult will give-'a,
lafger contribution to the free enefgy than the other term§ which‘wer_e :
initially less divergent. (This .assump'tior; has apparently never been rigor-
ously justified, although in t‘his 'case the summation of the less divergent
lterms does turn out to give c.ontr1but1ons of smaller oraer of magmtude )

The virial coeff1c1ent B is thus approx1mated by the expression

P

( ].)J( ) J = 1)' (BJ/J'V) g Sld'r s d'TJ U(rlZ)U(r23). e U(r_],].)
e e (12)

=61 is used only as a convergence factor in the 1ntegrals and & has ne
phys1cal significance.
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where the combinatorial factor 3 l G - 1)" . is the number of ways the 3 part1c1es
may be placed on the ring. This '"convolution' 1ntegral may be evaluated for

the potential (11) by intr‘oduc’i‘ng the Eourler representatmn ’

Ulr) = (e2/r)e” 8T = vian)> gdk u (k) e 15 X,
- ik.r 2 :
-ulk). =V IS‘d£ U(r)e~"=~L', . (13)
o V(K% +62).
together with the Fourier representation of the delta function,
5(k) = (zn>‘3Sd£ eINE
The result is
% 2
j j : '
5 . D n@npe®YV g a—E (14)
3 ZJ(ZTT)3 0 (k° + 6%))

. . 2j-
Far the pure Coulomb potential (6 = 0) wec sce that Bj diverges as R i-3
' . o -1 .
if the momentum integration is extended to a lower limit kmin =R . To

eliminate this long range (small momentum) divergence, we sum over j

before integrating over k, so that we obtain the ring contribution to the free

energy
r1ng Z B, 21TVf‘} S‘ dk kZZJL <:4—Tzr£e_%> ) : (15)
j=2 (2w YO0 - ‘j=2" .kA+6 v
Since
: e o
_ _ ) i o
in(l + x) = - 5—(-x) , le_g‘ 1 (16)
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we can write Eq. (15) in closed form

_ 2nV .2 |4nBe n . . 4wBe n A '
pF_, =T Sdk.k Zmpe n -p_._n<1 +—L)} (17)
' ring (21'r)3 . o {kz + 62_ - k2-+ 5‘}2‘ o
-V (ayy? {eyz"+ n?‘)"l".-'f-r%'(l'* _z_l—z)} (18)
(Z'rr)z)\']:; ‘ . '  : Y+T] s
R i LR S KA LR [ (19)
2 .3 ' '
S (2m)aNg - . SR ~

D

where we have introduced the new quantities

y = k)\D, DL
n = 6)\D’- !
: 5 -1 : ‘ S
Ap = (4w Be"n) 2 - (Debye length).

Tt will be observed that the quantity in brackets in Eq. (19) 'goes 'to-unity

as n— 0 and one-then recove.rs the same exptression for the free energy as
waS‘fovund in the original DH theory. However, the péssage from (15) to (17)
is valid only-‘ when 1 > 1. Itis cu'stéma’rf to disregard‘the restriétion n> 1.
by assertihg ;hé.t Eq (17) is really the correct form valid for all m, which™
"one would have.obtained airectly from a better theory, and '(15)’ merely an
A -expa;n‘sion of d'ub:i'ous v'a.lidityl.» . Inb. other words, 1t is _és'éumed that there
'.exists an analytic continuation of the func';cion obtain;(e"dj by summing the serieé
- for large k, in‘to thé;.fregidn of small k The ﬁse of this.:proceduré leads
her;e to a result which cal.n be rigoroﬁsly. j_ustifiéd?by other 'met.:hods: it is.
~.-shown in Appendix A that the DH'.re'éult cah"beA _d'eri\}‘e'_d fl;om Eq. (15) without
using Eq. (17). E .

' While Eq (15) waé first’ obtained by Mz.aye'r (8) and shown to be formally
equAiyalent (in the sense deécribed above) to t__hé DH result, the closed form

A(17) was fir Stlgiven explicitly by Zubarev (9).
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It is convenient to introduce a dimensionless parameter

ey - 2n 2363212

The classical DH result [(n— 0 in Eq (19)] is then
f3Fring - N)\/3. _ o - ' (20)

from which the pressure and internal energy are obtained as

n<1-%)\>, . | S . :(21)
301 .
N<E'E>‘_ | _j :

-‘T'he above derivatien of the DH result by summing ring integrals can be

BP

BE

.generalized to provide a complete diagram.expansionforthe free energyj «dnwhich

eac‘h term is convergent for the Coulomb potential'(_l_l,£,13). We start from

the Mayer expansion for the free energy based on Eq. (3),

Z 'VS‘, g Z e, d’r..-.'d’rm~' (22)

m>i>j>1
(sum over all products in which all particies are more than singly connected).
The‘Mayer f functiohs may now be expanded in powers of’the potential to give
a true' perturbation expansioﬁ. The next step is fo pick out the terms like
those occurring in the second integral 1n Eqg. (9); a term like S‘[U(rlz)_]z’ is
then éombined with all the other terms in which one or more of the direct
interac'ti'ons U,(rIZ) is replaced by a chain of interactions of the type

( )U(r ‘The points in a diagram representing particles 1

34) Ulry )
and'Z, which are_involVed in more than two of the }ntefac’tions, ‘are call_ed,
nodal points by Meei'ori (11) and junctions by Abé (13); the'sgvpoin'ts serve as

the ends of the chains of interactions in the diagrams we are considering. We

can sum over all the chains which rhay connect two modal points, justas we
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summed over all the rings in Eq. (15), using the Fourier representation of the’
potential function, the result be‘ing

: : v ik (g, -1, |
Z (_B)m+1 (2 ) Sdke 2 1‘n[ k)]
T

mO

} Wthh can be wr1tten in closed form as

T B )

(27)
'For the Coulomb potential (§ = U) we have
4 Pzn 2
. _ mphe - . -
pNui) = ZE22 = (k)
and therefore we re}place. the real interaction U(r) by a "shielded" interaction
_ 2 ik(r,-1,) 2 -r/x
US(I._):Lg dk e 1 22 (k2+)\ 2) 1:_e_1:_ e D,,
(2m)” . -
T = |£1 - £2|. - (23)

When this shielded interaction is incorporated into the cluster expansion,
one obtains a finite result for the sum of the divergent terms and ignores
(in this approximation) the others; the general form of the modified virial

series is now

00

BF =N F _+NF_, +NzS.(X) | L (24)
. e oe ring J : : ,

whex;e [cf. Eq. (10)]

N 1 w ‘2 BU (r)y . '
S, =3n 510 4nr” dr (e —1+;3U r)-—[BU()] -(25)

and '53, S4, etc. can also be written down if desired (11, 12). The integral
(25) has been evaluated numerically by Trulio and Brush (}_é),

The general formula for the shielded potential Us(r)- corresponding to

. a real potential U(r) is

V.l Fur) . o . |
Uglr) = F {1 ¥ BNE U(r)} | o (26).
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where F denotes the Fourier transform 6peration. The shielded potential
may also be identified with the ''poténtial of average force,' as will be more

clear when we éome to the di's'vtributio.n function appr‘oéch 'in'S'ect'i‘dn Iv.
III. TWO-COMPONENT SYSTEM: SOFT SPHERES

The fqrmulé.e of Section Ii.ca;1 éasily be generali-zed_'l to the multi-
component case, but the integrals now have a short range divergence when
-a pure Coulomb potentiai"'is’ used. Such divergeﬁéeé  hav-.e dften been eliminated
by using.a.hard spher‘eA'};ot‘entialA, Eq (2), but thisi tyiae Aof potential is not very
co'nvenient when one is uéing a method based on Fourier transfprms; | neither
is it particu}ar'ly re;listic for ionized-_gase-s. Kramers (33) employed the

A

function

(e?/z)(1 - exp [-ar/2R])
where R is the'positibn of tﬁe center of mass of the two atoms whose
distan_c‘e of separation is r. This pafticulaAr form was chosen so that '"the
propéi‘ty of the energy to be a homogelneOI-J.s function of the lcoordinate's of the
degrée -1 is-preserved'’; the origin of coordinates was taken outside the
éontainéri so that R was es sentially constant. Glaubérman and Yukhnovskii

(15,16) shov;/(_éd that the function

Ulr) = (2e2/r)1 - Yy . | (27)
is very convenient for analytical investigations based on tfle method of distri-
bu’éion functions, and ‘it also 'tﬁrns out to be convenient:for caléulations using
‘the fo1;mu1ae developed in Section II.

