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A STUDY OF NON-LINEAR DIRICHLET PROBLEMS 

A B S T R A C T 

Part I of this report considers the Dirichlet problem 

(1) ~u = f(u), u ~ 0, in R, 

u = cf>, on R', 
where f is non-linear, R is a bounded domain with boundary R', cf> is 

a nonnegative continuous function, and ~ is the Laplacian operator. 

It also discusses and analyzes the finite difference analogue of (1). 

Iteration methods and numerical calculations are included for the 

approximate solution of (1) with 

f(u) = 
c

1 
u 

1 + c u • 
2 

where c1 and c2 are positive constants. 

Part II of this report considers the finite difference analogue of the 

Dirichlet problem 

(2) 

~u = f(u,v), u, v ~ 0, in R, 

~v = g(u,v), u, v ~ 0, in R, 

u = cj>, v = ~. on R', 

where cf> and ~ are nonnegative continuous functions and 

and 

c
1 

u 
f(u, v) = -:-1-.-----c2 v + c3 u 

c4 u 
g(u, v) = - ..... 1-------

+ c2. v + c3 u 

c1, c2, c3, and c4 being positive constants. The finite difference 

analogue of (2) is analyzed using the results of Part I and other known 

results, and iteration methods and numerical calculations are included 

for the solution of this problem. 
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Part I. A Non-Linear Dirichlet Problem 

1. Introduction 

In this part of the report we consider the elliptic boundary-value 

problem 

(1) ~u = f(u), u ~ 0, in R, 

u = 4>, .on R' , 

where f is non-linear, R is a bounded domain with ooundary R', 4> is a 

nonnegative continuous function, and ~ is the Laplacian operator 

The finite difference analogue of (1) is discussed and analyzed, and 

special attention is given to (1) with 

f(u) = 
c

1 
u 

where c1 and c2 are positive constants. 

We describe the finite difference analogue of (1) in Section 2. Section 

3 contains an existence and uniqueness theorem for (1) and existence, 

uniqueness and convergence theorems for the finite difference problem. 

In Sections 4 and 5, we describe several iteration schemes for solving 

the approximate problem.and give an analysis of certain of these. 

Section 6 contains .results for a wide variety of. numerical cases. 

2. Statement of the Problem. 

We let R denote a fixed domain in the (x,y)-plane, and let Rand R' 

denote the closure and boundary of R. Let P be the point with 
0 

coordinates (x ,y ). 
0 0 

and (x , y - h) are 
0 0 

The points (x + h, y ), (x, y +h), (x -
0 0 0 0 0 

called h-neighbors of P and are denoted 
0 

h, y ) 
0 

P01 , ... , P04 . The lattice domain~ is the set of points P1, ... , PN' 

situated in R, having coordinates that are multiples of h and such 

that P. , i = 1, ..• , N; v = 1, ... , 4 belong toR. Neighbors of 
l.V 

points of Rh that are not themselves points of Rh form the boundary 
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Rh of Rh. We denote the points of Rh' by PN+l' ... , PM' and the union 

of Rh and~ by~· If~ is fixed and w is a function on Rh' we denote 

the value of w at point P. (or at P. ) by w. (or w. ) . We define the 
1 1V 1 1V 

operator Lh by 

6h[w.] - f(w.), 
1 1 

where 

1. r w. - 4w. '} .. 
1 

1V 1. 
v= 

The general boundary-value problem_ for some fixed Rh consists of 

determining a function u defined on ~ such that 

(3) 
0, u. > 0, -i = 1, •.. , N; 

1 -

u. = 4>. , cp • ~ 0, . j = N+ 1, •.• , M. 
J J J 

We assume, of course, that h·is ~uffici~ntly small so that at least one 

~ exists. 

In the next section we give results for the general boundary-value 

problems (1) and (3), but the remainder of this part of the· report will 

be for (3) with f given by (2). 

3. Theoretical Re~ults 

The· first author [6], [7] has extended the results of Bers [2] and the 

classical theory of Courant and Hilbert [3] to obtain the following 

theorems. 

Theorem 1. Let f be.defined, bounded and continuously differentiable 

for u > 0. If f satisfies 

(i) f(O) ~ 0, 

(ii) f'(u) ~ 0, u ~ 0, 

(iii) f'(O) > 0, 

then (1) has ~ and only ~ solution. 

.. 
I 

\JJ{i_ .. 

li)' 

( 
• 
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Theorem 2. If f satisfies the conditions of Theorem 1, then (3) has 

~ and only ~ solution. 

Theorem 3. If the analytic solution of (1) is in class c2 (R), then the 

finite difference solution of (3) converges to the analytic solution as 

the mesh is refined. 

