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A STUDY ‘OF NON-LINEAR DIRICHLET PROBLEMS

ABSTRACT

Part I of this report considers the Dirichlet problem
(1) ’ Au f(u), u :_ 0, in R,

u=4¢, on R',

where f-is non-linea;, R is a bounded domain with boundarf R', ¢ is
a nonnegative continuous function, and A is the Laplacian operator.
It also discusses and analyzes the finite difference analogue of (1).
Iteration methods and numerical calculations are included for the

approximate solution of (1) with

where < and c, are positive constants.

Part II of this report considers the finite difference analogue of the
Dirichlet problem

Au A
(2) . Av = g(u,v), u, v

f(u,v), u, v >0, in R,
> 0,

> in R, >

u=4¢, v=y, onR',

where ¢ and ¢ are nonnegative continuous functions and

c,u
£lu,v) = 1+ c,v+cu
and
c, u
4
g(usv) = - : »
1+ CZ'Y *+czu
¢y €5 03, and é4 being positive constants. The finite difference

analogue of (2) is analyzed using the results of Part I and other known
results, and iteration methods and numerical calculations are included

for the solution of this problem.
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Part I. A Non-Linear Dirichlet Problem
1. Introduction
In this part of the report we consider the elliptic boundary-value
problem .
(1) bu = f(u), u > 0, in R,
u= ¢, onR',
where f is non-linear, R is a bounded domain with boundary R', ¢ is a
. nonnegative continuous function, and A.is the Laplacian operator
‘f : ) - 33;. . ,3;
9X oy
The finite difference analogue of (1) is discussed and analyzed, and
special attention is given to (1) with
‘ c,u
(2) f(u) = T-:—E;_ﬁ s
where <y and c, are positive constants.
We describe the finite difference analogue of (1) in Section 2. Section
3 contains an existence and uniqueness theorem for (1) and existence,
uniqueness and convergence theorems for the finite difference problem.
'QLQ ) In Sections 4 and 5, we describe several iteration schemes for solving

the approximate problem and give an analysis of certain of these.

Section 6 contains results for a wide variety of numerical cases.

2. Statement of the Problem.

We let R denote é fixed'domain in the (x,y)?plane, and let R and R'
denote the closure and boundary of R. Let Py be the point with
coordinates (xo,yo). The points (xo + h, yo), (xo, Yo * h), (xo - h, yo)
and (xo, Yo - h) are called h-neighbors of Po and are denoted

Pol’ cees Po4’ The lattice domain Rh is the set of p01n§s Pl’ ey PN’
situated in R, having coordinates that are multiples of h and such

that P, , i =1, ..., Nyv=1, ..., 4 belong to R. Neighbors of

points of Ry, that are not themselves points of Ry, form the boundary



i
Rﬁ of Rh' We denote the points of R!, by PN+1, ceny PM’ and the union
' - 3 . - 3 e
of Rh and Rh by Rh' If Rh is fixed and ¢ is a function on R, , we denote
the value of ¢ at point Pi (or at piv) by wi (or wiv)' We define the
operator Lh by
where A
» oy 4 o
pl¥il = = { Loy - 4“’1,}
v=1 ;
The general boundary-value problem for some fixed Rh consists of 33
determining a function u defined on ﬁh such that .
. L ful=0,u >0,i=1, ..., N;
(3) . h* i i | |
u. = ¢., ¢. >0, j = N+¢1, ..., M,
j ¢J ¢J 29,
We assume, of course, that h is sufficiently small so that at least one
R, exists. L
In the next section we give results for the general boundary-value
problems (1) and (3), but the remainder of this part of the report will
be for (3) with f given by (2).
3. Theoretical Results - ' : ~ RN

The first author [6], [7]) has extended the results of Bers [2] and the
classical theory of Courant and Hilbert [3] to obtain thc following
theorems.

Theorem 1. Let f be defined, bounded and continuously differentiable

for u > 0. If f satisfies
(i) £(0) <0,
(ii) f'(u) >0, u>0,
(iii) £'(0) > 0,

then (1) has one and only one solution.
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Theorem 2. 1If f satisfies the conditions of Theorem 1, then (3) has

one and only one solution.

Theorem 3. If the analytic solution of (1) is in class Cz(ﬁ), then the

finite difference solution of (3) converges to the analytic solution as

the mesh ii refined.

Remark 1. The theorems hold under other conditions on f (e.g., if

f(0) < 0, then (iii) can be eliminated).