. The qurie; tra"nsfo_rrn' of the function (27) i.s. easily found to be

41-re2 4\(2 ' h -
u(k) = + —7 ' . (28)
M lsz(k? + Y%) '
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The ring integral is

' w1 [1\]3 3 (1 2 1,4 ,21/2]3/2 [1 2
Fring -~§-'z‘—3.(&3){2ﬂ'a *[za-'z‘ﬂ T 4a’) } +[§°

4 ‘n)\D

L4, 4ch2)1/2]3/2} 29

where

The total pressure in the ring integral approximation is

P N

akr =1 -5 fla) }
- 3(1 3 3 3 Y
fl(a) = a (4W --ZW+,2 -4W> | .
1 .
w = 1 +é)2.. | A - (30)
o _

The parameter X is now defined for multi-component systems as
a\-1 . (T2 )32 §3/2,1/2, -3/2
- S s s/

where the mole fraction and charge of component s are denoted by n_ and e
respectively; K is the dielectric constant which can usually be set equal to
one for ionized gases. _

The function fl(a)'may be expanded around the point ‘a_l =0 [w=1]

giving
.'fl,(a)_; 1 -'(é/_4,a) +_(9/2q.2) - (35/4a3) +(135/8a%) - .+ : | .
or around the point o 2, giving | | |
.f‘l(;g)_: 16 - 1IVZ + (24 -2 «/‘) (30 - 2172%9 J‘) S
yo=1- ('4"/(12).. R | (32)

FromEq (31) it is' clear that one recovers the usual DH equation of

state, Eq. (21), in the limit y — o0 .

-
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It is interesting to compare the equation of state (30) for soft spheres

with the well-known equation of state for the hard sphere potentia.14:

T - e, Sy . (33)
g,(8) = (3/6°) [1+5- 4% -2 (1 +8)],
6 = a/)\D;

which can_: also be expanded in powérs of &, ‘

g,(8) = 1- (36/2) + (952/5) - (25 )+ c o T (34)
Thus, 1f the parameter Y in the soft sphere potent1a1 is equated to ( 3/2a), we
get : 4 | A : - A'
| £,(30p/2a) = 1 - (38/2) +.28° - (706%/27)+ .. . . (35)
or cor1verse1y putting a = (3/2Y) we g'et |

g,(3/2A) = 1 - (9/4a) + (81/20a%) - (27/4a%) + . ... (36)

In Table ITwe gi‘v:e a few. values ot fl(a) together \‘;vi‘t-h..cerre‘sponding. ,
values5 of g1(3/2¥)._\D).‘ It is-evident that hard spheres and»eoft spheres with
. appropriately choserrpararneters have very néarl& the same equation of
state in the region where the ring integral approximation is yalid-.

To compute the next term, SZ’ in the» modified cluster expa_nsion_(24),,
we need the shielded potential Us(r) which corr‘esp'onds'to the soft sphere

potential. - The result, using Eq. (26), is

*‘_Vxﬂ[%’%p b (r25) - fowe 2 y)}] e

X = r/)\D,‘ .

1

BU_(r)

e
i

. o 1
¥ = (1 -4/0.2)2 |

4The work of Haga (10) indicates that gl(ﬁ) as given here is accurate.onlyy
to terms linear in & in Eq. (34) :

5Mostly computed by S. R Brmkley, Jr., and R. F. Br1nk1ey, see ref.
(34), p. 176. :
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The expression on the right-hana side of Eq. (37) apparently becomes com-

plex for a < 2; however, it can still be written in real form (with z = iy),

'{3Us(r) ::h(Z)\/xz)[exp('-sz).]sin'(Glx); o ' (38)
.
_a(z )
C:'l N 2,((1 1) ’

S 1
-af2 2
GZ_Z(Q+1)..

We see that the shielded potential changes to a perio;iic form at o = 2,
thoAu'gh there is no discontinuity in the ring integral contribution to the pressure,
_fl(a), ‘at this _point; As wiil be brought out more clearly, in the next s ection,.
this implies aAlocally'r p_eribdic"spatial distribution eof ions around any one ion.
waever, the existence of such a periodic structure in the system, if it
reall_y occurred, would seem to igvalidate the use of any low-density expansion
.such as the one described hére. We shali therefore regard ;1 = 2 as the limit
of the r.egion bf: appl.ic’ability of the modified cluster integral theory, as. far as
the soft spherxe model is concerned. In othef words, we do not expect the
theory to abply when the Debye"screening length ()\D) is less than twice the
""mean radius" (y-l) of the ion. -This is also; reasonable criterion for
deciding when the soft sphe'rebrn'c.adel itself ceases to provide a good descrip-
tion of real iﬂoﬁs, since wheh the Debye length be;:omes so small that}it is of
>the same order of fnagnitude as the i.on‘ic radius, one would expect the equation
of state to_depend'strongl? on the detailed structure of the ion itself.

Our final equation of state is thus

B ..M | |
where fa()\, a) is obtained by differentiating the appropriate form of SZ with

respect to the volume:
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’ ] as! -
£ina) = 2 - 2
2' n n '’
00
. -BU.  BU |
S' = 4¢n S‘ [e St+e 5- (BU )2 - Z:Irz dr. (40)

(The éenerali‘zation.to an n-component system is not difficult; see Section IV.)
| It is possible to derive a series expansmn for f ()\, a) (see Append].x B),

while S ‘(and presumably all the higher terms in the ser1es) d1verge in the

limit o -- %0, an expansion similar to .Eq. (32) is poss1b1e when a is some-

what larger than.-2. If one works out the first term in the expansion he finds

1742 23
" 33768 Y M

. fz()\, a) =
(For the case of symmetrical electrolytes, all the even powers of A in Egq.
(39) have_ vanishing coeff_f'cients. ) |
We have also evaluated £, (A,a) numerically; the results are given in

Table 1I. Comparison with these shows that the above approx1mate formula

works fairly well as long as both A and y are. smaller than about 0.3, but

it fails -completely for laArge A. Just as was found in the one-component case

.(}E),ithe approxifnation based on the first term in an expansion of S2 gives

very rtlisleading results in the region where the effect of SZ begins to be
important. Whereas, for small \, S 4gives a'negative contribution to the
pressure, for larvger values of \ it glves a positive contr1but1on which
counteracts the effect of the ring 1ntegral ( =f (a)) This is fortunate inas-

much as the ring 1ntegra1 term by itself would lead to a negative total pressure

-at large values of A and Y

_For numerical calculations we have used two values of y to illustrate the

dependence of the »pr_essulre on ionic size: (a)y = 0.29 X 108 -om_l, or

v =3.45%107% cmi (b) y = 0.58 x 10° em ™!, or vy = 1725 X107° em
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cm when T is in °K and n is in 1ons/cm , we have in

[

Since A = 6.9 (T /n)

[

case (a), a = 2 X 108 (T/n)%, and in case (b), a = 4 X 1'08 (T/ﬁ) . In Table III
we give the magnitude of the various contributions to the right-hand side of
Eg. (39). The Debye contribution for point charges, %,- is given in column
(l),‘ the ring integral %fl( a‘) in column (2), the contribution from SZ’ viz.
fz()\; a), in column (3), and the total values of F/nkT in column (4). Nu real
gas would _be completely fonized al the lowest tempceraturod giveh in thé table,
but the numbers are still useful in indicating the electrostatic contributions to
the equation of state in those rég-ions-whére the variation of the degree-of
ionization caAn beA ignored.