Remark 1. The theorems hold under other conditions on f (e.g., if 

f(O) < 0, then (iii) can be eliminated). 

Remark 2. The theorems can be extended to higher dimensions. 

We observe that these theorems not only answer the questions ofexistence, 

uniqueness and convergence for f given by (2), but are also applicable, 

for example, to problems with f having the form 

or 

1 + c 2 u 

·-c u 2. 
-c e 

1 

where c1 and c2 are positive constants. 

4. Iteration Methods 

In this section we describe five iteration schemes for solving (3). The 

effectiveness of these and other methods will be discussed in Sections 5 

and 6. For simplicity, we let R be a rectangle, and the points of the 

lattice Rh are numbered, as in the following figure, with m points along 

a horizontal line. and n points along a vertical line·(N = mn). 

- . 
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n 2n mn 

n-1 2n-l mn-1 
. . . 
. . . . . . 
. . . 

2 n+2 m.(n-l 

1 n+l m(n-1 

FIGURE 1. Numbering of the Points of Rh 

+2 

+1 

The first two methods (denoted L and M) involve linearizing (3) by 

usini previous iterates in f and then solving the result~ng system of 

linear equations ~terativ~ly by a point successive overrelaxation (SOR) 

method. We use previous iterates for all u in f for method L, but only 

for the denominator u for Method M. The iteration equations for these 

methods are 

and 

4u. (k+l) 
1 

(k+l) . 
u. 

1 

4 (k) { (k+l) (k+l) + u (k) + u (k) = ui + w ui4 + ui3 i2 il 

= u. 
1 

(k) 
+ w 

(k+l) 
ui4 

i = 1, ••• , N; k?_O, 

where k is the iteration number ~nd w, here and elsewhere, is the relaxa

tion factor 0 < w < 2. 

The third iteration'· method (denoted N) is what might be called a "Newton

SOR" method (see [4]). Its defining equations are 

.. 

'· 

[ 
• 
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w { 4u?l 
[ (k+l) (k+l) (k) (k) 

- h2f(u~k))]} ' (k+l) (k) - ui4 + ui3 + ui2 + uil 
u. = u. + 

h2f' (u. (k)) 1 1 4 + 
1 

i = 1, .•• , N; k > o. 

A fourth method (denoted P) is essentially the same as ~1ethod 1'--1, except 

we solve the linearized equations by a block SOR'scheme instead of a 

point method. The system of equations for (3) can be written in matrix 

form (see [12]) 

A(k+l) 
1 -I 

-I A(k+l) 
2 

(4) 

-I 

0 

0 

-I 

A(k+l) -I 
m-1 

-I A(k+l) 
m 

0
Ck+l) 
1 

0
Ck+l) 
2 

0 Ck+l) 
m-1 

0
Ck+l) 
m 1 

__l 

= 

Bl 

B2 

B m-1 

B 
m 

where the U. 's are vectors of values of u corresponding to the points 
1 

of one of the m vertical lines of the lattice, the B.'s are vectors of 
1 

constants corresponding to this partitioning and the boundary values, 

I is the identity matrix, 

a. 
11 

-1 

(k+l) 
A. = 1 

0 

and 

-1 0 

a. -1 
12 

-1 rt -1 
1 n-l 

-1 a. 
1 
n 

i = 1, ... , k > 0 m; - , 
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with 

a. 
1. 

= 4 + 
1+c u (k) 

2 p 

p = n(i~1) + j, j = 1, ... , n. 
J 

Method P has iteration equations 

A(k+1)u(k+1) = 1 1 
A(k+1)u (k) 

1 1 
+ w{U(k) + 

2 " Bl 
_ A(k+1)u(k)} 

. 1 1 , 

(5) A~k+l)u~k+l) = A~k+1)u. (k) {U(k+i) + uCk) + B. _ A~k+l)u~k) }, + w . 1 
1 1 1 1 1- i+l 1 1 1 

i = 2, ... , m-l, 

A(k+l)uCk+l) = A (k+l)u(k) {U(k+l) + B + w 1 m m m m m- m 

In each iteration, m matrix equations of the form 

A~k+l)u~k+l) = c. 
1 1 1 

A(k+l)u(k)} 
m m k > 0. 

must be solved either directly or by some other means. The matrices 

A~k+l), here and in the next method, however, are positive definite 
1 

(see [12]), and Gaussian elimination without pivoting is stable 

(see [ 13]) and gives a useful means for solving these equations. 