Remark 2. The theorems can be extended to higher dimensions.

We observe that these theorems not only answer the questions of existence,
uniqueness and convergence for f given by (2), but are also applicable,

for example, to problems with f having the form
or

where < and c, are positive constants.

4, Iteration Methods

In this section we describe five iteration schemes for solving (3). The
effectiveness of these and other methods will be discussed in Sections 5
and 6. For simplicity, we let R be a rectangle, and the points of the

lattice R, are numbered, as in the following figure, with m points along

h
a horizontal line and n points along a vertical line (N = mn).
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2n v - mn
n-1 2n-1 mn-1
2 n+2 _ . m(n-1)+2
1 n+l m(n-1p)+1
FIGURE 1. Numbering of the Points of Rh -
The first two methods (denoted L and M) involve linearizing (3) by | v

using previous iterates in f and then solving the resulting system of
linear equations iteratively by a point Succeﬁsive overrelaxation (SOR)
method. We use previous iterates for all u in f for method L, but only
for the denominator u for Method M. The iteration equations for these

methods are

4u.(k+1) = 4u.(k) + w{u.(k+1) + u.(k+1) + u.(k) + U-(k)
i i i4 i3 i2 il

hzf(ui(k)) - 4u§k)} ,

and ' ;ﬁ
. 4
(k+1) (k+1) (k) (k)
. . u. + u. + u.~.’ + u. i
ECSS D RN ¢S S B U i3 i2 i L0 |
i i - 2 i
- c,h
1
4 + —
"1+c,u k
271

i=1, ..., N; k >0,
where k is the iteration number and w, here and elsewhere, is the relaxa-

tion factor 0 < w < 2.

The third iteration’ method (denoted N) is what might be called a ''Newton-
SOR" method (see [4]). Its defining equations are
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4u£k) - [u£§+1) + ugg*l) + ugg) + ugt) - hzf(ugk))]

u.(k+1) - ui(k) +

. 4 + hzf'(ui(k))

A fourth method (denoted P) is essentially the same as Method M, except
we solve the linearized equations by a block SOR'scheme instead of a-
point method. The system of equations for (3) can be written in matrix

- form (see [12])

. [ (k+1) 0T xe1)] [
Al -1 0 Uy B,
(k+1) (k+1)
Y ug " B,
(4) CoL . = .
(k+1) ‘e |
-1 Am-l -1 Um-l » Bm-l
0 o A D) | 1) ;
. m L m _ 2 m |

where the Ui's are vectors of values of u corresponding to the points
) of one of the m vertical lines of the lattice, the Bi's are vectors of
constants corresponding to this partitioning and the boundary values,

I is the identity matrix, and
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with 4
_ clh2 : oo
@ =4+ ———gy’ P=n(-1)+j, j=1, ..., 0
j l+c,u
2'p

Method P has iteration equations

(k+1), (k+1) _ , (k+1), (k) (k) (k+1j (x)
Ay Uy = A U, + w{uy™ s sl - A uy,
(5) Ai(k*ljui(k*l) = Ai(k+1)ui(k) + m{UP_‘;‘l) . Ul(ﬂ + By - 'Ajfk*l)ui(k)},
i=2, ..., m1,
A1) (k1) A(k+1)U(k)'+ oo ) g A(k+1)U(k)} K> 0.
m m m m m-1 m m m -

In each iteration, m matrix equations of the form
Agk+1)U§k+1) = C.

1 1 1
must be solved either directly or by some other means. The matrices

A§k+1)’
1 .
(see [12]), and Gaussian elimination without pivoting is stable

here and in the next method, hbwever, are positive definite
(see [13]) and gives a useful means for solving these equations.

The last method (denoted Q) is what we might descriptively call a
"block overrelaxed quasilinearization' method (see [1]) or, for this
problem, a '"block Newton-SOR" method. In this method we linearize by
using previous iterates for all uy in f in (3), subtract
h2f'(ui(k))ui(k+l) from the left side and hzf'(uik))ugk) from the
right side of each equation in (3), and solve by a block SOR scheme
as iﬁ Method P. The system of equations for (3) can tﬁgn be written
as in (4), except the B.'s now have elements thathare sums of
'constanté, hzf(ugk)) and hzf'(ugk))ugk), and the A§k+1)'s have

ai"s given by

J
a, =4 + hzf'(u;k)).

i.
J

The iteration equations are the same as those in (5).
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5. An Analysis
For an analysis of ﬁ3), we shall restrict ourselves to a one-dimensional
analogue of (35. Although we only consider this reduced problem, every-
thing can be extended to (3), and the salient features we desire to con-
sider are more easily seen in this one-dimensional setting. The one-
dimensional analogue is given by

u., +u,, - 2u, = hzf(u.) i=1, ..., n;

i2 i4 i i°? : >

(6)

u = ¢(P), u .. =¢(P__).