It will bé observed thé.t, except at lowjtempez"l;turues, the condition a > 2
is a more stringent r'estricti"on on the region of \f/agl_id-ity of the theory than the
condition that X\ be small, The former condition éorrespgnds to a straight
lipe in the temperature-den;sity plane:” by doubling the temperature, one
doubles the maximum pérmiSSiBle density. On the other hand, since f, (a)
. varies as (1 - 4/0,2) when the latter quantity is small, we see that halving the
ionic radius at a given térripérature permits one to go up to densities fvour
times as high. However,' this can only be done provided that .)\ does not
thereby become too large. W.heln the temperatufe is high enough to produce
complete ionization, the ions will be jﬁst nucleli and electrons, ‘and one could
then make the vio‘nic radius much smaller (bﬁt not zero) and thus extend the
_region of validity to mucﬁ ‘hitghe‘r densities. One-‘wdul.d still have to worry
about how well the soft spheré' model des.cribes' tfle' act}ial short-range inter-
actions in this case, howéver. A

It has not been conclusively established that t.he'period'i'c form, Eq. (38),
is me'aningless;A'it.nday‘ be that the cluster integral theory still provides an>

adequate description of the system in the region where Y)‘D < 2. In fact,
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" Villars (35) has used the corresponding pair distribution function-as a
starting point for a numerical calculation of the equafion of étate of a dense
plasma, based on a theory of H. S. Green (36). We merely wish to emphasize
the need for further just‘ification of the validity of the theory in this case.

For a discussion of the magnitude of the Sz'contributionAfor a hard

sphere potential, we refer to the art'icle by Meeron (37).

IV. THE DISTRIBUTION FUNCTION METHOD

The distribution function approach was applied to electrolyte solutions
By Kirkwood (ﬁ) in 1935; Kirkwood derived an integral equation for the
potential of mean force [cf. Onsager (39)], defined as proportional to the =
logarithm of the pair distribﬂutﬁion function, and showed that for Coulomb
forces the potential of mean force is simply the Debye shielded potential.
However, Kirkwood's later work employed the superpqsition approximation,
and it remained for Bogolyubov (14) and later Glauberma_n and Yukhpovskii :
(15,16,17) to devélbp an exact seArIiesA expansion for the -distribution function.
Bogolyubov did not go beyond the DH term because he found that higher
approximations to the distribution function bécame succéssively more diver-
gent at the origin.’ Glaubefrﬁan and Yukhnovskii avoided this difficulty by
using a soft sphlere potential, Eq. (1); they obtained a first approximation for
the equaéi;n“ of st4ate which cor%esponds to the ring ?ntegral approximation in
. cluster integral theory, and a distribution functilon which 1is very similar in
form to the shielded potential given in Eqs. (37,38). In fact, there is a
close relation between their solution of the integréi equation for th'ebdistribu~
tionlfunction and the chain summation’in the cluster integral theory. The
similarity between the distribution function theory aﬁd the cluster integral

theory has not been generally recognized, though it is'well known that both
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1 .
must give the same result when carried to a s‘ufficiently' high degree of

approxirnation. Aside from the fact that Giauberrha_v.‘n‘and Yuknovskii's work
has previousiy been available only in Ru.s,sian,' there has been some confusion
becéuse they made an error in obtaining their final forraulaforthe freeenergy.
The correct expres'sio‘n' for the free energy has been given by Kessler and
Gorbanev (40), and it turns out to be exactly equivalent to Eq. (29). °

Let DN represent the pr.oba‘bility distribution tuncfiqn iof the posit'i'O'ns‘

of all N molecules, given by

- ' _ =1 -gU . o
DN—DN(rl,...‘,p rN)-QNe .(_41)
where QN'is._ the same configuration integral introduced in Eq. (3),
QN ‘S‘ Se drl. ..le,
U= Z Uij(rij)'
The distribuﬁon fu'nctionAs .Fs(rl,_. . e rs) with s = 1,2,3, ..., are defined in

' sﬁch a way that
-s :
V‘ Fs(rl""’ls)drl er"‘drs

represents the probability that the positions of a given set of s molecules

lie in.the volume element (rl,r1 + drl). .. (rs,fs + drs). In particular,.
Fs is related to DN by the identity
_ yv~S . ’ : - o
F_s(rl’ .o ,rs) =V S‘ .. S'DN(rl’.' . .er) drs+1. .. d_rN.
' : | K R (42)

By differentiating Fs with respect to the a-component of the. posit_ipﬁ '
vector of molecule 1, and using Eqs. (41) and (42), one can derive the -

equation

(aFS/ar‘;) + B (BUS/BrT) F_ +np (1 - §)§(8U(rij)'/ar‘1‘) F . dr';+1 =0 (43)
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where . o . o
Us = Z .U(rij)‘
I<i<j<gs ™ &

~ Since we shall be interested only in the lower:forder"distribution functions

(e.g., only "FZ is- needed to calculate the equation of state) we can a's,sume

s<<N and achieve a slight simplification in Eq. (43):

(r /o) + B@Us/?fcll) Fg +nb 5 @U(rij)/ar.(ll) Fs;l .dr.s;l' - ° - (44)' |

Equation (44) is to be solved for Fs with the conditions

'

R LI O B (43
when all the rij — 0}
lim V S‘Fl (r)dr = 1, o (46)

Vo oo

\}i_r.nooV-{ §F5+1(r1, N ,rS‘+1,),Ad'rS~_+1 ="_F:'S(r1’ e -,rs).~ ) (47).
"In the case of‘ short range fofces, Bogolyubov shows how _o..n’ev can solve

Eq. ,(4_4%) by expanding the distribution func.nt_i_ons: in powers Qf the dens_ifcy,

thereby obtaining the Ursell-Mayer clﬁsteI.' expansion. In_thé case of longA

range Coulomb forces, the appropriate dimensionless parameter is ,

)§ = (41rn )\13:)>-1; the factor of 4r is of course .optiblha'lAa‘Lnd"is omittAed by

Bogolyubov and by Glauberman and .Yukhnovskii, who also absorb the factor

)\1-33 into the definition of the higﬂer apérgiigationS‘to F. 'nI‘hus, they write

the pair distribution function

) -1.0 21 3.2 .
Fa.b_l-*'n. Fab+n Fab+,n Fa.b+"" (48)
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2 . . s .
Fab denotes the second approximation term in the pair distribution function
for particles of kinds a and b.

In the case when the superposition approximation

: Fabgc N l_‘abFachc S Y “ . . ' : - (49)

is used, one can derive a system of equations for the successive terms in

Eq' (48):

0. v w0 o - ‘ -
Fab + Be Sv"v»achc'dr o Va.b' S (50)

1 o S“V Fl d :”4."_ .1 (FO )Z S‘ FO K S‘ r- r"l dV /d F d "
Fab + Be ac bc ¢ T2 . ab - P . _bc' o ( t) t.dr,

- o: ..... . - - ) . ' (51)
where :

Vv = npU

ab a.b ’

n_ = NC/N

(NC is the number of particles of kind c¢). The system.(50,51, etc.) is solved

by-Fourilér:tran,sfo-r:ms; ‘each of these equations has the form

o 3 F. i - o — » o o
F g vV  Fp dri=1L _ | (52)

and the various functions occurring in Eq. (52) have the Fourier representa- -

tions

o
1

(x k-t
ab ‘S‘--Kab(}"r)fe« 7 dk.

"

(am)” y (lkl) Herlz- f’

‘ac,

SvM (lk,) 1k(r r)

~
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The general solution for Kab is

20° Z Y n M. -
ac ¢ c¢cb
K., =M, - < . . (53)

ab ab )
' 1+ ZnZ'ZY n -
‘ CC ¢C

[of

In the special case of the soft sphere pdtential, whose Fourier transform
is given by Eq. (28), it is found that thé~Four_ier transform of.the zeroth
approximation to the pair distribution function is

: 2
0
K,y = - (2m 7 X 2 .2 zY
41rZe2n Ap k(v + K2 )+y
c
c

- (54) - -

ab 2
C.

(in: this case Lab is _]ust -Vab). Inverting the Fourier transform', one thus

gets
FO”- 2 __"ab €2%b _yf k sin(kr) dk < .(55‘)
ab T > T )\ZkZ( 2 +k2)+ 2 : .
4rrZe n S Y
cc
2 2 -qr -pr -
_ a,b P g e - e :
- - 2 2_ 2 r ’ N (56)
411'2 e n P 1
c'c
where ' |
p= % [(1 +2/a) + (1 - Z/n)z]
%[(Hz/a) S0 -2/t ],
2 2. 22 _ 252
,p +_qZ=Y;p.q = YOG

When a < 2, p and q become complex but ng can then be written in the

real form
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(57)

0 ea;eb exp [— Y yr(z +- 1> s1n \(r(é - l) ]

2
i -~
ab: 2 _ %
)\D 4nze2n 4/0.. )
[, ¢c'c¢

Cc

For comparison with Egs. (37) and (38) we note the identities
1 1 : )

1+X>3= -1/ 2 >5
Y(a o\ -3/

1 1
3 s N
AL A '1.(_2_
a=y 2') M A\THy)

y'.