The last method (denoted Q) .is what we might descriptively call a 

"block overre1axed quasilinearization" method (see [1]) or, for this 

problem, a "block Newton-SOR" method. In this ·metlio'd \./e linearize by 

using previous iterates for all u. in fin (3), subtract 
1 

h2f 1 (u. (k) )u. (k+l) from the left side and h2f 1 (u~k) )u~k) from the 
1 1 1 1 

right side of each equation in (3), and solve by a block SOR scheme 

as in ~1ethod P. The system of equations for (3) can then be written 

as in (4), except the B. 1 s now have elements that are sums of 
. 2 (k) 1 2 (k) (k) '(k 1) constants, h f(u. ) and h f 1 (u. ) u., , and the A-. + 1 s have 

. 1 1 l: 1 

a. 1 s given by 
1. 

J 
Ct. 

1. 
J 

The iteration equations are the same as those in (5). 
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5. An Analysis 

For an analysis of (3), we shall restrict ourselves to a one-dimensional 

analogue of (3). Although we only consider this reduced problem, every

thing can be extended to (3), and the salient features we desire to con

sider are more easily seen in this one-dimensional setting. The one

dimensional analogue is given by 

(6) 

In linear problems one uses the point-Jacobi iteration method to study 

the Gauss-Seidal and SOR iteration methods.· We shall do likewis~ in 

this section. In particular, if we apply a point~Jacobi scheme to the 

linearized equations in tvlethod L, we obtain the following result. 

Theorem 4. .!i (6) is linerized £r_ using previous iterates for all u' s 

in f, then the point-Jacobi iteration method diverges for 

where 

2 
2(l+c

2
a) 

cl > h2 

a= max[~(P0), ~(Pn+l)]. 

T Proof. Suppose u = (u1, ... , un) is the solution of (6) (whose 

2) and U (k) .-~ (ul(k), ... , un(k))T existence is guaranteed by Theorem 

is the kth iterate in the point-Jacobi scheme for the linearized 

problem. Let e:(k) = u,.. u(k). Matrix equations corresponding to 

the point-Jacobi method can be written for (6) and the linearized 

form of (6); they are 
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2 

u1 0 1/2 0 
c1u1h 

u1 1+c2u1 
- u 

0 

2 

u2 1/2 0 1/2 
c1u2h 

u2 1+c2u2 

1 
= -2 

u 1/.2 0 1/2 
c u h2 

n-1 
u 

. 
n-1 

1 n-1 
1+c u 
. 2 n-1 

c' 

2 

·u 0 1/2 0 
c1unh 

n 
u n 1+c u - u 

· 2 n n+1 
.. 

and 

(k) 0 
(k-1) c u(k-1)h2 

u1 1/2 0 u1 1 1 
1+c u (k- 1)-

u 
0 

.2 1 . 

(k) 1/2 
(k-1) 

c u(k-1)h2 

u2 0 1/2 
··1 2. '. ~ 

u2 '1+ (k-1) 
c2u2 

1 = -2 

(k) u(k-1) 
c u(k-1)h2 

u 1/2 0 1/2 
n-1 

1 n-1 
n-1 1+c u(k- 1) 

2 n-1 

u(k) 0 1/2 u(k-1) 
c u(k-1)h2 

n 
0 

1 n 
n 1+c u (k- 1) 

- u n+1 
2 n 

... 
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Subtracting one of these matrix equations from the other gives 

.,.(k) = l1k (k-1) k 0 

.. 1' £ ' > ' 

where 

<ll 1/2 0 

1/2 CL2 1/2 

Mk = 

1/2 an.:.l 1/2 

0 1/2 CL n 

and 

a. = -
l. 

Let p lM) denote the spectral radius of matrix ~~ (i.e .. , p (M) 

where the A.. 's are the eigenvalues of M). 
l. 

Now 

P .(~) ~ m~x I ~ i I ' 
. l. 

= max I A.. I, 
i l. 

where the ~· 's are eigenvalues of any of the principal submatrices of 
l. 

~· 

Thus 

If 

> 1 

or 



then 

Suppose the method converges for 
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2 
2 (l+c

2
a) 

cl > h2 

Then Mk converges to a matrix M as k ~ .., and p (!VI) > 1. But p (M) > 1 

implies divergence, and so leads to a contradiction of the assumption 

of convergence. Hence the point-Jacobi method diverges for 

2 
2 (1 +c

2
a) 

cl > h2 

A similar argument gives the following theorem. 