(o} o n+l n+l

In linear problems one uses the point-Jacobi iteration method to study
the Gauss-Seidal and SOR iteration methods. Weé shall do likewise in
this section. In particular, if we apply a pointAJécobi scheme to the
linearized equations in Method L, we obtain the following result,

Theorem 4. If (6) is linerized by using previous iterates for all u's

in f, then the point-Jacobi iteration method diverges for

2(1+c2a)2
C, > ——
1 h2
where . )
o = max[¢(Po), ?(Pn+l)].
Proof. Suppose u = (ul, cees un)T is the solution of (6) (whose

existence is guaranteed by'Theorem 2) and u o urEk))T

0 @)
is the kth iterate in the point;Jacobi scheme for the linearized

problem. Let e(k) =u - u(k). Matrix equations corresponding to
the point-Jacobi method can be written for (6) and the linearized

form of (6); they are



0 1/2

1/2 0

0 1/2

1/2 0

0
1/2
1/2 0 1/2
1/2 0
0
1/2
1/2 0 1/2
1/2 0

(k-1)
un-l

o k-1)

clulh

—_— - u
1+c2u1 o

2
cluzh

1+c2u2

Clun-lh
1+c,u

2'n-1

(k-1), 2
n-1 h
(k-1)
1+c2un_1
c u(k-l)hz
1'n

1+c.u (k-1)

clu

n+l

3
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Subtracting one of these matrix equations from the other gives
cK) _y (k-1)

. , k>0,
where
—al 1/2 0
1/2 a, 1/2
Mk =
172 @ 1/2
and
L clh2
a, = -
i

2(1+c2ui)(1+c2ui(k-l))

Let p(M) denote the spectral radius of matrix M (i.e., p(M) = m§xlxi[,
. " 1

where the Ai's are the eigenvalues of M).

Now
‘ > .
p (M) 2 max|u, |, |
where the ui's'aré eigenValues of any of the principal submatrices of

Mk'

Thus :

clhz

p(M ) > max|a. | 2 —
ko= 2(1+c2a)z
If
clh2
— > 1
2(1+c2a) ‘

or
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then
p(Mk) >1, k > 0.

Suppose the method converges for

2(1+c,m)’
c, > ———— .
1 h2 )
Then Mk converges to a matrix M as k> « and p(M) > 1. But p(M) > 1
implies divergence, and so leads to a contradiction of the assumption »

of convergence. Hence the point-Jacobi method diverges for
2(l+c2a)2
1 h2

A similar argument gives the following theorem.

Theorem 5. If (6) is linearized by using previous iterates for all u's

in f, then all iteration methods diverge for

4(1+c2a)2
c, > -

1 hZ

Proof. Suppose u = (u

HON

u = (u1 ,

, ce., U )T is the solution of (6) and
(k) 3 T " | - ‘
ooy US ) 1is the kth iterate in any iteration scheme

for the linearized problem. Let e(k) =u - u(k).

Subtracting the
corresponding equations for u in (6) and the ones for u(k)'in (6), we

get the matrix equation

— g po— —

2 -1 0 B, 0
12 -1 | B, |
ek _ .. ek-1) 450,
12 -1
Bn-l
0 12 0 8
N— e e n—
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where

clh2
B- -

i ®
(1+c2ui)(1+c2ui

This equation can be written in the form

w100 | GeD)

- My
wheré
-1 -1 7]
-28) By 0
-1 -1 =1
82 -282 82 .
-1 _
i
-1 -1 -1
Bh-1 28,1 Ba1
. -1 -1
0 Bn -ZBn

Now Mil is irreducibly diagonally'doﬁinant, and hence non-singulaf

(see [12]). The eigenvalues of M, are just the reciprocals of the eigen—

values of Mil.
) But
1p(M;1) < 4 max IBTII.
i, - . i
1:}:p
Therefore, _
1 clh2
O(Mk) s B —
4 max |B: | 4(1+c,a)
. i _ T2
lf}:p
If
clh2
> 1
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or
4(1+c2a)2
Cl > ——h-z_ s
then
o) > 1,

which implies divergence as in the above proof.