P

where

11
=
1
NN
p\

‘We see that the shielded potential Us(r) calgulatgd by summing chains
contains the same function as the ﬁigtl.u approximati-o‘n'to the pairJ'd,istribu— )
tion 'furictio_h V-V,hiCi) Glaub,ermaﬁ and .Yukhnovskii obtained by solving.a set of
irilt,e'grAal équati;ns", | |

0

BUS(r) = n_lEab(r)., ' B L : L (58)

The energy of the system may now be calculated from the formula

= (4n/V) z %N‘aNb SU(rij):rab_(;,ﬁ_)r'; 'dr‘i.jA - (59)

- which gives, using the soft sphére potential and the expression (56) for 'the.

distribution function,

- 47 2 pgq P-4 _ p-49g I
Uy = (I/ZK)Z Ne -5 2[ , |- (60)
= _

P -q pq+alp+q)+ta
- The free energy is determined by the relation

| 2, ' . i
F:.aTSB(U/T )'dT. ] : ‘ - (61)

Glauberman and Yukhnovskii (16) obtained the result - .
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H
1

(v3/an B) [% X - 1)3 - % X - 12+ (X - 1)+ % X - 2)° +%(x - 12)4x] ,

NI»—-

X

(1 + 2/0.)
wh1_ch'1s incorrect; the correct result,

2 x-nfez]e (e2)

|-

- (/6mp) [x - 1P -2 - 1)+ 3 - 1) -

was first given by Kessier-and Go‘rbane\.r (40). Equation (62) is equivalent to '
Eq. (29) and thus it turns out that the equatmn of state based on the f1rst
approx1mat10n to the pair d1str1but10n function," Eq (56), is identical to that
calculated from the ring integral sum in the modified cluster expansion.

To obtain higher ati;)proximations from the distribution function method,
it is necessary to e11m1nate the superpos1t1on approx1mat1on This has been
.done by Glauberman and Yukhnovskn in another paper (41), they express the
d1str1but1en functlens F (rl, e i rs) 1h terms of eerta1n auxiliary functions
1ntroduced by Bogolyubov (14), |

Fa(r) = g (r)s

i

F_ (r,r) (r)gb(r')+n Vg trer), - (63)

F (r,r',r")

be g, (g (g e+ 07! [e, (rr g (e + g (v, gy ()

+ gbc(r",r ")'ga(r)]' + h-zglabc(#’r Ly,

The g functions satisfy similar integral equations, which can be solved by

expanding in powers of n—1 (the corresponding dimensionless parameter is \)

ga,...,a (rl"’frr)'-?g (rl,...,r)
1 s s 4

+n g .3..- : :(rl,,;-,rs) +".."° (64)

We shall refer to the g's as correlation functions. The problem of

finding an approximation of a given order to a correlation function for a
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specified number of rnolecules can be 'reduieed' tso«th‘e- determination of the
approximation of next lower lorder to the correlation function for a group con-
taining one more molecule. Thus, to determirre glb'vone needs to f.in‘d gob
etc. Accordmg to Glauberman and Yukhnovsku (41) the solution has the form

.0 S '
g gac bc ac Z ggdagdbgdc Ta : (65)

2' (gatb)Z Z §<gac)2 oL .l » .+b %' Z ncb S'_gvgc .(ggb)z drc
+ = Zn n g g0y (gdc)2 d‘rd.:': “66)

c,d
The first term in Eq. (66) rei:‘»res‘ents the c'orresponding terrn in the'expahsion

of exp [ g'gb] in powers of n lg ab ; the remammg three terms are correla-

tion 1ntegrals descr1b1ng the 1nfluence of an arbltrary th1rd molecule on the |
probability of a given configuration of two sel‘ected molecules a a.nd b; the B
last integral also includes the effect of a fourth molecu_le'.

The difference betweenrgalob, the first a}aproxﬁna'tién to the pair distri-
bution function c¢alculated from the ex‘act expansion,  and F;.b’ the correspond-

ing approximation calculated with the superposition approximation, is found

to be
: 0 d v \N O
‘A g knc ggbc {Sw dr g c Va'c.) gac dr} drC-
C ; : h
— by " A '
+ n n ggo .go {S (g ) g } dr dr,. (67)
cd ad ®cb de dc dc c d
C"|d 4 '

In the case of the soft sphere potent1al Glauberman and Yukhnovskii
estimate that the superpos1t10n dpproxnnatlon is apphcable only for concen-

trations less than about 0.01 mole/l1ter
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Yukhnov.skiil(l_.7) has given a more detailed analysis of thg series expan-
sion of thé'p'air distribution funct'ioh " 'He finds that, just as. glb c~ontainé
accordmg to Eq (66) a'term = 2 (gab> plus several " orrelatlon" terms,
gab' contains a term 37 (g together with more complicated correlation
‘terms, and similarly for g ab’ etc. .If the correl'ation'terrns were absent, the
pair distribution function could be written as exp.[n- ggb], in Whi;h case
ggb/n[:} or Us'(r) coﬁld be ‘intervprveted veryvs'imply as the potential Qf average .
force. A;tually the correlation terms do not vanish, ancAi‘may become rather
impoff;nt at highef densitieé. | |

'Thé:;ge‘n-e'ra‘l éxp;'éssion for the pair distribution function given by

 Yukhnovskii is: = ' -

=10 2f170N2 .1 /0N2 0 0 /02
Fab =1l+n g ab *n [ (gab) * nc S{(gac gcb * Eac <ga.b } dr
n n g ac (gcd gdb dr drd]

( )k+1 ( )k+1
-k-1 Eab z S Eac

*n (< + R+ )T k+1)! cb'

' (0 )Z
X ,,S“S“O Cro Lk g e
KIS NRIEIEE YW RECIUI I - AP SR > 1o ATy
+... (68)
There is of course a prescription for constructing each term in the series,
and it would not be difficult to show by a suitable rearrangement of these
' terms-that the free energy is identical to the modified virial series, Eq. (24),
derived by Meeron, Friedman, and Abe.

Nevertheless, Yukhnovskii was not satisfied with the above method, and ‘

in a later paper he says (42):
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' 'Until recently the defermination of the thermodynamic character-
istics of ionic . systéms has been carried out by the use :of partial
distribution functions — _eingle-particle and binary functions. - The
calculations involved cumbersome cornbutatipns and the solution
of complicated systems of integro-differential equations. In these
calculations for systems of charged particles short-range forces’

coqld be taken into account only w‘ith speeiel"'ferrns qf.force law. . . " .
He then ado-pt'edlthe method of_co,lllec‘tive. varia_bles', ‘developed b;r Bohm.and
Pines, Zubarev (9), Bazarov (23), gnd others, and atternpted to derivee,
" general expression for the free energy which co.uld be used with a'ny kind of -
. short range force l_aw;. We.shatll not describe the details of the method since

‘a translation of this paper has already been published (42); the result is

F = - NkT In V +. N Z [a(k) - gn (a(k) +1)] +-—n Z n o g(

X
1.2 2500 3 . [0 —hac bh_
1 2754 - T ‘ac ,
Py Zhab> dry + 7/31) Z Pab " y © it hac)
.‘ . .a,b,c c
X <e | -1+ hcb> (3hab) dr1 dr2 + g <e - 1+ h'ab>
N -—~ha.c o . _hcb : .
X<e -1+ hac> (e -1+ hcb> dr’l, erJ + ... (69)

where

‘a(k) = u(k) z (e n nﬁ)

u(k) is the Fourler transform of the potent1a1 and h_, is just the screened

ab
potential [3U defined by Eq. (26). Equatmn (69) is apphcable for the soft

sphere potent1al and is 1dent1ca1 to the mod1f1ed v1r1a1 expansmn, Eq (24),
the terms S, and S be1ng g1ven expl1c1t1y by Yukhnovsk11 There is e.nether
.formula? slightly more complicated than Eq. (69»), which is vallid when rhore

singular short range forces are included (22), but which, according to Siegert

(24), requires some modification.
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V. HIGH-DENSITY LIMIT OF THE LOW-DENSITY EXPANSION

It Has now been shown that a modified virial expansion can be constructed
for the equation of state of a system of particles interacting w.ith l;ong range
Coulomb forces; this éxpéhsioh can be car'riéd out in three equivalent ways,
and short range forces can also be included (_1_2_,2_2,). While it is vefy im-
portant to know that the exéahsion can be arranged‘in "sqch a way that each
term is finit_e, it is probably not worthwhile to calculate terms beyond SZ' .
T’he. practical usefulness of fhe theory will probably be ‘l"'imited to the region
of validity of the ring integral approximation, and by computing S2 one can
obtain a fairly good idga of the boundary of this region.