Theorem 5. If (6) is linearized£[ using previous iterates for all u's 

in f, then all iteration methods diverge for 

Proof. 
u(k) = 

cl > 

2 4 (l+c
2

a) 

h2 

Suppose u = (u
1

, ... , un)T is the solution of (6) and 

( (k) (kJ)T · h k h . . . . h u1 , ... , u 1st e t 1terate 1n any 1terat1on sc erne 

for the linearized p~oblem. Let c(k) = u- u(k). Subtracting the 

corresponding equations for u in (6) and the ones for u(k) in (6), we 

get the matrix equation 

2 -1 0 Bl 0 

-1 2 -1 B2 

c (k) 
= 

(k-1) c , k > 0, 
-1 2 -1 

6n-l 0 -1 2 0 Bn 

• 
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where 

This equation can be written in the form 

where 

-26-l ·-l 
0 1 61 

-1 -26-l -1 
62 2 62 

-1 
Mk = 

-1 -26-l -1 
6n-1 ·6 n-1 n-1 

0 -1 -213-l Bn n 

Now Mk 1 is irreducibly diagonally dominant, and hence non-singular 

(see [12]). The eigenvalues of Mk are just the reciprocals of the eigen
-1 values of Mk 

But 

Therefore, 

1 
P (Mk) > _4_m_a_x_l B-~...,1-1 

l<i<n 1 

> 

If 

> 1 
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or 

then 

which implies divergence as in the above proof. 

Remark. These theorems also hold for c2 = 0, which corresponds to the 

linear problem ~u- c1u = 0. Observe then that the finite difference 
2 analogue for this linear problem has a divergence criterion c1 > 4/h 

for the linearization scheme suggested by Theorems 4 and 5. This is 

illustrated in an example in Table 2 of the next section. 

Theorems 4 and 5 indicate that iteration schemes with complete lineari

zation using previous iterates in f fail for certain values of c1 and 

c2 . Examples are given in the next section to illustrate this. A 

similar analysis for the linearization of Method M for (6) shows that 

one can expect convergence in those cases where Method L fails. 

We now explore the point-Jacobi iteration method for the linearization 

of Method M for (6), different than the one just mentioned above. 

point-Jacobi method here has matrix form 

where 

0 yl 0 

y2 0 y2 

Jk = 
Yn-1 0 Yn-1 

0 Yn 0 

The 
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and 

To get some feeling for what happens for different values of c
1

, c
2

, 

and h, we suppose the iterates u(k) are near the solution of u of (6), 

and treat Jkb essentially as a constant vector. In this case, Jk 

corresponds to· the· iteration matrix. Studying Jk, we observe. that for 

c1 >> c2 and small, c1 = c2 and small, and c2 >> c1, Jk approxim~tes 

a matrix T of Toeplitz form 

0 B 
0 

T = 
0 

B 0 

with B = 1/2. The matrix T has eigenvalues 

vii 
Av = 28 cosn+l, v = 1, ... , n,. 

where n is the order ofT (see [5]). ForB= 1/2, the spectral radii 

ofT for h = 0.1 and h = 0.02, the values of h considered in the next 

section, are .95 and .99. In .the: c~se .cl » .c 2 and large, Jk approxi

mates T with very small 8 for h = 0. 1 and B = 1/6 for h = 0. 02. We 

also note that as h -+ 0, Jk approximates T with B = 1/2 for all fixed 

values of c
1 

and c2 , and so p(T) -+ 1, s~nce its order is increasing 

as h-+ 0. 

Using the formula for obtaining the optimum overrelaxa~ion factor, 

wb, for linear problems (see [12]), 
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where p(J) is the spectral radius of the point-Jacobi iteration matrix, 

and the above approximations, we summarize our findings or "predictions" 

in the table below. 

TABLE 1. Predictions. 

Values of h = 0.1 h = 0.02 

c 1 and c2 
Approx. Approx. Approx. Approx. 

p(Jk) ~ p (J k) wb 

cl >> c2, small .95 l.S .99 1.9 

cl = C:z, small .95 l.S .99 1.9 

c2 >> cl .95 l.S .99 1.9 

cl >> c2, large .01 l.O .33 l.l 

6. Numerical Results 

Many numerical cases were solved for (3) with f given by (2), R the 
2 2 unit square, ~ = x + 2y , and h = 0.1 or 0.02. These cases are 

summarized in the tables below. Included in these tables are the 

mesh size, h, the approximate optimum relaxation factor, wb, the 

number of iterations for convergence, I, and the computer execution 

time (in minutes), T, for each method for each case. All of these 

were run on an IBM 360, Model SO. 
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TABLE 2. Results for ~·lethods L, M, N and Q with h = 0.1 

. -

h = 0 .l Method L Method ~1 ~·bthod N Method 1 

cl c 2 wb I T wb I T ~ I T wb I T 

10-l 10-l 1.5 17 .013 1.5 17 .013 1.5 17 .016 1.4 12 .019 
io4 10-l DIVERGED 1.0 3 .008 1.0 3 .009 1.0 3 .010 
104 102 I 