Remark. These theorems also hold for c, = 0, which corresponds to the
linear problem Au - cyu = 0. Observe then that the finite difference
analogue for this linear problem has a divergence'criterion c, > 4/h2

1
for the linearization scheme suggested by Theorems 4 and 5. This is

illustrated in an example in Table 2 of the next section.

~Theorems 4 and 5 indicate that iteration schemes with complete lineari-
zation using previous iterates in f fail for certain values of < and

c Examples are given in the next section to illustrate this. A

2" _ ‘
similar analysis for the linearization of Method M for (6) shows that

one can éxpect convergence in those cases where Method L fails.

We now explore the point-Jacobi iteration method for the linearization
of Method M for (6), different than the one just mentioned above. The-

point-Jacobi method here has matrix form

WD) 5 ) gy

k k~’
where
0 Y1 0
J =
k
Yn-1 0 Yn-1
-0 Y 0—

w
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and
S B (3]
1+c2ui

To get some feeling for what happens for different values of ¢

(k)

b essentially as a constant vector. In this.case, Jk

1’ 20

and h, we suppose the iterates u are near the solution of u of (6),

and treat Jk

corresponds to the iteration matrix. Studying Jy» we observe.that for

¢, >> ¢ and small, C; = ¢, and small, and Cy >> ¢y, Jk approximates

a matrix T of Toeplitz form

0
B 0 B
T = .. ,
B 0
B

with 8 = 1/2. The matrix T has eigenvalues

AV = 26'cos;¥%—, v=1, ..., n,A: |
where n is the order of T (seé [S]). For B = 172; the spectral radii
of T for h = 0.1 and h = 0,02, the.vélues of h cdnsidered(in the next
section,'are .95 and 99. In.the éase SR énd large, Jk approxi-
mates T with very small 8 for h = 0.1 and B = 1/6 for h =0.02. We
also note that asAh - 0, Jk gpproximatés T with B =1/2 for‘all‘fixed
values of cq and oo and so p(T) - 1, siqce its or@er is inc;easing |
as h » 0.

Using the formula for obtaining the optimum overrelaxation factor,

s for linear problems (see [12]),
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where p(J) is the spectral radius of the point-Jacobi iteration matrix,
and the above approximations, we summarize our findings or 'predictions"

in the table below.

TABLE 1. Predictions.

Value§ of h =0.1 : ' h = 0.02
¢ and c, Ap?§o§. Approx. Ap?§o§. Approx.
P/ “b Pk “b
¢, > c,, small .95 1.5 .99 1.9
€y = Cy, small - - .95 1.5 .99 1.9
c, >> ¢ .95 1.5 .99 1.9
cl >> c2, large .01 1.0 .33 1.1

6. Numerical Results

Many nqmerical cases were solved for (3) with f given by (2), R thé
unit square, ¢ = x2 + 2y2, and h = 0.1 or 0.02. These cases are
summarized in the tables beléw. Included in these tables are the
mesh size, h, the approximate optimum relaxation factor, W » the
number of iterations for convergence, I, and the computer execution
time (in minutes), T, for each method for each case. All of these

were run on an IBM 360, Model 50.



TABLE 2. Results for Methods L, M, N and Q with h = 0.1

h = 0,1 Method L Method M Method N Method

cl c2 Wy I T W, I T 0, I T - I T
w7t o s |17 | oas [ 1s | 17 | o1 | 1.5 | 17 | o6 | 1.4 | 12 | o190
10 | 107! DIVERGED 1.0 3| .008| 1.0| 3] .009] 1.0 .010
10* 102 DIVERGED 1.5 ] 13 | .¢12 { 1.3 | 8 | .011 | 1.2 .015
104 104 1.5 17 | .013 | 1.5 | 21 | .014 | 1.5 } 19 | .017 | 1.4 | 14 | .022