It would of course be helpful to know something about the convergence of
the _s;geries Z Sj()\.-)': Si?njce. the serigs is gxtremely complicated and is not
just-a powerv series in X, this convergence is rather difficult to establish.
However, it is possible to obtain some information about. the high-density
limit (XN > 1) of each of the Sj()\)'. For this purpose we consider again the
case of a one-component electron gas in a uniform positively charged back-
groﬁnd. Following Abe Q_3_), it is convenient to introdﬁce v-arious'types of

bonds connecting nodal points:

Wo=~q,

o 00 n _ ) : .
_ (_) _.' . . - -
d _ o , o
[o o]

N (-q)"
Wz'z A e i-lta
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where q ='q(x) = 'q(r/)\D) is the screened Deb;re interaction, "

Aq 4= BU i} )\e'—x v : B 1 (71)
s x _ o

- Using the notation of Eqs. (70) and (71), we can write S7()\)~in the fofnd

9]
1]

[\8]

. ) o .
(I/ZX)S‘XZW?’dx
o0

- (n/8) + %_+ (1/2\) g x“2 W,oax. - | (72) |

0
- . . L o .

The term in the free energy arising from the '3 " in Eq. (72) can be shown

to vanish by electrical neutrality by the same arguments used in deriving

.Eq, (9). ‘The third term can be estimated by replacing W1 by -1 for x < X

and by zero for x > xd, where X0 is the solution of the transcendental equation

. \e . =1, - L - . , (73)
X .

viz.
>'<0=ln)\-lnA1nX+.--.. ‘ o o (74)

Thus, the high-density limit of S2 is found to be

. . 3
SZ‘: ()\/8)-&16_)3‘)_-+."... ' o N (75)

This result can be verified by numerical evaluation of 'thelint‘egral (32).
The high-density form of S3 may be found in the same way. Its explicit '

form is [cf Eq. (69)], .
5, = (1/312%) Sg [3W x|, )W, e, 5 )W, 5) + W, () )W, (s, 5 )W, (1 5) - (76)

Note that W2 = WO +':W1 a'r_ld that the largest term in A comes from products

of Wo. In diagram notation S3 can be written
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= (1/30\%) {A+ 3 e S
;'(21/3:3;2){[ AA+3L,4-3 \+/\]+5[~ w2 ““A]}
- (1/31 ){ A\.a—3l—‘/:;\;\:+ A} - : (77)

where the dashed line 1nd1cates a WO bond a smgle line 1nd1cates Wl’ and a
I\

double line W The W (x 2)W (x )W (x l) term, indicated byl. s, can be

2°

evaluated by the usual convolution method in Fourier space and the result is

o 3

Z . - . . ' e

A 2 2 : )

L= (-0 % S T i . s
T Jo (k4 1) : I

The other terms in Eq. (77) give contributions of order )\2 or smaller, so we
find

9
O
S50\) = - (\/24) + L - (}1{0).
6x 2

2 (79)

The high—densify limits‘ of the Sj~()\) fc;r j > 3 may be studied in the same
way, by mﬁltiplying' the products of WZ functions to obtain integrals involving
pfdducts of WO and Wl'“. The alg;:bra invo‘lAved in rearranging the diagrams
representing Sj i'ncreases tremendously with.increasing j. However, certain .
regular features appear, and it seems possible that useful high-density re-

" sults may be obtainable- from this diagrammatic analysis. Beginning with

j = 4, complications appear. There are always rings of Wo(x) .func"cions
which are proportional to Xj, and.hence give a contribution to Sj proportional
‘to A. Also there are rings of‘WO(x) with one replaced by WI(X)’ and hence
bne power of A smaller than the ring of Wo's. The c"omplications appear in
man'yA terms wi;ch multiplicative factors of \ ranging from )\j up to ')\Z(j— 1'),' but

with integrals of the type ,§e—q dx connecting vertices. Since e Ybecomes a

step function,

0, x < x

. '; O’
€ q—‘L nlx) = {l,x>x

0’
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in the limit A — o, it is difficult to see how large these terms are. Finally,
there is a.group of terms which represent precisely the jth virial coefficient

Bj of a gas of hard spheres of radius x_ ~ fn \. 'This contribution to Sj is of

0
3jai-1 i
order (In \) /)\ and hence negligible.

: By countmg, the followmg result has been estabhshed

- '/,._'J"l (i - 1)! 4 j+1 . IA;: s e . .
8500 = (173 )‘{"_"—z' _[( DG -1 Bk ) J'[\-/I ]f o (s0)
(smaller terms multiplied by XJ to )\Z(J 1))

The hexagon of dashed lines symbolizes a polygon of j q-bonds, and the sec-
"ond hexagon has one g replaced by Wl‘. Using only the first of these and

applying the convolution theorem, we find that

r .—(-1))&(2/)5' —k—-—di— o (81)
LA %+ 1)) .

and thus the high-density limit of sj( \) is -

(G -1) 2 (. k~dk _ (J - 1)(23 - 3)e
S.(x) ~ -\ = = § —— = . (82)
A e o e ) 2*

If we now sum the Sj from 2 to o, we obtain

z S\ =
j=2 .

o L ,
g k dsz—-—(k +1)J
0

JZ

| _1 | . A. oL
gk dk { (® t) - P +_'1)'1)}
| (- w® e - o

T

Al

w|>

(83)
which exactly cancels the DH tgrrﬁ, Eq.,' ('20);» [_I_\I_lé This is true only for
the classical system.(], : . |

This result fnight have been éxpectéd,- since‘th,e DH equation of statg,
(P/nkT) = 1 - \ /6, predicts a negative'pressure.for')\> 6, which means théf :

the electron gas would collapse. We see that this eventuality has at least
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been avoided,: though the difficult ,préble_m of finding tﬁé high-dgnsity limit-
of the classical electron-gas equation of state still remains.

One pos sibility is that at sufficiently high densities the: electrons are
forcea_ into a lattice. . The -free energy would then have the form (28)

2/3

(BF/N) = +C )\ - (84)
so that the internal energy would be the Madelung energy of a lattice .
GEMN) =3¢ a2 ey e/, 1=t - (85)

Presumably the "other terms'' in Eq. (80) will sum to a quantity of order

2/3

A , but this has not yet i)een demonstrated.

It can readily be shpwx;l that th;e ring terms in Eq. (80)‘ with one WI bond
do. not give anything like the lattice energy. Summiﬁg the polygqﬁs w1;th oﬁe
soiid line gives | | |

0k

A% 2. ' |
1, ' k™ dk ' ' :
—(-2/)5 ———— &(k) = : ~(86)
A I R . o

il

- where -

 b(k) = S"dx eTk"‘wl(x) ~ gkz sli;b‘ W, (x) dx. :

The T e.sqlt is

L ). }‘%go “l -y e o (87)

The contribution to (ﬁP/n) from Eq. (87) is approximately - % In )\, wh1ch1s

2/3

quite small compared to the supposed \ contribution from the Madeluhg :

energy.

VL EFFECT OF INTERACTIONS ON IONIZATION EQUILIBRIUM

If oné wishes to apply the theory developed in the preceding sé‘c.tions to

real ionized gases, he has to introduce some new features which cannot be
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satisfactorily treated in a completely clas'siCal”model. In deriving the
equation of state from the free energy, we have up to now implicitly assumed
that the numbers of ions of various types remained constant when density and
temperature change. This is hardly ever true, ot course, in real gases; |
instead one must consider an equilibrium n'm'xture."of mol’e.cules, atoms, ions,
and free ele-c'trons, each of which may have internal degrées of fre‘.edcvn’n.' By
the time the mixture has reached such a high temperature that only bare
nuclei and electrons remain, one has to start worrying about relativistic
effects, -ra;diatioln' pressure, and electron-positfon pair production.