DIVERGED 1.5 13 ,(:12 1.3 8 .011 1.2 8 .015 

104 104 1.5 17 .013 1.5 21 .014 1.5 19 .017 1.4 14 .022 

1 1 1.5 17 .014 1.5 17 .014 1.5 17 .016 1.4 12 .020 

102 102 1. 5. 17 .014 1.5 18 .014 1.5 17 .016 1.4 13 ·. 021 
102 104 1.5 17. .014 1.5 17 .013 1.5 17 .016 1.4 13 .020 

102 106 1.5 17 .014 1.5 17 .013· 1.5 17 .016 1.4 13 .022 

106 106 
1.5 17 .013 1.6 24 .015 1.5 21 .018 1.4 16 .023 

106 102 DIVERGED 1.0 4 .008 1.0 ·3 .009 1.0 3 .010 
10-l 104 1.5 17 .. 013 1.5 17 .014 1.5 17 .016 1.4 12 .019 
10-4 10-4 1.5 17 .014 1.5 : 17 .013 i.5 17 .015 1.4 12 .020 
10-4 1 1.5 i7 .013 1.5 17 .013 1.5 17 .016 1.4 12 .019 

1 10-4 1.5 17 .014 1.5 . 17 .014 1.5 17 .016 1.4 12 .020 

4xl0 2 0 DIVERGED 1.1 ·5 .009 . 1.1 5 .009 1.0 5 .012 

I I 



h = 0.02 

cl c2 

104 10-4 

1 1 

102 106 

10-4 10-4 

1 10-4 

10- 4 1 

TABLE 3. Results for Method P with h = 0.1 

h = 0.1 ~lethod P 

cl .c2 ~ I T 

10
4 10-l 1.0 3 .009 

10
4 

104 1.5 16 .021 

10
2 

10
6 

1.4 13 .019 

1 1 1.4 12 .018 

TABLE 4. Results for Methods L, M, N, and Q with h = 0.02. 

~·let hod L Method M Method N 

wb I T wb I T wb I T wb 

DIVERGED 1.1 9 .216 1.1 9 .257 1.0 

1.9 110 1.298 1.9 110 1. 201 1.9 110 1. 724 1.8 

1.9 110 1.301 1.9 110 1.208 1.9 110 1. 735 1.8 

1.9 110 1.350 1.9 llO 1.206 1.9 110 1. 719 1.8 

1. 9 . uo 1.303 1.9 110 1.207 1.9 llO 1. 715 1.8 

1.9 110 1. 297 1.9 110 1.202 1.9 llO 1.732 1.8 

'· 

Method Q 

I T 

7 .335 

102 3.106 

104 3.492 

103 3.136 

98 2.979 

103 3.136 

N 
N 
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TABLE 5. Results for Method P with h 

h = 0.02 Method p 

cl c2 wb I T 

104 10-l 1.0 8 .323 

102 106 1.8 104 2.609 

1 1 1.8 102 . 2.582 

We now indicate some conclusions from these numerical calculations. We 

first observe that the "predictions" in Table 1 of Section 5 are indeed 

accurate for all cases studied. When c1 >> c2 and large 1 the divergence 

indicated in Theorems 4 and ·5 1 and the remark following these theorems, 

is obtained for all such numerical examples. In those caseswhere 

Method L converges, Method L and M have almost identical iteration 

characteristics (a comparison of linear methods). Also, ~1ethods M 

and N parallel each other except for the slightly increased time factor 

in Method N (a comparison of a linear with Newton-type method). The 

block methods, Methods P and Q, are iteratively faster than the point 

methods, r:1ethods L, M, and N, as expected (see [12)), but require more 

time; this· is due to the added time needed to solve the block equations 

by Gaussian elimination. 

~1ethods ~1, N, · P, and Q all effectively solved (3) with f given by (2). 

However, ~·lethod ~1 and N are simpler and less time consuming, so one might 

consider them slightly better than the other methods. Clearly, Method L 

could not be considered a good "general" method even though it effec

tively handled many cases. Other interesting observations can be 

obtained from the tables, but we shall leave these to the reader's 

interest. 
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Direct methods for solving the equations· in (3) .for Methods L, ~·1, and· 

Q by a "band matrix inversion" technique suggested in a paper by ~·lartin 

and Wilkinson [11] were tried for h = 0 .1. A table of results for such 

calculations is given below. 