1 1 1.5 | 17 | .014 | 1.5} 17 | .014 | 1.5 | 17 | .016 | 1.4 | 12 | .020
10° 102 1.5 | 17 | .014 | 1.5| 18 | .014 | 1.5 | 17 | .o16 | 1.4 | 13 | ~021
102 | 10* | 1.5 |17 | .o1a | 1.5 ] 17 | o153 | 1.5 | 17 | 016 | 1.4 | 13 | .020
10° 10° 1.5 117 | .014 { 1.5 | 17 | .013 | 1.5 | 17 | .016 | 1.4 | 13 | .022
10° | 10° 1.5 | 17 | .013 [ 1.6 | 24 015 | 1.5 [ 21 | .018 | 1.4 | 16 | .023
10° 102 DIVERGED 1.0| 4| .008 | 1.0 3| .009 ] 1.0]3 .010
107! | 10? 1.5 | 17 ,:.013 1.5 | 17 | .014 | 1.5 | 17 | .016 | 1.4 | 12 | .019
107 | 107 | 1.5 |17 | .o1a | 1.5 ©17 | .013 | 1.5 | 17 | .015 | 1.4 | 12 | .020
1074 1 1.5 { 17 | .013 | 1.5 | 17 | .013 | 1.5 | 17 | .016 | 1.4 | 12 | .019

1 1074 | 1.5 |17 | .o14 1.5 |.17 014 | 1.5 | 17 | .o16 | 1.4 | 12 | .020
ax10° 0 DIVERGED 1.1 | "5 | .009 | 1.1 51 .009 | 1.0 5 | .012

12

-t



TABLE 3.

Results for Method P with h = 0.1

h = 0.1 Method P
c1 .c @y I T
10* 10° 1.0 3 .009
10t | a0t | 1s | 16 .021
1020 | 10 |1.4 |13 019
1 1.4 | 12 .018

TABLE 4. Results for Methods L, M, N, and Q with h = 0.02.

h = 0.02 Method L Method M Method N Method Q

c1 c2 wb I T mb I T wb I T wb I T
10 1074 DIVERGED 1.1 9 .216 | 1.1 9 .257 | 1.0 7 .335
1 1 1.9 110 1.298 | 1.9 110 1.201 | 1.9 110 1.724 | 1.8 102 3.106
102 108 1.9 110 1.301 {1.9 110 1.208 (1.9 110 1.735 | 1.8 104 3.492
1074 {1074 1.9 110 1.350 | 1.9 110 1.206 {1.9 110 1.719 | 1.8 103 3.136
1 10°% |1.9 110 1.303 | 1.9 110 1.207 1.9.110 1.715 { 1.8 98 2.979
1074 1 1.9 110 1.297 | 1.9 110 1.202 (1.9 110 1.732 | 1.8 103 3.136

44



TABLE 5.

Results for Method P with h = 0.02.

23

h = 0.02 Method P
c1 c2 I T
10 101 8 .323
2 6
10 10 104 2.609
1 1 102 - 2.582

We now indicate some conclusions from these numerical calculations. We
first observe that the ''predictions' in Table 1 of Section 5 are indeed
When < 2

indicated in Theorems 4 and 5, and the remark following these theorems,

>> ¢

accuratc for all cases studied. and large, the divergence

is obtained for all such numerical examples. In those cases where
Method L converges, Method L and M have almost identical iteration'
characteristics (a comparison of linear methods). 'Also, Methods M

and N parallel each other except for the slightly increased time factor
in Method N (a comparison of a linear with Newton-type method). The
block hethods, Methods P and Q, are iteratively faster than the point
methods, Methods L, M, and N, as expected (see [12]), but require more
time; this is dﬁeAto the added time needed to solve the block.equations

by Gaussian elimination.

Methods M, N, -P, and Q all effectively solved (3) with f given by (2).
However, Method M and N are simplér and less time consuming, so one might
consider them slightly better than the other methods. Clearly, Method L
could not be considered a good ''general' method even though it effec-
tively handled many cases. Other interesting observations can be
obtained from the tables, but we shall leave these to.the reader's

interest.
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Direct methods for solving the equations-in (3) -for Methods L, M, and -
Q by a '"band matrix inversion' technique suggested in a paper by Martin
and Wilkinson [11] were tried for h = 0.1. A table of results for such

calculations is given below.