In pf¥actice one simply puts into the free eﬁergy formula (or its .equiva—
lent, fhe Saha equation for ionization equilibrium) a set of empirically deter-
mined ionizatioﬁ potentials and electronic energy leyels appropriate to the
particular substance, and a computer does the rest of.vthe'work. However,
there still remain some interesting theoretical problems',.for these ioniza-
tion potentials and energy levels are not unaffected by thé presence of thg'v
surrounding ionized gas. In fact, one knows that at sufficiently high densities
all bound electronic leveIS»:disaﬁpéar and the ionizafion potentials go to zero
(" pressure ionization').

. Several approximate fheories have been proposed to take account of the
effect of the variation of energ)l/ levels vs)ifh density' and temperaturc. It has
been'recognized that arll electron can become essentially free as a re_sult of
the perturbing ac;tion of nearby ions, though there is no agreement on the
best way to calculaté quantitatively the effects of'such.perturibations. One can
also take the viewpoint that the plasma as a whole cha(r1geé»the eff_ective‘law of
force bét.ween ch';a.rged pérticlés from Coulomb's law to something like the
Debye-H{ickel‘potentia‘-l, "Eq. (23). Thus one could use as energy levels the'

eigenvalues of the Sch‘riidinger equation in which the Coulomb potential is
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replaced by the Debye-Hlckel potential; one would then have only a finite
number of bound states, and the usual difficulty. of-the divergence of the
partition function would be avoided. Such an approach finds theoretical
justification in the modified cluster exioansion described in Section II; the
‘summation over chains of intermediate particles used in deriving Eq. (23).
can be iﬁterpreted as an.inclusion of the effects of polarization of the medium.
Approximate solutions. of the Schrédinger equation for a-Debye potential have
been éiven by Ecker and Weizel (43) and more recently by Harris (44). The
same mathematical problem has also been studied by nuclear physicists
interested in bound states of particles in a Yuka\l;va potential (45, ﬁ,t_ll).

It should.-be.notéd that-the relation betwee_—ﬁ energy levels and the thérmo,—
dynamic. functions becomes more complicated when the former are considered
to be temperature-dependent; for a general discussion of this point we refer
to Landsberg's recent book (_£_1§). 

Without getting involved in quantum-mechanical.considerations, .we can
point out one way in which Coulomb interactions can shift the ionization equi-
librium. This is a type of pressure ionization which écts independently of any
change in the energy levels, and was apparently first discussed by Timan {49)
though it is at least impli;it in rl;la‘ny earlier treatments. Timan found that
when electrostatic effects are included in the free energy formula along with
the ionization potentials, using the DH approximation for point charges, there
is a minimum in the degree of ioﬂizatib’n as a ‘functioh of pressure. At v.ery
lbw pressure‘s., an in'crea.se ot pilie's‘sure suppresses ionization, ‘as predicted
by the mass action law apd th¢ Saha equation, but at sufficiently HighA
pfessures t}'1e' deéfee of ionization incréases with pressuré. Thus the electro-
static terms have the same- effect as a température- and density-dependent

variation of the ionization potential.
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Timan's result was not entirely cbnvinciné;since the DH approximation
may not be accurate enough at the pressﬁr"e"at.w‘hiéh this minimum is -
alleged to occur. In order té decide whether éle‘ctrostatic effects on the
free energy would, by themselves, produce p‘r'ess’u‘r‘t-;' jonization, il is neces-
sary to use the generalizations of the Debyé-Hickel theozziy which we have dis=. .-
cussed eaz"li-er in this paper. We found, by calculating Lthe texl coriectlivin
term (SZ),' that over a fairly wide range of temperalures and deusilies the
" effect of ionic size is appreciable while higher-order correction terms such
‘as S, are still negligible (Table II). Hence; we shall use the ring integral
approximation with thé soft sphere pot‘ential using the estimated magnitud'eé of
higher terms to indicate ‘in what region ’this‘app.roximation‘ is reliable.

We consider a gas of a single element, at a temperature such that there
is an ionization equilibrium betweén- atoms "ionized to the nth and (n- 1)th
degrees (other ions having negligible concentré.;cions). “The thermodynamic
condition for this equilibriurﬁ is' -

ot He T ol o - (88)

where p By and p.é are the chemical potentials of (n-1)- and n-fold

n7-1’
ionized atoms, and electrons, réspecti{/ely. The chemical pofentials are to

be calculated from the free ener.gy using the formula -

b . (BF/BNQ)V;T ' ) ‘ . (89)

where Nn is the number of n-fold ionized atoms, etc.
The free energy may‘be written as the sum of an ideal gas and the electro-

static correction,

F=F,+F, IR (90)

where Fe_is given by Eq. (29) or (62). The c_:hémic;al- potential for an ideal -

gas of Nn ions in unit volume is
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=kTInN -kT 1In Z ,
S n n

(ermnk'I‘/hz)3/2 o, | S : (91),

N
.

_.E “BE;
~Qn = g;e .

- Carrying out the indicated operations, we obtain the: equilibrium con-
dition:

. 2 .
N N Z 7 (z" - z2 + 1)
n n-1 /

exp 2kT

[yez.'(.l -'W‘—:l-)] (92)

[N

where z e is the-charge ‘'of 'an n-fold ionized atom and w = ¢1 + 2/‘"(1) ‘is the

same quantity used in Eq.-(30). In the limit y— o or alternatively Ap= o

this reduces to Timan's result

N N Z Z ' ((z -z .+ 1) 1 o '

ne. n e n n-1 3 2

ANt Y/ - (93)
"1 ) l (kT) o L . . L

n-1 n

W

To put this.' in more familiar form, we make some minor apprc;ximations':
(1) m = mn_'l,f (2) the gas is very nearly ideal, i.e., the electrostatic inter-
- actions influence the pressufe only indirectly through fheir éffect: on the
number of ions. We then replace the densities: Nn by‘ the partial'pres'surgs“or
conéentra;tio'ns; |

pn = NIlkT - cnp

Equation (92) then becomes

Chel (n) ‘ 5 5 S : - _1 Y.
‘C?'; = pK" " exp {- (Zn' zn",,l + 1> '[;.:%ye (} --.w, )/.2]}“. (94)
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To investigate the effect of thve exponential factor on the ionization equi-
librium, we consider the case studied by Timan: assume the temperature is
such that nearly all atoms are singly ionizedﬁ, and cons:ia.er the equilibrium
between singly and doubly ionized elections. Dcfiniﬁg the degree of douhle
ionization as a, = NZ/N’ where N is the total number of atoms before ioni-
zation, one i'mcié (ég) tﬁat dz is a 111i;1i1'11u111 thh tlr.xo- pree sur‘e‘satisfieé the
equation

. 1 -
p=1|1+ ‘_ISY_(I:_};K“ '(kT)4/4we6. " - (95)
In deriving Eq. (95)-it has been assumed that K(Z) is independent of pressure,
but this restriction could easily be eliminated if one wanted to put in an
explicit ”pres.sure dependence of the equilibrium constant.

For oxygen at'Z0,000°K‘, Timan claims that there is a minimum in the

degree of double ionization at.ab'out 380 atm pi'(_e.ssur.e,v using Eq. (95) with

-1 ' -
v = 0. However, when we put in a reasonable finite value of y 1, say

-1
Y

IQPS ¢m, we {ind that the pressure of minimum ionizafion calculated .

- from Eq. (5) increases to about 1050 atm. The correspbndiné density, which

can b‘g 'estima‘ce_d ‘from the ideal gaﬁs law, is about 3.7 X 1020/cm2, which is ';oo

higsh for the ring integral approximation to be valid (see Table TII). |
From the form of Eq. (95) it can be seen that the predicted pressure for

: minimum’ionization'would increase rapidly with _increasing femperature be-

cause of the T4 factor, and would also increase if one took a >s1’*na1.ler va.luel.

of y. On 't-he other. hand, £he corrections t§ the ring 'integral.approximation

also become larger f;r larg‘er values of vy and-iower temperatures.
Fortunafely there étill remains an intermediate region in wfﬁch thé DH

theory, corrected for ionic size, is still valid, and in which the ionization

goes through a minimum at not too large a pressure. For example, with
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T = 15 625 K and y -1 =1.725 X 10 -8 cm, the minimum occur’s at a pressure
of about 750 atm (Smce f (xa) is small here we assum’e the DH equation of
state is still va11d even though )\ is about 2 3, ) | B
At higher temperatures it is difficult to determine whether this type
of pressure 1on1zat10n can occur, 51nce much higherde’ns1t1es and pressures
are involved and the cluster expansion results are no longer reliable
The electrostatm effects have been 1ncluded in se'veral 're'cent 1on1-zatioh
equllilu runi Lalculations, lusing the Debye Huckel approx1mation for point
charge‘s (51- 55) In some cases it has been cla1med that there is a 51gnif1cant
-effect on the equ111br1urri compos1t1ori and on the eiquat1on of state; however,
such assert1ons should be exarnmed critically in the light of the above remarks'.