TABLE 6. Results for Direct ~1ethods. 

h = 0.1 Direct L Direct ~·I Direct Q 

cl c2 wb I T wb I T ~ I T 

10-l 10-l 1.0 3 .028 1 .. 0 2 .036 1.0 2 .036 

104 10-l DIVERGED 1.0 3 .053 1.0 3 .054 

104 10 2 I I 
DIVERGED 1.7 11 .170 1.0 7 .116 

104 104 1.0 3 .029 ' 1.1 9 .140 1.0 7 .121 

1 1 1.0 3 . 029 1.0 3 .055 1.'0 3 .052 

10 2 102 1.0 3 .029 1.1 5 .080 1.0 4 .067 

102 104 1.0 2 .026 1.0 4 .069 1.0 3 .052 

102 106 1.0 2 .026 1.0 3 .051 1.0 3 .053 

106 106 1.0 3 .029 1.0 15 .239 1.0 9 .143 

106 102 DIVERGED 1.0 4 .069 1.0 3 .052 
10-1 104 1.0 2 .026 1.0 3 .053 1.0 3 .052 

10-4 10-4 1.0 2 .025 1.0 2 .038 1.0 2 .039 

10-4 1 1.0 2 .027 1.0 2 .038 1.0 2 .037 

1 10-4 1.0 3 .028 1.0 2 .039 1.0 2 .037 

The direct methods are iteratively faster, but overall ·iook a great 

deal more time (a factor of 2 or more) than the point arid b1o·ck 

methods. Furthermore, direct methods become less and less practical 

as the mesh is refined. Observe that the divergence criterion of 

Theorems 4 and 5 is again illustrated for the linearized equations 

of Method L. 

\-.,;/ 

;/ 
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The equations in (3) are quadratic in u.. One might therefore try to 
. 1 

solve them iteratively using the quadrat~c formula. This is a success-

ful method of solution, but double precision is necessary, and this 

method is more time-consuming than the other methods. 

There were numerical instabilities for large values of the overrelaxa

tion factor, w, in those cases where c1 >> c2 and large. 

All calculations above used a zero initial guess and the convergence 

criterion 

maxlu~k+l) - u~k) I 
. 1 1 
1 < E , 

maxlu.Ck+l) I 
i 1 

where E = .002 for h = 0.1 and E = .00002 for h = 0.02. 
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Part II. A Dirichlet Problem for a System of Non-Linear Partial 

Differential Equations 

1. Introduction. 

In this part of the report, we consider the non-linear boundary-value 

problem 

(7_; 

6u = f(u,v), u, v ~ 0, in R, 

6v = g(u,v), u, v ~ 0, in R, 

u = $, v =~.on R'~ 

where R, R 1 , and 6 are as in Part I, $ and ~ are non-negative continuous 

functions and 

(8) 

and 

(9) g(u,v) - -

where c., i=l, •.. , 4, are positive constants. 
]. 

We describe the finite-difference analogue of (7) in Section 2. Section 

3 contains iterative methods for solving this approximate problem. Other 

related results and an analysis of these and the results of Part ·I are 

given in Sections 4 and S. In Section 6 there are numerical calculations 

to illustrate the iteration methods and a variety of examples of the 

approximate problem for (7). 

2. Statement of the Problem. 

For convenience, we shall use the notation of Section 2 of Part I. We 

define operators Mh and Nh by 

,, 

... 



,~·~ 
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~1h ( F; • , n. ) = I::J.h [ t;. ] - f ( t; . , n . } 
1 1 1 1 1 

and 

Nh(F;.,n.) = !::J.h[n.] - g(F;.,n.). 
1 1 1 . 1 1 

The boundary-value problem for some fixed-Rh consists of'determining 

functions u and v defined on Rh such that 

Mh [u., v.] = 0, u.' v. > 0, i = 1, ... 'N; 1 . 1 1 1 -

Nh [u., v.] = 0, u.' v. > o, i = 1, ... ,N; 
. 1 1 1 1 -

(10) 
u. = 4> • , j = N+l, ••• ,M; 

J J 

v. = t/J j ' j = N+l, ••• ,M. 
J 

3. Iteration Hethods. 

The iteration .methods of this part of the report are the same as Nethods 

L, M, N, and Q of Part I, except-they _are extended to handle the system 

instead of just the single equation. We shall denote these comparable · 

methods by L', M', N', and Q'. 

~1ethod L' 

We linearize (10) at the i-th point by taking a.ll previous iterates for 

u. and v. in f, and the new iterate u~k+l) and previous iterate v~k) in 
1 1 . 1. 1 

g. We first solve the equation ~ith the operator Mk at the i-th point, 

and then solve the equation with the operator Nk at the i-th point, using 

the iteration equations of ~1ethod L for both. The iteration equations 

for this method arP. 
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i=l, ... ,N; k > 0 . 

Method H' 

We linearize the system 
(k+l) . h u. 1n t e numerator 

(10) as in Method L' except_we replace u~k) by 
1 

of f. The iteration equations for v are the same 
1 

as. in Method L' and the iteration equations_ for u are given by 

Method N' 

(k+l) u. 
1 

(k) = u. + w 
1 

i=l, ... ,N; k > 0. 