TABLE 6. Results for Direct Methods.

h = 0.1 Direcf L Direct M Direct Q

C1 c2 0y I T wy I T W I T
107! 10'¥ 1.0 | 3| .028 | 1.0 2 | .036 1.0 | 2 | .036
10 | 107! DIVERGED 1.0] 3. 053 | 1.0 3| .054
104 | 10? DIVERGED 71 |70 | 10 7] .16
104 | 10* {1.0]3].029{1.1] 9] .140 | 1.0] 7| .121
] 1 1.0 | 3| .0290 [1.0] 3 [.0s5 | 1.0 3| .052
102 | 102 | 1.0 3] .029 1.1 5| .080 | 1.0] 4| .067
102 | 10* | 1.0 |2 .026]1.0] 4] .069 | 1.0 3 | .052
102 | 10® | 1.0 2] .026 [ 1.0] 3| .051 | 1.0 3 | .053
10 | 10% | 1.0 3| .029 | 1.0]15 | .239 | 1.0 9| .143
10° | 10° DIVERGED 1.0 4 | .069 | 1.0 | 3 | .052
100 [ 10* {1.0] 2] .026 | 1.0] 3] .03 | 1.0 3| .052
104 | 10* | 1.0 2] .025 | 1.0] 2| .038 | 1.0 2 | .030
1074 1 1.0 [ 2 { .027 [ 1.0f 2 | .038 | 1.0 | 2 | .037
1 10% 1.0 3| .028 1.0 2 .03 | 1.0] 2] .037

The direct methods are iteratively faster, but overall took a great
deal more time (a factor of 2 or more) than the point and block
methods. Furthermore, direct methods become less and less practical
as the mesh is refined. Observe that the divergence criterion of
Theorems 4 and 5 is again illustrated for the linearized équations
of Method L.

¥
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The equations in (3) are quadratic in u; . One might therefore try to
solve them iteratively using the quadratic formula. This is a success-
ful method of solution, but double precision is necessary, and this

method is more time-consuming than the other methods.

There were numerical instabilities for large values of the overrelaxa-

>> C

tion factor, w, in those cases where c 2 and large.

1

All calculations above used a zero initial guess and the convergence

criterion

maxlu.(k+1) - U.(k)l
i 1 1

< €
max |u, (k+1) | ’
s |

1

where ¢ = .002 for h = 0.1 and € = .00002 for h = 0.02.



26

Part II. A Dirichlet Problem for a System of Non-Linear Partial

Differential Eqﬁations

1. Introduction.

In this part of the report, we consider the non-linear boundary-value

problem

bu = f(u,v),
(7; : bv = g(u,v),

El

u=49¢, v=y, onR',

where R, R', and 4 are as in Part I, ¢ and ¥ are non-negative continuous

functions and

- cLu

1
(8) flu,v) = —m—m——
1+c2v+c3u
and
c4u
(9) glu,v) = - e———m— ,
, 1+c2v+c3u

where i i=l, ..., 4, are positive constants.

We describe the finite-difference‘analogue of (7) in Section 2. Section
3 contains iterative methods for solving this approximate problem. Other
related results and an analysis of these and the results of Part I are
given in Sections 4 and 5. In Section 6 there are numerical calculations
to illustrate the iteration methods and a variety of examples of the

approximate problem for (7).

2. Statement of the Problem.

For convenience, we shall use the notation of Section 2 of Part I. We

define operators Mh and Nh by

.._—] ‘

-
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Mh(gi’ni)‘= Ah[gi] = f(gi’ni)

and

Nh(gi’ni) Ah[ni] = g(gi’ni).

The boundary-value problem for some fixed'Rh consists of determining

functions u and v defined on ﬁh such that

]
[y
-
.
>
=
-

Mh[ui,yi] =0, ug, vy 2 0, i

1
[
-
[=
-
<
v
o
-
-
"
—
-
-
s

Nplugovyd =

(10)

3. Iteration Methods.

The -iteration methods of this part of the report are the same as Methods
L, M, N, and Q of Part I, except -they are extended to handle the system
instead of just the single equation. We shall denote these comparable
methods by L', M', N', and Q', .

Method L'
We linearize (10) at the i-th point by taking all previous iterates for
u. and \f in f, and the new iterate u§k+1) and previous iterate v§k) in

g. We first solve the equation with the operator’Mk at the i-th_point,
‘and then solve the equation with the operator Nk at the i-th point, using
the iteration equations of Method L for both. The iteration equations
for this method are ' '

4ugk+1) = 4ugk)+w{ﬁgk+l)+u(k+l)+u(k)+ugk)—hzf(ugk)
i i i4 i

(k) (k) ,
i3 i2 "Y1 vi )-dug)

’
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4vgk;1) = 4vgk)+w{vgk+l) (k+1) (k) (k) h (ugk+1),vgk))-4vgk)} ,
i i i4 13 Vi2 i i i

i=1,...,N; k > 0 .