References to many other works on thlS subJect may be found in a

b1bliography issued by this laboratory (56).

VII. CONCLUDING REMARKS

The classical theory of ionized systems still holds considera_ble interest
since the quantum-mechanical theory, which can be formulated in general
terms, still‘encounters many mathematical difficulties. Whereas the
classical virial expansion for a system of charged particles can now be de-
rived in several different ways, and the ring integral and the next correction
term can be calculated without too rriuch difficulty, .the duanturn-mechanical
ring iritegral is so'corn.plic.ated that the only results a.vailable so far are - valid
only in very small regions. Thus, for practical calculations of the equation
of state, .the"best one carz do at present is to use .the -classical theory .tog‘ether
with certain intuitively chosen modifications which may approximately account
for quantum effects; and one usually has to hope that the quantum effects are

‘fairly small in the region of interest.
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It is to be expectéd that a c.o1.'n.piete' quantum-mechanical t:h'eory will
ever;tually be wofked ouf so that t};ébe‘quaéion o:f”;state. ca_..ni :then'be é-al'cﬁlafed |
fairly accurately at all temperé,tur'es and densit:»iéAs-'. ' Evén then-,A the ‘éléssicai
theory-would not be forgo'tteln, since ;Dne still needs tc; know the prediclious
of classical fheory in ;)rder to uﬁéerstand to what extent a.' giveﬁ physica.l
ph,enomérion. requirAes quantﬁfn mechanies for‘ its expslaﬁa..t‘ion, |

While we have mostly used only one potential fuﬁction, the. éof;c sphere
modél, in presenting the theéry, in order to avoid inessenfial mathematical

complications, it will of course be understood that the results are valid for
a fairly large class of other potentials. For detailed discussion of this
point;' and for the derivation of several results given here without proof, we

must refér the reader to the original papers cited.
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AP;PENDIX A

DERIVATION OF THE DEBYE HUCKEL RESULT FROM

THE RING INTEGRAL SUM

fn this appentlix ;\:ve willAderive the DH escpressfon for the free energy

[Eq. (20)] in the limit of pure Coulomb forces from th'e.ring integral sum
[Eq (f5')] for the screened Coulornb potentislf. We lwish.‘ to avoid the use of
the closed logar1thm1c form [Eq. (17)] to Wthh the sum converges for |
(x2 +n ) < 1, since the closed form assumes the va11d1ty of an analytfc con-

. t1nus.t10n for values of x such that (x‘2 +n )Z 1. For th1s purpose we employ
a Mellin transform to write the sum as an integraf in the complex plane, and
then perform the x inte.-gration first. This method ar_1d its usefulrless in

'statisztica'l' mechanics problems were discussed recently by Iwata (57).

9 . .
We write the ring integral sum, Eq. (15), as
B ring = " (NX/2m)G(n),
G(n‘)=2“” gdx LT (a1
0 (x + 'qz) . R
Using the Mellin transform of the summation, the function G(n) becomes
1 +i 00 . ‘ 00 . XZ o o
'G(n) = (27i) S | —m—(ﬂg g g LM <2
-1ico Y0 (xT M)
| (A2)
With the change of variable x =1 tan 0, the x integrstion in (A~2) beoomes:
1 ' ' ' A
s . 2 : .
‘ 113-255" " 46 sin? 8 cosS 4 g 2% 3- ;s ( 3/2);)5 - 3/2)

so that we have

| ' 3-2s o S
Gln) = I(3/2) S‘ e T I(s - 3/2) o (A3)
C -

T Awi s sin (mws) T(s)
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In order to generate a series in powers of n appr'opriafe to small n the
contour defined in Eq. '(AZ) is 'Acilosec} to the left. Thus, the contour C- én—
closes the entire real axis to the leftof and including the point s = 3/2.
Similarly, to generate a series in l/n appropriate -for large n, the contour
is to the right. |

The iul_ugrdud ul Eg. (A2) has simplo‘ poloc at._s - 3,/2; ‘1',/?,, e
- .m +. 3/2.;. from l':(s - 3/2).and two additional s.in;xple polesA at s =1and 0
from (éin ;rsj-l.‘ -T>he residues of the‘ poles; enclosed in the .éoﬁtbur c.'losed to
the ’left give ihe fesﬁlf for G(n) as:

o0
2n
: 2 (- )™ (2n - 5)! 3 R
Gn) = T+314" + E( ).(2n - B)in_ -Zn - Zn7, © o (A4)

].'1_l
n=2 2 n!

: 2 . . . .
The summation in powers of n is recognized to be the binomial expansion of

2
M )3/2. Hence we find

Gn) = 3 {(1 pn?)3/2 3 n3} : (45)

(1+

Wl

in agreement with Eq. (19). In the limit of n=0, Eq. (A45)- bec;omes G(0) =
éo that 5-Fring = - NA/3, the DegyeFHﬁclce} result. | |

I'; -should be ‘pointed out that the screened potential,” -

u(r) = (e/r) exp (= '/t

has been used only to gliv'e definition to thg Fourier'-traAnsform of the pure
Coulomb potential; : e?‘/i‘. ~ Other screening functionsfa‘r‘e equally acceptable, ‘
- and the Melli;l tran.sfornAqA may be used in the same w;y..l For examplé,, one
may use ‘exp (- '-1;2/‘1'.3) as thg scree,ni'n'g-fupction'and' obtain a function of M
- analogous to Eq. (A5) which again reduces to % i_n the limit ry— o, 'i'. e.,'

‘1’1—" 0.
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APPENDIX B .
EVALUATION OF S, FOR SOFT. SPHERES
- We discuss here the evaluation of the integral (25) for the case when Us
is given by Eq. (37). The linear and quadratic terms in the integrand can be

taken care of immediately and we then have

5, = (1/20)1, 0, y) + 1, . | (B1)
where |
| ® oy 4 L
_(C -q : : '
Il—gox dx[e | -1], (B2)
ro o ' 1 ‘l. 1
=gt 0/BNZ Y L0 -y [n-yHF-aenE], e
| o) = /o [esn {25 )} - oo 1 (55) ]

. The integral (B2) has been evaluated numeri*caLliy and the results are given in
a report available from this Laboratory (58).
- For small values. of A\ and y the following expansion is useful:

o . ' <
Ii:fz SR o | - (B4)

n. n

.n=1

where

o
1l

/R ) 8L @
j=0

Nz - y2>%/[(1‘,+'y>%+ a -7,

L 1 1 1
' o : -2’\/7/{(1-3'2)2 [(1+Y)3+(1-y).aj},

H
1

e
1

Q= Zy/[l + (1 - yz)z] )
S (24 + 1)(2) + 2) 2j-k [2j\ _2j-k .k = (-n)
82 " 2 2 (- 1) (P) a7 2B, ™,

k=0
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k
134]. The following special cases should be noted:

and B‘(_n) is the Bernoulli number of order (-n) and degree k [see';(_S_g), o

- =2,

n,0
6n,2 =n,
.47 <n/8)(5p - 2),

s

8¢ = (n'/72)(35n2 -42n+16).
n

The first few terms in the expansion lead to the expression

o 2 - 3.2 .11 4
I = a e ‘/8\/_2_.,‘).(v1+§y ¥ T35 Y +>

3 112 2408 4
- ./81.)<1+17y t 31567 +)

e NZ /768)(1 + %yz + ———9‘1)2 . )

- (x5/3‘750)(1 + %y"‘ + .. )

It is necessary to work out vt'his many terms because most of them céncel out
when one calculates the pressure for synnnétricai electrolffes, c‘;ombining
: Il()\) and I‘l(-zx).