(k) u. 
1 

Method N' is the same as Method N except we replace th~ single equatioh 

in u with two equations in ~-and v and solve the u-equ~tion at the i-th 

point and then the v-e~uation there. Iis.defining-~quations are 

and 

. (k+l) 
u. 

1 

(k+l) 
v. = 

1 

(k) v. 
1 

4 (k)_[ (k+l) (k+i) (k) (~)-h2 ( .(k+l). (k))] v. v. 
4 

. +v. 
3 

.+v . .., +v. 
1 

,g u. , v. . 1 1 . . 1 . 1.<. 1 - 1 . 1 
- w ----------~--~~----~~~~~-------------

4 + h2 ~" (u ~~:fl )- v·~k)). 
,av . ). . • 1 

., ··:t .. 

i=l, ... ,N; k > 0. 

L 

t 
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Method Q' 
t--lethod Q' is analogous to l\1ethod Q except we have two block equations to 

solve at each step, one corresponding to a vertical line of values for u 

and the other to a vertical line of values of v. The equations are just 

those indicated in (5) with f(u~k)) and f'(u~k)) replaced by f(u~k) ,v~k)) 
af (k) (k). 1 1 (k) . 1 1 

and w· (u .. ,u. ) for the equations in u, and the u.' f(u. ) and 
~) 1 1 

. (k+l) (k) ag (kh) tk) . f'(u. ) replaced by v. g(u. v. ) and --(u. v. ) for the 
1 . 1 ' 1 ' 1 av 1 ' 1 

equations in v. Again, we solve the u-equation and then the v-equation 

before proceeding to the next vertical line of values. 

4. Other Results. 

Lick and Coleman [R] have considered problem (1) with f given by 

(11) f(u) = 

Included in their paper are existence, uniqueness, and convergence theo

rems and numerical results for the finite-difference analogue of this 

problem. We summarize their numer1cal results in the table below for· 

Methods L (~fethods L and M are equivalent here), N, and P. These tables 

contain the mesh size, h, the approximate optimum relaxation factor, ~1 , 

and the number of iterations for convergence, I. The convergence 

criterion used was 

max ju~k+l) - u~k)l < £ , 
i 

.,.4 
where£= 10 . The boundarycondition was given by cf> = xy on R', where 

R is the unit square. 

In those cases where c
1 

was large, there was numerical instability for 

~!ethods L and P when a large w was used (for h = 0. 1, w > 1. 6; for h = 

0.02, w > 1.9). 
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TABLE 7. Results of Lick and Coleman for h = 0.1. 

h = 0.1 ~1ethod L Method N ~1ethod p 

cl c2 wb I wb I wb I 

10-4 10-4 1.6 23 1.6 23 1.4 16 

10-4 1 1.6 23 1.6. 23 1.4 16 

1 10-4 1.6 23 1.6 .23 1.4 16 

1 1 1.5 23 1.5 23 1.4 15 

104 1 1.4 30 1.5 25 1.2 23 

1 104 1.5 23 1.6 24 . 1.4 16 

104 104 . 1. 5·< 32 . - .1. 5. 26 1.4· 27 

TABLE 8. Results of Lick and Coleman for h = 0.02. 
. '~ 

h = 0.02 Method· L Method N r Method p 

.· 

cl c2 wb I wb I wb I 

10-4 10-4 1.9 104 1.9 104 1.8 82 
7 

10-4 1 1.9 104 1.9 104 1.8 82 

1 10-4 1.9 104 1.9 104 1.8 83 

1 1 1.9 104 1.9 104 1.8 80 

104 
1 1.8 116 1.9 108 1.7 98 

1 104 1.9 105 1.9 106 1.8 82 

104 104 1.8 211 1.9 118 1.8 111 
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5, An Analysis. 

We ·now try to analyze (10) using the results of Part I and the results of 

Lick and Coleman. 

We first observe that f(u~v) can be written· in the form 

c'u 
f(u,v) 1 = l+c2u 

, 

where 

c' 
cl 

= 1 l+c
2
v 

and 

c' = 
2 

Then f(u,v) can be considered to be of form (2). We see then that ci 

and c2 vary as c
1 

and c
3 

in (10). 