Method M'
We linearize the system (10) as in Method L' except we replace u( ) by
(k D in the numerator of f. The iteration equations for v are the same

as. in Method L' and the iteration equations for u are given by

(k+1) (k+1) (k) (k)

(k+1) (k) Uia Yi3 12 Uiy _ u(k)
i . . <, h 1 ’
4 +
(k) oK)
ey Teegyy

Method N!' _

Method N' is the same as Method N except we replace the éingle equation
in'u with two equations in u and v and solve the u-equation at the i-th
point and then the,v-equation there. Its'defining'équations are’

(k) [u(km (ke1), (K), (k) 126 gk_)')']‘f

L0 | k) kI b

1 i 4+ h %E-(u§“) (k))
“and _ }
(k) (k+1) (k+1) (k) ¢9} (k*l) (k)
SR ) vy e T e Do )]
i i : PR %%ﬁ(ugkfl);v{k))‘ : S

<
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Method Q'
Method Q' is analogous to Method Q except we have two block equations to
solve at each step, one corfesponding to a vertical line of values for u
and the other to a vertical line of values of v. The equations are just
those 1n?i§ated in (5) with f(u( )) and f'(u(k)) replaced by f(u(k), gk))
(u

“,u fk)) for the equations in u, and the us f(u (k )) and
f'(u )) renlaced by v, i g(u( +1) (k)) and ag( (k+1) ik)) for the
equations in v, Agaln, we solve the u-equation and then the v-equation

before proceeding to ‘the next vertical line of values.

4, Other Results.

Lick and Coleman [8] have considered problem (1) with f given by

11 | | ftu) = - ———

Included in their paper are ex1stence un1queness and convergence theo-
rems and numerical results for the finite-difference analogue of this
problem., We summarize their numerical results in the table below for: _
Methods L-(Methods L and M are equivalent here), N, and P. These tables
contain the mesh size, h, the approximate optimum relaxation factor, w_,
and the number of iterations for convergence, I. The convergence

criterion used was

max ugk+l) - ugk). <e,
. i - i :
i :
where € = 10’4. -The boundafy~condition was given by ¢ = Xy on R', where

R is the unit square.

In those cases where ¢, was large, there was numerical instability for

Methods L. and P when a large w was used (for h = 0.1, w > 1.6; for h =
0.02, w> 1.9).
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TABLE 7. Results of Lick and Coleman for h = 0.1.
h = 0.1 Method L Method N - Method P
c1 c2 wb I wb 1 wb I
-4 -4 ‘

10 10 1.6 23 1.6 23 1.4 16
1074 1 1.6 23 1.6. | 23 1.4 16

1 10°% 1.6 23 1.6 | 23 1.4 16

1 1 1.5 23 1.5 23 1.4 15
10* 1 1.4 30 1.5 25 1.2 23

1 10° 1.5 23 1.6 24 1.4 - | 16
104 104 “1.5. 32 .| .1.5 1. 26 1.4 27

TABLE 8. Results of Lick and Coleman %br h = 0.02.

h = 0.02 Method L Method N 'fAMethod |

§1 CZ mb I _wb I wb I
-4 -4

10 10 1.9 104 1.9 104 1.8 82
10°% 1 1.9 104 1.9 104 1.8 82
1 1074 1.9 104 1.9 104 1.8 83
1 1 1.9 104 1.9 104 1.8 80
104 1 116 1.9 108 1.7 98
1 104 1.9 105 1.9 106 1.8 82
10% 10 1.8 211 1.9 118 1.8 111

oy



Yot

31

5. An Analzsis.

We now try to analyze (10) using the results of Part I and the results of

Lick and Coleman.

We first observe that f(u,v) can be written in the form

ciu
f(U,V) = T+c'u *
. 2
where
Do
c1 = Trc.v
2
and
L3
C2 = Tecv -
.2

Then f(u,v) can be considered to be of form (2);( We see then that c!

1
and cé vary as ¢, and s in (10). Similarly, g(u,v) can be written as
o c!