. The contribution to the pressure for small \ and y may be determined
using the general relétion (éé)

S :
pE = p-PDH +Allg) - Z nigi_. Auf(ﬁ‘). | | (B6)
=l o

which is valid for an s—c_orhponent system; n is the set'of concentrations,

- ny...n_, and P is the Debye-Hiuckel (ring-integral) contribution given in

-Eq. (30).
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For a two-component system-of soft spheres, we have n; =n,, -and

[se}

"A'(n) = nS} = 4w’ S [exp (-'V'BUS) + esp (BU) - (8U_)° ;'2]'r2 dr
Yo s I

i

4nn® x% [1.1‘(>\,y.) +1) (- N, y) + N2, - 1-)]-‘. (B7)

. ° . M ] .
' The contribution to the pressure from S'2 , defined as .~

n

o0’ .
BP - 5PDH‘ (1/2 x‘)SO x'z‘dx‘i[q'efl -qe™d - zqq']-,: ‘ © - (B8)

ﬁ(dq/dn).

q'
has been computed numerically for a lakrgé range of values of A anc}l Y; the
results are g‘iven in Table'-I.['I' .

For small \-and y.v;/.e may use fhe ex.pa-tnsion,_(B5) for -Il; retaining only

the first nonvanishing term, we find:
P = BP. - - n\>y>(17 N2/32768). L - (B9)
g DH y : | a

- We wish to thank Mr.- Bradley Johnston and Mr.. Charles Schwartz for

coding the numerical computation of the above integral.
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TABLE I'

Ring Int-'egralr thtriButions. to the Pressure

N f,(a) o g1(3/2‘a) R (A)* S (B)*
% 1.0000 1.0000 ~ 1.0000
80 0.9726 - " -0.9726. - - - -70.9726.
40 0.94065 0.9162 0.9465
20 0.8978 0.8968 0.8978
10 0.8127 0.8097 - 0.8129
5. 0.6795 - -0 0.67120 - - - 0.6870 .0.6062
3 0.5528 . 0.5377 | . 0.6343 . 0.5402
2.5 - 0.5041  0.4860 0.5013
2.0 0.4437 0.4220 ‘ 0.4437
1.5 0.3671 0.3411 . ©.-0.4105
1.0 0.2679 - 0.2377. . o 10.6637
0.5 0.1382 0.1086 “
0 10.0000- " 76.0000

’P‘(A) and (B) were calculated from the first few terms of the series expan-
sions valid near q -1 = (0 and o = 2, resﬁecfi-vely '
(A) 1(a) = 1 - (9/4a) + (9/2a%) - 35/4a ) + (135/8a )
(B) f,(a) = 0:443651 + 0. 1351464y + 0.069496y%
Wherey2 =1 - (4/0,2).



TABLETI
" Values of fz‘()\, a)

Note: Instead of a, the variable y = (Il -4:4 )2has beer used. The numbers in parentheses indicate the

power of 10 by which the other number iis to be multiplied. '

-0.453

A\y 0.05 0.1 - 0.2 0.4 0.6 0.8 ¢.9 0.99 0.995
0.1 -0.14(-8) -0.73(-8) -0.32(-7) -0.17(-6) -0.63\(-6)‘ ~0.31(-5) -0.11(-4) . -0.30(-3) - -0.0020
0.2 -0.75(-8) -0.54(-7) =-0.25(-6) =-0.13(-5) -0.50(-5) -0.25(-4) -0.88(-4) -0.0038  --0.0155
0.4 0.95(-7) -0.30(-6) -0.19(-5) -0.104(-4) -0.40(-4) -0.12(-3) -0.0012 -0.0239 -0.124
0.6 .27(-3)  0.79(-4)  0.27(-4)  0.25(-4)  0.38(-3) -0.80(-3) -0.0062 -0.0927 -0.751
0.8 0724 . .0196 .0063 .0031 L0017 -0.0037 -0.0133 -0.354 ’

1.0 0.356 L0912 ..0250 .0076 .0019 -0.0077 -0.0223 -1.510 -47.3"

1.5 . 1.415 .347 .0843 0177  0.00032  -0.0200 -0.0606 -106.8 0.641(5)
2.0 2.60 0.631 .148 .0278 ~ -0.C0120  -0.0374 -0.142 -0.104(5) -0.992(8)
3.0 4.90 1.188 0.278 0.0536 0.00125  -0.0838 0

.135(10) .0.80(16)

-€5-
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TAB LE III

Equation of state of a system of pos1t1ve and negatwe charges with soft sphere

T

n

1nteract1on

T emperature in °K

Contr1but1ons to’ P/nkT as given by Eq

Total number of charged part1cles, in Units of 1()

Column (1):.

Coelumn (2):

(39).

\/6, Debye Huckel contribution for point charges (v -l 0)

(™ /6)f (a)s ring integral contribution for soft sphcreu
0 .

Row (a.) computed w1th \a -1
Row (b) cornputed with Y -1

345><10
l725><10

cm

-8

cm

Column (3): f ()\,a )s contribution from 52, rows (a) and (b) as above.
Column (4): (P/nkT) 1 - (\/6)i (a) + £,(N,0)
T n . (1') (2) . (3) (4)
15,625 - 0.0625. - 0.05165 " (a) 0.0420 (2) -0.0067 (a) 0.9513
: (b) 0.0464 (b) -0.0544 (b) 0.8992
0.25 0.1033 ° (a) 0.0702 (a) -0.0088 (a) 0.9210
1 (5) 0.0840 (b) -0.0410 (b) 0.8750
1.0 0.2066 - (a) 0.1041 (a) 0.0013 (a) 0.8972
: (b) 0.1404 (b) -0.0477 (b) 0.8119
1.5586 0.2579 °©  (d) 0.1145 (@) "1.53 (@) 2.42
' : (b) 0.1617 (5) -0.0415 (b) 0.7968
4.0 0.4132 z .
< (b) 0.2083 (b) -0.0016 (b) 0.7901
6.2344 0.5158 o , -
. (k) 0.2290 (b) 5.109 (b) 5.9
62,500  0.25 0.0129 (a) 0.0105 (1) -0.00005  (a) 0.98945
(b) 0.0116 o :
1.0 0.0258 . (a) 0.0175" () -0.00005  (a) 0.98245
L (b)-0.0210 (b) -0.0006 (b) 0.9784
4.0 10.05165  (a) 0.0260 () -0.00002  (a) 0.9740
. (b) 0.0351 (b) -0 (b) 0.9644

.0005
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. TABLEIII (Continued)

T n Sy 2 3P - (4)
62,500 6.2344 0.0645  (a) 0.0286 (a) 0 (a) 0.9714
(b) 0.0404 (b) -0.0003 (b) 0.9593
16.0 0.1033
(b) 0.0521 (b) 0.0004 (b) 0.9483
24.94 . 0.1290
‘ ~ (b) 0.0573 (5) 0.0487 (b) 0.9914
250,000 1.0 0.00323 (a) 0.0026 (a) 0 (a) 0.9974
(b) 0.0029 (b) - (b)y
4.0 0.00645 (a) 0.0044 Ca) 0 (a) 0.9956
: (b) 0.0052 (b) © (b) 0.9948
16.0 0.0129 (a) 0.0065 (a) 0 (a) 0.9935
: (b) 0.0088 (b) 0 (b) 0.9912
24.94 0.0161 (2) 0.0072 " (a) 0 (a) 0.9928
(b) 0.0101 L () o ~(b) 0.9899
64.0 0.0258
- (b) 0.0130 (b) O . (b) 0.9870
1 99.75 0.0322 .
(b) 0.0143 (c) O (b) 0.9857
1,000,000 4.0 0.0008 (a) 0.0007 (a) 0 (a) 0.9993
(b) 0.0007 (b) -0 (b) 0.9993
16.0 0.0016 (a) 0.0011 (a) 0 (a) 0.9989
(b) 0.0013 () 0 (b) 0.9987
64.0 0.0032 - (a) 0.0016 (a) O (a) 0.9984
(b) 0.0022 (b) © (b):0.9978
99.75 0.0040 .  (a) 0.0018 (a) .0 (2) 0.9982
(b) 0.0025 (b) 0 (b) 0.9975
256 0.00645 |
R (b) 0.00325 (b) O (b) 0.99675
399 0.0081 ' L SR .
. (b) 0.0036 (b) . 0 . (b) 0.9964

®Values reported as 0 if less than 0.00005. -

'”/_rd
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