.g cu·, v) = 

where 

c' = 3 

and 

c' = 4 

Similarly, g(u,v) can be written as 

. c3 
l+c'v ' 

4 

Thus g (u, v) can be thought of as in form (11). We see then that c3 and 

c4 vary as c
4
u and c

2
• The above discussion gives us a way of examining 

the system in (7) in terms of the single equations in (1) and (11). 
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Lick and Coleman 1 s results of Tables 7 and 8 (corresponding to values. of 

c; and c~) indicate that the ~econd equation .in (10) should cause no dif

ficulties for the numerical solution by Method L 1 or N 1 •. l~owever, the 

analysis of Section 5 of Part I (corresponding to ci and cz) indicates 

that ~1ethod L' should fail for c
1 

» c3 and large (see Table 9), while. 

the other methods (M 1
, N1

, and Q1
) should be successful. Also, the 

values in the tables· coupled with the discussion above leads one to 

expect rapid convergence and wb near 1.5 for the point methods and 1.4 

for the block method for most cases when h = 0.1. 

6. Numerical Results. 

Many numerical cases were solved for (10) with f given by (8) and g by 
2 2 (9), R the unit square, ~ = x +2y , ~ = xy, and h = 0.1. These cases are 

summarized in the table below. Included in this table are the mesh size, 

h, the approximate optimum relaxation factor, wb' the number of itera

tions fo~ convergence, I, and the computer execution time (in minutes), T, 

for each method for.each case. All of these were run on an IBM 360, 

Model 50. 

The following calculations had convergence criteria 

and 

with £ = £ = .002. u v 

max~u~k+l) - u~k) 
. 1 1 
1 

--'----t--(::-:k-+-=1 .... )..,......__._ < £ u 
max u .. 

i 1 

max v~k+l) - v~k) 
i 1 1 

--.L..-.,-~(;;k-+-;1'"')-r---L- < £ v 
max v. 

i 1 

'· 1 

t .. 
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TABLE 9. Results for ~lethods L', M', N', and Q' for h = 0.1. 

h = 0.1 ~1ethod L' ~lethod M' Method N' Method Q' 

cl c2 c3 c4 wb I T ~ I T wb I T wb I T 

-

1 1 105 105 l.S 17 .027 l.S 17 .026 l.S 17 .032 1.4 12 .038 

1 105 105 105 l.S 17 .026 . l.S 17 .027 l.S 17 .031 1.4 12 .040 
lOS lOS lOS 105 1.5 17 • 027 l.S 18 .027 1.5 19 .033 1.4 14 .045 

10-~ . 1 10-4 1 l.S 18 .027 LS 18 .028 l._S 18 .034 1.4 13 .044 

10-4 1 ·- 1 1 l.S 17 .029 l.S 17 .027 l.S 17 .034 1.4 12 .041 

1 1 10-4 1 l.S 18 .029 1.5. 18 .028 "l.S 18 .033 1.4 13 .044 . 
1 1 1 1 l.S .17 ·• 029 l.S 17 .028 l.S 17 .036 1.4 12 .040 

1 1 1 lOS 1.3 28 .036 1.'3 28 .03S "l.S 19 .033 l.S 13 .041 

1 lOS 1 1 l.S 17 .028' l.S 17 . 0.29 l.S 19 .037 1.4 13 .043 
lOS. I 1 1 1 DIVERGED l.S 17 .027 l.S 17 .033 1.4 13 .044 

lOS 
i 

lOS -
I I 

1 1 DIVERGED 1.4 20 .030 l.S 18 .034 1.4 12 .040 
10s. lOS 

I I 
1 1 DIVERGED l.S 21 .031 l.S 19 .033 1.4 14 .044 

I I 
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All cases behaved as expected from the analysis of Section 5. For the 

cases where Method L 1 converged, l\·lethods L 1 and M 1 were almost identical. 

Methods M1 and N1 again essentially parallel each other except for the 

slight increase in time for Method N1
• Method Q1 (block method) was 

iteratively faster, but again took more time. Some numerical instability 

was observed and is summarized in the following table. 

TABLE 10. Numerical Instability of the System. 

~ Ll Ml Nl Ql 
e 

cl = c2 = c3 = 1 
w > 1.6 w > 1.5 None None 

105 -
c4 = 

cl = 105 

DIVERGED w > 1.7 w > 1.7 w > 1.8 - ...... -
c2 = c3 = c4 = 1 

cl = c4 = 105 

DIVERGED w > 1.8 w > 1.8 w > 1.8 - - -
c2 = c = 1 

3 

From simplicity, time, and effectiveness considerations, we conclude that 

Methods l\·1 1 and N1 are better than the other methods considered in this 

report. 

Systems like (7) frequently arise in various physical problems. If the 

Dirichlet conditions of (7) are replaced by mixed boundary conditions, 

(7) describes a system that arises in corrosion-diffusion problems. In 

particular, examples of such problems and their numerical solutions can 

be found in [9] an~ [10]. 

~' 
I 

1~. 

., 
t 
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