. S 3
~g(u,v) = - I+c'v *
4
whére .
' c, u
€3 % Tecu
3
and
] c2
4 = Tecu °
3

Thus g(u,v) can be thought of as in form (11). We see then that cé and

c& vary as c,u and Cye The above discussion gives us a way of examining

the system in (7) in terms of the single equations in (1) and (11).
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Lick and Coleman's resu1t§ of Tables 7 and 8 (corresponding to values of

cé and c&) indicate that the :second equation .in (10) should cause no dif-

ficulties for the numerical solution by Method L' or N'. - However, the

analysis of Section 5 of Part I (corresponding to ci and cé) indicates

that Method L' should fail for ¢y, >> ¢4 and large (see Table 9), while

the other methods (M', N', and Q') should be successful. Also, the
values in the tables coupled with the discussion above leads one to
expect rapid convergence and w, near 1.5 for the point methods and 1.4
for the block method for most cases when h = 0.1.

6. Numerical Results.

Many numerical cases were solved for (10) with f given by (8) and g by
(9), R-thé unit square, ¢ = x2+2y2, v = xy, and h = 0.1. These cases are
summarized in the table below. Included in this table are the mesh size,
h, the approximate optimum rélaxation factor, W the number of itera-
tions for convergence, I, and the computer execution time (in minutes), T,
for each method for each case. All of these were run on an IBM 360,

Model 50.

The following calculations had convergence criteria

max ugk+1) - ugk)
i i i
. ] < e
max ugk+1) u
i
and
max ng+l) - ng)
. i i
i 7 _ < e
max vi(k+1) v
i

with e =¢ = ,002.
u v

P



TABLE 9. Results for Methods L', M', N', and Q' for h = 0.1,

)

h=0 Method L' Method M' Method N' Method Q'
c1 ’c2 c3 c4 Wy 1 T Wy I T Wy I T wb 1 T
1 1 10° 10° | 1.5 | 17| .027 | 1.5 | 17 | .026 | 1.5 17 | .032 1.4 | 12 | .038
1 10° | 10° 10° | 1.5 | 17 | .026 | 1.5 |17 | .027 | 1.5 | 17 | .031 12 | .040
10° 10° .105 10° 1.5 {17 {.027 | 1.5 |18 | 027 | 1.5 | 19 | .033 | 1.4 | 14 | .045
1074 |1 1074 1 1.5 | 18 | .027 | 1.5 | 18 | .028 | 1.5 | 18 | .034 | 1.4 | 13 | .044
1074 1 |71 1 J1.5 |17 [.029 (1.5 )17 | .027 | 1.5]| 17 | .034 | 1. 12 | .041
1] 1074 1 1.5 | 18 | ,029 | 1.5 | 18 | .028 ["1.5 | 18 | .033 . 13 | .044
1 1 |1 1 1.5 |17 | .029 | 1.5 { 17 | .028 | 1.5 | 17 | .036 12 | .040
1 1 1 10°]1.3 | 28 | .036 | 1.3 | 28 | .035 |'1.5 | 19 | .033 | 1.5 | 13 .041
1 10° 1 1 1.5 | 17 | 028" | 1.5 [ 17 | .029 | 1.5 | 19 | .037 | 1.4 | 13 | .043
10° | 1 1 DIVERGED 1.5 | 17 | .027 |'1.5 | 17 | .033 | 1.4 | 13 | .044
10° 1 1 10° DI&ERGES 1.4 | 20 | .030 | 1.5 | 18 | .034 | 1.4 | 12 | .040
10° »105 ~1 1 DITERGES '1.5 1 21 ] .031 | 1.5| 19 | .033 | 1.4 |[.14 | .044

%)
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All cases behaved as expected from the analysis of Section 5. For the
~cases where Method L' converged, Methods L' and M' were almost identical.
Methods M' and N' again essentially parallel each other except for the
slight increase in time for Method N'. Method Q' (block method) was
iterétively faster, but again took more time. Some numerical instability

was observed and is summarized in the following table.

TABLE 10. Numerical Instability of the System.

Method
] !\,l ] ]
Case L 1 N Q
¢, =cCc,=¢, =1
1 2 g w 3_1.6 w>1.,5 None None
¢4 = 10
c1 = 10S
DIVERGED w z_1.7 w> 1,7 w > 1.8
c2 = c3 = c4 =1
Cy = ¢4 = 10S :
_ DIVERGED w > 1.8 w> 1.8 w > 1.8
c2 = c3 =1

From simplicity, time, and effectiveness considerations, we conclude that
Methods M' and N' are better than the other methods considered in this

report.

‘Systems like (7) frequéntly arise in various physical problems. If the
Dirichlet conditions of (7) are replaced by mixed boundary conditions,
(7) describes a system that arises in corrosion-diffusion problems. In
particular, examples of such problems and their numerical solutions can
be found in [9] and [10].

p—
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